1 |
38 |
julius |
/* Calculate (post)dominators in slightly super-linear time.
|
2 |
|
|
Copyright (C) 2000, 2003, 2004, 2005, 2007 Free Software Foundation, Inc.
|
3 |
|
|
Contributed by Michael Matz (matz@ifh.de).
|
4 |
|
|
|
5 |
|
|
This file is part of GCC.
|
6 |
|
|
|
7 |
|
|
GCC is free software; you can redistribute it and/or modify it
|
8 |
|
|
under the terms of the GNU General Public License as published by
|
9 |
|
|
the Free Software Foundation; either version 3, or (at your option)
|
10 |
|
|
any later version.
|
11 |
|
|
|
12 |
|
|
GCC is distributed in the hope that it will be useful, but WITHOUT
|
13 |
|
|
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
|
14 |
|
|
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
|
15 |
|
|
License for more details.
|
16 |
|
|
|
17 |
|
|
You should have received a copy of the GNU General Public License
|
18 |
|
|
along with GCC; see the file COPYING3. If not see
|
19 |
|
|
<http://www.gnu.org/licenses/>. */
|
20 |
|
|
|
21 |
|
|
/* This file implements the well known algorithm from Lengauer and Tarjan
|
22 |
|
|
to compute the dominators in a control flow graph. A basic block D is said
|
23 |
|
|
to dominate another block X, when all paths from the entry node of the CFG
|
24 |
|
|
to X go also over D. The dominance relation is a transitive reflexive
|
25 |
|
|
relation and its minimal transitive reduction is a tree, called the
|
26 |
|
|
dominator tree. So for each block X besides the entry block exists a
|
27 |
|
|
block I(X), called the immediate dominator of X, which is the parent of X
|
28 |
|
|
in the dominator tree.
|
29 |
|
|
|
30 |
|
|
The algorithm computes this dominator tree implicitly by computing for
|
31 |
|
|
each block its immediate dominator. We use tree balancing and path
|
32 |
|
|
compression, so it's the O(e*a(e,v)) variant, where a(e,v) is the very
|
33 |
|
|
slowly growing functional inverse of the Ackerman function. */
|
34 |
|
|
|
35 |
|
|
#include "config.h"
|
36 |
|
|
#include "system.h"
|
37 |
|
|
#include "coretypes.h"
|
38 |
|
|
#include "tm.h"
|
39 |
|
|
#include "rtl.h"
|
40 |
|
|
#include "hard-reg-set.h"
|
41 |
|
|
#include "obstack.h"
|
42 |
|
|
#include "basic-block.h"
|
43 |
|
|
#include "toplev.h"
|
44 |
|
|
#include "et-forest.h"
|
45 |
|
|
#include "timevar.h"
|
46 |
|
|
|
47 |
|
|
/* Whether the dominators and the postdominators are available. */
|
48 |
|
|
enum dom_state dom_computed[2];
|
49 |
|
|
|
50 |
|
|
/* We name our nodes with integers, beginning with 1. Zero is reserved for
|
51 |
|
|
'undefined' or 'end of list'. The name of each node is given by the dfs
|
52 |
|
|
number of the corresponding basic block. Please note, that we include the
|
53 |
|
|
artificial ENTRY_BLOCK (or EXIT_BLOCK in the post-dom case) in our lists to
|
54 |
|
|
support multiple entry points. Its dfs number is of course 1. */
|
55 |
|
|
|
56 |
|
|
/* Type of Basic Block aka. TBB */
|
57 |
|
|
typedef unsigned int TBB;
|
58 |
|
|
|
59 |
|
|
/* We work in a poor-mans object oriented fashion, and carry an instance of
|
60 |
|
|
this structure through all our 'methods'. It holds various arrays
|
61 |
|
|
reflecting the (sub)structure of the flowgraph. Most of them are of type
|
62 |
|
|
TBB and are also indexed by TBB. */
|
63 |
|
|
|
64 |
|
|
struct dom_info
|
65 |
|
|
{
|
66 |
|
|
/* The parent of a node in the DFS tree. */
|
67 |
|
|
TBB *dfs_parent;
|
68 |
|
|
/* For a node x key[x] is roughly the node nearest to the root from which
|
69 |
|
|
exists a way to x only over nodes behind x. Such a node is also called
|
70 |
|
|
semidominator. */
|
71 |
|
|
TBB *key;
|
72 |
|
|
/* The value in path_min[x] is the node y on the path from x to the root of
|
73 |
|
|
the tree x is in with the smallest key[y]. */
|
74 |
|
|
TBB *path_min;
|
75 |
|
|
/* bucket[x] points to the first node of the set of nodes having x as key. */
|
76 |
|
|
TBB *bucket;
|
77 |
|
|
/* And next_bucket[x] points to the next node. */
|
78 |
|
|
TBB *next_bucket;
|
79 |
|
|
/* After the algorithm is done, dom[x] contains the immediate dominator
|
80 |
|
|
of x. */
|
81 |
|
|
TBB *dom;
|
82 |
|
|
|
83 |
|
|
/* The following few fields implement the structures needed for disjoint
|
84 |
|
|
sets. */
|
85 |
|
|
/* set_chain[x] is the next node on the path from x to the representant
|
86 |
|
|
of the set containing x. If set_chain[x]==0 then x is a root. */
|
87 |
|
|
TBB *set_chain;
|
88 |
|
|
/* set_size[x] is the number of elements in the set named by x. */
|
89 |
|
|
unsigned int *set_size;
|
90 |
|
|
/* set_child[x] is used for balancing the tree representing a set. It can
|
91 |
|
|
be understood as the next sibling of x. */
|
92 |
|
|
TBB *set_child;
|
93 |
|
|
|
94 |
|
|
/* If b is the number of a basic block (BB->index), dfs_order[b] is the
|
95 |
|
|
number of that node in DFS order counted from 1. This is an index
|
96 |
|
|
into most of the other arrays in this structure. */
|
97 |
|
|
TBB *dfs_order;
|
98 |
|
|
/* If x is the DFS-index of a node which corresponds with a basic block,
|
99 |
|
|
dfs_to_bb[x] is that basic block. Note, that in our structure there are
|
100 |
|
|
more nodes that basic blocks, so only dfs_to_bb[dfs_order[bb->index]]==bb
|
101 |
|
|
is true for every basic block bb, but not the opposite. */
|
102 |
|
|
basic_block *dfs_to_bb;
|
103 |
|
|
|
104 |
|
|
/* This is the next free DFS number when creating the DFS tree. */
|
105 |
|
|
unsigned int dfsnum;
|
106 |
|
|
/* The number of nodes in the DFS tree (==dfsnum-1). */
|
107 |
|
|
unsigned int nodes;
|
108 |
|
|
|
109 |
|
|
/* Blocks with bits set here have a fake edge to EXIT. These are used
|
110 |
|
|
to turn a DFS forest into a proper tree. */
|
111 |
|
|
bitmap fake_exit_edge;
|
112 |
|
|
};
|
113 |
|
|
|
114 |
|
|
static void init_dom_info (struct dom_info *, enum cdi_direction);
|
115 |
|
|
static void free_dom_info (struct dom_info *);
|
116 |
|
|
static void calc_dfs_tree_nonrec (struct dom_info *, basic_block,
|
117 |
|
|
enum cdi_direction);
|
118 |
|
|
static void calc_dfs_tree (struct dom_info *, enum cdi_direction);
|
119 |
|
|
static void compress (struct dom_info *, TBB);
|
120 |
|
|
static TBB eval (struct dom_info *, TBB);
|
121 |
|
|
static void link_roots (struct dom_info *, TBB, TBB);
|
122 |
|
|
static void calc_idoms (struct dom_info *, enum cdi_direction);
|
123 |
|
|
void debug_dominance_info (enum cdi_direction);
|
124 |
|
|
|
125 |
|
|
/* Keeps track of the*/
|
126 |
|
|
static unsigned n_bbs_in_dom_tree[2];
|
127 |
|
|
|
128 |
|
|
/* Helper macro for allocating and initializing an array,
|
129 |
|
|
for aesthetic reasons. */
|
130 |
|
|
#define init_ar(var, type, num, content) \
|
131 |
|
|
do \
|
132 |
|
|
{ \
|
133 |
|
|
unsigned int i = 1; /* Catch content == i. */ \
|
134 |
|
|
if (! (content)) \
|
135 |
|
|
(var) = XCNEWVEC (type, num); \
|
136 |
|
|
else \
|
137 |
|
|
{ \
|
138 |
|
|
(var) = XNEWVEC (type, (num)); \
|
139 |
|
|
for (i = 0; i < num; i++) \
|
140 |
|
|
(var)[i] = (content); \
|
141 |
|
|
} \
|
142 |
|
|
} \
|
143 |
|
|
while (0)
|
144 |
|
|
|
145 |
|
|
/* Allocate all needed memory in a pessimistic fashion (so we round up).
