1 |
38 |
julius |
/* Data flow analysis for GNU compiler.
|
2 |
|
|
Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
|
3 |
|
|
1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
|
4 |
|
|
Free Software Foundation, Inc.
|
5 |
|
|
|
6 |
|
|
This file is part of GCC.
|
7 |
|
|
|
8 |
|
|
GCC is free software; you can redistribute it and/or modify it under
|
9 |
|
|
the terms of the GNU General Public License as published by the Free
|
10 |
|
|
Software Foundation; either version 3, or (at your option) any later
|
11 |
|
|
version.
|
12 |
|
|
|
13 |
|
|
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
|
14 |
|
|
WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
15 |
|
|
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
16 |
|
|
for more details.
|
17 |
|
|
|
18 |
|
|
You should have received a copy of the GNU General Public License
|
19 |
|
|
along with GCC; see the file COPYING3. If not see
|
20 |
|
|
<http://www.gnu.org/licenses/>. */
|
21 |
|
|
|
22 |
|
|
/* This file contains the data flow analysis pass of the compiler. It
|
23 |
|
|
computes data flow information which tells combine_instructions
|
24 |
|
|
which insns to consider combining and controls register allocation.
|
25 |
|
|
|
26 |
|
|
Additional data flow information that is too bulky to record is
|
27 |
|
|
generated during the analysis, and is used at that time to create
|
28 |
|
|
autoincrement and autodecrement addressing.
|
29 |
|
|
|
30 |
|
|
The first step is dividing the function into basic blocks.
|
31 |
|
|
find_basic_blocks does this. Then life_analysis determines
|
32 |
|
|
where each register is live and where it is dead.
|
33 |
|
|
|
34 |
|
|
** find_basic_blocks **
|
35 |
|
|
|
36 |
|
|
find_basic_blocks divides the current function's rtl into basic
|
37 |
|
|
blocks and constructs the CFG. The blocks are recorded in the
|
38 |
|
|
basic_block_info array; the CFG exists in the edge structures
|
39 |
|
|
referenced by the blocks.
|
40 |
|
|
|
41 |
|
|
find_basic_blocks also finds any unreachable loops and deletes them.
|
42 |
|
|
|
43 |
|
|
** life_analysis **
|
44 |
|
|
|
45 |
|
|
life_analysis is called immediately after find_basic_blocks.
|
46 |
|
|
It uses the basic block information to determine where each
|
47 |
|
|
hard or pseudo register is live.
|
48 |
|
|
|
49 |
|
|
** live-register info **
|
50 |
|
|
|
51 |
|
|
The information about where each register is live is in two parts:
|
52 |
|
|
the REG_NOTES of insns, and the vector basic_block->global_live_at_start.
|
53 |
|
|
|
54 |
|
|
basic_block->global_live_at_start has an element for each basic
|
55 |
|
|
block, and the element is a bit-vector with a bit for each hard or
|
56 |
|
|
pseudo register. The bit is 1 if the register is live at the
|
57 |
|
|
beginning of the basic block.
|
58 |
|
|
|
59 |
|
|
Two types of elements can be added to an insn's REG_NOTES.
|
60 |
|
|
A REG_DEAD note is added to an insn's REG_NOTES for any register
|
61 |
|
|
that meets both of two conditions: The value in the register is not
|
62 |
|
|
needed in subsequent insns and the insn does not replace the value in
|
63 |
|
|
the register (in the case of multi-word hard registers, the value in
|
64 |
|
|
each register must be replaced by the insn to avoid a REG_DEAD note).
|
65 |
|
|
|
66 |
|
|
In the vast majority of cases, an object in a REG_DEAD note will be
|
67 |
|
|
used somewhere in the insn. The (rare) exception to this is if an
|
68 |
|
|
insn uses a multi-word hard register and only some of the registers are
|
69 |
|
|
needed in subsequent insns. In that case, REG_DEAD notes will be
|
70 |
|
|
provided for those hard registers that are not subsequently needed.
|
71 |
|
|
Partial REG_DEAD notes of this type do not occur when an insn sets
|
72 |
|
|
only some of the hard registers used in such a multi-word operand;
|
73 |
|
|
omitting REG_DEAD notes for objects stored in an insn is optional and
|
74 |
|
|
the desire to do so does not justify the complexity of the partial
|
75 |
|
|
REG_DEAD notes.
|
76 |
|
|
|
77 |
|
|
REG_UNUSED notes are added for each register that is set by the insn
|
78 |
|
|
but is unused subsequently (if every register set by the insn is unused
|
79 |
|
|
and the insn does not reference memory or have some other side-effect,
|
80 |
|
|
the insn is deleted instead). If only part of a multi-word hard
|
81 |
|
|
register is used in a subsequent insn, REG_UNUSED notes are made for
|
82 |
|
|
the parts that will not be used.
|
83 |
|
|
|
84 |
|
|
To determine which registers are live after any insn, one can
|
85 |
|
|
start from the beginning of the basic block and scan insns, noting
|
86 |
|
|
which registers are set by each insn and which die there.
|
87 |
|
|
|
88 |
|
|
** Other actions of life_analysis **
|
89 |
|
|
|
90 |
|
|
life_analysis sets up the LOG_LINKS fields of insns because the
|
91 |
|
|
information needed to do so is readily available.
|
92 |
|
|
|
93 |
|
|
life_analysis deletes insns whose only effect is to store a value
|
94 |
|
|
that is never used.
|
95 |
|
|
|
96 |
|
|
life_analysis notices cases where a reference to a register as
|
97 |
|
|
a memory address can be combined with a preceding or following
|
98 |
|
|
incrementation or decrementation of the register. The separate
|
99 |
|
|
instruction to increment or decrement is deleted and the address
|
100 |
|
|
is changed to a POST_INC or similar rtx.
|
101 |
|
|
|
102 |
|
|
Each time an incrementing or decrementing address is created,
|
103 |
|
|
a REG_INC element is added to the insn's REG_NOTES list.
|
104 |
|
|
|
105 |
|
|
life_analysis fills in certain vectors containing information about
|
106 |
|
|
register usage: REG_N_REFS, REG_N_DEATHS, REG_N_SETS, REG_LIVE_LENGTH,
|
107 |
|
|
REG_N_CALLS_CROSSED, REG_N_THROWING_CALLS_CROSSED and REG_BASIC_BLOCK.
|
108 |
|
|
|
109 |
|
|
life_analysis sets current_function_sp_is_unchanging if the function
|
110 |
|
|
doesn't modify the stack pointer. */
|
111 |
|
|
|
112 |
|
|
/* TODO:
|
113 |
|
|
|
114 |
|
|
Split out from life_analysis:
|
115 |
|
|
- local property discovery
|
116 |
|
|
- global property computation
|
117 |
|
|
- log links creation
|
118 |
|
|
- pre/post modify transformation
|
119 |
|
|
*/
|
120 |
|
|
|
121 |
|
|
#include "config.h"
|
122 |
|
|
#include "system.h"
|
123 |
|
|
#include "coretypes.h"
|
124 |
|
|
#include "tm.h"
|
125 |
|
|
#include "tree.h"
|
126 |
|
|
#include "rtl.h"
|
127 |
|
|
#include "tm_p.h"
|
128 |
|
|
#include "hard-reg-set.h"
|
129 |
|
|
#include "basic-block.h"
|
130 |
|
|
#include "insn-config.h"
|
131 |
|
|
#include "regs.h"
|
132 |
|
|
#include "flags.h"
|
133 |
|
|
#include "output.h"
|
134 |
|
|
#include "function.h"
|
135 |
|
|
#include "except.h"
|
136 |
|
|
#include "toplev.h"
|
137 |
|
|
#include "recog.h"
|
138 |
|
|
#include "expr.h"
|
139 |
|
|
#include "timevar.h"
|
140 |
|
|
|
141 |
|
|
#include "obstack.h"
|
142 |
|
|
#include "splay-tree.h"
|
143 |
|
|
#include "tree-pass.h"
|
144 |
|
|
#include "params.h"
|
145 |
|
|
|
146 |
|
|
#ifndef HAVE_epilogue
|
147 |
|
|
#define HAVE_epilogue 0
|
148 |
|
|
#endif
|
149 |
|
|
#ifndef HAVE_prologue
|
150 |
|
|
#define HAVE_prologue 0
|
151 |
|
|
#endif
|
152 |
|
|
#ifndef HAVE_sibcall_epilogue
|
153 |
|
|
#define HAVE_sibcall_epilogue 0
|
154 |
|
|
#endif
|
155 |
|
|
|
156 |
|
|
#ifndef EPILOGUE_USES
|
157 |
|
|
#define EPILOGUE_USES(REGNO) 0
|
158 |
|
|
#endif
|
159 |
|
|
#ifndef EH_USES
|
160 |
|
|
#define EH_USES(REGNO) 0
|
161 |
|
|
#endif
|
162 |
|
|
|
163 |
|
|
#ifdef HAVE_conditional_execution
|
164 |
|
|
#ifndef REVERSE_CONDEXEC_PREDICATES_P
|
165 |
|
|
#define REVERSE_CONDEXEC_PREDICATES_P(x, y) \
|
166 |
|
|
(GET_CODE ((x)) == reversed_comparison_code ((y), NULL))
|
167 |
|
|
#endif
|
168 |
|
|
#endif
|
169 |
|
|
|
170 |
|
|
/* This is the maximum number of times we process any given block if the
|
171 |
|
|
latest loop depth count is smaller than this number. Only used for the
|
172 |
|
|
failure strategy to avoid infinite loops in calculate_global_regs_live. */
|
173 |
|
|
#define MAX_LIVENESS_ROUNDS 20
|
174 |
|
|
|
175 |
|
|
/* Nonzero if the second flow pass has completed. */
|
176 |
|
|
int flow2_completed;
|
177 |
|
|
|
178 |
|
|
/* Maximum register number used in this function, plus one. */
|
179 |
|
|
|
180 |
|
|
int max_regno;
|
181 |
|
|
|
182 |
|
|
/* Indexed by n, giving various register information */
|
183 |
|
|
|
184 |
|
|
VEC(reg_info_p,heap) *reg_n_info;
|
185 |
|
|
|
186 |
|
|
/* Regset of regs live when calls to `setjmp'-like functions happen. */
|
187 |
|
|
/* ??? Does this exist only for the setjmp-clobbered warning message? */
|
188 |
|
|
|
189 |
|
|
static regset regs_live_at_setjmp;
|
190 |
|
|
|
191 |
|
|
/* List made of EXPR_LIST rtx's which gives pairs of pseudo registers
|
192 |
|
|
that have to go in the same hard reg.
|
193 |
|
|
The first two regs in the list are a pair, and the next two
|
194 |
|
|
are another pair, etc. */
|
195 |
|
|
rtx regs_may_share;
|
196 |
|
|
|
197 |
|
|
/* Set of registers that may be eliminable. These are handled specially
|
198 |
|
|
in updating regs_ever_live. */
|
199 |
|
|
|
200 |
|
|
static HARD_REG_SET elim_reg_set;
|
201 |
|
|
|
202 |
|
|
/* Holds information for tracking conditional register life information. */
|
203 |
|
|
struct reg_cond_life_info
|
204 |
|
|
{
|
205 |
|
|
/* A boolean expression of conditions under which a register is dead. */
|
206 |
|
|
rtx condition;
|
207 |
|
|
/* Conditions under which a register is dead at the basic block end. */
|
208 |
|
|
rtx orig_condition;
|
209 |
|
|
|
210 |
|
|
/* A boolean expression of conditions under which a register has been
|
211 |
|
|
stored into. */
|
212 |
|
|
rtx stores;
|
213 |
|
|
|
214 |
|
|
/* ??? Could store mask of bytes that are dead, so that we could finally
|
215 |
|
|
track lifetimes of multi-word registers accessed via subregs. */
|
216 |
|
|
};
|
217 |
|
|
|
218 |
|
|
/* For use in communicating between propagate_block and its subroutines.
|
219 |
|
|
Holds all information needed to compute life and def-use information. */
|
220 |
|
|
|
221 |
|
|
struct propagate_block_info
|
222 |
|
|
{
|
223 |
|
|
/* The basic block we're considering. */
|
224 |
|
|
basic_block bb;
|
225 |
|
|
|
226 |
|
|
/* Bit N is set if register N is conditionally or unconditionally live. */
|
227 |
|
|
regset reg_live;
|
228 |
|
|
|
229 |
|
|
/* Bit N is set if register N is set this insn. */
|
230 |
|
|
regset new_set;
|
231 |
|
|
|
232 |
|
|
/* Element N is the next insn that uses (hard or pseudo) register N
|
233 |
|
|
within the current basic block; or zero, if there is no such insn. */
|
234 |
|
|
rtx *reg_next_use;
|
235 |
|
|
|
236 |
|
|
/* Contains a list of all the MEMs we are tracking for dead store
|
237 |
|
|
elimination. */
|
238 |
|
|
rtx mem_set_list;
|
239 |
|
|
|
240 |
|
|
/* If non-null, record the set of registers set unconditionally in the
|
241 |
|
|
basic block. */
|
242 |
|
|
regset local_set;
|
243 |
|
|
|
244 |
|
|
/* If non-null, record the set of registers set conditionally in the
|
245 |
|
|
basic block. */
|
246 |
|
|
regset cond_local_set;
|
247 |
|
|
|
248 |
|
|
#ifdef HAVE_conditional_execution
|
249 |
|
|
/* Indexed by register number, holds a reg_cond_life_info for each
|
250 |
|
|
register that is not unconditionally live or dead. */
|
251 |
|
|
splay_tree reg_cond_dead;
|
252 |
|
|
|
253 |
|
|
/* Bit N is set if register N is in an expression in reg_cond_dead. */
|
254 |
|
|
regset reg_cond_reg;
|
255 |
|
|
#endif
|
256 |
|
|
|
257 |
|
|
/* The length of mem_set_list. */
|
258 |
|
|
int mem_set_list_len;
|
259 |
|
|
|
260 |
|
|
/* Nonzero if the value of CC0 is live. */
|
261 |
|
|
int cc0_live;
|
262 |
|
|
|
263 |
|
|
/* Flags controlling the set of information propagate_block collects. */
|
264 |
|
|
int flags;
|
265 |
|
|
/* Index of instruction being processed. */
|
266 |
|
|
int insn_num;
|
267 |
|
|
};
|
268 |
|
|
|
269 |
|
|
/* Number of dead insns removed. */
|
270 |
|
|
static int ndead;
|
271 |
|
|
|
272 |
|
|
/* When PROP_REG_INFO set, array contains pbi->insn_num of instruction
|
273 |
|
|
where given register died. When the register is marked alive, we use the
|
274 |
|
|
information to compute amount of instructions life range cross.
|
275 |
|
|
(remember, we are walking backward). This can be computed as current
|
276 |
|
|
pbi->insn_num - reg_deaths[regno].
|
277 |
|
|
At the end of processing each basic block, the remaining live registers
|
278 |
|
|
are inspected and live ranges are increased same way so liverange of global
|
279 |
|
|
registers are computed correctly.
|
280 |
|
|
|
281 |
|
|
The array is maintained clear for dead registers, so it can be safely reused
|
282 |
|
|
for next basic block without expensive memset of the whole array after
|
283 |
|
|
reseting pbi->insn_num to 0. */
|
284 |
|
|
|
285 |
|
|
static int *reg_deaths;
|
286 |
|
|
|
287 |
|
|
/* Forward declarations */
|
288 |
|
|
static int verify_wide_reg_1 (rtx *, void *);
|
289 |
|
|
static void verify_wide_reg (int, basic_block);
|
290 |
|
|
static void verify_local_live_at_start (regset, basic_block);
|
291 |
|
|
static void notice_stack_pointer_modification_1 (rtx, rtx, void *);
|
292 |
|
|
static void notice_stack_pointer_modification (void);
|
293 |
|
|
static void mark_reg (rtx, void *);
|
294 |
|
|
static void mark_regs_live_at_end (regset);
|
295 |
|
|
static void calculate_global_regs_live (sbitmap, sbitmap, int);
|
296 |
|
|
static void propagate_block_delete_insn (rtx);
|
297 |
|
|
static rtx propagate_block_delete_libcall (rtx, rtx);
|
298 |
|
|
static int insn_dead_p (struct propagate_block_info *, rtx, int, rtx);
|
299 |
|
|
static int libcall_dead_p (struct propagate_block_info *, rtx, rtx);
|
300 |
|
|
static void mark_set_regs (struct propagate_block_info *, rtx, rtx);
|
301 |
|
|
static void mark_set_1 (struct propagate_block_info *, enum rtx_code, rtx,
|
302 |
|
|
rtx, rtx, int);
|
303 |
|
|
static int find_regno_partial (rtx *, void *);
|
304 |
|
|
|
305 |
|
|
#ifdef HAVE_conditional_execution
|
306 |
|
|
static int mark_regno_cond_dead (struct propagate_block_info *, int, rtx);
|
307 |
|
|
static void free_reg_cond_life_info (splay_tree_value);
|
308 |
|
|
static int flush_reg_cond_reg_1 (splay_tree_node, void *);
|
309 |
|
|
static void flush_reg_cond_reg (struct propagate_block_info *, int);
|
310 |
|
|
static rtx elim_reg_cond (rtx, unsigned int);
|
311 |
|
|
static rtx ior_reg_cond (rtx, rtx, int);
|
312 |
|
|
static rtx not_reg_cond (rtx);
|
313 |
|
|
static rtx and_reg_cond (rtx, rtx, int);
|
314 |
|
|
#endif
|
315 |
|
|
#ifdef AUTO_INC_DEC
|
316 |
|
|
static void attempt_auto_inc (struct propagate_block_info *, rtx, rtx, rtx,
|
317 |
|
|
rtx, rtx);
|
318 |
|
|
static void find_auto_inc (struct propagate_block_info *, rtx, rtx);
|
319 |
|
|
static int try_pre_increment_1 (struct propagate_block_info *, rtx);
|
320 |
|
|
static int try_pre_increment (rtx, rtx, HOST_WIDE_INT);
|
321 |
|
|
#endif
|
322 |
|
|
static void mark_used_reg (struct propagate_block_info *, rtx, rtx, rtx);
|
323 |
|
|
static void mark_used_regs (struct propagate_block_info *, rtx, rtx, rtx);
|
324 |
|
|
void debug_flow_info (void);
|
325 |
|
|
static void add_to_mem_set_list (struct propagate_block_info *, rtx);
|
326 |
|
|
static int invalidate_mems_from_autoinc (rtx *, void *);
|
327 |
|
|
static void invalidate_mems_from_set (struct propagate_block_info *, rtx);
|
328 |
|
|
static void clear_log_links (sbitmap);
|
329 |
|
|
static int count_or_remove_death_notes_bb (basic_block, int);
|
330 |
|
|
static void allocate_bb_life_data (void);
|
331 |
|
|
|
332 |
|
|
/* Return the INSN immediately following the NOTE_INSN_BASIC_BLOCK
|
333 |
|
|
note associated with the BLOCK. */
|
334 |
|
|
|
335 |
|
|
rtx
|
336 |
|
|
first_insn_after_basic_block_note (basic_block block)
|
337 |
|
|
{
|
338 |
|
|
rtx insn;
|
339 |
|
|
|
340 |
|
|
/* Get the first instruction in the block. */
|
341 |
|
|
insn = BB_HEAD (block);
|
342 |
|
|
|
343 |
|
|
if (insn == NULL_RTX)
|
344 |
|
|
return NULL_RTX;
|
345 |
|
|
if (LABEL_P (insn))
|
346 |
|
|
insn = NEXT_INSN (insn);
|
347 |
|
|
gcc_assert (NOTE_INSN_BASIC_BLOCK_P (insn));
|
348 |
|
|
|
349 |
|
|
return NEXT_INSN (insn);
|
350 |
|
|
}
|
351 |
|
|
|
352 |
|
|
/* Perform data flow analysis for the whole control flow graph.
|
353 |
|
|
FLAGS is a set of PROP_* flags to be used in accumulating flow info. */
|
354 |
|
|
|
355 |
|
|
void
|
356 |
|
|
life_analysis (int flags)
|
357 |
|
|
{
|
358 |
|
|
#ifdef ELIMINABLE_REGS
|
359 |
|
|
int i;
|
360 |
|
|
static const struct {const int from, to; } eliminables[] = ELIMINABLE_REGS;
|
361 |
|
|
#endif
|
362 |
|
|
|
363 |
|
|
/* Record which registers will be eliminated. We use this in
|
364 |
|
|
mark_used_regs. */
|
365 |
|
|
|
366 |
|
|
CLEAR_HARD_REG_SET (elim_reg_set);
|
367 |
|
|
|
368 |
|
|
#ifdef ELIMINABLE_REGS
|
369 |
|
|
for (i = 0; i < (int) ARRAY_SIZE (eliminables); i++)
|
370 |
|
|
SET_HARD_REG_BIT (elim_reg_set, eliminables[i].from);
|
371 |
|
|
#else
|
372 |
|
|
SET_HARD_REG_BIT (elim_reg_set, FRAME_POINTER_REGNUM);
|
373 |
|
|
#endif
|
374 |
|
|
|
375 |
|
|
|
376 |
|
|
#ifdef CANNOT_CHANGE_MODE_CLASS
|
377 |
|
|
if (flags & PROP_REG_INFO)
|
378 |
|
|
init_subregs_of_mode ();
|
379 |
|
|
#endif
|
380 |
|
|
|
381 |
|
|
if (! optimize)
|
382 |
|
|
flags &= ~(PROP_LOG_LINKS | PROP_AUTOINC | PROP_ALLOW_CFG_CHANGES);
|
383 |
|
|
|
384 |
|
|
/* The post-reload life analysis have (on a global basis) the same
|
385 |
|
|
registers live as was computed by reload itself. elimination
|
386 |
|
|
Otherwise offsets and such may be incorrect.
|
387 |
|
|
|
388 |
|
|
Reload will make some registers as live even though they do not
|
389 |
|
|
appear in the rtl.
|
390 |
|
|
|
391 |
|
|
We don't want to create new auto-incs after reload, since they
|
392 |
|
|
are unlikely to be useful and can cause problems with shared
|
393 |
|
|
stack slots. */
|
394 |
|
|
if (reload_completed)
|
395 |
|
|
flags &= ~(PROP_REG_INFO | PROP_AUTOINC);
|
396 |
|
|
|
397 |
|
|
/* We want alias analysis information for local dead store elimination. */
|
398 |
|
|
if (optimize && (flags & PROP_SCAN_DEAD_STORES))
|
399 |
|
|
init_alias_analysis ();
|
400 |
|
|
|
401 |
|
|
/* Always remove no-op moves. Do this before other processing so
|
402 |
|
|
that we don't have to keep re-scanning them. */
|
403 |
|
|
delete_noop_moves ();
|
404 |
|
|
|
405 |
|
|
/* Some targets can emit simpler epilogues if they know that sp was
|
406 |
|
|
not ever modified during the function. After reload, of course,
|
407 |
|
|
we've already emitted the epilogue so there's no sense searching. */
|
408 |
|
|
if (! reload_completed)
|
409 |
|
|
notice_stack_pointer_modification ();
|
410 |
|
|
|
411 |
|
|
/* Allocate and zero out data structures that will record the
|
412 |
|
|
data from lifetime analysis. */
|
413 |
|
|
allocate_reg_life_data ();
|
414 |
|
|
allocate_bb_life_data ();
|
415 |
|
|
|
416 |
|
|
/* Find the set of registers live on function exit. */
|
417 |
|
|
mark_regs_live_at_end (EXIT_BLOCK_PTR->il.rtl->global_live_at_start);
|
418 |
|
|
|
419 |
|
|
/* "Update" life info from zero. It'd be nice to begin the
|
420 |
|
|
relaxation with just the exit and noreturn blocks, but that set
|
421 |
|
|
is not immediately handy. */
|
422 |
|
|
|
423 |
|
|
if (flags & PROP_REG_INFO)
|
424 |
|
|
{
|
425 |
|
|
memset (regs_ever_live, 0, sizeof (regs_ever_live));
|
426 |
|
|
memset (regs_asm_clobbered, 0, sizeof (regs_asm_clobbered));
|
427 |
|
|
}
|
428 |
|
|
update_life_info (NULL, UPDATE_LIFE_GLOBAL, flags);
|
429 |
|
|
if (reg_deaths)
|
430 |
|
|
{
|
431 |
|
|
free (reg_deaths);
|
432 |
|
|
reg_deaths = NULL;
|
433 |
|
|
}
|
434 |
|
|
|
435 |
|
|
/* Clean up. */
|
436 |
|
|
if (optimize && (flags & PROP_SCAN_DEAD_STORES))
|
437 |
|
|
end_alias_analysis ();
|
438 |
|
|
|
439 |
|
|
if (dump_file)
|
440 |
|
|
dump_flow_info (dump_file, dump_flags);
|
441 |
|
|
|
442 |
|
|
/* Removing dead insns should have made jumptables really dead. */
|
443 |
|
|
delete_dead_jumptables ();
|
444 |
|
|
}
|
445 |
|
|
|
446 |
|
|
/* A subroutine of verify_wide_reg, called through for_each_rtx.
|
447 |
|
|
Search for REGNO. If found, return 2 if it is not wider than
|
448 |
|
|
word_mode. */
|
449 |
|
|
|
450 |
|
|
static int
|
451 |
|
|
verify_wide_reg_1 (rtx *px, void *pregno)
|
452 |
|
|
{
|
453 |
|
|
rtx x = *px;
|
454 |
|
|
unsigned int regno = *(int *) pregno;
|
455 |
|
|
|
456 |
|
|
if (REG_P (x) && REGNO (x) == regno)
|
457 |
|
|
{
|
458 |
|
|
if (GET_MODE_BITSIZE (GET_MODE (x)) <= BITS_PER_WORD)
|
459 |
|
|
return 2;
|
460 |
|
|
return 1;
|
461 |
|
|
}
|
462 |
|
|
return 0;
|
463 |
|
|
}
|
464 |
|
|
|
465 |
|
|
/* A subroutine of verify_local_live_at_start. Search through insns
|
466 |
|
|
of BB looking for register REGNO. */
|
467 |
|
|
|
468 |
|
|
static void
|
469 |
|
|
verify_wide_reg (int regno, basic_block bb)
|
470 |
|
|
{
|
471 |
|
|
rtx head = BB_HEAD (bb), end = BB_END (bb);
|
472 |
|
|
|
473 |
|
|
while (1)
|
474 |
|
|
{
|
475 |
|
|
if (INSN_P (head))
|
476 |
|
|
{
|
477 |
|
|
int r = for_each_rtx (&PATTERN (head), verify_wide_reg_1, ®no);
|
478 |
|
|
if (r == 1)
|
479 |
|
|
return;
|
480 |
|
|
if (r == 2)
|
481 |
|
|
break;
|
482 |
|
|
}
|
483 |
|
|
if (head == end)
|
484 |
|
|
break;
|
485 |
|
|
head = NEXT_INSN (head);
|
486 |
|
|
}
|
487 |
|
|
if (dump_file)
|
488 |
|
|
{
|
489 |
|
|
fprintf (dump_file, "Register %d died unexpectedly.\n", regno);
|
490 |
|
|
dump_bb (bb, dump_file, 0);
|
491 |
|
|
}
|
492 |
|
|
internal_error ("internal consistency failure");
|
493 |
|
|
}
|
494 |
|
|
|
495 |
|
|
/* A subroutine of update_life_info. Verify that there are no untoward
|
496 |
|
|
changes in live_at_start during a local update. */
|
497 |
|
|
|
498 |
|
|
static void
|
499 |
|
|
verify_local_live_at_start (regset new_live_at_start, basic_block bb)
|
500 |
|
|
{
|
501 |
|
|
if (reload_completed)
|
502 |
|
|
{
|
503 |
|
|
/* After reload, there are no pseudos, nor subregs of multi-word
|
504 |
|
|
registers. The regsets should exactly match. */
|
505 |
|
|
if (! REG_SET_EQUAL_P (new_live_at_start,
|
506 |
|
|
bb->il.rtl->global_live_at_start))
|
507 |
|
|
{
|
508 |
|
|
if (dump_file)
|
509 |
|
|
{
|
510 |
|
|
fprintf (dump_file,
|
511 |
|
|
"live_at_start mismatch in bb %d, aborting\nNew:\n",
|
512 |
|
|
bb->index);
|
513 |
|
|
debug_bitmap_file (dump_file, new_live_at_start);
|
514 |
|
|
fputs ("Old:\n", dump_file);
|
515 |
|
|
dump_bb (bb, dump_file, 0);
|
516 |
|
|
}
|
517 |
|
|
internal_error ("internal consistency failure");
|
518 |
|
|
}
|
519 |
|
|
}
|
520 |
|
|
else
|
521 |
|
|
{
|
522 |
|
|
unsigned i;
|
523 |
|
|
reg_set_iterator rsi;
|
524 |
|
|
|
525 |
|
|
/* Find the set of changed registers. */
|
526 |
|
|
XOR_REG_SET (new_live_at_start, bb->il.rtl->global_live_at_start);
|
527 |
|
|
|
528 |
|
|
EXECUTE_IF_SET_IN_REG_SET (new_live_at_start, 0, i, rsi)
|
529 |
|
|
{
|
530 |
|
|
/* No registers should die. */
|
531 |
|
|
if (REGNO_REG_SET_P (bb->il.rtl->global_live_at_start, i))
|
532 |
|
|
{
|
533 |
|
|
if (dump_file)
|
534 |
|
|
{
|
535 |
|
|
fprintf (dump_file,
|
536 |
|
|
"Register %d died unexpectedly.\n", i);
|
537 |
|
|
dump_bb (bb, dump_file, 0);
|
538 |
|
|
}
|
539 |
|
|
internal_error ("internal consistency failure");
|
540 |
|
|
}
|
541 |
|
|
/* Verify that the now-live register is wider than word_mode. */
|
542 |
|
|
verify_wide_reg (i, bb);
|
543 |
|
|
}
|
544 |
|
|
}
|
545 |
|
|
}
|
546 |
|
|
|
547 |
|
|
/* Updates life information starting with the basic blocks set in BLOCKS.
|
548 |
|
|
If BLOCKS is null, consider it to be the universal set.
|
549 |
|
|
|
550 |
|
|
If EXTENT is UPDATE_LIFE_LOCAL, such as after splitting or peepholing,
|
551 |
|
|
we are only expecting local modifications to basic blocks. If we find
|
552 |
|
|
extra registers live at the beginning of a block, then we either killed
|
553 |
|
|
useful data, or we have a broken split that wants data not provided.
|
554 |
|
|
If we find registers removed from live_at_start, that means we have
|
555 |
|
|
a broken peephole that is killing a register it shouldn't.
|
556 |
|
|
|
557 |
|
|
??? This is not true in one situation -- when a pre-reload splitter
|
558 |
|
|
generates subregs of a multi-word pseudo, current life analysis will
|
559 |
|
|
lose the kill. So we _can_ have a pseudo go live. How irritating.
|
560 |
|
|
|
561 |
|
|
It is also not true when a peephole decides that it doesn't need one
|
562 |
|
|
or more of the inputs.
|
563 |
|
|
|
564 |
|
|
Including PROP_REG_INFO does not properly refresh regs_ever_live
|
565 |
|
|
unless the caller resets it to zero. */
|
566 |
|
|
|
567 |
|
|
int
|
568 |
|
|
update_life_info (sbitmap blocks, enum update_life_extent extent,
|
569 |
|
|
int prop_flags)
|
570 |
|
|
{
|
571 |
|
|
regset tmp;
|
572 |
|
|
unsigned i = 0;
|
573 |
|
|
int stabilized_prop_flags = prop_flags;
|
574 |
|
|
basic_block bb;
|
575 |
|
|
|
576 |
|
|
tmp = ALLOC_REG_SET (®_obstack);
|
577 |
|
|
ndead = 0;
|
578 |
|
|
|
579 |
|
|
if ((prop_flags & PROP_REG_INFO) && !reg_deaths)
|
580 |
|
|
reg_deaths = XCNEWVEC (int, max_regno);
|
581 |
|
|
|
582 |
|
|
timevar_push ((extent == UPDATE_LIFE_LOCAL || blocks)
|
583 |
|
|
? TV_LIFE_UPDATE : TV_LIFE);
|
584 |
|
|
|
585 |
|
|
/* Changes to the CFG are only allowed when
|
586 |
|
|
doing a global update for the entire CFG. */
|
587 |
|
|
gcc_assert (!(prop_flags & PROP_ALLOW_CFG_CHANGES)
|
588 |
|
|
|| (extent != UPDATE_LIFE_LOCAL && !blocks));
|
589 |
|
|
|
590 |
|
|
/* For a global update, we go through the relaxation process again. */
|
591 |
|
|
if (extent != UPDATE_LIFE_LOCAL)
|
592 |
|
|
{
|
593 |
|
|
for ( ; ; )
|
594 |
|
|
{
|
595 |
|
|
int changed = 0;
|
596 |
|
|
|
597 |
|
|
calculate_global_regs_live (blocks, blocks,
|
598 |
|
|
prop_flags & (PROP_SCAN_DEAD_CODE
|
599 |
|
|
| PROP_SCAN_DEAD_STORES
|
600 |
|
|
| PROP_ALLOW_CFG_CHANGES));
|
601 |
|
|
|
602 |
|
|
if ((prop_flags & (PROP_KILL_DEAD_CODE | PROP_ALLOW_CFG_CHANGES))
|
603 |
|
|
!= (PROP_KILL_DEAD_CODE | PROP_ALLOW_CFG_CHANGES))
|
604 |
|
|
break;
|
605 |
|
|
|
606 |
|
|
/* Removing dead code may allow the CFG to be simplified which
|
607 |
|
|
in turn may allow for further dead code detection / removal. */
|
608 |
|
|
FOR_EACH_BB_REVERSE (bb)
|
609 |
|
|
{
|
610 |
|
|
COPY_REG_SET (tmp, bb->il.rtl->global_live_at_end);
|
611 |
|
|
changed |= propagate_block (bb, tmp, NULL, NULL,
|
612 |
|
|
prop_flags & (PROP_SCAN_DEAD_CODE
|
613 |
|
|
| PROP_SCAN_DEAD_STORES
|
614 |
|
|
| PROP_KILL_DEAD_CODE));
|
615 |
|
|
}
|
616 |
|
|
|
617 |
|
|
/* Don't pass PROP_SCAN_DEAD_CODE or PROP_KILL_DEAD_CODE to
|
618 |
|
|
subsequent propagate_block calls, since removing or acting as
|
619 |
|
|
removing dead code can affect global register liveness, which
|
620 |
|
|
is supposed to be finalized for this call after this loop. */
|
621 |
|
|
stabilized_prop_flags
|
622 |
|
|
&= ~(PROP_SCAN_DEAD_CODE | PROP_SCAN_DEAD_STORES
|
623 |
|
|
| PROP_KILL_DEAD_CODE);
|
624 |
|
|
|
625 |
|
|
if (! changed)
|
626 |
|
|
break;
|
627 |
|
|
|
628 |
|
|
/* We repeat regardless of what cleanup_cfg says. If there were
|
629 |
|
|
instructions deleted above, that might have been only a
|
630 |
|
|
partial improvement (see PARAM_MAX_FLOW_MEMORY_LOCATIONS usage).
