OpenCores
URL https://opencores.org/ocsvn/openrisc/openrisc/trunk

Subversion Repositories openrisc

[/] [openrisc/] [trunk/] [gnu-old/] [gcc-4.2.2/] [gcc/] [doc/] [libgcc.texi] - Blame information for rev 867

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 38 julius
@c Copyright (C) 2003, 2004, 2005 Free Software Foundation, Inc.
2
@c This is part of the GCC manual.
3
@c For copying conditions, see the file gcc.texi.
4
@c Contributed by Aldy Hernandez <aldy@quesejoda.com>
5
 
6
@node Libgcc
7
@chapter The GCC low-level runtime library
8
 
9
GCC provides a low-level runtime library, @file{libgcc.a} or
10
@file{libgcc_s.so.1} on some platforms.  GCC generates calls to
11
routines in this library automatically, whenever it needs to perform
12
some operation that is too complicated to emit inline code for.
13
 
14
Most of the routines in @code{libgcc} handle arithmetic operations
15
that the target processor cannot perform directly.  This includes
16
integer multiply and divide on some machines, and all floating-point
17
operations on other machines.  @code{libgcc} also includes routines
18
for exception handling, and a handful of miscellaneous operations.
19
 
20
Some of these routines can be defined in mostly machine-independent C@.
21
Others must be hand-written in assembly language for each processor
22
that needs them.
23
 
24
GCC will also generate calls to C library routines, such as
25
@code{memcpy} and @code{memset}, in some cases.  The set of routines
26
that GCC may possibly use is documented in @ref{Other
27
Builtins,,,gcc, Using the GNU Compiler Collection (GCC)}.
28
 
29
These routines take arguments and return values of a specific machine
30
mode, not a specific C type.  @xref{Machine Modes}, for an explanation
31
of this concept.  For illustrative purposes, in this chapter the
32
floating point type @code{float} is assumed to correspond to @code{SFmode};
33
@code{double} to @code{DFmode}; and @code{@w{long double}} to both
34
@code{TFmode} and @code{XFmode}.  Similarly, the integer types @code{int}
35
and @code{@w{unsigned int}} correspond to @code{SImode}; @code{long} and
36
@code{@w{unsigned long}} to @code{DImode}; and @code{@w{long long}} and
37
@code{@w{unsigned long long}} to @code{TImode}.
38
 
39
@menu
40
* Integer library routines::
41
* Soft float library routines::
42
* Decimal float library routines::
43
* Exception handling routines::
44
* Miscellaneous routines::
45
@end menu
46
 
47
@node Integer library routines
48
@section Routines for integer arithmetic
49
 
50
The integer arithmetic routines are used on platforms that don't provide
51
hardware support for arithmetic operations on some modes.
52
 
53
@subsection Arithmetic functions
54
 
55
@deftypefn {Runtime Function} int __ashlsi3 (int @var{a}, int @var{b})
56
@deftypefnx {Runtime Function} long __ashldi3 (long @var{a}, int @var{b})
57
@deftypefnx {Runtime Function} {long long} __ashlti3 (long long @var{a}, int @var{b})
58
These functions return the result of shifting @var{a} left by @var{b} bits.
59
@end deftypefn
60
 
61
@deftypefn {Runtime Function} int __ashrsi3 (int @var{a}, int @var{b})
62
@deftypefnx {Runtime Function} long __ashrdi3 (long @var{a}, int @var{b})
63
@deftypefnx {Runtime Function} {long long} __ashrti3 (long long @var{a}, int @var{b})
64
These functions return the result of arithmetically shifting @var{a} right
65
by @var{b} bits.
66
@end deftypefn
67
 
68
@deftypefn {Runtime Function} int __divsi3 (int @var{a}, int @var{b})
69
@deftypefnx {Runtime Function} long __divdi3 (long @var{a}, long @var{b})
70
@deftypefnx {Runtime Function} {long long} __divti3 (long long @var{a}, long long @var{b})
71
These functions return the quotient of the signed division of @var{a} and
72
@var{b}.
73
@end deftypefn
74
 
75
@deftypefn {Runtime Function} int __lshrsi3 (int @var{a}, int @var{b})
76
@deftypefnx {Runtime Function} long __lshrdi3 (long @var{a}, int @var{b})
77
@deftypefnx {Runtime Function} {long long} __lshrti3 (long long @var{a}, int @var{b})
78
These functions return the result of logically shifting @var{a} right by
79
@var{b} bits.
80
@end deftypefn
81
 
82
@deftypefn {Runtime Function} int __modsi3 (int @var{a}, int @var{b})
83
@deftypefnx {Runtime Function} long __moddi3 (long @var{a}, long @var{b})
84
@deftypefnx {Runtime Function} {long long} __modti3 (long long @var{a}, long long @var{b})
85
These functions return the remainder of the signed division of @var{a}
86
and @var{b}.
87
@end deftypefn
88
 
89
@deftypefn {Runtime Function} int __mulsi3 (int @var{a}, int @var{b})
90
@deftypefnx {Runtime Function} long __muldi3 (long @var{a}, long @var{b})
91
@deftypefnx {Runtime Function} {long long} __multi3 (long long @var{a}, long long @var{b})
92
These functions return the product of @var{a} and @var{b}.
93
@end deftypefn
94
 
95
@deftypefn {Runtime Function} long __negdi2 (long @var{a})
96
@deftypefnx {Runtime Function} {long long} __negti2 (long long @var{a})
97
These functions return the negation of @var{a}.
98
@end deftypefn
99
 
