| 1 |
38 |
julius |
/* DDG - Data Dependence Graph implementation.
|
| 2 |
|
|
Copyright (C) 2004, 2005, 2006, 2007
|
| 3 |
|
|
Free Software Foundation, Inc.
|
| 4 |
|
|
Contributed by Ayal Zaks and Mustafa Hagog <zaks,mustafa@il.ibm.com>
|
| 5 |
|
|
|
| 6 |
|
|
This file is part of GCC.
|
| 7 |
|
|
|
| 8 |
|
|
GCC is free software; you can redistribute it and/or modify it under
|
| 9 |
|
|
the terms of the GNU General Public License as published by the Free
|
| 10 |
|
|
Software Foundation; either version 3, or (at your option) any later
|
| 11 |
|
|
version.
|
| 12 |
|
|
|
| 13 |
|
|
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
|
| 14 |
|
|
WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
| 15 |
|
|
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
| 16 |
|
|
for more details.
|
| 17 |
|
|
|
| 18 |
|
|
You should have received a copy of the GNU General Public License
|
| 19 |
|
|
along with GCC; see the file COPYING3. If not see
|
| 20 |
|
|
<http://www.gnu.org/licenses/>. */
|
| 21 |
|
|
|
| 22 |
|
|
|
| 23 |
|
|
#include "config.h"
|
| 24 |
|
|
#include "system.h"
|
| 25 |
|
|
#include "coretypes.h"
|
| 26 |
|
|
#include "tm.h"
|
| 27 |
|
|
#include "toplev.h"
|
| 28 |
|
|
#include "rtl.h"
|
| 29 |
|
|
#include "tm_p.h"
|
| 30 |
|
|
#include "hard-reg-set.h"
|
| 31 |
|
|
#include "regs.h"
|
| 32 |
|
|
#include "function.h"
|
| 33 |
|
|
#include "flags.h"
|
| 34 |
|
|
#include "insn-config.h"
|
| 35 |
|
|
#include "insn-attr.h"
|
| 36 |
|
|
#include "except.h"
|
| 37 |
|
|
#include "recog.h"
|
| 38 |
|
|
#include "sched-int.h"
|
| 39 |
|
|
#include "target.h"
|
| 40 |
|
|
#include "cfglayout.h"
|
| 41 |
|
|
#include "cfgloop.h"
|
| 42 |
|
|
#include "sbitmap.h"
|
| 43 |
|
|
#include "expr.h"
|
| 44 |
|
|
#include "bitmap.h"
|
| 45 |
|
|
#include "df.h"
|
| 46 |
|
|
#include "ddg.h"
|
| 47 |
|
|
|
| 48 |
|
|
/* A flag indicating that a ddg edge belongs to an SCC or not. */
|
| 49 |
|
|
enum edge_flag {NOT_IN_SCC = 0, IN_SCC};
|
| 50 |
|
|
|
| 51 |
|
|
/* Forward declarations. */
|
| 52 |
|
|
static void add_backarc_to_ddg (ddg_ptr, ddg_edge_ptr);
|
| 53 |
|
|
static void add_backarc_to_scc (ddg_scc_ptr, ddg_edge_ptr);
|
| 54 |
|
|
static void add_scc_to_ddg (ddg_all_sccs_ptr, ddg_scc_ptr);
|
| 55 |
|
|
static void create_ddg_dependence (ddg_ptr, ddg_node_ptr, ddg_node_ptr, rtx);
|
| 56 |
|
|
static void create_ddg_dep_no_link (ddg_ptr, ddg_node_ptr, ddg_node_ptr,
|
| 57 |
|
|
dep_type, dep_data_type, int);
|
| 58 |
|
|
static ddg_edge_ptr create_ddg_edge (ddg_node_ptr, ddg_node_ptr, dep_type,
|
| 59 |
|
|
dep_data_type, int, int);
|
| 60 |
|
|
static void add_edge_to_ddg (ddg_ptr g, ddg_edge_ptr);
|
| 61 |
|
|
|
| 62 |
|
|
/* Auxiliary variable for mem_read_insn_p/mem_write_insn_p. */
|
| 63 |
|
|
static bool mem_ref_p;
|
| 64 |
|
|
|
| 65 |
|
|
/* Auxiliary function for mem_read_insn_p. */
|
| 66 |
|
|
static int
|
| 67 |
|
|
mark_mem_use (rtx *x, void *data ATTRIBUTE_UNUSED)
|
| 68 |
|
|
{
|
| 69 |
|
|
if (MEM_P (*x))
|
| 70 |
|
|
mem_ref_p = true;
|
| 71 |
|
|
return 0;
|
| 72 |
|
|
}
|
| 73 |
|
|
|
| 74 |
|
|
/* Auxiliary function for mem_read_insn_p. */
|
| 75 |
|
|
static void
|
| 76 |
|
|
mark_mem_use_1 (rtx *x, void *data)
|
| 77 |
|
|
{
|
| 78 |
|
|
for_each_rtx (x, mark_mem_use, data);
|
| 79 |
|
|
}
|
| 80 |
|
|
|
| 81 |
|
|
/* Returns nonzero if INSN reads from memory. */
|
| 82 |
|
|
static bool
|
| 83 |
|
|
mem_read_insn_p (rtx insn)
|
| 84 |
|
|
{
|
| 85 |
|
|
mem_ref_p = false;
|
| 86 |
|
|
note_uses (&PATTERN (insn), mark_mem_use_1, NULL);
|
| 87 |
|
|
return mem_ref_p;
|
| 88 |
|
|
}
|
| 89 |
|
|
|
| 90 |
|
|
static void
|
| 91 |
|
|
mark_mem_store (rtx loc, rtx setter ATTRIBUTE_UNUSED, void *data ATTRIBUTE_UNUSED)
|
| 92 |
|
|
{
|
| 93 |
|
|
if (MEM_P (loc))
|
| 94 |
|
|
mem_ref_p = true;
|
| 95 |
|
|
}
|
| 96 |
|
|
|
| 97 |
|
|
/* Returns nonzero if INSN writes to memory. */
|
| 98 |
|
|
static bool
|
| 99 |
|
|
mem_write_insn_p (rtx insn)
|
| 100 |
|
|
{
|
| 101 |
|
|
mem_ref_p = false;
|
| 102 |
|
|
note_stores (PATTERN (insn), mark_mem_store, NULL);
|
| 103 |
|
|
return mem_ref_p;
|
| 104 |
|
|
}
|
| 105 |
|
|
|
| 106 |
|
|
/* Returns nonzero if X has access to memory. */
|
| 107 |
|
|
static bool
|
| 108 |
|
|
rtx_mem_access_p (rtx x)
|
| 109 |
|
|
{
|
| 110 |
|
|
int i, j;
|
| 111 |
|
|
const char *fmt;
|
| 112 |
|
|
enum rtx_code code;
|
| 113 |
|
|
|
| 114 |
|
|
if (x == 0)
|
| 115 |
|
|
return false;
|
| 116 |
|
|
|
| 117 |
|
|
if (MEM_P (x))
|
| 118 |
|
|
return true;
|
| 119 |
|
|
|
| 120 |
|
|
code = GET_CODE (x);
|
| 121 |
|
|
fmt = GET_RTX_FORMAT (code);
|
| 122 |
|
|
for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
|
| 123 |
|
|
{
|
| 124 |
|
|
if (fmt[i] == 'e')
|
| 125 |
|
|
{
|
| 126 |
|
|
if (rtx_mem_access_p (XEXP (x, i)))
|
| 127 |
|
|
return true;
|
| 128 |
|
|
}
|
| 129 |
|
|
else if (fmt[i] == 'E')
|
| 130 |
|
|
for (j = 0; j < XVECLEN (x, i); j++)
|
| 131 |
|
|
{
|
| 132 |
|
|
if (rtx_mem_access_p (XVECEXP (x, i, j)))
|
| 133 |
|
|
return true;
|
| 134 |
|
|
}
|
| 135 |
|
|
}
|
| 136 |
|
|
return false;
|
| 137 |
|
|
}
|
| 138 |
|
|
|
| 139 |
|
|
