1 |
38 |
julius |
/* "Bag-of-pages" garbage collector for the GNU compiler.
|
2 |
|
|
Copyright (C) 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2007
|
3 |
|
|
Free Software Foundation, Inc.
|
4 |
|
|
|
5 |
|
|
This file is part of GCC.
|
6 |
|
|
|
7 |
|
|
GCC is free software; you can redistribute it and/or modify it under
|
8 |
|
|
the terms of the GNU General Public License as published by the Free
|
9 |
|
|
Software Foundation; either version 3, or (at your option) any later
|
10 |
|
|
version.
|
11 |
|
|
|
12 |
|
|
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
|
13 |
|
|
WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
14 |
|
|
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
15 |
|
|
for more details.
|
16 |
|
|
|
17 |
|
|
You should have received a copy of the GNU General Public License
|
18 |
|
|
along with GCC; see the file COPYING3. If not see
|
19 |
|
|
<http://www.gnu.org/licenses/>. */
|
20 |
|
|
|
21 |
|
|
#include "config.h"
|
22 |
|
|
#include "system.h"
|
23 |
|
|
#include "coretypes.h"
|
24 |
|
|
#include "tm.h"
|
25 |
|
|
#include "tree.h"
|
26 |
|
|
#include "rtl.h"
|
27 |
|
|
#include "tm_p.h"
|
28 |
|
|
#include "toplev.h"
|
29 |
|
|
#include "flags.h"
|
30 |
|
|
#include "ggc.h"
|
31 |
|
|
#include "timevar.h"
|
32 |
|
|
#include "params.h"
|
33 |
|
|
#include "tree-flow.h"
|
34 |
|
|
#ifdef ENABLE_VALGRIND_CHECKING
|
35 |
|
|
# ifdef HAVE_VALGRIND_MEMCHECK_H
|
36 |
|
|
# include <valgrind/memcheck.h>
|
37 |
|
|
# elif defined HAVE_MEMCHECK_H
|
38 |
|
|
# include <memcheck.h>
|
39 |
|
|
# else
|
40 |
|
|
# include <valgrind.h>
|
41 |
|
|
# endif
|
42 |
|
|
#else
|
43 |
|
|
/* Avoid #ifdef:s when we can help it. */
|
44 |
|
|
#define VALGRIND_DISCARD(x)
|
45 |
|
|
#endif
|
46 |
|
|
|
47 |
|
|
/* Prefer MAP_ANON(YMOUS) to /dev/zero, since we don't need to keep a
|
48 |
|
|
file open. Prefer either to valloc. */
|
49 |
|
|
#ifdef HAVE_MMAP_ANON
|
50 |
|
|
# undef HAVE_MMAP_DEV_ZERO
|
51 |
|
|
|
52 |
|
|
# include <sys/mman.h>
|
53 |
|
|
# ifndef MAP_FAILED
|
54 |
|
|
# define MAP_FAILED -1
|
55 |
|
|
# endif
|
56 |
|
|
# if !defined (MAP_ANONYMOUS) && defined (MAP_ANON)
|
57 |
|
|
# define MAP_ANONYMOUS MAP_ANON
|
58 |
|
|
# endif
|
59 |
|
|
# define USING_MMAP
|
60 |
|
|
|
61 |
|
|
#endif
|
62 |
|
|
|
63 |
|
|
#ifdef HAVE_MMAP_DEV_ZERO
|
64 |
|
|
|
65 |
|
|
# include <sys/mman.h>
|
66 |
|
|
# ifndef MAP_FAILED
|
67 |
|
|
# define MAP_FAILED -1
|
68 |
|
|
# endif
|
69 |
|
|
# define USING_MMAP
|
70 |
|
|
|
71 |
|
|
#endif
|
72 |
|
|
|
73 |
|
|
#ifndef USING_MMAP
|
74 |
|
|
#define USING_MALLOC_PAGE_GROUPS
|
75 |
|
|
#endif
|
76 |
|
|
|
77 |
|
|
/* Strategy:
|
78 |
|
|
|
79 |
|
|
This garbage-collecting allocator allocates objects on one of a set
|
80 |
|
|
of pages. Each page can allocate objects of a single size only;
|
81 |
|
|
available sizes are powers of two starting at four bytes. The size
|
82 |
|
|
of an allocation request is rounded up to the next power of two
|
83 |
|
|
(`order'), and satisfied from the appropriate page.
|
84 |
|
|
|
85 |
|
|
Each page is recorded in a page-entry, which also maintains an
|
86 |
|
|
in-use bitmap of object positions on the page. This allows the
|
87 |
|
|
allocation state of a particular object to be flipped without
|
88 |
|
|
touching the page itself.
|
89 |
|
|
|
90 |
|
|
Each page-entry also has a context depth, which is used to track
|
91 |
|
|
pushing and popping of allocation contexts. Only objects allocated
|
92 |
|
|
in the current (highest-numbered) context may be collected.
|
93 |
|
|
|
94 |
|
|
Page entries are arranged in an array of singly-linked lists. The
|
95 |
|
|
array is indexed by the allocation size, in bits, of the pages on
|
96 |
|
|
it; i.e. all pages on a list allocate objects of the same size.
|
97 |
|
|
Pages are ordered on the list such that all non-full pages precede
|
98 |
|
|
all full pages, with non-full pages arranged in order of decreasing
|
99 |
|
|
context depth.
|
100 |
|
|
|
101 |
|
|
Empty pages (of all orders) are kept on a single page cache list,
|
102 |
|
|
and are considered first when new pages are required; they are
|
103 |
|
|
deallocated at the start of the next collection if they haven't
|
104 |
|
|
been recycled by then. */
|
105 |
|
|
|
106 |
|
|
/* Define GGC_DEBUG_LEVEL to print debugging information.
|
107 |
|
|
0: No debugging output.
|
108 |
|
|
1: GC statistics only.
|
109 |
|
|
2: Page-entry allocations/deallocations as well.
|
110 |
|
|
3: Object allocations as well.
|
111 |
|
|
4: Object marks as well. */
|
112 |
|
|
#define GGC_DEBUG_LEVEL (0)
|
113 |
|
|
|
114 |
|
|
#ifndef HOST_BITS_PER_PTR
|
115 |
|
|
#define HOST_BITS_PER_PTR HOST_BITS_PER_LONG
|
116 |
|
|
#endif
|
117 |
|
|
|
118 |
|
|
|
119 |
|
|
/* A two-level tree is used to look up the page-entry for a given
|
120 |
|
|
pointer. Two chunks of the pointer's bits are extracted to index
|
121 |
|
|
the first and second levels of the tree, as follows:
|
122 |
|
|
|
123 |
|
|
HOST_PAGE_SIZE_BITS
|
124 |
|
|
32 | |
|
125 |
|
|
msb +----------------+----+------+------+ lsb
|
126 |
|
|
| | |
|
127 |
|
|
PAGE_L1_BITS |
|
128 |
|
|
| |
|
129 |
|
|
PAGE_L2_BITS
|
130 |
|
|
|
131 |
|
|
The bottommost HOST_PAGE_SIZE_BITS are ignored, since page-entry
|
132 |
|
|
pages are aligned on system page boundaries. The next most
|
133 |
|
|
significant PAGE_L2_BITS and PAGE_L1_BITS are the second and first
|
134 |
|
|
index values in the lookup table, respectively.
|
135 |
|
|
|
136 |
|
|
For 32-bit architectures and the settings below, there are no
|
137 |
|
|
leftover bits. For architectures with wider pointers, the lookup
|
138 |
|
|
tree points to a list of pages, which must be scanned to find the
|
139 |
|
|
correct one. */
|
140 |
|
|
|
141 |
|
|
#define PAGE_L1_BITS (8)
|
142 |
|
|
#define PAGE_L2_BITS (32 - PAGE_L1_BITS - G.lg_pagesize)
|
143 |
|
|
#define PAGE_L1_SIZE ((size_t) 1 << PAGE_L1_BITS)
|
144 |
|
|
#define PAGE_L2_SIZE ((size_t) 1 << PAGE_L2_BITS)
|
145 |
|
|
|
146 |
|
|
#define LOOKUP_L1(p) \
|
147 |
|
|
(((size_t) (p) >> (32 - PAGE_L1_BITS)) & ((1 << PAGE_L1_BITS) - 1))
|
148 |
|
|
|
149 |
|
|
#define LOOKUP_L2(p) \
|
150 |
|
|
(((size_t) (p) >> G.lg_pagesize) & ((1 << PAGE_L2_BITS) - 1))
|
151 |
|
|
|
152 |
|
|
/* The number of objects per allocation page, for objects on a page of
|
153 |
|
|
the indicated ORDER. */
|
154 |
|
|
#define OBJECTS_PER_PAGE(ORDER) objects_per_page_table[ORDER]
|
155 |
|
|
|
156 |
|
|
/* The number of objects in P. */
|
157 |
|
|
#define OBJECTS_IN_PAGE(P) ((P)->bytes / OBJECT_SIZE ((P)->order))
|
158 |
|
|
|
159 |
|
|
/* The size of an object on a page of the indicated ORDER. */
|
160 |
|
|
#define OBJECT_SIZE(ORDER) object_size_table[ORDER]
|
161 |
|
|
|
162 |
|
|
/* For speed, we avoid doing a general integer divide to locate the
|
163 |
|
|
offset in the allocation bitmap, by precalculating numbers M, S
|
164 |
|
|
such that (O * M) >> S == O / Z (modulo 2^32), for any offset O
|
165 |
|
|
within the page which is evenly divisible by the object size Z. */
|
166 |
|
|
#define DIV_MULT(ORDER) inverse_table[ORDER].mult
|
167 |
|
|
#define DIV_SHIFT(ORDER) inverse_table[ORDER].shift
|
168 |
|
|
#define OFFSET_TO_BIT(OFFSET, ORDER) \
|
169 |
|
|
(((OFFSET) * DIV_MULT (ORDER)) >> DIV_SHIFT (ORDER))
|
170 |
|
|
|
171 |
|
|
/* The number of extra orders, not corresponding to power-of-two sized
|
172 |
|
|
objects. */
|
173 |
|
|
|
174 |
|
|
#define NUM_EXTRA_ORDERS ARRAY_SIZE (extra_order_size_table)
|
175 |
|
|
|
176 |
|
|
#define RTL_SIZE(NSLOTS) \
|
177 |
|
|
(RTX_HDR_SIZE + (NSLOTS) * sizeof (rtunion))
|
178 |
|
|
|
179 |
|
|
#define TREE_EXP_SIZE(OPS) \
|
180 |
|
|
(sizeof (struct tree_exp) + ((OPS) - 1) * sizeof (tree))
|
181 |
|
|
|
182 |
|
|
/* The Ith entry is the maximum size of an object to be stored in the
|
183 |
|
|
Ith extra order. Adding a new entry to this array is the *only*
|
184 |
|
|
thing you need to do to add a new special allocation size. */
|
185 |
|
|
|
186 |
|
|
static const size_t extra_order_size_table[] = {
|
187 |
|
|
sizeof (struct stmt_ann_d),
|
188 |
|
|
sizeof (struct var_ann_d),
|
189 |
|
|
sizeof (struct tree_decl_non_common),
|
190 |
|
|
sizeof (struct tree_field_decl),
|
191 |
|
|
sizeof (struct tree_parm_decl),
|
192 |
|
|
sizeof (struct tree_var_decl),
|
193 |
|
|
sizeof (struct tree_list),
|
194 |
|
|
sizeof (struct tree_ssa_name),
|
195 |
|
|
sizeof (struct function),
|
196 |
|
|
sizeof (struct basic_block_def),
|
197 |
|
|
sizeof (bitmap_element),
|
198 |
|
|
/* PHI nodes with one to three arguments are already covered by the
|
199 |
|
|
above sizes. */
|
200 |
|
|
sizeof (struct tree_phi_node) + sizeof (struct phi_arg_d) * 3,
|
201 |
|
|
TREE_EXP_SIZE (2),
|
202 |
|
|
RTL_SIZE (2), /* MEM, PLUS, etc. */
|
203 |
|
|
RTL_SIZE (9), /* INSN */
|
204 |
|
|
};
|
205 |
|
|
|
206 |
|
|
/* The total number of orders. */
|
207 |
|
|
|
208 |
|
|
#define NUM_ORDERS (HOST_BITS_PER_PTR + NUM_EXTRA_ORDERS)
|
209 |
|
|
|
210 |
|
|
/* We use this structure to determine the alignment required for
|
211 |
|
|
allocations. For power-of-two sized allocations, that's not a
|
212 |
|
|
problem, but it does matter for odd-sized allocations. */
|
213 |
|
|
|
214 |
|
|
struct max_alignment {
|
215 |
|
|
char c;
|
216 |
|
|
union {
|
217 |
|
|
HOST_WIDEST_INT i;
|
218 |
|
|
long double d;
|
219 |
|
|
} u;
|
220 |
|
|
};
|
221 |
|
|
|
222 |
|
|
/* The biggest alignment required. */
|
223 |
|
|
|
224 |
|
|
#define MAX_ALIGNMENT (offsetof (struct max_alignment, u))
|
225 |
|
|
|
226 |
|
|
/* Compute the smallest nonnegative number which when added to X gives
|
227 |
|
|
a multiple of F. */
|
228 |
|
|
|
229 |
|
|
#define ROUND_UP_VALUE(x, f) ((f) - 1 - ((f) - 1 + (x)) % (f))
|
230 |
|
|
|
231 |
|
|
/* Compute the smallest multiple of F that is >= X. */
|
232 |
|
|
|
233 |
|
|
#define ROUND_UP(x, f) (CEIL (x, f) * (f))
|
234 |
|
|
|
235 |
|
|
/* The Ith entry is the number of objects on a page or order I. */
|
236 |
|
|
|
237 |
|
|
static unsigned objects_per_page_table[NUM_ORDERS];
|
238 |
|
|
|
239 |
|
|
/* The Ith entry is the size of an object on a page of order I. */
|
240 |
|
|
|
241 |
|
|
static size_t object_size_table[NUM_ORDERS];
|
242 |
|
|
|
243 |
|
|
/* The Ith entry is a pair of numbers (mult, shift) such that
|
244 |
|
|
((k * mult) >> shift) mod 2^32 == (k / OBJECT_SIZE(I)) mod 2^32,
|
245 |
|
|
for all k evenly divisible by OBJECT_SIZE(I). */
|
246 |
|
|
|
247 |
|
|
static struct
|
248 |
|
|
{
|
249 |
|
|
size_t mult;
|
250 |
|
|
unsigned int shift;
|
251 |
|
|
}
|
252 |
|
|
inverse_table[NUM_ORDERS];
|
253 |
|
|
|
254 |
|
|
/* A page_entry records the status of an allocation page. This
|
255 |
|
|
structure is dynamically sized to fit the bitmap in_use_p. */
|
256 |
|
|
typedef struct page_entry
|
257 |
|
|
{
|
258 |
|
|
/* The next page-entry with objects of the same size, or NULL if
|
259 |
|
|
this is the last page-entry. */
|
260 |
|
|
struct page_entry *next;
|
261 |
|
|
|
262 |
|
|
/* The previous page-entry with objects of the same size, or NULL if
|
263 |
|
|
this is the first page-entry. The PREV pointer exists solely to
|
264 |
|
|
keep the cost of ggc_free manageable. */
|
265 |
|
|
struct page_entry *prev;
|
266 |
|
|
|
267 |
|
|
/* The number of bytes allocated. (This will always be a multiple
|
268 |
|
|
of the host system page size.) */
|
269 |
|
|
size_t bytes;
|
270 |
|
|
|
271 |
|
|
/* The address at which the memory is allocated. */
|
272 |
|
|
char *page;
|
273 |
|
|
|
274 |
|
|
#ifdef USING_MALLOC_PAGE_GROUPS
|
275 |
|
|
/* Back pointer to the page group this page came from. */
|
276 |
|
|
struct page_group *group;
|
277 |
|
|
#endif
|
278 |
|
|
|
279 |
|
|
/* This is the index in the by_depth varray where this page table
|
280 |
|
|
can be found. */
|
281 |
|
|
unsigned long index_by_depth;
|
282 |
|
|
|
283 |
|
|
/* Context depth of this page. */
|
284 |
|
|
unsigned short context_depth;
|
285 |
|
|
|
286 |
|
|
/* The number of free objects remaining on this page. */
|
287 |
|
|
unsigned short num_free_objects;
|
288 |
|
|
|
289 |
|
|
/* A likely candidate for the bit position of a free object for the
|
290 |
|
|
next allocation from this page. */
|
291 |
|
|
unsigned short next_bit_hint;
|
292 |
|
|
|
293 |
|
|
/* The lg of size of objects allocated from this page. */
|
294 |
|
|
unsigned char order;
|
295 |
|
|
|
296 |
|
|
/* A bit vector indicating whether or not objects are in use. The
|
297 |
|
|
Nth bit is one if the Nth object on this page is allocated. This
|
298 |
|
|
array is dynamically sized. */
|
299 |
|
|
unsigned long in_use_p[1];
|
300 |
|
|
} page_entry;
|
301 |
|
|
|
302 |
|
|
#ifdef USING_MALLOC_PAGE_GROUPS
|
303 |
|
|
/* A page_group describes a large allocation from malloc, from which
|
304 |
|
|
we parcel out aligned pages. */
|
305 |
|
|
typedef struct page_group
|
306 |
|
|
{
|
307 |
|
|
/* A linked list of all extant page groups. */
|
308 |
|
|
struct page_group *next;
|
309 |
|
|
|
310 |
|
|
/* The address we received from malloc. */
|
311 |
|
|
char *allocation;
|
312 |
|
|
|
313 |
|
|
/* The size of the block. */
|
314 |
|
|
size_t alloc_size;
|
315 |
|
|
|
316 |
|
|
/* A bitmask of pages in use. */
|
317 |
|
|
unsigned int in_use;
|
318 |
|
|
} page_group;
|
319 |
|
|
#endif
|
320 |
|
|
|
321 |
|
|
#if HOST_BITS_PER_PTR <= 32
|
322 |
|
|
|
323 |
|
|
/* On 32-bit hosts, we use a two level page table, as pictured above. */
|
324 |
|
|
typedef page_entry **page_table[PAGE_L1_SIZE];
|
325 |
|
|
|
326 |
|
|
#else
|
327 |
|
|
|
328 |
|
|
/* On 64-bit hosts, we use the same two level page tables plus a linked
|
329 |
|
|
list that disambiguates the top 32-bits. There will almost always be
|
330 |
|
|
exactly one entry in the list. */
|
331 |
|
|
typedef struct page_table_chain
|
332 |
|
|
{
|
333 |
|
|
struct page_table_chain *next;
|
334 |
|
|
size_t high_bits;
|
335 |
|
|
page_entry **table[PAGE_L1_SIZE];
|
336 |
|
|
} *page_table;
|
337 |
|
|
|
338 |
|
|
#endif
|
339 |
|
|
|
340 |
|
|
/* The rest of the global variables. */
|
341 |
|
|
static struct globals
|
342 |
|
|
{
|
343 |
|
|
/* The Nth element in this array is a page with objects of size 2^N.
