| 1 |
38 |
julius |
/* Subroutines used by or related to instruction recognition.
|
| 2 |
|
|
Copyright (C) 1987, 1988, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998
|
| 3 |
|
|
1999, 2000, 2001, 2002, 2003, 2004, 2005, 2007
|
| 4 |
|
|
Free Software Foundation, Inc.
|
| 5 |
|
|
|
| 6 |
|
|
This file is part of GCC.
|
| 7 |
|
|
|
| 8 |
|
|
GCC is free software; you can redistribute it and/or modify it under
|
| 9 |
|
|
the terms of the GNU General Public License as published by the Free
|
| 10 |
|
|
Software Foundation; either version 3, or (at your option) any later
|
| 11 |
|
|
version.
|
| 12 |
|
|
|
| 13 |
|
|
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
|
| 14 |
|
|
WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
| 15 |
|
|
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
| 16 |
|
|
for more details.
|
| 17 |
|
|
|
| 18 |
|
|
You should have received a copy of the GNU General Public License
|
| 19 |
|
|
along with GCC; see the file COPYING3. If not see
|
| 20 |
|
|
<http://www.gnu.org/licenses/>. */
|
| 21 |
|
|
|
| 22 |
|
|
|
| 23 |
|
|
#include "config.h"
|
| 24 |
|
|
#include "system.h"
|
| 25 |
|
|
#include "coretypes.h"
|
| 26 |
|
|
#include "tm.h"
|
| 27 |
|
|
#include "rtl.h"
|
| 28 |
|
|
#include "tm_p.h"
|
| 29 |
|
|
#include "insn-config.h"
|
| 30 |
|
|
#include "insn-attr.h"
|
| 31 |
|
|
#include "hard-reg-set.h"
|
| 32 |
|
|
#include "recog.h"
|
| 33 |
|
|
#include "regs.h"
|
| 34 |
|
|
#include "addresses.h"
|
| 35 |
|
|
#include "expr.h"
|
| 36 |
|
|
#include "function.h"
|
| 37 |
|
|
#include "flags.h"
|
| 38 |
|
|
#include "real.h"
|
| 39 |
|
|
#include "toplev.h"
|
| 40 |
|
|
#include "basic-block.h"
|
| 41 |
|
|
#include "output.h"
|
| 42 |
|
|
#include "reload.h"
|
| 43 |
|
|
#include "timevar.h"
|
| 44 |
|
|
#include "tree-pass.h"
|
| 45 |
|
|
|
| 46 |
|
|
#ifndef STACK_PUSH_CODE
|
| 47 |
|
|
#ifdef STACK_GROWS_DOWNWARD
|
| 48 |
|
|
#define STACK_PUSH_CODE PRE_DEC
|
| 49 |
|
|
#else
|
| 50 |
|
|
#define STACK_PUSH_CODE PRE_INC
|
| 51 |
|
|
#endif
|
| 52 |
|
|
#endif
|
| 53 |
|
|
|
| 54 |
|
|
#ifndef STACK_POP_CODE
|
| 55 |
|
|
#ifdef STACK_GROWS_DOWNWARD
|
| 56 |
|
|
#define STACK_POP_CODE POST_INC
|
| 57 |
|
|
#else
|
| 58 |
|
|
#define STACK_POP_CODE POST_DEC
|
| 59 |
|
|
#endif
|
| 60 |
|
|
#endif
|
| 61 |
|
|
|
| 62 |
|
|
static void validate_replace_rtx_1 (rtx *, rtx, rtx, rtx);
|
| 63 |
|
|
static rtx *find_single_use_1 (rtx, rtx *);
|
| 64 |
|
|
static void validate_replace_src_1 (rtx *, void *);
|
| 65 |
|
|
static rtx split_insn (rtx);
|
| 66 |
|
|
|
| 67 |
|
|
/* Nonzero means allow operands to be volatile.
|
| 68 |
|
|
This should be 0 if you are generating rtl, such as if you are calling
|
| 69 |
|
|
the functions in optabs.c and expmed.c (most of the time).
|
| 70 |
|
|
This should be 1 if all valid insns need to be recognized,
|
| 71 |
|
|
such as in regclass.c and final.c and reload.c.
|
| 72 |
|
|
|
| 73 |
|
|
init_recog and init_recog_no_volatile are responsible for setting this. */
|
| 74 |
|
|
|
| 75 |
|
|
int volatile_ok;
|
| 76 |
|
|
|
| 77 |
|
|
struct recog_data recog_data;
|
| 78 |
|
|
|
| 79 |
|
|
/* Contains a vector of operand_alternative structures for every operand.
|
| 80 |
|
|
Set up by preprocess_constraints. */
|
| 81 |
|
|
struct operand_alternative recog_op_alt[MAX_RECOG_OPERANDS][MAX_RECOG_ALTERNATIVES];
|
| 82 |
|
|
|
| 83 |
|
|
/* On return from `constrain_operands', indicate which alternative
|
| 84 |
|
|
was satisfied. */
|
| 85 |
|
|
|
| 86 |
|
|
int which_alternative;
|
| 87 |
|
|
|
| 88 |
|
|
/* Nonzero after end of reload pass.
|
| 89 |
|
|
Set to 1 or 0 by toplev.c.
|
| 90 |
|
|
Controls the significance of (SUBREG (MEM)). */
|
| 91 |
|
|
|
| 92 |
|
|
int reload_completed;
|
| 93 |
|
|
|
| 94 |
|
|
/* Nonzero after thread_prologue_and_epilogue_insns has run. */
|
| 95 |
|
|
int epilogue_completed;
|
| 96 |
|
|
|
| 97 |
|
|
/* Initialize data used by the function `recog'.