/* Returns nonzero if INSN reads to or writes from memory. */
|
| 140 |
|
|
static bool
|
| 141 |
|
|
mem_access_insn_p (rtx insn)
|
| 142 |
|
|
{
|
| 143 |
|
|
return rtx_mem_access_p (PATTERN (insn));
|
| 144 |
|
|
}
|
| 145 |
|
|
|
| 146 |
|
|
/* Computes the dependence parameters (latency, distance etc.), creates
|
| 147 |
|
|
a ddg_edge and adds it to the given DDG. */
|
| 148 |
|
|
static void
|
| 149 |
|
|
create_ddg_dependence (ddg_ptr g, ddg_node_ptr src_node,
|
| 150 |
|
|
ddg_node_ptr dest_node, rtx link)
|
| 151 |
|
|
{
|
| 152 |
|
|
ddg_edge_ptr e;
|
| 153 |
|
|
int latency, distance = 0;
|
| 154 |
|
|
int interloop = (src_node->cuid >= dest_node->cuid);
|
| 155 |
|
|
dep_type t = TRUE_DEP;
|
| 156 |
|
|
dep_data_type dt = (mem_access_insn_p (src_node->insn)
|
| 157 |
|
|
&& mem_access_insn_p (dest_node->insn) ? MEM_DEP
|
| 158 |
|
|
: REG_DEP);
|
| 159 |
|
|
|
| 160 |
|
|
/* For now we don't have an exact calculation of the distance,
|
| 161 |
|
|
so assume 1 conservatively. */
|
| 162 |
|
|
if (interloop)
|
| 163 |
|
|
distance = 1;
|
| 164 |
|
|
|
| 165 |
|
|
gcc_assert (link);
|
| 166 |
|
|
|
| 167 |
|
|
/* Note: REG_DEP_ANTI applies to MEM ANTI_DEP as well!! */
|
| 168 |
|
|
if (REG_NOTE_KIND (link) == REG_DEP_ANTI)
|
| 169 |
|
|
t = ANTI_DEP;
|
| 170 |
|
|
else if (REG_NOTE_KIND (link) == REG_DEP_OUTPUT)
|
| 171 |
|
|
t = OUTPUT_DEP;
|
| 172 |
|
|
latency = insn_cost (src_node->insn, link, dest_node->insn);
|
| 173 |
|
|
|
| 174 |
|
|
e = create_ddg_edge (src_node, dest_node, t, dt, latency, distance);
|
| 175 |
|
|
|
| 176 |
|
|
if (interloop)
|
| 177 |
|
|
{
|
| 178 |
|
|
/* Some interloop dependencies are relaxed:
|
| 179 |
|
|
1. Every insn is output dependent on itself; ignore such deps.
|
| 180 |
|
|
2. Every true/flow dependence is an anti dependence in the
|
| 181 |
|
|
opposite direction with distance 1; such register deps
|
| 182 |
|
|
will be removed by renaming if broken --- ignore them. */
|
| 183 |
|
|
if (!(t == OUTPUT_DEP && src_node == dest_node)
|
| 184 |
|
|
&& !(t == ANTI_DEP && dt == REG_DEP))
|
| 185 |
|
|
add_backarc_to_ddg (g, e);
|
| 186 |
|
|
else
|
| 187 |
|
|
free (e);
|
| 188 |
|
|
}
|
| 189 |
|
|
else if (t == ANTI_DEP && dt == REG_DEP)
|
| 190 |
|
|
free (e); /* We can fix broken anti register deps using reg-moves. */
|
| 191 |
|
|
else
|
| 192 |
|
|
add_edge_to_ddg (g, e);
|
| 193 |
|
|
}
|
| 194 |
|
|
|
| 195 |
|
|
/* The same as the above function, but it doesn't require a link parameter. */
|
| 196 |
|
|
static void
|
| 197 |
|
|
create_ddg_dep_no_link (ddg_ptr g, ddg_node_ptr from, ddg_node_ptr to,
|
| 198 |
|
|
dep_type d_t, dep_data_type d_dt, int distance)
|
| 199 |
|
|
{
|
| 200 |
|
|
ddg_edge_ptr e;
|
| 201 |
|
|
int l;
|
| 202 |
|
|
rtx link = alloc_INSN_LIST (to->insn, NULL_RTX);
|
| 203 |
|
|
|
| 204 |
|
|
if (d_t == ANTI_DEP)
|
| 205 |
|
|
PUT_REG_NOTE_KIND (link, REG_DEP_ANTI);
|
| 206 |
|
|
else if (d_t == OUTPUT_DEP)
|
| 207 |
|
|
PUT_REG_NOTE_KIND (link, REG_DEP_OUTPUT);
|
| 208 |
|
|
|
| 209 |
|
|
l = insn_cost (from->insn, link, to->insn);
|
| 210 |
|
|
free_INSN_LIST_node (link);
|
| 211 |
|
|
|
| 212 |
|
|
e = create_ddg_edge (from, to, d_t, d_dt, l, distance);
|
| 213 |
|
|
if (distance > 0)
|
| 214 |
|
|
add_backarc_to_ddg (g, e);
|
| 215 |
|
|
else
|
| 216 |
|
|
add_edge_to_ddg (g, e);
|
| 217 |
|
|
}
|
| 218 |
|
|
|
| 219 |
|
|
|
| 220 |
|
|
/* Given a downwards exposed register def RD, add inter-loop true dependences
|
| 221 |
|
|
for all its uses in the next iteration, and an output dependence to the
|
| 222 |
|
|
first def of the next iteration. */
|
| 223 |
|
|
static void
|
| 224 |
|
|
add_deps_for_def (ddg_ptr g, struct df *df, struct df_ref *rd)
|
| 225 |
|
|
{
|
| 226 |
|
|
int regno = DF_REF_REGNO (rd);
|
| 227 |
|
|
struct df_ru_bb_info *bb_info = DF_RU_BB_INFO (df, g->bb);
|
| 228 |
|
|
struct df_link *r_use;
|
| 229 |
|
|
int use_before_def = false;
|
| 230 |
|
|
rtx def_insn = DF_REF_INSN (rd);
|
| 231 |
|
|
ddg_node_ptr src_node = get_node_of_insn (g, def_insn);
|
| 232 |
|
|
|
| 233 |
|
|
/* Create and inter-loop true dependence between RD and each of its uses
|
| 234 |
|
|
that is upwards exposed in RD's block. */
|
| 235 |
|
|
for (r_use = DF_REF_CHAIN (rd); r_use != NULL; r_use = r_use->next)
|
| 236 |
|
|
{
|
| 237 |
|
|
if (bitmap_bit_p (bb_info->gen, r_use->ref->id))
|
| 238 |
|
|
{
|
| 239 |
|
|
rtx use_insn = DF_REF_INSN (r_use->ref);
|
| 240 |
|
|
ddg_node_ptr dest_node = get_node_of_insn (g, use_insn);
|
| 241 |
|
|
|
| 242 |
|
|
gcc_assert (src_node && dest_node);
|
| 243 |
|
|
|
| 244 |
|
|
/* Any such upwards exposed use appears before the rd def. */
|
| 245 |
|
|
use_before_def = true;
|
| 246 |
|
|
create_ddg_dep_no_link (g, src_node, dest_node, TRUE_DEP,
|
| 247 |
|
|
REG_DEP, 1);
|
| 248 |
|
|
}
|
| 249 |
|
|
}
|
| 250 |
|
|
|
| 251 |
|
|
/* Create an inter-loop output dependence between RD (which is the
|
| 252 |
|
|
last def in its block, being downwards exposed) and the first def
|
| 253 |
|
|
in its block. Avoid creating a self output dependence. Avoid creating
|
| 254 |
|
|
an output dependence if there is a dependence path between the two defs