100
@deftypefn {Runtime Function} {unsigned int} __udivsi3 (unsigned int @var{a}, unsigned int @var{b})
101
@deftypefnx {Runtime Function} {unsigned long} __udivdi3 (unsigned long @var{a}, unsigned long @var{b})
102
@deftypefnx {Runtime Function} {unsigned long long} __udivti3 (unsigned long long @var{a}, unsigned long long @var{b})
103
These functions return the quotient of the unsigned division of @var{a}
104
and @var{b}.
105
@end deftypefn
106
 
107
@deftypefn {Runtime Function} {unsigned long} __udivmoddi3 (unsigned long @var{a}, unsigned long @var{b}, unsigned long *@var{c})
108
@deftypefnx {Runtime Function} {unsigned long long} __udivti3 (unsigned long long @var{a}, unsigned long long @var{b}, unsigned long long *@var{c})
109
These functions calculate both the quotient and remainder of the unsigned
110
division of @var{a} and @var{b}.  The return value is the quotient, and
111
the remainder is placed in variable pointed to by @var{c}.
112
@end deftypefn
113
 
114
@deftypefn {Runtime Function} {unsigned int} __umodsi3 (unsigned int @var{a}, unsigned int @var{b})
115
@deftypefnx {Runtime Function} {unsigned long} __umoddi3 (unsigned long @var{a}, unsigned long @var{b})
116
@deftypefnx {Runtime Function} {unsigned long long} __umodti3 (unsigned long long @var{a}, unsigned long long @var{b})
117
These functions return the remainder of the unsigned division of @var{a}
118
and @var{b}.
119
@end deftypefn
120
 
121
@subsection Comparison functions
122
 
123
The following functions implement integral comparisons.  These functions
124
implement a low-level compare, upon which the higher level comparison
125
operators (such as less than and greater than or equal to) can be
126
constructed.  The returned values lie in the range zero to two, to allow
127
the high-level operators to be implemented by testing the returned
128
result using either signed or unsigned comparison.
129
 
130
@deftypefn {Runtime Function} int __cmpdi2 (long @var{a}, long @var{b})
131
@deftypefnx {Runtime Function} int __cmpti2 (long long @var{a}, long long @var{b})
132
These functions perform a signed comparison of @var{a} and @var{b}.  If
133
@var{a} is less than @var{b}, they return 0; if @var{a} is greater than
134
@var{b}, they return 2; and if @var{a} and @var{b} are equal they return 1.
135
@end deftypefn
136
 
137
@deftypefn {Runtime Function} int __ucmpdi2 (unsigned long @var{a}, unsigned long @var{b})
138
@deftypefnx {Runtime Function} int __ucmpti2 (unsigned long long @var{a}, unsigned long long @var{b})
139
These functions perform an unsigned comparison of @var{a} and @var{b}.
140
If @var{a} is less than @var{b}, they return 0; if @var{a} is greater than
141
@var{b}, they return 2; and if @var{a} and @var{b} are equal they return 1.
142
@end deftypefn
143
 
144
@subsection Trapping arithmetic functions
145
 
146
The following functions implement trapping arithmetic.  These functions
147
call the libc function @code{abort} upon signed arithmetic overflow.
148
 
149
@deftypefn {Runtime Function} int __absvsi2 (int @var{a})
150
@deftypefnx {Runtime Function} long __absvdi2 (long @var{a})
151
These functions return the absolute value of @var{a}.
152
@end deftypefn
153
 
154
@deftypefn {Runtime Function} int __addvsi3 (int @var{a}, int @var{b})
155
@deftypefnx {Runtime Function} long __addvdi3 (long @var{a}, long @var{b})
156
These functions return the sum of @var{a} and @var{b}; that is
157
@code{@var{a} + @var{b}}.
158
@end deftypefn
159
 
160
@deftypefn {Runtime Function} int __mulvsi3 (int @var{a}, int @var{b})
161
@deftypefnx {Runtime Function} long __mulvdi3 (long @var{a}, long @var{b})
162
The functions return the product of @var{a} and @var{b}; that is
163
@code{@var{a} * @var{b}}.
164
@end deftypefn
165
 
166
@deftypefn {Runtime Function} int __negvsi2 (int @var{a})
167
@deftypefnx {Runtime Function} long __negvdi2 (long @var{a})
168
These functions return the negation of @var{a}; that is @code{-@var{a}}.
169
@end deftypefn
170
 
171
@deftypefn {Runtime Function} int __subvsi3 (int @var{a}, int @var{b})
172
@deftypefnx {Runtime Function} long __subvdi3 (long @var{a}, long @var{b})
173
These functions return the difference between @var{b} and @var{a};
174
that is @code{@var{a} - @var{b}}.
175
@end deftypefn
176
 
177
@subsection Bit operations
178
 
179
@deftypefn {Runtime Function} int __clzsi2 (int @var{a})
180
@deftypefnx {Runtime Function} int __clzdi2 (long @var{a})
181
@deftypefnx {Runtime Function} int __clzti2 (long long @var{a})
182
These functions return the number of leading 0-bits in @var{a}, starting
183
at the most significant bit position.  If @var{a} is zero, the result is
184
undefined.
185
@end deftypefn
186
 
187
@deftypefn {Runtime Function} int __ctzsi2 (int @var{a})
188
@deftypefnx {Runtime Function} int __ctzdi2 (long @var{a})
189
@deftypefnx {Runtime Function} int __ctzti2 (long long @var{a})
190
These functions return the number of trailing 0-bits in @var{a}, starting
191
at the least significant bit position.  If @var{a} is zero, the result is
192
undefined.
193
@end deftypefn
194
 