|
| 98 |
|
|
This must be called once in the compilation of a function
|
| 99 |
|
|
before any insn recognition may be done in the function. */
|
| 100 |
|
|
|
| 101 |
|
|
void
|
| 102 |
|
|
init_recog_no_volatile (void)
|
| 103 |
|
|
{
|
| 104 |
|
|
volatile_ok = 0;
|
| 105 |
|
|
}
|
| 106 |
|
|
|
| 107 |
|
|
void
|
| 108 |
|
|
init_recog (void)
|
| 109 |
|
|
{
|
| 110 |
|
|
volatile_ok = 1;
|
| 111 |
|
|
}
|
| 112 |
|
|
|
| 113 |
|
|
|
| 114 |
|
|
/* Check that X is an insn-body for an `asm' with operands
|
| 115 |
|
|
and that the operands mentioned in it are legitimate. */
|
| 116 |
|
|
|
| 117 |
|
|
int
|
| 118 |
|
|
check_asm_operands (rtx x)
|
| 119 |
|
|
{
|
| 120 |
|
|
int noperands;
|
| 121 |
|
|
rtx *operands;
|
| 122 |
|
|
const char **constraints;
|
| 123 |
|
|
int i;
|
| 124 |
|
|
|
| 125 |
|
|
/* Post-reload, be more strict with things. */
|
| 126 |
|
|
if (reload_completed)
|
| 127 |
|
|
{
|
| 128 |
|
|
/* ??? Doh! We've not got the wrapping insn. Cook one up. */
|
| 129 |
|
|
extract_insn (make_insn_raw (x));
|
| 130 |
|
|
constrain_operands (1);
|
| 131 |
|
|
return which_alternative >= 0;
|
| 132 |
|
|
}
|
| 133 |
|
|
|
| 134 |
|
|
noperands = asm_noperands (x);
|
| 135 |
|
|
if (noperands < 0)
|
| 136 |
|
|
return 0;
|
| 137 |
|
|
if (noperands == 0)
|
| 138 |
|
|
return 1;
|
| 139 |
|
|
|
| 140 |
|
|
operands = alloca (noperands * sizeof (rtx));
|
| 141 |
|
|
constraints = alloca (noperands * sizeof (char *));
|
| 142 |
|
|
|
| 143 |
|
|
decode_asm_operands (x, operands, NULL, constraints, NULL);
|
| 144 |
|
|
|
| 145 |
|
|
for (i = 0; i < noperands; i++)
|
| 146 |
|
|
{
|
| 147 |
|
|
const char *c = constraints[i];
|
| 148 |
|
|
if (c[0] == '%')
|
| 149 |
|
|
c++;
|
| 150 |
|
|
if (ISDIGIT ((unsigned char) c[0]) && c[1] == '\0')
|
| 151 |
|
|
c = constraints[c[0] - '0'];
|
| 152 |
|
|
|
| 153 |
|
|
if (! asm_operand_ok (operands[i], c))
|
| 154 |
|
|
return 0;
|
| 155 |
|
|
}
|
| 156 |
|
|
|
| 157 |
|
|
return 1;
|
| 158 |
|
|
}
|
| 159 |
|
|
|
| 160 |
|
|
/* Static data for the next two routines. */
|
| 161 |
|
|
|
| 162 |
|
|
typedef struct change_t
|
| 163 |
|
|
{
|
| 164 |
|
|
rtx object;
|
| 165 |
|
|
int old_code;
|
| 166 |
|
|
rtx *loc;
|
| 167 |
|
|
rtx old;
|
| 168 |
|
|
} change_t;
|
| 169 |
|
|
|
| 170 |
|
|
static change_t *changes;
|
| 171 |
|
|
static int changes_allocated;
|
| 172 |
|
|
|
| 173 |
|
|
static int num_changes = 0;
|
| 174 |
|
|
|
| 175 |
|
|
/* Validate a proposed change to OBJECT. LOC is the location in the rtl
|
| 176 |
|
|
at which NEW will be placed. If OBJECT is zero, no validation is done,
|
| 177 |
|
|
the change is simply made.
|
| 178 |
|
|
|
| 179 |
|
|
Two types of objects are supported: If OBJECT is a MEM, memory_address_p
|
| 180 |
|
|
will be called with the address and mode as parameters. If OBJECT is
|
| 181 |
|
|
an INSN, CALL_INSN, or JUMP_INSN, the insn will be re-recognized with
|
| 182 |
|
|
the change in place.
|
| 183 |
|
|
|
| 184 |
|
|
IN_GROUP is nonzero if this is part of a group of changes that must be
|
| 185 |
|
|
performed as a group. In that case, the changes will be stored. The
|
| 186 |
|
|
function `apply_change_group' will validate and apply the changes.
|
| 187 |
|
|
|
| 188 |
|
|
If IN_GROUP is zero, this is a single change. Try to recognize the insn
|
| 189 |
|
|
or validate the memory reference with the change applied. If the result
|
| 190 |
|
|
is not valid for the machine, suppress the change and return zero.