|
344 |
|
|
If there are any pages with free objects, they will be at the
|
345 |
|
|
head of the list. NULL if there are no page-entries for this
|
346 |
|
|
object size. */
|
347 |
|
|
page_entry *pages[NUM_ORDERS];
|
348 |
|
|
|
349 |
|
|
/* The Nth element in this array is the last page with objects of
|
350 |
|
|
size 2^N. NULL if there are no page-entries for this object
|
351 |
|
|
size. */
|
352 |
|
|
page_entry *page_tails[NUM_ORDERS];
|
353 |
|
|
|
354 |
|
|
/* Lookup table for associating allocation pages with object addresses. */
|
355 |
|
|
page_table lookup;
|
356 |
|
|
|
357 |
|
|
/* The system's page size. */
|
358 |
|
|
size_t pagesize;
|
359 |
|
|
size_t lg_pagesize;
|
360 |
|
|
|
361 |
|
|
/* Bytes currently allocated. */
|
362 |
|
|
size_t allocated;
|
363 |
|
|
|
364 |
|
|
/* Bytes currently allocated at the end of the last collection. */
|
365 |
|
|
size_t allocated_last_gc;
|
366 |
|
|
|
367 |
|
|
/* Total amount of memory mapped. */
|
368 |
|
|
size_t bytes_mapped;
|
369 |
|
|
|
370 |
|
|
/* Bit N set if any allocations have been done at context depth N. */
|
371 |
|
|
unsigned long context_depth_allocations;
|
372 |
|
|
|
373 |
|
|
/* Bit N set if any collections have been done at context depth N. */
|
374 |
|
|
unsigned long context_depth_collections;
|
375 |
|
|
|
376 |
|
|
/* The current depth in the context stack. */
|
377 |
|
|
unsigned short context_depth;
|
378 |
|
|
|
379 |
|
|
/* A file descriptor open to /dev/zero for reading. */
|
380 |
|
|
#if defined (HAVE_MMAP_DEV_ZERO)
|
381 |
|
|
int dev_zero_fd;
|
382 |
|
|
#endif
|
383 |
|
|
|
384 |
|
|
/* A cache of free system pages. */
|
385 |
|
|
page_entry *free_pages;
|
386 |
|
|
|
387 |
|
|
#ifdef USING_MALLOC_PAGE_GROUPS
|
388 |
|
|
page_group *page_groups;
|
389 |
|
|
#endif
|
390 |
|
|
|
391 |
|
|
/* The file descriptor for debugging output. */
|
392 |
|
|
FILE *debug_file;
|
393 |
|
|
|
394 |
|
|
/* Current number of elements in use in depth below. */
|
395 |
|
|
unsigned int depth_in_use;
|
396 |
|
|
|
397 |
|
|
/* Maximum number of elements that can be used before resizing. */
|
398 |
|
|
unsigned int depth_max;
|
399 |
|
|
|
400 |
|
|
/* Each element of this arry is an index in by_depth where the given
|
401 |
|
|
depth starts. This structure is indexed by that given depth we
|
402 |
|
|
are interested in. */
|
403 |
|
|
unsigned int *depth;
|
404 |
|
|
|
405 |
|
|
/* Current number of elements in use in by_depth below. */
|
406 |
|
|
unsigned int by_depth_in_use;
|
407 |
|
|
|
408 |
|
|
/* Maximum number of elements that can be used before resizing. */
|
409 |
|
|
unsigned int by_depth_max;
|
410 |
|
|
|
411 |
|
|
/* Each element of this array is a pointer to a page_entry, all
|
412 |
|
|
page_entries can be found in here by increasing depth.
|
413 |
|
|
index_by_depth in the page_entry is the index into this data
|
414 |
|
|
structure where that page_entry can be found. This is used to
|
415 |
|
|
speed up finding all page_entries at a particular depth. */
|
416 |
|
|
page_entry **by_depth;
|
417 |
|
|
|
418 |
|
|
/* Each element is a pointer to the saved in_use_p bits, if any,
|
419 |
|
|
zero otherwise. We allocate them all together, to enable a
|
420 |
|
|
better runtime data access pattern. */
|
421 |
|
|
unsigned long **save_in_use;
|
422 |
|
|
|
423 |
|
|
#ifdef ENABLE_GC_ALWAYS_COLLECT
|
424 |
|
|
/* List of free objects to be verified as actually free on the
|
425 |
|
|
next collection. */
|
426 |
|
|
struct free_object
|
427 |
|
|
{
|
428 |
|
|
void *object;
|
429 |
|
|
struct free_object *next;
|
430 |
|
|
} *free_object_list;
|
431 |
|
|
#endif
|
432 |
|
|
|
433 |
|
|
#ifdef GATHER_STATISTICS
|
434 |
|
|
struct
|
435 |
|
|
{
|
436 |
|
|
/* Total memory allocated with ggc_alloc. */
|
437 |
|
|
unsigned long long total_allocated;
|
438 |
|
|
/* Total overhead for memory to be allocated with ggc_alloc. */
|
439 |
|
|
unsigned long long total_overhead;
|
440 |
|
|
|
441 |
|
|
/* Total allocations and overhead for sizes less than 32, 64 and 128.
|
442 |
|
|
These sizes are interesting because they are typical cache line
|
443 |
|
|
sizes. */
|
444 |
|
|
|
445 |
|
|
unsigned long long total_allocated_under32;
|
446 |
|
|
unsigned long long total_overhead_under32;
|
447 |
|
|
|
448 |
|
|
unsigned long long total_allocated_under64;
|
449 |
|
|
unsigned long long total_overhead_under64;
|
450 |
|
|
|
451 |
|
|
unsigned long long total_allocated_under128;
|
452 |
|
|
unsigned long long total_overhead_under128;
|
453 |
|
|
|
454 |
|
|
/* The allocations for each of the allocation orders. */
|
455 |
|
|
unsigned long long total_allocated_per_order[NUM_ORDERS];
|
456 |
|
|
|
457 |
|
|
/* The overhead for each of the allocation orders. */
|
458 |
|
|
unsigned long long total_overhead_per_order[NUM_ORDERS];
|
459 |
|
|
} stats;
|
460 |
|
|
#endif
|
461 |
|
|
} G;
|
462 |
|
|
|
463 |
|
|
/* The size in bytes required to maintain a bitmap for the objects
|
464 |
|
|
on a page-entry. */
|
465 |
|
|
#define BITMAP_SIZE(Num_objects) \
|
466 |
|
|
(CEIL ((Num_objects), HOST_BITS_PER_LONG) * sizeof(long))
|
467 |
|
|
|
468 |
|
|
/* Allocate pages in chunks of this size, to throttle calls to memory
|
469 |
|
|
allocation routines. The first page is used, the rest go onto the
|
470 |
|
|
free list. This cannot be larger than HOST_BITS_PER_INT for the
|
471 |
|
|
in_use bitmask for page_group. Hosts that need a different value
|
472 |
|
|
can override this by defining GGC_QUIRE_SIZE explicitly. */
|
473 |
|
|
#ifndef GGC_QUIRE_SIZE
|
474 |
|
|
# ifdef USING_MMAP
|
475 |
|
|
# define GGC_QUIRE_SIZE 256
|
476 |
|
|
# else
|
477 |
|
|
# define GGC_QUIRE_SIZE 16
|
478 |
|
|
# endif
|
479 |
|
|
#endif
|
480 |
|
|
|
481 |
|
|
/* Initial guess as to how many page table entries we might need. */
|
482 |
|
|
#define INITIAL_PTE_COUNT 128
|
483 |
|
|
|
484 |
|
|
static int ggc_allocated_p (const void *);
|
485 |
|
|
static page_entry *lookup_page_table_entry (const void *);
|
486 |
|
|
static void set_page_table_entry (void *, page_entry *);
|
487 |
|
|
#ifdef USING_MMAP
|
488 |
|
|
static char *alloc_anon (char *, size_t);
|
489 |
|
|
#endif
|
490 |
|
|
#ifdef USING_MALLOC_PAGE_GROUPS
|
491 |
|
|
static size_t page_group_index (char *, char *);
|
492 |
|
|
static void set_page_group_in_use (page_group *, char *);
|
493 |
|
|
static void clear_page_group_in_use (page_group *, char *);
|
494 |
|
|
#endif
|
495 |
|
|
static struct page_entry * alloc_page (unsigned);
|
496 |
|
|
static void free_page (struct page_entry *);
|
497 |
|
|
static void release_pages (void);
|
498 |
|
|
static void clear_marks (void);
|
499 |
|
|
static void sweep_pages (void);
|
500 |
|
|
static void ggc_recalculate_in_use_p (page_entry *);
|
501 |
|
|
static void compute_inverse (unsigned);
|
502 |
|
|
static inline void adjust_depth (void);
|
503 |
|
|
static void move_ptes_to_front (int, int);
|
504 |
|
|
|
505 |
|
|
void debug_print_page_list (int);
|
506 |
|
|
static void push_depth (unsigned int);
|
507 |
|
|
static void push_by_depth (page_entry *, unsigned long *);
|
508 |
|
|
|
509 |
|
|
/* Push an entry onto G.depth. */
|
510 |
|
|
|
511 |
|
|
inline static void
|
512 |
|
|
push_depth (unsigned int i)
|
513 |
|
|
{
|
514 |
|
|
if (G.depth_in_use >= G.depth_max)
|
515 |
|
|
{
|
516 |
|
|
G.depth_max *= 2;
|
517 |
|
|
G.depth = xrealloc (G.depth, G.depth_max * sizeof (unsigned int));
|
518 |
|
|
}
|
519 |
|
|
G.depth[G.depth_in_use++] = i;
|
520 |
|
|
}
|
521 |
|
|
|
522 |
|
|
/* Push an entry onto G.by_depth and G.save_in_use. */
|
523 |
|
|
|
524 |
|
|
inline static void
|
525 |
|
|
push_by_depth (page_entry *p, unsigned long *s)
|
526 |
|
|
{
|
527 |
|
|
if (G.by_depth_in_use >= G.by_depth_max)
|
528 |
|
|
{
|
529 |
|
|
G.by_depth_max *= 2;
|
530 |
|
|
G.by_depth = xrealloc (G.by_depth,
|
531 |
|
|
G.by_depth_max * sizeof (page_entry *));
|
532 |
|
|
G.save_in_use = xrealloc (G.save_in_use,
|
533 |
|
|
G.by_depth_max * sizeof (unsigned long *));
|
534 |
|
|
}
|
535 |
|
|
G.by_depth[G.by_depth_in_use] = p;
|
536 |
|
|
G.save_in_use[G.by_depth_in_use++] = s;
|
537 |
|
|
}
|
538 |
|
|
|
539 |
|
|
#if (GCC_VERSION < 3001)
|
540 |
|
|
#define prefetch(X) ((void) X)
|
541 |
|
|
#else
|
542 |
|
|
#define prefetch(X) __builtin_prefetch (X)
|
543 |
|
|
#endif
|
544 |
|
|
|
545 |
|
|
#define save_in_use_p_i(__i) \
|
546 |
|
|
(G.save_in_use[__i])
|
547 |
|
|
#define save_in_use_p(__p) \
|
548 |
|
|
(save_in_use_p_i (__p->index_by_depth))
|
549 |
|
|
|
550 |
|
|
/* Returns nonzero if P was allocated in GC'able memory. */
|
551 |
|
|
|
552 |
|
|
static inline int
|
553 |
|
|
ggc_allocated_p (const void *p)
|
554 |
|
|
{
|
555 |
|
|
page_entry ***base;
|
556 |
|
|
size_t L1, L2;
|
557 |
|
|
|
558 |
|
|
#if HOST_BITS_PER_PTR <= 32
|
559 |
|
|
base = &G.lookup[0];
|
560 |
|
|
#else
|
561 |
|
|
page_table table = G.lookup;
|
562 |
|
|
size_t high_bits = (size_t) p & ~ (size_t) 0xffffffff;
|
563 |
|
|
while (1)
|
564 |
|
|
{
|
565 |
|
|
if (table == NULL)
|
566 |
|
|
return 0;
|
567 |
|
|
if (table->high_bits == high_bits)
|
568 |
|
|
break;
|
569 |
|
|
table = table->next;
|
570 |
|
|
}
|
571 |
|
|
base = &table->table[0];
|
572 |
|
|
#endif
|
573 |
|
|
|
574 |
|
|
/* Extract the level 1 and 2 indices. */
|
575 |
|
|
L1 = LOOKUP_L1 (p);
|
576 |
|
|
L2 = LOOKUP_L2 (p);
|
577 |
|
|
|
578 |
|
|
return base[L1] && base[L1][L2];
|
579 |
|
|
}
|
580 |
|
|
|
581 |
|
|
/* Traverse the page table and find the entry for a page.