|
| 255 |
|
|
starting with a true dependence followed by an anti dependence (i.e. if
|
| 256 |
|
|
there is a use between the two defs. */
|
| 257 |
|
|
if (! use_before_def)
|
| 258 |
|
|
{
|
| 259 |
|
|
struct df_ref *def = df_bb_regno_first_def_find (df, g->bb, regno);
|
| 260 |
|
|
int i;
|
| 261 |
|
|
ddg_node_ptr dest_node;
|
| 262 |
|
|
|
| 263 |
|
|
if (!def || rd->id == def->id)
|
| 264 |
|
|
return;
|
| 265 |
|
|
|
| 266 |
|
|
/* Check if there are uses after RD. */
|
| 267 |
|
|
for (i = src_node->cuid + 1; i < g->num_nodes; i++)
|
| 268 |
|
|
if (df_find_use (df, g->nodes[i].insn, rd->reg))
|
| 269 |
|
|
return;
|
| 270 |
|
|
|
| 271 |
|
|
dest_node = get_node_of_insn (g, def->insn);
|
| 272 |
|
|
create_ddg_dep_no_link (g, src_node, dest_node, OUTPUT_DEP, REG_DEP, 1);
|
| 273 |
|
|
}
|
| 274 |
|
|
}
|
| 275 |
|
|
|
| 276 |
|
|
/* Given a register USE, add an inter-loop anti dependence to the first
|
| 277 |
|
|
(nearest BLOCK_BEGIN) def of the next iteration, unless USE is followed
|
| 278 |
|
|
by a def in the block. */
|
| 279 |
|
|
static void
|
| 280 |
|
|
add_deps_for_use (ddg_ptr g, struct df *df, struct df_ref *use)
|
| 281 |
|
|
{
|
| 282 |
|
|
int i;
|
| 283 |
|
|
int regno = DF_REF_REGNO (use);
|
| 284 |
|
|
struct df_ref *first_def = df_bb_regno_first_def_find (df, g->bb, regno);
|
| 285 |
|
|
ddg_node_ptr use_node;
|
| 286 |
|
|
ddg_node_ptr def_node;
|
| 287 |
|
|
struct df_rd_bb_info *bb_info;
|
| 288 |
|
|
|
| 289 |
|
|
bb_info = DF_RD_BB_INFO (df, g->bb);
|
| 290 |
|
|
|
| 291 |
|
|
if (!first_def)
|
| 292 |
|
|
return;
|
| 293 |
|
|
|
| 294 |
|
|
use_node = get_node_of_insn (g, use->insn);
|
| 295 |
|
|
def_node = get_node_of_insn (g, first_def->insn);
|
| 296 |
|
|
|
| 297 |
|
|
gcc_assert (use_node && def_node);
|
| 298 |
|
|
|
| 299 |
|
|
/* Make sure there are no defs after USE. */
|
| 300 |
|
|
for (i = use_node->cuid + 1; i < g->num_nodes; i++)
|
| 301 |
|
|
if (df_find_def (df, g->nodes[i].insn, use->reg))
|
| 302 |
|
|
return;
|
| 303 |
|
|
/* We must not add ANTI dep when there is an intra-loop TRUE dep in
|
| 304 |
|
|
the opposite direction. If the first_def reaches the USE then there is
|
| 305 |
|
|
such a dep. */
|
| 306 |
|
|
if (! bitmap_bit_p (bb_info->gen, first_def->id))
|
| 307 |
|
|
create_ddg_dep_no_link (g, use_node, def_node, ANTI_DEP, REG_DEP, 1);
|
| 308 |
|
|
}
|
| 309 |
|
|
|
| 310 |
|
|
/* Build inter-loop dependencies, by looking at DF analysis backwards. */
|
| 311 |
|
|
static void
|
| 312 |
|
|
build_inter_loop_deps (ddg_ptr g, struct df *df)
|
| 313 |
|
|
{
|
| 314 |
|
|
unsigned rd_num, u_num;
|
| 315 |
|
|
struct df_rd_bb_info *rd_bb_info;
|
| 316 |
|
|
struct df_ru_bb_info *ru_bb_info;
|
| 317 |
|
|
bitmap_iterator bi;
|
| 318 |
|
|
|
| 319 |
|
|
rd_bb_info = DF_RD_BB_INFO (df, g->bb);
|
| 320 |
|
|
|
| 321 |
|
|
/* Find inter-loop output and true deps by connecting downward exposed defs
|
| 322 |
|
|
to the first def of the BB and to upwards exposed uses. */
|
| 323 |
|
|
EXECUTE_IF_SET_IN_BITMAP (rd_bb_info->gen, 0, rd_num, bi)
|
| 324 |
|
|
{
|
| 325 |
|
|
struct df_ref *rd = DF_DEFS_GET (df, rd_num);
|
| 326 |
|
|
|
| 327 |
|
|
add_deps_for_def (g, df, rd);
|
| 328 |
|
|
}
|
| 329 |
|
|
|
| 330 |
|
|
ru_bb_info = DF_RU_BB_INFO (df, g->bb);
|
| 331 |
|
|
|
| 332 |
|
|
/* Find inter-loop anti deps. We are interested in uses of the block that
|
| 333 |
|
|
appear below all defs; this implies that these uses are killed. */
|
| 334 |
|
|
EXECUTE_IF_SET_IN_BITMAP (ru_bb_info->kill, 0, u_num, bi)
|
| 335 |
|
|
{
|
| 336 |
|
|
struct df_ref *use = DF_USES_GET (df, u_num);
|
| 337 |
|
|
|
| 338 |
|
|
/* We are interested in uses of this BB. */
|
| 339 |
|
|
if (BLOCK_FOR_INSN (use->insn) == g->bb)
|
| 340 |
|
|
add_deps_for_use (g, df, use);
|
| 341 |
|
|
}
|
| 342 |
|
|
}
|
| 343 |
|
|
|
| 344 |
|
|
/* Given two nodes, analyze their RTL insns and add inter-loop mem deps
|
| 345 |
|
|
to ddg G. */
|
| 346 |
|
|
static void
|
| 347 |
|
|
add_inter_loop_mem_dep (ddg_ptr g, ddg_node_ptr from, ddg_node_ptr to)
|
| 348 |
|
|
{
|
| 349 |
|
|
if (mem_write_insn_p (from->insn))
|
| 350 |
|
|
{
|
| 351 |
|
|
if (mem_read_insn_p (to->insn))
|
| 352 |
|
|
create_ddg_dep_no_link (g, from, to, TRUE_DEP, MEM_DEP, 1);
|
| 353 |
|
|
else if (from->cuid != to->cuid)
|
| 354 |
|
|
create_ddg_dep_no_link (g, from, to, OUTPUT_DEP, MEM_DEP, 1);
|
| 355 |
|
|
}
|
| 356 |
|
|
else
|
| 357 |
|
|
{
|
| 358 |
|
|
if (mem_read_insn_p (to->insn))
|
| 359 |
|
|
return;
|
| 360 |
|
|
else if (from->cuid != to->cuid)
|
| 361 |
|
|
{
|
| 362 |
|
|
create_ddg_dep_no_link (g, from, to, ANTI_DEP, MEM_DEP, 1);
|
| 363 |
|
|
create_ddg_dep_no_link (g, to, from, TRUE_DEP, MEM_DEP, 1);
|
| 364 |
|
|
}
|
| 365 |
|
|
}
|
| 366 |
|
|
|
| 367 |
|
|
}
|
| 368 |
|
|
|
| 369 |
|
|
/* Perform intra-block Data Dependency analysis and connect the nodes in
|
| 370 |
|
|
the DDG. We assume the loop has a single basic block. */
|
| 371 |
|
|
static void
|
| 372 |
|
|
build_intra_loop_deps (ddg_ptr g)
|
| 373 |
|
|
{
|
| 374 |
|
|
int i;
|
| 375 |
|
|
/* Hold the dependency analysis state during dependency calculations. */