|
631 |
|
|
Further improvement may be possible. */
|
632 |
|
|
cleanup_cfg (CLEANUP_EXPENSIVE);
|
633 |
|
|
|
634 |
|
|
/* Zap the life information from the last round. If we don't
|
635 |
|
|
do this, we can wind up with registers that no longer appear
|
636 |
|
|
in the code being marked live at entry. */
|
637 |
|
|
FOR_EACH_BB (bb)
|
638 |
|
|
{
|
639 |
|
|
CLEAR_REG_SET (bb->il.rtl->global_live_at_start);
|
640 |
|
|
CLEAR_REG_SET (bb->il.rtl->global_live_at_end);
|
641 |
|
|
}
|
642 |
|
|
}
|
643 |
|
|
|
644 |
|
|
/* If asked, remove notes from the blocks we'll update. */
|
645 |
|
|
if (extent == UPDATE_LIFE_GLOBAL_RM_NOTES)
|
646 |
|
|
count_or_remove_death_notes (blocks,
|
647 |
|
|
prop_flags & PROP_POST_REGSTACK ? -1 : 1);
|
648 |
|
|
}
|
649 |
|
|
else
|
650 |
|
|
{
|
651 |
|
|
/* FIXME: This can go when the dataflow branch has been merged in. */
|
652 |
|
|
/* For a local update, if we are creating new REG_DEAD notes, then we
|
653 |
|
|
must delete the old ones first to avoid conflicts if they are
|
654 |
|
|
different. */
|
655 |
|
|
if (prop_flags & PROP_DEATH_NOTES)
|
656 |
|
|
count_or_remove_death_notes (blocks,
|
657 |
|
|
prop_flags & PROP_POST_REGSTACK ? -1 : 1);
|
658 |
|
|
}
|
659 |
|
|
|
660 |
|
|
|
661 |
|
|
/* Clear log links in case we are asked to (re)compute them. */
|
662 |
|
|
if (prop_flags & PROP_LOG_LINKS)
|
663 |
|
|
clear_log_links (blocks);
|
664 |
|
|
|
665 |
|
|
if (blocks)
|
666 |
|
|
{
|
667 |
|
|
sbitmap_iterator sbi;
|
668 |
|
|
|
669 |
|
|
EXECUTE_IF_SET_IN_SBITMAP (blocks, 0, i, sbi)
|
670 |
|
|
{
|
671 |
|
|
bb = BASIC_BLOCK (i);
|
672 |
|
|
if (bb)
|
673 |
|
|
{
|
674 |
|
|
/* The bitmap may be flawed in that one of the basic
|
675 |
|
|
blocks may have been deleted before you get here. */
|
676 |
|
|
COPY_REG_SET (tmp, bb->il.rtl->global_live_at_end);
|
677 |
|
|
propagate_block (bb, tmp, NULL, NULL, stabilized_prop_flags);
|
678 |
|
|
|
679 |
|
|
if (extent == UPDATE_LIFE_LOCAL)
|
680 |
|
|
verify_local_live_at_start (tmp, bb);
|
681 |
|
|
}
|
682 |
|
|
};
|
683 |
|
|
}
|
684 |
|
|
else
|
685 |
|
|
{
|
686 |
|
|
FOR_EACH_BB_REVERSE (bb)
|
687 |
|
|
{
|
688 |
|
|
COPY_REG_SET (tmp, bb->il.rtl->global_live_at_end);
|
689 |
|
|
|
690 |
|
|
propagate_block (bb, tmp, NULL, NULL, stabilized_prop_flags);
|
691 |
|
|
|
692 |
|
|
if (extent == UPDATE_LIFE_LOCAL)
|
693 |
|
|
verify_local_live_at_start (tmp, bb);
|
694 |
|
|
}
|
695 |
|
|
}
|
696 |
|
|
|
697 |
|
|
FREE_REG_SET (tmp);
|
698 |
|
|
|
699 |
|
|
if (prop_flags & PROP_REG_INFO)
|
700 |
|
|
{
|
701 |
|
|
reg_set_iterator rsi;
|
702 |
|
|
|
703 |
|
|
/* The only pseudos that are live at the beginning of the function
|
704 |
|
|
are those that were not set anywhere in the function. local-alloc
|
705 |
|
|
doesn't know how to handle these correctly, so mark them as not
|
706 |
|
|
local to any one basic block. */
|
707 |
|
|
EXECUTE_IF_SET_IN_REG_SET (ENTRY_BLOCK_PTR->il.rtl->global_live_at_end,
|
708 |
|
|
FIRST_PSEUDO_REGISTER, i, rsi)
|
709 |
|
|
REG_BASIC_BLOCK (i) = REG_BLOCK_GLOBAL;
|
710 |
|
|
|
711 |
|
|
/* We have a problem with any pseudoreg that lives across the setjmp.
|
712 |
|
|
ANSI says that if a user variable does not change in value between
|
713 |
|
|
the setjmp and the longjmp, then the longjmp preserves it. This
|
714 |
|
|
includes longjmp from a place where the pseudo appears dead.
|
715 |
|
|
(In principle, the value still exists if it is in scope.)
|
716 |
|
|
If the pseudo goes in a hard reg, some other value may occupy
|
717 |
|
|
that hard reg where this pseudo is dead, thus clobbering the pseudo.
|
718 |
|
|
Conclusion: such a pseudo must not go in a hard reg. */
|
719 |
|
|
EXECUTE_IF_SET_IN_REG_SET (regs_live_at_setjmp,
|
720 |
|
|
FIRST_PSEUDO_REGISTER, i, rsi)
|
721 |
|
|
{
|
722 |
|
|
if (regno_reg_rtx[i] != 0)
|
723 |
|
|
{
|
724 |
|
|
REG_LIVE_LENGTH (i) = -1;
|
725 |
|
|
REG_BASIC_BLOCK (i) = REG_BLOCK_UNKNOWN;
|
726 |
|
|
}
|
727 |
|
|
}
|
728 |
|
|
}
|
729 |
|
|
if (reg_deaths)
|
730 |
|
|
{
|
731 |
|
|
free (reg_deaths);
|
732 |
|
|
reg_deaths = NULL;
|
733 |
|
|
}
|
734 |
|
|
timevar_pop ((extent == UPDATE_LIFE_LOCAL || blocks)
|
735 |
|
|
? TV_LIFE_UPDATE : TV_LIFE);
|
736 |
|
|
if (ndead && dump_file)
|
737 |
|
|
fprintf (dump_file, "deleted %i dead insns\n", ndead);
|
738 |
|
|
return ndead;
|
739 |
|
|
}
|
740 |
|
|
|
741 |
|
|
/* Update life information in all blocks where BB_DIRTY is set. */
|
742 |
|
|
|
743 |
|
|
int
|
744 |
|
|
update_life_info_in_dirty_blocks (enum update_life_extent extent, int prop_flags)
|
745 |
|
|
{
|
746 |
|
|
sbitmap update_life_blocks = sbitmap_alloc (last_basic_block);
|
747 |
|
|
int n = 0;
|
748 |
|
|
basic_block bb;
|
749 |
|
|
int retval = 0;
|
750 |
|
|
|
751 |
|
|
sbitmap_zero (update_life_blocks);
|
752 |
|
|
FOR_EACH_BB (bb)
|
753 |
|
|
{
|
754 |
|
|
if (bb->flags & BB_DIRTY)
|
755 |
|
|
{
|
756 |
|
|
SET_BIT (update_life_blocks, bb->index);
|
757 |
|
|
n++;
|
758 |
|
|
}
|
759 |
|
|
}
|
760 |
|
|
|
761 |
|
|
if (n)
|
762 |
|
|
retval = update_life_info (update_life_blocks, extent, prop_flags);
|
763 |
|
|
|
764 |
|
|
sbitmap_free (update_life_blocks);
|
765 |
|
|
return retval;
|
766 |
|
|
}
|
767 |
|
|
|
768 |
|
|
/* Free the variables allocated by find_basic_blocks. */
|
769 |
|
|
|
770 |
|
|
void
|
771 |
|
|
free_basic_block_vars (void)
|
772 |
|
|
{
|
773 |
|
|
if (basic_block_info)
|
774 |
|
|
{
|
775 |
|
|
clear_edges ();
|
776 |
|
|
basic_block_info = NULL;
|
777 |
|
|
}
|
778 |
|
|
n_basic_blocks = 0;
|
779 |
|
|
last_basic_block = 0;
|
780 |
|
|
n_edges = 0;
|
781 |
|
|
|
782 |
|
|
label_to_block_map = NULL;
|
783 |
|
|
|
784 |
|
|
ENTRY_BLOCK_PTR->aux = NULL;
|
785 |
|
|
ENTRY_BLOCK_PTR->il.rtl->global_live_at_end = NULL;
|
786 |
|
|
EXIT_BLOCK_PTR->aux = NULL;
|
787 |
|
|
EXIT_BLOCK_PTR->il.rtl->global_live_at_start = NULL;
|
788 |
|
|
}
|
789 |
|
|
|
790 |
|
|
/* Delete any insns that copy a register to itself. */
|
791 |
|
|
|
792 |
|
|
int
|
793 |
|
|
delete_noop_moves (void)
|
794 |
|
|
{
|
795 |
|
|
rtx insn, next;
|
796 |
|
|
basic_block bb;
|
797 |
|
|
int nnoops = 0;
|
798 |
|
|
|
799 |
|
|
FOR_EACH_BB (bb)
|
800 |
|
|
{
|
801 |
|
|
for (insn = BB_HEAD (bb); insn != NEXT_INSN (BB_END (bb)); insn = next)
|
802 |
|
|
{
|
803 |
|
|
next = NEXT_INSN (insn);
|
804 |
|
|
if (INSN_P (insn) && noop_move_p (insn))
|
805 |
|
|
{
|
806 |
|
|
rtx note;
|
807 |
|
|
|
808 |
|
|
/* If we're about to remove the first insn of a libcall
|
809 |
|
|
then move the libcall note to the next real insn and
|
810 |
|
|
update the retval note. */
|
811 |
|
|
if ((note = find_reg_note (insn, REG_LIBCALL, NULL_RTX))
|
812 |
|
|
&& XEXP (note, 0) != insn)
|
813 |
|
|
{
|
814 |
|
|
rtx new_libcall_insn = next_real_insn (insn);
|
815 |
|
|
rtx retval_note = find_reg_note (XEXP (note, 0),
|
816 |
|
|
REG_RETVAL, NULL_RTX);
|
817 |
|
|
REG_NOTES (new_libcall_insn)
|
818 |
|
|
= gen_rtx_INSN_LIST (REG_LIBCALL, XEXP (note, 0),
|
819 |
|
|
REG_NOTES (new_libcall_insn));
|
820 |
|
|
XEXP (retval_note, 0) = new_libcall_insn;
|
821 |
|
|
}
|
822 |
|
|
|
823 |
|
|
delete_insn_and_edges (insn);
|
824 |
|
|
nnoops++;
|
825 |
|
|
}
|
826 |
|
|
}
|
827 |
|
|
}
|
828 |
|
|
|
829 |
|
|
if (nnoops && dump_file)
|
830 |
|
|
fprintf (dump_file, "deleted %i noop moves\n", nnoops);
|
831 |
|
|
|
832 |
|
|
return nnoops;
|
833 |
|
|
}
|
834 |
|
|
|
835 |
|
|
/* Delete any jump tables never referenced. We can't delete them at the
|
836 |
|
|
time of removing tablejump insn as they are referenced by the preceding
|
837 |
|
|
insns computing the destination, so we delay deleting and garbagecollect
|
838 |
|
|
them once life information is computed. */
|
839 |
|
|
void
|
840 |
|
|
delete_dead_jumptables (void)
|
841 |
|
|
{
|
842 |
|
|
basic_block bb;
|
843 |
|
|
|
844 |
|
|
/* A dead jump table does not belong to any basic block. Scan insns
|
845 |
|
|
between two adjacent basic blocks. */
|
846 |
|
|
FOR_EACH_BB (bb)
|
847 |
|
|
{
|
848 |
|
|
rtx insn, next;
|
849 |
|
|
|
850 |
|
|
for (insn = NEXT_INSN (BB_END (bb));
|
851 |
|
|
insn && !NOTE_INSN_BASIC_BLOCK_P (insn);
|
852 |
|
|
insn = next)
|
853 |
|
|
{
|
854 |
|
|
next = NEXT_INSN (insn);
|
855 |
|
|
if (LABEL_P (insn)
|
856 |
|
|
&& LABEL_NUSES (insn) == LABEL_PRESERVE_P (insn)
|
857 |
|
|
&& JUMP_P (next)
|
858 |
|
|
&& (GET_CODE (PATTERN (next)) == ADDR_VEC
|
859 |
|
|
|| GET_CODE (PATTERN (next)) == ADDR_DIFF_VEC))
|
860 |
|
|
{
|
861 |
|
|
rtx label = insn, jump = next;
|
862 |
|
|
|
863 |
|
|
if (dump_file)
|
864 |
|
|
fprintf (dump_file, "Dead jumptable %i removed\n",
|
865 |
|
|
INSN_UID (insn));
|
866 |
|
|
|
867 |
|
|
next = NEXT_INSN (next);
|
868 |
|
|
delete_insn (jump);
|
869 |
|
|
delete_insn (label);
|
870 |
|
|
}
|
871 |
|
|
}
|
872 |
|
|
}
|
873 |
|
|
}
|
874 |
|
|
|
875 |
|
|
/* Determine if the stack pointer is constant over the life of the function.
|
876 |
|
|
Only useful before prologues have been emitted. */
|
877 |
|
|
|
878 |
|
|
static void
|
879 |
|
|
notice_stack_pointer_modification_1 (rtx x, rtx pat ATTRIBUTE_UNUSED,
|
880 |
|
|
void *data ATTRIBUTE_UNUSED)
|
881 |
|
|
{
|
882 |
|
|
if (x == stack_pointer_rtx
|
883 |
|
|
/* The stack pointer is only modified indirectly as the result
|
884 |
|
|
of a push until later in flow. See the comments in rtl.texi
|
885 |
|
|
regarding Embedded Side-Effects on Addresses. */
|
886 |
|
|
|| (MEM_P (x)
|
887 |
|
|
&& GET_RTX_CLASS (GET_CODE (XEXP (x, 0))) == RTX_AUTOINC
|
888 |
|
|
&& XEXP (XEXP (x, 0), 0) == stack_pointer_rtx))
|
889 |
|
|
current_function_sp_is_unchanging = 0;
|
890 |
|
|
}
|
891 |
|
|
|
892 |
|
|
static void
|
893 |
|
|
notice_stack_pointer_modification (void)
|
894 |
|
|
{
|
895 |
|
|
basic_block bb;
|
896 |
|
|
rtx insn;
|
897 |
|
|
|
898 |
|
|
/* Assume that the stack pointer is unchanging if alloca hasn't
|
899 |
|
|
been used. */
|
900 |
|
|
current_function_sp_is_unchanging = !current_function_calls_alloca;
|
901 |
|
|
if (! current_function_sp_is_unchanging)
|
902 |
|
|
return;
|
903 |
|
|
|
904 |
|
|
FOR_EACH_BB (bb)
|
905 |
|
|
FOR_BB_INSNS (bb, insn)
|
906 |
|
|
{
|
907 |
|
|
if (INSN_P (insn))
|
908 |
|
|
{
|
909 |
|
|
/* Check if insn modifies the stack pointer. */
|
910 |
|
|
note_stores (PATTERN (insn),
|
911 |
|
|
notice_stack_pointer_modification_1,
|
912 |
|
|
NULL);
|
913 |
|
|
if (! current_function_sp_is_unchanging)
|
914 |
|
|
return;
|
915 |
|
|
}
|
916 |
|
|
}
|
917 |
|
|
}
|
918 |
|
|
|
919 |
|
|
/* Mark a register in SET. Hard registers in large modes get all
|
920 |
|
|
of their component registers set as well. */
|
921 |
|
|
|
922 |
|
|
static void
|
923 |
|
|
mark_reg (rtx reg, void *xset)
|
924 |
|
|
{
|
925 |
|
|
regset set = (regset) xset;
|
926 |
|
|
int regno = REGNO (reg);
|
927 |
|
|
|
928 |
|
|
gcc_assert (GET_MODE (reg) != BLKmode);
|
929 |
|
|
|
930 |
|
|
SET_REGNO_REG_SET (set, regno);
|
931 |
|
|
if (regno < FIRST_PSEUDO_REGISTER)
|
932 |
|
|
{
|
933 |
|
|
int n = hard_regno_nregs[regno][GET_MODE (reg)];
|
934 |
|
|
while (--n > 0)
|
935 |
|
|
SET_REGNO_REG_SET (set, regno + n);
|
936 |
|
|
}
|
937 |
|
|
}
|
938 |
|
|
|
939 |
|
|
/* Mark those regs which are needed at the end of the function as live
|
940 |
|
|
at the end of the last basic block. */
|
941 |
|
|
|
942 |
|
|
static void
|
943 |
|
|
mark_regs_live_at_end (regset set)
|
944 |
|
|
{
|
945 |
|
|
unsigned int i;
|
946 |
|
|
|
947 |
|
|
/* If exiting needs the right stack value, consider the stack pointer
|
948 |
|
|
live at the end of the function. */
|
949 |
|
|
if ((HAVE_epilogue && epilogue_completed)
|
950 |
|
|
|| ! EXIT_IGNORE_STACK
|
951 |
|
|
|| (! FRAME_POINTER_REQUIRED
|
952 |
|
|
&& ! current_function_calls_alloca
|
953 |
|
|
&& flag_omit_frame_pointer)
|
954 |
|
|
|| current_function_sp_is_unchanging)
|
955 |
|
|
{
|
956 |
|
|
SET_REGNO_REG_SET (set, STACK_POINTER_REGNUM);
|
957 |
|
|
}
|
958 |
|
|
|
959 |
|
|
/* Mark the frame pointer if needed at the end of the function. If
|
960 |
|
|
we end up eliminating it, it will be removed from the live list
|
961 |
|
|
of each basic block by reload. */
|
962 |
|
|
|
963 |
|
|
if (! reload_completed || frame_pointer_needed)
|
964 |
|
|
{
|
965 |
|
|
SET_REGNO_REG_SET (set, FRAME_POINTER_REGNUM);
|
966 |
|
|
#if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
|
967 |
|
|
/* If they are different, also mark the hard frame pointer as live. */
|
968 |
|
|
if (! LOCAL_REGNO (HARD_FRAME_POINTER_REGNUM))
|
969 |
|
|
SET_REGNO_REG_SET (set, HARD_FRAME_POINTER_REGNUM);
|
970 |
|
|
#endif
|
971 |
|
|
}
|
972 |
|
|
|
973 |
|
|
#ifndef PIC_OFFSET_TABLE_REG_CALL_CLOBBERED
|
974 |
|
|
/* Many architectures have a GP register even without flag_pic.
|
975 |
|
|
Assume the pic register is not in use, or will be handled by
|
976 |
|
|
other means, if it is not fixed. */
|
977 |
|
|
if ((unsigned) PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM
|
978 |
|
|
&& fixed_regs[PIC_OFFSET_TABLE_REGNUM])
|
979 |
|
|
SET_REGNO_REG_SET (set, PIC_OFFSET_TABLE_REGNUM);
|
980 |
|
|
#endif
|
981 |
|
|
|
982 |
|
|
/* Mark all global registers, and all registers used by the epilogue
|
983 |
|
|
as being live at the end of the function since they may be
|
984 |
|
|
referenced by our caller. */
|
985 |
|
|
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
|
986 |
|
|
if (global_regs[i] || EPILOGUE_USES (i))
|
987 |
|
|
SET_REGNO_REG_SET (set, i);
|
988 |
|
|
|
989 |
|
|
if (HAVE_epilogue && epilogue_completed)
|
990 |
|
|
{
|
991 |
|
|
/* Mark all call-saved registers that we actually used. */
|
992 |
|
|
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
|
993 |
|
|
if (regs_ever_live[i] && ! LOCAL_REGNO (i)
|
994 |
|
|
&& ! TEST_HARD_REG_BIT (regs_invalidated_by_call, i))
|
995 |
|
|
SET_REGNO_REG_SET (set, i);
|
996 |
|
|
}
|
997 |
|
|
|
998 |
|
|
#ifdef EH_RETURN_DATA_REGNO
|
999 |
|
|
/* Mark the registers that will contain data for the handler. */
|
1000 |
|
|
if (reload_completed && current_function_calls_eh_return)
|
1001 |
|
|
for (i = 0; ; ++i)
|
1002 |
|
|
{
|
1003 |
|
|
unsigned regno = EH_RETURN_DATA_REGNO(i);
|
1004 |
|
|
if (regno == INVALID_REGNUM)
|
1005 |
|
|
break;
|
1006 |
|
|
SET_REGNO_REG_SET (set, regno);
|
1007 |
|
|
}
|
1008 |
|
|
#endif
|
1009 |
|
|
#ifdef EH_RETURN_STACKADJ_RTX
|
1010 |
|
|
if ((! HAVE_epilogue || ! epilogue_completed)
|
1011 |
|
|
&& current_function_calls_eh_return)
|
1012 |
|
|
{
|
1013 |
|
|
rtx tmp = EH_RETURN_STACKADJ_RTX;
|
1014 |
|
|
if (tmp && REG_P (tmp))
|
1015 |
|
|
mark_reg (tmp, set);
|
1016 |
|
|
}
|
1017 |
|
|
#endif
|
1018 |
|
|
#ifdef EH_RETURN_HANDLER_RTX
|
1019 |
|
|
if ((! HAVE_epilogue || ! epilogue_completed)
|
1020 |
|
|
&& current_function_calls_eh_return)
|
1021 |
|
|
{
|
1022 |
|
|
rtx tmp = EH_RETURN_HANDLER_RTX;
|
1023 |
|
|
if (tmp && REG_P (tmp))
|
1024 |
|
|
mark_reg (tmp, set);
|
1025 |
|
|
}
|
1026 |
|
|
#endif
|
1027 |
|
|
|
1028 |
|
|
/* Mark function return value. */
|
1029 |
|
|
diddle_return_value (mark_reg, set);
|
1030 |
|
|
}
|
1031 |
|
|
|
1032 |
|
|
/* Propagate global life info around the graph of basic blocks. Begin
|
1033 |
|
|
considering blocks with their corresponding bit set in BLOCKS_IN.
|
1034 |
|
|
If BLOCKS_IN is null, consider it the universal set.
|
1035 |
|
|
|
1036 |
|
|
BLOCKS_OUT is set for every block that was changed. */
|
1037 |
|
|
|
1038 |
|
|
static void
|
1039 |
|
|
calculate_global_regs_live (sbitmap blocks_in, sbitmap blocks_out, int flags)
|
1040 |
|
|
{
|
1041 |
|
|
basic_block *queue, *qhead, *qtail, *qend, bb;
|
1042 |
|
|
regset tmp, new_live_at_end, invalidated_by_eh_edge;
|
1043 |
|
|
regset registers_made_dead;
|
1044 |
|
|
bool failure_strategy_required = false;
|
1045 |
|
|
int *block_accesses;
|
1046 |
|
|
|
1047 |
|
|
/* The registers that are modified within this in block. */
|
1048 |
|
|
regset *local_sets;
|
1049 |
|
|
|
1050 |
|
|
/* The registers that are conditionally modified within this block.
|
1051 |
|
|
In other words, regs that are set only as part of a COND_EXEC. */
|
1052 |
|
|
regset *cond_local_sets;
|
1053 |
|
|
|
1054 |
|
|
unsigned int i;
|
1055 |
|
|
|
1056 |
|
|
/* Some passes used to forget clear aux field of basic block causing
|
1057 |
|
|
sick behavior here. */
|
1058 |
|
|
#ifdef ENABLE_CHECKING
|
1059 |
|
|
FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
|
1060 |
|
|
gcc_assert (!bb->aux);
|
1061 |
|
|
#endif
|
1062 |
|
|
|
1063 |
|
|
tmp = ALLOC_REG_SET (®_obstack);
|
1064 |
|
|
new_live_at_end = ALLOC_REG_SET (®_obstack);
|
1065 |
|
|
invalidated_by_eh_edge = ALLOC_REG_SET (®_obstack);
|
1066 |
|
|
registers_made_dead = ALLOC_REG_SET (®_obstack);
|
1067 |
|
|
|
1068 |
|
|
/* Inconveniently, this is only readily available in hard reg set form. */
|
1069 |
|
|
for (i = 0; i < FIRST_PSEUDO_REGISTER; ++i)
|
1070 |
|
|
if (TEST_HARD_REG_BIT (regs_invalidated_by_call, i))
|
1071 |
|
|
SET_REGNO_REG_SET (invalidated_by_eh_edge, i);
|
1072 |
|
|
|
1073 |
|
|
/* The exception handling registers die at eh edges. */
|
1074 |
|
|
#ifdef EH_RETURN_DATA_REGNO
|
1075 |
|
|
for (i = 0; ; ++i)
|
1076 |
|
|
{
|
1077 |
|
|
unsigned regno = EH_RETURN_DATA_REGNO (i);
|
1078 |
|
|
if (regno == INVALID_REGNUM)
|
1079 |
|
|
break;
|
1080 |
|
|
SET_REGNO_REG_SET (invalidated_by_eh_edge, regno);
|
1081 |
|
|
}
|
1082 |
|
|
#endif
|
1083 |
|
|
|
1084 |
|
|
/* Allocate space for the sets of local properties. */
|
1085 |
|
|
local_sets = XCNEWVEC (bitmap, last_basic_block);
|
1086 |
|
|
cond_local_sets = XCNEWVEC (bitmap, last_basic_block);
|
1087 |
|
|
|
1088 |
|
|
/* Create a worklist. Allocate an extra slot for the `head == tail'
|
1089 |
|
|
style test for an empty queue doesn't work with a full queue. */
|
1090 |
|
|
queue = XNEWVEC (basic_block, n_basic_blocks + 1);
|
1091 |
|
|
qtail = queue;
|
1092 |
|
|
qhead = qend = queue + n_basic_blocks;
|
1093 |
|
|
|
1094 |
|
|
/* Queue the blocks set in the initial mask. Do this in reverse block
|
1095 |
|
|
number order so that we are more likely for the first round to do
|
1096 |
|
|
useful work. We use AUX non-null to flag that the block is queued. */
|
1097 |
|
|
if (blocks_in)
|
1098 |
|
|
{
|
1099 |
|
|
FOR_EACH_BB (bb)
|
1100 |
|
|
if (TEST_BIT (blocks_in, bb->index))
|
1101 |
|
|
{
|
1102 |
|
|
*--qhead = bb;
|
1103 |
|
|
bb->aux = bb;
|
1104 |
|
|
}
|
1105 |
|
|
}
|
1106 |
|
|
else
|
1107 |
|
|
{
|
1108 |
|
|
FOR_EACH_BB (bb)
|
1109 |
|
|
{
|
1110 |
|
|
*--qhead = bb;
|
1111 |
|
|
bb->aux = bb;
|
1112 |
|
|
}
|
1113 |
|
|
}
|
1114 |
|
|
|
1115 |
|
|
block_accesses = XCNEWVEC (int, last_basic_block);
|
1116 |
|
|
|
1117 |
|
|
/* We clean aux when we remove the initially-enqueued bbs, but we
|
1118 |
|
|
don't enqueue ENTRY and EXIT initially, so clean them upfront and
|
1119 |
|
|
unconditionally. */
|
1120 |
|
|
ENTRY_BLOCK_PTR->aux = EXIT_BLOCK_PTR->aux = NULL;
|
1121 |
|
|
|
1122 |
|
|
if (blocks_out)
|
1123 |
|
|
sbitmap_zero (blocks_out);
|
1124 |
|
|
|
1125 |
|
|
/* We work through the queue until there are no more blocks. What
|
1126 |
|
|
is live at the end of this block is precisely the union of what
|
1127 |
|
|
is live at the beginning of all its successors. So, we set its
|
1128 |
|
|
GLOBAL_LIVE_AT_END field based on the GLOBAL_LIVE_AT_START field
|
1129 |
|
|
for its successors. Then, we compute GLOBAL_LIVE_AT_START for
|
1130 |
|
|
this block by walking through the instructions in this block in
|
1131 |
|
|
reverse order and updating as we go. If that changed
|
1132 |
|
|
GLOBAL_LIVE_AT_START, we add the predecessors of the block to the
|
1133 |
|
|
queue; they will now need to recalculate GLOBAL_LIVE_AT_END.
|
1134 |
|
|
|
1135 |
|
|
We are guaranteed to terminate, because GLOBAL_LIVE_AT_START
|
1136 |
|
|
never shrinks. If a register appears in GLOBAL_LIVE_AT_START, it
|
1137 |
|
|
must either be live at the end of the block, or used within the
|
1138 |
|
|
block. In the latter case, it will certainly never disappear
|
1139 |
|
|
from GLOBAL_LIVE_AT_START. In the former case, the register
|
1140 |
|
|
could go away only if it disappeared from GLOBAL_LIVE_AT_START
|
1141 |
|
|
for one of the successor blocks. By induction, that cannot
|
1142 |
|
|
occur.
|
1143 |
|
|
|
1144 |
|
|
??? This reasoning doesn't work if we start from non-empty initial
|
1145 |
|
|
GLOBAL_LIVE_AT_START sets. And there are actually two problems:
|
1146 |
|
|
1) Updating may not terminate (endless oscillation).
|
1147 |
|
|
2) Even if it does (and it usually does), the resulting information
|
1148 |
|
|
may be inaccurate. Consider for example the following case:
|
1149 |
|
|
|
1150 |
|
|
a = ...;
|
1151 |
|
|
while (...) {...} -- 'a' not mentioned at all
|
1152 |
|
|
... = a;
|
1153 |
|
|
|
1154 |
|
|
If the use of 'a' is deleted between two calculations of liveness
|
1155 |
|
|
information and the initial sets are not cleared, the information
|
1156 |
|
|
about a's liveness will get stuck inside the loop and the set will
|
1157 |
|
|
appear not to be dead.
|
1158 |
|
|
|
1159 |
|
|
We do not attempt to solve 2) -- the information is conservatively
|
1160 |
|
|
correct (i.e. we never claim that something live is dead) and the
|
1161 |
|
|
amount of optimization opportunities missed due to this problem is
|
1162 |
|
|
not significant.
|
1163 |
|
|
|
1164 |
|
|
1) is more serious. In order to fix it, we monitor the number of times
|
1165 |
|
|
each block is processed. Once one of the blocks has been processed more
|
1166 |
|
|
times than the maximum number of rounds, we use the following strategy:
|
1167 |
|
|
When a register disappears from one of the sets, we add it to a MAKE_DEAD
|
1168 |
|
|
set, remove all registers in this set from all GLOBAL_LIVE_AT_* sets and
|
1169 |
|
|
add the blocks with changed sets into the queue. Thus we are guaranteed
|
1170 |
|
|
to terminate (the worst case corresponds to all registers in MADE_DEAD,
|
1171 |
|
|
in which case the original reasoning above is valid), but in general we
|
1172 |
|
|
only fix up a few offending registers.