|
146 |
|
|
This initializes the contents of DI, which already must be allocated. */
|
147 |
|
|
|
148 |
|
|
static void
|
149 |
|
|
init_dom_info (struct dom_info *di, enum cdi_direction dir)
|
150 |
|
|
{
|
151 |
|
|
unsigned int num = n_basic_blocks;
|
152 |
|
|
init_ar (di->dfs_parent, TBB, num, 0);
|
153 |
|
|
init_ar (di->path_min, TBB, num, i);
|
154 |
|
|
init_ar (di->key, TBB, num, i);
|
155 |
|
|
init_ar (di->dom, TBB, num, 0);
|
156 |
|
|
|
157 |
|
|
init_ar (di->bucket, TBB, num, 0);
|
158 |
|
|
init_ar (di->next_bucket, TBB, num, 0);
|
159 |
|
|
|
160 |
|
|
init_ar (di->set_chain, TBB, num, 0);
|
161 |
|
|
init_ar (di->set_size, unsigned int, num, 1);
|
162 |
|
|
init_ar (di->set_child, TBB, num, 0);
|
163 |
|
|
|
164 |
|
|
init_ar (di->dfs_order, TBB, (unsigned int) last_basic_block + 1, 0);
|
165 |
|
|
init_ar (di->dfs_to_bb, basic_block, num, 0);
|
166 |
|
|
|
167 |
|
|
di->dfsnum = 1;
|
168 |
|
|
di->nodes = 0;
|
169 |
|
|
|
170 |
|
|
di->fake_exit_edge = dir ? BITMAP_ALLOC (NULL) : NULL;
|
171 |
|
|
}
|
172 |
|
|
|
173 |
|
|
#undef init_ar
|
174 |
|
|
|
175 |
|
|
/* Free all allocated memory in DI, but not DI itself. */
|
176 |
|
|
|
177 |
|
|
static void
|
178 |
|
|
free_dom_info (struct dom_info *di)
|
179 |
|
|
{
|
180 |
|
|
free (di->dfs_parent);
|
181 |
|
|
free (di->path_min);
|
182 |
|
|
free (di->key);
|
183 |
|
|
free (di->dom);
|
184 |
|
|
free (di->bucket);
|
185 |
|
|
free (di->next_bucket);
|
186 |
|
|
free (di->set_chain);
|
187 |
|
|
free (di->set_size);
|
188 |
|
|
free (di->set_child);
|
189 |
|
|
free (di->dfs_order);
|
190 |
|
|
free (di->dfs_to_bb);
|
191 |
|
|
BITMAP_FREE (di->fake_exit_edge);
|
192 |
|
|
}
|
193 |
|
|
|
194 |
|
|
/* The nonrecursive variant of creating a DFS tree. DI is our working
|
195 |
|
|
structure, BB the starting basic block for this tree and REVERSE
|
196 |
|
|
is true, if predecessors should be visited instead of successors of a
|
197 |
|
|
node. After this is done all nodes reachable from BB were visited, have
|
198 |
|
|
assigned their dfs number and are linked together to form a tree. */
|
199 |
|
|
|
200 |
|
|
static void
|
201 |
|
|
calc_dfs_tree_nonrec (struct dom_info *di, basic_block bb,
|
202 |
|
|
enum cdi_direction reverse)
|
203 |
|
|
{
|
204 |
|
|
/* We call this _only_ if bb is not already visited. */
|
205 |
|
|
edge e;
|
206 |
|
|
TBB child_i, my_i = 0;
|
207 |
|
|
edge_iterator *stack;
|
208 |
|
|
edge_iterator ei, einext;
|
209 |
|
|
int sp;
|
210 |
|
|
/* Start block (ENTRY_BLOCK_PTR for forward problem, EXIT_BLOCK for backward
|
211 |
|
|
problem). */
|
212 |
|
|
basic_block en_block;
|
213 |
|
|
/* Ending block. */
|
214 |
|
|
basic_block ex_block;
|
215 |
|
|
|
216 |
|
|
stack = XNEWVEC (edge_iterator, n_basic_blocks + 1);
|
217 |
|
|
sp = 0;
|
218 |
|
|
|
219 |
|
|
/* Initialize our border blocks, and the first edge. */
|
220 |
|
|
if (reverse)
|
221 |
|
|
{
|
222 |
|
|
ei = ei_start (bb->preds);
|
223 |
|
|
en_block = EXIT_BLOCK_PTR;
|
224 |
|
|
ex_block = ENTRY_BLOCK_PTR;
|
225 |
|
|
}
|
226 |
|
|
else
|
227 |
|
|
{
|
228 |
|
|
ei = ei_start (bb->succs);
|
229 |
|
|
en_block = ENTRY_BLOCK_PTR;
|
230 |
|
|
ex_block = EXIT_BLOCK_PTR;
|
231 |
|
|
}
|
232 |
|
|
|
233 |
|
|
/* When the stack is empty we break out of this loop. */
|
234 |
|
|
while (1)
|
235 |
|
|
{
|
236 |
|
|
basic_block bn;
|
237 |
|
|
|
238 |
|
|
/* This loop traverses edges e in depth first manner, and fills the
|
239 |
|
|
stack. */
|
240 |
|
|
while (!ei_end_p (ei))
|
241 |
|
|
{
|
242 |
|
|
e = ei_edge (ei);
|
243 |
|
|
|
244 |
|
|
/* Deduce from E the current and the next block (BB and BN), and the
|
245 |
|
|
next edge. */
|
246 |
|
|
if (reverse)
|
247 |
|
|
{
|
248 |
|
|
bn = e->src;
|
249 |
|
|
|
250 |
|
|
/* If the next node BN is either already visited or a border
|
251 |
|
|
block the current edge is useless, and simply overwritten
|
252 |
|
|
with the next edge out of the current node. */
|
253 |
|
|
if (bn == ex_block || di->dfs_order[bn->index])
|
254 |
|
|
{
|
255 |
|
|
ei_next (&ei);
|
256 |
|
|
continue;
|
257 |
|
|
}
|
258 |
|
|
bb = e->dest;
|
259 |
|
|
einext = ei_start (bn->preds);
|
260 |
|
|
}
|
261 |
|
|
else
|
262 |
|
|
{
|
263 |
|
|
bn = e->dest;
|
264 |
|
|
if (bn == ex_block || di->dfs_order[bn->index])
|
265 |
|
|
{
|
266 |
|
|
ei_next (&ei);
|
267 |
|
|
continue;
|
268 |
|
|
}
|
269 |
|
|
bb = e->src;
|
270 |
|
|
einext = ei_start (bn->succs);
|
271 |
|
|
}
|
272 |
|
|
|
273 |
|
|
gcc_assert (bn != en_block);
|
274 |
|
|
|
275 |
|
|
/* Fill the DFS tree info calculatable _before_ recursing. */
|
276 |
|
|
if (bb != en_block)
|
277 |
|
|
my_i = di->dfs_order[bb->index];
|
278 |
|
|
else
|
279 |
|
|
my_i = di->dfs_order[last_basic_block];
|
280 |
|
|
child_i = di->dfs_order[bn->index] = di->dfsnum++;
|
281 |
|
|
di->dfs_to_bb[child_i] = bn;
|
282 |
|
|
di->dfs_parent[child_i] = my_i;
|
283 |
|
|
|
284 |
|
|
/* Save the current point in the CFG on the stack, and recurse. */
|
285 |
|
|
stack[sp++] = ei;
|
286 |
|
|
ei = einext;
|
287 |
|
|
}
|
288 |
|
|
|
289 |
|
|
if (!sp)
|
290 |
|
|
break;
|
291 |
|
|
ei = stack[--sp];
|
292 |
|
|
|
293 |
|
|
/* OK. The edge-list was exhausted, meaning normally we would
|
294 |
|
|
end the recursion. After returning from the recursive call,
|
295 |
|
|
there were (may be) other statements which were run after a
|
296 |
|
|
child node was completely considered by DFS. Here is the
|
297 |
|
|
point to do it in the non-recursive variant.