|
| 376 |
|
|
struct deps tmp_deps;
|
| 377 |
|
|
rtx head, tail, link;
|
| 378 |
|
|
|
| 379 |
|
|
/* Build the dependence information, using the sched_analyze function. */
|
| 380 |
|
|
init_deps_global ();
|
| 381 |
|
|
init_deps (&tmp_deps);
|
| 382 |
|
|
|
| 383 |
|
|
/* Do the intra-block data dependence analysis for the given block. */
|
| 384 |
|
|
get_ebb_head_tail (g->bb, g->bb, &head, &tail);
|
| 385 |
|
|
sched_analyze (&tmp_deps, head, tail);
|
| 386 |
|
|
|
| 387 |
|
|
/* Build intra-loop data dependencies using the scheduler dependency
|
| 388 |
|
|
analysis. */
|
| 389 |
|
|
for (i = 0; i < g->num_nodes; i++)
|
| 390 |
|
|
{
|
| 391 |
|
|
ddg_node_ptr dest_node = &g->nodes[i];
|
| 392 |
|
|
|
| 393 |
|
|
if (! INSN_P (dest_node->insn))
|
| 394 |
|
|
continue;
|
| 395 |
|
|
|
| 396 |
|
|
for (link = LOG_LINKS (dest_node->insn); link; link = XEXP (link, 1))
|
| 397 |
|
|
{
|
| 398 |
|
|
ddg_node_ptr src_node = get_node_of_insn (g, XEXP (link, 0));
|
| 399 |
|
|
|
| 400 |
|
|
if (!src_node)
|
| 401 |
|
|
continue;
|
| 402 |
|
|
|
| 403 |
|
|
add_forw_dep (dest_node->insn, link);
|
| 404 |
|
|
create_ddg_dependence (g, src_node, dest_node,
|
| 405 |
|
|
INSN_DEPEND (src_node->insn));
|
| 406 |
|
|
}
|
| 407 |
|
|
|
| 408 |
|
|
/* If this insn modifies memory, add an edge to all insns that access
|
| 409 |
|
|
memory. */
|
| 410 |
|
|
if (mem_access_insn_p (dest_node->insn))
|
| 411 |
|
|
{
|
| 412 |
|
|
int j;
|
| 413 |
|
|
|
| 414 |
|
|
for (j = 0; j <= i; j++)
|
| 415 |
|
|
{
|
| 416 |
|
|
ddg_node_ptr j_node = &g->nodes[j];
|
| 417 |
|
|
if (mem_access_insn_p (j_node->insn))
|
| 418 |
|
|
/* Don't bother calculating inter-loop dep if an intra-loop dep
|
| 419 |
|
|
already exists. */
|
| 420 |
|
|
if (! TEST_BIT (dest_node->successors, j))
|
| 421 |
|
|
add_inter_loop_mem_dep (g, dest_node, j_node);
|
| 422 |
|
|
}
|
| 423 |
|
|
}
|
| 424 |
|
|
}
|
| 425 |
|
|
|
| 426 |
|
|
/* Free the INSN_LISTs. */
|
| 427 |
|
|
finish_deps_global ();
|
| 428 |
|
|
free_deps (&tmp_deps);
|
| 429 |
|
|
}
|
| 430 |
|
|
|
| 431 |
|
|
|
| 432 |
|
|
/* Given a basic block, create its DDG and return a pointer to a variable
|
| 433 |
|
|
of ddg type that represents it.
|
| 434 |
|
|
Initialize the ddg structure fields to the appropriate values. */
|
| 435 |
|
|
ddg_ptr
|
| 436 |
|
|
create_ddg (basic_block bb, struct df *df, int closing_branch_deps)
|
| 437 |
|
|
{
|
| 438 |
|
|
ddg_ptr g;
|
| 439 |
|
|
rtx insn, first_note;
|
| 440 |
|
|
int i;
|
| 441 |
|
|
int num_nodes = 0;
|
| 442 |
|
|
|
| 443 |
|
|
g = (ddg_ptr) xcalloc (1, sizeof (struct ddg));
|
| 444 |
|
|
|
| 445 |
|
|
g->bb = bb;
|
| 446 |
|
|
g->closing_branch_deps = closing_branch_deps;
|
| 447 |
|
|
|
| 448 |
|
|
/* Count the number of insns in the BB. */
|
| 449 |
|
|
for (insn = BB_HEAD (bb); insn != NEXT_INSN (BB_END (bb));
|
| 450 |
|
|
insn = NEXT_INSN (insn))
|
| 451 |
|
|
{
|
| 452 |
|
|
if (! INSN_P (insn) || GET_CODE (PATTERN (insn)) == USE)
|
| 453 |
|
|
continue;
|
| 454 |
|
|
|
| 455 |
|
|
if (mem_read_insn_p (insn))
|
| 456 |
|
|
g->num_loads++;
|
| 457 |
|
|
if (mem_write_insn_p (insn))
|
| 458 |
|
|
g->num_stores++;
|
| 459 |
|
|
num_nodes++;
|
| 460 |
|
|
}
|
| 461 |
|
|
|
| 462 |
|
|
/* There is nothing to do for this BB. */
|
| 463 |
|
|
if (num_nodes <= 1)
|
| 464 |
|
|
{
|
| 465 |
|
|
free (g);
|
| 466 |
|
|
return NULL;
|
| 467 |
|
|
}
|
| 468 |
|
|
|
| 469 |
|
|
/* Allocate the nodes array, and initialize the nodes. */
|
| 470 |
|
|
g->num_nodes = num_nodes;
|
| 471 |
|
|
g->nodes = (ddg_node_ptr) xcalloc (num_nodes, sizeof (struct ddg_node));
|
| 472 |
|
|
g->closing_branch = NULL;
|
| 473 |
|
|
i = 0;
|
| 474 |
|
|
first_note = NULL_RTX;
|
| 475 |
|
|
for (insn = BB_HEAD (bb); insn != NEXT_INSN (BB_END (bb));
|
| 476 |
|
|
insn = NEXT_INSN (insn))
|
| 477 |
|
|
{
|
| 478 |
|
|
if (! INSN_P (insn))
|
| 479 |
|
|
{
|
| 480 |
|
|
if (! first_note && NOTE_P (insn)
|
| 481 |
|
|
&& NOTE_LINE_NUMBER (insn) != NOTE_INSN_BASIC_BLOCK)
|
| 482 |
|
|
first_note = insn;
|
| 483 |
|
|
continue;
|
| 484 |
|
|
}
|
| 485 |
|
|
if (JUMP_P (insn))
|
| 486 |
|
|
{
|
| 487 |
|
|
gcc_assert (!g->closing_branch);
|
| 488 |
|
|
g->closing_branch = &g->nodes[i];
|
| 489 |
|
|
}
|
| 490 |
|
|
else if (GET_CODE (PATTERN (insn)) == USE)
|
| 491 |
|
|
{
|
| 492 |
|
|
if (! first_note)
|
| 493 |
|
|
first_note = insn;
|
| 494 |
|
|
continue;
|
| 495 |
|
|
}
|
| 496 |
|
|
|
| 497 |
|
|
g->nodes[i].cuid = i;
|
| 498 |
|
|
g->nodes[i].successors = sbitmap_alloc (num_nodes);
|
| 499 |
|
|
sbitmap_zero (g->nodes[i].successors);
|
| 500 |
|
|
g->nodes[i].predecessors = sbitmap_alloc (num_nodes);
|
| 501 |
|
|
sbitmap_zero (g->nodes[i].predecessors);
|
| 502 |
|
|
g->nodes[i].first_note = (first_note ? first_note : insn);
|
| 503 |
|
|
g->nodes[i++].insn = insn;
|
| 504 |
|
|
first_note = NULL_RTX;
|
| 505 |
|
|
}
|
| 506 |
|
|
|
| 507 |
|
|
/* We must have found a branch in DDG. */
|
| 508 |
|
|
gcc_assert (g->closing_branch);
|
| 509 |
|
|
|
| 510 |
|
|
|
| 511 |
|
|
/* Build the data dependency graph. */
|
| 512 |
|
|
build_intra_loop_deps (g);
|
| 513 |
|
|
build_inter_loop_deps (g, df);