|
582 |
|
|
Die (probably) if the object wasn't allocated via GC. */
|
583 |
|
|
|
584 |
|
|
static inline page_entry *
|
585 |
|
|
lookup_page_table_entry (const void *p)
|
586 |
|
|
{
|
587 |
|
|
page_entry ***base;
|
588 |
|
|
size_t L1, L2;
|
589 |
|
|
|
590 |
|
|
#if HOST_BITS_PER_PTR <= 32
|
591 |
|
|
base = &G.lookup[0];
|
592 |
|
|
#else
|
593 |
|
|
page_table table = G.lookup;
|
594 |
|
|
size_t high_bits = (size_t) p & ~ (size_t) 0xffffffff;
|
595 |
|
|
while (table->high_bits != high_bits)
|
596 |
|
|
table = table->next;
|
597 |
|
|
base = &table->table[0];
|
598 |
|
|
#endif
|
599 |
|
|
|
600 |
|
|
/* Extract the level 1 and 2 indices. */
|
601 |
|
|
L1 = LOOKUP_L1 (p);
|
602 |
|
|
L2 = LOOKUP_L2 (p);
|
603 |
|
|
|
604 |
|
|
return base[L1][L2];
|
605 |
|
|
}
|
606 |
|
|
|
607 |
|
|
/* Set the page table entry for a page. */
|
608 |
|
|
|
609 |
|
|
static void
|
610 |
|
|
set_page_table_entry (void *p, page_entry *entry)
|
611 |
|
|
{
|
612 |
|
|
page_entry ***base;
|
613 |
|
|
size_t L1, L2;
|
614 |
|
|
|
615 |
|
|
#if HOST_BITS_PER_PTR <= 32
|
616 |
|
|
base = &G.lookup[0];
|
617 |
|
|
#else
|
618 |
|
|
page_table table;
|
619 |
|
|
size_t high_bits = (size_t) p & ~ (size_t) 0xffffffff;
|
620 |
|
|
for (table = G.lookup; table; table = table->next)
|
621 |
|
|
if (table->high_bits == high_bits)
|
622 |
|
|
goto found;
|
623 |
|
|
|
624 |
|
|
/* Not found -- allocate a new table. */
|
625 |
|
|
table = xcalloc (1, sizeof(*table));
|
626 |
|
|
table->next = G.lookup;
|
627 |
|
|
table->high_bits = high_bits;
|
628 |
|
|
G.lookup = table;
|
629 |
|
|
found:
|
630 |
|
|
base = &table->table[0];
|
631 |
|
|
#endif
|
632 |
|
|
|
633 |
|
|
/* Extract the level 1 and 2 indices. */
|
634 |
|
|
L1 = LOOKUP_L1 (p);
|
635 |
|
|
L2 = LOOKUP_L2 (p);
|
636 |
|
|
|
637 |
|
|
if (base[L1] == NULL)
|
638 |
|
|
base[L1] = XCNEWVEC (page_entry *, PAGE_L2_SIZE);
|
639 |
|
|
|
640 |
|
|
base[L1][L2] = entry;
|
641 |
|
|
}
|
642 |
|
|
|
643 |
|
|
/* Prints the page-entry for object size ORDER, for debugging. */
|
644 |
|
|
|
645 |
|
|
void
|
646 |
|
|
debug_print_page_list (int order)
|
647 |
|
|
{
|
648 |
|
|
page_entry *p;
|
649 |
|
|
printf ("Head=%p, Tail=%p:\n", (void *) G.pages[order],
|
650 |
|
|
(void *) G.page_tails[order]);
|
651 |
|
|
p = G.pages[order];
|
652 |
|
|
while (p != NULL)
|
653 |
|
|
{
|
654 |
|
|
printf ("%p(%1d|%3d) -> ", (void *) p, p->context_depth,
|
655 |
|
|
p->num_free_objects);
|
656 |
|
|
p = p->next;
|
657 |
|
|
}
|
658 |
|
|
printf ("NULL\n");
|
659 |
|
|
fflush (stdout);
|
660 |
|
|
}
|
661 |
|
|
|
662 |
|
|
#ifdef USING_MMAP
|
663 |
|
|
/* Allocate SIZE bytes of anonymous memory, preferably near PREF,
|
664 |
|
|
(if non-null). The ifdef structure here is intended to cause a
|
665 |
|
|
compile error unless exactly one of the HAVE_* is defined. */
|
666 |
|
|
|
667 |
|
|
static inline char *
|
668 |
|
|
alloc_anon (char *pref ATTRIBUTE_UNUSED, size_t size)
|
669 |
|
|
{
|
670 |
|
|
#ifdef HAVE_MMAP_ANON
|
671 |
|
|
char *page = mmap (pref, size, PROT_READ | PROT_WRITE,
|
672 |
|
|
MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
|
673 |
|
|
#endif
|
674 |
|
|
#ifdef HAVE_MMAP_DEV_ZERO
|
675 |
|
|
char *page = mmap (pref, size, PROT_READ | PROT_WRITE,
|
676 |
|
|
MAP_PRIVATE, G.dev_zero_fd, 0);
|
677 |
|
|
#endif
|
678 |
|
|
|
679 |
|
|
if (page == (char *) MAP_FAILED)
|
680 |
|
|
{
|
681 |
|
|
perror ("virtual memory exhausted");
|
682 |
|
|
exit (FATAL_EXIT_CODE);
|
683 |
|
|
}
|
684 |
|
|
|
685 |
|
|
/* Remember that we allocated this memory. */
|
686 |
|
|
G.bytes_mapped += size;
|
687 |
|
|
|
688 |
|
|
/* Pretend we don't have access to the allocated pages. We'll enable
|
689 |
|
|
access to smaller pieces of the area in ggc_alloc. Discard the
|
690 |
|
|
handle to avoid handle leak. */
|
691 |
|
|
VALGRIND_DISCARD (VALGRIND_MAKE_NOACCESS (page, size));
|
692 |
|
|
|
693 |
|
|
return page;
|
694 |
|
|
}
|
695 |
|
|
#endif
|
696 |
|
|
#ifdef USING_MALLOC_PAGE_GROUPS
|
697 |
|
|
/* Compute the index for this page into the page group. */
|
698 |
|
|
|
699 |
|
|
static inline size_t
|
700 |
|
|
page_group_index (char *allocation, char *page)
|
701 |
|
|
{
|
702 |
|
|
return (size_t) (page - allocation) >> G.lg_pagesize;
|
703 |
|
|
}
|
704 |
|
|
|
705 |
|
|
/* Set and clear the in_use bit for this page in the page group. */
|
706 |
|
|
|
707 |
|
|
static inline void
|
708 |
|
|
set_page_group_in_use (page_group *group, char *page)
|
709 |
|
|
{
|
710 |
|
|
group->in_use |= 1 << page_group_index (group->allocation, page);
|
711 |
|
|
}
|
712 |
|
|
|
713 |
|
|
static inline void
|
714 |
|
|
clear_page_group_in_use (page_group *group, char *page)
|
715 |
|
|
{
|
716 |
|
|
group->in_use &= ~(1 << page_group_index (group->allocation, page));
|
717 |
|
|
}
|
718 |
|
|
#endif
|
719 |
|
|
|
720 |
|
|
/* Allocate a new page for allocating objects of size 2^ORDER,
|
721 |
|
|
and return an entry for it. The entry is not added to the
|
722 |
|
|
appropriate page_table list. */
|
723 |
|
|
|
724 |
|
|
static inline struct page_entry *
|
725 |
|
|
alloc_page (unsigned order)
|
726 |
|
|
{
|
727 |
|
|
struct page_entry *entry, *p, **pp;
|
728 |
|
|
char *page;
|
729 |
|
|
size_t num_objects;
|
730 |
|
|
size_t bitmap_size;
|
731 |
|
|
size_t page_entry_size;
|
732 |
|
|
size_t entry_size;
|
733 |
|
|
#ifdef USING_MALLOC_PAGE_GROUPS
|
734 |
|
|
page_group *group;
|
735 |
|
|
#endif
|
736 |
|
|
|
737 |
|
|
num_objects = OBJECTS_PER_PAGE (order);
|
738 |
|
|
bitmap_size = BITMAP_SIZE (num_objects + 1);
|
739 |
|
|
page_entry_size = sizeof (page_entry) - sizeof (long) + bitmap_size;
|
740 |
|
|
entry_size = num_objects * OBJECT_SIZE (order);
|
741 |
|
|
if (entry_size < G.pagesize)
|
742 |
|
|
entry_size = G.pagesize;
|
743 |
|
|
|
744 |
|
|
entry = NULL;
|
745 |
|
|
page = NULL;
|
746 |
|
|
|
747 |
|
|
/* Check the list of free pages for one we can use. */
|
748 |
|
|
for (pp = &G.free_pages, p = *pp; p; pp = &p->next, p = *pp)
|
749 |
|
|
if (p->bytes == entry_size)
|
750 |
|
|
break;
|
751 |
|
|
|
752 |
|
|
if (p != NULL)
|
753 |
|
|
{
|
754 |
|
|
/* Recycle the allocated memory from this page ... */
|
755 |
|
|
*pp = p->next;
|
756 |
|
|
page = p->page;
|
757 |
|
|
|
758 |
|
|
#ifdef USING_MALLOC_PAGE_GROUPS
|
759 |
|
|
group = p->group;
|
760 |
|
|
#endif
|
761 |
|
|
|
762 |
|
|
/* ... and, if possible, the page entry itself. */
|
763 |
|
|
if (p->order == order)
|
764 |
|
|
{
|
765 |
|
|
entry = p;
|
766 |
|
|
memset (entry, 0, page_entry_size);
|
767 |
|
|
}
|
768 |
|
|
else
|
769 |
|
|
free (p);
|
770 |
|
|
}
|
771 |
|
|
#ifdef USING_MMAP
|
772 |
|
|
else if (entry_size == G.pagesize)
|
773 |
|
|
{
|
774 |
|
|
/* We want just one page. Allocate a bunch of them and put the
|
775 |
|
|
extras on the freelist. (Can only do this optimization with
|
776 |
|
|
mmap for backing store.) */
|
777 |
|
|
struct page_entry *e, *f = G.free_pages;
|
778 |
|
|
int i;
|
779 |
|
|
|
780 |
|
|
page = alloc_anon (NULL, G.pagesize * GGC_QUIRE_SIZE);
|
781 |
|
|
|
782 |
|
|
/* This loop counts down so that the chain will be in ascending
|
783 |
|
|
memory order. */
|
784 |
|
|
for (i = GGC_QUIRE_SIZE - 1; i >= 1; i--)
|
785 |
|
|
{
|
786 |
|
|
e = xcalloc (1, page_entry_size);
|
787 |
|
|
e->order = order;
|
788 |
|
|
e->bytes = G.pagesize;
|
789 |
|
|
e->page = page + (i << G.lg_pagesize);
|
790 |
|
|
e->next = f;
|
791 |
|
|
f = e;
|
792 |
|
|
}
|
793 |
|
|
|
794 |
|
|
G.free_pages = f;
|
795 |
|
|
}
|
796 |
|
|
else
|
797 |
|
|
page = alloc_anon (NULL, entry_size);
|
798 |
|
|
#endif
|
799 |
|
|
#ifdef USING_MALLOC_PAGE_GROUPS
|
800 |
|
|
else
|
801 |
|
|
{
|
802 |
|
|
/* Allocate a large block of memory and serve out the aligned
|
803 |
|
|
pages therein. This results in much less memory wastage
|
804 |
|
|
than the traditional implementation of valloc. */
|
805 |
|
|
|
806 |
|
|
char *allocation, *a, *enda;
|
807 |
|
|
size_t alloc_size, head_slop, tail_slop;
|
808 |
|
|
int multiple_pages = (entry_size == G.pagesize);
|
809 |
|
|
|
810 |
|
|
if (multiple_pages)
|
811 |
|
|
alloc_size = GGC_QUIRE_SIZE * G.pagesize;
|
812 |
|
|
else
|
813 |
|
|
alloc_size = entry_size + G.pagesize - 1;
|
814 |
|
|
allocation = xmalloc (alloc_size);
|
815 |
|
|
|
816 |
|
|
page = (char *) (((size_t) allocation + G.pagesize - 1) & -G.pagesize);
|
817 |
|
|
head_slop = page - allocation;
|
818 |
|
|
if (multiple_pages)
|
819 |
|
|
tail_slop = ((size_t) allocation + alloc_size) & (G.pagesize - 1);
|
820 |
|
|
else
|
821 |
|
|
tail_slop = alloc_size - entry_size - head_slop;
|
822 |
|
|
enda = allocation + alloc_size - tail_slop;
|
823 |
|
|
|
824 |
|
|
/* We allocated N pages, which are likely not aligned, leaving
|
825 |
|
|
us with N-1 usable pages. We plan to place the page_group
|
826 |
|
|
structure somewhere in the slop. */
|
827 |
|
|
if (head_slop >= sizeof (page_group))
|
828 |
|
|
group = (page_group *)page - 1;
|
829 |
|
|
else
|
830 |
|
|
{
|
831 |
|
|
/* We magically got an aligned allocation. Too bad, we have
|
832 |
|
|
to waste a page anyway. */
|
833 |
|
|
if (tail_slop == 0)
|
834 |
|
|
{
|
835 |
|
|
enda -= G.pagesize;
|
836 |
|
|
tail_slop += G.pagesize;
|
837 |
|
|
}
|
838 |
|
|
gcc_assert (tail_slop >= sizeof (page_group));
|
839 |
|
|
group = (page_group *)enda;
|
840 |
|
|
tail_slop -= sizeof (page_group);
|
841 |
|
|
}
|
842 |
|
|
|
843 |
|
|
/* Remember that we allocated this memory. */
|
844 |
|
|
group->next = G.page_groups;
|
845 |
|
|
group->allocation = allocation;
|
846 |
|
|
group->alloc_size = alloc_size;
|
847 |
|
|
group->in_use = 0;
|
848 |
|
|
G.page_groups = group;
|
849 |
|
|
G.bytes_mapped += alloc_size;
|
850 |
|
|
|
851 |
|
|
/* If we allocated multiple pages, put the rest on the free list. */
|
852 |
|
|
if (multiple_pages)
|
853 |
|
|
{
|
854 |
|
|
struct page_entry *e, *f = G.free_pages;
|
855 |
|
|
for (a = enda - G.pagesize; a != page; a -= G.pagesize)
|
856 |
|
|
{
|
857 |
|
|
e = xcalloc (1, page_entry_size);
|
858 |
|
|
e->order = order;
|
859 |
|
|
e->bytes = G.pagesize;
|
860 |
|
|
e->page = a;
|
861 |
|
|
e->group = group;
|
862 |
|
|
e->next = f;
|
863 |
|
|
f = e;
|
864 |
|
|
}
|
865 |
|
|
G.free_pages = f;
|
866 |
|
|
}
|
867 |
|
|
}
|
868 |
|
|
#endif
|
869 |
|
|
|
870 |
|
|
if (entry == NULL)
|
871 |
|
|
entry = xcalloc (1, page_entry_size);
|
872 |
|
|
|
873 |
|
|
entry->bytes = entry_size;
|
874 |
|
|
entry->page = page;
|
875 |
|
|
entry->context_depth = G.context_depth;
|
876 |
|
|
entry->order = order;
|
877 |
|
|
entry->num_free_objects = num_objects;
|
878 |
|
|
entry->next_bit_hint = 1;
|
879 |
|
|
|
880 |
|
|
G.context_depth_allocations |= (unsigned long)1 << G.context_depth;
|
881 |
|
|
|
882 |
|
|
#ifdef USING_MALLOC_PAGE_GROUPS
|
883 |
|
|
entry->group = group;
|
884 |
|
|
set_page_group_in_use (group, page);
|
885 |
|
|
#endif
|
886 |
|
|
|
887 |
|
|
/* Set the one-past-the-end in-use bit. This acts as a sentry as we
|
888 |
|
|
increment the hint. */
|
889 |
|
|
entry->in_use_p[num_objects / HOST_BITS_PER_LONG]
|
890 |
|
|
= (unsigned long) 1 << (num_objects % HOST_BITS_PER_LONG);
|
891 |
|
|
|
892 |
|
|
set_page_table_entry (page, entry);
|
893 |
|
|
|
894 |
|
|
if (GGC_DEBUG_LEVEL >= 2)
|
895 |
|
|
fprintf (G.debug_file,
|
896 |
|
|
"Allocating page at %p, object size=%lu, data %p-%p\n",
|
897 |
|
|
(void *) entry, (unsigned long) OBJECT_SIZE (order), page,
|
898 |
|
|