|
298 |
|
|
E.g. The block just completed is in e->dest for forward DFS,
|
299 |
|
|
the block not yet completed (the parent of the one above)
|
300 |
|
|
in e->src. This could be used e.g. for computing the number of
|
301 |
|
|
descendants or the tree depth. */
|
302 |
|
|
ei_next (&ei);
|
303 |
|
|
}
|
304 |
|
|
free (stack);
|
305 |
|
|
}
|
306 |
|
|
|
307 |
|
|
/* The main entry for calculating the DFS tree or forest. DI is our working
|
308 |
|
|
structure and REVERSE is true, if we are interested in the reverse flow
|
309 |
|
|
graph. In that case the result is not necessarily a tree but a forest,
|
310 |
|
|
because there may be nodes from which the EXIT_BLOCK is unreachable. */
|
311 |
|
|
|
312 |
|
|
static void
|
313 |
|
|
calc_dfs_tree (struct dom_info *di, enum cdi_direction reverse)
|
314 |
|
|
{
|
315 |
|
|
/* The first block is the ENTRY_BLOCK (or EXIT_BLOCK if REVERSE). */
|
316 |
|
|
basic_block begin = reverse ? EXIT_BLOCK_PTR : ENTRY_BLOCK_PTR;
|
317 |
|
|
di->dfs_order[last_basic_block] = di->dfsnum;
|
318 |
|
|
di->dfs_to_bb[di->dfsnum] = begin;
|
319 |
|
|
di->dfsnum++;
|
320 |
|
|
|
321 |
|
|
calc_dfs_tree_nonrec (di, begin, reverse);
|
322 |
|
|
|
323 |
|
|
if (reverse)
|
324 |
|
|
{
|
325 |
|
|
/* In the post-dom case we may have nodes without a path to EXIT_BLOCK.
|
326 |
|
|
They are reverse-unreachable. In the dom-case we disallow such
|
327 |
|
|
nodes, but in post-dom we have to deal with them.
|
328 |
|
|
|
329 |
|
|
There are two situations in which this occurs. First, noreturn
|
330 |
|
|
functions. Second, infinite loops. In the first case we need to
|
331 |
|
|
pretend that there is an edge to the exit block. In the second
|
332 |
|
|
case, we wind up with a forest. We need to process all noreturn
|
333 |
|
|
blocks before we know if we've got any infinite loops. */
|
334 |
|
|
|
335 |
|
|
basic_block b;
|
336 |
|
|
bool saw_unconnected = false;
|
337 |
|
|
|
338 |
|
|
FOR_EACH_BB_REVERSE (b)
|
339 |
|
|
{
|
340 |
|
|
if (EDGE_COUNT (b->succs) > 0)
|
341 |
|
|
{
|
342 |
|
|
if (di->dfs_order[b->index] == 0)
|
343 |
|
|
saw_unconnected = true;
|
344 |
|
|
continue;
|
345 |
|
|
}
|
346 |
|
|
bitmap_set_bit (di->fake_exit_edge, b->index);
|
347 |
|
|
di->dfs_order[b->index] = di->dfsnum;
|
348 |
|
|
di->dfs_to_bb[di->dfsnum] = b;
|
349 |
|
|
di->dfs_parent[di->dfsnum] = di->dfs_order[last_basic_block];
|
350 |
|
|
di->dfsnum++;
|
351 |
|
|
calc_dfs_tree_nonrec (di, b, reverse);
|
352 |
|
|
}
|
353 |
|
|
|
354 |
|
|
if (saw_unconnected)
|
355 |
|
|
{
|
356 |
|
|
FOR_EACH_BB_REVERSE (b)
|
357 |
|
|
{
|
358 |
|
|
if (di->dfs_order[b->index])
|
359 |
|
|
continue;
|
360 |
|
|
bitmap_set_bit (di->fake_exit_edge, b->index);
|
361 |
|
|
di->dfs_order[b->index] = di->dfsnum;
|
362 |
|
|
di->dfs_to_bb[di->dfsnum] = b;
|
363 |
|
|
di->dfs_parent[di->dfsnum] = di->dfs_order[last_basic_block];
|
364 |
|
|
di->dfsnum++;
|
365 |
|
|
calc_dfs_tree_nonrec (di, b, reverse);
|
366 |
|
|
}
|
367 |
|
|
}
|
368 |
|
|
}
|
369 |
|
|
|
370 |
|
|
di->nodes = di->dfsnum - 1;
|
371 |
|
|
|
372 |
|
|
/* This aborts e.g. when there is _no_ path from ENTRY to EXIT at all. */
|
373 |
|
|
gcc_assert (di->nodes == (unsigned int) n_basic_blocks - 1);
|
374 |
|
|
}
|
375 |
|
|
|
376 |
|
|
/* Compress the path from V to the root of its set and update path_min at the
|
377 |
|
|
same time. After compress(di, V) set_chain[V] is the root of the set V is
|
378 |
|
|
in and path_min[V] is the node with the smallest key[] value on the path
|
379 |
|
|
from V to that root. */
|
380 |
|
|
|
381 |
|
|
static void
|
382 |
|
|
compress (struct dom_info *di, TBB v)
|
383 |
|
|
{
|
384 |
|
|
/* Btw. It's not worth to unrecurse compress() as the depth is usually not
|
385 |
|
|
greater than 5 even for huge graphs (I've not seen call depth > 4).