|
1173 |
|
|
|
1174 |
|
|
The maximum number of rounds for computing liveness is the largest of
|
1175 |
|
|
MAX_LIVENESS_ROUNDS and the latest loop depth count for this function. */
|
1176 |
|
|
|
1177 |
|
|
while (qhead != qtail)
|
1178 |
|
|
{
|
1179 |
|
|
int rescan, changed;
|
1180 |
|
|
basic_block bb;
|
1181 |
|
|
edge e;
|
1182 |
|
|
edge_iterator ei;
|
1183 |
|
|
|
1184 |
|
|
bb = *qhead++;
|
1185 |
|
|
if (qhead == qend)
|
1186 |
|
|
qhead = queue;
|
1187 |
|
|
bb->aux = NULL;
|
1188 |
|
|
|
1189 |
|
|
/* Should we start using the failure strategy? */
|
1190 |
|
|
if (bb != ENTRY_BLOCK_PTR)
|
1191 |
|
|
{
|
1192 |
|
|
int max_liveness_rounds =
|
1193 |
|
|
MAX (MAX_LIVENESS_ROUNDS, cfun->max_loop_depth);
|
1194 |
|
|
|
1195 |
|
|
block_accesses[bb->index]++;
|
1196 |
|
|
if (block_accesses[bb->index] > max_liveness_rounds)
|
1197 |
|
|
failure_strategy_required = true;
|
1198 |
|
|
}
|
1199 |
|
|
|
1200 |
|
|
/* Begin by propagating live_at_start from the successor blocks. */
|
1201 |
|
|
CLEAR_REG_SET (new_live_at_end);
|
1202 |
|
|
|
1203 |
|
|
if (EDGE_COUNT (bb->succs) > 0)
|
1204 |
|
|
FOR_EACH_EDGE (e, ei, bb->succs)
|
1205 |
|
|
{
|
1206 |
|
|
basic_block sb = e->dest;
|
1207 |
|
|
|
1208 |
|
|
/* Call-clobbered registers die across exception and
|
1209 |
|
|
call edges. */
|
1210 |
|
|
/* ??? Abnormal call edges ignored for the moment, as this gets
|
1211 |
|
|
confused by sibling call edges, which crashes reg-stack. */
|
1212 |
|
|
if (e->flags & EDGE_EH)
|
1213 |
|
|
bitmap_ior_and_compl_into (new_live_at_end,
|
1214 |
|
|
sb->il.rtl->global_live_at_start,
|
1215 |
|
|
invalidated_by_eh_edge);
|
1216 |
|
|
else
|
1217 |
|
|
IOR_REG_SET (new_live_at_end, sb->il.rtl->global_live_at_start);
|
1218 |
|
|
|
1219 |
|
|
/* If a target saves one register in another (instead of on
|
1220 |
|
|
the stack) the save register will need to be live for EH. */
|
1221 |
|
|
if (e->flags & EDGE_EH)
|
1222 |
|
|
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
|
1223 |
|
|
if (EH_USES (i))
|
1224 |
|
|
SET_REGNO_REG_SET (new_live_at_end, i);
|
1225 |
|
|
}
|
1226 |
|
|
else
|
1227 |
|
|
{
|
1228 |
|
|
/* This might be a noreturn function that throws. And
|
1229 |
|
|
even if it isn't, getting the unwind info right helps
|
1230 |
|
|
debugging. */
|
1231 |
|
|
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
|
1232 |
|
|
if (EH_USES (i))
|
1233 |
|
|
SET_REGNO_REG_SET (new_live_at_end, i);
|
1234 |
|
|
}
|
1235 |
|
|
|
1236 |
|
|
/* The all-important stack pointer must always be live. */
|
1237 |
|
|
SET_REGNO_REG_SET (new_live_at_end, STACK_POINTER_REGNUM);
|
1238 |
|
|
|
1239 |
|
|
/* Before reload, there are a few registers that must be forced
|
1240 |
|
|
live everywhere -- which might not already be the case for
|
1241 |
|
|
blocks within infinite loops. */
|
1242 |
|
|
if (! reload_completed)
|
1243 |
|
|
{
|
1244 |
|
|
/* Any reference to any pseudo before reload is a potential
|
1245 |
|
|
reference of the frame pointer. */
|
1246 |
|
|
SET_REGNO_REG_SET (new_live_at_end, FRAME_POINTER_REGNUM);
|
1247 |
|
|
|
1248 |
|
|
#if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
|
1249 |
|
|
/* Pseudos with argument area equivalences may require
|
1250 |
|
|
reloading via the argument pointer. */
|
1251 |
|
|
if (fixed_regs[ARG_POINTER_REGNUM])
|
1252 |
|
|
SET_REGNO_REG_SET (new_live_at_end, ARG_POINTER_REGNUM);
|
1253 |
|
|
#endif
|
1254 |
|
|
|
1255 |
|
|
/* Any constant, or pseudo with constant equivalences, may
|
1256 |
|
|
require reloading from memory using the pic register. */
|
1257 |
|
|
if ((unsigned) PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM
|
1258 |
|
|
&& fixed_regs[PIC_OFFSET_TABLE_REGNUM])
|
1259 |
|
|
SET_REGNO_REG_SET (new_live_at_end, PIC_OFFSET_TABLE_REGNUM);
|
1260 |
|
|
}
|
1261 |
|
|
|
1262 |
|
|
if (bb == ENTRY_BLOCK_PTR)
|
1263 |
|
|
{
|
1264 |
|
|
COPY_REG_SET (bb->il.rtl->global_live_at_end, new_live_at_end);
|
1265 |
|
|
continue;
|
1266 |
|
|
}
|
1267 |
|
|
|
1268 |
|
|
/* On our first pass through this block, we'll go ahead and continue.
|
1269 |
|
|
Recognize first pass by checking if local_set is NULL for this
|
1270 |
|
|
basic block. On subsequent passes, we get to skip out early if
|
1271 |
|
|
live_at_end wouldn't have changed. */
|
1272 |
|
|
|
1273 |
|
|
if (local_sets[bb->index] == NULL)
|
1274 |
|
|
{
|
1275 |
|
|
local_sets[bb->index] = ALLOC_REG_SET (®_obstack);
|
1276 |
|
|
cond_local_sets[bb->index] = ALLOC_REG_SET (®_obstack);
|
1277 |
|
|
rescan = 1;
|
1278 |
|
|
}
|
1279 |
|
|
else
|
1280 |
|
|
{
|
1281 |
|
|
/* If any bits were removed from live_at_end, we'll have to
|
1282 |
|
|
rescan the block. This wouldn't be necessary if we had
|
1283 |
|
|
precalculated local_live, however with PROP_SCAN_DEAD_CODE
|
1284 |
|
|
local_live is really dependent on live_at_end. */
|
1285 |
|
|
rescan = bitmap_intersect_compl_p (bb->il.rtl->global_live_at_end,
|
1286 |
|
|
new_live_at_end);
|
1287 |
|
|
|
1288 |
|
|
if (!rescan)
|
1289 |
|
|
{
|
1290 |
|
|
regset cond_local_set;
|
1291 |
|
|
|
1292 |
|
|
/* If any of the registers in the new live_at_end set are
|
1293 |
|
|
conditionally set in this basic block, we must rescan.
|
1294 |
|
|
This is because conditional lifetimes at the end of the
|
1295 |
|
|
block do not just take the live_at_end set into
|
1296 |
|
|
account, but also the liveness at the start of each
|
1297 |
|
|
successor block. We can miss changes in those sets if
|
1298 |
|
|
we only compare the new live_at_end against the
|
1299 |
|
|
previous one. */
|
1300 |
|
|
cond_local_set = cond_local_sets[bb->index];
|
1301 |
|
|
rescan = bitmap_intersect_p (new_live_at_end, cond_local_set);
|
1302 |
|
|
}
|
1303 |
|
|
|
1304 |
|
|
if (!rescan)
|
1305 |
|
|
{
|
1306 |
|
|
regset local_set;
|
1307 |
|
|
|
1308 |
|
|
/* Find the set of changed bits. Take this opportunity
|
1309 |
|
|
to notice that this set is empty and early out. */
|
1310 |
|
|
bitmap_xor (tmp, bb->il.rtl->global_live_at_end, new_live_at_end);
|
1311 |
|
|
if (bitmap_empty_p (tmp))
|
1312 |
|
|
continue;
|
1313 |
|
|
|
1314 |
|
|
/* If any of the changed bits overlap with local_sets[bb],
|
1315 |
|
|
we'll have to rescan the block. */
|
1316 |
|
|
local_set = local_sets[bb->index];
|
1317 |
|
|
rescan = bitmap_intersect_p (tmp, local_set);
|
1318 |
|
|
}
|
1319 |
|
|
}
|
1320 |
|
|
|
1321 |
|
|
/* Let our caller know that BB changed enough to require its
|
1322 |
|
|
death notes updated. */
|
1323 |
|
|
if (blocks_out)
|
1324 |
|
|
SET_BIT (blocks_out, bb->index);
|
1325 |
|
|
|
1326 |
|
|
if (! rescan)
|
1327 |
|
|
{
|
1328 |
|
|
/* Add to live_at_start the set of all registers in
|
1329 |
|
|
new_live_at_end that aren't in the old live_at_end. */
|
1330 |
|
|
|
1331 |
|
|
changed = bitmap_ior_and_compl_into (bb->il.rtl->global_live_at_start,
|
1332 |
|
|
new_live_at_end,
|
1333 |
|
|
bb->il.rtl->global_live_at_end);
|
1334 |
|
|
COPY_REG_SET (bb->il.rtl->global_live_at_end, new_live_at_end);
|
1335 |
|
|
if (! changed)
|
1336 |
|
|
continue;
|
1337 |
|
|
}
|
1338 |
|
|
else
|
1339 |
|
|
{
|
1340 |
|
|
COPY_REG_SET (bb->il.rtl->global_live_at_end, new_live_at_end);
|
1341 |
|
|
|
1342 |
|
|
/* Rescan the block insn by insn to turn (a copy of) live_at_end
|
1343 |
|
|
into live_at_start. */
|
1344 |
|
|
propagate_block (bb, new_live_at_end,
|
1345 |
|
|
local_sets[bb->index],
|
1346 |
|
|
cond_local_sets[bb->index],
|
1347 |
|
|
flags);
|
1348 |
|
|
|
1349 |
|
|
/* If live_at start didn't change, no need to go farther. */
|
1350 |
|
|
if (REG_SET_EQUAL_P (bb->il.rtl->global_live_at_start,
|
1351 |
|
|
new_live_at_end))
|
1352 |
|
|
continue;
|
1353 |
|
|
|
1354 |
|
|
if (failure_strategy_required)
|
1355 |
|
|
{
|
1356 |
|
|
/* Get the list of registers that were removed from the
|
1357 |
|
|
bb->global_live_at_start set. */
|
1358 |
|
|
bitmap_and_compl (tmp, bb->il.rtl->global_live_at_start,
|
1359 |
|
|
new_live_at_end);
|
1360 |
|
|
if (!bitmap_empty_p (tmp))
|
1361 |
|
|
{
|
1362 |
|
|
bool pbb_changed;
|
1363 |
|
|
basic_block pbb;
|
1364 |
|
|
|
1365 |
|
|
/* It should not happen that one of registers we have
|
1366 |
|
|
removed last time is disappears again before any other
|
1367 |
|
|
register does. */
|
1368 |
|
|
pbb_changed = bitmap_ior_into (registers_made_dead, tmp);
|
1369 |
|
|
gcc_assert (pbb_changed);
|
1370 |
|
|
|
1371 |
|
|
/* Now remove the registers from all sets. */
|
1372 |
|
|
FOR_EACH_BB (pbb)
|
1373 |
|
|
{
|
1374 |
|
|
pbb_changed = false;
|
1375 |
|
|
|
1376 |
|
|
pbb_changed
|
1377 |
|
|
|= bitmap_and_compl_into
|
1378 |
|
|
(pbb->il.rtl->global_live_at_start,
|
1379 |
|
|
registers_made_dead);
|
1380 |
|
|
pbb_changed
|
1381 |
|
|
|= bitmap_and_compl_into
|
1382 |
|
|
(pbb->il.rtl->global_live_at_end,
|
1383 |
|
|
registers_made_dead);
|
1384 |
|
|
if (!pbb_changed)
|
1385 |
|
|
continue;
|
1386 |
|
|
|
1387 |
|
|
/* Note the (possible) change. */
|
1388 |
|
|
if (blocks_out)
|
1389 |
|
|
SET_BIT (blocks_out, pbb->index);
|
1390 |
|
|
|
1391 |
|
|
/* Makes sure to really rescan the block. */
|
1392 |
|
|
if (local_sets[pbb->index])
|
1393 |
|
|
{
|
1394 |
|
|
FREE_REG_SET (local_sets[pbb->index]);
|
1395 |
|
|
FREE_REG_SET (cond_local_sets[pbb->index]);
|
1396 |
|
|
local_sets[pbb->index] = 0;
|
1397 |
|
|
}
|
1398 |
|
|
|
1399 |
|
|
/* Add it to the queue. */
|
1400 |
|
|
if (pbb->aux == NULL)
|
1401 |
|
|
{
|
1402 |
|
|
*qtail++ = pbb;
|
1403 |
|
|
if (qtail == qend)
|
1404 |
|
|
qtail = queue;
|
1405 |
|
|
pbb->aux = pbb;
|
1406 |
|
|
}
|
1407 |
|
|
}
|
1408 |
|
|
continue;
|
1409 |
|
|
}
|
1410 |
|
|
} /* end of failure_strategy_required */
|
1411 |
|
|
|
1412 |
|
|
COPY_REG_SET (bb->il.rtl->global_live_at_start, new_live_at_end);
|
1413 |
|
|
}
|
1414 |
|
|
|
1415 |
|
|
/* Queue all predecessors of BB so that we may re-examine
|
1416 |
|
|
their live_at_end. */
|
1417 |
|
|
FOR_EACH_EDGE (e, ei, bb->preds)
|
1418 |
|
|
{
|
1419 |
|
|
basic_block pb = e->src;
|
1420 |
|
|
|
1421 |
|
|
gcc_assert ((e->flags & EDGE_FAKE) == 0);
|
1422 |
|
|
|
1423 |
|
|
if (pb->aux == NULL)
|
1424 |
|
|
{
|
1425 |
|
|
*qtail++ = pb;
|
1426 |
|
|
if (qtail == qend)
|
1427 |
|
|
qtail = queue;
|
1428 |
|
|
pb->aux = pb;
|
1429 |
|
|
}
|
1430 |
|
|
}
|
1431 |
|
|
}
|
1432 |
|
|
|
1433 |
|
|
FREE_REG_SET (tmp);
|
1434 |
|
|
FREE_REG_SET (new_live_at_end);
|
1435 |
|
|
FREE_REG_SET (invalidated_by_eh_edge);
|
1436 |
|
|
FREE_REG_SET (registers_made_dead);
|
1437 |
|
|
|
1438 |
|
|
if (blocks_out)
|
1439 |
|
|
{
|
1440 |
|
|
sbitmap_iterator sbi;
|
1441 |
|
|
|
1442 |
|
|
EXECUTE_IF_SET_IN_SBITMAP (blocks_out, 0, i, sbi)
|
1443 |
|
|
{
|
1444 |
|
|
basic_block bb = BASIC_BLOCK (i);
|
1445 |
|
|
FREE_REG_SET (local_sets[bb->index]);
|
1446 |
|
|
FREE_REG_SET (cond_local_sets[bb->index]);
|
1447 |
|
|
};
|
1448 |
|
|
}
|
1449 |
|
|
else
|
1450 |
|
|
{
|
1451 |
|
|
FOR_EACH_BB (bb)
|
1452 |
|
|
{
|
1453 |
|
|
FREE_REG_SET (local_sets[bb->index]);
|
1454 |
|
|
FREE_REG_SET (cond_local_sets[bb->index]);
|
1455 |
|
|
}
|
1456 |
|
|
}
|
1457 |
|
|
|
1458 |
|
|
free (block_accesses);
|
1459 |
|
|
free (queue);
|
1460 |
|
|
free (cond_local_sets);
|
1461 |
|
|
free (local_sets);
|
1462 |
|
|
}
|
1463 |
|
|
|
1464 |
|
|
|
1465 |
|
|
/* This structure is used to pass parameters to and from the
|
1466 |
|
|
the function find_regno_partial(). It is used to pass in the
|
1467 |
|
|
register number we are looking, as well as to return any rtx
|
1468 |
|
|
we find. */
|
1469 |
|
|
|
1470 |
|
|
typedef struct {
|
1471 |
|
|
unsigned regno_to_find;
|
1472 |
|
|
rtx retval;
|
1473 |
|
|
} find_regno_partial_param;
|
1474 |
|
|
|
1475 |
|
|
|
1476 |
|
|
/* Find the rtx for the reg numbers specified in 'data' if it is
|
1477 |
|
|
part of an expression which only uses part of the register. Return
|
1478 |
|
|
it in the structure passed in. */
|
1479 |
|
|
static int
|
1480 |
|
|
find_regno_partial (rtx *ptr, void *data)
|
1481 |
|
|
{
|
1482 |
|
|
find_regno_partial_param *param = (find_regno_partial_param *)data;
|
1483 |
|
|
unsigned reg = param->regno_to_find;
|
1484 |
|
|
param->retval = NULL_RTX;
|
1485 |
|
|
|
1486 |
|
|
if (*ptr == NULL_RTX)
|
1487 |
|
|
return 0;
|
1488 |
|
|
|
1489 |
|
|
switch (GET_CODE (*ptr))
|
1490 |
|
|
{
|
1491 |
|
|
case ZERO_EXTRACT:
|
1492 |
|
|
case SIGN_EXTRACT:
|
1493 |
|
|
case STRICT_LOW_PART:
|
1494 |
|
|
if (REG_P (XEXP (*ptr, 0)) && REGNO (XEXP (*ptr, 0)) == reg)
|
1495 |
|
|
{
|
1496 |
|
|
param->retval = XEXP (*ptr, 0);
|
1497 |
|
|
return 1;
|
1498 |
|
|
}
|
1499 |
|
|
break;
|
1500 |
|
|
|
1501 |
|
|
case SUBREG:
|
1502 |
|
|
if (REG_P (SUBREG_REG (*ptr))
|
1503 |
|
|
&& REGNO (SUBREG_REG (*ptr)) == reg)
|
1504 |
|
|
{
|
1505 |
|
|
param->retval = SUBREG_REG (*ptr);
|
1506 |
|
|
return 1;
|
1507 |
|
|
}
|
1508 |
|
|
break;
|
1509 |
|
|
|
1510 |
|
|
default:
|
1511 |
|
|
break;
|
1512 |
|
|
}
|
1513 |
|
|
|
1514 |
|
|
return 0;
|
1515 |
|
|
}
|
1516 |
|
|
|
1517 |
|
|
/* Process all immediate successors of the entry block looking for pseudo
|
1518 |
|
|
registers which are live on entry. Find all of those whose first
|
1519 |
|
|
instance is a partial register reference of some kind, and initialize
|
1520 |
|
|
them to 0 after the entry block. This will prevent bit sets within
|
1521 |
|
|
registers whose value is unknown, and may contain some kind of sticky
|
1522 |
|
|
bits we don't want. */
|
1523 |
|
|
|
1524 |
|
|
static int
|
1525 |
|
|
initialize_uninitialized_subregs (void)
|
1526 |
|
|
{
|
1527 |
|
|
rtx insn;
|
1528 |
|
|
edge e;
|
1529 |
|
|
unsigned reg, did_something = 0;
|
1530 |
|
|
find_regno_partial_param param;
|
1531 |
|
|
edge_iterator ei;
|
1532 |
|
|
|
1533 |
|
|
FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR->succs)
|
1534 |
|
|
{
|
1535 |
|
|
basic_block bb = e->dest;
|
1536 |
|
|
regset map = bb->il.rtl->global_live_at_start;
|
1537 |
|
|
reg_set_iterator rsi;
|
1538 |
|
|
|
1539 |
|
|
EXECUTE_IF_SET_IN_REG_SET (map, FIRST_PSEUDO_REGISTER, reg, rsi)
|
1540 |
|
|
{
|
1541 |
|
|
int uid = REGNO_FIRST_UID (reg);
|
1542 |
|
|
rtx i;
|
1543 |
|
|
|
1544 |
|
|
/* Find an insn which mentions the register we are looking for.
|
1545 |
|
|
Its preferable to have an instance of the register's rtl since
|
1546 |
|
|
there may be various flags set which we need to duplicate.
|
1547 |
|
|
If we can't find it, its probably an automatic whose initial
|
1548 |
|
|
value doesn't matter, or hopefully something we don't care about. */
|
1549 |
|
|
for (i = get_insns (); i && INSN_UID (i) != uid; i = NEXT_INSN (i))
|
1550 |
|
|
;
|
1551 |
|
|
if (i != NULL_RTX)
|
1552 |
|
|
{
|
1553 |
|
|
/* Found the insn, now get the REG rtx, if we can. */
|
1554 |
|
|
param.regno_to_find = reg;
|
1555 |
|
|
for_each_rtx (&i, find_regno_partial, ¶m);
|
1556 |
|
|
if (param.retval != NULL_RTX)
|
1557 |
|
|
{
|
1558 |
|
|
start_sequence ();
|
1559 |
|
|
emit_move_insn (param.retval,
|
1560 |
|
|
CONST0_RTX (GET_MODE (param.retval)));
|
1561 |
|
|
insn = get_insns ();
|
1562 |
|
|
end_sequence ();
|
1563 |
|
|
insert_insn_on_edge (insn, e);
|
1564 |
|
|
did_something = 1;
|
1565 |
|
|
}
|
1566 |
|
|
}
|
1567 |
|
|
}
|
1568 |
|
|
}
|
1569 |
|
|
|
1570 |
|
|
if (did_something)
|
1571 |
|
|
commit_edge_insertions ();
|
1572 |
|
|
return did_something;
|
1573 |
|
|
}
|
1574 |
|
|
|
1575 |
|
|
|
1576 |
|
|
/* Subroutines of life analysis. */
|
1577 |
|
|
|
1578 |
|
|
/* Allocate the permanent data structures that represent the results
|
1579 |
|
|
of life analysis. */
|
1580 |
|
|
|
1581 |
|
|
static void
|
1582 |
|
|
allocate_bb_life_data (void)
|
1583 |
|
|
{
|
1584 |
|
|
basic_block bb;
|
1585 |
|
|
|
1586 |
|
|
FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
|
1587 |
|
|
{
|
1588 |
|
|
if (bb->il.rtl->global_live_at_start)
|
1589 |
|
|
{
|
1590 |
|
|
CLEAR_REG_SET (bb->il.rtl->global_live_at_start);
|
1591 |
|
|
CLEAR_REG_SET (bb->il.rtl->global_live_at_end);
|
1592 |
|
|
}
|
1593 |
|
|
else
|
1594 |
|
|
{
|
1595 |
|
|
bb->il.rtl->global_live_at_start = ALLOC_REG_SET (®_obstack);
|
1596 |
|
|
bb->il.rtl->global_live_at_end = ALLOC_REG_SET (®_obstack);
|
1597 |
|
|
}
|
1598 |
|
|
}
|
1599 |
|
|
|
1600 |
|
|
regs_live_at_setjmp = ALLOC_REG_SET (®_obstack);
|
1601 |
|
|
}
|
1602 |
|
|
|
1603 |
|
|
void
|
1604 |
|
|
allocate_reg_life_data (void)
|
1605 |
|
|
{
|
1606 |
|
|
int i;
|
1607 |
|
|
|
1608 |
|
|
max_regno = max_reg_num ();
|
1609 |
|
|
gcc_assert (!reg_deaths);
|
1610 |
|
|
reg_deaths = XCNEWVEC (int, max_regno);
|
1611 |
|
|
|
1612 |
|
|
/* Recalculate the register space, in case it has grown. Old style
|
1613 |
|
|
vector oriented regsets would set regset_{size,bytes} here also. */
|
1614 |
|
|
allocate_reg_info (max_regno, FALSE, FALSE);
|
1615 |
|
|
|
1616 |
|
|
/* Reset all the data we'll collect in propagate_block and its
|
1617 |
|
|
subroutines. */
|
1618 |
|
|
for (i = 0; i < max_regno; i++)
|
1619 |
|
|
{
|
1620 |
|
|
REG_N_SETS (i) = 0;
|
1621 |
|
|
REG_N_REFS (i) = 0;
|
1622 |
|
|
REG_N_DEATHS (i) = 0;
|
1623 |
|
|
REG_N_CALLS_CROSSED (i) = 0;
|
1624 |
|
|
REG_N_THROWING_CALLS_CROSSED (i) = 0;
|
1625 |
|
|
REG_LIVE_LENGTH (i) = 0;
|
1626 |
|
|
REG_FREQ (i) = 0;
|
1627 |
|
|
REG_BASIC_BLOCK (i) = REG_BLOCK_UNKNOWN;
|
1628 |
|
|
}
|
1629 |
|
|
}
|
1630 |
|
|
|
1631 |
|
|
/* Delete dead instructions for propagate_block. */
|
1632 |
|
|
|
1633 |
|
|
static void
|
1634 |
|
|
propagate_block_delete_insn (rtx insn)
|
1635 |
|
|
{
|
1636 |
|
|
rtx inote = find_reg_note (insn, REG_LABEL, NULL_RTX);
|
1637 |
|
|
|
1638 |
|
|
/* If the insn referred to a label, and that label was attached to
|
1639 |
|
|
an ADDR_VEC, it's safe to delete the ADDR_VEC. In fact, it's
|
1640 |
|
|
pretty much mandatory to delete it, because the ADDR_VEC may be
|
1641 |
|
|
referencing labels that no longer exist.
|
1642 |
|
|
|
1643 |
|
|
INSN may reference a deleted label, particularly when a jump
|
1644 |
|
|
table has been optimized into a direct jump. There's no
|
1645 |
|
|
real good way to fix up the reference to the deleted label
|
1646 |
|
|
when the label is deleted, so we just allow it here. */
|
1647 |
|
|
|
1648 |
|
|
if (inote && LABEL_P (inote))
|
1649 |
|
|
{
|
1650 |
|
|
rtx label = XEXP (inote, 0);
|
1651 |
|
|
rtx next;
|
1652 |
|
|
|
1653 |
|
|
/* The label may be forced if it has been put in the constant
|
1654 |
|
|
pool. If that is the only use we must discard the table
|
1655 |
|
|
jump following it, but not the label itself. */
|
1656 |
|
|
if (LABEL_NUSES (label) == 1 + LABEL_PRESERVE_P (label)
|
1657 |
|
|
&& (next = next_nonnote_insn (label)) != NULL
|
1658 |
|
|
&& JUMP_P (next)
|
1659 |
|
|
&& (GET_CODE (PATTERN (next)) == ADDR_VEC
|
1660 |
|
|
|| GET_CODE (PATTERN (next)) == ADDR_DIFF_VEC))
|
1661 |
|
|
{
|
1662 |
|
|
rtx pat = PATTERN (next);
|
1663 |
|
|
int diff_vec_p = GET_CODE (pat) == ADDR_DIFF_VEC;
|
1664 |
|
|
int len = XVECLEN (pat, diff_vec_p);
|
1665 |
|
|
int i;
|
1666 |
|
|
|
1667 |
|
|
for (i = 0; i < len; i++)
|
1668 |
|
|
LABEL_NUSES (XEXP (XVECEXP (pat, diff_vec_p, i), 0))--;
|
1669 |
|
|
|
1670 |
|
|
delete_insn_and_edges (next);
|
1671 |
|
|
ndead++;
|
1672 |
|
|
}
|
1673 |
|
|
}
|
1674 |
|
|
|
1675 |
|
|
delete_insn_and_edges (insn);
|
1676 |
|
|
ndead++;
|
1677 |
|
|
}
|
1678 |
|
|
|
1679 |
|
|
/* Delete dead libcalls for propagate_block. Return the insn
|
1680 |
|
|
before the libcall. */
|
1681 |
|
|
|
1682 |
|
|
static rtx
|
1683 |
|
|
propagate_block_delete_libcall (rtx insn, rtx note)
|
1684 |
|
|
{
|
1685 |
|
|
rtx first = XEXP (note, 0);
|
1686 |
|
|
rtx before = PREV_INSN (first);
|
1687 |
|
|
|
1688 |
|
|
delete_insn_chain_and_edges (first, insn);
|
1689 |
|
|
ndead++;
|
1690 |
|
|
return before;
|
1691 |
|
|
}
|
1692 |
|
|
|
1693 |
|
|
/* Update the life-status of regs for one insn. Return the previous insn. */
|
1694 |
|
|
|
1695 |
|
|
rtx
|
1696 |
|
|
propagate_one_insn (struct propagate_block_info *pbi, rtx insn)
|
1697 |
|
|
{
|
1698 |
|
|
rtx prev = PREV_INSN (insn);
|
1699 |
|
|
int flags = pbi->flags;
|
1700 |
|
|
int insn_is_dead = 0;
|
1701 |
|
|
int libcall_is_dead = 0;
|
1702 |
|
|
rtx note;
|
1703 |
|
|
unsigned i;
|
1704 |
|
|
|
1705 |
|
|
if (! INSN_P (insn))
|
1706 |
|
|
return prev;
|
1707 |
|
|
|
1708 |
|
|
note = find_reg_note (insn, REG_RETVAL, NULL_RTX);
|
1709 |
|
|
if (flags & PROP_SCAN_DEAD_CODE)
|
1710 |
|
|
{
|
1711 |
|
|
insn_is_dead = insn_dead_p (pbi, PATTERN (insn), 0, REG_NOTES (insn));
|
1712 |
|
|
libcall_is_dead = (insn_is_dead && note != 0
|
1713 |
|
|
&& libcall_dead_p (pbi, note, insn));
|
1714 |
|
|
}
|
1715 |
|
|
|
1716 |
|
|
/* If an instruction consists of just dead store(s) on final pass,
|
1717 |
|
|
delete it. */
|
1718 |
|
|
if ((flags & PROP_KILL_DEAD_CODE) && insn_is_dead)
|
1719 |
|
|
{
|
1720 |
|
|
/* If we're trying to delete a prologue or epilogue instruction
|
1721 |
|
|
that isn't flagged as possibly being dead, something is wrong.
|
1722 |
|
|
But if we are keeping the stack pointer depressed, we might well
|
1723 |
|
|
be deleting insns that are used to compute the amount to update
|
1724 |
|
|
it by, so they are fine. */
|
1725 |
|
|
if (reload_completed
|
1726 |
|
|
&& !(TREE_CODE (TREE_TYPE (current_function_decl)) == FUNCTION_TYPE
|
1727 |
|
|
&& (TYPE_RETURNS_STACK_DEPRESSED
|
1728 |
|
|
(TREE_TYPE (current_function_decl))))
|
1729 |
|
|
&& (((HAVE_epilogue || HAVE_prologue)
|
1730 |
|
|
&& prologue_epilogue_contains (insn))
|
1731 |
|
|
|| (HAVE_sibcall_epilogue
|
1732 |
|
|
&& sibcall_epilogue_contains (insn)))
|
1733 |
|
|
&& find_reg_note (insn, REG_MAYBE_DEAD, NULL_RTX) == 0)
|
1734 |
|
|
fatal_insn ("Attempt to delete prologue/epilogue insn:", insn);
|
1735 |
|
|
|
1736 |
|
|
/* Record sets. Do this even for dead instructions, since they
|
1737 |
|
|
would have killed the values if they hadn't been deleted. To
|
1738 |
|
|
be consistent, we also have to emit a clobber when we delete
|
1739 |
|
|
an insn that clobbers a live register. */
|
1740 |
|
|
pbi->flags |= PROP_DEAD_INSN;
|
1741 |
|
|
mark_set_regs (pbi, PATTERN (insn), insn);
|
1742 |
|
|
pbi->flags &= ~PROP_DEAD_INSN;
|
1743 |
|
|
|
1744 |
|
|
/* CC0 is now known to be dead. Either this insn used it,
|
1745 |
|
|
in which case it doesn't anymore, or clobbered it,
|
1746 |
|
|
so the next insn can't use it. */
|
1747 |
|
|
pbi->cc0_live = 0;
|
1748 |
|
|
|
1749 |
|
|
if (libcall_is_dead)
|
1750 |
|
|
prev = propagate_block_delete_libcall (insn, note);
|
1751 |
|
|
else
|
1752 |
|
|
{
|
1753 |
|
|
|
1754 |
|
|
/* If INSN contains a RETVAL note and is dead, but the libcall
|
1755 |
|
|
as a whole is not dead, then we want to remove INSN, but
|
1756 |
|
|
not the whole libcall sequence.
|
1757 |
|
|
|
1758 |
|
|
However, we need to also remove the dangling REG_LIBCALL
|
1759 |
|
|
note so that we do not have mis-matched LIBCALL/RETVAL
|
1760 |
|
|
notes. In theory we could find a new location for the
|
1761 |
|
|
REG_RETVAL note, but it hardly seems worth the effort.
|
1762 |
|
|
|
1763 |
|
|
NOTE at this point will be the RETVAL note if it exists. */
|
1764 |
|
|
if (note)
|
1765 |
|
|
{
|
1766 |
|
|
rtx libcall_note;
|
1767 |
|
|
|
1768 |
|
|
libcall_note
|
1769 |
|
|
= find_reg_note (XEXP (note, 0), REG_LIBCALL, NULL_RTX);
|
1770 |
|
|
remove_note (XEXP (note, 0), libcall_note);
|
1771 |
|
|
}
|
1772 |
|
|
|
1773 |
|
|
/* Similarly if INSN contains a LIBCALL note, remove the
|
1774 |
|
|
dangling REG_RETVAL note. */
|
1775 |
|
|
note = find_reg_note (insn, REG_LIBCALL, NULL_RTX);
|
1776 |
|
|
if (note)
|
1777 |
|
|
{
|
1778 |
|
|
rtx retval_note;
|
1779 |
|
|
|
1780 |
|
|
retval_note
|
1781 |
|
|
= find_reg_note (XEXP (note, 0), REG_RETVAL, NULL_RTX);
|
1782 |
|
|
remove_note (XEXP (note, 0), retval_note);
|
1783 |
|
|
}
|
1784 |
|
|
|
1785 |
|
|
/* Now delete INSN. */
|
1786 |
|
|
propagate_block_delete_insn (insn);
|
1787 |
|
|
}
|
1788 |
|
|
|
1789 |
|
|
return prev;
|
1790 |
|
|
}
|
1791 |
|
|
|
1792 |
|
|
/* See if this is an increment or decrement that can be merged into
|
1793 |
|
|
a following memory address. */
|
1794 |
|
|
#ifdef AUTO_INC_DEC
|
1795 |
|
|
{
|
1796 |
|
|
rtx x = single_set (insn);
|
1797 |
|
|
|
1798 |
|
|
/* Does this instruction increment or decrement a register? */
|
1799 |
|
|
if ((flags & PROP_AUTOINC)
|
1800 |
|
|
&& x != 0
|
1801 |
|
|
&& REG_P (SET_DEST (x))
|
1802 |
|
|
&& (GET_CODE (SET_SRC (x)) == PLUS
|
1803 |
|
|
|| GET_CODE (SET_SRC (x)) == MINUS)
|
1804 |
|
|
&& XEXP (SET_SRC (x), 0) == SET_DEST (x)
|
1805 |
|
|
&& GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
|
1806 |
|
|
/* Ok, look for a following memory ref we can combine with.
|
1807 |
|
|
If one is found, change the memory ref to a PRE_INC
|
1808 |
|
|
or PRE_DEC, cancel this insn, and return 1.