page + entry_size - 1);
|
899 |
|
|
|
900 |
|
|
return entry;
|
901 |
|
|
}
|
902 |
|
|
|
903 |
|
|
/* Adjust the size of G.depth so that no index greater than the one
|
904 |
|
|
used by the top of the G.by_depth is used. */
|
905 |
|
|
|
906 |
|
|
static inline void
|
907 |
|
|
adjust_depth (void)
|
908 |
|
|
{
|
909 |
|
|
page_entry *top;
|
910 |
|
|
|
911 |
|
|
if (G.by_depth_in_use)
|
912 |
|
|
{
|
913 |
|
|
top = G.by_depth[G.by_depth_in_use-1];
|
914 |
|
|
|
915 |
|
|
/* Peel back indices in depth that index into by_depth, so that
|
916 |
|
|
as new elements are added to by_depth, we note the indices
|
917 |
|
|
of those elements, if they are for new context depths. */
|
918 |
|
|
while (G.depth_in_use > (size_t)top->context_depth+1)
|
919 |
|
|
--G.depth_in_use;
|
920 |
|
|
}
|
921 |
|
|
}
|
922 |
|
|
|
923 |
|
|
/* For a page that is no longer needed, put it on the free page list. */
|
924 |
|
|
|
925 |
|
|
static void
|
926 |
|
|
free_page (page_entry *entry)
|
927 |
|
|
{
|
928 |
|
|
if (GGC_DEBUG_LEVEL >= 2)
|
929 |
|
|
fprintf (G.debug_file,
|
930 |
|
|
"Deallocating page at %p, data %p-%p\n", (void *) entry,
|
931 |
|
|
entry->page, entry->page + entry->bytes - 1);
|
932 |
|
|
|
933 |
|
|
/* Mark the page as inaccessible. Discard the handle to avoid handle
|
934 |
|
|
leak. */
|
935 |
|
|
VALGRIND_DISCARD (VALGRIND_MAKE_NOACCESS (entry->page, entry->bytes));
|
936 |
|
|
|
937 |
|
|
set_page_table_entry (entry->page, NULL);
|
938 |
|
|
|
939 |
|
|
#ifdef USING_MALLOC_PAGE_GROUPS
|
940 |
|
|
clear_page_group_in_use (entry->group, entry->page);
|
941 |
|
|
#endif
|
942 |
|
|
|
943 |
|
|
if (G.by_depth_in_use > 1)
|
944 |
|
|
{
|
945 |
|
|
page_entry *top = G.by_depth[G.by_depth_in_use-1];
|
946 |
|
|
int i = entry->index_by_depth;
|
947 |
|
|
|
948 |
|
|
/* We cannot free a page from a context deeper than the current
|
949 |
|
|
one. */
|
950 |
|
|
gcc_assert (entry->context_depth == top->context_depth);
|
951 |
|
|
|
952 |
|
|
/* Put top element into freed slot. */
|
953 |
|
|
G.by_depth[i] = top;
|
954 |
|
|
G.save_in_use[i] = G.save_in_use[G.by_depth_in_use-1];
|
955 |
|
|
top->index_by_depth = i;
|
956 |
|
|
}
|
957 |
|
|
--G.by_depth_in_use;
|
958 |
|
|
|
959 |
|
|
adjust_depth ();
|
960 |
|
|
|
961 |
|
|
entry->next = G.free_pages;
|
962 |
|
|
G.free_pages = entry;
|
963 |
|
|
}
|
964 |
|
|
|
965 |
|
|
/* Release the free page cache to the system. */
|
966 |
|
|
|
967 |
|
|
static void
|
968 |
|
|
release_pages (void)
|
969 |
|
|
{
|
970 |
|
|
#ifdef USING_MMAP
|
971 |
|
|
page_entry *p, *next;
|
972 |
|
|
char *start;
|
973 |
|
|
size_t len;
|
974 |
|
|
|
975 |
|
|
/* Gather up adjacent pages so they are unmapped together. */
|
976 |
|
|
p = G.free_pages;
|
977 |
|
|
|
978 |
|
|
while (p)
|
979 |
|
|
{
|
980 |
|
|
start = p->page;
|
981 |
|
|
next = p->next;
|
982 |
|
|
len = p->bytes;
|
983 |
|
|
free (p);
|
984 |
|
|
p = next;
|
985 |
|
|
|
986 |
|
|
while (p && p->page == start + len)
|
987 |
|
|
{
|
988 |
|
|
next = p->next;
|
989 |
|
|
len += p->bytes;
|
990 |
|
|
free (p);
|
991 |
|
|
p = next;
|
992 |
|
|
}
|
993 |
|
|
|
994 |
|
|
munmap (start, len);
|
995 |
|
|
G.bytes_mapped -= len;
|
996 |
|
|
}
|
997 |
|
|
|
998 |
|
|
G.free_pages = NULL;
|
999 |
|
|
#endif
|
1000 |
|
|
#ifdef USING_MALLOC_PAGE_GROUPS
|
1001 |
|
|
page_entry **pp, *p;
|
1002 |
|
|
page_group **gp, *g;
|
1003 |
|
|
|
1004 |
|
|
/* Remove all pages from free page groups from the list. */
|
1005 |
|
|
pp = &G.free_pages;
|
1006 |
|
|
while ((p = *pp) != NULL)
|
1007 |
|
|
if (p->group->in_use == 0)
|
1008 |
|
|
{
|
1009 |
|
|
*pp = p->next;
|
1010 |
|
|
free (p);
|
1011 |
|
|
}
|
1012 |
|
|
else
|
1013 |
|
|
pp = &p->next;
|
1014 |
|
|
|
1015 |
|
|
/* Remove all free page groups, and release the storage. */
|
1016 |
|
|
gp = &G.page_groups;
|
1017 |
|
|
while ((g = *gp) != NULL)
|
1018 |
|
|
if (g->in_use == 0)
|
1019 |
|
|
{
|
1020 |
|
|
*gp = g->next;
|
1021 |
|
|
G.bytes_mapped -= g->alloc_size;
|
1022 |
|
|
free (g->allocation);
|
1023 |
|
|
}
|
1024 |
|
|
else
|
1025 |
|
|
gp = &g->next;
|
1026 |
|
|
#endif
|
1027 |
|
|
}
|
1028 |
|
|
|
1029 |
|
|
/* This table provides a fast way to determine ceil(log_2(size)) for
|
1030 |
|
|
allocation requests. The minimum allocation size is eight bytes. */
|
1031 |
|
|
#define NUM_SIZE_LOOKUP 512
|
1032 |
|
|
static unsigned char size_lookup[NUM_SIZE_LOOKUP] =
|
1033 |
|
|
{
|
1034 |
|
|
3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4,
|
1035 |
|
|
4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
|
1036 |
|
|
5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
|
1037 |
|
|
6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
|
1038 |
|
|
6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
|
1039 |
|
|
7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
|
1040 |
|
|
7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
|
1041 |
|
|
7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
|
1042 |
|
|
7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
|
1043 |
|
|
8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
|
1044 |
|
|
8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
|
1045 |
|
|
8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
|
1046 |
|
|
8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
|
1047 |
|
|
8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
|
1048 |
|
|
8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
|
1049 |
|
|
8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
|
1050 |
|
|
8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
|
1051 |
|
|
9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
|
1052 |
|
|
9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
|
1053 |
|
|
9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
|
1054 |
|
|
9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
|
1055 |
|
|
9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
|
1056 |
|
|
9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
|
1057 |
|
|
9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
|
1058 |
|
|
9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
|
1059 |
|
|
9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
|
1060 |
|
|
9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
|
1061 |
|
|
9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
|
1062 |
|
|
9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
|
1063 |
|
|
9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
|
1064 |
|
|
9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
|
1065 |
|
|
9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9
|
1066 |
|
|
};
|
1067 |
|
|
|
1068 |
|
|
/* Typed allocation function. Does nothing special in this collector. */
|
1069 |
|
|
|
1070 |
|
|
void *
|
1071 |
|
|
ggc_alloc_typed_stat (enum gt_types_enum type ATTRIBUTE_UNUSED, size_t size
|
1072 |
|
|
MEM_STAT_DECL)
|
1073 |
|
|
{
|
1074 |
|
|
return ggc_alloc_stat (size PASS_MEM_STAT);
|
1075 |
|
|
}
|
1076 |
|
|
|
1077 |
|
|
/* Allocate a chunk of memory of SIZE bytes. Its contents are undefined. */
|
1078 |
|
|
|
1079 |
|
|
void *
|
1080 |
|
|
ggc_alloc_stat (size_t size MEM_STAT_DECL)
|
1081 |
|
|
{
|
1082 |
|
|
size_t order, word, bit, object_offset, object_size;
|
1083 |
|
|
struct page_entry *entry;
|
1084 |
|
|
void *result;
|
1085 |
|
|
|
1086 |
|
|
if (size < NUM_SIZE_LOOKUP)
|
1087 |
|
|
{
|
1088 |
|
|
order = size_lookup[size];
|
1089 |
|
|
object_size = OBJECT_SIZE (order);
|
1090 |
|
|
}
|
1091 |
|
|
else
|
1092 |
|
|
{
|
1093 |
|
|
order = 10;
|
1094 |
|
|
while (size > (object_size = OBJECT_SIZE (order)))
|
1095 |
|
|
order++;
|
1096 |
|
|
}
|
1097 |
|
|
|
1098 |
|
|
/* If there are non-full pages for this size allocation, they are at
|
1099 |
|
|
the head of the list. */
|
1100 |
|
|
entry = G.pages[order];
|
1101 |
|
|
|
1102 |
|
|
/* If there is no page for this object size, or all pages in this
|
1103 |
|
|
context are full, allocate a new page. */
|
1104 |
|
|
if (entry == NULL || entry->num_free_objects == 0)
|
1105 |
|
|
{
|
1106 |
|
|
struct page_entry *new_entry;
|
1107 |
|
|
new_entry = alloc_page (order);
|
1108 |
|
|
|
1109 |
|
|
new_entry->index_by_depth = G.by_depth_in_use;
|
1110 |
|
|
push_by_depth (new_entry, 0);
|
1111 |
|
|
|
1112 |
|
|
/* We can skip context depths, if we do, make sure we go all the
|
1113 |
|
|
way to the new depth. */
|
1114 |
|
|
while (new_entry->context_depth >= G.depth_in_use)
|
1115 |
|
|
push_depth (G.by_depth_in_use-1);
|
1116 |
|
|
|
1117 |
|
|
/* If this is the only entry, it's also the tail. If it is not
|
1118 |
|
|
the only entry, then we must update the PREV pointer of the
|
1119 |
|
|
ENTRY (G.pages[order]) to point to our new page entry. */
|
1120 |
|
|
if (entry == NULL)
|
1121 |
|
|
G.page_tails[order] = new_entry;
|
1122 |
|
|
else
|
1123 |
|
|
entry->prev = new_entry;
|
1124 |
|
|
|
1125 |
|
|
/* Put new pages at the head of the page list. By definition the
|
1126 |
|
|
entry at the head of the list always has a NULL pointer. */
|
1127 |
|
|
new_entry->next = entry;
|
1128 |
|
|
new_entry->prev = NULL;
|
1129 |
|
|
entry = new_entry;
|
1130 |
|
|
G.pages[order] = new_entry;
|
1131 |
|
|
|
1132 |
|
|
/* For a new page, we know the word and bit positions (in the
|
1133 |
|
|
in_use bitmap) of the first available object -- they're zero. */
|
1134 |
|
|
new_entry->next_bit_hint = 1;
|
1135 |
|
|
word = 0;
|
1136 |
|
|
bit = 0;
|
1137 |
|
|
object_offset = 0;
|
1138 |
|
|
}
|
1139 |
|
|
else
|
1140 |
|
|
{
|
1141 |
|
|
/* First try to use the hint left from the previous allocation
|
1142 |
|
|
to locate a clear bit in the in-use bitmap. We've made sure
|
1143 |
|
|
that the one-past-the-end bit is always set, so if the hint
|
1144 |
|
|
has run over, this test will fail. */
|
1145 |
|
|
unsigned hint = entry->next_bit_hint;
|
1146 |
|
|
word = hint / HOST_BITS_PER_LONG;
|
1147 |
|
|
bit = hint % HOST_BITS_PER_LONG;
|
1148 |
|
|
|
1149 |
|
|
/* If the hint didn't work, scan the bitmap from the beginning. */
|
1150 |
|
|
if ((entry->in_use_p[word] >> bit) & 1)
|
1151 |
|
|
{
|
1152 |
|
|
word = bit = 0;
|
1153 |
|
|
while (~entry->in_use_p[word] == 0)
|
1154 |
|
|
++word;
|
1155 |
|
|
|
1156 |
|
|
#if GCC_VERSION >= 3004
|
1157 |
|
|
bit = __builtin_ctzl (~entry->in_use_p[word]);
|
1158 |
|
|
#else
|
1159 |
|
|
while ((entry->in_use_p[word] >> bit) & 1)
|
1160 |
|
|
++bit;
|
1161 |
|
|
#endif
|
1162 |
|
|
|
1163 |
|
|
hint = word * HOST_BITS_PER_LONG + bit;
|
1164 |
|
|
}
|
1165 |
|
|
|
1166 |
|
|
/* Next time, try the next bit. */
|
1167 |
|
|
entry->next_bit_hint = hint + 1;
|
1168 |
|
|
|
1169 |
|
|
object_offset = hint * object_size;
|
1170 |
|
|
}
|
1171 |
|
|
|
1172 |
|
|
/* Set the in-use bit. */
|
1173 |
|
|
entry->in_use_p[word] |= ((unsigned long) 1 << bit);
|
1174 |
|
|
|
1175 |
|
|
/* Keep a running total of the number of free objects. If this page
|
1176 |
|
|
fills up, we may have to move it to the end of the list if the
|
1177 |
|
|
next page isn't full. If the next page is full, all subsequent
|
1178 |
|
|
pages are full, so there's no need to move it. */
|
1179 |
|
|
if (--entry->num_free_objects == 0
|
1180 |
|
|
&& entry->next != NULL
|
1181 |
|
|
&& entry->next->num_free_objects > 0)
|
1182 |
|
|
{
|
1183 |
|
|
/* We have a new head for the list. */
|
1184 |
|
|
G.pages[order] = entry->next;
|
1185 |
|
|
|
1186 |
|
|
/* We are moving ENTRY to the end of the page table list.