|
386 |
|
|
Also performance wise compress() ranges _far_ behind eval(). */
|
387 |
|
|
TBB parent = di->set_chain[v];
|
388 |
|
|
if (di->set_chain[parent])
|
389 |
|
|
{
|
390 |
|
|
compress (di, parent);
|
391 |
|
|
if (di->key[di->path_min[parent]] < di->key[di->path_min[v]])
|
392 |
|
|
di->path_min[v] = di->path_min[parent];
|
393 |
|
|
di->set_chain[v] = di->set_chain[parent];
|
394 |
|
|
}
|
395 |
|
|
}
|
396 |
|
|
|
397 |
|
|
/* Compress the path from V to the set root of V if needed (when the root has
|
398 |
|
|
changed since the last call). Returns the node with the smallest key[]
|
399 |
|
|
value on the path from V to the root. */
|
400 |
|
|
|
401 |
|
|
static inline TBB
|
402 |
|
|
eval (struct dom_info *di, TBB v)
|
403 |
|
|
{
|
404 |
|
|
/* The representant of the set V is in, also called root (as the set
|
405 |
|
|
representation is a tree). */
|
406 |
|
|
TBB rep = di->set_chain[v];
|
407 |
|
|
|
408 |
|
|
/* V itself is the root. */
|
409 |
|
|
if (!rep)
|
410 |
|
|
return di->path_min[v];
|
411 |
|
|
|
412 |
|
|
/* Compress only if necessary. */
|
413 |
|
|
if (di->set_chain[rep])
|
414 |
|
|
{
|
415 |
|
|
compress (di, v);
|
416 |
|
|
rep = di->set_chain[v];
|
417 |
|
|
}
|
418 |
|
|
|
419 |
|
|
if (di->key[di->path_min[rep]] >= di->key[di->path_min[v]])
|
420 |
|
|
return di->path_min[v];
|
421 |
|
|
else
|
422 |
|
|
return di->path_min[rep];
|
423 |
|
|
}
|
424 |
|
|
|
425 |
|
|
/* This essentially merges the two sets of V and W, giving a single set with
|
426 |
|
|
the new root V. The internal representation of these disjoint sets is a
|
427 |
|
|
balanced tree. Currently link(V,W) is only used with V being the parent
|
428 |
|
|
of W. */
|
429 |
|
|
|
430 |
|
|
static void
|
431 |
|
|
link_roots (struct dom_info *di, TBB v, TBB w)
|
432 |
|
|
{
|
433 |
|
|
TBB s = w;
|
434 |
|
|
|
435 |
|
|
/* Rebalance the tree. */
|
436 |
|
|
while (di->key[di->path_min[w]] < di->key[di->path_min[di->set_child[s]]])
|
437 |
|
|
{
|
438 |
|
|
if (di->set_size[s] + di->set_size[di->set_child[di->set_child[s]]]
|
439 |
|
|
>= 2 * di->set_size[di->set_child[s]])
|
440 |
|
|
{
|
441 |
|
|
di->set_chain[di->set_child[s]] = s;
|
442 |
|
|
di->set_child[s] = di->set_child[di->set_child[s]];
|
443 |
|
|
}
|
444 |
|
|
else
|
445 |
|
|
{
|
446 |
|
|
di->set_size[di->set_child[s]] = di->set_size[s];
|
447 |
|
|
s = di->set_chain[s] = di->set_child[s];
|
448 |
|
|
}
|
449 |
|
|
}
|
450 |
|
|
|
451 |
|
|
di->path_min[s] = di->path_min[w];
|
452 |
|
|
di->set_size[v] += di->set_size[w];
|
453 |
|
|
if (di->set_size[v] < 2 * di->set_size[w])
|
454 |
|
|
{
|
455 |
|
|
TBB tmp = s;
|
456 |
|
|
s = di->set_child[v];
|
457 |
|
|
di->set_child[v] = tmp;
|
458 |
|
|
}
|
459 |
|
|
|
460 |
|
|
/* Merge all subtrees. */
|
461 |
|
|
while (s)
|
462 |
|
|
{
|
463 |
|
|
di->set_chain[s] = v;
|
464 |
|
|
s = di->set_child[s];
|
465 |
|
|
}
|
466 |
|
|
}
|
467 |
|
|
|
468 |
|
|
/* This calculates the immediate dominators (or post-dominators if REVERSE is
|
469 |
|
|
true). DI is our working structure and should hold the DFS forest.
|
470 |
|
|
On return the immediate dominator to node V is in di->dom[V]. */
|
471 |
|
|
|
472 |
|
|
static void
|
473 |
|
|
calc_idoms (struct dom_info *di, enum cdi_direction reverse)
|
474 |
|
|
{
|
475 |
|
|
TBB v, w, k, par;
|
476 |
|
|
basic_block en_block;
|
477 |
|
|
edge_iterator ei, einext;
|
478 |
|
|
|
479 |
|
|
if (reverse)
|
480 |
|
|
en_block = EXIT_BLOCK_PTR;
|
481 |
|
|
else
|
482 |
|
|
en_block = ENTRY_BLOCK_PTR;
|
483 |
|
|
|
484 |
|
|
/* Go backwards in DFS order, to first look at the leafs. */
|
485 |
|
|
v = di->nodes;
|
486 |
|
|
while (v > 1)
|
487 |
|
|
{
|
488 |
|
|
basic_block bb = di->dfs_to_bb[v];
|
489 |
|
|
edge e;
|
490 |
|
|
|
491 |
|
|
par = di->dfs_parent[v];
|
492 |
|
|
k = v;
|
493 |
|
|
|
494 |
|
|
ei = (reverse) ? ei_start (bb->succs) : ei_start (bb->preds);
|
495 |
|
|
|
496 |
|
|
if (reverse)
|
497 |
|
|
{
|
498 |
|
|
/* If this block has a fake edge to exit, process that first. */
|
499 |
|
|
if (bitmap_bit_p (di->fake_exit_edge, bb->index))
|
500 |
|
|
{
|
501 |
|
|
einext = ei;
|
502 |
|
|
einext.index = 0;
|
503 |
|
|
goto do_fake_exit_edge;
|
504 |
|
|
}
|
505 |
|
|
}
|
506 |
|
|
|
507 |
|
|
/* Search all direct predecessors for the smallest node with a path
|
508 |
|
|
to them. That way we have the smallest node with also a path to
|
509 |
|
|
us only over nodes behind us. In effect we search for our
|
510 |
|
|
semidominator. */
|
511 |
|
|
while (!ei_end_p (ei))
|
512 |
|
|
{
|
513 |
|
|
TBB k1;
|
514 |
|
|
basic_block b;
|
515 |
|
|
|
516 |
|
|
e = ei_edge (ei);
|
517 |
|
|
b = (reverse) ? e->dest : e->src;
|
518 |
|
|
einext = ei;
|
519 |
|
|
ei_next (&einext);
|
520 |
|
|
|
521 |
|
|
if (b == en_block)
|
522 |
|
|
{
|
523 |
|
|
do_fake_exit_edge:
|
524 |
|
|
k1 = di->dfs_order[last_basic_block];
|
525 |
|
|
}
|
526 |
|
|
else
|
527 |
|
|
k1 = di->dfs_order[b->index];