|
| 191 |
|
|
Otherwise, perform the change and return 1. */
|
| 192 |
|
|
|
| 193 |
|
|
int
|
| 194 |
|
|
validate_change (rtx object, rtx *loc, rtx new, int in_group)
|
| 195 |
|
|
{
|
| 196 |
|
|
rtx old = *loc;
|
| 197 |
|
|
|
| 198 |
|
|
if (old == new || rtx_equal_p (old, new))
|
| 199 |
|
|
return 1;
|
| 200 |
|
|
|
| 201 |
|
|
gcc_assert (in_group != 0 || num_changes == 0);
|
| 202 |
|
|
|
| 203 |
|
|
*loc = new;
|
| 204 |
|
|
|
| 205 |
|
|
/* Save the information describing this change. */
|
| 206 |
|
|
if (num_changes >= changes_allocated)
|
| 207 |
|
|
{
|
| 208 |
|
|
if (changes_allocated == 0)
|
| 209 |
|
|
/* This value allows for repeated substitutions inside complex
|
| 210 |
|
|
indexed addresses, or changes in up to 5 insns. */
|
| 211 |
|
|
changes_allocated = MAX_RECOG_OPERANDS * 5;
|
| 212 |
|
|
else
|
| 213 |
|
|
changes_allocated *= 2;
|
| 214 |
|
|
|
| 215 |
|
|
changes = xrealloc (changes, sizeof (change_t) * changes_allocated);
|
| 216 |
|
|
}
|
| 217 |
|
|
|
| 218 |
|
|
changes[num_changes].object = object;
|
| 219 |
|
|
changes[num_changes].loc = loc;
|
| 220 |
|
|
changes[num_changes].old = old;
|
| 221 |
|
|
|
| 222 |
|
|
if (object && !MEM_P (object))
|
| 223 |
|
|
{
|
| 224 |
|
|
/* Set INSN_CODE to force rerecognition of insn. Save old code in
|
| 225 |
|
|
case invalid. */
|
| 226 |
|
|
changes[num_changes].old_code = INSN_CODE (object);
|
| 227 |
|
|
INSN_CODE (object) = -1;
|
| 228 |
|
|
}
|
| 229 |
|
|
|
| 230 |
|
|
num_changes++;
|
| 231 |
|
|
|
| 232 |
|
|
/* If we are making a group of changes, return 1. Otherwise, validate the
|
| 233 |
|
|
change group we made. */
|
| 234 |
|
|
|
| 235 |
|
|
if (in_group)
|
| 236 |
|
|
return 1;
|
| 237 |
|
|
else
|
| 238 |
|
|
return apply_change_group ();
|
| 239 |
|
|
}
|
| 240 |
|
|
|
| 241 |
|
|
|
| 242 |
|
|
/* This subroutine of apply_change_group verifies whether the changes to INSN
|
| 243 |
|
|
were valid; i.e. whether INSN can still be recognized. */
|
| 244 |
|
|
|
| 245 |
|
|
int
|
| 246 |
|
|
insn_invalid_p (rtx insn)
|
| 247 |
|
|
{
|
| 248 |
|
|
rtx pat = PATTERN (insn);
|
| 249 |
|
|
int num_clobbers = 0;
|
| 250 |
|
|
/* If we are before reload and the pattern is a SET, see if we can add
|
| 251 |
|
|
clobbers. */
|
| 252 |
|
|
int icode = recog (pat, insn,
|
| 253 |
|
|
(GET_CODE (pat) == SET
|
| 254 |
|
|
&& ! reload_completed && ! reload_in_progress)
|
| 255 |
|
|
? &num_clobbers : 0);
|
| 256 |
|
|
int is_asm = icode < 0 && asm_noperands (PATTERN (insn)) >= 0;
|
| 257 |
|
|
|
| 258 |
|
|
|
| 259 |
|
|
/* If this is an asm and the operand aren't legal, then fail. Likewise if
|
| 260 |
|
|
this is not an asm and the insn wasn't recognized. */
|
| 261 |
|
|
if ((is_asm && ! check_asm_operands (PATTERN (insn)))
|
| 262 |
|
|
|| (!is_asm && icode < 0))
|
| 263 |
|
|
return 1;
|
| 264 |
|
|
|
| 265 |
|
|
/* If we have to add CLOBBERs, fail if we have to add ones that reference
|
| 266 |
|
|
hard registers since our callers can't know if they are live or not.
|
| 267 |
|
|
Otherwise, add them. */
|
| 268 |
|
|
if (num_clobbers > 0)
|
| 269 |
|
|
{
|
| 270 |
|
|
rtx newpat;
|
| 271 |
|
|
|
| 272 |
|
|
if (added_clobbers_hard_reg_p (icode))
|
| 273 |
|
|
return 1;
|
| 274 |
|
|
|
| 275 |
|
|
newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (num_clobbers + 1));
|
| 276 |
|
|
XVECEXP (newpat, 0, 0) = pat;
|
| 277 |
|
|
add_clobbers (newpat, icode);
|
| 278 |
|
|
PATTERN (insn) = pat = newpat;
|
| 279 |
|
|
}
|
| 280 |
|
|
|
| 281 |
|
|
/* After reload, verify that all constraints are satisfied. */
|
| 282 |
|
|
if (reload_completed)
|
| 283 |
|
|
{
|
| 284 |
|
|
extract_insn (insn);
|
| 285 |
|
|
|
| 286 |
|
|
if (! constrain_operands (1))
|
| 287 |
|
|
return 1;
|
| 288 |
|
|
}
|
| 289 |
|
|
|
| 290 |
|
|
INSN_CODE (insn) = icode;
|
| 291 |
|
|
return 0;
|
| 292 |
|
|
}
|
| 293 |
|
|
|
| 294 |
|
|
/* Return number of changes made and not validated yet. */
|
| 295 |
|
|
int
|
| 296 |
|
|
num_changes_pending (void)
|
| 297 |
|
|
{
|
| 298 |
|
|
return num_changes;
|
| 299 |
|
|
}
|
| 300 |
|
|
|
| 301 |
|
|
/* Tentatively apply the changes numbered NUM and up.
|
| 302 |
|
|
Return 1 if all changes are valid, zero otherwise. */
|
| 303 |
|
|
|
| 304 |
|
|
int
|
| 305 |
|
|
verify_changes (int num)
|
| 306 |
|
|
{
|
| 307 |
|
|
int i;
|
| 308 |
|
|
rtx last_validated = NULL_RTX;
|
| 309 |
|
|
|
| 310 |
|
|
/* The changes have been applied and all INSN_CODEs have been reset to force
|
| 311 |
|
|
rerecognition.