|
1187 |
|
|
The new page at the head of the list will have NULL in
|
1188 |
|
|
its PREV field and ENTRY will have NULL in its NEXT field. */
|
1189 |
|
|
entry->next->prev = NULL;
|
1190 |
|
|
entry->next = NULL;
|
1191 |
|
|
|
1192 |
|
|
/* Append ENTRY to the tail of the list. */
|
1193 |
|
|
entry->prev = G.page_tails[order];
|
1194 |
|
|
G.page_tails[order]->next = entry;
|
1195 |
|
|
G.page_tails[order] = entry;
|
1196 |
|
|
}
|
1197 |
|
|
|
1198 |
|
|
/* Calculate the object's address. */
|
1199 |
|
|
result = entry->page + object_offset;
|
1200 |
|
|
#ifdef GATHER_STATISTICS
|
1201 |
|
|
ggc_record_overhead (OBJECT_SIZE (order), OBJECT_SIZE (order) - size,
|
1202 |
|
|
result PASS_MEM_STAT);
|
1203 |
|
|
#endif
|
1204 |
|
|
|
1205 |
|
|
#ifdef ENABLE_GC_CHECKING
|
1206 |
|
|
/* Keep poisoning-by-writing-0xaf the object, in an attempt to keep the
|
1207 |
|
|
exact same semantics in presence of memory bugs, regardless of
|
1208 |
|
|
ENABLE_VALGRIND_CHECKING. We override this request below. Drop the
|
1209 |
|
|
handle to avoid handle leak. */
|
1210 |
|
|
VALGRIND_DISCARD (VALGRIND_MAKE_WRITABLE (result, object_size));
|
1211 |
|
|
|
1212 |
|
|
/* `Poison' the entire allocated object, including any padding at
|
1213 |
|
|
the end. */
|
1214 |
|
|
memset (result, 0xaf, object_size);
|
1215 |
|
|
|
1216 |
|
|
/* Make the bytes after the end of the object unaccessible. Discard the
|
1217 |
|
|
handle to avoid handle leak. */
|
1218 |
|
|
VALGRIND_DISCARD (VALGRIND_MAKE_NOACCESS ((char *) result + size,
|
1219 |
|
|
object_size - size));
|
1220 |
|
|
#endif
|
1221 |
|
|
|
1222 |
|
|
/* Tell Valgrind that the memory is there, but its content isn't
|
1223 |
|
|
defined. The bytes at the end of the object are still marked
|
1224 |
|
|
unaccessible. */
|
1225 |
|
|
VALGRIND_DISCARD (VALGRIND_MAKE_WRITABLE (result, size));
|
1226 |
|
|
|
1227 |
|
|
/* Keep track of how many bytes are being allocated. This
|
1228 |
|
|
information is used in deciding when to collect. */
|
1229 |
|
|
G.allocated += object_size;
|
1230 |
|
|
|
1231 |
|
|
/* For timevar statistics. */
|
1232 |
|
|
timevar_ggc_mem_total += object_size;
|
1233 |
|
|
|
1234 |
|
|
#ifdef GATHER_STATISTICS
|
1235 |
|
|
{
|
1236 |
|
|
size_t overhead = object_size - size;
|
1237 |
|
|
|
1238 |
|
|
G.stats.total_overhead += overhead;
|
1239 |
|
|
G.stats.total_allocated += object_size;
|
1240 |
|
|
G.stats.total_overhead_per_order[order] += overhead;
|
1241 |
|
|
G.stats.total_allocated_per_order[order] += object_size;
|
1242 |
|
|
|
1243 |
|
|
if (size <= 32)
|
1244 |
|
|
{
|
1245 |
|
|
G.stats.total_overhead_under32 += overhead;
|
1246 |
|
|
G.stats.total_allocated_under32 += object_size;
|
1247 |
|
|
}
|
1248 |
|
|
if (size <= 64)
|
1249 |
|
|
{
|
1250 |
|
|
G.stats.total_overhead_under64 += overhead;
|
1251 |
|
|
G.stats.total_allocated_under64 += object_size;
|
1252 |
|
|
}
|
1253 |
|
|
if (size <= 128)
|
1254 |
|
|
{
|
1255 |
|
|
G.stats.total_overhead_under128 += overhead;
|
1256 |
|
|
G.stats.total_allocated_under128 += object_size;
|
1257 |
|
|
}
|
1258 |
|
|
}
|
1259 |
|
|
#endif
|
1260 |
|
|
|
1261 |
|
|
if (GGC_DEBUG_LEVEL >= 3)
|
1262 |
|
|
fprintf (G.debug_file,
|
1263 |
|
|
"Allocating object, requested size=%lu, actual=%lu at %p on %p\n",
|
1264 |
|
|
(unsigned long) size, (unsigned long) object_size, result,
|
1265 |
|
|
(void *) entry);
|
1266 |
|
|
|
1267 |
|
|
return result;
|
1268 |
|
|
}
|
1269 |
|
|
|
1270 |
|
|
/* If P is not marked, marks it and return false. Otherwise return true.
|
1271 |
|
|
P must have been allocated by the GC allocator; it mustn't point to
|
1272 |
|
|
static objects, stack variables, or memory allocated with malloc. */
|
1273 |
|
|
|
1274 |
|
|
int
|
1275 |
|
|
ggc_set_mark (const void *p)
|
1276 |
|
|
{
|
1277 |
|
|
page_entry *entry;
|
1278 |
|
|
unsigned bit, word;
|
1279 |
|
|
unsigned long mask;
|
1280 |
|
|
|
1281 |
|
|
/* Look up the page on which the object is alloced. If the object
|
1282 |
|
|
wasn't allocated by the collector, we'll probably die. */
|
1283 |
|
|
entry = lookup_page_table_entry (p);
|
1284 |
|
|
gcc_assert (entry);
|
1285 |
|
|
|
1286 |
|
|
/* Calculate the index of the object on the page; this is its bit
|
1287 |
|
|
position in the in_use_p bitmap. */
|
1288 |
|
|
bit = OFFSET_TO_BIT (((const char *) p) - entry->page, entry->order);
|
1289 |
|
|
word = bit / HOST_BITS_PER_LONG;
|
1290 |
|
|
mask = (unsigned long) 1 << (bit % HOST_BITS_PER_LONG);
|
1291 |
|
|
|
1292 |
|
|
/* If the bit was previously set, skip it. */
|
1293 |
|
|
if (entry->in_use_p[word] & mask)
|
1294 |
|
|
return 1;
|
1295 |
|
|
|
1296 |
|
|
/* Otherwise set it, and decrement the free object count. */
|
1297 |
|
|
entry->in_use_p[word] |= mask;
|
1298 |
|
|
entry->num_free_objects -= 1;
|
1299 |
|
|
|
1300 |
|
|
if (GGC_DEBUG_LEVEL >= 4)
|
1301 |
|
|
fprintf (G.debug_file, "Marking %p\n", p);
|
1302 |
|
|
|
1303 |
|
|
return 0;
|
1304 |
|
|
}
|
1305 |
|
|
|
1306 |
|
|
/* Return 1 if P has been marked, zero otherwise.
|
1307 |
|
|
P must have been allocated by the GC allocator; it mustn't point to
|
1308 |
|
|
static objects, stack variables, or memory allocated with malloc. */
|
1309 |
|
|
|
1310 |
|
|
int
|
1311 |
|
|
ggc_marked_p (const void *p)
|
1312 |
|
|
{
|
1313 |
|
|
page_entry *entry;
|
1314 |
|
|
unsigned bit, word;
|
1315 |
|
|
unsigned long mask;
|
1316 |
|
|
|
1317 |
|
|
/* Look up the page on which the object is alloced. If the object
|
1318 |
|
|
wasn't allocated by the collector, we'll probably die. */
|
1319 |
|
|
entry = lookup_page_table_entry (p);
|
1320 |
|
|
gcc_assert (entry);
|
1321 |
|
|
|
1322 |
|
|
/* Calculate the index of the object on the page; this is its bit
|
1323 |
|
|
position in the in_use_p bitmap. */
|
1324 |
|
|
bit = OFFSET_TO_BIT (((const char *) p) - entry->page, entry->order);
|
1325 |
|
|
word = bit / HOST_BITS_PER_LONG;
|
1326 |
|
|
mask = (unsigned long) 1 << (bit % HOST_BITS_PER_LONG);
|
1327 |
|
|
|
1328 |
|
|
return (entry->in_use_p[word] & mask) != 0;
|
1329 |
|
|
}
|
1330 |
|
|
|
1331 |
|
|
/* Return the size of the gc-able object P. */
|
1332 |
|
|
|
1333 |
|
|
size_t
|
1334 |
|
|
ggc_get_size (const void *p)
|
1335 |
|
|
{
|
1336 |
|
|
page_entry *pe = lookup_page_table_entry (p);
|
1337 |
|
|
return OBJECT_SIZE (pe->order);
|
1338 |
|
|
}
|
1339 |
|
|
|
1340 |
|
|
/* Release the memory for object P. */
|
1341 |
|
|
|
1342 |
|
|
void
|
1343 |
|
|
ggc_free (void *p)
|
1344 |
|
|
{
|
1345 |
|
|
page_entry *pe = lookup_page_table_entry (p);
|
1346 |
|
|
size_t order = pe->order;
|
1347 |
|
|
size_t size = OBJECT_SIZE (order);
|
1348 |
|
|
|
1349 |
|
|
#ifdef GATHER_STATISTICS
|
1350 |
|
|
ggc_free_overhead (p);
|
1351 |
|
|
#endif
|
1352 |
|
|
|
1353 |
|
|
if (GGC_DEBUG_LEVEL >= 3)
|
1354 |
|
|
fprintf (G.debug_file,
|
1355 |
|
|
"Freeing object, actual size=%lu, at %p on %p\n",
|
1356 |
|
|
(unsigned long) size, p, (void *) pe);
|
1357 |
|
|
|
1358 |
|
|
#ifdef ENABLE_GC_CHECKING
|
1359 |
|
|
/* Poison the data, to indicate the data is garbage. */
|
1360 |
|
|
VALGRIND_DISCARD (VALGRIND_MAKE_WRITABLE (p, size));
|
1361 |
|
|
memset (p, 0xa5, size);
|
1362 |
|
|
#endif
|
1363 |
|
|
/* Let valgrind know the object is free. */
|
1364 |
|
|
VALGRIND_DISCARD (VALGRIND_MAKE_NOACCESS (p, size));
|
1365 |
|
|
|
1366 |
|
|
#ifdef ENABLE_GC_ALWAYS_COLLECT
|
1367 |
|
|
/* In the completely-anal-checking mode, we do *not* immediately free
|
1368 |
|
|
the data, but instead verify that the data is *actually* not
|
1369 |
|
|
reachable the next time we collect. */
|
1370 |
|
|
{
|
1371 |
|
|
struct free_object *fo = XNEW (struct free_object);
|
1372 |
|
|
fo->object = p;
|
1373 |
|
|
fo->next = G.free_object_list;
|
1374 |
|
|
G.free_object_list = fo;
|
1375 |
|
|
}
|
1376 |
|
|
#else
|
1377 |
|
|
{
|
1378 |
|
|
unsigned int bit_offset, word, bit;
|
1379 |
|
|
|
1380 |
|
|
G.allocated -= size;
|
1381 |
|
|
|
1382 |
|
|
/* Mark the object not-in-use. */
|
1383 |
|
|
bit_offset = OFFSET_TO_BIT (((const char *) p) - pe->page, order);
|
1384 |
|
|
word = bit_offset / HOST_BITS_PER_LONG;
|
1385 |
|
|
bit = bit_offset % HOST_BITS_PER_LONG;
|
1386 |
|
|
pe->in_use_p[word] &= ~(1UL << bit);
|
1387 |
|
|
|
1388 |
|
|
if (pe->num_free_objects++ == 0)
|
1389 |
|
|
{
|
1390 |
|
|
page_entry *p, *q;
|
1391 |
|
|
|
1392 |
|
|
/* If the page is completely full, then it's supposed to
|
1393 |
|
|
be after all pages that aren't. Since we've freed one
|
1394 |
|
|
object from a page that was full, we need to move the
|
1395 |
|
|
page to the head of the list.
|
1396 |
|
|
|
1397 |
|
|
PE is the node we want to move. Q is the previous node
|
1398 |
|
|
and P is the next node in the list. */
|
1399 |
|
|
q = pe->prev;
|
1400 |
|
|
if (q && q->num_free_objects == 0)
|
1401 |
|
|
{
|
1402 |
|
|
p = pe->next;
|
1403 |
|
|
|
1404 |
|
|
q->next = p;
|
1405 |
|
|
|
1406 |
|
|
/* If PE was at the end of the list, then Q becomes the
|
1407 |
|
|
new end of the list. If PE was not the end of the
|
1408 |
|
|
list, then we need to update the PREV field for P. */
|
1409 |
|
|
if (!p)
|
1410 |
|
|
G.page_tails[order] = q;
|
1411 |
|
|
else
|
1412 |
|
|
p->prev = q;
|
1413 |
|
|
|
1414 |
|
|
/* Move PE to the head of the list. */
|
1415 |
|
|
pe->next = G.pages[order];
|
1416 |
|
|
pe->prev = NULL;
|
1417 |
|
|
G.pages[order]->prev = pe;
|
1418 |
|
|
G.pages[order] = pe;
|
1419 |
|
|
}
|
1420 |
|
|
|
1421 |
|
|
/* Reset the hint bit to point to the only free object. */
|
1422 |
|
|
pe->next_bit_hint = bit_offset;
|
1423 |
|
|
}
|
1424 |
|
|
}
|
1425 |
|
|
#endif
|
1426 |
|
|
}
|
1427 |
|
|
|
1428 |
|
|
/* Subroutine of init_ggc which computes the pair of numbers used to
|
1429 |
|
|
perform division by OBJECT_SIZE (order) and fills in inverse_table[].