|
528 |
|
|
|
529 |
|
|
/* Call eval() only if really needed. If k1 is above V in DFS tree,
|
530 |
|
|
then we know, that eval(k1) == k1 and key[k1] == k1. */
|
531 |
|
|
if (k1 > v)
|
532 |
|
|
k1 = di->key[eval (di, k1)];
|
533 |
|
|
if (k1 < k)
|
534 |
|
|
k = k1;
|
535 |
|
|
|
536 |
|
|
ei = einext;
|
537 |
|
|
}
|
538 |
|
|
|
539 |
|
|
di->key[v] = k;
|
540 |
|
|
link_roots (di, par, v);
|
541 |
|
|
di->next_bucket[v] = di->bucket[k];
|
542 |
|
|
di->bucket[k] = v;
|
543 |
|
|
|
544 |
|
|
/* Transform semidominators into dominators. */
|
545 |
|
|
for (w = di->bucket[par]; w; w = di->next_bucket[w])
|
546 |
|
|
{
|
547 |
|
|
k = eval (di, w);
|
548 |
|
|
if (di->key[k] < di->key[w])
|
549 |
|
|
di->dom[w] = k;
|
550 |
|
|
else
|
551 |
|
|
di->dom[w] = par;
|
552 |
|
|
}
|
553 |
|
|
/* We don't need to cleanup next_bucket[]. */
|
554 |
|
|
di->bucket[par] = 0;
|
555 |
|
|
v--;
|
556 |
|
|
}
|
557 |
|
|
|
558 |
|
|
/* Explicitly define the dominators. */
|
559 |
|
|
di->dom[1] = 0;
|
560 |
|
|
for (v = 2; v <= di->nodes; v++)
|
561 |
|
|
if (di->dom[v] != di->key[v])
|
562 |
|
|
di->dom[v] = di->dom[di->dom[v]];
|
563 |
|
|
}
|
564 |
|
|
|
565 |
|
|
/* Assign dfs numbers starting from NUM to NODE and its sons. */
|
566 |
|
|
|
567 |
|
|
static void
|
568 |
|
|
assign_dfs_numbers (struct et_node *node, int *num)
|
569 |
|
|
{
|
570 |
|
|
struct et_node *son;
|
571 |
|
|
|
572 |
|
|
node->dfs_num_in = (*num)++;
|
573 |
|
|
|
574 |
|
|
if (node->son)
|
575 |
|
|
{
|
576 |
|
|
assign_dfs_numbers (node->son, num);
|
577 |
|
|
for (son = node->son->right; son != node->son; son = son->right)
|
578 |
|
|
assign_dfs_numbers (son, num);
|
579 |
|
|
}
|
580 |
|
|
|
581 |
|
|
node->dfs_num_out = (*num)++;
|
582 |
|
|
}
|
583 |
|
|
|
584 |
|
|
/* Compute the data necessary for fast resolving of dominator queries in a
|
585 |
|
|
static dominator tree. */
|
586 |
|
|
|
587 |
|
|
static void
|
588 |
|
|
compute_dom_fast_query (enum cdi_direction dir)
|
589 |
|
|
{
|
590 |
|
|
int num = 0;
|
591 |
|
|
basic_block bb;
|
592 |
|
|
|
593 |
|
|
gcc_assert (dom_info_available_p (dir));
|
594 |
|
|
|
595 |
|
|
if (dom_computed[dir] == DOM_OK)
|
596 |
|
|
return;
|
597 |
|
|
|
598 |
|
|
FOR_ALL_BB (bb)
|
599 |
|
|
{
|
600 |
|
|
if (!bb->dom[dir]->father)
|
601 |
|
|
assign_dfs_numbers (bb->dom[dir], &num);
|
602 |
|
|
}
|
603 |
|
|
|
604 |
|
|
dom_computed[dir] = DOM_OK;
|
605 |
|
|
}
|
606 |
|
|
|
607 |
|
|
/* The main entry point into this module. DIR is set depending on whether
|
608 |
|
|
we want to compute dominators or postdominators. */
|
609 |
|
|
|
610 |
|
|
void
|
611 |
|
|
calculate_dominance_info (enum cdi_direction dir)
|
612 |
|
|
{
|
613 |
|
|
struct dom_info di;
|
614 |
|
|
basic_block b;
|
615 |
|
|
|
616 |
|
|
if (dom_computed[dir] == DOM_OK)
|
617 |
|
|
return;
|
618 |
|
|
|
619 |
|
|
timevar_push (TV_DOMINANCE);
|
620 |
|
|
if (!dom_info_available_p (dir))
|
621 |
|
|
{
|
622 |
|
|
gcc_assert (!n_bbs_in_dom_tree[dir]);
|
623 |
|
|
|
624 |
|
|
FOR_ALL_BB (b)
|
625 |
|
|
{
|
626 |
|
|
b->dom[dir] = et_new_tree (b);
|
627 |
|
|
}
|
628 |
|
|
n_bbs_in_dom_tree[dir] = n_basic_blocks;
|
629 |
|
|
|
630 |
|
|
init_dom_info (&di, dir);
|
631 |
|
|
calc_dfs_tree (&di, dir);
|
632 |
|
|
calc_idoms (&di, dir);
|
633 |
|
|
|
634 |
|
|
FOR_EACH_BB (b)
|
635 |
|
|
{
|
636 |
|
|
TBB d = di.dom[di.dfs_order[b->index]];
|
637 |
|
|
|
638 |
|
|
if (di.dfs_to_bb[d])
|
639 |
|
|
et_set_father (b->dom[dir], di.dfs_to_bb[d]->dom[dir]);
|
640 |
|
|
}
|
641 |
|
|
|
642 |
|
|
free_dom_info (&di);
|
643 |
|
|
dom_computed[dir] = DOM_NO_FAST_QUERY;
|
644 |
|
|
}
|
645 |
|
|
|
646 |
|
|
compute_dom_fast_query (dir);
|
647 |
|
|
|
648 |
|
|
timevar_pop (TV_DOMINANCE);
|
649 |
|
|
}
|
650 |
|
|
|
651 |
|
|
/* Free dominance information for direction DIR. */
|
652 |
|
|
void
|
653 |
|
|
free_dominance_info (enum cdi_direction dir)
|
654 |
|
|
{
|
655 |
|
|
basic_block bb;
|
656 |
|
|
|
657 |
|
|
if (!dom_info_available_p (dir))
|
658 |
|
|
return;
|
659 |
|
|
|
660 |
|
|
FOR_ALL_BB (bb)
|
661 |
|
|
{
|
662 |
|
|
et_free_tree_force (bb->dom[dir]);
|
663 |
|
|
bb->dom[dir] = NULL;
|
664 |
|
|
}
|
665 |
|
|
et_free_pools ();
|
666 |
|
|
|
667 |
|
|
n_bbs_in_dom_tree[dir] = 0;
|
668 |
|
|
|
669 |
|
|
dom_computed[dir] = DOM_NONE;
|
670 |
|
|
}
|
671 |
|
|
|
672 |
|
|
/* Return the immediate dominator of basic block BB. */
|
673 |
|
|
basic_block
|
674 |
|
|
get_immediate_dominator (enum cdi_direction dir, basic_block bb)
|
675 |
|
|
{
|
676 |
|
|
struct et_node *node = bb->dom[dir];
|
677 |
|
|
|
678 |
|
|
gcc_assert (dom_computed[dir]);
|
679 |
|
|
|
680 |
|
|
if (!node->father)
|
681 |
|
|
return NULL;
|
682 |
|
|
|
683 |
|
|
return node->father->data;
|
684 |
|
|
}
|
685 |
|
|
|
686 |
|
|
/* Set the immediate dominator of the block possibly removing
|
687 |
|
|
existing edge. NULL can be used to remove any edge. */
|
688 |
|
|
inline void
|