|
| 312 |
|
|
|
| 313 |
|
|
The changes are valid if we aren't given an object, or if we are
|
| 314 |
|
|
given a MEM and it still is a valid address, or if this is in insn
|
| 315 |
|
|
and it is recognized. In the latter case, if reload has completed,
|
| 316 |
|
|
we also require that the operands meet the constraints for
|
| 317 |
|
|
the insn. */
|
| 318 |
|
|
|
| 319 |
|
|
for (i = num; i < num_changes; i++)
|
| 320 |
|
|
{
|
| 321 |
|
|
rtx object = changes[i].object;
|
| 322 |
|
|
|
| 323 |
|
|
/* If there is no object to test or if it is the same as the one we
|
| 324 |
|
|
already tested, ignore it. */
|
| 325 |
|
|
if (object == 0 || object == last_validated)
|
| 326 |
|
|
continue;
|
| 327 |
|
|
|
| 328 |
|
|
if (MEM_P (object))
|
| 329 |
|
|
{
|
| 330 |
|
|
if (! memory_address_p (GET_MODE (object), XEXP (object, 0)))
|
| 331 |
|
|
break;
|
| 332 |
|
|
}
|
| 333 |
|
|
else if (insn_invalid_p (object))
|
| 334 |
|
|
{
|
| 335 |
|
|
rtx pat = PATTERN (object);
|
| 336 |
|
|
|
| 337 |
|
|
/* Perhaps we couldn't recognize the insn because there were
|
| 338 |
|
|
extra CLOBBERs at the end. If so, try to re-recognize
|
| 339 |
|
|
without the last CLOBBER (later iterations will cause each of
|
| 340 |
|
|
them to be eliminated, in turn). But don't do this if we
|
| 341 |
|
|
have an ASM_OPERAND. */
|
| 342 |
|
|
if (GET_CODE (pat) == PARALLEL
|
| 343 |
|
|
&& GET_CODE (XVECEXP (pat, 0, XVECLEN (pat, 0) - 1)) == CLOBBER
|
| 344 |
|
|
&& asm_noperands (PATTERN (object)) < 0)
|
| 345 |
|
|
{
|
| 346 |
|
|
rtx newpat;
|
| 347 |
|
|
|
| 348 |
|
|
if (XVECLEN (pat, 0) == 2)
|
| 349 |
|
|
newpat = XVECEXP (pat, 0, 0);
|
| 350 |
|
|
else
|
| 351 |
|
|
{
|
| 352 |
|
|
int j;
|
| 353 |
|
|
|
| 354 |
|
|
newpat
|
| 355 |
|
|
= gen_rtx_PARALLEL (VOIDmode,
|
| 356 |
|
|
rtvec_alloc (XVECLEN (pat, 0) - 1));
|
| 357 |
|
|
for (j = 0; j < XVECLEN (newpat, 0); j++)
|
| 358 |
|
|
XVECEXP (newpat, 0, j) = XVECEXP (pat, 0, j);
|
| 359 |
|
|
}
|
| 360 |
|
|
|
| 361 |
|
|
/* Add a new change to this group to replace the pattern
|
| 362 |
|
|
with this new pattern. Then consider this change
|
| 363 |
|
|
as having succeeded. The change we added will
|
| 364 |
|
|
cause the entire call to fail if things remain invalid.
|
| 365 |
|
|
|
| 366 |
|
|
Note that this can lose if a later change than the one
|
| 367 |
|
|
we are processing specified &XVECEXP (PATTERN (object), 0, X)
|
| 368 |
|
|
but this shouldn't occur. */
|
| 369 |
|
|
|
| 370 |
|
|
validate_change (object, &PATTERN (object), newpat, 1);
|
| 371 |
|
|
continue;
|
| 372 |
|
|
}
|
| 373 |
|
|
else if (GET_CODE (pat) == USE || GET_CODE (pat) == CLOBBER)
|
| 374 |
|
|
/* If this insn is a CLOBBER or USE, it is always valid, but is
|
| 375 |
|
|
never recognized. */
|
| 376 |
|
|
continue;
|
| 377 |
|
|
else
|
| 378 |
|
|
break;
|
| 379 |
|
|
}
|
| 380 |
|
|
last_validated = object;
|
| 381 |
|
|
}
|
| 382 |
|
|
|
| 383 |
|
|
return (i == num_changes);
|
| 384 |
|
|
}
|
| 385 |
|
|
|
| 386 |
|
|
/* A group of changes has previously been issued with validate_change and
|
| 387 |
|
|
verified with verify_changes. Update the BB_DIRTY flags of the affected
|
| 388 |
|
|
blocks, and clear num_changes. */
|
| 389 |
|
|
|
| 390 |
|
|
void
|
| 391 |
|
|
confirm_change_group (void)
|
| 392 |
|
|
{
|
| 393 |
|
|
int i;
|
| 394 |
|
|
basic_block bb;
|
| 395 |
|
|
|
| 396 |
|
|
for (i = 0; i < num_changes; i++)
|
| 397 |
|
|
if (changes[i].object
|
| 398 |
|
|
&& INSN_P (changes[i].object)
|
| 399 |
|
|
&& (bb = BLOCK_FOR_INSN (changes[i].object)))
|
| 400 |
|
|
bb->flags |= BB_DIRTY;
|
| 401 |
|
|
|
| 402 |
|
|
num_changes = 0;
|
| 403 |
|
|
}
|
| 404 |
|
|
|
| 405 |
|
|
/* Apply a group of changes previously issued with `validate_change'.
|
| 406 |
|
|
If all changes are valid, call confirm_change_group and return 1,
|
| 407 |
|
|
otherwise, call cancel_changes and return 0. */
|
| 408 |
|
|
|
| 409 |
|
|
int
|
| 410 |
|
|
apply_change_group (void)
|
| 411 |
|
|
{
|
| 412 |
|
|
if (verify_changes (0))
|
| 413 |
|
|
{
|
| 414 |
|
|
confirm_change_group ();
|
| 415 |
|
|
return 1;
|
| 416 |
|
|
}
|
| 417 |
|
|
else
|
| 418 |
|
|
{
|
| 419 |
|
|
cancel_changes (0);
|
| 420 |
|
|
return 0;
|
| 421 |
|
|
}
|
| 422 |
|
|
}
|
| 423 |
|
|
|
| 424 |
|
|
|
| 425 |
|
|
/* Return the number of changes so far in the current group. */
|
| 426 |
|
|
|
| 427 |
|
|
int
|
| 428 |
|
|
num_validated_changes (void)
|
| 429 |
|
|
{
|
| 430 |
|
|
return num_changes;
|
| 431 |
|
|
}
|
| 432 |
|
|
|
| 433 |
|
|
/* Retract the changes numbered NUM and up. */
|
| 434 |
|
|
|
| 435 |
|
|
void
|
| 436 |
|
|
cancel_changes (int num)