|
1809 |
|
|
Return 0 if nothing has been done. */
|
1810 |
|
|
&& try_pre_increment_1 (pbi, insn))
|
1811 |
|
|
return prev;
|
1812 |
|
|
}
|
1813 |
|
|
#endif /* AUTO_INC_DEC */
|
1814 |
|
|
|
1815 |
|
|
CLEAR_REG_SET (pbi->new_set);
|
1816 |
|
|
|
1817 |
|
|
/* If this is not the final pass, and this insn is copying the value of
|
1818 |
|
|
a library call and it's dead, don't scan the insns that perform the
|
1819 |
|
|
library call, so that the call's arguments are not marked live. */
|
1820 |
|
|
if (libcall_is_dead)
|
1821 |
|
|
{
|
1822 |
|
|
/* Record the death of the dest reg. */
|
1823 |
|
|
mark_set_regs (pbi, PATTERN (insn), insn);
|
1824 |
|
|
|
1825 |
|
|
insn = XEXP (note, 0);
|
1826 |
|
|
return PREV_INSN (insn);
|
1827 |
|
|
}
|
1828 |
|
|
else if (GET_CODE (PATTERN (insn)) == SET
|
1829 |
|
|
&& SET_DEST (PATTERN (insn)) == stack_pointer_rtx
|
1830 |
|
|
&& GET_CODE (SET_SRC (PATTERN (insn))) == PLUS
|
1831 |
|
|
&& XEXP (SET_SRC (PATTERN (insn)), 0) == stack_pointer_rtx
|
1832 |
|
|
&& GET_CODE (XEXP (SET_SRC (PATTERN (insn)), 1)) == CONST_INT)
|
1833 |
|
|
{
|
1834 |
|
|
/* We have an insn to pop a constant amount off the stack.
|
1835 |
|
|
(Such insns use PLUS regardless of the direction of the stack,
|
1836 |
|
|
and any insn to adjust the stack by a constant is always a pop
|
1837 |
|
|
or part of a push.)
|
1838 |
|
|
These insns, if not dead stores, have no effect on life, though
|
1839 |
|
|
they do have an effect on the memory stores we are tracking. */
|
1840 |
|
|
invalidate_mems_from_set (pbi, stack_pointer_rtx);
|
1841 |
|
|
/* Still, we need to update local_set, lest ifcvt.c:dead_or_predicable
|
1842 |
|
|
concludes that the stack pointer is not modified. */
|
1843 |
|
|
mark_set_regs (pbi, PATTERN (insn), insn);
|
1844 |
|
|
}
|
1845 |
|
|
else
|
1846 |
|
|
{
|
1847 |
|
|
/* Any regs live at the time of a call instruction must not go
|
1848 |
|
|
in a register clobbered by calls. Find all regs now live and
|
1849 |
|
|
record this for them. */
|
1850 |
|
|
|
1851 |
|
|
if (CALL_P (insn) && (flags & PROP_REG_INFO))
|
1852 |
|
|
{
|
1853 |
|
|
reg_set_iterator rsi;
|
1854 |
|
|
EXECUTE_IF_SET_IN_REG_SET (pbi->reg_live, 0, i, rsi)
|
1855 |
|
|
REG_N_CALLS_CROSSED (i)++;
|
1856 |
|
|
if (can_throw_internal (insn))
|
1857 |
|
|
EXECUTE_IF_SET_IN_REG_SET (pbi->reg_live, 0, i, rsi)
|
1858 |
|
|
REG_N_THROWING_CALLS_CROSSED (i)++;
|
1859 |
|
|
}
|
1860 |
|
|
|
1861 |
|
|
/* Record sets. Do this even for dead instructions, since they
|
1862 |
|
|
would have killed the values if they hadn't been deleted. */
|
1863 |
|
|
mark_set_regs (pbi, PATTERN (insn), insn);
|
1864 |
|
|
|
1865 |
|
|
if (CALL_P (insn))
|
1866 |
|
|
{
|
1867 |
|
|
regset live_at_end;
|
1868 |
|
|
bool sibcall_p;
|
1869 |
|
|
rtx note, cond;
|
1870 |
|
|
int i;
|
1871 |
|
|
|
1872 |
|
|
cond = NULL_RTX;
|
1873 |
|
|
if (GET_CODE (PATTERN (insn)) == COND_EXEC)
|
1874 |
|
|
cond = COND_EXEC_TEST (PATTERN (insn));
|
1875 |
|
|
|
1876 |
|
|
/* Non-constant calls clobber memory, constant calls do not
|
1877 |
|
|
clobber memory, though they may clobber outgoing arguments
|
1878 |
|
|
on the stack. */
|
1879 |
|
|
if (! CONST_OR_PURE_CALL_P (insn))
|
1880 |
|
|
{
|
1881 |
|
|
free_EXPR_LIST_list (&pbi->mem_set_list);
|
1882 |
|
|
pbi->mem_set_list_len = 0;
|
1883 |
|
|
}
|
1884 |
|
|
else
|
1885 |
|
|
invalidate_mems_from_set (pbi, stack_pointer_rtx);
|
1886 |
|
|
|
1887 |
|
|
/* There may be extra registers to be clobbered. */
|
1888 |
|
|
for (note = CALL_INSN_FUNCTION_USAGE (insn);
|
1889 |
|
|
note;
|
1890 |
|
|
note = XEXP (note, 1))
|
1891 |
|
|
if (GET_CODE (XEXP (note, 0)) == CLOBBER)
|
1892 |
|
|
mark_set_1 (pbi, CLOBBER, XEXP (XEXP (note, 0), 0),
|
1893 |
|
|
cond, insn, pbi->flags);
|
1894 |
|
|
|
1895 |
|
|
/* Calls change all call-used and global registers; sibcalls do not
|
1896 |
|
|
clobber anything that must be preserved at end-of-function,
|
1897 |
|
|
except for return values. */
|
1898 |
|
|
|
1899 |
|
|
sibcall_p = SIBLING_CALL_P (insn);
|
1900 |
|
|
live_at_end = EXIT_BLOCK_PTR->il.rtl->global_live_at_start;
|
1901 |
|
|
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
|
1902 |
|
|
if (TEST_HARD_REG_BIT (regs_invalidated_by_call, i)
|
1903 |
|
|
&& ! (sibcall_p
|
1904 |
|
|
&& REGNO_REG_SET_P (live_at_end, i)
|
1905 |
|
|
&& ! refers_to_regno_p (i, i+1,
|
1906 |
|
|
current_function_return_rtx,
|
1907 |
|
|
(rtx *) 0)))
|
1908 |
|
|
{
|
1909 |
|
|
enum rtx_code code = global_regs[i] ? SET : CLOBBER;
|
1910 |
|
|
/* We do not want REG_UNUSED notes for these registers. */
|
1911 |
|
|
mark_set_1 (pbi, code, regno_reg_rtx[i], cond, insn,
|
1912 |
|
|
pbi->flags & ~(PROP_DEATH_NOTES | PROP_REG_INFO));
|
1913 |
|
|
}
|
1914 |
|
|
}
|
1915 |
|
|
|
1916 |
|
|
/* If an insn doesn't use CC0, it becomes dead since we assume
|
1917 |
|
|
that every insn clobbers it. So show it dead here;
|
1918 |
|
|
mark_used_regs will set it live if it is referenced. */
|
1919 |
|
|
pbi->cc0_live = 0;
|
1920 |
|
|
|
1921 |
|
|
/* Record uses. */
|
1922 |
|
|
if (! insn_is_dead)
|
1923 |
|
|
mark_used_regs (pbi, PATTERN (insn), NULL_RTX, insn);
|
1924 |
|
|
|
1925 |
|
|
/* Sometimes we may have inserted something before INSN (such as a move)
|
1926 |
|
|
when we make an auto-inc. So ensure we will scan those insns. */
|
1927 |
|
|
#ifdef AUTO_INC_DEC
|
1928 |
|
|
prev = PREV_INSN (insn);
|
1929 |
|
|
#endif
|
1930 |
|
|
|
1931 |
|
|
if (! insn_is_dead && CALL_P (insn))
|
1932 |
|
|
{
|
1933 |
|
|
int i;
|
1934 |
|
|
rtx note, cond;
|
1935 |
|
|
|
1936 |
|
|
cond = NULL_RTX;
|
1937 |
|
|
if (GET_CODE (PATTERN (insn)) == COND_EXEC)
|
1938 |
|
|
cond = COND_EXEC_TEST (PATTERN (insn));
|
1939 |
|
|
|
1940 |
|
|
/* Calls use their arguments, and may clobber memory which
|
1941 |
|
|
address involves some register. */
|
1942 |
|
|
for (note = CALL_INSN_FUNCTION_USAGE (insn);
|
1943 |
|
|
note;
|
1944 |
|
|
note = XEXP (note, 1))
|
1945 |
|
|
/* We find USE or CLOBBER entities in a FUNCTION_USAGE list: both
|
1946 |
|
|
of which mark_used_regs knows how to handle. */
|
1947 |
|
|
mark_used_regs (pbi, XEXP (XEXP (note, 0), 0), cond, insn);
|
1948 |
|
|
|
1949 |
|
|
/* The stack ptr is used (honorarily) by a CALL insn. */
|
1950 |
|
|
if ((flags & PROP_REG_INFO)
|
1951 |
|
|
&& !REGNO_REG_SET_P (pbi->reg_live, STACK_POINTER_REGNUM))
|
1952 |
|
|
reg_deaths[STACK_POINTER_REGNUM] = pbi->insn_num;
|
1953 |
|
|
SET_REGNO_REG_SET (pbi->reg_live, STACK_POINTER_REGNUM);
|
1954 |
|
|
|
1955 |
|
|
/* Calls may also reference any of the global registers,
|
1956 |
|
|
so they are made live. */
|
1957 |
|
|
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
|
1958 |
|
|
if (global_regs[i])
|
1959 |
|
|
mark_used_reg (pbi, regno_reg_rtx[i], cond, insn);
|
1960 |
|
|
}
|
1961 |
|
|
}
|
1962 |
|
|
|
1963 |
|
|
pbi->insn_num++;
|
1964 |
|
|
|
1965 |
|
|
return prev;
|
1966 |
|
|
}
|
1967 |
|
|
|
1968 |
|
|
/* Initialize a propagate_block_info struct for public consumption.
|
1969 |
|
|
Note that the structure itself is opaque to this file, but that
|
1970 |
|
|
the user can use the regsets provided here. */
|
1971 |
|
|
|
1972 |
|
|
struct propagate_block_info *
|
1973 |
|
|
init_propagate_block_info (basic_block bb, regset live, regset local_set,
|
1974 |
|
|
regset cond_local_set, int flags)
|
1975 |
|
|
{
|
1976 |
|
|
struct propagate_block_info *pbi = XNEW (struct propagate_block_info);
|
1977 |
|
|
|
1978 |
|
|
pbi->bb = bb;
|
1979 |
|
|
pbi->reg_live = live;
|
1980 |
|
|
pbi->mem_set_list = NULL_RTX;
|
1981 |
|
|
pbi->mem_set_list_len = 0;
|
1982 |
|
|
pbi->local_set = local_set;
|
1983 |
|
|
pbi->cond_local_set = cond_local_set;
|
1984 |
|
|
pbi->cc0_live = 0;
|
1985 |
|
|
pbi->flags = flags;
|
1986 |
|
|
pbi->insn_num = 0;
|
1987 |
|
|
|
1988 |
|
|
if (flags & (PROP_LOG_LINKS | PROP_AUTOINC))
|
1989 |
|
|
pbi->reg_next_use = XCNEWVEC (rtx, max_reg_num ());
|
1990 |
|
|
else
|
1991 |
|
|
pbi->reg_next_use = NULL;
|
1992 |
|
|
|
1993 |
|
|
pbi->new_set = BITMAP_ALLOC (NULL);
|
1994 |
|
|
|
1995 |
|
|
#ifdef HAVE_conditional_execution
|
1996 |
|
|
pbi->reg_cond_dead = splay_tree_new (splay_tree_compare_ints, NULL,
|
1997 |
|
|
free_reg_cond_life_info);
|
1998 |
|
|
pbi->reg_cond_reg = BITMAP_ALLOC (NULL);
|
1999 |
|
|
|
2000 |
|
|
/* If this block ends in a conditional branch, for each register
|
2001 |
|
|
live from one side of the branch and not the other, record the
|
2002 |
|
|
register as conditionally dead. */
|
2003 |
|
|
if (JUMP_P (BB_END (bb))
|
2004 |
|
|
&& any_condjump_p (BB_END (bb)))
|
2005 |
|
|
{
|
2006 |
|
|
regset diff = ALLOC_REG_SET (®_obstack);
|
2007 |
|
|
basic_block bb_true, bb_false;
|
2008 |
|
|
unsigned i;
|
2009 |
|
|
|
2010 |
|
|
/* Identify the successor blocks. */
|
2011 |
|
|
bb_true = EDGE_SUCC (bb, 0)->dest;
|
2012 |
|
|
if (!single_succ_p (bb))
|
2013 |
|
|
{
|
2014 |
|
|
bb_false = EDGE_SUCC (bb, 1)->dest;
|
2015 |
|
|
|
2016 |
|
|
if (EDGE_SUCC (bb, 0)->flags & EDGE_FALLTHRU)
|
2017 |
|
|
{
|
2018 |
|
|
basic_block t = bb_false;
|
2019 |
|
|
bb_false = bb_true;
|
2020 |
|
|
bb_true = t;
|
2021 |
|
|
}
|
2022 |
|
|
else
|
2023 |
|
|
gcc_assert (EDGE_SUCC (bb, 1)->flags & EDGE_FALLTHRU);
|
2024 |
|
|
}
|
2025 |
|
|
else
|
2026 |
|
|
{
|
2027 |
|
|
/* This can happen with a conditional jump to the next insn. */
|
2028 |
|
|
gcc_assert (JUMP_LABEL (BB_END (bb)) == BB_HEAD (bb_true));
|
2029 |
|
|
|
2030 |
|
|
/* Simplest way to do nothing. */
|
2031 |
|
|
bb_false = bb_true;
|
2032 |
|
|
}
|
2033 |
|
|
|
2034 |
|
|
/* Compute which register lead different lives in the successors. */
|
2035 |
|
|
bitmap_xor (diff, bb_true->il.rtl->global_live_at_start,
|
2036 |
|
|
bb_false->il.rtl->global_live_at_start);
|
2037 |
|
|
|
2038 |
|
|
if (!bitmap_empty_p (diff))
|
2039 |
|
|
{
|
2040 |
|
|
/* Extract the condition from the branch. */
|
2041 |
|
|
rtx set_src = SET_SRC (pc_set (BB_END (bb)));
|
2042 |
|
|
rtx cond_true = XEXP (set_src, 0);
|
2043 |
|
|
rtx reg = XEXP (cond_true, 0);
|
2044 |
|
|
enum rtx_code inv_cond;
|
2045 |
|
|
|
2046 |
|
|
if (GET_CODE (reg) == SUBREG)
|
2047 |
|
|
reg = SUBREG_REG (reg);
|
2048 |
|
|
|
2049 |
|
|
/* We can only track conditional lifetimes if the condition is
|
2050 |
|
|
in the form of a reversible comparison of a register against
|
2051 |
|
|
zero. If the condition is more complex than that, then it is
|
2052 |
|
|
safe not to record any information. */
|
2053 |
|
|
inv_cond = reversed_comparison_code (cond_true, BB_END (bb));
|
2054 |
|
|
if (inv_cond != UNKNOWN
|
2055 |
|
|
&& REG_P (reg)
|
2056 |
|
|
&& XEXP (cond_true, 1) == const0_rtx)
|
2057 |
|
|
{
|
2058 |
|
|
rtx cond_false
|
2059 |
|
|
= gen_rtx_fmt_ee (inv_cond,
|
2060 |
|
|
GET_MODE (cond_true), XEXP (cond_true, 0),
|
2061 |
|
|
XEXP (cond_true, 1));
|
2062 |
|
|
reg_set_iterator rsi;
|
2063 |
|
|
|
2064 |
|
|
if (GET_CODE (XEXP (set_src, 1)) == PC)
|
2065 |
|
|
{
|
2066 |
|
|
rtx t = cond_false;
|
2067 |
|
|
cond_false = cond_true;
|
2068 |
|
|
cond_true = t;
|
2069 |
|
|
}
|
2070 |
|
|
|
2071 |
|
|
SET_REGNO_REG_SET (pbi->reg_cond_reg, REGNO (reg));
|
2072 |
|
|
|
2073 |
|
|
/* For each such register, mark it conditionally dead. */
|
2074 |
|
|
EXECUTE_IF_SET_IN_REG_SET (diff, 0, i, rsi)
|
2075 |
|
|
{
|
2076 |
|
|
struct reg_cond_life_info *rcli;
|
2077 |
|
|
rtx cond;
|
2078 |
|
|
|
2079 |
|
|
rcli = XNEW (struct reg_cond_life_info);
|
2080 |
|
|
|
2081 |
|
|
if (REGNO_REG_SET_P (bb_true->il.rtl->global_live_at_start,
|
2082 |
|
|
i))
|
2083 |
|
|
cond = cond_false;
|
2084 |
|
|
else
|
2085 |
|
|
cond = cond_true;
|
2086 |
|
|
rcli->condition = cond;
|
2087 |
|
|
rcli->stores = const0_rtx;
|
2088 |
|
|
rcli->orig_condition = cond;
|
2089 |
|
|
|
2090 |
|
|
splay_tree_insert (pbi->reg_cond_dead, i,
|
2091 |
|
|
(splay_tree_value) rcli);
|
2092 |
|
|
}
|
2093 |
|
|
}
|
2094 |
|
|
}
|
2095 |
|
|
|
2096 |
|
|
FREE_REG_SET (diff);
|
2097 |
|
|
}
|
2098 |
|
|
#endif
|
2099 |
|
|
|
2100 |
|
|
/* If this block has no successors, any stores to the frame that aren't
|
2101 |
|
|
used later in the block are dead. So make a pass over the block
|
2102 |
|
|
recording any such that are made and show them dead at the end. We do
|
2103 |
|
|
a very conservative and simple job here. */
|
2104 |
|
|
if (optimize
|
2105 |
|
|
&& ! (TREE_CODE (TREE_TYPE (current_function_decl)) == FUNCTION_TYPE
|
2106 |
|
|
&& (TYPE_RETURNS_STACK_DEPRESSED
|
2107 |
|
|
(TREE_TYPE (current_function_decl))))
|
2108 |
|
|
&& (flags & PROP_SCAN_DEAD_STORES)
|
2109 |
|
|
&& (EDGE_COUNT (bb->succs) == 0
|
2110 |
|
|
|| (single_succ_p (bb)
|
2111 |
|
|
&& single_succ (bb) == EXIT_BLOCK_PTR
|
2112 |
|
|
&& ! current_function_calls_eh_return)))
|
2113 |
|
|
{
|
2114 |
|
|
rtx insn, set;
|
2115 |
|
|
for (insn = BB_END (bb); insn != BB_HEAD (bb); insn = PREV_INSN (insn))
|
2116 |
|
|
if (NONJUMP_INSN_P (insn)
|
2117 |
|
|
&& (set = single_set (insn))
|
2118 |
|
|
&& MEM_P (SET_DEST (set)))
|
2119 |
|
|
{
|
2120 |
|
|
rtx mem = SET_DEST (set);
|
2121 |
|
|
rtx canon_mem = canon_rtx (mem);
|
2122 |
|
|
|
2123 |
|
|
if (XEXP (canon_mem, 0) == frame_pointer_rtx
|
2124 |
|
|
|| (GET_CODE (XEXP (canon_mem, 0)) == PLUS
|
2125 |
|
|
&& XEXP (XEXP (canon_mem, 0), 0) == frame_pointer_rtx
|
2126 |
|
|
&& GET_CODE (XEXP (XEXP (canon_mem, 0), 1)) == CONST_INT))
|
2127 |
|
|
add_to_mem_set_list (pbi, canon_mem);
|
2128 |
|
|
}
|
2129 |
|
|
}
|
2130 |
|
|
|
2131 |
|
|
return pbi;
|
2132 |
|
|
}
|
2133 |
|
|
|
2134 |
|
|
/* Release a propagate_block_info struct. */
|
2135 |
|
|
|
2136 |
|
|
void
|
2137 |
|
|
free_propagate_block_info (struct propagate_block_info *pbi)
|
2138 |
|
|
{
|
2139 |
|
|
free_EXPR_LIST_list (&pbi->mem_set_list);
|
2140 |
|
|
|
2141 |
|
|
BITMAP_FREE (pbi->new_set);
|
2142 |
|
|
|
2143 |
|
|
#ifdef HAVE_conditional_execution
|
2144 |
|
|
splay_tree_delete (pbi->reg_cond_dead);
|
2145 |
|
|
BITMAP_FREE (pbi->reg_cond_reg);
|
2146 |
|
|
#endif
|
2147 |
|
|
|
2148 |
|
|
if (pbi->flags & PROP_REG_INFO)
|
2149 |
|
|
{
|
2150 |
|
|
int num = pbi->insn_num;
|
2151 |
|
|
unsigned i;
|
2152 |
|
|
reg_set_iterator rsi;
|
2153 |
|
|
|
2154 |
|
|
EXECUTE_IF_SET_IN_REG_SET (pbi->reg_live, 0, i, rsi)
|
2155 |
|
|
{
|
2156 |
|
|
REG_LIVE_LENGTH (i) += num - reg_deaths[i];
|
2157 |
|
|
reg_deaths[i] = 0;
|
2158 |
|
|
}
|
2159 |
|
|
}
|
2160 |
|
|
if (pbi->reg_next_use)
|
2161 |
|
|
free (pbi->reg_next_use);
|
2162 |
|
|
|
2163 |
|
|
free (pbi);
|
2164 |
|
|
}
|
2165 |
|
|
|
2166 |
|
|
/* Compute the registers live at the beginning of a basic block BB from
|
2167 |
|
|
those live at the end.
|
2168 |
|
|
|
2169 |
|
|
When called, REG_LIVE contains those live at the end. On return, it
|
2170 |
|
|
contains those live at the beginning.
|
2171 |
|
|
|
2172 |
|
|
LOCAL_SET, if non-null, will be set with all registers killed
|
2173 |
|
|
unconditionally by this basic block.
|
2174 |
|
|
Likewise, COND_LOCAL_SET, if non-null, will be set with all registers
|
2175 |
|
|
killed conditionally by this basic block. If there is any unconditional
|
2176 |
|
|
set of a register, then the corresponding bit will be set in LOCAL_SET
|
2177 |
|
|
and cleared in COND_LOCAL_SET.
|
2178 |
|
|
It is valid for LOCAL_SET and COND_LOCAL_SET to be the same set. In this
|
2179 |
|
|
case, the resulting set will be equal to the union of the two sets that
|
2180 |
|
|
would otherwise be computed.
|
2181 |
|
|
|
2182 |
|
|
Return nonzero if an INSN is deleted (i.e. by dead code removal). */
|
2183 |
|
|
|
2184 |
|
|
int
|
2185 |
|
|
propagate_block (basic_block bb, regset live, regset local_set,
|
2186 |
|
|
regset cond_local_set, int flags)
|
2187 |
|
|
{
|
2188 |
|
|
struct propagate_block_info *pbi;
|
2189 |
|
|
rtx insn, prev;
|
2190 |
|
|
int changed;
|
2191 |
|
|
|
2192 |
|
|
pbi = init_propagate_block_info (bb, live, local_set, cond_local_set, flags);
|
2193 |
|
|
|
2194 |
|
|
if (flags & PROP_REG_INFO)
|
2195 |
|
|
{
|
2196 |
|
|
unsigned i;
|
2197 |
|
|
reg_set_iterator rsi;
|
2198 |
|
|
|
2199 |
|
|
/* Process the regs live at the end of the block.
|
2200 |
|
|
Mark them as not local to any one basic block. */
|
2201 |
|
|
EXECUTE_IF_SET_IN_REG_SET (live, 0, i, rsi)
|
2202 |
|
|
REG_BASIC_BLOCK (i) = REG_BLOCK_GLOBAL;
|
2203 |
|
|
}
|
2204 |
|
|
|
2205 |
|
|
/* Scan the block an insn at a time from end to beginning. */
|
2206 |
|
|
|
2207 |
|
|
changed = 0;
|
2208 |
|
|
for (insn = BB_END (bb); ; insn = prev)
|
2209 |
|
|
{
|
2210 |
|
|
/* If this is a call to `setjmp' et al, warn if any
|
2211 |
|
|
non-volatile datum is live. */
|
2212 |
|
|
if ((flags & PROP_REG_INFO)
|
2213 |
|
|
&& CALL_P (insn)
|
2214 |
|
|
&& find_reg_note (insn, REG_SETJMP, NULL))
|
2215 |
|
|
IOR_REG_SET (regs_live_at_setjmp, pbi->reg_live);
|
2216 |
|
|
|
2217 |
|
|
prev = propagate_one_insn (pbi, insn);
|
2218 |
|
|
if (!prev)
|
2219 |
|
|
changed |= insn != get_insns ();
|
2220 |
|
|
else
|
2221 |
|
|
changed |= NEXT_INSN (prev) != insn;
|
2222 |
|
|
|
2223 |
|
|
if (insn == BB_HEAD (bb))
|
2224 |
|
|
break;
|
2225 |
|
|
}
|
2226 |
|
|
|
2227 |
|
|
#ifdef EH_RETURN_DATA_REGNO
|
2228 |
|
|
if (bb_has_eh_pred (bb))
|
2229 |
|
|
{
|
2230 |
|
|
unsigned int i;
|
2231 |
|
|
for (i = 0; ; ++i)
|
2232 |
|
|
{
|
2233 |
|
|
unsigned regno = EH_RETURN_DATA_REGNO (i);
|
2234 |
|
|
if (regno == INVALID_REGNUM)
|
2235 |
|
|
break;
|
2236 |
|
|
if (pbi->local_set)
|
2237 |
|
|
{
|
2238 |
|
|
CLEAR_REGNO_REG_SET (pbi->cond_local_set, regno);
|
2239 |
|
|
SET_REGNO_REG_SET (pbi->local_set, regno);
|
2240 |
|
|
}
|
2241 |
|
|
if (REGNO_REG_SET_P (pbi->reg_live, regno))
|
2242 |
|
|
SET_REGNO_REG_SET (pbi->new_set, regno);
|
2243 |
|
|
|
2244 |
|
|
regs_ever_live[regno] = 1;
|
2245 |
|
|
}
|
2246 |
|
|
}
|
2247 |
|
|
#endif
|
2248 |
|
|
|
2249 |
|
|
free_propagate_block_info (pbi);
|
2250 |
|
|
|
2251 |
|
|
return changed;
|
2252 |
|
|
}
|
2253 |
|
|
|
2254 |
|
|
/* Return 1 if X (the body of an insn, or part of it) is just dead stores
|
2255 |
|
|
(SET expressions whose destinations are registers dead after the insn).
|
2256 |
|
|
NEEDED is the regset that says which regs are alive after the insn.
|
2257 |
|
|
|
2258 |
|
|
Unless CALL_OK is nonzero, an insn is needed if it contains a CALL.
|
2259 |
|
|
|
2260 |
|
|
If X is the entire body of an insn, NOTES contains the reg notes
|
2261 |
|
|
pertaining to the insn. */
|
2262 |
|
|
|
2263 |
|
|
static int
|
2264 |
|
|
insn_dead_p (struct propagate_block_info *pbi, rtx x, int call_ok,
|
2265 |
|
|
rtx notes ATTRIBUTE_UNUSED)
|
2266 |
|
|
{
|
2267 |
|
|
enum rtx_code code = GET_CODE (x);
|
2268 |
|
|
|
2269 |
|
|
/* Don't eliminate insns that may trap. */
|
2270 |
|
|
if (flag_non_call_exceptions && may_trap_p (x))
|
2271 |
|
|
return 0;
|
2272 |
|
|
|
2273 |
|
|
#ifdef AUTO_INC_DEC
|
2274 |
|
|
/* As flow is invoked after combine, we must take existing AUTO_INC
|
2275 |
|
|
expressions into account. */
|
2276 |
|
|
for (; notes; notes = XEXP (notes, 1))
|
2277 |
|
|
{
|
2278 |
|
|
if (REG_NOTE_KIND (notes) == REG_INC)
|
2279 |
|
|
{
|
2280 |
|
|
int regno = REGNO (XEXP (notes, 0));
|
2281 |
|
|
|
2282 |
|
|
/* Don't delete insns to set global regs. */
|
2283 |
|
|
if ((regno < FIRST_PSEUDO_REGISTER && global_regs[regno])
|
2284 |
|
|
|| REGNO_REG_SET_P (pbi->reg_live, regno))
|
2285 |
|
|
return 0;
|
2286 |
|
|
}
|
2287 |
|
|
}
|
2288 |
|
|
#endif
|
2289 |
|
|
|
2290 |
|
|
/* If setting something that's a reg or part of one,
|
2291 |
|
|
see if that register's altered value will be live. */
|
2292 |
|
|
|
2293 |
|
|
if (code == SET)
|
2294 |
|
|
{
|
2295 |
|
|
rtx r = SET_DEST (x);
|
2296 |
|
|
|
2297 |
|
|
#ifdef HAVE_cc0
|
2298 |
|
|
if (GET_CODE (r) == CC0)
|
2299 |
|
|
return ! pbi->cc0_live;
|
2300 |
|
|
#endif
|
2301 |
|
|
|
2302 |
|
|
/* A SET that is a subroutine call cannot be dead. */
|
2303 |
|
|
if (GET_CODE (SET_SRC (x)) == CALL)
|
2304 |
|
|
{
|
2305 |
|
|
if (! call_ok)
|
2306 |
|
|
return 0;
|
2307 |
|
|
}
|
2308 |
|
|
|
2309 |
|
|
/* Don't eliminate loads from volatile memory or volatile asms. */
|
2310 |
|
|
else if (volatile_refs_p (SET_SRC (x)))
|
2311 |
|
|
return 0;
|
2312 |
|
|
|
2313 |
|
|
if (MEM_P (r))
|
2314 |
|
|
{
|
2315 |
|
|
rtx temp, canon_r;
|
2316 |
|
|
|
2317 |
|
|
if (MEM_VOLATILE_P (r) || GET_MODE (r) == BLKmode)
|
2318 |
|
|
return 0;
|
2319 |
|
|
|
2320 |
|
|
canon_r = canon_rtx (r);
|
2321 |
|
|
|
2322 |
|
|
/* Walk the set of memory locations we are currently tracking
|
2323 |
|
|
and see if one is an identical match to this memory location.
|
2324 |
|
|
If so, this memory write is dead (remember, we're walking
|
2325 |
|
|
backwards from the end of the block to the start). Since
|
2326 |
|
|
rtx_equal_p does not check the alias set or flags, we also
|
2327 |
|
|
must have the potential for them to conflict (anti_dependence). */
|
2328 |
|
|
for (temp = pbi->mem_set_list; temp != 0; temp = XEXP (temp, 1))
|
2329 |
|
|
if (anti_dependence (r, XEXP (temp, 0)))
|
2330 |
|
|
{
|
2331 |
|
|
rtx mem = XEXP (temp, 0);
|
2332 |
|
|
|
2333 |
|
|
if (rtx_equal_p (XEXP (canon_r, 0), XEXP (mem, 0))
|
2334 |
|
|
&& (GET_MODE_SIZE (GET_MODE (canon_r))
|
2335 |
|
|
<= GET_MODE_SIZE (GET_MODE (mem))))
|
2336 |
|
|
return 1;
|
2337 |
|
|
|
2338 |
|
|
#ifdef AUTO_INC_DEC
|
2339 |
|
|
/* Check if memory reference matches an auto increment. Only
|
2340 |
|
|
post increment/decrement or modify are valid. */
|
2341 |
|
|
if (GET_MODE (mem) == GET_MODE (r)
|
2342 |
|
|
&& (GET_CODE (XEXP (mem, 0)) == POST_DEC
|
2343 |
|
|
|| GET_CODE (XEXP (mem, 0)) == POST_INC
|
2344 |
|
|
|| GET_CODE (XEXP (mem, 0)) == POST_MODIFY)
|
2345 |
|
|
&& GET_MODE (XEXP (mem, 0)) == GET_MODE (r)
|
2346 |
|
|
&& rtx_equal_p (XEXP (XEXP (mem, 0), 0), XEXP (r, 0)))
|
2347 |
|
|
return 1;
|
2348 |
|
|
#endif
|
2349 |
|
|
}
|
2350 |
|
|
}
|
2351 |
|
|
else
|
2352 |
|
|
{
|
2353 |
|
|
while (GET_CODE (r) == SUBREG
|
2354 |
|
|
|| GET_CODE (r) == STRICT_LOW_PART
|
2355 |
|
|
|| GET_CODE (r) == ZERO_EXTRACT)
|
2356 |
|
|
r = XEXP (r, 0);
|
2357 |
|
|
|
2358 |
|
|
if (REG_P (r))
|
2359 |
|
|
{
|
2360 |
|
|
int regno = REGNO (r);
|
2361 |
|
|
|
2362 |
|
|
/* Obvious. */
|
2363 |
|
|
if (REGNO_REG_SET_P (pbi->reg_live, regno))
|
2364 |
|
|
return 0;
|
2365 |
|
|
|
2366 |
|
|
/* If this is a hard register, verify that subsequent
|
2367 |
|
|
words are not needed. */
|
2368 |
|
|
if (regno < FIRST_PSEUDO_REGISTER)
|
2369 |
|
|
{
|
2370 |
|
|
int n = hard_regno_nregs[regno][GET_MODE (r)];
|
2371 |
|
|
|
2372 |
|
|
while (--n > 0)
|
2373 |
|
|
if (REGNO_REG_SET_P (pbi->reg_live, regno+n))
|
2374 |
|
|
return 0;
|
2375 |
|
|
}
|
2376 |
|
|
|
2377 |
|
|
/* Don't delete insns to set global regs. */
|
2378 |
|
|
if (regno < FIRST_PSEUDO_REGISTER && global_regs[regno])
|
2379 |
|
|
return 0;
|
2380 |
|
|
|
2381 |
|
|
/* Make sure insns to set the stack pointer aren't deleted. */
|
2382 |
|
|
if (regno == STACK_POINTER_REGNUM)
|
2383 |
|
|
return 0;
|
2384 |
|
|
|
2385 |
|
|
/* ??? These bits might be redundant with the force live bits
|
2386 |
|
|
in calculate_global_regs_live. We would delete from
|
2387 |
|
|
sequential sets; whether this actually affects real code
|
2388 |
|
|
for anything but the stack pointer I don't know. */
|
2389 |
|
|
/* Make sure insns to set the frame pointer aren't deleted. */
|
2390 |
|
|
if (regno == FRAME_POINTER_REGNUM
|
2391 |
|
|
&& (! reload_completed || frame_pointer_needed))
|
2392 |
|
|
return 0;
|
2393 |
|
|
#if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
|
2394 |
|
|
if (regno == HARD_FRAME_POINTER_REGNUM
|
2395 |
|
|
&& (! reload_completed || frame_pointer_needed))
|
2396 |
|
|
return 0;
|
2397 |
|
|
#endif
|
2398 |
|
|
|
2399 |
|
|
#if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
|
2400 |
|
|
/* Make sure insns to set arg pointer are never deleted
|
2401 |
|
|
(if the arg pointer isn't fixed, there will be a USE
|
2402 |
|
|
for it, so we can treat it normally). */
|
2403 |
|
|
if (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
|
2404 |
|
|
return 0;
|
2405 |
|
|
#endif
|
2406 |
|
|
|
2407 |
|
|
/* Otherwise, the set is dead. */
|
2408 |
|
|
return 1;
|
2409 |
|
|
}
|
2410 |
|
|
}
|
2411 |
|
|
}
|
2412 |
|
|
|
2413 |
|
|
/* If performing several activities, insn is dead if each activity
|
2414 |
|
|
is individually dead. Also, CLOBBERs and USEs can be ignored; a
|
2415 |
|
|
CLOBBER or USE that's inside a PARALLEL doesn't make the insn
|
2416 |
|
|
worth keeping. */
|
2417 |
|
|
else if (code == PARALLEL)
|
2418 |
|
|
{
|
2419 |
|
|
int i = XVECLEN (x, 0);
|
2420 |
|
|
|
2421 |
|
|
for (i--; i >= 0; i--)
|
2422 |
|
|
if (GET_CODE (XVECEXP (x, 0, i)) != CLOBBER
|
2423 |
|
|
&& GET_CODE (XVECEXP (x, 0, i)) != USE
|
2424 |
|
|
&& ! insn_dead_p (pbi, XVECEXP (x, 0, i), call_ok, NULL_RTX))
|
2425 |
|
|
return 0;
|
2426 |
|
|
|
2427 |
|
|
return 1;
|
2428 |
|
|
}
|
2429 |
|
|
|
2430 |
|
|
/* A CLOBBER of a pseudo-register that is dead serves no purpose. That
|
2431 |
|
|
is not necessarily true for hard registers until after reload. */
|
2432 |
|
|
else if (code == CLOBBER)
|
2433 |
|
|
{
|
2434 |
|
|
if (REG_P (XEXP (x, 0))
|
2435 |
|
|
&& (REGNO (XEXP (x, 0)) >= FIRST_PSEUDO_REGISTER
|
2436 |
|
|
|| reload_completed)
|
2437 |
|
|
&& ! REGNO_REG_SET_P (pbi->reg_live, REGNO (XEXP (x, 0))))
|
2438 |
|
|
return 1;
|
2439 |
|
|
}
|
2440 |
|
|
|
2441 |
|
|
/* ??? A base USE is a historical relic. It ought not be needed anymore.