195
@deftypefn {Runtime Function} int __ffsdi2 (long @var{a})
196
@deftypefnx {Runtime Function} int __ffsti2 (long long @var{a})
197
These functions return the index of the least significant 1-bit in @var{a},
198
or the value zero if @var{a} is zero.  The least significant bit is index
199
one.
200
@end deftypefn
201
 
202
@deftypefn {Runtime Function} int __paritysi2 (int @var{a})
203
@deftypefnx {Runtime Function} int __paritydi2 (long @var{a})
204
@deftypefnx {Runtime Function} int __parityti2 (long long @var{a})
205
These functions return the value zero if the number of bits set in
206
@var{a} is even, and the value one otherwise.
207
@end deftypefn
208
 
209
@deftypefn {Runtime Function} int __popcountsi2 (int @var{a})
210
@deftypefnx {Runtime Function} int __popcountdi2 (long @var{a})
211
@deftypefnx {Runtime Function} int __popcountti2 (long long @var{a})
212
These functions return the number of bits set in @var{a}.
213
@end deftypefn
214
 
215
@node Soft float library routines
216
@section Routines for floating point emulation
217
@cindex soft float library
218
@cindex arithmetic library
219
@cindex math library
220
@opindex msoft-float
221
 
222
The software floating point library is used on machines which do not
223
have hardware support for floating point.  It is also used whenever
224
@option{-msoft-float} is used to disable generation of floating point
225
instructions.  (Not all targets support this switch.)
226
 
227
For compatibility with other compilers, the floating point emulation
228
routines can be renamed with the @code{DECLARE_LIBRARY_RENAMES} macro
229
(@pxref{Library Calls}).  In this section, the default names are used.
230
 
231
Presently the library does not support @code{XFmode}, which is used
232
for @code{long double} on some architectures.
233
 
234
@subsection Arithmetic functions
235
 
236
@deftypefn {Runtime Function} float __addsf3 (float @var{a}, float @var{b})
237
@deftypefnx {Runtime Function} double __adddf3 (double @var{a}, double @var{b})
238
@deftypefnx {Runtime Function} {long double} __addtf3 (long double @var{a}, long double @var{b})
239
@deftypefnx {Runtime Function} {long double} __addxf3 (long double @var{a}, long double @var{b})
240
These functions return the sum of @var{a} and @var{b}.
241
@end deftypefn
242
 
243
@deftypefn {Runtime Function} float __subsf3 (float @var{a}, float @var{b})
244
@deftypefnx {Runtime Function} double __subdf3 (double @var{a}, double @var{b})
245
@deftypefnx {Runtime Function} {long double} __subtf3 (long double @var{a}, long double @var{b})
246
@deftypefnx {Runtime Function} {long double} __subxf3 (long double @var{a}, long double @var{b})
247
These functions return the difference between @var{b} and @var{a};
248
that is, @w{@math{@var{a} - @var{b}}}.
249
@end deftypefn
250
 
251
@deftypefn {Runtime Function} float __mulsf3 (float @var{a}, float @var{b})
252
@deftypefnx {Runtime Function} double __muldf3 (double @var{a}, double @var{b})
253
@deftypefnx {Runtime Function} {long double} __multf3 (long double @var{a}, long double @var{b})
254
@deftypefnx {Runtime Function} {long double} __mulxf3 (long double @var{a}, long double @var{b})
255
These functions return the product of @var{a} and @var{b}.
256
@end deftypefn
257
 
258
@deftypefn {Runtime Function} float __divsf3 (float @var{a}, float @var{b})
259
@deftypefnx {Runtime Function} double __divdf3 (double @var{a}, double @var{b})
260
@deftypefnx {Runtime Function} {long double} __divtf3 (long double @var{a}, long double @var{b})
261
@deftypefnx {Runtime Function} {long double} __divxf3 (long double @var{a}, long double @var{b})
262
These functions return the quotient of @var{a} and @var{b}; that is,
263
@w{@math{@var{a} / @var{b}}}.
264
@end deftypefn
265
 
266
@deftypefn {Runtime Function} float __negsf2 (float @var{a})
267
@deftypefnx {Runtime Function} double __negdf2 (double @var{a})
268
@deftypefnx {Runtime Function} {long double} __negtf2 (long double @var{a})
269
@deftypefnx {Runtime Function} {long double} __negxf2 (long double @var{a})
270
These functions return the negation of @var{a}.  They simply flip the
271
sign bit, so they can produce negative zero and negative NaN@.
272
@end deftypefn
273
 
274
@subsection Conversion functions
275
 
276
@deftypefn {Runtime Function} double __extendsfdf2 (float @var{a})
277
@deftypefnx {Runtime Function} {long double} __extendsftf2 (float @var{a})
278
@deftypefnx {Runtime Function} {long double} __extendsfxf2 (float @var{a})
279
@deftypefnx {Runtime Function} {long double} __extenddftf2 (double @var{a})
280
@deftypefnx {Runtime Function} {long double} __extenddfxf2 (double @var{a})
281
These functions extend @var{a} to the wider mode of their return
282
type.
283
@end deftypefn
284
 
285
@deftypefn {Runtime Function} double __truncxfdf2 (long double @var{a})
286
@deftypefnx {Runtime Function} double __trunctfdf2 (long double @var{a})
287
@deftypefnx {Runtime Function} float __truncxfsf2 (long double @var{a})
288
@deftypefnx {Runtime Function} float __trunctfsf2 (long double @var{a})
289
@deftypefnx {Runtime Function} float __truncdfsf2 (double @var{a})
290
These functions truncate @var{a} to the narrower mode of their return
291
type, rounding toward zero.
292
@end deftypefn
293
 