|
| 437 |
|
|
{
|
| 438 |
|
|
int i;
|
| 439 |
|
|
|
| 440 |
|
|
/* Back out all the changes. Do this in the opposite order in which
|
| 441 |
|
|
they were made. */
|
| 442 |
|
|
for (i = num_changes - 1; i >= num; i--)
|
| 443 |
|
|
{
|
| 444 |
|
|
*changes[i].loc = changes[i].old;
|
| 445 |
|
|
if (changes[i].object && !MEM_P (changes[i].object))
|
| 446 |
|
|
INSN_CODE (changes[i].object) = changes[i].old_code;
|
| 447 |
|
|
}
|
| 448 |
|
|
num_changes = num;
|
| 449 |
|
|
}
|
| 450 |
|
|
|
| 451 |
|
|
/* Replace every occurrence of FROM in X with TO. Mark each change with
|
| 452 |
|
|
validate_change passing OBJECT. */
|
| 453 |
|
|
|
| 454 |
|
|
static void
|
| 455 |
|
|
validate_replace_rtx_1 (rtx *loc, rtx from, rtx to, rtx object)
|
| 456 |
|
|
{
|
| 457 |
|
|
int i, j;
|
| 458 |
|
|
const char *fmt;
|
| 459 |
|
|
rtx x = *loc;
|
| 460 |
|
|
enum rtx_code code;
|
| 461 |
|
|
enum machine_mode op0_mode = VOIDmode;
|
| 462 |
|
|
int prev_changes = num_changes;
|
| 463 |
|
|
rtx new;
|
| 464 |
|
|
|
| 465 |
|
|
if (!x)
|
| 466 |
|
|
return;
|
| 467 |
|
|
|
| 468 |
|
|
code = GET_CODE (x);
|
| 469 |
|
|
fmt = GET_RTX_FORMAT (code);
|
| 470 |
|
|
if (fmt[0] == 'e')
|
| 471 |
|
|
op0_mode = GET_MODE (XEXP (x, 0));
|
| 472 |
|
|
|
| 473 |
|
|
/* X matches FROM if it is the same rtx or they are both referring to the
|
| 474 |
|
|
same register in the same mode. Avoid calling rtx_equal_p unless the
|
| 475 |
|
|
operands look similar. */
|
| 476 |
|
|
|
| 477 |
|
|
if (x == from
|
| 478 |
|
|
|| (REG_P (x) && REG_P (from)
|
| 479 |
|
|
&& GET_MODE (x) == GET_MODE (from)
|
| 480 |
|
|
&& REGNO (x) == REGNO (from))
|
| 481 |
|
|
|| (GET_CODE (x) == GET_CODE (from) && GET_MODE (x) == GET_MODE (from)
|
| 482 |
|
|
&& rtx_equal_p (x, from)))
|
| 483 |
|
|
{
|
| 484 |
|
|
validate_change (object, loc, to, 1);
|
| 485 |
|
|
return;
|
| 486 |
|
|
}
|
| 487 |
|
|
|
| 488 |
|
|
/* Call ourself recursively to perform the replacements.
|
| 489 |
|
|
We must not replace inside already replaced expression, otherwise we
|
| 490 |
|
|
get infinite recursion for replacements like (reg X)->(subreg (reg X))
|
| 491 |
|
|
done by regmove, so we must special case shared ASM_OPERANDS. */
|
| 492 |
|
|
|
| 493 |
|
|
if (GET_CODE (x) == PARALLEL)
|
| 494 |
|
|
{
|
| 495 |
|
|
for (j = XVECLEN (x, 0) - 1; j >= 0; j--)
|
| 496 |
|
|
{
|
| 497 |
|
|
if (j && GET_CODE (XVECEXP (x, 0, j)) == SET
|
| 498 |
|
|
&& GET_CODE (SET_SRC (XVECEXP (x, 0, j))) == ASM_OPERANDS)
|
| 499 |
|
|
{
|
| 500 |
|
|
/* Verify that operands are really shared. */
|
| 501 |
|
|
gcc_assert (ASM_OPERANDS_INPUT_VEC (SET_SRC (XVECEXP (x, 0, 0)))
|
| 502 |
|
|
== ASM_OPERANDS_INPUT_VEC (SET_SRC (XVECEXP
|
| 503 |
|
|
(x, 0, j))));
|
| 504 |
|
|
validate_replace_rtx_1 (&SET_DEST (XVECEXP (x, 0, j)),
|
| 505 |
|
|
from, to, object);
|
| 506 |
|
|
}
|
| 507 |
|
|
else
|
| 508 |
|
|
validate_replace_rtx_1 (&XVECEXP (x, 0, j), from, to, object);
|
| 509 |
|
|
}
|
| 510 |
|
|
}
|
| 511 |
|
|
else
|
| 512 |
|
|
for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
|
| 513 |
|
|
{
|
| 514 |
|
|
if (fmt[i] == 'e')
|
| 515 |
|
|
validate_replace_rtx_1 (&XEXP (x, i), from, to, object);
|
| 516 |
|
|
else if (fmt[i] == 'E')
|
| 517 |
|
|
for (j = XVECLEN (x, i) - 1; j >= 0; j--)
|
| 518 |
|
|
validate_replace_rtx_1 (&XVECEXP (x, i, j), from, to, object);
|
| 519 |
|
|
}
|
| 520 |
|
|
|
| 521 |
|
|
/* If we didn't substitute, there is nothing more to do. */
|
| 522 |
|
|
if (num_changes == prev_changes)
|
| 523 |
|
|
return;
|
| 524 |
|
|
|
| 525 |
|
|
/* Allow substituted expression to have different mode. This is used by
|
| 526 |
|
|
regmove to change mode of pseudo register. */
|
| 527 |
|
|
if (fmt[0] == 'e' && GET_MODE (XEXP (x, 0)) != VOIDmode)
|
| 528 |
|
|
op0_mode = GET_MODE (XEXP (x, 0));
|
| 529 |
|
|
|
| 530 |
|
|
/* Do changes needed to keep rtx consistent. Don't do any other
|
| 531 |
|
|
simplifications, as it is not our job. */
|
| 532 |
|
|
|
| 533 |
|
|
if (SWAPPABLE_OPERANDS_P (x)
|
| 534 |
|
|
&& swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
|
| 535 |
|
|
{
|
| 536 |
|
|
validate_change (object, loc,
|
| 537 |
|
|
gen_rtx_fmt_ee (COMMUTATIVE_ARITH_P (x) ? code
|
| 538 |
|
|
: swap_condition (code),
|
| 539 |
|
|
GET_MODE (x), XEXP (x, 1),
|
| 540 |
|
|
XEXP (x, 0)), 1);
|
| 541 |
|
|
x = *loc;
|
| 542 |
|
|
code = GET_CODE (x);
|
| 543 |
|
|
}
|
| 544 |
|
|
|
| 545 |
|
|
switch (code)
|
| 546 |
|
|
{
|
| 547 |
|
|
case PLUS:
|
| 548 |
|
|
/* If we have a PLUS whose second operand is now a CONST_INT, use
|
| 549 |
|
|
simplify_gen_binary to try to simplify it.