|
2442 |
|
|
Instances where it is still used are either (1) temporary and the USE
|
2443 |
|
|
escaped the pass, (2) cruft and the USE need not be emitted anymore,
|
2444 |
|
|
or (3) hiding bugs elsewhere that are not properly representing data
|
2445 |
|
|
flow. */
|
2446 |
|
|
|
2447 |
|
|
return 0;
|
2448 |
|
|
}
|
2449 |
|
|
|
2450 |
|
|
/* If INSN is the last insn in a libcall, and assuming INSN is dead,
|
2451 |
|
|
return 1 if the entire library call is dead.
|
2452 |
|
|
This is true if INSN copies a register (hard or pseudo)
|
2453 |
|
|
and if the hard return reg of the call insn is dead.
|
2454 |
|
|
(The caller should have tested the destination of the SET inside
|
2455 |
|
|
INSN already for death.)
|
2456 |
|
|
|
2457 |
|
|
If this insn doesn't just copy a register, then we don't
|
2458 |
|
|
have an ordinary libcall. In that case, cse could not have
|
2459 |
|
|
managed to substitute the source for the dest later on,
|
2460 |
|
|
so we can assume the libcall is dead.
|
2461 |
|
|
|
2462 |
|
|
PBI is the block info giving pseudoregs live before this insn.
|
2463 |
|
|
NOTE is the REG_RETVAL note of the insn. */
|
2464 |
|
|
|
2465 |
|
|
static int
|
2466 |
|
|
libcall_dead_p (struct propagate_block_info *pbi, rtx note, rtx insn)
|
2467 |
|
|
{
|
2468 |
|
|
rtx x = single_set (insn);
|
2469 |
|
|
|
2470 |
|
|
if (x)
|
2471 |
|
|
{
|
2472 |
|
|
rtx r = SET_SRC (x);
|
2473 |
|
|
|
2474 |
|
|
if (REG_P (r) || GET_CODE (r) == SUBREG)
|
2475 |
|
|
{
|
2476 |
|
|
rtx call = XEXP (note, 0);
|
2477 |
|
|
rtx call_pat;
|
2478 |
|
|
int i;
|
2479 |
|
|
|
2480 |
|
|
/* Find the call insn. */
|
2481 |
|
|
while (call != insn && !CALL_P (call))
|
2482 |
|
|
call = NEXT_INSN (call);
|
2483 |
|
|
|
2484 |
|
|
/* If there is none, do nothing special,
|
2485 |
|
|
since ordinary death handling can understand these insns. */
|
2486 |
|
|
if (call == insn)
|
2487 |
|
|
return 0;
|
2488 |
|
|
|
2489 |
|
|
/* See if the hard reg holding the value is dead.
|
2490 |
|
|
If this is a PARALLEL, find the call within it. */
|
2491 |
|
|
call_pat = PATTERN (call);
|
2492 |
|
|
if (GET_CODE (call_pat) == PARALLEL)
|
2493 |
|
|
{
|
2494 |
|
|
for (i = XVECLEN (call_pat, 0) - 1; i >= 0; i--)
|
2495 |
|
|
if (GET_CODE (XVECEXP (call_pat, 0, i)) == SET
|
2496 |
|
|
&& GET_CODE (SET_SRC (XVECEXP (call_pat, 0, i))) == CALL)
|
2497 |
|
|
break;
|
2498 |
|
|
|
2499 |
|
|
/* This may be a library call that is returning a value
|
2500 |
|
|
via invisible pointer. Do nothing special, since
|
2501 |
|
|
ordinary death handling can understand these insns. */
|
2502 |
|
|
if (i < 0)
|
2503 |
|
|
return 0;
|
2504 |
|
|
|
2505 |
|
|
call_pat = XVECEXP (call_pat, 0, i);
|
2506 |
|
|
}
|
2507 |
|
|
|
2508 |
|
|
if (! insn_dead_p (pbi, call_pat, 1, REG_NOTES (call)))
|
2509 |
|
|
return 0;
|
2510 |
|
|
|
2511 |
|
|
while ((insn = PREV_INSN (insn)) != call)
|
2512 |
|
|
{
|
2513 |
|
|
if (! INSN_P (insn))
|
2514 |
|
|
continue;
|
2515 |
|
|
if (! insn_dead_p (pbi, PATTERN (insn), 0, REG_NOTES (insn)))
|
2516 |
|
|
return 0;
|
2517 |
|
|
}
|
2518 |
|
|
return 1;
|
2519 |
|
|
}
|
2520 |
|
|
}
|
2521 |
|
|
return 0;
|
2522 |
|
|
}
|
2523 |
|
|
|
2524 |
|
|
/* 1 if register REGNO was alive at a place where `setjmp' was called
|
2525 |
|
|
and was set more than once or is an argument.
|
2526 |
|
|
Such regs may be clobbered by `longjmp'. */
|
2527 |
|
|
|
2528 |
|
|
int
|
2529 |
|
|
regno_clobbered_at_setjmp (int regno)
|
2530 |
|
|
{
|
2531 |
|
|
if (n_basic_blocks == NUM_FIXED_BLOCKS)
|
2532 |
|
|
return 0;
|
2533 |
|
|
|
2534 |
|
|
return ((REG_N_SETS (regno) > 1
|
2535 |
|
|
|| REGNO_REG_SET_P (ENTRY_BLOCK_PTR->il.rtl->global_live_at_end,
|
2536 |
|
|
regno))
|
2537 |
|
|
&& REGNO_REG_SET_P (regs_live_at_setjmp, regno));
|
2538 |
|
|
}
|
2539 |
|
|
|
2540 |
|
|
/* Add MEM to PBI->MEM_SET_LIST. MEM should be canonical. Respect the
|
2541 |
|
|
maximal list size; look for overlaps in mode and select the largest. */
|
2542 |
|
|
static void
|
2543 |
|
|
add_to_mem_set_list (struct propagate_block_info *pbi, rtx mem)
|
2544 |
|
|
{
|
2545 |
|
|
rtx i;
|
2546 |
|
|
|
2547 |
|
|
/* We don't know how large a BLKmode store is, so we must not
|
2548 |
|
|
take them into consideration. */
|
2549 |
|
|
if (GET_MODE (mem) == BLKmode)
|
2550 |
|
|
return;
|
2551 |
|
|
|
2552 |
|
|
for (i = pbi->mem_set_list; i ; i = XEXP (i, 1))
|
2553 |
|
|
{
|
2554 |
|
|
rtx e = XEXP (i, 0);
|
2555 |
|
|
if (rtx_equal_p (XEXP (mem, 0), XEXP (e, 0)))
|
2556 |
|
|
{
|
2557 |
|
|
if (GET_MODE_SIZE (GET_MODE (mem)) > GET_MODE_SIZE (GET_MODE (e)))
|
2558 |
|
|
{
|
2559 |
|
|
#ifdef AUTO_INC_DEC
|
2560 |
|
|
/* If we must store a copy of the mem, we can just modify
|
2561 |
|
|
the mode of the stored copy. */
|
2562 |
|
|
if (pbi->flags & PROP_AUTOINC)
|
2563 |
|
|
PUT_MODE (e, GET_MODE (mem));
|
2564 |
|
|
else
|
2565 |
|
|
#endif
|
2566 |
|
|
XEXP (i, 0) = mem;
|
2567 |
|
|
}
|
2568 |
|
|
return;
|
2569 |
|
|
}
|
2570 |
|
|
}
|
2571 |
|
|
|
2572 |
|
|
if (pbi->mem_set_list_len < PARAM_VALUE (PARAM_MAX_FLOW_MEMORY_LOCATIONS))
|
2573 |
|
|
{
|
2574 |
|
|
#ifdef AUTO_INC_DEC
|
2575 |
|
|
/* Store a copy of mem, otherwise the address may be
|
2576 |
|
|
scrogged by find_auto_inc. */
|
2577 |
|
|
if (pbi->flags & PROP_AUTOINC)
|
2578 |
|
|
mem = shallow_copy_rtx (mem);
|
2579 |
|
|
#endif
|
2580 |
|
|
pbi->mem_set_list = alloc_EXPR_LIST (0, mem, pbi->mem_set_list);
|
2581 |
|
|
pbi->mem_set_list_len++;
|
2582 |
|
|
}
|
2583 |
|
|
}
|
2584 |
|
|
|
2585 |
|
|
/* INSN references memory, possibly using autoincrement addressing modes.
|
2586 |
|
|
Find any entries on the mem_set_list that need to be invalidated due
|
2587 |
|
|
to an address change. */
|
2588 |
|
|
|
2589 |
|
|
static int
|
2590 |
|
|
invalidate_mems_from_autoinc (rtx *px, void *data)
|
2591 |
|
|
{
|
2592 |
|
|
rtx x = *px;
|
2593 |
|
|
struct propagate_block_info *pbi = data;
|
2594 |
|
|
|
2595 |
|
|
if (GET_RTX_CLASS (GET_CODE (x)) == RTX_AUTOINC)
|
2596 |
|
|
{
|
2597 |
|
|
invalidate_mems_from_set (pbi, XEXP (x, 0));
|
2598 |
|
|
return -1;
|
2599 |
|
|
}
|
2600 |
|
|
|
2601 |
|
|
return 0;
|
2602 |
|
|
}
|
2603 |
|
|
|
2604 |
|
|
/* EXP is a REG or MEM. Remove any dependent entries from
|
2605 |
|
|
pbi->mem_set_list. */
|
2606 |
|
|
|
2607 |
|
|
static void
|
2608 |
|
|
invalidate_mems_from_set (struct propagate_block_info *pbi, rtx exp)
|
2609 |
|
|
{
|
2610 |
|
|
rtx temp = pbi->mem_set_list;
|
2611 |
|
|
rtx prev = NULL_RTX;
|
2612 |
|
|
rtx next;
|
2613 |
|
|
|
2614 |
|
|
while (temp)
|
2615 |
|
|
{
|
2616 |
|
|
next = XEXP (temp, 1);
|
2617 |
|
|
if ((REG_P (exp) && reg_overlap_mentioned_p (exp, XEXP (temp, 0)))
|
2618 |
|
|
/* When we get an EXP that is a mem here, we want to check if EXP
|
2619 |
|
|
overlaps the *address* of any of the mems in the list (i.e. not
|
2620 |
|
|
whether the mems actually overlap; that's done elsewhere). */
|
2621 |
|
|
|| (MEM_P (exp)
|
2622 |
|
|
&& reg_overlap_mentioned_p (exp, XEXP (XEXP (temp, 0), 0))))
|
2623 |
|
|
{
|
2624 |
|
|
/* Splice this entry out of the list. */
|
2625 |
|
|
if (prev)
|
2626 |
|
|
XEXP (prev, 1) = next;
|
2627 |
|
|
else
|
2628 |
|
|
pbi->mem_set_list = next;
|
2629 |
|
|
free_EXPR_LIST_node (temp);
|
2630 |
|
|
pbi->mem_set_list_len--;
|
2631 |
|
|
}
|
2632 |
|
|
else
|
2633 |
|
|
prev = temp;
|
2634 |
|
|
temp = next;
|
2635 |
|
|
}
|
2636 |
|
|
}
|
2637 |
|
|
|
2638 |
|
|
/* Process the registers that are set within X. Their bits are set to
|
2639 |
|
|
1 in the regset DEAD, because they are dead prior to this insn.
|
2640 |
|
|
|
2641 |
|
|
If INSN is nonzero, it is the insn being processed.
|
2642 |
|
|
|
2643 |
|
|
FLAGS is the set of operations to perform. */
|
2644 |
|
|
|
2645 |
|
|
static void
|
2646 |
|
|
mark_set_regs (struct propagate_block_info *pbi, rtx x, rtx insn)
|
2647 |
|
|
{
|
2648 |
|
|
rtx cond = NULL_RTX;
|
2649 |
|
|
rtx link;
|
2650 |
|
|
enum rtx_code code;
|
2651 |
|
|
int flags = pbi->flags;
|
2652 |
|
|
|
2653 |
|
|
if (insn)
|
2654 |
|
|
for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
|
2655 |
|
|
{
|
2656 |
|
|
if (REG_NOTE_KIND (link) == REG_INC)
|
2657 |
|
|
mark_set_1 (pbi, SET, XEXP (link, 0),
|
2658 |
|
|
(GET_CODE (x) == COND_EXEC
|
2659 |
|
|
? COND_EXEC_TEST (x) : NULL_RTX),
|
2660 |
|
|
insn, flags);
|
2661 |
|
|
}
|
2662 |
|
|
retry:
|
2663 |
|
|
switch (code = GET_CODE (x))
|
2664 |
|
|
{
|
2665 |
|
|
case SET:
|
2666 |
|
|
if (GET_CODE (XEXP (x, 1)) == ASM_OPERANDS)
|
2667 |
|
|
flags |= PROP_ASM_SCAN;
|
2668 |
|
|
/* Fall through */
|
2669 |
|
|
case CLOBBER:
|
2670 |
|
|
mark_set_1 (pbi, code, SET_DEST (x), cond, insn, flags);
|
2671 |
|
|
return;
|
2672 |
|
|
|
2673 |
|
|
case COND_EXEC:
|
2674 |
|
|
cond = COND_EXEC_TEST (x);
|
2675 |
|
|
x = COND_EXEC_CODE (x);
|
2676 |
|
|
goto retry;
|
2677 |
|
|
|
2678 |
|
|
case PARALLEL:
|
2679 |
|
|
{
|
2680 |
|
|
int i;
|
2681 |
|
|
|
2682 |
|
|
/* We must scan forwards. If we have an asm, we need to set
|
2683 |
|
|
the PROP_ASM_SCAN flag before scanning the clobbers. */
|
2684 |
|
|
for (i = 0; i < XVECLEN (x, 0); i++)
|
2685 |
|
|
{
|
2686 |
|
|
rtx sub = XVECEXP (x, 0, i);
|
2687 |
|
|
switch (code = GET_CODE (sub))
|
2688 |
|
|
{
|
2689 |
|
|
case COND_EXEC:
|
2690 |
|
|
gcc_assert (!cond);
|
2691 |
|
|
|
2692 |
|
|
cond = COND_EXEC_TEST (sub);
|
2693 |
|
|
sub = COND_EXEC_CODE (sub);
|
2694 |
|
|
if (GET_CODE (sub) == SET)
|
2695 |
|
|
goto mark_set;
|
2696 |
|
|
if (GET_CODE (sub) == CLOBBER)
|
2697 |
|
|
goto mark_clob;
|
2698 |
|
|
break;
|
2699 |
|
|
|
2700 |
|
|
case SET:
|
2701 |
|
|
mark_set:
|
2702 |
|
|
if (GET_CODE (XEXP (sub, 1)) == ASM_OPERANDS)
|
2703 |
|
|
flags |= PROP_ASM_SCAN;
|
2704 |
|
|
/* Fall through */
|
2705 |
|
|
case CLOBBER:
|
2706 |
|
|
mark_clob:
|
2707 |
|
|
mark_set_1 (pbi, code, SET_DEST (sub), cond, insn, flags);
|
2708 |
|
|
break;
|
2709 |
|
|
|
2710 |
|
|
case ASM_OPERANDS:
|
2711 |
|
|
flags |= PROP_ASM_SCAN;
|
2712 |
|
|
break;
|
2713 |
|
|
|
2714 |
|
|
default:
|
2715 |
|
|
break;
|
2716 |
|
|
}
|
2717 |
|
|
}
|
2718 |
|
|
break;
|
2719 |
|
|
}
|
2720 |
|
|
|
2721 |
|
|
default:
|
2722 |
|
|
break;
|
2723 |
|
|
}
|
2724 |
|
|
}
|
2725 |
|
|
|
2726 |
|
|
/* Process a single set, which appears in INSN. REG (which may not
|
2727 |
|
|
actually be a REG, it may also be a SUBREG, PARALLEL, etc.) is
|
2728 |
|
|
being set using the CODE (which may be SET, CLOBBER, or COND_EXEC).
|
2729 |
|
|
If the set is conditional (because it appear in a COND_EXEC), COND
|
2730 |
|
|
will be the condition. */
|
2731 |
|
|
|
2732 |
|
|
static void
|
2733 |
|
|
mark_set_1 (struct propagate_block_info *pbi, enum rtx_code code, rtx reg, rtx cond, rtx insn, int flags)
|
2734 |
|
|
{
|
2735 |
|
|
int regno_first = -1, regno_last = -1;
|
2736 |
|
|
unsigned long not_dead = 0;
|
2737 |
|
|
int i;
|
2738 |
|
|
|
2739 |
|
|
/* Modifying just one hardware register of a multi-reg value or just a
|
2740 |
|
|
byte field of a register does not mean the value from before this insn
|
2741 |
|
|
is now dead. Of course, if it was dead after it's unused now. */
|
2742 |
|
|
|
2743 |
|
|
switch (GET_CODE (reg))
|
2744 |
|
|
{
|
2745 |
|
|
case PARALLEL:
|
2746 |
|
|
/* Some targets place small structures in registers for return values of
|
2747 |
|
|
functions. We have to detect this case specially here to get correct
|
2748 |
|
|
flow information. */
|
2749 |
|
|
for (i = XVECLEN (reg, 0) - 1; i >= 0; i--)
|
2750 |
|
|
if (XEXP (XVECEXP (reg, 0, i), 0) != 0)
|
2751 |
|
|
mark_set_1 (pbi, code, XEXP (XVECEXP (reg, 0, i), 0), cond, insn,
|
2752 |
|
|
flags);
|
2753 |
|
|
return;
|
2754 |
|
|
|
2755 |
|
|
case SIGN_EXTRACT:
|
2756 |
|
|
/* SIGN_EXTRACT cannot be an lvalue. */
|
2757 |
|
|
gcc_unreachable ();
|
2758 |
|
|
|
2759 |
|
|
case ZERO_EXTRACT:
|
2760 |
|
|
case STRICT_LOW_PART:
|
2761 |
|
|
/* ??? Assumes STRICT_LOW_PART not used on multi-word registers. */
|
2762 |
|
|
do
|
2763 |
|
|
reg = XEXP (reg, 0);
|
2764 |
|
|
while (GET_CODE (reg) == SUBREG
|
2765 |
|
|
|| GET_CODE (reg) == ZERO_EXTRACT
|
2766 |
|
|
|| GET_CODE (reg) == STRICT_LOW_PART);
|
2767 |
|
|
if (MEM_P (reg))
|
2768 |
|
|
break;
|
2769 |
|
|
not_dead = (unsigned long) REGNO_REG_SET_P (pbi->reg_live, REGNO (reg));
|
2770 |
|
|
/* Fall through. */
|
2771 |
|
|
|
2772 |
|
|
case REG:
|
2773 |
|
|
regno_last = regno_first = REGNO (reg);
|
2774 |
|
|
if (regno_first < FIRST_PSEUDO_REGISTER)
|
2775 |
|
|
regno_last += hard_regno_nregs[regno_first][GET_MODE (reg)] - 1;
|
2776 |
|
|
break;
|
2777 |
|
|
|
2778 |
|
|
case SUBREG:
|
2779 |
|
|
if (REG_P (SUBREG_REG (reg)))
|
2780 |
|
|
{
|
2781 |
|
|
enum machine_mode outer_mode = GET_MODE (reg);
|
2782 |
|
|
enum machine_mode inner_mode = GET_MODE (SUBREG_REG (reg));
|
2783 |
|
|
|
2784 |
|
|
/* Identify the range of registers affected. This is moderately
|
2785 |
|
|
tricky for hard registers. See alter_subreg. */
|
2786 |
|
|
|
2787 |
|
|
regno_last = regno_first = REGNO (SUBREG_REG (reg));
|
2788 |
|
|
if (regno_first < FIRST_PSEUDO_REGISTER)
|
2789 |
|
|
{
|
2790 |
|
|
regno_first += subreg_regno_offset (regno_first, inner_mode,
|
2791 |
|
|
SUBREG_BYTE (reg),
|
2792 |
|
|
outer_mode);
|
2793 |
|
|
regno_last = (regno_first
|
2794 |
|
|
+ hard_regno_nregs[regno_first][outer_mode] - 1);
|
2795 |
|
|
|
2796 |
|
|
/* Since we've just adjusted the register number ranges, make
|
2797 |
|
|
sure REG matches. Otherwise some_was_live will be clear
|
2798 |
|
|
when it shouldn't have been, and we'll create incorrect
|
2799 |
|
|
REG_UNUSED notes. */
|
2800 |
|
|
reg = gen_rtx_REG (outer_mode, regno_first);
|
2801 |
|
|
}
|
2802 |
|
|
else
|
2803 |
|
|
{
|
2804 |
|
|
/* If the number of words in the subreg is less than the number
|
2805 |
|
|
of words in the full register, we have a well-defined partial
|
2806 |
|
|
set. Otherwise the high bits are undefined.
|
2807 |
|
|
|
2808 |
|
|
This is only really applicable to pseudos, since we just took
|
2809 |
|
|
care of multi-word hard registers. */
|
2810 |
|
|
if (((GET_MODE_SIZE (outer_mode)
|
2811 |
|
|
+ UNITS_PER_WORD - 1) / UNITS_PER_WORD)
|
2812 |
|
|
< ((GET_MODE_SIZE (inner_mode)
|
2813 |
|
|
+ UNITS_PER_WORD - 1) / UNITS_PER_WORD))
|
2814 |
|
|
not_dead = (unsigned long) REGNO_REG_SET_P (pbi->reg_live,
|
2815 |
|
|
regno_first);
|
2816 |
|
|
|
2817 |
|
|
reg = SUBREG_REG (reg);
|
2818 |
|
|
}
|
2819 |
|
|
}
|
2820 |
|
|
else
|
2821 |
|
|
reg = SUBREG_REG (reg);
|
2822 |
|
|
break;
|
2823 |
|
|
|
2824 |
|
|
default:
|
2825 |
|
|
break;
|
2826 |
|
|
}
|
2827 |
|
|
|
2828 |
|
|
/* If this set is a MEM, then it kills any aliased writes and any
|
2829 |
|
|
other MEMs which use it.
|
2830 |
|
|
If this set is a REG, then it kills any MEMs which use the reg. */
|
2831 |
|
|
if (optimize && (flags & PROP_SCAN_DEAD_STORES))
|
2832 |
|
|
{
|
2833 |
|
|
if (REG_P (reg) || MEM_P (reg))
|
2834 |
|
|
invalidate_mems_from_set (pbi, reg);
|
2835 |
|
|
|
2836 |
|
|
/* If the memory reference had embedded side effects (autoincrement
|
2837 |
|
|
address modes) then we may need to kill some entries on the
|
2838 |
|
|
memory set list. */
|
2839 |
|
|
if (insn && MEM_P (reg))
|
2840 |
|
|
for_each_rtx (&PATTERN (insn), invalidate_mems_from_autoinc, pbi);
|
2841 |
|
|
|
2842 |
|
|
if (MEM_P (reg) && ! side_effects_p (reg)
|
2843 |
|
|
/* ??? With more effort we could track conditional memory life. */
|
2844 |
|
|
&& ! cond)
|
2845 |
|
|
add_to_mem_set_list (pbi, canon_rtx (reg));
|
2846 |
|
|
}
|
2847 |
|
|
|
2848 |
|
|
if (REG_P (reg)
|
2849 |
|
|
&& ! (regno_first == FRAME_POINTER_REGNUM
|
2850 |
|
|
&& (! reload_completed || frame_pointer_needed))
|
2851 |
|
|
#if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
|
2852 |
|
|
&& ! (regno_first == HARD_FRAME_POINTER_REGNUM
|
2853 |
|
|
&& (! reload_completed || frame_pointer_needed))
|
2854 |
|
|
#endif
|
2855 |
|
|
#if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
|
2856 |
|
|
&& ! (regno_first == ARG_POINTER_REGNUM && fixed_regs[regno_first])
|
2857 |
|
|
#endif
|
2858 |
|
|
)
|
2859 |
|
|
{
|
2860 |
|
|
int some_was_live = 0, some_was_dead = 0;
|
2861 |
|
|
|
2862 |
|
|
for (i = regno_first; i <= regno_last; ++i)
|
2863 |
|
|
{
|
2864 |
|
|
int needed_regno = REGNO_REG_SET_P (pbi->reg_live, i);
|
2865 |
|
|
if (pbi->local_set)
|
2866 |
|
|
{
|
2867 |
|
|
/* Order of the set operation matters here since both
|
2868 |
|
|
sets may be the same. */
|
2869 |
|
|
CLEAR_REGNO_REG_SET (pbi->cond_local_set, i);
|
2870 |
|
|
if (cond != NULL_RTX
|
2871 |
|
|
&& ! REGNO_REG_SET_P (pbi->local_set, i))
|
2872 |
|
|
SET_REGNO_REG_SET (pbi->cond_local_set, i);
|
2873 |
|
|
else
|
2874 |
|
|
SET_REGNO_REG_SET (pbi->local_set, i);
|
2875 |
|
|
}
|
2876 |
|
|
if (code != CLOBBER || needed_regno)
|
2877 |
|
|
SET_REGNO_REG_SET (pbi->new_set, i);
|
2878 |
|
|
|
2879 |
|
|
some_was_live |= needed_regno;
|
2880 |
|
|
some_was_dead |= ! needed_regno;
|
2881 |
|
|
}
|
2882 |
|
|
|
2883 |
|
|
#ifdef HAVE_conditional_execution
|
2884 |
|
|
/* Consider conditional death in deciding that the register needs
|
2885 |
|
|
a death note. */
|
2886 |
|
|
if (some_was_live && ! not_dead
|
2887 |
|
|
/* The stack pointer is never dead. Well, not strictly true,
|
2888 |
|
|
but it's very difficult to tell from here. Hopefully
|
2889 |
|
|
combine_stack_adjustments will fix up the most egregious
|
2890 |
|
|
errors. */
|
2891 |
|
|
&& regno_first != STACK_POINTER_REGNUM)
|
2892 |
|
|
{
|
2893 |
|
|
for (i = regno_first; i <= regno_last; ++i)
|
2894 |
|
|
if (! mark_regno_cond_dead (pbi, i, cond))
|
2895 |
|
|
not_dead |= ((unsigned long) 1) << (i - regno_first);
|
2896 |
|
|
}
|
2897 |
|
|
#endif
|
2898 |
|
|
|
2899 |
|
|
/* Additional data to record if this is the final pass. */
|
2900 |
|
|
if (flags & (PROP_LOG_LINKS | PROP_REG_INFO
|
2901 |
|
|
| PROP_DEATH_NOTES | PROP_AUTOINC))
|
2902 |
|
|
{
|
2903 |
|
|
rtx y;
|
2904 |
|
|
int blocknum = pbi->bb->index;
|
2905 |
|
|
|
2906 |
|
|
y = NULL_RTX;
|
2907 |
|
|
if (flags & (PROP_LOG_LINKS | PROP_AUTOINC))
|
2908 |
|
|
{
|
2909 |
|
|
y = pbi->reg_next_use[regno_first];
|
2910 |
|
|
|
2911 |
|
|
/* The next use is no longer next, since a store intervenes. */
|
2912 |
|
|
for (i = regno_first; i <= regno_last; ++i)
|
2913 |
|
|
pbi->reg_next_use[i] = 0;
|
2914 |
|
|
}
|
2915 |
|
|
|
2916 |
|
|
if (flags & PROP_REG_INFO)
|
2917 |
|
|
{
|
2918 |
|
|
for (i = regno_first; i <= regno_last; ++i)
|
2919 |
|
|
{
|
2920 |
|
|
/* Count (weighted) references, stores, etc. This counts a
|
2921 |
|
|
register twice if it is modified, but that is correct. */
|
2922 |
|
|
REG_N_SETS (i) += 1;
|
2923 |
|
|
REG_N_REFS (i) += 1;
|
2924 |
|
|
REG_FREQ (i) += REG_FREQ_FROM_BB (pbi->bb);
|
2925 |
|
|
|
2926 |
|
|
/* The insns where a reg is live are normally counted
|
2927 |
|
|
elsewhere, but we want the count to include the insn
|
2928 |
|
|
where the reg is set, and the normal counting mechanism
|
2929 |
|
|
would not count it. */
|
2930 |
|
|
REG_LIVE_LENGTH (i) += 1;
|
2931 |
|
|
}
|
2932 |
|
|
|
2933 |
|
|
/* If this is a hard reg, record this function uses the reg. */
|
2934 |
|
|
if (regno_first < FIRST_PSEUDO_REGISTER)
|
2935 |
|
|
{
|
2936 |
|
|
for (i = regno_first; i <= regno_last; i++)
|
2937 |
|
|
regs_ever_live[i] = 1;
|
2938 |
|
|
if (flags & PROP_ASM_SCAN)
|
2939 |
|
|
for (i = regno_first; i <= regno_last; i++)
|
2940 |
|
|
regs_asm_clobbered[i] = 1;
|
2941 |
|
|
}
|
2942 |
|
|
else
|
2943 |
|
|
{
|
2944 |
|
|
/* Keep track of which basic blocks each reg appears in. */
|
2945 |
|
|
if (REG_BASIC_BLOCK (regno_first) == REG_BLOCK_UNKNOWN)
|
2946 |
|
|
REG_BASIC_BLOCK (regno_first) = blocknum;
|
2947 |
|
|
else if (REG_BASIC_BLOCK (regno_first) != blocknum)
|
2948 |
|
|
REG_BASIC_BLOCK (regno_first) = REG_BLOCK_GLOBAL;
|
2949 |
|
|
}
|
2950 |
|
|
}
|
2951 |
|
|
|
2952 |
|
|
if (! some_was_dead)
|
2953 |
|
|
{
|
2954 |
|
|
if (flags & PROP_LOG_LINKS)
|
2955 |
|
|
{
|
2956 |
|
|
/* Make a logical link from the next following insn
|
2957 |
|
|
that uses this register, back to this insn.
|
2958 |
|
|
The following insns have already been processed.
|
2959 |
|
|
|
2960 |
|
|
We don't build a LOG_LINK for hard registers containing
|
2961 |
|
|
in ASM_OPERANDs. If these registers get replaced,
|
2962 |
|
|
we might wind up changing the semantics of the insn,
|
2963 |
|
|
even if reload can make what appear to be valid
|
2964 |
|
|
assignments later.