|
1430 |
|
|
|
1431 |
|
|
This algorithm is taken from Granlund and Montgomery's paper
|
1432 |
|
|
"Division by Invariant Integers using Multiplication"
|
1433 |
|
|
(Proc. SIGPLAN PLDI, 1994), section 9 (Exact division by
|
1434 |
|
|
constants). */
|
1435 |
|
|
|
1436 |
|
|
static void
|
1437 |
|
|
compute_inverse (unsigned order)
|
1438 |
|
|
{
|
1439 |
|
|
size_t size, inv;
|
1440 |
|
|
unsigned int e;
|
1441 |
|
|
|
1442 |
|
|
size = OBJECT_SIZE (order);
|
1443 |
|
|
e = 0;
|
1444 |
|
|
while (size % 2 == 0)
|
1445 |
|
|
{
|
1446 |
|
|
e++;
|
1447 |
|
|
size >>= 1;
|
1448 |
|
|
}
|
1449 |
|
|
|
1450 |
|
|
inv = size;
|
1451 |
|
|
while (inv * size != 1)
|
1452 |
|
|
inv = inv * (2 - inv*size);
|
1453 |
|
|
|
1454 |
|
|
DIV_MULT (order) = inv;
|
1455 |
|
|
DIV_SHIFT (order) = e;
|
1456 |
|
|
}
|
1457 |
|
|
|
1458 |
|
|
/* Initialize the ggc-mmap allocator. */
|
1459 |
|
|
void
|
1460 |
|
|
init_ggc (void)
|
1461 |
|
|
{
|
1462 |
|
|
unsigned order;
|
1463 |
|
|
|
1464 |
|
|
G.pagesize = getpagesize();
|
1465 |
|
|
G.lg_pagesize = exact_log2 (G.pagesize);
|
1466 |
|
|
|
1467 |
|
|
#ifdef HAVE_MMAP_DEV_ZERO
|
1468 |
|
|
G.dev_zero_fd = open ("/dev/zero", O_RDONLY);
|
1469 |
|
|
if (G.dev_zero_fd == -1)
|
1470 |
|
|
internal_error ("open /dev/zero: %m");
|
1471 |
|
|
#endif
|
1472 |
|
|
|
1473 |
|
|
#if 0
|
1474 |
|
|
G.debug_file = fopen ("ggc-mmap.debug", "w");
|
1475 |
|
|
#else
|
1476 |
|
|
G.debug_file = stdout;
|
1477 |
|
|
#endif
|
1478 |
|
|
|
1479 |
|
|
#ifdef USING_MMAP
|
1480 |
|
|
/* StunOS has an amazing off-by-one error for the first mmap allocation
|
1481 |
|
|
after fiddling with RLIMIT_STACK. The result, as hard as it is to
|
1482 |
|
|
believe, is an unaligned page allocation, which would cause us to
|
1483 |
|
|
hork badly if we tried to use it. */
|
1484 |
|
|
{
|
1485 |
|
|
char *p = alloc_anon (NULL, G.pagesize);
|
1486 |
|
|
struct page_entry *e;
|
1487 |
|
|
if ((size_t)p & (G.pagesize - 1))
|
1488 |
|
|
{
|
1489 |
|
|
/* How losing. Discard this one and try another. If we still
|
1490 |
|
|
can't get something useful, give up. */
|
1491 |
|
|
|
1492 |
|
|
p = alloc_anon (NULL, G.pagesize);
|
1493 |
|
|
gcc_assert (!((size_t)p & (G.pagesize - 1)));
|
1494 |
|
|
}
|
1495 |
|
|
|
1496 |
|
|
/* We have a good page, might as well hold onto it... */
|
1497 |
|
|
e = XCNEW (struct page_entry);
|
1498 |
|
|
e->bytes = G.pagesize;
|
1499 |
|
|
e->page = p;
|
1500 |
|
|
e->next = G.free_pages;
|
1501 |
|
|
G.free_pages = e;
|
1502 |
|
|
}
|
1503 |
|
|
#endif
|
1504 |
|
|
|
1505 |
|
|
/* Initialize the object size table. */
|
1506 |
|
|
for (order = 0; order < HOST_BITS_PER_PTR; ++order)
|
1507 |
|
|
object_size_table[order] = (size_t) 1 << order;
|
1508 |
|
|
for (order = HOST_BITS_PER_PTR; order < NUM_ORDERS; ++order)
|
1509 |
|
|
{
|
1510 |
|
|
size_t s = extra_order_size_table[order - HOST_BITS_PER_PTR];
|
1511 |
|
|
|
1512 |
|
|
/* If S is not a multiple of the MAX_ALIGNMENT, then round it up
|
1513 |
|
|
so that we're sure of getting aligned memory. */
|
1514 |
|
|
s = ROUND_UP (s, MAX_ALIGNMENT);
|
1515 |
|
|
object_size_table[order] = s;
|
1516 |
|
|
}
|
1517 |
|
|
|
1518 |
|
|
/* Initialize the objects-per-page and inverse tables. */
|
1519 |
|
|
for (order = 0; order < NUM_ORDERS; ++order)
|
1520 |
|
|
{
|
1521 |
|
|
objects_per_page_table[order] = G.pagesize / OBJECT_SIZE (order);
|
1522 |
|
|
if (objects_per_page_table[order] == 0)
|
1523 |
|
|
objects_per_page_table[order] = 1;
|
1524 |
|
|
compute_inverse (order);
|
1525 |
|
|
}
|
1526 |
|
|
|
1527 |
|
|
/* Reset the size_lookup array to put appropriately sized objects in
|
1528 |
|
|
the special orders. All objects bigger than the previous power
|
1529 |
|
|
of two, but no greater than the special size, should go in the
|
1530 |
|
|
new order. */
|
1531 |
|
|
for (order = HOST_BITS_PER_PTR; order < NUM_ORDERS; ++order)
|
1532 |
|
|
{
|
1533 |
|
|
int o;
|
1534 |
|
|
int i;
|
1535 |
|
|
|
1536 |
|
|
i = OBJECT_SIZE (order);
|
1537 |
|
|
if (i >= NUM_SIZE_LOOKUP)
|
1538 |
|
|
continue;
|
1539 |
|
|
|
1540 |
|
|
for (o = size_lookup[i]; o == size_lookup [i]; --i)
|
1541 |
|
|
size_lookup[i] = order;
|
1542 |
|
|
}
|
1543 |
|
|
|
1544 |
|
|
G.depth_in_use = 0;
|
1545 |
|
|
G.depth_max = 10;
|
1546 |
|
|
G.depth = XNEWVEC (unsigned int, G.depth_max);
|
1547 |
|
|
|
1548 |
|
|
G.by_depth_in_use = 0;
|
1549 |
|
|
G.by_depth_max = INITIAL_PTE_COUNT;
|
1550 |
|
|
G.by_depth = XNEWVEC (page_entry *, G.by_depth_max);
|
1551 |
|
|
G.save_in_use = XNEWVEC (unsigned long *, G.by_depth_max);
|
1552 |
|
|
}
|
1553 |
|
|
|
1554 |
|
|
/* Start a new GGC zone. */
|
1555 |
|
|
|
1556 |
|
|
struct alloc_zone *
|
1557 |
|
|
new_ggc_zone (const char *name ATTRIBUTE_UNUSED)
|
1558 |
|
|
{
|
1559 |
|
|
return NULL;
|
1560 |
|
|
}
|
1561 |
|
|
|
1562 |
|
|
/* Destroy a GGC zone. */
|
1563 |
|
|
void
|
1564 |
|
|
destroy_ggc_zone (struct alloc_zone *zone ATTRIBUTE_UNUSED)
|
1565 |
|
|
{
|
1566 |
|
|
}
|
1567 |
|
|
|
1568 |
|
|
/* Merge the SAVE_IN_USE_P and IN_USE_P arrays in P so that IN_USE_P
|
1569 |
|
|
reflects reality. Recalculate NUM_FREE_OBJECTS as well. */
|
1570 |
|
|
|
1571 |
|
|
static void
|
1572 |
|
|
ggc_recalculate_in_use_p (page_entry *p)
|
1573 |
|
|
{
|
1574 |
|
|
unsigned int i;
|
1575 |
|
|
size_t num_objects;
|
1576 |
|
|
|
1577 |
|
|
/* Because the past-the-end bit in in_use_p is always set, we
|
1578 |
|
|
pretend there is one additional object. */
|
1579 |
|
|
num_objects = OBJECTS_IN_PAGE (p) + 1;
|
1580 |
|
|
|
1581 |
|
|
/* Reset the free object count. */
|
1582 |
|
|
p->num_free_objects = num_objects;
|
1583 |
|
|
|
1584 |
|
|
/* Combine the IN_USE_P and SAVE_IN_USE_P arrays. */
|
1585 |
|
|
for (i = 0;
|
1586 |
|
|
i < CEIL (BITMAP_SIZE (num_objects),
|
1587 |
|
|
sizeof (*p->in_use_p));
|
1588 |
|
|
++i)
|
1589 |
|
|
{
|
1590 |
|
|
unsigned long j;
|
1591 |
|
|
|
1592 |
|
|
/* Something is in use if it is marked, or if it was in use in a
|
1593 |
|
|
context further down the context stack. */
|
1594 |
|
|
p->in_use_p[i] |= save_in_use_p (p)[i];
|
1595 |
|
|
|
1596 |
|
|
/* Decrement the free object count for every object allocated. */
|
1597 |
|
|
for (j = p->in_use_p[i]; j; j >>= 1)
|
1598 |
|
|
p->num_free_objects -= (j & 1);
|
1599 |
|
|
}
|
1600 |
|
|
|
1601 |
|
|
gcc_assert (p->num_free_objects < num_objects);
|
1602 |
|
|
}
|
1603 |
|
|
|
1604 |
|
|
/* Unmark all objects. */
|
1605 |
|
|
|
1606 |
|
|
static void
|
1607 |
|
|
clear_marks (void)
|
1608 |
|
|
{
|
1609 |
|
|
unsigned order;
|
1610 |
|
|
|
1611 |
|
|
for (order = 2; order < NUM_ORDERS; order++)
|
1612 |
|
|
{
|
1613 |
|
|
page_entry *p;
|
1614 |
|
|
|
1615 |
|
|
for (p = G.pages[order]; p != NULL; p = p->next)
|
1616 |
|
|
{
|
1617 |
|
|
size_t num_objects = OBJECTS_IN_PAGE (p);
|
1618 |
|
|
size_t bitmap_size = BITMAP_SIZE (num_objects + 1);
|
1619 |
|
|
|
1620 |
|
|
/* The data should be page-aligned. */
|
1621 |
|
|
gcc_assert (!((size_t) p->page & (G.pagesize - 1)));
|
1622 |
|
|
|
1623 |
|
|
/* Pages that aren't in the topmost context are not collected;
|
1624 |
|
|
nevertheless, we need their in-use bit vectors to store GC
|
1625 |
|
|
marks. So, back them up first. */
|
1626 |
|
|
if (p->context_depth < G.context_depth)
|
1627 |
|
|
{
|
1628 |
|
|
if (! save_in_use_p (p))
|
1629 |
|
|
save_in_use_p (p) = xmalloc (bitmap_size);
|
1630 |
|
|
memcpy (save_in_use_p (p), p->in_use_p, bitmap_size);
|
1631 |
|
|
}
|
1632 |
|
|
|
1633 |
|
|
/* Reset reset the number of free objects and clear the
|
1634 |
|
|
in-use bits. These will be adjusted by mark_obj. */
|
1635 |
|
|
p->num_free_objects = num_objects;
|
1636 |
|
|
memset (p->in_use_p, 0, bitmap_size);
|
1637 |
|
|
|
1638 |
|
|
/* Make sure the one-past-the-end bit is always set. */
|
1639 |
|
|
p->in_use_p[num_objects / HOST_BITS_PER_LONG]
|
1640 |
|
|
= ((unsigned long) 1 << (num_objects % HOST_BITS_PER_LONG));
|
1641 |
|
|
}
|
1642 |
|
|
}
|
1643 |
|
|
}
|
1644 |
|
|
|
1645 |
|
|
/* Free all empty pages. Partially empty pages need no attention
|
1646 |
|
|
because the `mark' bit doubles as an `unused' bit. */
|
1647 |
|
|
|
1648 |
|
|
static void
|
1649 |
|
|
sweep_pages (void)
|
1650 |
|
|
{
|
1651 |
|
|
unsigned order;
|
1652 |
|
|
|
1653 |
|
|
for (order = 2; order < NUM_ORDERS; order++)
|
1654 |
|
|
{
|
1655 |
|
|
/* The last page-entry to consider, regardless of entries
|
1656 |
|
|
placed at the end of the list. */
|
1657 |
|
|
page_entry * const last = G.page_tails[order];
|
1658 |
|
|
|
1659 |
|
|
size_t num_objects;
|
1660 |
|
|
size_t live_objects;
|
1661 |
|
|
page_entry *p, *previous;
|
1662 |
|
|
int done;
|
1663 |
|
|
|
1664 |
|
|
p = G.pages[order];
|
1665 |
|
|
if (p == NULL)
|
1666 |
|
|
continue;
|
1667 |
|
|
|
1668 |
|
|
previous = NULL;
|
1669 |
|
|
do
|
1670 |
|
|
{
|
1671 |
|
|
page_entry *next = p->next;
|
1672 |
|
|
|
1673 |
|
|
/* Loop until all entries have been examined. */
|
1674 |
|
|
done = (p == last);
|
1675 |
|
|
|
1676 |
|
|
num_objects = OBJECTS_IN_PAGE (p);
|
1677 |
|
|
|
1678 |
|
|
/* Add all live objects on this page to the count of
|
1679 |
|
|
allocated memory. */
|
1680 |
|
|
live_objects = num_objects - p->num_free_objects;
|
1681 |
|
|
|
1682 |
|
|
G.allocated += OBJECT_SIZE (order) * live_objects;
|
1683 |
|
|
|
1684 |
|
|
/* Only objects on pages in the topmost context should get
|
1685 |
|
|
collected. */
|
1686 |
|
|
if (p->context_depth < G.context_depth)
|
1687 |
|
|
;
|
1688 |
|
|
|
1689 |
|
|
/* Remove the page if it's empty. */
|
1690 |
|
|
else if (live_objects == 0)
|
1691 |
|
|
{
|
1692 |
|
|
/* If P was the first page in the list, then NEXT
|
1693 |
|
|
becomes the new first page in the list, otherwise
|
1694 |
|
|
splice P out of the forward pointers. */
|
1695 |
|
|
if (! previous)
|
1696 |
|
|
G.pages[order] = next;
|
1697 |
|
|
else
|
1698 |
|
|
previous->next = next;
|
1699 |
|
|
|
1700 |
|
|
/* Splice P out of the back pointers too. */
|
1701 |
|
|
if (next)
|
1702 |
|
|
next->prev = previous;
|
1703 |
|
|
|
1704 |
|
|
/* Are we removing the last element? */
|
1705 |
|
|
if (p == G.page_tails[order])
|
1706 |
|
|
G.page_tails[order] = previous;
|
1707 |
|
|
free_page (p);
|
1708 |
|
|
p = previous;
|
1709 |
|
|
}
|
1710 |
|
|
|
1711 |
|
|
/* If the page is full, move it to the end. */
|
1712 |
|
|
else if (p->num_free_objects == 0)
|
1713 |
|
|
{
|
1714 |
|
|
/* Don't move it if it's already at the end. */
|
1715 |
|
|
if (p != G.page_tails[order])
|
1716 |
|
|
{
|
1717 |
|
|
/* Move p to the end of the list. */
|
1718 |
|
|
p->next = NULL;
|
1719 |
|
|
p->prev = G.page_tails[order];
|
1720 |
|
|
G.page_tails[order]->next = p;
|
1721 |
|
|
|
1722 |
|
|
/* Update the tail pointer... */
|
1723 |
|
|
G.page_tails[order] = p;
|
1724 |
|
|
|
1725 |
|
|
/* ... and the head pointer, if necessary. */
|
1726 |
|
|
if (! previous)
|
1727 |
|
|
G.pages[order] = next;
|
1728 |
|
|
else
|
1729 |
|
|
previous->next = next;
|
1730 |
|
|
|
1731 |
|
|
/* And update the backpointer in NEXT if necessary. */
|
1732 |
|
|