689 |
|
|
set_immediate_dominator (enum cdi_direction dir, basic_block bb,
|
690 |
|
|
basic_block dominated_by)
|
691 |
|
|
{
|
692 |
|
|
struct et_node *node = bb->dom[dir];
|
693 |
|
|
|
694 |
|
|
gcc_assert (dom_computed[dir]);
|
695 |
|
|
|
696 |
|
|
if (node->father)
|
697 |
|
|
{
|
698 |
|
|
if (node->father->data == dominated_by)
|
699 |
|
|
return;
|
700 |
|
|
et_split (node);
|
701 |
|
|
}
|
702 |
|
|
|
703 |
|
|
if (dominated_by)
|
704 |
|
|
et_set_father (node, dominated_by->dom[dir]);
|
705 |
|
|
|
706 |
|
|
if (dom_computed[dir] == DOM_OK)
|
707 |
|
|
dom_computed[dir] = DOM_NO_FAST_QUERY;
|
708 |
|
|
}
|
709 |
|
|
|
710 |
|
|
/* Store all basic blocks immediately dominated by BB into BBS and return
|
711 |
|
|
their number. */
|
712 |
|
|
int
|
713 |
|
|
get_dominated_by (enum cdi_direction dir, basic_block bb, basic_block **bbs)
|
714 |
|
|
{
|
715 |
|
|
int n;
|
716 |
|
|
struct et_node *node = bb->dom[dir], *son = node->son, *ason;
|
717 |
|
|
|
718 |
|
|
gcc_assert (dom_computed[dir]);
|
719 |
|
|
|
720 |
|
|
if (!son)
|
721 |
|
|
{
|
722 |
|
|
*bbs = NULL;
|
723 |
|
|
return 0;
|
724 |
|
|
}
|
725 |
|
|
|
726 |
|
|
for (ason = son->right, n = 1; ason != son; ason = ason->right)
|
727 |
|
|
n++;
|
728 |
|
|
|
729 |
|
|
*bbs = XNEWVEC (basic_block, n);
|
730 |
|
|
(*bbs)[0] = son->data;
|
731 |
|
|
for (ason = son->right, n = 1; ason != son; ason = ason->right)
|
732 |
|
|
(*bbs)[n++] = ason->data;
|
733 |
|
|
|
734 |
|
|
return n;
|
735 |
|
|
}
|
736 |
|
|
|
737 |
|
|
/* Find all basic blocks that are immediately dominated (in direction DIR)
|
738 |
|
|
by some block between N_REGION ones stored in REGION, except for blocks
|
739 |
|
|
in the REGION itself. The found blocks are stored to DOMS and their number
|
740 |
|
|
is returned. */
|
741 |
|
|
|
742 |
|
|
unsigned
|
743 |
|
|
get_dominated_by_region (enum cdi_direction dir, basic_block *region,
|
744 |
|
|
unsigned n_region, basic_block *doms)
|
745 |
|
|
{
|
746 |
|
|
unsigned n_doms = 0, i;
|
747 |
|
|
basic_block dom;
|
748 |
|
|
|
749 |
|
|
for (i = 0; i < n_region; i++)
|
750 |
|
|
region[i]->flags |= BB_DUPLICATED;
|
751 |
|
|
for (i = 0; i < n_region; i++)
|
752 |
|
|
for (dom = first_dom_son (dir, region[i]);
|
753 |
|
|
dom;
|
754 |
|
|
dom = next_dom_son (dir, dom))
|
755 |
|
|
if (!(dom->flags & BB_DUPLICATED))
|
756 |
|
|
doms[n_doms++] = dom;
|
757 |
|
|
for (i = 0; i < n_region; i++)
|
758 |
|
|
region[i]->flags &= ~BB_DUPLICATED;
|
759 |
|
|
|
760 |
|
|
return n_doms;
|
761 |
|
|
}
|
762 |
|
|
|
763 |
|
|
/* Redirect all edges pointing to BB to TO. */
|
764 |
|
|
void
|
765 |
|
|
redirect_immediate_dominators (enum cdi_direction dir, basic_block bb,
|
766 |
|
|
basic_block to)
|
767 |
|
|
{
|
768 |
|
|
struct et_node *bb_node = bb->dom[dir], *to_node = to->dom[dir], *son;
|
769 |
|
|
|
770 |
|
|
gcc_assert (dom_computed[dir]);
|
771 |
|
|
|
772 |
|
|
if (!bb_node->son)
|
773 |
|
|
return;
|
774 |
|
|
|
775 |
|
|
while (bb_node->son)
|
776 |
|
|
{
|
777 |
|
|
son = bb_node->son;
|
778 |
|
|
|
779 |
|
|
et_split (son);
|
780 |
|
|
et_set_father (son, to_node);
|
781 |
|
|
}
|
782 |
|
|
|
783 |
|
|
if (dom_computed[dir] == DOM_OK)
|
784 |
|
|
dom_computed[dir] = DOM_NO_FAST_QUERY;
|
785 |
|
|
}
|
786 |
|
|
|
787 |
|
|
/* Find first basic block in the tree dominating both BB1 and BB2. */
|
788 |
|
|
basic_block
|
789 |
|
|
nearest_common_dominator (enum cdi_direction dir, basic_block bb1, basic_block bb2)
|
790 |
|
|
{
|
791 |
|
|
gcc_assert (dom_computed[dir]);
|
792 |
|
|
|
793 |
|
|
if (!bb1)
|
794 |
|
|
return bb2;
|
795 |
|
|
if (!bb2)
|
796 |
|
|
return bb1;
|
797 |
|
|
|
798 |
|
|
return et_nca (bb1->dom[dir], bb2->dom[dir])->data;
|
799 |
|
|
}
|
800 |
|
|
|
801 |
|
|
|
802 |
|
|
/* Find the nearest common dominator for the basic blocks in BLOCKS,
|
803 |
|
|
using dominance direction DIR. */
|
804 |
|
|
|
805 |
|
|
basic_block
|
806 |
|
|
nearest_common_dominator_for_set (enum cdi_direction dir, bitmap blocks)
|
807 |
|
|
{
|
808 |
|
|
unsigned i, first;
|
809 |
|
|
bitmap_iterator bi;
|
810 |
|
|
basic_block dom;
|
811 |
|
|
|
812 |
|
|
first = bitmap_first_set_bit (blocks);
|
813 |
|
|
dom = BASIC_BLOCK (first);
|
814 |
|
|
EXECUTE_IF_SET_IN_BITMAP (blocks, 0, i, bi)
|
815 |
|
|
if (dom != BASIC_BLOCK (i))
|
816 |
|
|
dom = nearest_common_dominator (dir, dom, BASIC_BLOCK (i));
|
817 |
|
|
|
818 |
|
|
return dom;
|
819 |
|
|
}
|
820 |
|
|
|
821 |
|
|
/* Given a dominator tree, we can determine whether one thing
|
822 |
|
|
dominates another in constant time by using two DFS numbers:
|
823 |
|
|
|
824 |
|
|
1. The number for when we visit a node on the way down the tree
|
825 |
|
|
2. The number for when we visit a node on the way back up the tree
|
826 |
|
|
|
827 |
|
|
You can view these as bounds for the range of dfs numbers the
|
828 |
|
|
nodes in the subtree of the dominator tree rooted at that node
|
829 |
|
|
will contain.