|
| 550 |
|
|
??? We may want later to remove this, once simplification is
|
| 551 |
|
|
separated from this function. */
|
| 552 |
|
|
if (GET_CODE (XEXP (x, 1)) == CONST_INT && XEXP (x, 1) == to)
|
| 553 |
|
|
validate_change (object, loc,
|
| 554 |
|
|
simplify_gen_binary
|
| 555 |
|
|
(PLUS, GET_MODE (x), XEXP (x, 0), XEXP (x, 1)), 1);
|
| 556 |
|
|
break;
|
| 557 |
|
|
case MINUS:
|
| 558 |
|
|
if (GET_CODE (XEXP (x, 1)) == CONST_INT
|
| 559 |
|
|
|| GET_CODE (XEXP (x, 1)) == CONST_DOUBLE)
|
| 560 |
|
|
validate_change (object, loc,
|
| 561 |
|
|
simplify_gen_binary
|
| 562 |
|
|
(PLUS, GET_MODE (x), XEXP (x, 0),
|
| 563 |
|
|
simplify_gen_unary (NEG,
|
| 564 |
|
|
GET_MODE (x), XEXP (x, 1),
|
| 565 |
|
|
GET_MODE (x))), 1);
|
| 566 |
|
|
break;
|
| 567 |
|
|
case ZERO_EXTEND:
|
| 568 |
|
|
case SIGN_EXTEND:
|
| 569 |
|
|
if (GET_MODE (XEXP (x, 0)) == VOIDmode)
|
| 570 |
|
|
{
|
| 571 |
|
|
new = simplify_gen_unary (code, GET_MODE (x), XEXP (x, 0),
|
| 572 |
|
|
op0_mode);
|
| 573 |
|
|
/* If any of the above failed, substitute in something that
|
| 574 |
|
|
we know won't be recognized. */
|
| 575 |
|
|
if (!new)
|
| 576 |
|
|
new = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
|
| 577 |
|
|
validate_change (object, loc, new, 1);
|
| 578 |
|
|
}
|
| 579 |
|
|
break;
|
| 580 |
|
|
case SUBREG:
|
| 581 |
|
|
/* All subregs possible to simplify should be simplified. */
|
| 582 |
|
|
new = simplify_subreg (GET_MODE (x), SUBREG_REG (x), op0_mode,
|
| 583 |
|
|
SUBREG_BYTE (x));
|
| 584 |
|
|
|
| 585 |
|
|
/* Subregs of VOIDmode operands are incorrect. */
|
| 586 |
|
|
if (!new && GET_MODE (SUBREG_REG (x)) == VOIDmode)
|
| 587 |
|
|
new = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
|
| 588 |
|
|
if (new)
|
| 589 |
|
|
validate_change (object, loc, new, 1);
|
| 590 |
|
|
break;
|
| 591 |
|
|
case ZERO_EXTRACT:
|
| 592 |
|
|
case SIGN_EXTRACT:
|
| 593 |
|
|
/* If we are replacing a register with memory, try to change the memory
|
| 594 |
|
|
to be the mode required for memory in extract operations (this isn't
|
| 595 |
|
|
likely to be an insertion operation; if it was, nothing bad will
|
| 596 |
|
|
happen, we might just fail in some cases). */
|
| 597 |
|
|
|
| 598 |
|
|
if (MEM_P (XEXP (x, 0))
|
| 599 |
|
|
&& GET_CODE (XEXP (x, 1)) == CONST_INT
|
| 600 |
|
|
&& GET_CODE (XEXP (x, 2)) == CONST_INT
|
| 601 |
|
|
&& !mode_dependent_address_p (XEXP (XEXP (x, 0), 0))
|
| 602 |
|
|
&& !MEM_VOLATILE_P (XEXP (x, 0)))
|
| 603 |
|
|
{
|
| 604 |
|
|
enum machine_mode wanted_mode = VOIDmode;
|
| 605 |
|
|
enum machine_mode is_mode = GET_MODE (XEXP (x, 0));
|
| 606 |
|
|
int pos = INTVAL (XEXP (x, 2));
|
| 607 |
|
|
|
| 608 |
|
|
if (GET_CODE (x) == ZERO_EXTRACT)
|
| 609 |
|
|
{
|
| 610 |
|
|
enum machine_mode new_mode
|
| 611 |
|
|
= mode_for_extraction (EP_extzv, 1);
|
| 612 |
|
|
if (new_mode != MAX_MACHINE_MODE)
|
| 613 |
|
|
wanted_mode = new_mode;
|
| 614 |
|
|
}
|
| 615 |
|
|
else if (GET_CODE (x) == SIGN_EXTRACT)
|
| 616 |
|
|
{
|
| 617 |
|
|
enum machine_mode new_mode
|
| 618 |
|
|
= mode_for_extraction (EP_extv, 1);
|
| 619 |
|
|
if (new_mode != MAX_MACHINE_MODE)
|
| 620 |
|
|
wanted_mode = new_mode;
|
| 621 |
|
|
}
|
| 622 |
|
|
|
| 623 |
|
|
/* If we have a narrower mode, we can do something. */
|
| 624 |
|
|
if (wanted_mode != VOIDmode
|
| 625 |
|
|
&& GET_MODE_SIZE (wanted_mode) < GET_MODE_SIZE (is_mode))
|
| 626 |
|
|
{
|
| 627 |
|
|
int offset = pos / BITS_PER_UNIT;
|
| 628 |
|
|
rtx newmem;
|
| 629 |
|
|
|
| 630 |
|
|
/* If the bytes and bits are counted differently, we
|
| 631 |
|
|
must adjust the offset. */
|
| 632 |
|
|
if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN)
|
| 633 |
|
|
offset =
|
| 634 |
|
|
(GET_MODE_SIZE (is_mode) - GET_MODE_SIZE (wanted_mode) -
|
| 635 |
|
|
offset);
|
| 636 |
|
|
|
| 637 |
|
|
pos %= GET_MODE_BITSIZE (wanted_mode);
|
| 638 |
|
|
|
| 639 |
|
|
newmem = adjust_address_nv (XEXP (x, 0), wanted_mode, offset);
|
| 640 |