294
@deftypefn {Runtime Function} int __fixsfsi (float @var{a})
295
@deftypefnx {Runtime Function} int __fixdfsi (double @var{a})
296
@deftypefnx {Runtime Function} int __fixtfsi (long double @var{a})
297
@deftypefnx {Runtime Function} int __fixxfsi (long double @var{a})
298
These functions convert @var{a} to a signed integer, rounding toward zero.
299
@end deftypefn
300
 
301
@deftypefn {Runtime Function} long __fixsfdi (float @var{a})
302
@deftypefnx {Runtime Function} long __fixdfdi (double @var{a})
303
@deftypefnx {Runtime Function} long __fixtfdi (long double @var{a})
304
@deftypefnx {Runtime Function} long __fixxfdi (long double @var{a})
305
These functions convert @var{a} to a signed long, rounding toward zero.
306
@end deftypefn
307
 
308
@deftypefn {Runtime Function} {long long} __fixsfti (float @var{a})
309
@deftypefnx {Runtime Function} {long long} __fixdfti (double @var{a})
310
@deftypefnx {Runtime Function} {long long} __fixtfti (long double @var{a})
311
@deftypefnx {Runtime Function} {long long} __fixxfti (long double @var{a})
312
These functions convert @var{a} to a signed long long, rounding toward zero.
313
@end deftypefn
314
 
315
@deftypefn {Runtime Function} {unsigned int} __fixunssfsi (float @var{a})
316
@deftypefnx {Runtime Function} {unsigned int} __fixunsdfsi (double @var{a})
317
@deftypefnx {Runtime Function} {unsigned int} __fixunstfsi (long double @var{a})
318
@deftypefnx {Runtime Function} {unsigned int} __fixunsxfsi (long double @var{a})
319
These functions convert @var{a} to an unsigned integer, rounding
320
toward zero.  Negative values all become zero.
321
@end deftypefn
322
 
323
@deftypefn {Runtime Function} {unsigned long} __fixunssfdi (float @var{a})
324
@deftypefnx {Runtime Function} {unsigned long} __fixunsdfdi (double @var{a})
325
@deftypefnx {Runtime Function} {unsigned long} __fixunstfdi (long double @var{a})
326
@deftypefnx {Runtime Function} {unsigned long} __fixunsxfdi (long double @var{a})
327
These functions convert @var{a} to an unsigned long, rounding
328
toward zero.  Negative values all become zero.
329
@end deftypefn
330
 
331
@deftypefn {Runtime Function} {unsigned long long} __fixunssfti (float @var{a})
332
@deftypefnx {Runtime Function} {unsigned long long} __fixunsdfti (double @var{a})
333
@deftypefnx {Runtime Function} {unsigned long long} __fixunstfti (long double @var{a})
334
@deftypefnx {Runtime Function} {unsigned long long} __fixunsxfti (long double @var{a})
335
These functions convert @var{a} to an unsigned long long, rounding
336
toward zero.  Negative values all become zero.
337
@end deftypefn
338
 
339
@deftypefn {Runtime Function} float __floatsisf (int @var{i})
340
@deftypefnx {Runtime Function} double __floatsidf (int @var{i})
341
@deftypefnx {Runtime Function} {long double} __floatsitf (int @var{i})
342
@deftypefnx {Runtime Function} {long double} __floatsixf (int @var{i})
343
These functions convert @var{i}, a signed integer, to floating point.
344
@end deftypefn
345
 
346
@deftypefn {Runtime Function} float __floatdisf (long @var{i})
347
@deftypefnx {Runtime Function} double __floatdidf (long @var{i})
348
@deftypefnx {Runtime Function} {long double} __floatditf (long @var{i})
349
@deftypefnx {Runtime Function} {long double} __floatdixf (long @var{i})
350
These functions convert @var{i}, a signed long, to floating point.
351
@end deftypefn
352
 
353
@deftypefn {Runtime Function} float __floattisf (long long @var{i})
354
@deftypefnx {Runtime Function} double __floattidf (long long @var{i})
355
@deftypefnx {Runtime Function} {long double} __floattitf (long long @var{i})
356
@deftypefnx {Runtime Function} {long double} __floattixf (long long @var{i})
357
These functions convert @var{i}, a signed long long, to floating point.
358
@end deftypefn
359
 
360
@deftypefn {Runtime Function} float __floatunsisf (unsigned int @var{i})
361
@deftypefnx {Runtime Function} double __floatunsidf (unsigned int @var{i})
362
@deftypefnx {Runtime Function} {long double} __floatunsitf (unsigned int @var{i})
363
@deftypefnx {Runtime Function} {long double} __floatunsixf (unsigned int @var{i})
364
These functions convert @var{i}, an unsigned integer, to floating point.
365
@end deftypefn
366
 
367
@deftypefn {Runtime Function} float __floatundisf (unsigned long @var{i})
368
@deftypefnx {Runtime Function} double __floatundidf (unsigned long @var{i})
369
@deftypefnx {Runtime Function} {long double} __floatunditf (unsigned long @var{i})
370
@deftypefnx {Runtime Function} {long double} __floatundixf (unsigned long @var{i})
371
These functions convert @var{i}, an unsigned long, to floating point.
372
@end deftypefn
373
 