|
830 |
|
|
|
831 |
|
|
The dominator tree is always a simple acyclic tree, so there are
|
832 |
|
|
only three possible relations two nodes in the dominator tree have
|
833 |
|
|
to each other:
|
834 |
|
|
|
835 |
|
|
1. Node A is above Node B (and thus, Node A dominates node B)
|
836 |
|
|
|
837 |
|
|
A
|
838 |
|
|
|
|
839 |
|
|
C
|
840 |
|
|
/ \
|
841 |
|
|
B D
|
842 |
|
|
|
843 |
|
|
|
844 |
|
|
In the above case, DFS_Number_In of A will be <= DFS_Number_In of
|
845 |
|
|
B, and DFS_Number_Out of A will be >= DFS_Number_Out of B. This is
|
846 |
|
|
because we must hit A in the dominator tree *before* B on the walk
|
847 |
|
|
down, and we will hit A *after* B on the walk back up
|
848 |
|
|
|
849 |
|
|
2. Node A is below node B (and thus, node B dominates node A)
|
850 |
|
|
|
851 |
|
|
|
852 |
|
|
B
|
853 |
|
|
|
|
854 |
|
|
A
|
855 |
|
|
/ \
|
856 |
|
|
C D
|
857 |
|
|
|
858 |
|
|
In the above case, DFS_Number_In of A will be >= DFS_Number_In of
|
859 |
|
|
B, and DFS_Number_Out of A will be <= DFS_Number_Out of B.
|
860 |
|
|
|
861 |
|
|
This is because we must hit A in the dominator tree *after* B on
|
862 |
|
|
the walk down, and we will hit A *before* B on the walk back up
|
863 |
|
|
|
864 |
|
|
3. Node A and B are siblings (and thus, neither dominates the other)
|
865 |
|
|
|
866 |
|
|
C
|
867 |
|
|
|
|
868 |
|
|
D
|
869 |
|
|
/ \
|
870 |
|
|
A B
|
871 |
|
|
|
872 |
|
|
In the above case, DFS_Number_In of A will *always* be <=
|
873 |
|
|
DFS_Number_In of B, and DFS_Number_Out of A will *always* be <=
|
874 |
|
|
DFS_Number_Out of B. This is because we will always finish the dfs
|
875 |
|
|
walk of one of the subtrees before the other, and thus, the dfs
|
876 |
|
|
numbers for one subtree can't intersect with the range of dfs
|
877 |
|
|
numbers for the other subtree. If you swap A and B's position in
|
878 |
|
|
the dominator tree, the comparison changes direction, but the point
|
879 |
|
|
is that both comparisons will always go the same way if there is no
|
880 |
|
|
dominance relationship.
|
881 |
|
|
|
882 |
|
|
Thus, it is sufficient to write
|
883 |
|
|
|
884 |
|
|
A_Dominates_B (node A, node B)
|
885 |
|
|
{
|
886 |
|
|
return DFS_Number_In(A) <= DFS_Number_In(B)
|
887 |
|
|
&& DFS_Number_Out (A) >= DFS_Number_Out(B);
|
888 |
|
|
}
|
889 |
|
|
|
890 |
|
|
A_Dominated_by_B (node A, node B)
|
891 |
|
|
{
|
892 |
|
|
return DFS_Number_In(A) >= DFS_Number_In(A)
|
893 |
|
|
&& DFS_Number_Out (A) <= DFS_Number_Out(B);
|
894 |
|
|
} */
|
895 |
|
|
|
896 |
|
|
/* Return TRUE in case BB1 is dominated by BB2. */
|
897 |
|
|
bool
|
898 |
|
|
dominated_by_p (enum cdi_direction dir, basic_block bb1, basic_block bb2)
|
899 |
|
|
{
|
900 |
|
|
struct et_node *n1 = bb1->dom[dir], *n2 = bb2->dom[dir];
|
901 |
|
|
|
902 |
|
|
gcc_assert (dom_computed[dir]);
|
903 |
|
|
|
904 |
|
|
if (dom_computed[dir] == DOM_OK)
|
905 |
|
|
return (n1->dfs_num_in >= n2->dfs_num_in
|
906 |
|
|
&& n1->dfs_num_out <= n2->dfs_num_out);
|
907 |
|
|
|
908 |
|
|
return et_below (n1, n2);
|
909 |
|
|
}
|
910 |
|
|
|
911 |
|
|
/* Returns the entry dfs number for basic block BB, in the direction DIR. */
|
912 |
|
|
|
913 |
|
|
unsigned
|
914 |
|
|
bb_dom_dfs_in (enum cdi_direction dir, basic_block bb)
|
915 |
|
|
{
|
916 |
|
|
struct et_node *n = bb->dom[dir];
|
917 |
|
|
|
918 |
|
|
gcc_assert (dom_computed[dir] == DOM_OK);
|
919 |
|
|
return n->dfs_num_in;
|
920 |
|
|
}
|
921 |
|
|
|
922 |
|
|
/* Returns the exit dfs number for basic block BB, in the direction DIR. */
|
923 |
|
|
|
924 |
|
|
unsigned
|
925 |
|
|
bb_dom_dfs_out (enum cdi_direction dir, basic_block bb)
|
926 |
|
|
{
|
927 |
|
|
struct et_node *n = bb->dom[dir];
|
928 |
|
|
|
929 |
|
|
gcc_assert (dom_computed[dir] == DOM_OK);
|
930 |
|
|
return n->dfs_num_out;
|
931 |
|
|
}
|
932 |
|
|
|
933 |
|
|
/* Verify invariants of dominator structure. */
|
934 |
|
|
void
|
935 |
|
|
verify_dominators (enum cdi_direction dir)
|
936 |
|
|
{
|
937 |
|
|
int err = 0;
|
938 |
|
|
basic_block bb;
|
939 |
|
|
|
940 |
|
|
gcc_assert (dom_info_available_p (dir));
|
941 |
|
|
|
942 |
|
|
FOR_EACH_BB (bb)
|
943 |
|
|
{
|
944 |
|
|
basic_block dom_bb;
|
945 |
|
|
basic_block imm_bb;
|
946 |
|
|
|
947 |
|
|
dom_bb = recount_dominator (dir, bb);
|
948 |
|
|
imm_bb = get_immediate_dominator (dir, bb);
|
949 |
|
|
if (dom_bb != imm_bb)
|
950 |
|
|
{
|
951 |
|
|
if ((dom_bb == NULL) || (imm_bb == NULL))
|
952 |
|
|
error ("dominator of %d status unknown", bb->index);
|
953 |
|
|
else
|
954 |
|
|
error ("dominator of %d should be %d, not %d",
|
955 |
|
|
bb->index, dom_bb->index, imm_bb->index);
|
956 |
|
|
err = 1;
|
957 |
|
|
}
|
958 |
|
|
}
|
959 |
|
|
|
960 |
|
|
if (dir == CDI_DOMINATORS)
|
961 |
|
|
{
|
962 |
|
|
FOR_EACH_BB (bb)
|
963 |
|
|
{
|
964 |
|
|
if (!dominated_by_p (dir, bb, ENTRY_BLOCK_PTR))
|
965 |
|
|
{
|
966 |
|
|
error ("ENTRY does not dominate bb %d", bb->index);