|
|
|
| 641 |
|
|
validate_change (object, &XEXP (x, 2), GEN_INT (pos), 1);
|
| 642 |
|
|
validate_change (object, &XEXP (x, 0), newmem, 1);
|
| 643 |
|
|
}
|
| 644 |
|
|
}
|
| 645 |
|
|
|
| 646 |
|
|
break;
|
| 647 |
|
|
|
| 648 |
|
|
default:
|
| 649 |
|
|
break;
|
| 650 |
|
|
}
|
| 651 |
|
|
}
|
| 652 |
|
|
|
| 653 |
|
|
/* Try replacing every occurrence of FROM in INSN with TO. After all
|
| 654 |
|
|
changes have been made, validate by seeing if INSN is still valid. */
|
| 655 |
|
|
|
| 656 |
|
|
int
|
| 657 |
|
|
validate_replace_rtx (rtx from, rtx to, rtx insn)
|
| 658 |
|
|
{
|
| 659 |
|
|
validate_replace_rtx_1 (&PATTERN (insn), from, to, insn);
|
| 660 |
|
|
return apply_change_group ();
|
| 661 |
|
|
}
|
| 662 |
|
|
|
| 663 |
|
|
/* Try replacing every occurrence of FROM in INSN with TO. */
|
| 664 |
|
|
|
| 665 |
|
|
void
|
| 666 |
|
|
validate_replace_rtx_group (rtx from, rtx to, rtx insn)
|
| 667 |
|
|
{
|
| 668 |
|
|
validate_replace_rtx_1 (&PATTERN (insn), from, to, insn);
|
| 669 |
|
|
}
|
| 670 |
|
|
|
| 671 |
|
|
/* Function called by note_uses to replace used subexpressions. */
|
| 672 |
|
|
struct validate_replace_src_data
|
| 673 |
|
|
{
|
| 674 |
|
|
rtx from; /* Old RTX */
|
| 675 |
|
|
rtx to; /* New RTX */
|
| 676 |
|
|
rtx insn; /* Insn in which substitution is occurring. */
|
| 677 |
|
|
};
|
| 678 |
|
|
|
| 679 |
|
|
static void
|
| 680 |
|
|
validate_replace_src_1 (rtx *x, void *data)
|
| 681 |
|
|
{
|
| 682 |
|
|
struct validate_replace_src_data *d
|
| 683 |
|
|
= (struct validate_replace_src_data *) data;
|
| 684 |
|
|
|
| 685 |
|
|
validate_replace_rtx_1 (x, d->from, d->to, d->insn);
|
| 686 |
|
|
}
|
| 687 |
|
|
|
| 688 |
|
|
/* Try replacing every occurrence of FROM in INSN with TO, avoiding
|
| 689 |
|
|
SET_DESTs. */
|
| 690 |
|
|
|
| 691 |
|
|
void
|
| 692 |
|
|
validate_replace_src_group (rtx from, rtx to, rtx insn)
|
| 693 |
|
|
{
|
| 694 |
|
|
struct validate_replace_src_data d;
|
| 695 |
|
|
|
| 696 |
|
|
d.from = from;
|
| 697 |
|
|
d.to = to;
|
| 698 |
|
|
d.insn = insn;
|
| 699 |
|
|
note_uses (&PATTERN (insn), validate_replace_src_1, &d);
|
| 700 |
|
|
}
|
| 701 |
|
|
|
| 702 |
|
|
/* Try simplify INSN.
|
| 703 |
|
|
Invoke simplify_rtx () on every SET_SRC and SET_DEST inside the INSN's
|
| 704 |
|
|
pattern and return true if something was simplified. */
|
| 705 |
|
|
|
| 706 |
|
|
bool
|
| 707 |
|
|
validate_simplify_insn (rtx insn)
|
| 708 |
|
|
{
|
| 709 |
|
|
int i;
|
| 710 |
|
|
rtx pat = NULL;
|
| 711 |
|
|
rtx newpat = NULL;
|
| 712 |
|
|
|
| 713 |
|
|
pat = PATTERN (insn);
|
| 714 |
|
|
|
| 715 |
|
|
if (GET_CODE (pat) == SET)
|
| 716 |
|
|
{
|
| 717 |
|
|
newpat = simplify_rtx (SET_SRC (pat));
|
| 718 |
|
|
if (newpat && !rtx_equal_p (SET_SRC (pat), newpat))
|
| 719 |
|
|
validate_change (insn, &SET_SRC (pat), newpat, 1);
|
| 720 |
|
|
newpat = simplify_rtx (SET_DEST (pat));
|
| 721 |
|
|
if (newpat && !rtx_equal_p (SET_DEST (pat), newpat))
|
| 722 |
|
|
validate_change (insn, &SET_DEST (pat), newpat, 1);
|
| 723 |
|
|
}
|
| 724 |
|
|
else if (GET_CODE (pat) == PARALLEL)
|
| 725 |
|
|
for (i = 0; i < XVECLEN (pat, 0); i++)
|
| 726 |
|
|
{
|
| 727 |
|
|
rtx s = XVECEXP (pat, 0, i);
|
| 728 |
|
|
|
| 729 |
|
|
if (GET_CODE (XVECEXP (pat, 0, i)) == SET)
|
| 730 |
|
|
{
|
| 731 |
|
|
newpat = simplify_rtx (SET_SRC (s));
|
| 732 |
|
|
if (newpat && !rtx_equal_p (SET_SRC (s), newpat))
|
| 733 |
|
|
validate_change (insn, &SET_SRC (s), newpat, 1);
|
| 734 |
|
|
newpat = simplify_rtx (SET_DEST (s));
|
| 735 |
|
|
if (newpat && !rtx_equal_p (SET_DEST (s), newpat))
|
| 736 |
|
|
validate_change (insn, &SET_DEST (s), newpat, 1);
|
| 737 |
|
|
}
|
| 738 |
|
|
}
|
| 739 |
|
|
return ((num_changes_pending () > 0) && (apply_change_group () > 0));
|
| 740 |
|
|
}
|
| 741 |
|
|
|
| 742 |
|
|
#ifdef HAVE_cc0
|
| 743 |
|
|
/* Return 1 if the insn using CC0 set by INSN does not contain
|
| 744 |
|
|
any ordered tests applied to the condition codes.