374
@deftypefn {Runtime Function} float __floatuntisf (unsigned long long @var{i})
375
@deftypefnx {Runtime Function} double __floatuntidf (unsigned long long @var{i})
376
@deftypefnx {Runtime Function} {long double} __floatuntitf (unsigned long long @var{i})
377
@deftypefnx {Runtime Function} {long double} __floatuntixf (unsigned long long @var{i})
378
These functions convert @var{i}, an unsigned long long, to floating point.
379
@end deftypefn
380
 
381
@subsection Comparison functions
382
 
383
There are two sets of basic comparison functions.
384
 
385
@deftypefn {Runtime Function} int __cmpsf2 (float @var{a}, float @var{b})
386
@deftypefnx {Runtime Function} int __cmpdf2 (double @var{a}, double @var{b})
387
@deftypefnx {Runtime Function} int __cmptf2 (long double @var{a}, long double @var{b})
388
These functions calculate @math{a <=> b}.  That is, if @var{a} is less
389
than @var{b}, they return @minus{}1; if @var{a} is greater than @var{b}, they
390
return 1; and if @var{a} and @var{b} are equal they return 0.  If
391
either argument is NaN they return 1, but you should not rely on this;
392
if NaN is a possibility, use one of the higher-level comparison
393
functions.
394
@end deftypefn
395
 
396
@deftypefn {Runtime Function} int __unordsf2 (float @var{a}, float @var{b})
397
@deftypefnx {Runtime Function} int __unorddf2 (double @var{a}, double @var{b})
398
@deftypefnx {Runtime Function} int __unordtf2 (long double @var{a}, long double @var{b})
399
These functions return a nonzero value if either argument is NaN, otherwise 0.
400
@end deftypefn
401
 
402
There is also a complete group of higher level functions which
403
correspond directly to comparison operators.  They implement the ISO C
404
semantics for floating-point comparisons, taking NaN into account.
405
Pay careful attention to the return values defined for each set.
406
Under the hood, all of these routines are implemented as
407
 
408
@smallexample
409
  if (__unord@var{X}f2 (a, b))
410
    return @var{E};
411
  return __cmp@var{X}f2 (a, b);
412
@end smallexample
413
 
414
@noindent
415
where @var{E} is a constant chosen to give the proper behavior for
416
NaN@.  Thus, the meaning of the return value is different for each set.
417
Do not rely on this implementation; only the semantics documented
418
below are guaranteed.
419
 
420
@deftypefn {Runtime Function} int __eqsf2 (float @var{a}, float @var{b})
421
@deftypefnx {Runtime Function} int __eqdf2 (double @var{a}, double @var{b})
422
@deftypefnx {Runtime Function} int __eqtf2 (long double @var{a}, long double @var{b})
423
These functions return zero if neither argument is NaN, and @var{a} and
424
@var{b} are equal.
425
@end deftypefn
426
 
427
@deftypefn {Runtime Function} int __nesf2 (float @var{a}, float @var{b})
428
@deftypefnx {Runtime Function} int __nedf2 (double @var{a}, double @var{b})
429
@deftypefnx {Runtime Function} int __netf2 (long double @var{a}, long double @var{b})
430
These functions return a nonzero value if either argument is NaN, or
431
if @var{a} and @var{b} are unequal.
432
@end deftypefn
433
 
434
@deftypefn {Runtime Function} int __gesf2 (float @var{a}, float @var{b})
435
@deftypefnx {Runtime Function} int __gedf2 (double @var{a}, double @var{b})
436
@deftypefnx {Runtime Function} int __getf2 (long double @var{a}, long double @var{b})
437
These functions return a value greater than or equal to zero if
438
neither argument is NaN, and @var{a} is greater than or equal to
439
@var{b}.
440
@end deftypefn
441
 
442
@deftypefn {Runtime Function} int __ltsf2 (float @var{a}, float @var{b})
443
@deftypefnx {Runtime Function} int __ltdf2 (double @var{a}, double @var{b})
444
@deftypefnx {Runtime Function} int __lttf2 (long double @var{a}, long double @var{b})
445
These functions return a value less than zero if neither argument is
446
NaN, and @var{a} is strictly less than @var{b}.
447
@end deftypefn
448
 
449
@deftypefn {Runtime Function} int __lesf2 (float @var{a}, float @var{b})
450
@deftypefnx {Runtime Function} int __ledf2 (double @var{a}, double @var{b})
451
@deftypefnx {Runtime Function} int __letf2 (long double @var{a}, long double @var{b})
452
These functions return a value less than or equal to zero if neither
453
argument is NaN, and @var{a} is less than or equal to @var{b}.
454
@end deftypefn
455
 
456
@deftypefn {Runtime Function} int __gtsf2 (float @var{a}, float @var{b})
457
@deftypefnx {Runtime Function} int __gtdf2 (double @var{a}, double @var{b})
458
@deftypefnx {Runtime Function} int __gttf2 (long double @var{a}, long double @var{b})
459
These functions return a value greater than zero if neither argument
460
is NaN, and @var{a} is strictly greater than @var{b}.
461
@end deftypefn
462
 
463
@subsection Other floating-point functions
464
 
465
@deftypefn {Runtime Function} float __powisf2 (float @var{a}, int @var{b})
466
@deftypefnx {Runtime Function} double __powidf2 (double @var{a}, int @var{b})
467
@deftypefnx {Runtime Function} {long double} __powitf2 (long double @var{a}, int @var{b})
468
@deftypefnx {Runtime Function} {long double} __powixf2 (long double @var{a}, int @var{b})
469
These functions convert raise @var{a} to the power @var{b}.
470
@end deftypefn
471
 