|
| 514 |
|
|
return g;
|
| 515 |
|
|
}
|
| 516 |
|
|
|
| 517 |
|
|
/* Free all the memory allocated for the DDG. */
|
| 518 |
|
|
void
|
| 519 |
|
|
free_ddg (ddg_ptr g)
|
| 520 |
|
|
{
|
| 521 |
|
|
int i;
|
| 522 |
|
|
|
| 523 |
|
|
if (!g)
|
| 524 |
|
|
return;
|
| 525 |
|
|
|
| 526 |
|
|
for (i = 0; i < g->num_nodes; i++)
|
| 527 |
|
|
{
|
| 528 |
|
|
ddg_edge_ptr e = g->nodes[i].out;
|
| 529 |
|
|
|
| 530 |
|
|
while (e)
|
| 531 |
|
|
{
|
| 532 |
|
|
ddg_edge_ptr next = e->next_out;
|
| 533 |
|
|
|
| 534 |
|
|
free (e);
|
| 535 |
|
|
e = next;
|
| 536 |
|
|
}
|
| 537 |
|
|
sbitmap_free (g->nodes[i].successors);
|
| 538 |
|
|
sbitmap_free (g->nodes[i].predecessors);
|
| 539 |
|
|
}
|
| 540 |
|
|
if (g->num_backarcs > 0)
|
| 541 |
|
|
free (g->backarcs);
|
| 542 |
|
|
free (g->nodes);
|
| 543 |
|
|
free (g);
|
| 544 |
|
|
}
|
| 545 |
|
|
|
| 546 |
|
|
void
|
| 547 |
|
|
print_ddg_edge (FILE *file, ddg_edge_ptr e)
|
| 548 |
|
|
{
|
| 549 |
|
|
char dep_c;
|
| 550 |
|
|
|
| 551 |
|
|
switch (e->type) {
|
| 552 |
|
|
case OUTPUT_DEP :
|
| 553 |
|
|
dep_c = 'O';
|
| 554 |
|
|
break;
|
| 555 |
|
|
case ANTI_DEP :
|
| 556 |
|
|
dep_c = 'A';
|
| 557 |
|
|
break;
|
| 558 |
|
|
default:
|
| 559 |
|
|
dep_c = 'T';
|
| 560 |
|
|
}
|
| 561 |
|
|
|
| 562 |
|
|
fprintf (file, " [%d -(%c,%d,%d)-> %d] ", INSN_UID (e->src->insn),
|
| 563 |
|
|
dep_c, e->latency, e->distance, INSN_UID (e->dest->insn));
|
| 564 |
|
|
}
|
| 565 |
|
|
|
| 566 |
|
|
/* Print the DDG nodes with there in/out edges to the dump file. */
|
| 567 |
|
|
void
|
| 568 |
|
|
print_ddg (FILE *file, ddg_ptr g)
|
| 569 |
|
|
{
|
| 570 |
|
|
int i;
|
| 571 |
|
|
|
| 572 |
|
|
for (i = 0; i < g->num_nodes; i++)
|
| 573 |
|
|
{
|
| 574 |
|
|
ddg_edge_ptr e;
|
| 575 |
|
|
|
| 576 |
|
|
print_rtl_single (file, g->nodes[i].insn);
|
| 577 |
|
|
fprintf (file, "OUT ARCS: ");
|
| 578 |
|
|
for (e = g->nodes[i].out; e; e = e->next_out)
|
| 579 |
|
|
print_ddg_edge (file, e);
|
| 580 |
|
|
|
| 581 |
|
|
fprintf (file, "\nIN ARCS: ");
|
| 582 |
|
|
for (e = g->nodes[i].in; e; e = e->next_in)
|
| 583 |
|
|
print_ddg_edge (file, e);
|
| 584 |
|
|
|
| 585 |
|
|
fprintf (file, "\n");
|
| 586 |
|
|
}
|
| 587 |
|
|
}
|
| 588 |
|
|
|
| 589 |
|
|
/* Print the given DDG in VCG format. */
|
| 590 |
|
|
void
|
| 591 |
|
|
vcg_print_ddg (FILE *file, ddg_ptr g)
|
| 592 |
|
|
{
|
| 593 |
|
|
int src_cuid;
|
| 594 |
|
|
|
| 595 |
|
|
fprintf (file, "graph: {\n");
|
| 596 |
|
|
for (src_cuid = 0; src_cuid < g->num_nodes; src_cuid++)
|
| 597 |
|
|
{
|
| 598 |
|
|
ddg_edge_ptr e;
|
| 599 |
|
|
int src_uid = INSN_UID (g->nodes[src_cuid].insn);
|
| 600 |
|
|
|
| 601 |
|
|
fprintf (file, "node: {title: \"%d_%d\" info1: \"", src_cuid, src_uid);
|
| 602 |
|
|
print_rtl_single (file, g->nodes[src_cuid].insn);
|
| 603 |
|
|
fprintf (file, "\"}\n");
|
| 604 |
|
|
for (e = g->nodes[src_cuid].out; e; e = e->next_out)
|
| 605 |
|
|
{
|
| 606 |
|
|
int dst_uid = INSN_UID (e->dest->insn);
|
| 607 |
|
|
int dst_cuid = e->dest->cuid;
|
| 608 |
|
|
|
| 609 |
|
|
/* Give the backarcs a different color. */
|
| 610 |
|
|
if (e->distance > 0)
|
| 611 |
|
|
fprintf (file, "backedge: {color: red ");
|
| 612 |
|
|
else
|
| 613 |
|
|
fprintf (file, "edge: { ");
|
| 614 |
|
|
|
| 615 |
|
|
fprintf (file, "sourcename: \"%d_%d\" ", src_cuid, src_uid);
|
| 616 |
|
|
fprintf (file, "targetname: \"%d_%d\" ", dst_cuid, dst_uid);
|
| 617 |
|
|
fprintf (file, "label: \"%d_%d\"}\n", e->latency, e->distance);
|
| 618 |
|
|
}
|
| 619 |
|
|
}
|
| 620 |
|
|
fprintf (file, "}\n");
|
| 621 |
|
|
}
|
| 622 |
|
|
|
| 623 |
|
|
/* Create an edge and initialize it with given values. */
|
| 624 |
|
|
static ddg_edge_ptr
|
| 625 |
|
|
create_ddg_edge (ddg_node_ptr src, ddg_node_ptr dest,
|
| 626 |
|
|
dep_type t, dep_data_type dt, int l, int d)
|
| 627 |
|
|
{
|
| 628 |
|
|
ddg_edge_ptr e = (ddg_edge_ptr) xmalloc (sizeof (struct ddg_edge));
|
| 629 |
|
|
|
| 630 |
|
|
e->src = src;
|
| 631 |
|
|
e->dest = dest;
|
| 632 |
|
|
e->type = t;
|
| 633 |
|
|
e->data_type = dt;
|
| 634 |
|
|
e->latency = l;
|
| 635 |
|
|
e->distance = d;
|
| 636 |
|
|
e->next_in = e->next_out = NULL;
|
| 637 |
|
|
e->aux.info = 0;
|
| 638 |
|
|
return e;
|
| 639 |
|
|
}
|
| 640 |
|
|
|
| 641 |
|
|
/* Add the given edge to the in/out linked lists of the DDG nodes. */
|
| 642 |
|
|
static void
|
| 643 |
|
|
add_edge_to_ddg (ddg_ptr g ATTRIBUTE_UNUSED, ddg_edge_ptr e)
|
| 644 |
|
|
{
|
| 645 |
|
|
ddg_node_ptr src = e->src;
|
| 646 |
|
|
ddg_node_ptr dest = e->dest;
|
| 647 |
|
|
|
| 648 |
|
|
/* Should have allocated the sbitmaps. */
|
| 649 |
|
|
gcc_assert (src->successors && dest->predecessors);
|
| 650 |
|
|
|
| 651 |
|
|
SET_BIT (src->successors, dest->cuid);
|
| 652 |
|
|
SET_BIT (dest->predecessors, src->cuid);
|
| 653 |
|
|
e->next_in = dest->in;
|
| 654 |
|
|
dest->in = e;
|
| 655 |
|
|
e->next_out = src->out;
|
| 656 |
|
|
src->out = e;
|
| 657 |
|
|
}
|
| 658 |
|
|
|
| 659 |
|
|
|
| 660 |
|
|
|
| 661 |
|
|
/* Algorithm for computing the recurrence_length of an scc. We assume at
|
| 662 |
|
|
for now that cycles in the data dependence graph contain a single backarc.