|
967 |
|
|
err = 1;
|
968 |
|
|
}
|
969 |
|
|
}
|
970 |
|
|
}
|
971 |
|
|
|
972 |
|
|
gcc_assert (!err);
|
973 |
|
|
}
|
974 |
|
|
|
975 |
|
|
/* Determine immediate dominator (or postdominator, according to DIR) of BB,
|
976 |
|
|
assuming that dominators of other blocks are correct. We also use it to
|
977 |
|
|
recompute the dominators in a restricted area, by iterating it until it
|
978 |
|
|
reaches a fixed point. */
|
979 |
|
|
|
980 |
|
|
basic_block
|
981 |
|
|
recount_dominator (enum cdi_direction dir, basic_block bb)
|
982 |
|
|
{
|
983 |
|
|
basic_block dom_bb = NULL;
|
984 |
|
|
edge e;
|
985 |
|
|
edge_iterator ei;
|
986 |
|
|
|
987 |
|
|
gcc_assert (dom_computed[dir]);
|
988 |
|
|
|
989 |
|
|
if (dir == CDI_DOMINATORS)
|
990 |
|
|
{
|
991 |
|
|
FOR_EACH_EDGE (e, ei, bb->preds)
|
992 |
|
|
{
|
993 |
|
|
/* Ignore the predecessors that either are not reachable from
|
994 |
|
|
the entry block, or whose dominator was not determined yet. */
|
995 |
|
|
if (!dominated_by_p (dir, e->src, ENTRY_BLOCK_PTR))
|
996 |
|
|
continue;
|
997 |
|
|
|
998 |
|
|
if (!dominated_by_p (dir, e->src, bb))
|
999 |
|
|
dom_bb = nearest_common_dominator (dir, dom_bb, e->src);
|
1000 |
|
|
}
|
1001 |
|
|
}
|
1002 |
|
|
else
|
1003 |
|
|
{
|
1004 |
|
|
FOR_EACH_EDGE (e, ei, bb->succs)
|
1005 |
|
|
{
|
1006 |
|
|
if (!dominated_by_p (dir, e->dest, bb))
|
1007 |
|
|
dom_bb = nearest_common_dominator (dir, dom_bb, e->dest);
|
1008 |
|
|
}
|
1009 |
|
|
}
|
1010 |
|
|
|
1011 |
|
|
return dom_bb;
|
1012 |
|
|
}
|
1013 |
|
|
|
1014 |
|
|
/* Iteratively recount dominators of BBS. The change is supposed to be local
|
1015 |
|
|
and not to grow further. */
|
1016 |
|
|
void
|
1017 |
|
|
iterate_fix_dominators (enum cdi_direction dir, basic_block *bbs, int n)
|
1018 |
|
|
{
|
1019 |
|
|
int i, changed = 1;
|
1020 |
|
|
basic_block old_dom, new_dom;
|
1021 |
|
|
|
1022 |
|
|
gcc_assert (dom_computed[dir]);
|
1023 |
|
|
|
1024 |
|
|
for (i = 0; i < n; i++)
|
1025 |
|
|
set_immediate_dominator (dir, bbs[i], NULL);
|
1026 |
|
|
|
1027 |
|
|
while (changed)
|
1028 |
|
|
{
|
1029 |
|
|
changed = 0;
|
1030 |
|
|
for (i = 0; i < n; i++)
|
1031 |
|
|
{
|
1032 |
|
|
old_dom = get_immediate_dominator (dir, bbs[i]);
|
1033 |
|
|
new_dom = recount_dominator (dir, bbs[i]);
|
1034 |
|
|
if (old_dom != new_dom)
|
1035 |
|
|
{
|
1036 |
|
|
changed = 1;
|
1037 |
|
|
set_immediate_dominator (dir, bbs[i], new_dom);
|
1038 |
|
|
}
|
1039 |
|
|
}
|
1040 |
|
|
}
|
1041 |
|
|
|
1042 |
|
|
for (i = 0; i < n; i++)
|
1043 |
|
|
gcc_assert (get_immediate_dominator (dir, bbs[i]));
|
1044 |
|
|
}
|
1045 |
|
|
|
1046 |
|
|
void
|
1047 |
|
|
add_to_dominance_info (enum cdi_direction dir, basic_block bb)
|
1048 |
|
|
{
|
1049 |
|
|
gcc_assert (dom_computed[dir]);
|
1050 |
|
|
gcc_assert (!bb->dom[dir]);
|
1051 |
|
|
|
1052 |
|
|
n_bbs_in_dom_tree[dir]++;
|
1053 |
|
|
|
1054 |
|
|
bb->dom[dir] = et_new_tree (bb);
|
1055 |
|
|
|
1056 |
|
|
if (dom_computed[dir] == DOM_OK)
|
1057 |
|
|
dom_computed[dir] = DOM_NO_FAST_QUERY;
|
1058 |
|
|
}
|
1059 |
|
|
|
1060 |
|
|
void
|
1061 |
|
|
delete_from_dominance_info (enum cdi_direction dir, basic_block bb)
|
1062 |
|
|
{
|
1063 |
|
|
gcc_assert (dom_computed[dir]);
|
1064 |
|
|
|
1065 |
|
|
et_free_tree (bb->dom[dir]);
|
1066 |
|
|
bb->dom[dir] = NULL;
|
1067 |
|
|
n_bbs_in_dom_tree[dir]--;
|
1068 |
|
|
|
1069 |
|
|
if (dom_computed[dir] == DOM_OK)
|
1070 |
|
|
dom_computed[dir] = DOM_NO_FAST_QUERY;
|
1071 |
|
|
}
|
1072 |
|
|
|
1073 |
|
|
/* Returns the first son of BB in the dominator or postdominator tree
|
1074 |
|
|
as determined by DIR. */
|
1075 |
|
|
|
1076 |
|
|
basic_block
|
1077 |
|
|
first_dom_son (enum cdi_direction dir, basic_block bb)
|
1078 |
|
|
{
|
1079 |
|
|
struct et_node *son = bb->dom[dir]->son;
|
1080 |
|
|
|
1081 |
|
|
return son ? son->data : NULL;
|
1082 |
|
|
}
|
1083 |
|
|
|
1084 |
|
|
/* Returns the next dominance son after BB in the dominator or postdominator
|
1085 |
|
|
tree as determined by DIR, or NULL if it was the last one. */
|
1086 |
|
|
|
1087 |
|
|
basic_block
|
1088 |
|
|
next_dom_son (enum cdi_direction dir, basic_block bb)
|
1089 |
|
|
{
|
1090 |
|
|
struct et_node *next = bb->dom[dir]->right;
|
1091 |
|
|
|
1092 |
|
|
return next->father->son == next ? NULL : next->data;
|
1093 |
|
|
}
|
1094 |
|
|
|
1095 |
|
|
/* Returns true if dominance information for direction DIR is available. */
|
1096 |
|
|
|
1097 |
|
|
bool
|
1098 |
|
|
dom_info_available_p (enum cdi_direction dir)
|
1099 |
|
|
{
|
1100 |
|
|
return dom_computed[dir] != DOM_NONE;
|
1101 |
|
|
}
|
1102 |
|
|
|
1103 |
|
|
void
|
1104 |
|
|
debug_dominance_info (enum cdi_direction dir)
|
1105 |
|
|
{
|
1106 |
|
|
basic_block bb, bb2;
|
1107 |
|
|
FOR_EACH_BB (bb)
|
1108 |
|
|
if ((bb2 = get_immediate_dominator (dir, bb)))
|
1109 |
|
|
fprintf (stderr, "%i %i\n", bb->index, bb2->index);
|
1110 |
|
|
}
|