472
@deftypefn {Runtime Function} {complex float} __mulsc3 (float @var{a}, float @var{b}, float @var{c}, float @var{d})
473
@deftypefnx {Runtime Function} {complex double} __muldc3 (double @var{a}, double @var{b}, double @var{c}, double @var{d})
474
@deftypefnx {Runtime Function} {complex long double} __multc3 (long double @var{a}, long double @var{b}, long double @var{c}, long double @var{d})
475
@deftypefnx {Runtime Function} {complex long double} __mulxc3 (long double @var{a}, long double @var{b}, long double @var{c}, long double @var{d})
476
These functions return the product of @math{@var{a} + i@var{b}} and
477
@math{@var{c} + i@var{d}}, following the rules of C99 Annex G@.
478
@end deftypefn
479
 
480
@deftypefn {Runtime Function} {complex float} __divsc3 (float @var{a}, float @var{b}, float @var{c}, float @var{d})
481
@deftypefnx {Runtime Function} {complex double} __divdc3 (double @var{a}, double @var{b}, double @var{c}, double @var{d})
482
@deftypefnx {Runtime Function} {complex long double} __divtc3 (long double @var{a}, long double @var{b}, long double @var{c}, long double @var{d})
483
@deftypefnx {Runtime Function} {complex long double} __divxc3 (long double @var{a}, long double @var{b}, long double @var{c}, long double @var{d})
484
These functions return the quotient of @math{@var{a} + i@var{b}} and
485
@math{@var{c} + i@var{d}} (i.e., @math{(@var{a} + i@var{b}) / (@var{c}
486
+ i@var{d})}), following the rules of C99 Annex G@.
487
@end deftypefn
488
 
489
@node Decimal float library routines
490
@section Routines for decimal floating point emulation
491
@cindex decimal float library
492
@cindex IEEE-754R
493
 
494
The software decimal floating point library implements IEEE 754R
495
decimal floating point arithmetic and is only activated on selected
496
targets.
497
 
498
@subsection Arithmetic functions
499
 
500
@deftypefn {Runtime Function} _Decimal32 __addsd3 (_Decimal32 @var{a}, _Decimal32 @var{b})
501
@deftypefnx {Runtime Function} _Decimal64 __adddd3 (_Decimal64 @var{a}, _Decimal64 @var{b})
502
@deftypefnx {Runtime Function} _Decimal128 __addtd3 (_Decimal128 @var{a}, _Decimal128 @var{b})
503
These functions return the sum of @var{a} and @var{b}.
504
@end deftypefn
505
 
506
@deftypefn {Runtime Function} _Decimal32 __subsd3 (_Decimal32 @var{a}, _Decimal32 @var{b})
507
@deftypefnx {Runtime Function} _Decimal64 __subdd3 (_Decimal64 @var{a}, _Decimal64 @var{b})
508
@deftypefnx {Runtime Function} _Decimal128 __subtd3 (_Decimal128 @var{a}, _Decimal128 @var{b})
509
These functions return the difference between @var{b} and @var{a};
510
that is, @w{@math{@var{a} - @var{b}}}.
511
@end deftypefn
512
 
513
@deftypefn {Runtime Function} _Decimal32 __mulsd3 (_Decimal32 @var{a}, _Decimal32 @var{b})
514
@deftypefnx {Runtime Function} _Decimal64 __muldd3 (_Decimal64 @var{a}, _Decimal64 @var{b})
515
@deftypefnx {Runtime Function} _Decimal128 __multd3 (_Decimal128 @var{a}, _Decimal128 @var{b})
516
These functions return the product of @var{a} and @var{b}.
517
@end deftypefn
518
 
519
@deftypefn {Runtime Function} _Decimal32 __divsd3 (_Decimal32 @var{a}, _Decimal32 @var{b})
520
@deftypefnx {Runtime Function} _Decimal64 __divdd3 (_Decimal64 @var{a}, _Decimal64 @var{b})
521
@deftypefnx {Runtime Function} _Decimal128 __divtd3 (_Decimal128 @var{a}, _Decimal128 @var{b})
522
These functions return the quotient of @var{a} and @var{b}; that is,
523
@w{@math{@var{a} / @var{b}}}.
524
@end deftypefn
525
 
526
@deftypefn {Runtime Function} _Decimal32 __negsd2 (_Decimal32 @var{a})
527
@deftypefnx {Runtime Function} _Decimal64 __negdd2 (_Decimal64 @var{a})
528
@deftypefnx {Runtime Function} _Decimal128 __negtd2 (_Decimal128 @var{a})
529
These functions return the negation of @var{a}.  They simply flip the
530
sign bit, so they can produce negative zero and negative NaN@.
531
@end deftypefn
532
 
533
@subsection Conversion functions
534
 
535
@c DFP/DFP conversions
536
@deftypefn {Runtime Function} _Decimal64 __extendsddd2 (_Decimal32 @var{a})
537
@deftypefnx {Runtime Function} _Decimal128 __extendsdtd2 (_Decimal32 @var{a})
538
@deftypefnx {Runtime Function} _Decimal128 __extendddtd2 (_Decimal64 @var{a})
539
@c DFP/binary FP conversions
540
@deftypefnx {Runtime Function} _Decimal32 __extendsfsd (float @var{a})
541
@deftypefnx {Runtime Function} double __extendsddf (_Decimal32 @var{a})
542
@deftypefnx {Runtime Function} {long double} __extendsdxf (_Decimal32 @var{a})
543
@deftypefnx {Runtime Function} _Decimal64 __extendsfdd (float @var{a})
544
@deftypefnx {Runtime Function} _Decimal64 __extenddfdd (double @var{a})
545
@deftypefnx {Runtime Function} {long double} __extendddxf (_Decimal64 @var{a})
546
@deftypefnx {Runtime Function} _Decimal128 __extendsftd (float @var{a})
547
@deftypefnx {Runtime Function} _Decimal128 __extenddftd (double @var{a})
548
@deftypefnx {Runtime Function} _Decimal128 __extendxftd ({long double} @var{a})
549
These functions extend @var{a} to the wider mode of their return type.
550
@end deftypefn
551
 