|
| 663 |
|
|
This simplifies the algorithm, and can be generalized later. */
|
| 664 |
|
|
static void
|
| 665 |
|
|
set_recurrence_length (ddg_scc_ptr scc, ddg_ptr g)
|
| 666 |
|
|
{
|
| 667 |
|
|
int j;
|
| 668 |
|
|
int result = -1;
|
| 669 |
|
|
|
| 670 |
|
|
for (j = 0; j < scc->num_backarcs; j++)
|
| 671 |
|
|
{
|
| 672 |
|
|
ddg_edge_ptr backarc = scc->backarcs[j];
|
| 673 |
|
|
int length;
|
| 674 |
|
|
int distance = backarc->distance;
|
| 675 |
|
|
ddg_node_ptr src = backarc->dest;
|
| 676 |
|
|
ddg_node_ptr dest = backarc->src;
|
| 677 |
|
|
|
| 678 |
|
|
length = longest_simple_path (g, src->cuid, dest->cuid, scc->nodes);
|
| 679 |
|
|
if (length < 0 )
|
| 680 |
|
|
{
|
| 681 |
|
|
/* fprintf (stderr, "Backarc not on simple cycle in SCC.\n"); */
|
| 682 |
|
|
continue;
|
| 683 |
|
|
}
|
| 684 |
|
|
length += backarc->latency;
|
| 685 |
|
|
result = MAX (result, (length / distance));
|
| 686 |
|
|
}
|
| 687 |
|
|
scc->recurrence_length = result;
|
| 688 |
|
|
}
|
| 689 |
|
|
|
| 690 |
|
|
/* Create a new SCC given the set of its nodes. Compute its recurrence_length
|
| 691 |
|
|
and mark edges that belong to this scc as IN_SCC. */
|
| 692 |
|
|
static ddg_scc_ptr
|
| 693 |
|
|
create_scc (ddg_ptr g, sbitmap nodes)
|
| 694 |
|
|
{
|
| 695 |
|
|
ddg_scc_ptr scc;
|
| 696 |
|
|
unsigned int u = 0;
|
| 697 |
|
|
sbitmap_iterator sbi;
|
| 698 |
|
|
|
| 699 |
|
|
scc = (ddg_scc_ptr) xmalloc (sizeof (struct ddg_scc));
|
| 700 |
|
|
scc->backarcs = NULL;
|
| 701 |
|
|
scc->num_backarcs = 0;
|
| 702 |
|
|
scc->nodes = sbitmap_alloc (g->num_nodes);
|
| 703 |
|
|
sbitmap_copy (scc->nodes, nodes);
|
| 704 |
|
|
|
| 705 |
|
|
/* Mark the backarcs that belong to this SCC. */
|
| 706 |
|
|
EXECUTE_IF_SET_IN_SBITMAP (nodes, 0, u, sbi)
|
| 707 |
|
|
{
|
| 708 |
|
|
ddg_edge_ptr e;
|
| 709 |
|
|
ddg_node_ptr n = &g->nodes[u];
|
| 710 |
|
|
|
| 711 |
|
|
for (e = n->out; e; e = e->next_out)
|
| 712 |
|
|
if (TEST_BIT (nodes, e->dest->cuid))
|
| 713 |
|
|
{
|
| 714 |
|
|
e->aux.count = IN_SCC;
|
| 715 |
|
|
if (e->distance > 0)
|
| 716 |
|
|
add_backarc_to_scc (scc, e);
|
| 717 |
|
|
}
|
| 718 |
|
|
}
|
| 719 |
|
|
|
| 720 |
|
|
set_recurrence_length (scc, g);
|
| 721 |
|
|
return scc;
|
| 722 |
|
|
}
|
| 723 |
|
|
|
| 724 |
|
|
/* Cleans the memory allocation of a given SCC. */
|
| 725 |
|
|
static void
|
| 726 |
|
|
free_scc (ddg_scc_ptr scc)
|
| 727 |
|
|
{
|
| 728 |
|
|
if (!scc)
|
| 729 |
|
|
return;
|
| 730 |
|
|
|
| 731 |
|
|
sbitmap_free (scc->nodes);
|
| 732 |
|
|
if (scc->num_backarcs > 0)
|
| 733 |
|
|
free (scc->backarcs);
|
| 734 |
|
|
free (scc);
|
| 735 |
|
|
}
|
| 736 |
|
|
|
| 737 |
|
|
|
| 738 |
|
|
/* Add a given edge known to be a backarc to the given DDG. */
|
| 739 |
|
|
static void
|
| 740 |
|
|
add_backarc_to_ddg (ddg_ptr g, ddg_edge_ptr e)
|
| 741 |
|
|
{
|
| 742 |
|
|
int size = (g->num_backarcs + 1) * sizeof (ddg_edge_ptr);
|
| 743 |
|
|
|
| 744 |
|
|
add_edge_to_ddg (g, e);
|
| 745 |
|
|
g->backarcs = (ddg_edge_ptr *) xrealloc (g->backarcs, size);
|
| 746 |
|
|
g->backarcs[g->num_backarcs++] = e;
|
| 747 |
|
|
}
|
| 748 |
|
|
|
| 749 |
|
|
/* Add backarc to an SCC. */
|
| 750 |
|
|
static void
|
| 751 |
|
|
add_backarc_to_scc (ddg_scc_ptr scc, ddg_edge_ptr e)
|
| 752 |
|
|
{
|
| 753 |
|
|
int size = (scc->num_backarcs + 1) * sizeof (ddg_edge_ptr);
|
| 754 |
|
|
|
| 755 |
|
|
scc->backarcs = (ddg_edge_ptr *) xrealloc (scc->backarcs, size);
|
| 756 |
|
|
scc->backarcs[scc->num_backarcs++] = e;
|
| 757 |
|
|
}
|
| 758 |
|
|
|
| 759 |
|
|
/* Add the given SCC to the DDG. */
|
| 760 |
|
|
static void
|
| 761 |
|
|
add_scc_to_ddg (ddg_all_sccs_ptr g, ddg_scc_ptr scc)
|
| 762 |
|
|
{
|
| 763 |
|
|
int size = (g->num_sccs + 1) * sizeof (ddg_scc_ptr);
|
| 764 |
|
|
|
| 765 |
|
|
g->sccs = (ddg_scc_ptr *) xrealloc (g->sccs, size);
|
| 766 |
|
|
g->sccs[g->num_sccs++] = scc;
|
| 767 |
|
|
}
|
| 768 |
|
|
|
| 769 |
|
|
/* Given the instruction INSN return the node that represents it. */
|
| 770 |
|
|
ddg_node_ptr
|
| 771 |
|
|
get_node_of_insn (ddg_ptr g, rtx insn)
|
| 772 |
|
|
{
|
| 773 |
|
|
int i;
|
| 774 |
|
|
|
| 775 |
|
|
for (i = 0; i < g->num_nodes; i++)
|
| 776 |
|
|
if (insn == g->nodes[i].insn)
|
| 777 |
|
|
return &g->nodes[i];
|
| 778 |
|
|
return NULL;
|
| 779 |
|
|
}
|
| 780 |
|
|
|
| 781 |
|
|
/* Given a set OPS of nodes in the DDG, find the set of their successors
|
| 782 |
|
|
which are not in OPS, and set their bits in SUCC. Bits corresponding to
|
| 783 |
|
|
OPS are cleared from SUCC. Leaves the other bits in SUCC unchanged. */
|
| 784 |
|
|
void
|
| 785 |
|
|
find_successors (sbitmap succ, ddg_ptr g, sbitmap ops)
|
| 786 |
|
|
{
|
| 787 |
|
|
unsigned int i = 0;
|
| 788 |
|
|
sbitmap_iterator sbi;
|
| 789 |
|
|
|
| 790 |
|
|
EXECUTE_IF_SET_IN_SBITMAP (ops, 0, i, sbi)
|
| 791 |
|
|
{
|
| 792 |
|
|