|
2965 |
|
|
|
2966 |
|
|
We don't build a LOG_LINK for global registers to
|
2967 |
|
|
or from a function call. We don't want to let
|
2968 |
|
|
combine think that it knows what is going on with
|
2969 |
|
|
global registers. */
|
2970 |
|
|
if (y && (BLOCK_NUM (y) == blocknum)
|
2971 |
|
|
&& (regno_first >= FIRST_PSEUDO_REGISTER
|
2972 |
|
|
|| (asm_noperands (PATTERN (y)) < 0
|
2973 |
|
|
&& ! ((CALL_P (insn)
|
2974 |
|
|
|| CALL_P (y))
|
2975 |
|
|
&& global_regs[regno_first]))))
|
2976 |
|
|
LOG_LINKS (y) = alloc_INSN_LIST (insn, LOG_LINKS (y));
|
2977 |
|
|
}
|
2978 |
|
|
}
|
2979 |
|
|
else if (not_dead)
|
2980 |
|
|
;
|
2981 |
|
|
else if (! some_was_live)
|
2982 |
|
|
{
|
2983 |
|
|
if (flags & PROP_REG_INFO)
|
2984 |
|
|
REG_N_DEATHS (regno_first) += 1;
|
2985 |
|
|
|
2986 |
|
|
if (flags & PROP_DEATH_NOTES
|
2987 |
|
|
#ifdef STACK_REGS
|
2988 |
|
|
&& (!(flags & PROP_POST_REGSTACK)
|
2989 |
|
|
|| !IN_RANGE (REGNO (reg), FIRST_STACK_REG,
|
2990 |
|
|
LAST_STACK_REG))
|
2991 |
|
|
#endif
|
2992 |
|
|
)
|
2993 |
|
|
{
|
2994 |
|
|
/* Note that dead stores have already been deleted
|
2995 |
|
|
when possible. If we get here, we have found a
|
2996 |
|
|
dead store that cannot be eliminated (because the
|
2997 |
|
|
same insn does something useful). Indicate this
|
2998 |
|
|
by marking the reg being set as dying here. */
|
2999 |
|
|
REG_NOTES (insn)
|
3000 |
|
|
= alloc_EXPR_LIST (REG_UNUSED, reg, REG_NOTES (insn));
|
3001 |
|
|
}
|
3002 |
|
|
}
|
3003 |
|
|
else
|
3004 |
|
|
{
|
3005 |
|
|
if (flags & PROP_DEATH_NOTES
|
3006 |
|
|
#ifdef STACK_REGS
|
3007 |
|
|
&& (!(flags & PROP_POST_REGSTACK)
|
3008 |
|
|
|| !IN_RANGE (REGNO (reg), FIRST_STACK_REG,
|
3009 |
|
|
LAST_STACK_REG))
|
3010 |
|
|
#endif
|
3011 |
|
|
)
|
3012 |
|
|
{
|
3013 |
|
|
/* This is a case where we have a multi-word hard register
|
3014 |
|
|
and some, but not all, of the words of the register are
|
3015 |
|
|
needed in subsequent insns. Write REG_UNUSED notes
|
3016 |
|
|
for those parts that were not needed. This case should
|
3017 |
|
|
be rare. */
|
3018 |
|
|
|
3019 |
|
|
for (i = regno_first; i <= regno_last; ++i)
|
3020 |
|
|
if (! REGNO_REG_SET_P (pbi->reg_live, i))
|
3021 |
|
|
REG_NOTES (insn)
|
3022 |
|
|
= alloc_EXPR_LIST (REG_UNUSED,
|
3023 |
|
|
regno_reg_rtx[i],
|
3024 |
|
|
REG_NOTES (insn));
|
3025 |
|
|
}
|
3026 |
|
|
}
|
3027 |
|
|
}
|
3028 |
|
|
|
3029 |
|
|
/* Mark the register as being dead. */
|
3030 |
|
|
if (some_was_live
|
3031 |
|
|
/* The stack pointer is never dead. Well, not strictly true,
|
3032 |
|
|
but it's very difficult to tell from here. Hopefully
|
3033 |
|
|
combine_stack_adjustments will fix up the most egregious
|
3034 |
|
|
errors. */
|
3035 |
|
|
&& regno_first != STACK_POINTER_REGNUM)
|
3036 |
|
|
{
|
3037 |
|
|
for (i = regno_first; i <= regno_last; ++i)
|
3038 |
|
|
if (!(not_dead & (((unsigned long) 1) << (i - regno_first))))
|
3039 |
|
|
{
|
3040 |
|
|
if ((pbi->flags & PROP_REG_INFO)
|
3041 |
|
|
&& REGNO_REG_SET_P (pbi->reg_live, i))
|
3042 |
|
|
{
|
3043 |
|
|
REG_LIVE_LENGTH (i) += pbi->insn_num - reg_deaths[i];
|
3044 |
|
|
reg_deaths[i] = 0;
|
3045 |
|
|
}
|
3046 |
|
|
CLEAR_REGNO_REG_SET (pbi->reg_live, i);
|
3047 |
|
|
}
|
3048 |
|
|
if (flags & PROP_DEAD_INSN)
|
3049 |
|
|
emit_insn_after (gen_rtx_CLOBBER (VOIDmode, reg), insn);
|
3050 |
|
|
}
|
3051 |
|
|
}
|
3052 |
|
|
else if (REG_P (reg))
|
3053 |
|
|
{
|
3054 |
|
|
if (flags & (PROP_LOG_LINKS | PROP_AUTOINC))
|
3055 |
|
|
pbi->reg_next_use[regno_first] = 0;
|
3056 |
|
|
|
3057 |
|
|
if ((flags & PROP_REG_INFO) != 0
|
3058 |
|
|
&& (flags & PROP_ASM_SCAN) != 0
|
3059 |
|
|
&& regno_first < FIRST_PSEUDO_REGISTER)
|
3060 |
|
|
{
|
3061 |
|
|
for (i = regno_first; i <= regno_last; i++)
|
3062 |
|
|
regs_asm_clobbered[i] = 1;
|
3063 |
|
|
}
|
3064 |
|
|
}
|
3065 |
|
|
|
3066 |
|
|
/* If this is the last pass and this is a SCRATCH, show it will be dying
|
3067 |
|
|
here and count it. */
|
3068 |
|
|
else if (GET_CODE (reg) == SCRATCH)
|
3069 |
|
|
{
|
3070 |
|
|
if (flags & PROP_DEATH_NOTES
|
3071 |
|
|
#ifdef STACK_REGS
|
3072 |
|
|
&& (!(flags & PROP_POST_REGSTACK)
|
3073 |
|
|
|| !IN_RANGE (REGNO (reg), FIRST_STACK_REG, LAST_STACK_REG))
|
3074 |
|
|
#endif
|
3075 |
|
|
)
|
3076 |
|
|
REG_NOTES (insn)
|
3077 |
|
|
= alloc_EXPR_LIST (REG_UNUSED, reg, REG_NOTES (insn));
|
3078 |
|
|
}
|
3079 |
|
|
}
|
3080 |
|
|
|
3081 |
|
|
#ifdef HAVE_conditional_execution
|
3082 |
|
|
/* Mark REGNO conditionally dead.
|
3083 |
|
|
Return true if the register is now unconditionally dead. */
|
3084 |
|
|
|
3085 |
|
|
static int
|
3086 |
|
|
mark_regno_cond_dead (struct propagate_block_info *pbi, int regno, rtx cond)
|
3087 |
|
|
{
|
3088 |
|
|
/* If this is a store to a predicate register, the value of the
|
3089 |
|
|
predicate is changing, we don't know that the predicate as seen
|
3090 |
|
|
before is the same as that seen after. Flush all dependent
|
3091 |
|
|
conditions from reg_cond_dead. This will make all such
|
3092 |
|
|
conditionally live registers unconditionally live. */
|
3093 |
|
|
if (REGNO_REG_SET_P (pbi->reg_cond_reg, regno))
|
3094 |
|
|
flush_reg_cond_reg (pbi, regno);
|
3095 |
|
|
|
3096 |
|
|
/* If this is an unconditional store, remove any conditional
|
3097 |
|
|
life that may have existed. */
|
3098 |
|
|
if (cond == NULL_RTX)
|
3099 |
|
|
splay_tree_remove (pbi->reg_cond_dead, regno);
|
3100 |
|
|
else
|
3101 |
|
|
{
|
3102 |
|
|
splay_tree_node node;
|
3103 |
|
|
struct reg_cond_life_info *rcli;
|
3104 |
|
|
rtx ncond;
|
3105 |
|
|
|
3106 |
|
|
/* Otherwise this is a conditional set. Record that fact.
|
3107 |
|
|
It may have been conditionally used, or there may be a
|
3108 |
|
|
subsequent set with a complementary condition. */
|
3109 |
|
|
|
3110 |
|
|
node = splay_tree_lookup (pbi->reg_cond_dead, regno);
|
3111 |
|
|
if (node == NULL)
|
3112 |
|
|
{
|
3113 |
|
|
/* The register was unconditionally live previously.
|
3114 |
|
|
Record the current condition as the condition under
|
3115 |
|
|
which it is dead. */
|
3116 |
|
|
rcli = XNEW (struct reg_cond_life_info);
|
3117 |
|
|
rcli->condition = cond;
|
3118 |
|
|
rcli->stores = cond;
|
3119 |
|
|
rcli->orig_condition = const0_rtx;
|
3120 |
|
|
splay_tree_insert (pbi->reg_cond_dead, regno,
|
3121 |
|
|
(splay_tree_value) rcli);
|
3122 |
|
|
|
3123 |
|
|
SET_REGNO_REG_SET (pbi->reg_cond_reg, REGNO (XEXP (cond, 0)));
|
3124 |
|
|
|
3125 |
|
|
/* Not unconditionally dead. */
|
3126 |
|
|
return 0;
|
3127 |
|
|
}
|
3128 |
|
|
else
|
3129 |
|
|
{
|
3130 |
|
|
/* The register was conditionally live previously.
|
3131 |
|
|
Add the new condition to the old. */
|
3132 |
|
|
rcli = (struct reg_cond_life_info *) node->value;
|
3133 |
|
|
ncond = rcli->condition;
|
3134 |
|
|
ncond = ior_reg_cond (ncond, cond, 1);
|
3135 |
|
|
if (rcli->stores == const0_rtx)
|
3136 |
|
|
rcli->stores = cond;
|
3137 |
|
|
else if (rcli->stores != const1_rtx)
|
3138 |
|
|
rcli->stores = ior_reg_cond (rcli->stores, cond, 1);
|
3139 |
|
|
|
3140 |
|
|
/* If the register is now unconditionally dead, remove the entry
|
3141 |
|
|
in the splay_tree. A register is unconditionally dead if the
|
3142 |
|
|
dead condition ncond is true. A register is also unconditionally
|
3143 |
|
|
dead if the sum of all conditional stores is an unconditional
|
3144 |
|
|
store (stores is true), and the dead condition is identically the
|
3145 |
|
|
same as the original dead condition initialized at the end of
|
3146 |
|
|
the block. This is a pointer compare, not an rtx_equal_p
|
3147 |
|
|
compare. */
|
3148 |
|
|
if (ncond == const1_rtx
|
3149 |
|
|
|| (ncond == rcli->orig_condition && rcli->stores == const1_rtx))
|
3150 |
|
|
splay_tree_remove (pbi->reg_cond_dead, regno);
|
3151 |
|
|
else
|
3152 |
|
|
{
|
3153 |
|
|
rcli->condition = ncond;
|
3154 |
|
|
|
3155 |
|
|
SET_REGNO_REG_SET (pbi->reg_cond_reg, REGNO (XEXP (cond, 0)));
|
3156 |
|
|
|
3157 |
|
|
/* Not unconditionally dead. */
|
3158 |
|
|
return 0;
|
3159 |
|
|
}
|
3160 |
|
|
}
|
3161 |
|
|
}
|
3162 |
|
|
|
3163 |
|
|
return 1;
|
3164 |
|
|
}
|
3165 |
|
|
|
3166 |
|
|
/* Called from splay_tree_delete for pbi->reg_cond_life. */
|
3167 |
|
|
|
3168 |
|
|
static void
|
3169 |
|
|
free_reg_cond_life_info (splay_tree_value value)
|
3170 |
|
|
{
|
3171 |
|
|
struct reg_cond_life_info *rcli = (struct reg_cond_life_info *) value;
|
3172 |
|
|
free (rcli);
|
3173 |
|
|
}
|
3174 |
|
|
|
3175 |
|
|
/* Helper function for flush_reg_cond_reg. */
|
3176 |
|
|
|
3177 |
|
|
static int
|
3178 |
|
|
flush_reg_cond_reg_1 (splay_tree_node node, void *data)
|
3179 |
|
|
{
|
3180 |
|
|
struct reg_cond_life_info *rcli;
|
3181 |
|
|
int *xdata = (int *) data;
|
3182 |
|
|
unsigned int regno = xdata[0];
|
3183 |
|
|
|
3184 |
|
|
/* Don't need to search if last flushed value was farther on in
|
3185 |
|
|
the in-order traversal. */
|
3186 |
|
|
if (xdata[1] >= (int) node->key)
|
3187 |
|
|
return 0;
|
3188 |
|
|
|
3189 |
|
|
/* Splice out portions of the expression that refer to regno. */
|
3190 |
|
|
rcli = (struct reg_cond_life_info *) node->value;
|
3191 |
|
|
rcli->condition = elim_reg_cond (rcli->condition, regno);
|
3192 |
|
|
if (rcli->stores != const0_rtx && rcli->stores != const1_rtx)
|
3193 |
|
|
rcli->stores = elim_reg_cond (rcli->stores, regno);
|
3194 |
|
|
|
3195 |
|
|
/* If the entire condition is now false, signal the node to be removed. */
|
3196 |
|
|
if (rcli->condition == const0_rtx)
|
3197 |
|
|
{
|
3198 |
|
|
xdata[1] = node->key;
|
3199 |
|
|
return -1;
|
3200 |
|
|
}
|
3201 |
|
|
else
|
3202 |
|
|
gcc_assert (rcli->condition != const1_rtx);
|
3203 |
|
|
|
3204 |
|
|
return 0;
|
3205 |
|
|
}
|
3206 |
|
|
|
3207 |
|
|
/* Flush all (sub) expressions referring to REGNO from REG_COND_LIVE. */
|
3208 |
|
|
|
3209 |
|
|
static void
|
3210 |
|
|
flush_reg_cond_reg (struct propagate_block_info *pbi, int regno)
|
3211 |
|
|
{
|
3212 |
|
|
int pair[2];
|
3213 |
|
|
|
3214 |
|
|
pair[0] = regno;
|
3215 |
|
|
pair[1] = -1;
|
3216 |
|
|
while (splay_tree_foreach (pbi->reg_cond_dead,
|
3217 |
|
|
flush_reg_cond_reg_1, pair) == -1)
|
3218 |
|
|
splay_tree_remove (pbi->reg_cond_dead, pair[1]);
|
3219 |
|
|
|
3220 |
|
|
CLEAR_REGNO_REG_SET (pbi->reg_cond_reg, regno);
|
3221 |
|
|
}
|
3222 |
|
|
|
3223 |
|
|
/* Logical arithmetic on predicate conditions. IOR, NOT and AND.
|
3224 |
|
|
For ior/and, the ADD flag determines whether we want to add the new
|
3225 |
|
|
condition X to the old one unconditionally. If it is zero, we will
|
3226 |
|
|
only return a new expression if X allows us to simplify part of
|
3227 |
|
|
OLD, otherwise we return NULL to the caller.
|
3228 |
|
|
If ADD is nonzero, we will return a new condition in all cases. The
|
3229 |
|
|
toplevel caller of one of these functions should always pass 1 for
|
3230 |
|
|
ADD. */
|
3231 |
|
|
|
3232 |
|
|
static rtx
|
3233 |
|
|
ior_reg_cond (rtx old, rtx x, int add)
|
3234 |
|
|
{
|
3235 |
|
|
rtx op0, op1;
|
3236 |
|
|
|
3237 |
|
|
if (COMPARISON_P (old))
|
3238 |
|
|
{
|
3239 |
|
|
if (COMPARISON_P (x)
|
3240 |
|
|
&& REVERSE_CONDEXEC_PREDICATES_P (x, old)
|
3241 |
|
|
&& REGNO (XEXP (x, 0)) == REGNO (XEXP (old, 0)))
|
3242 |
|
|
return const1_rtx;
|
3243 |
|
|
if (GET_CODE (x) == GET_CODE (old)
|
3244 |
|
|
&& REGNO (XEXP (x, 0)) == REGNO (XEXP (old, 0)))
|
3245 |
|
|
return old;
|
3246 |
|
|
if (! add)
|
3247 |
|
|
return NULL;
|
3248 |
|
|
return gen_rtx_IOR (0, old, x);
|
3249 |
|
|
}
|
3250 |
|
|
|
3251 |
|
|
switch (GET_CODE (old))
|
3252 |
|
|
{
|
3253 |
|
|
case IOR:
|
3254 |
|
|
op0 = ior_reg_cond (XEXP (old, 0), x, 0);
|
3255 |
|
|
op1 = ior_reg_cond (XEXP (old, 1), x, 0);
|
3256 |
|
|
if (op0 != NULL || op1 != NULL)
|
3257 |
|
|
{
|
3258 |
|
|
if (op0 == const0_rtx)
|
3259 |
|
|
return op1 ? op1 : gen_rtx_IOR (0, XEXP (old, 1), x);
|
3260 |
|
|
if (op1 == const0_rtx)
|
3261 |
|
|
return op0 ? op0 : gen_rtx_IOR (0, XEXP (old, 0), x);
|
3262 |
|
|
if (op0 == const1_rtx || op1 == const1_rtx)
|
3263 |
|
|
return const1_rtx;
|
3264 |
|
|
if (op0 == NULL)
|
3265 |
|
|
op0 = gen_rtx_IOR (0, XEXP (old, 0), x);
|
3266 |
|
|
else if (rtx_equal_p (x, op0))
|
3267 |
|
|
/* (x | A) | x ~ (x | A). */
|
3268 |
|
|
return old;
|
3269 |
|
|
if (op1 == NULL)
|
3270 |
|
|
op1 = gen_rtx_IOR (0, XEXP (old, 1), x);
|
3271 |
|
|
else if (rtx_equal_p (x, op1))
|
3272 |
|
|
/* (A | x) | x ~ (A | x). */
|
3273 |
|
|
return old;
|
3274 |
|
|
return gen_rtx_IOR (0, op0, op1);
|
3275 |
|
|
}
|
3276 |
|
|
if (! add)
|
3277 |
|
|
return NULL;
|
3278 |
|
|
return gen_rtx_IOR (0, old, x);
|
3279 |
|
|
|
3280 |
|
|
case AND:
|
3281 |
|
|
op0 = ior_reg_cond (XEXP (old, 0), x, 0);
|
3282 |
|
|
op1 = ior_reg_cond (XEXP (old, 1), x, 0);
|
3283 |
|
|
if (op0 != NULL || op1 != NULL)
|
3284 |
|
|
{
|
3285 |
|
|
if (op0 == const1_rtx)
|
3286 |
|
|
return op1 ? op1 : gen_rtx_IOR (0, XEXP (old, 1), x);
|
3287 |
|
|
if (op1 == const1_rtx)
|
3288 |
|
|
return op0 ? op0 : gen_rtx_IOR (0, XEXP (old, 0), x);
|
3289 |
|
|
if (op0 == const0_rtx || op1 == const0_rtx)
|
3290 |
|
|
return const0_rtx;
|
3291 |
|
|
if (op0 == NULL)
|
3292 |
|
|
op0 = gen_rtx_IOR (0, XEXP (old, 0), x);
|
3293 |
|
|
else if (rtx_equal_p (x, op0))
|
3294 |
|
|
/* (x & A) | x ~ x. */
|
3295 |
|
|
return op0;
|
3296 |
|
|
if (op1 == NULL)
|
3297 |
|
|
op1 = gen_rtx_IOR (0, XEXP (old, 1), x);
|
3298 |
|
|
else if (rtx_equal_p (x, op1))
|
3299 |
|
|
/* (A & x) | x ~ x. */
|
3300 |
|
|
return op1;
|
3301 |
|
|
return gen_rtx_AND (0, op0, op1);
|
3302 |
|
|
}
|
3303 |
|
|
if (! add)
|
3304 |
|
|
return NULL;
|
3305 |
|
|
return gen_rtx_IOR (0, old, x);
|
3306 |
|
|
|
3307 |
|
|
case NOT:
|
3308 |
|
|
op0 = and_reg_cond (XEXP (old, 0), not_reg_cond (x), 0);
|
3309 |
|
|
if (op0 != NULL)
|
3310 |
|
|
return not_reg_cond (op0);
|
3311 |
|
|
if (! add)
|
3312 |
|
|
return NULL;
|
3313 |
|
|
return gen_rtx_IOR (0, old, x);
|
3314 |
|
|
|
3315 |
|
|
default:
|
3316 |
|
|
gcc_unreachable ();
|
3317 |
|
|
}
|
3318 |
|
|
}
|
3319 |
|
|
|
3320 |
|
|
static rtx
|
3321 |
|
|
not_reg_cond (rtx x)
|
3322 |
|
|
{
|
3323 |
|
|
if (x == const0_rtx)
|
3324 |
|
|
return const1_rtx;
|
3325 |
|
|
else if (x == const1_rtx)
|
3326 |
|
|
return const0_rtx;
|
3327 |
|
|
if (GET_CODE (x) == NOT)
|
3328 |
|
|
return XEXP (x, 0);
|
3329 |
|
|
if (COMPARISON_P (x)
|
3330 |
|
|
&& REG_P (XEXP (x, 0)))
|
3331 |
|
|
{
|
3332 |
|
|
gcc_assert (XEXP (x, 1) == const0_rtx);
|
3333 |
|
|
|
3334 |
|
|
return gen_rtx_fmt_ee (reversed_comparison_code (x, NULL),
|
3335 |
|
|
VOIDmode, XEXP (x, 0), const0_rtx);
|
3336 |
|
|
}
|
3337 |
|
|
return gen_rtx_NOT (0, x);
|
3338 |
|
|
}
|
3339 |
|
|
|
3340 |
|
|
static rtx
|
3341 |
|
|
and_reg_cond (rtx old, rtx x, int add)
|
3342 |
|
|
{
|
3343 |
|
|
rtx op0, op1;
|
3344 |
|
|
|
3345 |
|
|
if (COMPARISON_P (old))
|
3346 |
|
|
{
|
3347 |
|
|
if (COMPARISON_P (x)
|
3348 |
|
|
&& GET_CODE (x) == reversed_comparison_code (old, NULL)
|
3349 |
|
|
&& REGNO (XEXP (x, 0)) == REGNO (XEXP (old, 0)))
|
3350 |
|
|
return const0_rtx;
|
3351 |
|
|
if (GET_CODE (x) == GET_CODE (old)
|
3352 |
|
|
&& REGNO (XEXP (x, 0)) == REGNO (XEXP (old, 0)))
|
3353 |
|
|
return old;
|
3354 |
|
|
if (! add)
|
3355 |
|
|
return NULL;
|
3356 |
|
|
return gen_rtx_AND (0, old, x);
|
3357 |
|
|
}
|
3358 |
|
|
|
3359 |
|
|
switch (GET_CODE (old))
|
3360 |
|
|
{
|
3361 |
|
|
case IOR:
|
3362 |
|
|
op0 = and_reg_cond (XEXP (old, 0), x, 0);
|
3363 |
|
|
op1 = and_reg_cond (XEXP (old, 1), x, 0);
|
3364 |
|
|
if (op0 != NULL || op1 != NULL)
|
3365 |
|
|
{
|
3366 |
|
|
if (op0 == const0_rtx)
|
3367 |
|
|
return op1 ? op1 : gen_rtx_AND (0, XEXP (old, 1), x);
|
3368 |
|
|
if (op1 == const0_rtx)
|
3369 |
|
|
return op0 ? op0 : gen_rtx_AND (0, XEXP (old, 0), x);
|
3370 |
|
|
if (op0 == const1_rtx || op1 == const1_rtx)
|
3371 |
|
|
return const1_rtx;
|
3372 |
|
|
if (op0 == NULL)
|
3373 |
|
|
op0 = gen_rtx_AND (0, XEXP (old, 0), x);
|
3374 |
|
|
else if (rtx_equal_p (x, op0))
|
3375 |
|
|
/* (x | A) & x ~ x. */
|
3376 |
|
|
return op0;
|
3377 |
|
|
if (op1 == NULL)
|
3378 |
|
|
op1 = gen_rtx_AND (0, XEXP (old, 1), x);
|
3379 |
|
|
else if (rtx_equal_p (x, op1))
|
3380 |
|
|
/* (A | x) & x ~ x. */
|
3381 |
|
|
return op1;
|
3382 |
|
|
return gen_rtx_IOR (0, op0, op1);
|
3383 |
|
|
}
|
3384 |
|
|
if (! add)
|
3385 |
|
|
return NULL;
|
3386 |
|
|
return gen_rtx_AND (0, old, x);
|
3387 |
|
|
|
3388 |
|
|
case AND:
|
3389 |
|
|
op0 = and_reg_cond (XEXP (old, 0), x, 0);
|
3390 |
|
|
op1 = and_reg_cond (XEXP (old, 1), x, 0);
|
3391 |
|
|
if (op0 != NULL || op1 != NULL)
|
3392 |
|
|
{
|
3393 |
|
|
if (op0 == const1_rtx)
|
3394 |
|
|
return op1 ? op1 : gen_rtx_AND (0, XEXP (old, 1), x);
|
3395 |
|
|
if (op1 == const1_rtx)
|
3396 |
|
|
return op0 ? op0 : gen_rtx_AND (0, XEXP (old, 0), x);
|
3397 |
|
|
if (op0 == const0_rtx || op1 == const0_rtx)
|
3398 |
|
|
return const0_rtx;
|
3399 |
|
|
if (op0 == NULL)
|
3400 |
|
|
op0 = gen_rtx_AND (0, XEXP (old, 0), x);
|
3401 |
|
|
else if (rtx_equal_p (x, op0))
|
3402 |
|
|
/* (x & A) & x ~ (x & A). */
|
3403 |
|
|
return old;
|
3404 |
|
|
if (op1 == NULL)
|
3405 |
|
|
op1 = gen_rtx_AND (0, XEXP (old, 1), x);
|
3406 |
|
|
else if (rtx_equal_p (x, op1))
|
3407 |
|
|
/* (A & x) & x ~ (A & x). */
|
3408 |
|
|
return old;
|
3409 |
|
|
return gen_rtx_AND (0, op0, op1);
|
3410 |
|
|
}
|
3411 |
|
|
if (! add)
|
3412 |
|
|
return NULL;
|
3413 |
|
|
return gen_rtx_AND (0, old, x);
|
3414 |
|
|
|
3415 |
|
|
case NOT:
|
3416 |
|
|
op0 = ior_reg_cond (XEXP (old, 0), not_reg_cond (x), 0);
|
3417 |
|
|
if (op0 != NULL)
|
3418 |
|
|
return not_reg_cond (op0);
|
3419 |
|
|
if (! add)
|
3420 |
|
|
return NULL;
|
3421 |
|
|
return gen_rtx_AND (0, old, x);
|
3422 |
|
|
|
3423 |
|
|
default:
|
3424 |
|
|
gcc_unreachable ();
|
3425 |
|
|
}
|
3426 |
|
|
}
|
3427 |
|
|
|
3428 |
|
|
/* Given a condition X, remove references to reg REGNO and return the
|
3429 |
|
|
new condition. The removal will be done so that all conditions
|
3430 |
|
|
involving REGNO are considered to evaluate to false. This function
|
3431 |
|
|
is used when the value of REGNO changes. */
|
3432 |
|
|
|
3433 |
|
|
static rtx
|
3434 |
|
|
elim_reg_cond (rtx x, unsigned int regno)
|
3435 |
|
|
{
|
3436 |
|
|
rtx op0, op1;
|
3437 |
|
|
|
3438 |
|
|
if (COMPARISON_P (x))
|
3439 |
|
|
{
|
3440 |
|
|
if (REGNO (XEXP (x, 0)) == regno)
|
3441 |
|
|
return const0_rtx;
|
3442 |
|
|
return x;
|
3443 |
|
|
}
|
3444 |
|
|
|
3445 |
|
|
switch (GET_CODE (x))
|
3446 |
|
|
{
|
3447 |
|
|
case AND:
|
3448 |
|
|
op0 = elim_reg_cond (XEXP (x, 0), regno);
|
3449 |
|
|
op1 = elim_reg_cond (XEXP (x, 1), regno);
|
3450 |
|
|
if (op0 == const0_rtx || op1 == const0_rtx)
|
3451 |
|
|
return const0_rtx;
|
3452 |
|
|
if (op0 == const1_rtx)
|
3453 |
|
|
return op1;
|
3454 |
|
|
if (op1 == const1_rtx)
|
3455 |
|
|
return op0;
|
3456 |
|
|
if (op0 == XEXP (x, 0) && op1 == XEXP (x, 1))
|
3457 |
|
|
return x;
|
3458 |
|
|
return gen_rtx_AND (0, op0, op1);
|
3459 |
|
|
|
3460 |
|
|
case IOR:
|
3461 |
|
|
op0 = elim_reg_cond (XEXP (x, 0), regno);
|
3462 |
|
|
op1 = elim_reg_cond (XEXP (x, 1), regno);
|
3463 |
|
|
if (op0 == const1_rtx || op1 == const1_rtx)
|
3464 |
|
|
return const1_rtx;
|
3465 |
|
|
if (op0 == const0_rtx)
|
3466 |
|
|
return op1;
|
3467 |
|
|
if (op1 == const0_rtx)
|
3468 |
|
|
return op0;
|
3469 |
|
|
if (op0 == XEXP (x, 0) && op1 == XEXP (x, 1))
|
3470 |
|
|
return x;
|
3471 |
|
|
return gen_rtx_IOR (0, op0, op1);
|
3472 |
|
|
|
3473 |
|
|
case NOT:
|
3474 |
|
|
op0 = elim_reg_cond (XEXP (x, 0), regno);
|
3475 |
|
|
if (op0 == const0_rtx)
|
3476 |
|
|
return const1_rtx;
|
3477 |
|
|
if (op0 == const1_rtx)
|
3478 |
|
|
return const0_rtx;
|
3479 |
|
|
if (op0 != XEXP (x, 0))
|
3480 |
|
|
return not_reg_cond (op0);
|
3481 |
|
|
return x;
|
3482 |
|
|
|
3483 |
|
|
default:
|
3484 |
|
|
gcc_unreachable ();
|
3485 |
|
|
}
|
3486 |
|
|
}
|
3487 |
|
|
#endif /* HAVE_conditional_execution */
|
3488 |
|
|
|
3489 |
|
|
#ifdef AUTO_INC_DEC
|
3490 |
|
|
|
3491 |
|
|
/* Try to substitute the auto-inc expression INC as the address inside
|
3492 |
|
|
MEM which occurs in INSN. Currently, the address of MEM is an expression
|
3493 |
|
|
involving INCR_REG, and INCR is the next use of INCR_REG; it is an insn
|
3494 |
|
|
that has a single set whose source is a PLUS of INCR_REG and something
|
3495 |
|
|
else. */
|
3496 |
|
|
|
3497 |
|
|
static void
|
3498 |
|
|
attempt_auto_inc (struct propagate_block_info *pbi, rtx inc, rtx insn,
|
3499 |
|
|
rtx mem, rtx incr, rtx incr_reg)
|
3500 |
|
|
{
|
3501 |
|
|
int regno = REGNO (incr_reg);
|
3502 |
|
|
rtx set = single_set (incr);
|
3503 |
|
|
rtx q = SET_DEST (set);
|
3504 |
|
|
rtx y = SET_SRC (set);
|
3505 |
|
|
int opnum = XEXP (y, 0) == incr_reg ? 0 : 1;
|
3506 |
|
|
int changed;
|
3507 |
|
|
|
3508 |
|
|
/* Make sure this reg appears only once in this insn. */
|
3509 |
|
|
if (count_occurrences (PATTERN (insn), incr_reg, 1) != 1)
|
3510 |
|
|
return;
|
3511 |
|
|
|
3512 |
|
|
if (dead_or_set_p (incr, incr_reg)
|
3513 |
|
|
/* Mustn't autoinc an eliminable register. */
|
3514 |
|
|
&& (regno >= FIRST_PSEUDO_REGISTER
|
3515 |
|
|
|| ! TEST_HARD_REG_BIT (elim_reg_set, regno)))
|
3516 |
|
|
{
|
3517 |
|
|
/* This is the simple case. Try to make the auto-inc. If
|
3518 |
|
|
we can't, we are done. Otherwise, we will do any
|
3519 |
|
|
needed updates below. */
|
3520 |
|
|
if (! validate_change (insn, &XEXP (mem, 0), inc, 0))
|
3521 |
|
|
return;
|
3522 |
|
|
}
|
3523 |
|
|
else if (REG_P (q)
|
3524 |
|
|
/* PREV_INSN used here to check the semi-open interval
|
3525 |
|
|
[insn,incr). */
|
3526 |
|
|
&& ! reg_used_between_p (q, PREV_INSN (insn), incr)
|
3527 |
|
|
/* We must also check for sets of q as q may be
|
3528 |
|
|
a call clobbered hard register and there may
|
3529 |
|
|
be a call between PREV_INSN (insn) and incr. */
|
3530 |
|
|
&& ! reg_set_between_p (q, PREV_INSN (insn), incr))
|
3531 |
|
|
{
|
3532 |
|
|
/* We have *p followed sometime later by q = p+size.
|
3533 |
|
|
Both p and q must be live afterward,
|
3534 |
|
|
and q is not used between INSN and its assignment.
|
3535 |
|
|
Change it to q = p, ...*q..., q = q+size.
|
3536 |
|
|
Then fall into the usual case. */
|
3537 |
|
|
rtx insns, temp;
|
3538 |
|
|
|
3539 |
|
|
start_sequence ();
|
3540 |
|
|
emit_move_insn (q, incr_reg);
|
3541 |
|
|
insns = get_insns ();
|
3542 |
|
|
end_sequence ();
|
3543 |
|
|
|
3544 |
|
|
/* If we can't make the auto-inc, or can't make the
|
3545 |
|
|
replacement into Y, exit. There's no point in making
|
3546 |
|
|
the change below if we can't do the auto-inc and doing
|
3547 |
|
|
so is not correct in the pre-inc case. */
|
3548 |
|
|
|
3549 |
|
|
XEXP (inc, 0) = q;
|
3550 |
|
|
validate_change (insn, &XEXP (mem, 0), inc, 1);
|
3551 |
|
|
validate_change (incr, &XEXP (y, opnum), q, 1);
|
3552 |
|
|
if (! apply_change_group ())
|
3553 |
|
|
return;
|
3554 |
|
|
|
3555 |
|
|
/* We now know we'll be doing this change, so emit the
|
3556 |
|
|
new insn(s) and do the updates. */
|
3557 |
|
|
emit_insn_before (insns, insn);
|
3558 |
|
|
|
3559 |
|
|
if (BB_HEAD (pbi->bb) == insn)
|
3560 |
|
|
BB_HEAD (pbi->bb) = insns;
|
3561 |
|
|
|
3562 |
|
|
/* INCR will become a NOTE and INSN won't contain a
|
3563 |
|
|
use of INCR_REG. If a use of INCR_REG was just placed in
|
3564 |
|
|
the insn before INSN, make that the next use.