if (next)
|
1733 |
|
|
next->prev = previous;
|
1734 |
|
|
|
1735 |
|
|
p = previous;
|
1736 |
|
|
}
|
1737 |
|
|
}
|
1738 |
|
|
|
1739 |
|
|
/* If we've fallen through to here, it's a page in the
|
1740 |
|
|
topmost context that is neither full nor empty. Such a
|
1741 |
|
|
page must precede pages at lesser context depth in the
|
1742 |
|
|
list, so move it to the head. */
|
1743 |
|
|
else if (p != G.pages[order])
|
1744 |
|
|
{
|
1745 |
|
|
previous->next = p->next;
|
1746 |
|
|
|
1747 |
|
|
/* Update the backchain in the next node if it exists. */
|
1748 |
|
|
if (p->next)
|
1749 |
|
|
p->next->prev = previous;
|
1750 |
|
|
|
1751 |
|
|
/* Move P to the head of the list. */
|
1752 |
|
|
p->next = G.pages[order];
|
1753 |
|
|
p->prev = NULL;
|
1754 |
|
|
G.pages[order]->prev = p;
|
1755 |
|
|
|
1756 |
|
|
/* Update the head pointer. */
|
1757 |
|
|
G.pages[order] = p;
|
1758 |
|
|
|
1759 |
|
|
/* Are we moving the last element? */
|
1760 |
|
|
if (G.page_tails[order] == p)
|
1761 |
|
|
G.page_tails[order] = previous;
|
1762 |
|
|
p = previous;
|
1763 |
|
|
}
|
1764 |
|
|
|
1765 |
|
|
previous = p;
|
1766 |
|
|
p = next;
|
1767 |
|
|
}
|
1768 |
|
|
while (! done);
|
1769 |
|
|
|
1770 |
|
|
/* Now, restore the in_use_p vectors for any pages from contexts
|
1771 |
|
|
other than the current one. */
|
1772 |
|
|
for (p = G.pages[order]; p; p = p->next)
|
1773 |
|
|
if (p->context_depth != G.context_depth)
|
1774 |
|
|
ggc_recalculate_in_use_p (p);
|
1775 |
|
|
}
|
1776 |
|
|
}
|
1777 |
|
|
|
1778 |
|
|
#ifdef ENABLE_GC_CHECKING
|
1779 |
|
|
/* Clobber all free objects. */
|
1780 |
|
|
|
1781 |
|
|
static void
|
1782 |
|
|
poison_pages (void)
|
1783 |
|
|
{
|
1784 |
|
|
unsigned order;
|
1785 |
|
|
|
1786 |
|
|
for (order = 2; order < NUM_ORDERS; order++)
|
1787 |
|
|
{
|
1788 |
|
|
size_t size = OBJECT_SIZE (order);
|
1789 |
|
|
page_entry *p;
|
1790 |
|
|
|
1791 |
|
|
for (p = G.pages[order]; p != NULL; p = p->next)
|
1792 |
|
|
{
|
1793 |
|
|
size_t num_objects;
|
1794 |
|
|
size_t i;
|
1795 |
|
|
|
1796 |
|
|
if (p->context_depth != G.context_depth)
|
1797 |
|
|
/* Since we don't do any collection for pages in pushed
|
1798 |
|
|
contexts, there's no need to do any poisoning. And
|
1799 |
|
|
besides, the IN_USE_P array isn't valid until we pop
|
1800 |
|
|
contexts. */
|
1801 |
|
|
continue;
|
1802 |
|
|
|
1803 |
|
|
num_objects = OBJECTS_IN_PAGE (p);
|
1804 |
|
|
for (i = 0; i < num_objects; i++)
|
1805 |
|
|
{
|
1806 |
|
|
size_t word, bit;
|
1807 |
|
|
word = i / HOST_BITS_PER_LONG;
|
1808 |
|
|
bit = i % HOST_BITS_PER_LONG;
|
1809 |
|
|
if (((p->in_use_p[word] >> bit) & 1) == 0)
|
1810 |
|
|
{
|
1811 |
|
|
char *object = p->page + i * size;
|
1812 |
|
|
|
1813 |
|
|
/* Keep poison-by-write when we expect to use Valgrind,
|
1814 |
|
|
so the exact same memory semantics is kept, in case
|
1815 |
|
|
there are memory errors. We override this request
|
1816 |
|
|
below. */
|
1817 |
|
|
VALGRIND_DISCARD (VALGRIND_MAKE_WRITABLE (object, size));
|
1818 |
|
|
memset (object, 0xa5, size);
|
1819 |
|
|
|
1820 |
|
|
/* Drop the handle to avoid handle leak. */
|
1821 |
|
|
VALGRIND_DISCARD (VALGRIND_MAKE_NOACCESS (object, size));
|
1822 |
|
|
}
|
1823 |
|
|
}
|
1824 |
|
|
}
|
1825 |
|
|
}
|
1826 |
|
|
}
|
1827 |
|
|
#else
|
1828 |
|
|
#define poison_pages()
|
1829 |
|
|
#endif
|
1830 |
|
|
|
1831 |
|
|
#ifdef ENABLE_GC_ALWAYS_COLLECT
|
1832 |
|
|
/* Validate that the reportedly free objects actually are. */
|
1833 |
|
|
|
1834 |
|
|
static void
|
1835 |
|
|
validate_free_objects (void)
|
1836 |
|
|
{
|
1837 |
|
|
struct free_object *f, *next, *still_free = NULL;
|
1838 |
|
|
|
1839 |
|
|
for (f = G.free_object_list; f ; f = next)
|
1840 |
|
|
{
|
1841 |
|
|
page_entry *pe = lookup_page_table_entry (f->object);
|
1842 |
|
|
size_t bit, word;
|
1843 |
|
|
|
1844 |
|
|
bit = OFFSET_TO_BIT ((char *)f->object - pe->page, pe->order);
|
1845 |
|
|
word = bit / HOST_BITS_PER_LONG;
|
1846 |
|
|
bit = bit % HOST_BITS_PER_LONG;
|
1847 |
|
|
next = f->next;
|
1848 |
|
|
|
1849 |
|
|
/* Make certain it isn't visible from any root. Notice that we
|
1850 |
|
|
do this check before sweep_pages merges save_in_use_p. */
|
1851 |
|
|
gcc_assert (!(pe->in_use_p[word] & (1UL << bit)));
|
1852 |
|
|
|
1853 |
|
|
/* If the object comes from an outer context, then retain the
|
1854 |
|
|
free_object entry, so that we can verify that the address
|
1855 |
|
|
isn't live on the stack in some outer context. */
|
1856 |
|
|
if (pe->context_depth != G.context_depth)
|
1857 |
|
|
{
|
1858 |
|
|
f->next = still_free;
|
1859 |
|
|
still_free = f;
|
1860 |
|
|
}
|
1861 |
|
|
else
|
1862 |
|
|
free (f);
|
1863 |
|
|
}
|
1864 |
|
|
|
1865 |
|
|
G.free_object_list = still_free;
|
1866 |
|
|
}
|
1867 |
|
|
#else
|
1868 |
|
|
#define validate_free_objects()
|
1869 |
|
|
#endif
|
1870 |
|
|
|
1871 |
|
|
/* Top level mark-and-sweep routine. */
|
1872 |
|
|
|
1873 |
|
|
void
|
1874 |
|
|
ggc_collect (void)
|
1875 |
|
|
{
|
1876 |
|
|
/* Avoid frequent unnecessary work by skipping collection if the
|
1877 |
|
|
total allocations haven't expanded much since the last
|
1878 |
|
|
collection. */
|
1879 |
|
|
float allocated_last_gc =
|
1880 |
|
|
MAX (G.allocated_last_gc, (size_t)PARAM_VALUE (GGC_MIN_HEAPSIZE) * 1024);
|
1881 |
|
|
|
1882 |
|
|
float min_expand = allocated_last_gc * PARAM_VALUE (GGC_MIN_EXPAND) / 100;
|
1883 |
|
|
|
1884 |
|
|
if (G.allocated < allocated_last_gc + min_expand && !ggc_force_collect)
|
1885 |
|
|
return;
|
1886 |
|
|
|
1887 |
|
|
timevar_push (TV_GC);
|
1888 |
|
|
if (!quiet_flag)
|
1889 |
|
|
fprintf (stderr, " {GC %luk -> ", (unsigned long) G.allocated / 1024);
|
1890 |
|
|
if (GGC_DEBUG_LEVEL >= 2)
|
1891 |
|
|
fprintf (G.debug_file, "BEGIN COLLECTING\n");
|
1892 |
|
|
|
1893 |
|
|
/* Zero the total allocated bytes. This will be recalculated in the
|
1894 |
|
|
sweep phase. */
|
1895 |
|
|
G.allocated = 0;
|
1896 |
|
|
|
1897 |
|
|
/* Release the pages we freed the last time we collected, but didn't
|
1898 |
|
|
reuse in the interim. */
|
1899 |
|
|
release_pages ();
|
1900 |
|
|
|
1901 |
|
|
/* Indicate that we've seen collections at this context depth. */
|
1902 |
|
|
G.context_depth_collections = ((unsigned long)1 << (G.context_depth + 1)) - 1;
|
1903 |
|
|
|
1904 |
|
|
clear_marks ();
|
1905 |
|
|
ggc_mark_roots ();
|
1906 |
|
|
#ifdef GATHER_STATISTICS
|
1907 |
|
|
ggc_prune_overhead_list ();
|
1908 |
|
|
#endif
|
1909 |
|
|
poison_pages ();
|
1910 |
|
|
validate_free_objects ();
|
1911 |
|
|
sweep_pages ();
|
1912 |
|
|
|
1913 |
|
|
G.allocated_last_gc = G.allocated;
|
1914 |
|
|
|
1915 |
|
|
timevar_pop (TV_GC);
|
1916 |
|
|
|
1917 |
|
|
if (!quiet_flag)
|
1918 |
|
|
fprintf (stderr, "%luk}", (unsigned long) G.allocated / 1024);
|
1919 |
|
|
if (GGC_DEBUG_LEVEL >= 2)
|
1920 |
|
|
fprintf (G.debug_file, "END COLLECTING\n");
|
1921 |
|
|
}
|
1922 |
|
|
|
1923 |
|
|
/* Print allocation statistics. */
|
1924 |
|
|
#define SCALE(x) ((unsigned long) ((x) < 1024*10 \
|
1925 |
|
|
? (x) \
|
1926 |
|
|
: ((x) < 1024*1024*10 \
|
1927 |
|
|
? (x) / 1024 \
|
1928 |
|
|
: (x) / (1024*1024))))
|
1929 |
|
|
#define STAT_LABEL(x) ((x) < 1024*10 ? ' ' : ((x) < 1024*1024*10 ? 'k' : 'M'))
|
1930 |
|
|
|
1931 |
|
|
void
|
1932 |
|
|
ggc_print_statistics (void)
|
1933 |
|
|
{
|
1934 |
|
|
struct ggc_statistics stats;
|
1935 |
|
|
unsigned int i;
|
1936 |
|
|
size_t total_overhead = 0;
|
1937 |
|
|
|
1938 |
|
|
/* Clear the statistics. */
|
1939 |
|
|
memset (&stats, 0, sizeof (stats));
|
1940 |
|
|
|
1941 |
|
|
/* Make sure collection will really occur. */
|
1942 |
|
|
G.allocated_last_gc = 0;
|
1943 |
|
|
|
1944 |
|
|
/* Collect and print the statistics common across collectors. */
|
1945 |
|
|
ggc_print_common_statistics (stderr, &stats);
|
1946 |
|
|
|
1947 |
|
|
/* Release free pages so that we will not count the bytes allocated
|
1948 |
|
|
there as part of the total allocated memory. */
|
1949 |
|
|
release_pages ();
|
1950 |
|
|
|
1951 |
|
|
/* Collect some information about the various sizes of
|
1952 |
|
|
allocation. */
|
1953 |
|
|
fprintf (stderr,
|
1954 |
|
|
"Memory still allocated at the end of the compilation process\n");
|
1955 |
|
|
fprintf (stderr, "%-5s %10s %10s %10s\n",
|
1956 |
|
|
"Size", "Allocated", "Used", "Overhead");
|
1957 |
|
|
for (i = 0; i < NUM_ORDERS; ++i)
|
1958 |
|
|
{
|
1959 |
|
|
page_entry *p;
|
1960 |
|
|
size_t allocated;
|
1961 |
|
|
size_t in_use;
|
1962 |
|
|
size_t overhead;
|
1963 |
|
|
|
1964 |
|
|
/* Skip empty entries. */
|
1965 |
|
|
if (!G.pages[i])
|
1966 |
|
|
continue;
|
1967 |
|
|
|
1968 |
|
|
overhead = allocated = in_use = 0;
|
1969 |
|
|
|
1970 |
|
|
/* Figure out the total number of bytes allocated for objects of
|
1971 |
|
|
this size, and how many of them are actually in use. Also figure
|
1972 |
|
|
out how much memory the page table is using. */
|
1973 |
|
|
for (p = G.pages[i]; p; p = p->next)
|
1974 |
|
|
{
|
1975 |
|
|
allocated += p->bytes;
|
1976 |
|
|
in_use +=
|
1977 |
|
|
(OBJECTS_IN_PAGE (p) - p->num_free_objects) * OBJECT_SIZE (i);
|
1978 |
|
|
|
1979 |
|
|
overhead += (sizeof (page_entry) - sizeof (long)
|
1980 |
|
|
+ BITMAP_SIZE (OBJECTS_IN_PAGE (p) + 1));
|
1981 |
|
|
}
|
1982 |
|
|
fprintf (stderr, "%-5lu %10lu%c %10lu%c %10lu%c\n",
|
1983 |
|
|
(unsigned long) OBJECT_SIZE (i),
|
1984 |
|
|
SCALE (allocated), STAT_LABEL (allocated),
|
1985 |
|
|
SCALE (in_use), STAT_LABEL (in_use),
|
1986 |
|
|
SCALE (overhead), STAT_LABEL (overhead));
|
1987 |
|
|
total_overhead += overhead;
|
1988 |
|
|
}
|
1989 |
|
|
fprintf (stderr, "%-5s %10lu%c %10lu%c %10lu%c\n", "Total",
|
1990 |
|
|
SCALE (G.bytes_mapped), STAT_LABEL (G.bytes_mapped),
|
1991 |
|
|
SCALE (G.allocated), STAT_LABEL(G.allocated),
|
1992 |
|
|
SCALE (total_overhead), STAT_LABEL (total_overhead));
|
1993 |
|
|
|
1994 |
|
|
#ifdef GATHER_STATISTICS
|
1995 |
|
|
{
|
1996 |
|
|
fprintf (stderr, "\nTotal allocations and overheads during the compilation process\n");
|
1997 |
|
|
|
1998 |
|
|
fprintf (stderr, "Total Overhead: %10lld\n",
|
1999 |
|
|
G.stats.total_overhead);
|
2000 |
|
|
fprintf (stderr, "Total Allocated: %10lld\n",
|
2001 |
|
|
G.stats.total_allocated);
|
2002 |
|
|
|
2003 |
|
|
fprintf (stderr, "Total Overhead under 32B: %10lld\n",
|
2004 |
|
|
G.stats.total_overhead_under32);
|
2005 |
|
|
fprintf (stderr, "Total Allocated under 32B: %10lld\n",
|
2006 |
|
|
G.stats.total_allocated_under32);
|
2007 |
|
|
fprintf (stderr, "Total Overhead under 64B: %10lld\n",
|
2008 |
|
|
G.stats.total_overhead_under64);
|
2009 |
|
|
fprintf (stderr, "Total Allocated under 64B: %10lld\n",
|
2010 |
|
|
G.stats.total_allocated_under64);
|
2011 |
|
|
fprintf (stderr, "Total Overhead under 128B: %10lld\n",
|
2012 |
|
|
G.stats.total_overhead_under128);
|
2013 |
|
|
fprintf (stderr, "Total Allocated under 128B: %10lld\n",
|
2014 |
|
|
G.stats.total_allocated_under128);
|
2015 |
|
|
|
2016 |
|
|
for (i = 0; i < NUM_ORDERS; i++)
|
2017 |
|
|
if (G.stats.total_allocated_per_order[i])
|
2018 |