const sbitmap node_succ = NODE_SUCCESSORS (&g->nodes[i]);
|
| 793 |
|
|
sbitmap_a_or_b (succ, succ, node_succ);
|
| 794 |
|
|
};
|
| 795 |
|
|
|
| 796 |
|
|
/* We want those that are not in ops. */
|
| 797 |
|
|
sbitmap_difference (succ, succ, ops);
|
| 798 |
|
|
}
|
| 799 |
|
|
|
| 800 |
|
|
/* Given a set OPS of nodes in the DDG, find the set of their predecessors
|
| 801 |
|
|
which are not in OPS, and set their bits in PREDS. Bits corresponding to
|
| 802 |
|
|
OPS are cleared from PREDS. Leaves the other bits in PREDS unchanged. */
|
| 803 |
|
|
void
|
| 804 |
|
|
find_predecessors (sbitmap preds, ddg_ptr g, sbitmap ops)
|
| 805 |
|
|
{
|
| 806 |
|
|
unsigned int i = 0;
|
| 807 |
|
|
sbitmap_iterator sbi;
|
| 808 |
|
|
|
| 809 |
|
|
EXECUTE_IF_SET_IN_SBITMAP (ops, 0, i, sbi)
|
| 810 |
|
|
{
|
| 811 |
|
|
const sbitmap node_preds = NODE_PREDECESSORS (&g->nodes[i]);
|
| 812 |
|
|
sbitmap_a_or_b (preds, preds, node_preds);
|
| 813 |
|
|
};
|
| 814 |
|
|
|
| 815 |
|
|
/* We want those that are not in ops. */
|
| 816 |
|
|
sbitmap_difference (preds, preds, ops);
|
| 817 |
|
|
}
|
| 818 |
|
|
|
| 819 |
|
|
|
| 820 |
|
|
/* Compare function to be passed to qsort to order the backarcs in descending
|
| 821 |
|
|
recMII order. */
|
| 822 |
|
|
static int
|
| 823 |
|
|
compare_sccs (const void *s1, const void *s2)
|
| 824 |
|
|
{
|
| 825 |
|
|
int rec_l1 = (*(ddg_scc_ptr *)s1)->recurrence_length;
|
| 826 |
|
|
int rec_l2 = (*(ddg_scc_ptr *)s2)->recurrence_length;
|
| 827 |
|
|
return ((rec_l2 > rec_l1) - (rec_l2 < rec_l1));
|
| 828 |
|
|
|
| 829 |
|
|
}
|
| 830 |
|
|
|
| 831 |
|
|
/* Order the backarcs in descending recMII order using compare_sccs. */
|
| 832 |
|
|
static void
|
| 833 |
|
|
order_sccs (ddg_all_sccs_ptr g)
|
| 834 |
|
|
{
|
| 835 |
|
|
qsort (g->sccs, g->num_sccs, sizeof (ddg_scc_ptr),
|
| 836 |
|
|
(int (*) (const void *, const void *)) compare_sccs);
|
| 837 |
|
|
}
|
| 838 |
|
|
|
| 839 |
|
|
/* Perform the Strongly Connected Components decomposing algorithm on the
|
| 840 |
|
|
DDG and return DDG_ALL_SCCS structure that contains them. */
|
| 841 |
|
|
ddg_all_sccs_ptr
|
| 842 |
|
|
create_ddg_all_sccs (ddg_ptr g)
|
| 843 |
|
|
{
|
| 844 |
|
|
int i;
|
| 845 |
|
|
int num_nodes = g->num_nodes;
|
| 846 |
|
|
sbitmap from = sbitmap_alloc (num_nodes);
|
| 847 |
|
|
sbitmap to = sbitmap_alloc (num_nodes);
|
| 848 |
|
|
sbitmap scc_nodes = sbitmap_alloc (num_nodes);
|
| 849 |
|
|
ddg_all_sccs_ptr sccs = (ddg_all_sccs_ptr)
|
| 850 |
|
|
xmalloc (sizeof (struct ddg_all_sccs));
|
| 851 |
|
|
|
| 852 |
|
|
sccs->ddg = g;
|
| 853 |
|
|
sccs->sccs = NULL;
|
| 854 |
|
|
sccs->num_sccs = 0;
|
| 855 |
|
|
|
| 856 |
|
|
for (i = 0; i < g->num_backarcs; i++)
|
| 857 |
|
|
{
|
| 858 |
|
|
ddg_scc_ptr scc;
|
| 859 |
|
|
ddg_edge_ptr backarc = g->backarcs[i];
|
| 860 |
|
|
ddg_node_ptr src = backarc->src;
|
| 861 |
|
|
ddg_node_ptr dest = backarc->dest;
|
| 862 |
|
|
|
| 863 |
|
|
/* If the backarc already belongs to an SCC, continue. */
|
| 864 |
|
|
if (backarc->aux.count == IN_SCC)
|
| 865 |
|
|
continue;
|
| 866 |
|
|
|
| 867 |
|
|
sbitmap_zero (from);
|
| 868 |
|
|
sbitmap_zero (to);
|
| 869 |
|
|
SET_BIT (from, dest->cuid);
|
| 870 |
|
|
SET_BIT (to, src->cuid);
|
| 871 |
|
|
|
| 872 |
|
|
if (find_nodes_on_paths (scc_nodes, g, from, to))
|
| 873 |
|
|
{
|
| 874 |
|
|
scc = create_scc (g, scc_nodes);
|
| 875 |
|
|
add_scc_to_ddg (sccs, scc);
|
| 876 |
|
|
}
|
| 877 |
|
|
}
|
| 878 |
|
|
order_sccs (sccs);
|
| 879 |
|
|
sbitmap_free (from);
|
| 880 |
|
|
sbitmap_free (to);
|
| 881 |
|
|
sbitmap_free (scc_nodes);
|
| 882 |
|
|
return sccs;
|
| 883 |
|
|
}
|
| 884 |
|
|
|
| 885 |
|
|
/* Frees the memory allocated for all SCCs of the DDG, but keeps the DDG. */
|
| 886 |
|
|
void
|
| 887 |
|
|
free_ddg_all_sccs (ddg_all_sccs_ptr all_sccs)
|
| 888 |
|
|
{
|
| 889 |
|
|
int i;
|
| 890 |
|
|
|
| 891 |
|
|
if (!all_sccs)
|
| 892 |
|
|
return;
|
| 893 |
|
|
|
| 894 |
|
|
for (i = 0; i < all_sccs->num_sccs; i++)
|
| 895 |
|
|
free_scc (all_sccs->sccs[i]);
|
| 896 |
|
|
|
| 897 |
|
|
free (all_sccs);
|
| 898 |
|
|
}
|
| 899 |
|
|
|
| 900 |
|
|
|
| 901 |
|
|
/* Given FROM - a bitmap of source nodes - and TO - a bitmap of destination
|
| 902 |
|
|
nodes - find all nodes that lie on paths from FROM to TO (not excluding
|
| 903 |
|
|
nodes from FROM and TO). Return nonzero if nodes exist. */
|
| 904 |
|
|
int
|
| 905 |
|
|
find_nodes_on_paths (sbitmap result, ddg_ptr g, sbitmap from, sbitmap to)
|
| 906 |
|
|
{
|
| 907 |
|
|
int answer;
|
| 908 |
|
|
int change;
|
| 909 |
|
|
unsigned int u = 0;
|
| 910 |
|
|
int num_nodes = g->num_nodes;
|
| 911 |
|
|
sbitmap_iterator sbi;
|
| 912 |
|
|
|
| 913 |
|
|
sbitmap workset = sbitmap_alloc (num_nodes);
|
| 914 |
|
|
sbitmap reachable_from = sbitmap_alloc (num_nodes);
|
| 915 |
|
|
sbitmap reach_to = sbitmap_alloc (num_nodes);