|
3565 |
|
|
Otherwise, invalidate it. */
|
3566 |
|
|
if (NONJUMP_INSN_P (PREV_INSN (insn))
|
3567 |
|
|
&& GET_CODE (PATTERN (PREV_INSN (insn))) == SET
|
3568 |
|
|
&& SET_SRC (PATTERN (PREV_INSN (insn))) == incr_reg)
|
3569 |
|
|
pbi->reg_next_use[regno] = PREV_INSN (insn);
|
3570 |
|
|
else
|
3571 |
|
|
pbi->reg_next_use[regno] = 0;
|
3572 |
|
|
|
3573 |
|
|
incr_reg = q;
|
3574 |
|
|
regno = REGNO (q);
|
3575 |
|
|
|
3576 |
|
|
if ((pbi->flags & PROP_REG_INFO)
|
3577 |
|
|
&& !REGNO_REG_SET_P (pbi->reg_live, regno))
|
3578 |
|
|
reg_deaths[regno] = pbi->insn_num;
|
3579 |
|
|
|
3580 |
|
|
/* REGNO is now used in INCR which is below INSN, but
|
3581 |
|
|
it previously wasn't live here. If we don't mark
|
3582 |
|
|
it as live, we'll put a REG_DEAD note for it
|
3583 |
|
|
on this insn, which is incorrect. */
|
3584 |
|
|
SET_REGNO_REG_SET (pbi->reg_live, regno);
|
3585 |
|
|
|
3586 |
|
|
/* If there are any calls between INSN and INCR, show
|
3587 |
|
|
that REGNO now crosses them. */
|
3588 |
|
|
for (temp = insn; temp != incr; temp = NEXT_INSN (temp))
|
3589 |
|
|
if (CALL_P (temp))
|
3590 |
|
|
{
|
3591 |
|
|
REG_N_CALLS_CROSSED (regno)++;
|
3592 |
|
|
if (can_throw_internal (temp))
|
3593 |
|
|
REG_N_THROWING_CALLS_CROSSED (regno)++;
|
3594 |
|
|
}
|
3595 |
|
|
|
3596 |
|
|
/* Invalidate alias info for Q since we just changed its value. */
|
3597 |
|
|
clear_reg_alias_info (q);
|
3598 |
|
|
}
|
3599 |
|
|
else
|
3600 |
|
|
return;
|
3601 |
|
|
|
3602 |
|
|
/* If we haven't returned, it means we were able to make the
|
3603 |
|
|
auto-inc, so update the status. First, record that this insn
|
3604 |
|
|
has an implicit side effect. */
|
3605 |
|
|
|
3606 |
|
|
REG_NOTES (insn) = alloc_EXPR_LIST (REG_INC, incr_reg, REG_NOTES (insn));
|
3607 |
|
|
|
3608 |
|
|
/* Modify the old increment-insn to simply copy
|
3609 |
|
|
the already-incremented value of our register. */
|
3610 |
|
|
changed = validate_change (incr, &SET_SRC (set), incr_reg, 0);
|
3611 |
|
|
gcc_assert (changed);
|
3612 |
|
|
|
3613 |
|
|
/* If that makes it a no-op (copying the register into itself) delete
|
3614 |
|
|
it so it won't appear to be a "use" and a "set" of this
|
3615 |
|
|
register. */
|
3616 |
|
|
if (REGNO (SET_DEST (set)) == REGNO (incr_reg))
|
3617 |
|
|
{
|
3618 |
|
|
/* If the original source was dead, it's dead now. */
|
3619 |
|
|
rtx note;
|
3620 |
|
|
|
3621 |
|
|
while ((note = find_reg_note (incr, REG_DEAD, NULL_RTX)) != NULL_RTX)
|
3622 |
|
|
{
|
3623 |
|
|
remove_note (incr, note);
|
3624 |
|
|
if (XEXP (note, 0) != incr_reg)
|
3625 |
|
|
{
|
3626 |
|
|
unsigned int regno = REGNO (XEXP (note, 0));
|
3627 |
|
|
|
3628 |
|
|
if ((pbi->flags & PROP_REG_INFO)
|
3629 |
|
|
&& REGNO_REG_SET_P (pbi->reg_live, regno))
|
3630 |
|
|
{
|
3631 |
|
|
REG_LIVE_LENGTH (regno) += pbi->insn_num - reg_deaths[regno];
|
3632 |
|
|
reg_deaths[regno] = 0;
|
3633 |
|
|
}
|
3634 |
|
|
CLEAR_REGNO_REG_SET (pbi->reg_live, REGNO (XEXP (note, 0)));
|
3635 |
|
|
}
|
3636 |
|
|
}
|
3637 |
|
|
|
3638 |
|
|
SET_INSN_DELETED (incr);
|
3639 |
|
|
}
|
3640 |
|
|
|
3641 |
|
|
if (regno >= FIRST_PSEUDO_REGISTER)
|
3642 |
|
|
{
|
3643 |
|
|
/* Count an extra reference to the reg. When a reg is
|
3644 |
|
|
incremented, spilling it is worse, so we want to make
|
3645 |
|
|
that less likely. */
|
3646 |
|
|
REG_FREQ (regno) += REG_FREQ_FROM_BB (pbi->bb);
|
3647 |
|
|
|
3648 |
|
|
/* Count the increment as a setting of the register,
|
3649 |
|
|
even though it isn't a SET in rtl. */
|
3650 |
|
|
REG_N_SETS (regno)++;
|
3651 |
|
|
}
|
3652 |
|
|
}
|
3653 |
|
|
|
3654 |
|
|
/* X is a MEM found in INSN. See if we can convert it into an auto-increment
|
3655 |
|
|
reference. */
|
3656 |
|
|
|
3657 |
|
|
static void
|
3658 |
|
|
find_auto_inc (struct propagate_block_info *pbi, rtx x, rtx insn)
|
3659 |
|
|
{
|
3660 |
|
|
rtx addr = XEXP (x, 0);
|
3661 |
|
|
HOST_WIDE_INT offset = 0;
|
3662 |
|
|
rtx set, y, incr, inc_val;
|
3663 |
|
|
int regno;
|
3664 |
|
|
int size = GET_MODE_SIZE (GET_MODE (x));
|
3665 |
|
|
|
3666 |
|
|
if (JUMP_P (insn))
|
3667 |
|
|
return;
|
3668 |
|
|
|
3669 |
|
|
/* Here we detect use of an index register which might be good for
|
3670 |
|
|
postincrement, postdecrement, preincrement, or predecrement. */
|
3671 |
|
|
|
3672 |
|
|
if (GET_CODE (addr) == PLUS && GET_CODE (XEXP (addr, 1)) == CONST_INT)
|
3673 |
|
|
offset = INTVAL (XEXP (addr, 1)), addr = XEXP (addr, 0);
|
3674 |
|
|
|
3675 |
|
|
if (!REG_P (addr))
|
3676 |
|
|
return;
|
3677 |
|
|
|
3678 |
|
|
regno = REGNO (addr);
|
3679 |
|
|
|
3680 |
|
|
/* Is the next use an increment that might make auto-increment? */
|
3681 |
|
|
incr = pbi->reg_next_use[regno];
|
3682 |
|
|
if (incr == 0 || BLOCK_NUM (incr) != BLOCK_NUM (insn))
|
3683 |
|
|
return;
|
3684 |
|
|
set = single_set (incr);
|
3685 |
|
|
if (set == 0 || GET_CODE (set) != SET)
|
3686 |
|
|
return;
|
3687 |
|
|
y = SET_SRC (set);
|
3688 |
|
|
|
3689 |
|
|
if (GET_CODE (y) != PLUS)
|
3690 |
|
|
return;
|
3691 |
|
|
|
3692 |
|
|
if (REG_P (XEXP (y, 0)) && REGNO (XEXP (y, 0)) == REGNO (addr))
|
3693 |
|
|
inc_val = XEXP (y, 1);
|
3694 |
|
|
else if (REG_P (XEXP (y, 1)) && REGNO (XEXP (y, 1)) == REGNO (addr))
|
3695 |
|
|
inc_val = XEXP (y, 0);
|
3696 |
|
|
else
|
3697 |
|
|
return;
|
3698 |
|
|
|
3699 |
|
|
if (GET_CODE (inc_val) == CONST_INT)
|
3700 |
|
|
{
|
3701 |
|
|
if (HAVE_POST_INCREMENT
|
3702 |
|
|
&& (INTVAL (inc_val) == size && offset == 0))
|
3703 |
|
|
attempt_auto_inc (pbi, gen_rtx_POST_INC (Pmode, addr), insn, x,
|
3704 |
|
|
incr, addr);
|
3705 |
|
|
else if (HAVE_POST_DECREMENT
|
3706 |
|
|
&& (INTVAL (inc_val) == -size && offset == 0))
|
3707 |
|
|
attempt_auto_inc (pbi, gen_rtx_POST_DEC (Pmode, addr), insn, x,
|
3708 |
|
|
incr, addr);
|
3709 |
|
|
else if (HAVE_PRE_INCREMENT
|
3710 |
|
|
&& (INTVAL (inc_val) == size && offset == size))
|
3711 |
|
|
attempt_auto_inc (pbi, gen_rtx_PRE_INC (Pmode, addr), insn, x,
|
3712 |
|
|
incr, addr);
|
3713 |
|
|
else if (HAVE_PRE_DECREMENT
|
3714 |
|
|
&& (INTVAL (inc_val) == -size && offset == -size))
|
3715 |
|
|
attempt_auto_inc (pbi, gen_rtx_PRE_DEC (Pmode, addr), insn, x,
|
3716 |
|
|
incr, addr);
|
3717 |
|
|
else if (HAVE_POST_MODIFY_DISP && offset == 0)
|
3718 |
|
|
attempt_auto_inc (pbi, gen_rtx_POST_MODIFY (Pmode, addr,
|
3719 |
|
|
gen_rtx_PLUS (Pmode,
|
3720 |
|
|
addr,
|
3721 |
|
|
inc_val)),
|
3722 |
|
|
insn, x, incr, addr);
|
3723 |
|
|
else if (HAVE_PRE_MODIFY_DISP && offset == INTVAL (inc_val))
|
3724 |
|
|
attempt_auto_inc (pbi, gen_rtx_PRE_MODIFY (Pmode, addr,
|
3725 |
|
|
gen_rtx_PLUS (Pmode,
|
3726 |
|
|
addr,
|
3727 |
|
|
inc_val)),
|
3728 |
|
|
insn, x, incr, addr);
|
3729 |
|
|
}
|
3730 |
|
|
else if (REG_P (inc_val)
|
3731 |
|
|
&& ! reg_set_between_p (inc_val, PREV_INSN (insn),
|
3732 |
|
|
NEXT_INSN (incr)))
|
3733 |
|
|
|
3734 |
|
|
{
|
3735 |
|
|
if (HAVE_POST_MODIFY_REG && offset == 0)
|
3736 |
|
|
attempt_auto_inc (pbi, gen_rtx_POST_MODIFY (Pmode, addr,
|
3737 |
|
|
gen_rtx_PLUS (Pmode,
|
3738 |
|
|
addr,
|
3739 |
|
|
inc_val)),
|
3740 |
|
|
insn, x, incr, addr);
|
3741 |
|
|
}
|
3742 |
|
|
}
|
3743 |
|
|
|
3744 |
|
|
#endif /* AUTO_INC_DEC */
|
3745 |
|
|
|
3746 |
|
|
static void
|
3747 |
|
|
mark_used_reg (struct propagate_block_info *pbi, rtx reg,
|
3748 |
|
|
rtx cond ATTRIBUTE_UNUSED, rtx insn)
|
3749 |
|
|
{
|
3750 |
|
|
unsigned int regno_first, regno_last, i;
|
3751 |
|
|
int some_was_live, some_was_dead, some_not_set;
|
3752 |
|
|
|
3753 |
|
|
regno_last = regno_first = REGNO (reg);
|
3754 |
|
|
if (regno_first < FIRST_PSEUDO_REGISTER)
|
3755 |
|
|
regno_last += hard_regno_nregs[regno_first][GET_MODE (reg)] - 1;
|
3756 |
|
|
|
3757 |
|
|
/* Find out if any of this register is live after this instruction. */
|
3758 |
|
|
some_was_live = some_was_dead = 0;
|
3759 |
|
|
for (i = regno_first; i <= regno_last; ++i)
|
3760 |
|
|
{
|
3761 |
|
|
int needed_regno = REGNO_REG_SET_P (pbi->reg_live, i);
|
3762 |
|
|
some_was_live |= needed_regno;
|
3763 |
|
|
some_was_dead |= ! needed_regno;
|
3764 |
|
|
}
|
3765 |
|
|
|
3766 |
|
|
/* Find out if any of the register was set this insn. */
|
3767 |
|
|
some_not_set = 0;
|
3768 |
|
|
for (i = regno_first; i <= regno_last; ++i)
|
3769 |
|
|
some_not_set |= ! REGNO_REG_SET_P (pbi->new_set, i);
|
3770 |
|
|
|
3771 |
|
|
if (pbi->flags & (PROP_LOG_LINKS | PROP_AUTOINC))
|
3772 |
|
|
{
|
3773 |
|
|
/* Record where each reg is used, so when the reg is set we know
|
3774 |
|
|
the next insn that uses it. */
|
3775 |
|
|
pbi->reg_next_use[regno_first] = insn;
|
3776 |
|
|
}
|
3777 |
|
|
|
3778 |
|
|
if (pbi->flags & PROP_REG_INFO)
|
3779 |
|
|
{
|
3780 |
|
|
if (regno_first < FIRST_PSEUDO_REGISTER)
|
3781 |
|
|
{
|
3782 |
|
|
/* If this is a register we are going to try to eliminate,
|
3783 |
|
|
don't mark it live here. If we are successful in
|
3784 |
|
|
eliminating it, it need not be live unless it is used for
|
3785 |
|
|
pseudos, in which case it will have been set live when it
|
3786 |
|
|
was allocated to the pseudos. If the register will not
|
3787 |
|
|
be eliminated, reload will set it live at that point.
|
3788 |
|
|
|
3789 |
|
|
Otherwise, record that this function uses this register. */
|
3790 |
|
|
/* ??? The PPC backend tries to "eliminate" on the pic
|
3791 |
|
|
register to itself. This should be fixed. In the mean
|
3792 |
|
|
time, hack around it. */
|
3793 |
|
|
|
3794 |
|
|
if (! (TEST_HARD_REG_BIT (elim_reg_set, regno_first)
|
3795 |
|
|
&& (regno_first == FRAME_POINTER_REGNUM
|
3796 |
|
|
|| regno_first == ARG_POINTER_REGNUM)))
|
3797 |
|
|
for (i = regno_first; i <= regno_last; ++i)
|
3798 |
|
|
regs_ever_live[i] = 1;
|
3799 |
|
|
}
|
3800 |
|
|
else
|
3801 |
|
|
{
|
3802 |
|
|
/* Keep track of which basic block each reg appears in. */
|
3803 |
|
|
|
3804 |
|
|
int blocknum = pbi->bb->index;
|
3805 |
|
|
if (REG_BASIC_BLOCK (regno_first) == REG_BLOCK_UNKNOWN)
|
3806 |
|
|
REG_BASIC_BLOCK (regno_first) = blocknum;
|
3807 |
|
|
else if (REG_BASIC_BLOCK (regno_first) != blocknum)
|
3808 |
|
|
REG_BASIC_BLOCK (regno_first) = REG_BLOCK_GLOBAL;
|
3809 |
|
|
|
3810 |
|
|
/* Count (weighted) number of uses of each reg. */
|
3811 |
|
|
REG_FREQ (regno_first) += REG_FREQ_FROM_BB (pbi->bb);
|
3812 |
|
|
REG_N_REFS (regno_first)++;
|
3813 |
|
|
}
|
3814 |
|
|
for (i = regno_first; i <= regno_last; ++i)
|
3815 |
|
|
if (! REGNO_REG_SET_P (pbi->reg_live, i))
|
3816 |
|
|
{
|
3817 |
|
|
gcc_assert (!reg_deaths[i]);
|
3818 |
|
|
reg_deaths[i] = pbi->insn_num;
|
3819 |
|
|
}
|
3820 |
|
|
}
|
3821 |
|
|
|
3822 |
|
|
/* Record and count the insns in which a reg dies. If it is used in
|
3823 |
|
|
this insn and was dead below the insn then it dies in this insn.
|
3824 |
|
|
If it was set in this insn, we do not make a REG_DEAD note;
|
3825 |
|
|
likewise if we already made such a note. */
|
3826 |
|
|
if ((pbi->flags & (PROP_DEATH_NOTES | PROP_REG_INFO))
|
3827 |
|
|
&& some_was_dead
|
3828 |
|
|
&& some_not_set)
|
3829 |
|
|
{
|
3830 |
|
|
/* Check for the case where the register dying partially
|
3831 |
|
|
overlaps the register set by this insn. */
|
3832 |
|
|
if (regno_first != regno_last)
|
3833 |
|
|
for (i = regno_first; i <= regno_last; ++i)
|
3834 |
|
|
some_was_live |= REGNO_REG_SET_P (pbi->new_set, i);
|
3835 |
|
|
|
3836 |
|
|
/* If none of the words in X is needed, make a REG_DEAD note.
|
3837 |
|
|
Otherwise, we must make partial REG_DEAD notes. */
|
3838 |
|
|
if (! some_was_live)
|
3839 |
|
|
{
|
3840 |
|
|
if ((pbi->flags & PROP_DEATH_NOTES)
|
3841 |
|
|
#ifdef STACK_REGS
|
3842 |
|
|
&& (!(pbi->flags & PROP_POST_REGSTACK)
|
3843 |
|
|
|| !IN_RANGE (REGNO (reg), FIRST_STACK_REG, LAST_STACK_REG))
|
3844 |
|
|
#endif
|
3845 |
|
|
&& ! find_regno_note (insn, REG_DEAD, regno_first))
|
3846 |
|
|
REG_NOTES (insn)
|
3847 |
|
|
= alloc_EXPR_LIST (REG_DEAD, reg, REG_NOTES (insn));
|
3848 |
|
|
|
3849 |
|
|
if (pbi->flags & PROP_REG_INFO)
|
3850 |
|
|
REG_N_DEATHS (regno_first)++;
|
3851 |
|
|
}
|
3852 |
|
|
else
|
3853 |
|
|
{
|
3854 |
|
|
/* Don't make a REG_DEAD note for a part of a register
|
3855 |
|
|
that is set in the insn. */
|
3856 |
|
|
for (i = regno_first; i <= regno_last; ++i)
|
3857 |
|
|
if (! REGNO_REG_SET_P (pbi->reg_live, i)
|
3858 |
|
|
&& ! dead_or_set_regno_p (insn, i))
|
3859 |
|
|
REG_NOTES (insn)
|
3860 |
|
|
= alloc_EXPR_LIST (REG_DEAD,
|
3861 |
|
|
regno_reg_rtx[i],
|
3862 |
|
|
REG_NOTES (insn));
|
3863 |
|
|
}
|
3864 |
|
|
}
|
3865 |
|
|
|
3866 |
|
|
/* Mark the register as being live. */
|
3867 |
|
|
for (i = regno_first; i <= regno_last; ++i)
|
3868 |
|
|
{
|
3869 |
|
|
#ifdef HAVE_conditional_execution
|
3870 |
|
|
int this_was_live = REGNO_REG_SET_P (pbi->reg_live, i);
|
3871 |
|
|
#endif
|
3872 |
|
|
|
3873 |
|
|
SET_REGNO_REG_SET (pbi->reg_live, i);
|
3874 |
|
|
|
3875 |
|
|
#ifdef HAVE_conditional_execution
|
3876 |
|
|
/* If this is a conditional use, record that fact. If it is later
|
3877 |
|
|
conditionally set, we'll know to kill the register. */
|
3878 |
|
|
if (cond != NULL_RTX)
|
3879 |
|
|
{
|
3880 |
|
|
splay_tree_node node;
|
3881 |
|
|
struct reg_cond_life_info *rcli;
|
3882 |
|
|
rtx ncond;
|
3883 |
|
|
|
3884 |
|
|
if (this_was_live)
|
3885 |
|
|
{
|
3886 |
|
|
node = splay_tree_lookup (pbi->reg_cond_dead, i);
|
3887 |
|
|
if (node == NULL)
|
3888 |
|
|
{
|
3889 |
|
|
/* The register was unconditionally live previously.
|
3890 |
|
|
No need to do anything. */
|
3891 |
|
|
}
|
3892 |
|
|
else
|
3893 |
|
|
{
|
3894 |
|
|
/* The register was conditionally live previously.
|
3895 |
|
|
Subtract the new life cond from the old death cond. */
|
3896 |
|
|
rcli = (struct reg_cond_life_info *) node->value;
|
3897 |
|
|
ncond = rcli->condition;
|
3898 |
|
|
ncond = and_reg_cond (ncond, not_reg_cond (cond), 1);
|
3899 |
|
|
|
3900 |
|
|
/* If the register is now unconditionally live,
|
3901 |
|
|
remove the entry in the splay_tree. */
|
3902 |
|
|
if (ncond == const0_rtx)
|
3903 |
|
|
splay_tree_remove (pbi->reg_cond_dead, i);
|
3904 |
|
|
else
|
3905 |
|
|
{
|
3906 |
|
|
rcli->condition = ncond;
|
3907 |
|
|
SET_REGNO_REG_SET (pbi->reg_cond_reg,
|
3908 |
|
|
REGNO (XEXP (cond, 0)));
|
3909 |
|
|
}
|
3910 |
|
|
}
|
3911 |
|
|
}
|
3912 |
|
|
else
|
3913 |
|
|
{
|
3914 |
|
|
/* The register was not previously live at all. Record
|
3915 |
|
|
the condition under which it is still dead. */
|
3916 |
|
|
rcli = XNEW (struct reg_cond_life_info);
|
3917 |
|
|
rcli->condition = not_reg_cond (cond);
|
3918 |
|
|
rcli->stores = const0_rtx;
|
3919 |
|
|
rcli->orig_condition = const0_rtx;
|
3920 |
|
|
splay_tree_insert (pbi->reg_cond_dead, i,
|
3921 |
|
|
(splay_tree_value) rcli);
|
3922 |
|
|
|
3923 |
|
|
SET_REGNO_REG_SET (pbi->reg_cond_reg, REGNO (XEXP (cond, 0)));
|
3924 |
|
|
}
|
3925 |
|
|
}
|
3926 |
|
|
else if (this_was_live)
|
3927 |
|
|
{
|
3928 |
|
|
/* The register may have been conditionally live previously, but
|
3929 |
|
|
is now unconditionally live. Remove it from the conditionally
|
3930 |
|
|
dead list, so that a conditional set won't cause us to think
|
3931 |
|
|
it dead. */
|
3932 |
|
|
splay_tree_remove (pbi->reg_cond_dead, i);
|
3933 |
|
|
}
|
3934 |
|
|
#endif
|
3935 |
|
|
}
|
3936 |
|
|
}
|
3937 |
|
|
|
3938 |
|
|
/* Scan expression X for registers which have to be marked used in PBI.
|
3939 |
|
|
X is considered to be the SET_DEST rtx of SET. TRUE is returned if
|
3940 |
|
|
X could be handled by this function. */
|
3941 |
|
|
|
3942 |
|
|
static bool
|
3943 |
|
|
mark_used_dest_regs (struct propagate_block_info *pbi, rtx x, rtx cond, rtx insn)
|
3944 |
|
|
{
|
3945 |
|
|
int regno;
|
3946 |
|
|
bool mark_dest = false;
|
3947 |
|
|
rtx dest = x;
|
3948 |
|
|
|
3949 |
|
|
/* On some platforms calls return values spread over several
|
3950 |
|
|
locations. These locations are wrapped in a EXPR_LIST rtx
|
3951 |
|
|
together with a CONST_INT offset. */
|
3952 |
|
|
if (GET_CODE (x) == EXPR_LIST
|
3953 |
|
|
&& GET_CODE (XEXP (x, 1)) == CONST_INT)
|
3954 |
|
|
x = XEXP (x, 0);
|
3955 |
|
|
|
3956 |
|
|
if (x == NULL_RTX)
|
3957 |
|
|
return false;
|
3958 |
|
|
|
3959 |
|
|
/* If storing into MEM, don't show it as being used. But do
|
3960 |
|
|
show the address as being used. */
|
3961 |
|
|
if (MEM_P (x))
|
3962 |
|
|
{
|
3963 |
|
|
#ifdef AUTO_INC_DEC
|
3964 |
|
|
if (pbi->flags & PROP_AUTOINC)
|
3965 |
|
|
find_auto_inc (pbi, x, insn);
|
3966 |
|
|
#endif
|
3967 |
|
|
mark_used_regs (pbi, XEXP (x, 0), cond, insn);
|
3968 |
|
|
return true;
|
3969 |
|
|
}
|
3970 |
|
|
|
3971 |
|
|
/* Storing in STRICT_LOW_PART is like storing in a reg
|
3972 |
|
|
in that this SET might be dead, so ignore it in TESTREG.
|
3973 |
|
|
but in some other ways it is like using the reg.
|
3974 |
|
|
|
3975 |
|
|
Storing in a SUBREG or a bit field is like storing the entire
|
3976 |
|
|
register in that if the register's value is not used
|
3977 |
|
|
then this SET is not needed. */
|
3978 |
|
|
while (GET_CODE (x) == STRICT_LOW_PART
|
3979 |
|
|
|| GET_CODE (x) == ZERO_EXTRACT
|
3980 |
|
|
|| GET_CODE (x) == SUBREG)
|
3981 |
|
|
{
|
3982 |
|
|
#ifdef CANNOT_CHANGE_MODE_CLASS
|
3983 |
|
|
if ((pbi->flags & PROP_REG_INFO) && GET_CODE (x) == SUBREG)
|
3984 |
|
|
record_subregs_of_mode (x);
|
3985 |
|
|
#endif
|
3986 |
|
|
|
3987 |
|
|
/* Modifying a single register in an alternate mode
|
3988 |
|
|
does not use any of the old value. But these other
|
3989 |
|
|
ways of storing in a register do use the old value. */
|
3990 |
|
|
if (GET_CODE (x) == SUBREG
|
3991 |
|
|
&& !((REG_BYTES (SUBREG_REG (x))
|
3992 |
|
|
+ UNITS_PER_WORD - 1) / UNITS_PER_WORD
|
3993 |
|
|
> (REG_BYTES (x)
|
3994 |
|
|
+ UNITS_PER_WORD - 1) / UNITS_PER_WORD))
|
3995 |
|
|
;
|
3996 |
|
|
else
|
3997 |
|
|
mark_dest = true;
|
3998 |
|
|
|
3999 |
|
|
x = XEXP (x, 0);
|
4000 |
|
|
}
|
4001 |
|
|
|
4002 |
|
|
/* If this is a store into a register or group of registers,
|
4003 |
|
|
recursively scan the value being stored. */
|
4004 |
|
|
if (REG_P (x)
|
4005 |
|
|
&& (regno = REGNO (x),
|
4006 |
|
|
!(regno == FRAME_POINTER_REGNUM
|
4007 |
|
|
&& (!reload_completed || frame_pointer_needed)))
|
4008 |
|
|
#if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
|
4009 |
|
|
&& !(regno == HARD_FRAME_POINTER_REGNUM
|
4010 |
|
|
&& (!reload_completed || frame_pointer_needed))
|
4011 |
|
|
#endif
|
4012 |
|
|
#if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
|
4013 |
|
|
&& !(regno == ARG_POINTER_REGNUM && fixed_regs[regno])
|
4014 |
|
|
#endif
|
4015 |
|
|
)
|
4016 |
|
|
{
|
4017 |
|
|
if (mark_dest)
|
4018 |
|
|
mark_used_regs (pbi, dest, cond, insn);
|
4019 |
|
|
return true;
|
4020 |
|
|
}
|
4021 |
|
|
return false;
|
4022 |
|
|
}
|
4023 |
|
|
|
4024 |
|
|
/* Scan expression X and store a 1-bit in NEW_LIVE for each reg it uses.
|
4025 |
|
|
This is done assuming the registers needed from X are those that
|
4026 |
|
|
have 1-bits in PBI->REG_LIVE.
|
4027 |
|
|
|
4028 |
|
|
INSN is the containing instruction. If INSN is dead, this function
|
4029 |
|
|
is not called. */
|
4030 |
|
|
|
4031 |
|
|
static void
|
4032 |
|
|
mark_used_regs (struct propagate_block_info *pbi, rtx x, rtx cond, rtx insn)
|
4033 |
|
|
{
|
4034 |
|
|
RTX_CODE code;
|
4035 |
|
|
int flags = pbi->flags;
|
4036 |
|
|
|
4037 |
|
|
retry:
|
4038 |
|
|
if (!x)
|
4039 |
|
|
return;
|
4040 |
|
|
code = GET_CODE (x);
|
4041 |
|
|
switch (code)
|
4042 |
|
|
{
|
4043 |
|
|
case LABEL_REF:
|
4044 |
|
|
case SYMBOL_REF:
|
4045 |
|
|
case CONST_INT:
|
4046 |
|
|
case CONST:
|
4047 |
|
|
case CONST_DOUBLE:
|
4048 |
|
|
case CONST_VECTOR:
|
4049 |
|
|
case PC:
|
4050 |
|
|
case ADDR_VEC:
|
4051 |
|
|
case ADDR_DIFF_VEC:
|
4052 |
|
|
return;
|
4053 |
|
|
|
4054 |
|
|
#ifdef HAVE_cc0
|
4055 |
|
|
case CC0:
|
4056 |
|
|
pbi->cc0_live = 1;
|
4057 |
|
|
return;
|
4058 |
|
|
#endif
|
4059 |
|
|
|
4060 |
|
|
case CLOBBER:
|
4061 |
|
|
/* If we are clobbering a MEM, mark any registers inside the address
|
4062 |
|
|
as being used. */
|
4063 |
|
|
if (MEM_P (XEXP (x, 0)))
|
4064 |
|
|
mark_used_regs (pbi, XEXP (XEXP (x, 0), 0), cond, insn);
|
4065 |
|
|
return;
|
4066 |
|
|
|
4067 |
|
|
case MEM:
|
4068 |
|
|
/* Don't bother watching stores to mems if this is not the
|
4069 |
|
|
final pass. We'll not be deleting dead stores this round. */
|
4070 |
|
|
if (optimize && (flags & PROP_SCAN_DEAD_STORES))
|
4071 |
|
|
{
|
4072 |
|
|
/* Invalidate the data for the last MEM stored, but only if MEM is
|
4073 |
|
|
something that can be stored into. */
|
4074 |
|
|
if (GET_CODE (XEXP (x, 0)) == SYMBOL_REF
|
4075 |
|
|
&& CONSTANT_POOL_ADDRESS_P (XEXP (x, 0)))
|
4076 |
|
|
/* Needn't clear the memory set list. */
|
4077 |
|
|
;
|
4078 |
|
|
else
|
4079 |
|
|
{
|
4080 |
|
|
rtx temp = pbi->mem_set_list;
|
4081 |
|
|
rtx prev = NULL_RTX;
|
4082 |
|
|
rtx next;
|
4083 |
|
|
|
4084 |
|
|
while (temp)
|
4085 |
|
|
{
|
4086 |
|
|
next = XEXP (temp, 1);
|
4087 |
|
|
if (anti_dependence (XEXP (temp, 0), x))
|
4088 |
|
|
{
|
4089 |
|
|
/* Splice temp out of the list. */
|
4090 |
|
|
if (prev)
|
4091 |
|
|
XEXP (prev, 1) = next;
|
4092 |
|
|
else
|
4093 |
|
|
pbi->mem_set_list = next;
|
4094 |
|
|
free_EXPR_LIST_node (temp);
|
4095 |
|
|
pbi->mem_set_list_len--;
|
4096 |
|
|
}
|
4097 |
|
|
else
|
4098 |
|
|
prev = temp;
|
4099 |
|
|
temp = next;
|
4100 |
|
|
}
|
4101 |
|
|
}
|
4102 |
|
|
|
4103 |
|
|
/* If the memory reference had embedded side effects (autoincrement
|
4104 |
|
|
address modes. Then we may need to kill some entries on the
|
4105 |
|
|
memory set list. */
|
4106 |
|
|
if (insn)
|
4107 |
|
|
for_each_rtx (&PATTERN (insn), invalidate_mems_from_autoinc, pbi);
|
4108 |
|
|
}
|
4109 |
|
|
|
4110 |
|
|
#ifdef AUTO_INC_DEC
|
4111 |
|
|
if (flags & PROP_AUTOINC)
|
4112 |
|
|
find_auto_inc (pbi, x, insn);
|
4113 |
|
|
#endif
|
4114 |
|
|
break;
|
4115 |
|
|
|
4116 |
|
|
case SUBREG:
|
4117 |
|
|
#ifdef CANNOT_CHANGE_MODE_CLASS
|
4118 |
|
|
if (flags & PROP_REG_INFO)
|
4119 |
|
|
record_subregs_of_mode (x);
|
4120 |
|
|
#endif
|
4121 |
|
|
|
4122 |
|
|
/* While we're here, optimize this case. */
|
4123 |
|
|
x = SUBREG_REG (x);
|
4124 |
|
|
if (!REG_P (x))
|
4125 |
|
|
goto retry;
|
4126 |
|
|
/* Fall through. */
|
4127 |
|
|
|
4128 |
|
|
case REG:
|
4129 |
|
|
/* See a register other than being set => mark it as needed. */
|
4130 |
|
|
mark_used_reg (pbi, x, cond, insn);
|
4131 |
|
|
return;
|
4132 |
|
|
|
4133 |
|
|
case SET:
|
4134 |
|
|
{
|
4135 |
|
|
rtx dest = SET_DEST (x);
|
4136 |
|
|
int i;
|
4137 |
|
|
bool ret = false;
|
4138 |
|
|
|
4139 |
|
|
if (GET_CODE (dest) == PARALLEL)
|
4140 |
|
|
for (i = 0; i < XVECLEN (dest, 0); i++)
|
4141 |
|
|
ret |= mark_used_dest_regs (pbi, XVECEXP (dest, 0, i), cond, insn);
|
4142 |
|
|
else
|
4143 |
|
|
ret = mark_used_dest_regs (pbi, dest, cond, insn);
|
4144 |
|
|
|
4145 |
|
|
if (ret)
|
4146 |
|
|
{
|
4147 |
|
|
mark_used_regs (pbi, SET_SRC (x), cond, insn);
|
4148 |
|
|
return;
|
4149 |
|
|
}
|
4150 |
|
|
}
|
4151 |
|
|
break;
|
4152 |
|
|
|
4153 |
|
|
case ASM_OPERANDS:
|
4154 |
|
|
case UNSPEC_VOLATILE:
|
4155 |
|
|
case TRAP_IF:
|
4156 |
|
|
case ASM_INPUT:
|
4157 |
|
|
{
|
4158 |
|
|
/* Traditional and volatile asm instructions must be considered to use
|
4159 |
|
|
and clobber all hard registers, all pseudo-registers and all of
|
4160 |
|
|
memory. So must TRAP_IF and UNSPEC_VOLATILE operations.