552
@c DFP/DFP conversions
553
@deftypefn {Runtime Function} _Decimal32 __truncddsd2 (_Decimal64 @var{a})
554
@deftypefnx {Runtime Function} _Decimal32 __trunctdsd2 (_Decimal128 @var{a})
555
@deftypefnx {Runtime Function} _Decimal64 __trunctddd2 (_Decimal128 @var{a})
556
@c DFP/binary FP conversions
557
@deftypefnx {Runtime Function} float __truncsdsf (_Decimal32 @var{a})
558
@deftypefnx {Runtime Function} _Decimal32 __truncdfsd (double @var{a})
559
@deftypefnx {Runtime Function} _Decimal32 __truncxfsd ({long double} @var{a})
560
@deftypefnx {Runtime Function} float __truncddsf (_Decimal64 @var{a})
561
@deftypefnx {Runtime Function} double __truncdddf (_Decimal64 @var{a})
562
@deftypefnx {Runtime Function} _Decimal64 __truncxfdd ({long double} @var{a})
563
@deftypefnx {Runtime Function} float __trunctdsf (_Decimal128 @var{a})
564
@deftypefnx {Runtime Function} double __trunctddf (_Decimal128 @var{a})
565
@deftypefnx {Runtime Function} {long double} __trunctdxf (_Decimal128 @var{a})
566
These functions truncate @var{a} to the narrower mode of their return
567
type.
568
@end deftypefn
569
 
570
@deftypefn {Runtime Function} int __fixsdsi (_Decimal32 @var{a})
571
@deftypefnx {Runtime Function} int __fixddsi (_Decimal64 @var{a})
572
@deftypefnx {Runtime Function} int __fixtdsi (_Decimal128 @var{a})
573
These functions convert @var{a} to a signed integer.
574
@end deftypefn
575
 
576
@deftypefn {Runtime Function} long __fixsddi (_Decimal32 @var{a})
577
@deftypefnx {Runtime Function} long __fixdddi (_Decimal64 @var{a})
578
@deftypefnx {Runtime Function} long __fixtddi (_Decimal128 @var{a})
579
These functions convert @var{a} to a signed long.
580
@end deftypefn
581
 
582
@deftypefn {Runtime Function} {unsigned int} __fixunssdsi (_Decimal32 @var{a})
583
@deftypefnx {Runtime Function} {unsigned int} __fixunsddsi (_Decimal64 @var{a})
584
@deftypefnx {Runtime Function} {unsigned int} __fixunstdsi (_Decimal128 @var{a})
585
These functions convert @var{a} to an unsigned integer.  Negative values all become zero.
586
@end deftypefn
587
 
588
@deftypefn {Runtime Function} {unsigned long} __fixunssddi (_Decimal32 @var{a})
589
@deftypefnx {Runtime Function} {unsigned long} __fixunsdddi (_Decimal64 @var{a})
590
@deftypefnx {Runtime Function} {unsigned long} __fixunstddi (_Decimal128 @var{a})
591
These functions convert @var{a} to an unsigned long.  Negative values
592
all become zero.
593
@end deftypefn
594
 
595
@deftypefn {Runtime Function} _Decimal32 __floatsisd (int @var{i})
596
@deftypefnx {Runtime Function} _Decimal64 __floatsidd (int @var{i})
597
@deftypefnx {Runtime Function} _Decimal128 __floatsitd (int @var{i})
598
These functions convert @var{i}, a signed integer, to decimal floating point.
599
@end deftypefn
600
 
601
@deftypefn {Runtime Function} _Decimal32 __floatdisd (long @var{i})
602
@deftypefnx {Runtime Function} _Decimal64 __floatdidd (long @var{i})
603
@deftypefnx {Runtime Function} _Decimal128 __floatditd (long @var{i})
604
These functions convert @var{i}, a signed long, to decimal floating point.
605
@end deftypefn
606
 
607
@deftypefn {Runtime Function} _Decimal32 __floatunssisd (unsigned int @var{i})
608
@deftypefnx {Runtime Function} _Decimal64 __floatunssidd (unsigned int @var{i})
609
@deftypefnx {Runtime Function} _Decimal128 __floatunssitd (unsigned int @var{i})
610
These functions convert @var{i}, an unsigned integer, to decimal floating point.
611
@end deftypefn
612
 
613
@deftypefn {Runtime Function} _Decimal32 __floatunsdisd (unsigned long @var{i})
614
@deftypefnx {Runtime Function} _Decimal64 __floatunsdidd (unsigned long @var{i})
615
@deftypefnx {Runtime Function} _Decimal128 __floatunsditd (unsigned long @var{i})
616
These functions convert @var{i}, an unsigned long, to decimal floating point.
617
@end deftypefn
618
 
619
@subsection Comparison functions
620
 
621
@deftypefn {Runtime Function} int __unordsd2 (_Decimal32 @var{a}, _Decimal32 @var{b})
622
@deftypefnx {Runtime Function} int __unorddd2 (_Decimal64 @var{a}, _Decimal64 @var{b})
623
@deftypefnx {Runtime Function} int __unordtd2 (_Decimal128 @var{a}, _Decimal128 @var{b})
624
These functions return a nonzero value if either argument is NaN, otherwise 0.
625
@end deftypefn
626
 