|
|
{
|
2019 |
|
|
fprintf (stderr, "Total Overhead page size %7d: %10lld\n",
|
2020 |
|
|
OBJECT_SIZE (i), G.stats.total_overhead_per_order[i]);
|
2021 |
|
|
fprintf (stderr, "Total Allocated page size %7d: %10lld\n",
|
2022 |
|
|
OBJECT_SIZE (i), G.stats.total_allocated_per_order[i]);
|
2023 |
|
|
}
|
2024 |
|
|
}
|
2025 |
|
|
#endif
|
2026 |
|
|
}
|
2027 |
|
|
|
2028 |
|
|
struct ggc_pch_data
|
2029 |
|
|
{
|
2030 |
|
|
struct ggc_pch_ondisk
|
2031 |
|
|
{
|
2032 |
|
|
unsigned totals[NUM_ORDERS];
|
2033 |
|
|
} d;
|
2034 |
|
|
size_t base[NUM_ORDERS];
|
2035 |
|
|
size_t written[NUM_ORDERS];
|
2036 |
|
|
};
|
2037 |
|
|
|
2038 |
|
|
struct ggc_pch_data *
|
2039 |
|
|
init_ggc_pch (void)
|
2040 |
|
|
{
|
2041 |
|
|
return XCNEW (struct ggc_pch_data);
|
2042 |
|
|
}
|
2043 |
|
|
|
2044 |
|
|
void
|
2045 |
|
|
ggc_pch_count_object (struct ggc_pch_data *d, void *x ATTRIBUTE_UNUSED,
|
2046 |
|
|
size_t size, bool is_string ATTRIBUTE_UNUSED,
|
2047 |
|
|
enum gt_types_enum type ATTRIBUTE_UNUSED)
|
2048 |
|
|
{
|
2049 |
|
|
unsigned order;
|
2050 |
|
|
|
2051 |
|
|
if (size < NUM_SIZE_LOOKUP)
|
2052 |
|
|
order = size_lookup[size];
|
2053 |
|
|
else
|
2054 |
|
|
{
|
2055 |
|
|
order = 10;
|
2056 |
|
|
while (size > OBJECT_SIZE (order))
|
2057 |
|
|
order++;
|
2058 |
|
|
}
|
2059 |
|
|
|
2060 |
|
|
d->d.totals[order]++;
|
2061 |
|
|
}
|
2062 |
|
|
|
2063 |
|
|
size_t
|
2064 |
|
|
ggc_pch_total_size (struct ggc_pch_data *d)
|
2065 |
|
|
{
|
2066 |
|
|
size_t a = 0;
|
2067 |
|
|
unsigned i;
|
2068 |
|
|
|
2069 |
|
|
for (i = 0; i < NUM_ORDERS; i++)
|
2070 |
|
|
a += ROUND_UP (d->d.totals[i] * OBJECT_SIZE (i), G.pagesize);
|
2071 |
|
|
return a;
|
2072 |
|
|
}
|
2073 |
|
|
|
2074 |
|
|
void
|
2075 |
|
|
ggc_pch_this_base (struct ggc_pch_data *d, void *base)
|
2076 |
|
|
{
|
2077 |
|
|
size_t a = (size_t) base;
|
2078 |
|
|
unsigned i;
|
2079 |
|
|
|
2080 |
|
|
for (i = 0; i < NUM_ORDERS; i++)
|
2081 |
|
|
{
|
2082 |
|
|
d->base[i] = a;
|
2083 |
|
|
a += ROUND_UP (d->d.totals[i] * OBJECT_SIZE (i), G.pagesize);
|
2084 |
|
|
}
|
2085 |
|
|
}
|
2086 |
|
|
|
2087 |
|
|
|
2088 |
|
|
char *
|
2089 |
|
|
ggc_pch_alloc_object (struct ggc_pch_data *d, void *x ATTRIBUTE_UNUSED,
|
2090 |
|
|
size_t size, bool is_string ATTRIBUTE_UNUSED,
|
2091 |
|
|
enum gt_types_enum type ATTRIBUTE_UNUSED)
|
2092 |
|
|
{
|
2093 |
|
|
unsigned order;
|
2094 |
|
|
char *result;
|
2095 |
|
|
|
2096 |
|
|
if (size < NUM_SIZE_LOOKUP)
|
2097 |
|
|
order = size_lookup[size];
|
2098 |
|
|
else
|
2099 |
|
|
{
|
2100 |
|
|
order = 10;
|
2101 |
|
|
while (size > OBJECT_SIZE (order))
|
2102 |
|
|
order++;
|
2103 |
|
|
}
|
2104 |
|
|
|
2105 |
|
|
result = (char *) d->base[order];
|
2106 |
|
|
d->base[order] += OBJECT_SIZE (order);
|
2107 |
|
|
return result;
|
2108 |
|
|
}
|
2109 |
|
|
|
2110 |
|
|
void
|
2111 |
|
|
ggc_pch_prepare_write (struct ggc_pch_data *d ATTRIBUTE_UNUSED,
|
2112 |
|
|
FILE *f ATTRIBUTE_UNUSED)
|
2113 |
|
|
{
|
2114 |
|
|
/* Nothing to do. */
|
2115 |
|
|
}
|
2116 |
|
|
|
2117 |
|
|
void
|
2118 |
|
|
ggc_pch_write_object (struct ggc_pch_data *d ATTRIBUTE_UNUSED,
|
2119 |
|
|
FILE *f, void *x, void *newx ATTRIBUTE_UNUSED,
|
2120 |
|
|
size_t size, bool is_string ATTRIBUTE_UNUSED)
|
2121 |
|
|
{
|
2122 |
|
|
unsigned order;
|
2123 |
|
|
static const char emptyBytes[256];
|
2124 |
|
|
|
2125 |
|
|
if (size < NUM_SIZE_LOOKUP)
|
2126 |
|
|
order = size_lookup[size];
|
2127 |
|
|
else
|
2128 |
|
|
{
|
2129 |
|
|
order = 10;
|
2130 |
|
|
while (size > OBJECT_SIZE (order))
|
2131 |
|
|
order++;
|
2132 |
|
|
}
|
2133 |
|
|
|
2134 |
|
|
if (fwrite (x, size, 1, f) != 1)
|
2135 |
|
|
fatal_error ("can't write PCH file: %m");
|
2136 |
|
|
|
2137 |
|
|
/* If SIZE is not the same as OBJECT_SIZE(order), then we need to pad the
|
2138 |
|
|
object out to OBJECT_SIZE(order). This happens for strings. */
|
2139 |
|
|
|
2140 |
|
|
if (size != OBJECT_SIZE (order))
|
2141 |
|
|
{
|
2142 |
|
|
unsigned padding = OBJECT_SIZE(order) - size;
|
2143 |
|
|
|
2144 |
|
|
/* To speed small writes, we use a nulled-out array that's larger
|
2145 |
|
|
than most padding requests as the source for our null bytes. This
|
2146 |
|
|
permits us to do the padding with fwrite() rather than fseek(), and
|
2147 |
|
|
limits the chance the OS may try to flush any outstanding writes. */
|
2148 |
|
|
if (padding <= sizeof(emptyBytes))
|
2149 |
|
|
{
|
2150 |
|
|
if (fwrite (emptyBytes, 1, padding, f) != padding)
|
2151 |
|
|
fatal_error ("can't write PCH file");
|
2152 |
|
|
}
|
2153 |
|
|
else
|
2154 |
|
|
{
|
2155 |
|
|
/* Larger than our buffer? Just default to fseek. */
|
2156 |
|
|
if (fseek (f, padding, SEEK_CUR) != 0)
|
2157 |
|
|
fatal_error ("can't write PCH file");
|
2158 |
|
|
}
|
2159 |
|
|
}
|
2160 |
|
|
|
2161 |
|
|
d->written[order]++;
|
2162 |
|
|
if (d->written[order] == d->d.totals[order]
|
2163 |
|
|
&& fseek (f, ROUND_UP_VALUE (d->d.totals[order] * OBJECT_SIZE (order),
|
2164 |
|
|
G.pagesize),
|
2165 |
|
|
SEEK_CUR) != 0)
|
2166 |
|
|
fatal_error ("can't write PCH file: %m");
|
2167 |
|
|
}
|
2168 |
|
|
|
2169 |
|
|
void
|
2170 |
|
|
ggc_pch_finish (struct ggc_pch_data *d, FILE *f)
|
2171 |
|
|
{
|
2172 |
|
|
if (fwrite (&d->d, sizeof (d->d), 1, f) != 1)
|
2173 |
|
|
fatal_error ("can't write PCH file: %m");
|
2174 |
|
|
free (d);
|
2175 |
|
|
}
|
2176 |
|
|
|
2177 |
|
|
/* Move the PCH PTE entries just added to the end of by_depth, to the
|
2178 |
|
|
front. */
|
2179 |
|
|
|
2180 |
|
|
static void
|
2181 |
|
|
move_ptes_to_front (int count_old_page_tables, int count_new_page_tables)
|
2182 |
|
|
{
|
2183 |
|
|
unsigned i;
|
2184 |
|
|
|
2185 |
|
|
/* First, we swap the new entries to the front of the varrays. */
|
2186 |
|
|
page_entry **new_by_depth;
|
2187 |
|
|
unsigned long **new_save_in_use;
|
2188 |
|
|
|
2189 |
|
|
new_by_depth = XNEWVEC (page_entry *, G.by_depth_max);
|
2190 |
|
|
new_save_in_use = XNEWVEC (unsigned long *, G.by_depth_max);
|
2191 |
|
|
|
2192 |
|
|
memcpy (&new_by_depth[0],
|
2193 |
|
|
&G.by_depth[count_old_page_tables],
|
2194 |
|
|
count_new_page_tables * sizeof (void *));
|
2195 |
|
|
memcpy (&new_by_depth[count_new_page_tables],
|
2196 |
|
|
&G.by_depth[0],
|
2197 |
|
|
count_old_page_tables * sizeof (void *));
|
2198 |
|
|
memcpy (&new_save_in_use[0],
|
2199 |
|
|
&G.save_in_use[count_old_page_tables],
|
2200 |
|
|
count_new_page_tables * sizeof (void *));
|
2201 |
|
|
memcpy (&new_save_in_use[count_new_page_tables],
|
2202 |
|
|
&G.save_in_use[0],
|
2203 |
|
|
count_old_page_tables * sizeof (void *));
|
2204 |
|
|
|
2205 |
|
|
free (G.by_depth);
|
2206 |
|
|
free (G.save_in_use);
|
2207 |
|
|
|
2208 |
|
|
G.by_depth = new_by_depth;
|
2209 |
|
|
G.save_in_use = new_save_in_use;
|
2210 |
|
|
|
2211 |
|
|
/* Now update all the index_by_depth fields. */
|
2212 |
|
|
for (i = G.by_depth_in_use; i > 0; --i)
|
2213 |
|
|
{
|
2214 |
|
|
page_entry *p = G.by_depth[i-1];
|
2215 |
|
|
p->index_by_depth = i-1;
|
2216 |
|
|
}
|
2217 |
|
|
|
2218 |
|
|
/* And last, we update the depth pointers in G.depth. The first
|
2219 |
|
|
entry is already 0, and context 0 entries always start at index
|
2220 |
|
|
0, so there is nothing to update in the first slot. We need a
|
2221 |
|
|
second slot, only if we have old ptes, and if we do, they start
|
2222 |
|
|
at index count_new_page_tables. */
|
2223 |
|
|
if (count_old_page_tables)
|
2224 |
|
|
push_depth (count_new_page_tables);
|
2225 |
|
|
}
|
2226 |
|
|
|
2227 |
|
|
void
|
2228 |
|
|
ggc_pch_read (FILE *f, void *addr)
|
2229 |
|
|
{
|
2230 |
|
|
struct ggc_pch_ondisk d;
|
2231 |
|
|
unsigned i;
|
2232 |
|
|
char *offs = addr;
|
2233 |
|
|
unsigned long count_old_page_tables;
|
2234 |
|
|
unsigned long count_new_page_tables;
|
2235 |
|
|
|
2236 |
|
|
count_old_page_tables = G.by_depth_in_use;
|
2237 |
|
|
|
2238 |
|
|
/* We've just read in a PCH file. So, every object that used to be
|
2239 |
|
|
allocated is now free. */
|
2240 |
|
|
clear_marks ();
|
2241 |
|
|
#ifdef ENABLE_GC_CHECKING
|
2242 |
|
|
poison_pages ();
|
2243 |
|
|
#endif
|
2244 |
|
|
|
2245 |
|
|
/* No object read from a PCH file should ever be freed. So, set the
|
2246 |
|
|
context depth to 1, and set the depth of all the currently-allocated
|
2247 |
|
|
pages to be 1 too. PCH pages will have depth 0. */
|
2248 |
|
|
gcc_assert (!G.context_depth);
|
2249 |
|
|
G.context_depth = 1;
|
2250 |
|
|
for (i = 0; i < NUM_ORDERS; i++)
|
2251 |
|
|
{
|
2252 |
|
|
page_entry *p;
|
2253 |
|
|
for (p = G.pages[i]; p != NULL; p = p->next)
|
2254 |
|
|
p->context_depth = G.context_depth;
|
2255 |
|
|
}
|
2256 |
|
|
|
2257 |
|
|
/* Allocate the appropriate page-table entries for the pages read from
|
2258 |
|
|
the PCH file. */
|
2259 |
|
|
if (fread (&d, sizeof (d), 1, f) != 1)
|
2260 |
|
|
fatal_error ("can't read PCH file: %m");
|
2261 |
|
|
|
2262 |
|
|
for (i = 0; i < NUM_ORDERS; i++)
|
2263 |
|
|
{
|
2264 |
|
|
struct page_entry *entry;
|
2265 |
|
|
char *pte;
|
2266 |
|
|
size_t bytes;
|
2267 |
|
|
size_t num_objs;
|
2268 |
|
|
size_t j;
|
2269 |
|
|
|
2270 |
|
|
if (d.totals[i] == 0)
|
2271 |
|
|
continue;
|
2272 |
|
|
|
2273 |
|
|
bytes = ROUND_UP (d.totals[i] * OBJECT_SIZE (i), G.pagesize);
|
2274 |
|
|
num_objs = bytes / OBJECT_SIZE (i);
|
2275 |
|
|
entry = xcalloc (1, (sizeof (struct page_entry)
|
2276 |
|
|
- sizeof (long)
|
2277 |
|
|
+ BITMAP_SIZE (num_objs + 1)));
|
2278 |
|
|
entry->bytes = bytes;
|
2279 |
|
|
entry->page = offs;
|
2280 |
|
|
entry->context_depth = 0;
|
2281 |
|
|
offs += bytes;
|
2282 |
|
|
entry->num_free_objects = 0;
|
2283 |
|
|
entry->order = i;
|
2284 |
|
|
|
2285 |
|
|
for (j = 0;
|
2286 |
|
|
j + HOST_BITS_PER_LONG <= num_objs + 1;
|
2287 |
|
|
j += HOST_BITS_PER_LONG)
|
2288 |
|
|
entry->in_use_p[j / HOST_BITS_PER_LONG] = -1;
|
2289 |
|
|
for (; j < num_objs + 1; j++)
|
2290 |
|
|
entry->in_use_p[j / HOST_BITS_PER_LONG]
|
2291 |
|
|
|= 1L << (j % HOST_BITS_PER_LONG);
|
2292 |
|
|
|
2293 |
|
|
for (pte = entry->page;
|
2294 |
|
|
pte < entry->page + entry->bytes;
|
2295 |
|
|
pte += G.pagesize)
|
2296 |
|
|
set_page_table_entry (pte, entry);
|
2297 |
|
|
|
2298 |
|
|
if (G.page_tails[i] != NULL)
|
2299 |
|
|
G.page_tails[i]->next = entry;
|
2300 |
|
|
else
|
2301 |
|
|
G.pages[i] = entry;
|
2302 |
|
|
G.page_tails[i] = entry;
|
2303 |
|
|
|
2304 |
|
|
/* We start off by just adding all the new information to the
|
2305 |
|
|
end of the varrays, later, we will move the new information
|
2306 |
|
|
to the front of the varrays, as the PCH page tables are at
|
2307 |
|
|
context 0. */
|
2308 |
|
|
push_by_depth (entry, 0);
|
2309 |
|
|
}
|
2310 |
|
|
|
2311 |
|
|
/* Now, we update the various data structures that speed page table
|
2312 |
|
|
handling. */
|
2313 |
|
|
count_new_page_tables = G.by_depth_in_use - count_old_page_tables;
|
2314 |
|
|
|
2315 |
|
|
move_ptes_to_front (count_old_page_tables, count_new_page_tables);
|
2316 |
|
|
|
2317 |
|
|
/* Update the statistics. */
|
2318 |
|
|
G.allocated = G.allocated_last_gc = offs - (char *)addr;
|
2319 |
|
|
}
|