|
4161 |
|
|
|
4162 |
|
|
Consider for instance a volatile asm that changes the fpu rounding
|
4163 |
|
|
mode. An insn should not be moved across this even if it only uses
|
4164 |
|
|
pseudo-regs because it might give an incorrectly rounded result.
|
4165 |
|
|
|
4166 |
|
|
?!? Unfortunately, marking all hard registers as live causes massive
|
4167 |
|
|
problems for the register allocator and marking all pseudos as live
|
4168 |
|
|
creates mountains of uninitialized variable warnings.
|
4169 |
|
|
|
4170 |
|
|
So for now, just clear the memory set list and mark any regs
|
4171 |
|
|
we can find in ASM_OPERANDS as used. */
|
4172 |
|
|
if (code != ASM_OPERANDS || MEM_VOLATILE_P (x))
|
4173 |
|
|
{
|
4174 |
|
|
free_EXPR_LIST_list (&pbi->mem_set_list);
|
4175 |
|
|
pbi->mem_set_list_len = 0;
|
4176 |
|
|
}
|
4177 |
|
|
|
4178 |
|
|
/* For all ASM_OPERANDS, we must traverse the vector of input operands.
|
4179 |
|
|
We can not just fall through here since then we would be confused
|
4180 |
|
|
by the ASM_INPUT rtx inside ASM_OPERANDS, which do not indicate
|
4181 |
|
|
traditional asms unlike their normal usage. */
|
4182 |
|
|
if (code == ASM_OPERANDS)
|
4183 |
|
|
{
|
4184 |
|
|
int j;
|
4185 |
|
|
|
4186 |
|
|
for (j = 0; j < ASM_OPERANDS_INPUT_LENGTH (x); j++)
|
4187 |
|
|
mark_used_regs (pbi, ASM_OPERANDS_INPUT (x, j), cond, insn);
|
4188 |
|
|
}
|
4189 |
|
|
break;
|
4190 |
|
|
}
|
4191 |
|
|
|
4192 |
|
|
case COND_EXEC:
|
4193 |
|
|
gcc_assert (!cond);
|
4194 |
|
|
|
4195 |
|
|
mark_used_regs (pbi, COND_EXEC_TEST (x), NULL_RTX, insn);
|
4196 |
|
|
|
4197 |
|
|
cond = COND_EXEC_TEST (x);
|
4198 |
|
|
x = COND_EXEC_CODE (x);
|
4199 |
|
|
goto retry;
|
4200 |
|
|
|
4201 |
|
|
default:
|
4202 |
|
|
break;
|
4203 |
|
|
}
|
4204 |
|
|
|
4205 |
|
|
/* Recursively scan the operands of this expression. */
|
4206 |
|
|
|
4207 |
|
|
{
|
4208 |
|
|
const char * const fmt = GET_RTX_FORMAT (code);
|
4209 |
|
|
int i;
|
4210 |
|
|
|
4211 |
|
|
for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
|
4212 |
|
|
{
|
4213 |
|
|
if (fmt[i] == 'e')
|
4214 |
|
|
{
|
4215 |
|
|
/* Tail recursive case: save a function call level. */
|
4216 |
|
|
if (i == 0)
|
4217 |
|
|
{
|
4218 |
|
|
x = XEXP (x, 0);
|
4219 |
|
|
goto retry;
|
4220 |
|
|
}
|
4221 |
|
|
mark_used_regs (pbi, XEXP (x, i), cond, insn);
|
4222 |
|
|
}
|
4223 |
|
|
else if (fmt[i] == 'E')
|
4224 |
|
|
{
|
4225 |
|
|
int j;
|
4226 |
|
|
for (j = 0; j < XVECLEN (x, i); j++)
|
4227 |
|
|
mark_used_regs (pbi, XVECEXP (x, i, j), cond, insn);
|
4228 |
|
|
}
|
4229 |
|
|
}
|
4230 |
|
|
}
|
4231 |
|
|
}
|
4232 |
|
|
|
4233 |
|
|
#ifdef AUTO_INC_DEC
|
4234 |
|
|
|
4235 |
|
|
static int
|
4236 |
|
|
try_pre_increment_1 (struct propagate_block_info *pbi, rtx insn)
|
4237 |
|
|
{
|
4238 |
|
|
/* Find the next use of this reg. If in same basic block,
|
4239 |
|
|
make it do pre-increment or pre-decrement if appropriate. */
|
4240 |
|
|
rtx x = single_set (insn);
|
4241 |
|
|
HOST_WIDE_INT amount = ((GET_CODE (SET_SRC (x)) == PLUS ? 1 : -1)
|
4242 |
|
|
* INTVAL (XEXP (SET_SRC (x), 1)));
|
4243 |
|
|
int regno = REGNO (SET_DEST (x));
|
4244 |
|
|
rtx y = pbi->reg_next_use[regno];
|
4245 |
|
|
if (y != 0
|
4246 |
|
|
&& SET_DEST (x) != stack_pointer_rtx
|
4247 |
|
|
&& BLOCK_NUM (y) == BLOCK_NUM (insn)
|
4248 |
|
|
/* Don't do this if the reg dies, or gets set in y; a standard addressing
|
4249 |
|
|
mode would be better. */
|
4250 |
|
|
&& ! dead_or_set_p (y, SET_DEST (x))
|
4251 |
|
|
&& try_pre_increment (y, SET_DEST (x), amount))
|
4252 |
|
|
{
|
4253 |
|
|
/* We have found a suitable auto-increment and already changed
|
4254 |
|
|
insn Y to do it. So flush this increment instruction. */
|
4255 |
|
|
propagate_block_delete_insn (insn);
|
4256 |
|
|
|
4257 |
|
|
/* Count a reference to this reg for the increment insn we are
|
4258 |
|
|
deleting. When a reg is incremented, spilling it is worse,
|
4259 |
|
|
so we want to make that less likely. */
|
4260 |
|
|
if (regno >= FIRST_PSEUDO_REGISTER)
|
4261 |
|
|
{
|
4262 |
|
|
REG_FREQ (regno) += REG_FREQ_FROM_BB (pbi->bb);
|
4263 |
|
|
REG_N_SETS (regno)++;
|
4264 |
|
|
}
|
4265 |
|
|
|
4266 |
|
|
/* Flush any remembered memories depending on the value of
|
4267 |
|
|
the incremented register. */
|
4268 |
|
|
invalidate_mems_from_set (pbi, SET_DEST (x));
|
4269 |
|
|
|
4270 |
|
|
return 1;
|
4271 |
|
|
}
|
4272 |
|
|
return 0;
|
4273 |
|
|
}
|
4274 |
|
|
|
4275 |
|
|
/* Try to change INSN so that it does pre-increment or pre-decrement
|
4276 |
|
|
addressing on register REG in order to add AMOUNT to REG.
|
4277 |
|
|
AMOUNT is negative for pre-decrement.
|
4278 |
|
|
Returns 1 if the change could be made.
|
4279 |
|
|
This checks all about the validity of the result of modifying INSN. */
|
4280 |
|
|
|
4281 |
|
|
static int
|
4282 |
|
|
try_pre_increment (rtx insn, rtx reg, HOST_WIDE_INT amount)
|
4283 |
|
|
{
|
4284 |
|
|
rtx use;
|
4285 |
|
|
|
4286 |
|
|
/* Nonzero if we can try to make a pre-increment or pre-decrement.
|
4287 |
|
|
For example, addl $4,r1; movl (r1),... can become movl +(r1),... */
|
4288 |
|
|
int pre_ok = 0;
|
4289 |
|
|
/* Nonzero if we can try to make a post-increment or post-decrement.
|
4290 |
|
|
For example, addl $4,r1; movl -4(r1),... can become movl (r1)+,...
|
4291 |
|
|
It is possible for both PRE_OK and POST_OK to be nonzero if the machine
|
4292 |
|
|
supports both pre-inc and post-inc, or both pre-dec and post-dec. */
|
4293 |
|
|
int post_ok = 0;
|
4294 |
|
|
|
4295 |
|
|
/* Nonzero if the opportunity actually requires post-inc or post-dec. */
|
4296 |
|
|
int do_post = 0;
|
4297 |
|
|
|
4298 |
|
|
/* From the sign of increment, see which possibilities are conceivable
|
4299 |
|
|
on this target machine. */
|
4300 |
|
|
if (HAVE_PRE_INCREMENT && amount > 0)
|
4301 |
|
|
pre_ok = 1;
|
4302 |
|
|
if (HAVE_POST_INCREMENT && amount > 0)
|
4303 |
|
|
post_ok = 1;
|
4304 |
|
|
|
4305 |
|
|
if (HAVE_PRE_DECREMENT && amount < 0)
|
4306 |
|
|
pre_ok = 1;
|
4307 |
|
|
if (HAVE_POST_DECREMENT && amount < 0)
|
4308 |
|
|
post_ok = 1;
|
4309 |
|
|
|
4310 |
|
|
if (! (pre_ok || post_ok))
|
4311 |
|
|
return 0;
|
4312 |
|
|
|
4313 |
|
|
/* It is not safe to add a side effect to a jump insn
|
4314 |
|
|
because if the incremented register is spilled and must be reloaded
|
4315 |
|
|
there would be no way to store the incremented value back in memory. */
|
4316 |
|
|
|
4317 |
|
|
if (JUMP_P (insn))
|
4318 |
|
|
return 0;
|
4319 |
|
|
|
4320 |
|
|
use = 0;
|
4321 |
|
|
if (pre_ok)
|
4322 |
|
|
use = find_use_as_address (PATTERN (insn), reg, 0);
|
4323 |
|
|
if (post_ok && (use == 0 || use == (rtx) (size_t) 1))
|
4324 |
|
|
{
|
4325 |
|
|
use = find_use_as_address (PATTERN (insn), reg, -amount);
|
4326 |
|
|
do_post = 1;
|
4327 |
|
|
}
|
4328 |
|
|
|
4329 |
|
|
if (use == 0 || use == (rtx) (size_t) 1)
|
4330 |
|
|
return 0;
|
4331 |
|
|
|
4332 |
|
|
if (GET_MODE_SIZE (GET_MODE (use)) != (amount > 0 ? amount : - amount))
|
4333 |
|
|
return 0;
|
4334 |
|
|
|
4335 |
|
|
/* See if this combination of instruction and addressing mode exists. */
|
4336 |
|
|
if (! validate_change (insn, &XEXP (use, 0),
|
4337 |
|
|
gen_rtx_fmt_e (amount > 0
|
4338 |
|
|
? (do_post ? POST_INC : PRE_INC)
|
4339 |
|
|
: (do_post ? POST_DEC : PRE_DEC),
|
4340 |
|
|
Pmode, reg), 0))
|
4341 |
|
|
return 0;
|
4342 |
|
|
|
4343 |
|
|
/* Record that this insn now has an implicit side effect on X. */
|
4344 |
|
|
REG_NOTES (insn) = alloc_EXPR_LIST (REG_INC, reg, REG_NOTES (insn));
|
4345 |
|
|
return 1;
|
4346 |
|
|
}
|
4347 |
|
|
|
4348 |
|
|
#endif /* AUTO_INC_DEC */
|
4349 |
|
|
|
4350 |
|
|
/* Find the place in the rtx X where REG is used as a memory address.
|
4351 |
|
|
Return the MEM rtx that so uses it.
|
4352 |
|
|
If PLUSCONST is nonzero, search instead for a memory address equivalent to
|
4353 |
|
|
(plus REG (const_int PLUSCONST)).
|
4354 |
|
|
|
4355 |
|
|
If such an address does not appear, return 0.
|
4356 |
|
|
If REG appears more than once, or is used other than in such an address,
|
4357 |
|
|
return (rtx) 1. */
|
4358 |
|
|
|
4359 |
|
|
rtx
|
4360 |
|
|
find_use_as_address (rtx x, rtx reg, HOST_WIDE_INT plusconst)
|
4361 |
|
|
{
|
4362 |
|
|
enum rtx_code code = GET_CODE (x);
|
4363 |
|
|
const char * const fmt = GET_RTX_FORMAT (code);
|
4364 |
|
|
int i;
|
4365 |
|
|
rtx value = 0;
|
4366 |
|
|
rtx tem;
|
4367 |
|
|
|
4368 |
|
|
if (code == MEM && XEXP (x, 0) == reg && plusconst == 0)
|
4369 |
|
|
return x;
|
4370 |
|
|
|
4371 |
|
|
if (code == MEM && GET_CODE (XEXP (x, 0)) == PLUS
|
4372 |
|
|
&& XEXP (XEXP (x, 0), 0) == reg
|
4373 |
|
|
&& GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
|
4374 |
|
|
&& INTVAL (XEXP (XEXP (x, 0), 1)) == plusconst)
|
4375 |
|
|
return x;
|
4376 |
|
|
|
4377 |
|
|
if (code == SIGN_EXTRACT || code == ZERO_EXTRACT)
|
4378 |
|
|
{
|
4379 |
|
|
/* If REG occurs inside a MEM used in a bit-field reference,
|
4380 |
|
|
that is unacceptable. */
|
4381 |
|
|
if (find_use_as_address (XEXP (x, 0), reg, 0) != 0)
|
4382 |
|
|
return (rtx) (size_t) 1;
|
4383 |
|
|
}
|
4384 |
|
|
|
4385 |
|
|
if (x == reg)
|
4386 |
|
|
return (rtx) (size_t) 1;
|
4387 |
|
|
|
4388 |
|
|
for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
|
4389 |
|
|
{
|
4390 |
|
|
if (fmt[i] == 'e')
|
4391 |
|
|
{
|
4392 |
|
|
tem = find_use_as_address (XEXP (x, i), reg, plusconst);
|
4393 |
|
|
if (value == 0)
|
4394 |
|
|
value = tem;
|
4395 |
|
|
else if (tem != 0)
|
4396 |
|
|
return (rtx) (size_t) 1;
|
4397 |
|
|
}
|
4398 |
|
|
else if (fmt[i] == 'E')
|
4399 |
|
|
{
|
4400 |
|
|
int j;
|
4401 |
|
|
for (j = XVECLEN (x, i) - 1; j >= 0; j--)
|
4402 |
|
|
{
|
4403 |
|
|
tem = find_use_as_address (XVECEXP (x, i, j), reg, plusconst);
|
4404 |
|
|
if (value == 0)
|
4405 |
|
|
value = tem;
|
4406 |
|
|
else if (tem != 0)
|
4407 |
|
|
return (rtx) (size_t) 1;
|
4408 |
|
|
}
|
4409 |
|
|
}
|
4410 |
|
|
}
|
4411 |
|
|
|
4412 |
|
|
return value;
|
4413 |
|
|
}
|
4414 |
|
|
|
4415 |
|
|
/* Write information about registers and basic blocks into FILE.
|
4416 |
|
|
This is part of making a debugging dump. */
|
4417 |
|
|
|
4418 |
|
|
void
|
4419 |
|
|
dump_regset (regset r, FILE *outf)
|
4420 |
|
|
{
|
4421 |
|
|
unsigned i;
|
4422 |
|
|
reg_set_iterator rsi;
|
4423 |
|
|
|
4424 |
|
|
if (r == NULL)
|
4425 |
|
|
{
|
4426 |
|
|
fputs (" (nil)", outf);
|
4427 |
|
|
return;
|
4428 |
|
|
}
|
4429 |
|
|
|
4430 |
|
|
EXECUTE_IF_SET_IN_REG_SET (r, 0, i, rsi)
|
4431 |
|
|
{
|
4432 |
|
|
fprintf (outf, " %d", i);
|
4433 |
|
|
if (i < FIRST_PSEUDO_REGISTER)
|
4434 |
|
|
fprintf (outf, " [%s]",
|
4435 |
|
|
reg_names[i]);
|
4436 |
|
|
}
|
4437 |
|
|
}
|
4438 |
|
|
|
4439 |
|
|
/* Print a human-readable representation of R on the standard error
|
4440 |
|
|
stream. This function is designed to be used from within the
|
4441 |
|
|
debugger. */
|
4442 |
|
|
|
4443 |
|
|
void
|
4444 |
|
|
debug_regset (regset r)
|
4445 |
|
|
{
|
4446 |
|
|
dump_regset (r, stderr);
|
4447 |
|
|
putc ('\n', stderr);
|
4448 |
|
|
}
|
4449 |
|
|
|
4450 |
|
|
/* Recompute register set/reference counts immediately prior to register
|
4451 |
|
|
allocation.
|
4452 |
|
|
|
4453 |
|
|
This avoids problems with set/reference counts changing to/from values
|
4454 |
|
|
which have special meanings to the register allocators.
|
4455 |
|
|
|
4456 |
|
|
Additionally, the reference counts are the primary component used by the
|
4457 |
|
|
register allocators to prioritize pseudos for allocation to hard regs.
|
4458 |
|
|
More accurate reference counts generally lead to better register allocation.
|
4459 |
|
|
|
4460 |
|
|
It might be worthwhile to update REG_LIVE_LENGTH, REG_BASIC_BLOCK and
|
4461 |
|
|
possibly other information which is used by the register allocators. */
|
4462 |
|
|
|
4463 |
|
|
static unsigned int
|
4464 |
|
|
recompute_reg_usage (void)
|
4465 |
|
|
{
|
4466 |
|
|
allocate_reg_life_data ();
|
4467 |
|
|
/* distribute_notes in combiner fails to convert some of the
|
4468 |
|
|
REG_UNUSED notes to REG_DEAD notes. This causes CHECK_DEAD_NOTES
|
4469 |
|
|
in sched1 to die. To solve this update the DEATH_NOTES
|
4470 |
|
|
here. */
|
4471 |
|
|
update_life_info (NULL, UPDATE_LIFE_LOCAL, PROP_REG_INFO | PROP_DEATH_NOTES);
|
4472 |
|
|
|
4473 |
|
|
if (dump_file)
|
4474 |
|
|
dump_flow_info (dump_file, dump_flags);
|
4475 |
|
|
return 0;
|
4476 |
|
|
}
|
4477 |
|
|
|
4478 |
|
|
struct tree_opt_pass pass_recompute_reg_usage =
|
4479 |
|
|
{
|
4480 |
|
|
"life2", /* name */
|
4481 |
|
|
NULL, /* gate */
|
4482 |
|
|
recompute_reg_usage, /* execute */
|
4483 |
|
|
NULL, /* sub */
|
4484 |
|
|
NULL, /* next */
|
4485 |
|
|
0, /* static_pass_number */
|
4486 |
|
|
0, /* tv_id */
|
4487 |
|
|
0, /* properties_required */
|
4488 |
|
|
0, /* properties_provided */
|
4489 |
|
|
0, /* properties_destroyed */
|
4490 |
|
|
0, /* todo_flags_start */
|
4491 |
|
|
TODO_dump_func, /* todo_flags_finish */
|
4492 |
|
|
'f' /* letter */
|
4493 |
|
|
};
|
4494 |
|
|
|
4495 |
|
|
/* Optionally removes all the REG_DEAD and REG_UNUSED notes from a set of
|
4496 |
|
|
blocks. If BLOCKS is NULL, assume the universal set. Returns a count
|
4497 |
|
|
of the number of registers that died.
|
4498 |
|
|
If KILL is 1, remove old REG_DEAD / REG_UNUSED notes. If it is 0, don't.
|
4499 |
|
|
if it is -1, remove them unless they pertain to a stack reg. */
|
4500 |
|
|
|
4501 |
|
|
int
|
4502 |
|
|
count_or_remove_death_notes (sbitmap blocks, int kill)
|
4503 |
|
|
{
|
4504 |
|
|
int count = 0;
|
4505 |
|
|
unsigned int i = 0;
|
4506 |
|
|
basic_block bb;
|
4507 |
|
|
|
4508 |
|
|
/* This used to be a loop over all the blocks with a membership test
|
4509 |
|
|
inside the loop. That can be amazingly expensive on a large CFG
|
4510 |
|
|
when only a small number of bits are set in BLOCKs (for example,
|
4511 |
|
|
the calls from the scheduler typically have very few bits set).
|
4512 |
|
|
|
4513 |
|
|
For extra credit, someone should convert BLOCKS to a bitmap rather
|
4514 |
|
|
than an sbitmap. */
|
4515 |
|
|
if (blocks)
|
4516 |
|
|
{
|
4517 |
|
|
sbitmap_iterator sbi;
|
4518 |
|
|
|
4519 |
|
|
EXECUTE_IF_SET_IN_SBITMAP (blocks, 0, i, sbi)
|
4520 |
|
|
{
|
4521 |
|
|
basic_block bb = BASIC_BLOCK (i);
|
4522 |
|
|
/* The bitmap may be flawed in that one of the basic blocks
|
4523 |
|
|
may have been deleted before you get here. */
|
4524 |
|
|
if (bb)
|
4525 |
|
|
count += count_or_remove_death_notes_bb (bb, kill);
|
4526 |
|
|
};
|
4527 |
|
|
}
|
4528 |
|
|
else
|
4529 |
|
|
{
|
4530 |
|
|
FOR_EACH_BB (bb)
|
4531 |
|
|
{
|
4532 |
|
|
count += count_or_remove_death_notes_bb (bb, kill);
|
4533 |
|
|
}
|
4534 |
|
|
}
|
4535 |
|
|
|
4536 |
|
|
return count;
|
4537 |
|
|
}
|
4538 |
|
|
|
4539 |
|
|
/* Optionally removes all the REG_DEAD and REG_UNUSED notes from basic
|
4540 |
|
|
block BB. Returns a count of the number of registers that died. */
|
4541 |
|
|
|
4542 |
|
|
static int
|
4543 |
|
|
count_or_remove_death_notes_bb (basic_block bb, int kill)
|
4544 |
|
|
{
|
4545 |
|
|
int count = 0;
|
4546 |
|
|
rtx insn;
|
4547 |
|
|
|
4548 |
|
|
for (insn = BB_HEAD (bb); ; insn = NEXT_INSN (insn))
|
4549 |
|
|
{
|
4550 |
|
|
if (INSN_P (insn))
|
4551 |
|
|
{
|
4552 |
|
|
rtx *pprev = ®_NOTES (insn);
|
4553 |
|
|
rtx link = *pprev;
|
4554 |
|
|
|
4555 |
|
|
while (link)
|
4556 |
|
|
{
|
4557 |
|
|
switch (REG_NOTE_KIND (link))
|
4558 |
|
|
{
|
4559 |
|
|
case REG_DEAD:
|
4560 |
|
|
if (REG_P (XEXP (link, 0)))
|
4561 |
|
|
{
|
4562 |
|
|
rtx reg = XEXP (link, 0);
|
4563 |
|
|
int n;
|
4564 |
|
|
|
4565 |
|
|
if (REGNO (reg) >= FIRST_PSEUDO_REGISTER)
|
4566 |
|
|
n = 1;
|
4567 |
|
|
else
|
4568 |
|
|
n = hard_regno_nregs[REGNO (reg)][GET_MODE (reg)];
|
4569 |
|
|
count += n;
|
4570 |
|
|
}
|
4571 |
|
|
|
4572 |
|
|
/* Fall through. */
|
4573 |
|
|
|
4574 |
|
|
case REG_UNUSED:
|
4575 |
|
|
if (kill > 0
|
4576 |
|
|
|| (kill
|
4577 |
|
|
#ifdef STACK_REGS
|
4578 |
|
|
&& (!REG_P (XEXP (link, 0))
|
4579 |
|
|
|| !IN_RANGE (REGNO (XEXP (link, 0)),
|
4580 |
|
|
FIRST_STACK_REG, LAST_STACK_REG))
|
4581 |
|
|
#endif
|
4582 |
|
|
))
|
4583 |
|
|
{
|
4584 |
|
|
rtx next = XEXP (link, 1);
|
4585 |
|
|
free_EXPR_LIST_node (link);
|
4586 |
|
|
*pprev = link = next;
|
4587 |
|
|
break;
|
4588 |
|
|
}
|
4589 |
|
|
/* Fall through. */
|
4590 |
|
|
|
4591 |
|
|
default:
|
4592 |
|
|
pprev = &XEXP (link, 1);
|
4593 |
|
|
link = *pprev;
|
4594 |
|
|
break;
|
4595 |
|
|
}
|
4596 |
|
|
}
|
4597 |
|
|
}
|
4598 |
|
|
|
4599 |
|
|
if (insn == BB_END (bb))
|
4600 |
|
|
break;
|
4601 |
|
|
}
|
4602 |
|
|
|
4603 |
|
|
return count;
|
4604 |
|
|
}
|
4605 |
|
|
|
4606 |
|
|
/* Clear LOG_LINKS fields of insns in a selected blocks or whole chain
|
4607 |
|
|
if blocks is NULL. */
|
4608 |
|
|
|
4609 |
|
|
static void
|
4610 |
|
|
clear_log_links (sbitmap blocks)
|
4611 |
|
|
{
|
4612 |
|
|
rtx insn;
|
4613 |
|
|
|
4614 |
|
|
if (!blocks)
|
4615 |
|
|
{
|
4616 |
|
|
for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
|
4617 |
|
|
if (INSN_P (insn))
|
4618 |
|
|
free_INSN_LIST_list (&LOG_LINKS (insn));
|
4619 |
|
|
}
|
4620 |
|
|
else
|
4621 |
|
|
{
|
4622 |
|
|
unsigned int i = 0;
|
4623 |
|
|
sbitmap_iterator sbi;
|
4624 |
|
|
|
4625 |
|
|
EXECUTE_IF_SET_IN_SBITMAP (blocks, 0, i, sbi)
|
4626 |
|
|
{
|
4627 |
|
|
basic_block bb = BASIC_BLOCK (i);
|
4628 |
|
|
|
4629 |
|
|
for (insn = BB_HEAD (bb); insn != NEXT_INSN (BB_END (bb));
|
4630 |
|
|
insn = NEXT_INSN (insn))
|
4631 |
|
|
if (INSN_P (insn))
|
4632 |
|
|
free_INSN_LIST_list (&LOG_LINKS (insn));
|
4633 |
|
|
}
|
4634 |
|
|
}
|
4635 |
|
|
}
|
4636 |
|
|
|
4637 |
|
|
/* Given a register bitmap, turn on the bits in a HARD_REG_SET that
|
4638 |
|
|
correspond to the hard registers, if any, set in that map. This
|
4639 |
|
|
could be done far more efficiently by having all sorts of special-cases
|
4640 |
|
|
with moving single words, but probably isn't worth the trouble. */
|
4641 |
|
|
|
4642 |
|
|
void
|
4643 |
|
|
reg_set_to_hard_reg_set (HARD_REG_SET *to, bitmap from)
|
4644 |
|
|
{
|
4645 |
|
|
unsigned i;
|
4646 |
|
|
bitmap_iterator bi;
|
4647 |
|
|
|
4648 |
|
|
EXECUTE_IF_SET_IN_BITMAP (from, 0, i, bi)
|
4649 |
|
|
{
|
4650 |
|
|
if (i >= FIRST_PSEUDO_REGISTER)
|
4651 |
|
|
return;
|
4652 |
|
|
SET_HARD_REG_BIT (*to, i);
|
4653 |
|
|
}
|
4654 |
|
|
}
|
4655 |
|
|
|
4656 |
|
|
|
4657 |
|
|
static bool
|
4658 |
|
|
gate_remove_death_notes (void)
|
4659 |
|
|
{
|
4660 |
|
|
return flag_profile_values;
|
4661 |
|
|
}
|
4662 |
|
|
|
4663 |
|
|
static unsigned int
|
4664 |
|
|
rest_of_handle_remove_death_notes (void)
|
4665 |
|
|
{
|
4666 |
|
|
count_or_remove_death_notes (NULL, 1);
|
4667 |
|
|
return 0;
|
4668 |
|
|
}
|
4669 |
|
|
|
4670 |
|
|
struct tree_opt_pass pass_remove_death_notes =
|
4671 |
|
|
{
|
4672 |
|
|
"ednotes", /* name */
|
4673 |
|
|
gate_remove_death_notes, /* gate */
|
4674 |
|
|
rest_of_handle_remove_death_notes, /* execute */
|
4675 |
|
|
NULL, /* sub */
|
4676 |
|
|
NULL, /* next */
|
4677 |
|
|
0, /* static_pass_number */
|
4678 |
|
|
0, /* tv_id */
|
4679 |
|
|
0, /* properties_required */
|
4680 |
|
|
0, /* properties_provided */
|
4681 |
|
|
0, /* properties_destroyed */
|
4682 |
|
|
0, /* todo_flags_start */
|
4683 |
|
|
0, /* todo_flags_finish */
|
4684 |
|
|
|
4685 |
|
|
};
|
4686 |
|
|
|
4687 |
|
|
/* Perform life analysis. */
|
4688 |
|
|
static unsigned int
|
4689 |
|
|
rest_of_handle_life (void)
|
4690 |
|
|
{
|
4691 |
|
|
regclass_init ();
|
4692 |
|
|
|
4693 |
|
|
life_analysis (PROP_FINAL);
|
4694 |
|
|
if (optimize)
|
4695 |
|
|
cleanup_cfg (CLEANUP_EXPENSIVE | CLEANUP_UPDATE_LIFE | CLEANUP_LOG_LINKS
|
4696 |
|
|
| (flag_thread_jumps ? CLEANUP_THREADING : 0));
|
4697 |
|
|
|
4698 |
|
|
if (extra_warnings)
|
4699 |
|
|
{
|
4700 |
|
|
setjmp_vars_warning (DECL_INITIAL (current_function_decl));
|
4701 |
|
|
setjmp_args_warning ();
|
4702 |
|
|
}
|
4703 |
|
|
|
4704 |
|
|
if (optimize)
|
4705 |
|
|
{
|
4706 |
|
|
if (initialize_uninitialized_subregs ())
|
4707 |
|
|
{
|
4708 |
|
|
/* Insns were inserted, and possibly pseudos created, so
|
4709 |
|
|
things might look a bit different. */
|
4710 |
|
|
allocate_reg_life_data ();
|
4711 |
|
|
update_life_info (NULL, UPDATE_LIFE_GLOBAL_RM_NOTES,
|
4712 |
|
|
PROP_LOG_LINKS | PROP_REG_INFO | PROP_DEATH_NOTES);
|
4713 |
|
|
}
|
4714 |
|
|
}
|
4715 |
|
|
|
4716 |
|
|
no_new_pseudos = 1;
|
4717 |
|
|
return 0;
|
4718 |
|
|
}
|
4719 |
|
|
|
4720 |
|
|
struct tree_opt_pass pass_life =
|
4721 |
|
|
{
|
4722 |
|
|
"life1", /* name */
|
4723 |
|
|
NULL, /* gate */
|
4724 |
|
|
rest_of_handle_life, /* execute */
|
4725 |
|
|
NULL, /* sub */
|
4726 |
|
|
NULL, /* next */
|
4727 |
|
|
0, /* static_pass_number */
|
4728 |
|
|
TV_FLOW, /* tv_id */
|
4729 |
|
|
0, /* properties_required */
|
4730 |
|
|
0, /* properties_provided */
|
4731 |
|
|
0, /* properties_destroyed */
|
4732 |
|
|
TODO_verify_flow, /* todo_flags_start */
|
4733 |
|
|
TODO_dump_func |
|
4734 |
|
|
TODO_ggc_collect, /* todo_flags_finish */
|
4735 |
|
|
'f' /* letter */
|
4736 |
|
|
};
|
4737 |
|
|
|
4738 |
|
|
static unsigned int
|
4739 |
|
|
rest_of_handle_flow2 (void)
|
4740 |
|
|
{
|
4741 |
|
|
/* If optimizing, then go ahead and split insns now. */
|
4742 |
|
|
#ifndef STACK_REGS
|
4743 |
|
|
if (optimize > 0)
|
4744 |
|
|
#endif
|
4745 |
|
|
split_all_insns (0);
|
4746 |
|
|
|
4747 |
|
|
if (flag_branch_target_load_optimize)
|
4748 |
|
|
branch_target_load_optimize (epilogue_completed);
|
4749 |
|
|
|
4750 |
|
|
if (optimize)
|
4751 |
|
|
cleanup_cfg (CLEANUP_EXPENSIVE);
|
4752 |
|
|
|
4753 |
|
|
/* On some machines, the prologue and epilogue code, or parts thereof,
|
4754 |
|
|
can be represented as RTL. Doing so lets us schedule insns between
|
4755 |
|
|
it and the rest of the code and also allows delayed branch
|
4756 |
|
|
scheduling to operate in the epilogue. */
|
4757 |
|
|
thread_prologue_and_epilogue_insns (get_insns ());
|
4758 |
|
|
epilogue_completed = 1;
|
4759 |
|
|
flow2_completed = 1;
|
4760 |
|
|
return 0;
|
4761 |
|
|
}
|
4762 |
|
|
|
4763 |
|
|
struct tree_opt_pass pass_flow2 =
|
4764 |
|
|
{
|
4765 |
|
|
"flow2", /* name */
|
4766 |
|
|
NULL, /* gate */
|
4767 |
|
|
rest_of_handle_flow2, /* execute */
|
4768 |
|
|
NULL, /* sub */
|
4769 |
|
|
NULL, /* next */
|
4770 |
|
|
0, /* static_pass_number */
|
4771 |
|
|
TV_FLOW2, /* tv_id */
|
4772 |
|
|
0, /* properties_required */
|
4773 |
|
|
0, /* properties_provided */
|
4774 |
|
|
0, /* properties_destroyed */
|
4775 |
|
|
TODO_verify_flow, /* todo_flags_start */
|
4776 |
|
|
TODO_dump_func |
|
4777 |
|
|
TODO_ggc_collect, /* todo_flags_finish */
|
4778 |
|
|
'w' /* letter */
|
4779 |
|
|
};
|
4780 |
|
|
|