627
There is also a complete group of higher level functions which
628
correspond directly to comparison operators.  They implement the ISO C
629
semantics for floating-point comparisons, taking NaN into account.
630
Pay careful attention to the return values defined for each set.
631
Under the hood, all of these routines are implemented as
632
 
633
@smallexample
634
  if (__unord@var{X}d2 (a, b))
635
    return @var{E};
636
  return __cmp@var{X}d2 (a, b);
637
@end smallexample
638
 
639
@noindent
640
where @var{E} is a constant chosen to give the proper behavior for
641
NaN@.  Thus, the meaning of the return value is different for each set.
642
Do not rely on this implementation; only the semantics documented
643
below are guaranteed.
644
 
645
@deftypefn {Runtime Function} int __eqsd2 (_Decimal32 @var{a}, _Decimal32 @var{b})
646
@deftypefnx {Runtime Function} int __eqdd2 (_Decimal64 @var{a}, _Decimal64 @var{b})
647
@deftypefnx {Runtime Function} int __eqtd2 (_Decimal128 @var{a}, _Decimal128 @var{b})
648
These functions return zero if neither argument is NaN, and @var{a} and
649
@var{b} are equal.
650
@end deftypefn
651
 
652
@deftypefn {Runtime Function} int __nesd2 (_Decimal32 @var{a}, _Decimal32 @var{b})
653
@deftypefnx {Runtime Function} int __nedd2 (_Decimal64 @var{a}, _Decimal64 @var{b})
654
@deftypefnx {Runtime Function} int __netd2 (_Decimal128 @var{a}, _Decimal128 @var{b})
655
These functions return a nonzero value if either argument is NaN, or
656
if @var{a} and @var{b} are unequal.
657
@end deftypefn
658
 
659
@deftypefn {Runtime Function} int __gesd2 (_Decimal32 @var{a}, _Decimal32 @var{b})
660
@deftypefnx {Runtime Function} int __gedd2 (_Decimal64 @var{a}, _Decimal64 @var{b})
661
@deftypefnx {Runtime Function} int __getd2 (_Decimal128 @var{a}, _Decimal128 @var{b})
662
These functions return a value greater than or equal to zero if
663
neither argument is NaN, and @var{a} is greater than or equal to
664
@var{b}.
665
@end deftypefn
666
 
667
@deftypefn {Runtime Function} int __ltsd2 (_Decimal32 @var{a}, _Decimal32 @var{b})
668
@deftypefnx {Runtime Function} int __ltdd2 (_Decimal64 @var{a}, _Decimal64 @var{b})
669
@deftypefnx {Runtime Function} int __lttd2 (_Decimal128 @var{a}, _Decimal128 @var{b})
670
These functions return a value less than zero if neither argument is
671
NaN, and @var{a} is strictly less than @var{b}.
672
@end deftypefn
673
 
674
@deftypefn {Runtime Function} int __lesd2 (_Decimal32 @var{a}, _Decimal32 @var{b})
675
@deftypefnx {Runtime Function} int __ledd2 (_Decimal64 @var{a}, _Decimal64 @var{b})
676
@deftypefnx {Runtime Function} int __letd2 (_Decimal128 @var{a}, _Decimal128 @var{b})
677
These functions return a value less than or equal to zero if neither
678
argument is NaN, and @var{a} is less than or equal to @var{b}.
679
@end deftypefn
680
 
681
@deftypefn {Runtime Function} int __gtsd2 (_Decimal32 @var{a}, _Decimal32 @var{b})
682
@deftypefnx {Runtime Function} int __gtdd2 (_Decimal64 @var{a}, _Decimal64 @var{b})
683
@deftypefnx {Runtime Function} int __gttd2 (_Decimal128 @var{a}, _Decimal128 @var{b})
684
These functions return a value greater than zero if neither argument
685
is NaN, and @var{a} is strictly greater than @var{b}.
686
@end deftypefn
687
 
688
@node Exception handling routines
689
@section Language-independent routines for exception handling
690
 
691
document me!
692
 
693
@smallexample
694
  _Unwind_DeleteException
695
  _Unwind_Find_FDE
696
  _Unwind_ForcedUnwind
697
  _Unwind_GetGR
698
  _Unwind_GetIP
699
  _Unwind_GetLanguageSpecificData
700
  _Unwind_GetRegionStart
701
  _Unwind_GetTextRelBase
702
  _Unwind_GetDataRelBase
703
  _Unwind_RaiseException
704
  _Unwind_Resume
705
  _Unwind_SetGR
706
  _Unwind_SetIP
707
  _Unwind_FindEnclosingFunction
708
  _Unwind_SjLj_Register
709
  _Unwind_SjLj_Unregister
710
  _Unwind_SjLj_RaiseException
711
  _Unwind_SjLj_ForcedUnwind
712
  _Unwind_SjLj_Resume
713
  __deregister_frame
714
  __deregister_frame_info
715
  __deregister_frame_info_bases
716
  __register_frame
717
  __register_frame_info
718
  __register_frame_info_bases
719
  __register_frame_info_table
720
  __register_frame_info_table_bases
721
  __register_frame_table
722
@end smallexample
723
 
724
@node Miscellaneous routines
725
@section Miscellaneous runtime library routines
726
 
727
@subsection Cache control functions
728
@deftypefn {Runtime Function} void __clear_cache (char *@var{beg}, char *@var{end})
729
This function clears the instruction cache between @var{beg} and @var{end}.
730
@end deftypefn
731
 

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.