|
| 916 |
|
|
sbitmap tmp = sbitmap_alloc (num_nodes);
|
| 917 |
|
|
|
| 918 |
|
|
sbitmap_copy (reachable_from, from);
|
| 919 |
|
|
sbitmap_copy (tmp, from);
|
| 920 |
|
|
|
| 921 |
|
|
change = 1;
|
| 922 |
|
|
while (change)
|
| 923 |
|
|
{
|
| 924 |
|
|
change = 0;
|
| 925 |
|
|
sbitmap_copy (workset, tmp);
|
| 926 |
|
|
sbitmap_zero (tmp);
|
| 927 |
|
|
EXECUTE_IF_SET_IN_SBITMAP (workset, 0, u, sbi)
|
| 928 |
|
|
{
|
| 929 |
|
|
ddg_edge_ptr e;
|
| 930 |
|
|
ddg_node_ptr u_node = &g->nodes[u];
|
| 931 |
|
|
|
| 932 |
|
|
for (e = u_node->out; e != (ddg_edge_ptr) 0; e = e->next_out)
|
| 933 |
|
|
{
|
| 934 |
|
|
ddg_node_ptr v_node = e->dest;
|
| 935 |
|
|
int v = v_node->cuid;
|
| 936 |
|
|
|
| 937 |
|
|
if (!TEST_BIT (reachable_from, v))
|
| 938 |
|
|
{
|
| 939 |
|
|
SET_BIT (reachable_from, v);
|
| 940 |
|
|
SET_BIT (tmp, v);
|
| 941 |
|
|
change = 1;
|
| 942 |
|
|
}
|
| 943 |
|
|
}
|
| 944 |
|
|
}
|
| 945 |
|
|
}
|
| 946 |
|
|
|
| 947 |
|
|
sbitmap_copy (reach_to, to);
|
| 948 |
|
|
sbitmap_copy (tmp, to);
|
| 949 |
|
|
|
| 950 |
|
|
change = 1;
|
| 951 |
|
|
while (change)
|
| 952 |
|
|
{
|
| 953 |
|
|
change = 0;
|
| 954 |
|
|
sbitmap_copy (workset, tmp);
|
| 955 |
|
|
sbitmap_zero (tmp);
|
| 956 |
|
|
EXECUTE_IF_SET_IN_SBITMAP (workset, 0, u, sbi)
|
| 957 |
|
|
{
|
| 958 |
|
|
ddg_edge_ptr e;
|
| 959 |
|
|
ddg_node_ptr u_node = &g->nodes[u];
|
| 960 |
|
|
|
| 961 |
|
|
for (e = u_node->in; e != (ddg_edge_ptr) 0; e = e->next_in)
|
| 962 |
|
|
{
|
| 963 |
|
|
ddg_node_ptr v_node = e->src;
|
| 964 |
|
|
int v = v_node->cuid;
|
| 965 |
|
|
|
| 966 |
|
|
if (!TEST_BIT (reach_to, v))
|
| 967 |
|
|
{
|
| 968 |
|
|
SET_BIT (reach_to, v);
|
| 969 |
|
|
SET_BIT (tmp, v);
|
| 970 |
|
|
change = 1;
|
| 971 |
|
|
}
|
| 972 |
|
|
}
|
| 973 |
|
|
}
|
| 974 |
|
|
}
|
| 975 |
|
|
|
| 976 |
|
|
answer = sbitmap_a_and_b_cg (result, reachable_from, reach_to);
|
| 977 |
|
|
sbitmap_free (workset);
|
| 978 |
|
|
sbitmap_free (reachable_from);
|
| 979 |
|
|
sbitmap_free (reach_to);
|
| 980 |
|
|
sbitmap_free (tmp);
|
| 981 |
|
|
return answer;
|
| 982 |
|
|
}
|
| 983 |
|
|
|
| 984 |
|
|
|
| 985 |
|
|
/* Updates the counts of U_NODE's successors (that belong to NODES) to be
|
| 986 |
|
|
at-least as large as the count of U_NODE plus the latency between them.
|
| 987 |
|
|
Sets a bit in TMP for each successor whose count was changed (increased).
|
| 988 |
|
|
Returns nonzero if any count was changed. */
|
| 989 |
|
|
static int
|
| 990 |
|
|
update_dist_to_successors (ddg_node_ptr u_node, sbitmap nodes, sbitmap tmp)
|
| 991 |
|
|
{
|
| 992 |
|
|
ddg_edge_ptr e;
|
| 993 |
|
|
int result = 0;
|
| 994 |
|
|
|
| 995 |
|
|
for (e = u_node->out; e; e = e->next_out)
|
| 996 |
|
|
{
|
| 997 |
|
|
ddg_node_ptr v_node = e->dest;
|
| 998 |
|
|
int v = v_node->cuid;
|
| 999 |
|
|
|
| 1000 |
|
|
if (TEST_BIT (nodes, v)
|
| 1001 |
|
|
&& (e->distance == 0)
|
| 1002 |
|
|
&& (v_node->aux.count < u_node->aux.count + e->latency))
|
| 1003 |
|
|
{
|
| 1004 |
|
|
v_node->aux.count = u_node->aux.count + e->latency;
|
| 1005 |
|
|
SET_BIT (tmp, v);
|
| 1006 |
|
|
result = 1;
|
| 1007 |
|
|
}
|
| 1008 |
|
|
}
|
| 1009 |
|
|
return result;
|
| 1010 |
|
|
}
|
| 1011 |
|
|
|
| 1012 |
|
|
|
| 1013 |
|
|
/* Find the length of a longest path from SRC to DEST in G,
|
| 1014 |
|
|
going only through NODES, and disregarding backarcs. */
|
| 1015 |
|
|
int
|
| 1016 |
|
|
longest_simple_path (struct ddg * g, int src, int dest, sbitmap nodes)
|
| 1017 |
|
|
{
|
| 1018 |
|
|
int i;
|
| 1019 |
|
|
unsigned int u = 0;
|
| 1020 |
|
|
int change = 1;
|
| 1021 |
|
|
int result;
|
| 1022 |
|
|
int num_nodes = g->num_nodes;
|
| 1023 |
|
|
sbitmap workset = sbitmap_alloc (num_nodes);
|
| 1024 |
|
|
sbitmap tmp = sbitmap_alloc (num_nodes);
|
| 1025 |
|
|
|
| 1026 |
|
|
|
| 1027 |
|
|
/* Data will hold the distance of the longest path found so far from
|
| 1028 |
|
|
src to each node. Initialize to -1 = less than minimum. */
|
| 1029 |
|
|
for (i = 0; i < g->num_nodes; i++)
|
| 1030 |
|
|
g->nodes[i].aux.count = -1;
|
| 1031 |
|
|
g->nodes[src].aux.count = 0;
|
| 1032 |
|
|
|
| 1033 |
|
|
sbitmap_zero (tmp);
|
| 1034 |
|
|
SET_BIT (tmp, src);
|
| 1035 |
|
|
|
| 1036 |
|
|
while (change)
|
| 1037 |
|
|
{
|
| 1038 |
|
|
sbitmap_iterator sbi;
|
| 1039 |
|
|
|
| 1040 |
|
|
change = 0;
|
| 1041 |
|
|
sbitmap_copy (workset, tmp);
|
| 1042 |
|
|
sbitmap_zero (tmp);
|
| 1043 |
|
|
EXECUTE_IF_SET_IN_SBITMAP (workset, 0, u, sbi)
|
| 1044 |
|
|
{
|
| 1045 |
|
|
ddg_node_ptr u_node = &g->nodes[u];
|
| 1046 |
|
|
|
| 1047 |
|
|
change |= update_dist_to_successors (u_node, nodes, tmp);
|
| 1048 |
|
|
}
|
| 1049 |
|
|
}
|
| 1050 |
|
|
result = g->nodes[dest].aux.count;
|
| 1051 |
|
|
sbitmap_free (workset);
|
| 1052 |
|
|
sbitmap_free (tmp);
|
| 1053 |
|
|
return result;
|
| 1054 |
|
|
}
|