|
| 745 |
|
|
EQ and NE tests do not count. */
|
| 746 |
|
|
|
| 747 |
|
|
int
|
| 748 |
|
|
next_insn_tests_no_inequality (rtx insn)
|
| 749 |
|
|
{
|
| 750 |
|
|
rtx next = next_cc0_user (insn);
|
| 751 |
|
|
|
| 752 |
|
|
/* If there is no next insn, we have to take the conservative choice. */
|
| 753 |
|
|
if (next == 0)
|
| 754 |
|
|
return 0;
|
| 755 |
|
|
|
| 756 |
|
|
return (INSN_P (next)
|
| 757 |
|
|
&& ! inequality_comparisons_p (PATTERN (next)));
|
| 758 |
|
|
}
|
| 759 |
|
|
#endif
|
| 760 |
|
|
|
| 761 |
|
|
/* This is used by find_single_use to locate an rtx that contains exactly one
|
| 762 |
|
|
use of DEST, which is typically either a REG or CC0. It returns a
|
| 763 |
|
|
pointer to the innermost rtx expression containing DEST. Appearances of
|
| 764 |
|
|
DEST that are being used to totally replace it are not counted. */
|
| 765 |
|
|
|
| 766 |
|
|
static rtx *
|
| 767 |
|
|
find_single_use_1 (rtx dest, rtx *loc)
|
| 768 |
|
|
{
|
| 769 |
|
|
rtx x = *loc;
|
| 770 |
|
|
enum rtx_code code = GET_CODE (x);
|
| 771 |
|
|
rtx *result = 0;
|
| 772 |
|
|
rtx *this_result;
|
| 773 |
|
|
int i;
|
| 774 |
|
|
const char *fmt;
|
| 775 |
|
|
|
| 776 |
|
|
switch (code)
|
| 777 |
|
|
{
|
| 778 |
|
|
case CONST_INT:
|
| 779 |
|
|
case CONST:
|
| 780 |
|
|
case LABEL_REF:
|
| 781 |
|
|
case SYMBOL_REF:
|
| 782 |
|
|
case CONST_DOUBLE:
|
| 783 |
|
|
case CONST_VECTOR:
|
| 784 |
|
|
case CLOBBER:
|
| 785 |
|
|
return 0;
|
| 786 |
|
|
|
| 787 |
|
|
case SET:
|
| 788 |
|
|
/* If the destination is anything other than CC0, PC, a REG or a SUBREG
|
| 789 |
|
|
of a REG that occupies all of the REG, the insn uses DEST if
|
| 790 |
|
|
it is mentioned in the destination or the source. Otherwise, we
|
| 791 |
|
|
need just check the source. */
|
| 792 |
|
|
if (GET_CODE (SET_DEST (x)) != CC0
|
| 793 |
|
|
&& GET_CODE (SET_DEST (x)) != PC
|
| 794 |
|
|
&& !REG_P (SET_DEST (x))
|
| 795 |
|
|
&& ! (GET_CODE (SET_DEST (x)) == SUBREG
|
| 796 |
|
|
&& REG_P (SUBREG_REG (SET_DEST (x)))
|
| 797 |
|
|
&& (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (x))))
|
| 798 |
|
|
+ (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
|
| 799 |
|
|
== ((GET_MODE_SIZE (GET_MODE (SET_DEST (x)))
|
| 800 |
|
|
+ (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))))
|
| 801 |
|
|
break;
|
| 802 |
|
|
|
| 803 |
|
|
return find_single_use_1 (dest, &SET_SRC (x));
|
| 804 |
|
|
|
| 805 |
|
|
case MEM:
|
| 806 |
|
|
case SUBREG:
|
| 807 |
|
|
return find_single_use_1 (dest, &XEXP (x, 0));
|
| 808 |
|
|
|
| 809 |
|
|
default:
|
| 810 |
|
|
break;
|
| 811 |
|
|
}
|
| 812 |
|
|
|
| 813 |
|
|
/* If it wasn't one of the common cases above, check each expression and
|
| 814 |
|
|
vector of this code. Look for a unique usage of DEST. */
|
| 815 |
|
|
|
| 816 |
|
|
fmt = GET_RTX_FORMAT (code);
|
| 817 |
|
|
for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
|
| 818 |
|
|
{
|
| 819 |
|
|
if (fmt[i] == 'e')
|
| 820 |
|
|
{
|
| 821 |
|
|
if (dest == XEXP (x, i)
|
| 822 |
|
|
|| (REG_P (dest) && REG_P (XEXP (x, i))
|
| 823 |
|
|
&& REGNO (dest) == REGNO (XEXP (x, i))))
|
| 824 |
|
|
this_result = loc;
|
| 825 |
|
|
else
|
| 826 |
|
|
this_result = find_single_use_1 (dest, &XEXP (x, i));
|
| 827 |
|
|
|
| 828 |
|
|
if (result == 0)
|
| 829 |
|
|
result = this_result;
|
| 830 |
|
|
else if (this_result)
|
| 831 |
|
|
/* Duplicate usage. */
|
| 832 |
|
|
return 0;
|
| 833 |
|
|
}
|
| 834 |
|
|
else if (fmt[i] == 'E')
|
| 835 |
|
|
{
|
| 836 |
|
|
int j;
|
| 837 |
|
|
|
| 838 |
|
|
for (j = XVECLEN (x, i) - 1; j >= 0; j--)
|
| 839 |
|
|
{
|
| 840 |
|
|
if (XVECEXP (x, i, j) == dest
|
| 841 |
|
|
|| (REG_P (dest)
|
| 842 |
|
|
&& REG_P (XVECEXP (x, i, j))
|
| 843 |
|
|
&& REGNO (XVECEXP (x, i, j)) == REGNO (dest)))
|
| 844 |
|
|
this_result = loc;
|
| 845 |
|
|
else
|
| 846 |
|
|
this_result = find_single_use_1 (dest, &XVECEXP (x, i, j));
|
| 847 |
|
|
|
| 848 |
|
|
if (result == 0)
|
| 849 |
|
|
result = this_result;
|
| 850 |
|
|
else if (this_result)
|
| 851 |
|
|
return 0;
|
| 852 |
|
|
}
|
| 853 |
|
|
}
|
| 854 |
|
|
}
|
| 855 |
|
|
|
| 856 |
|
|
return result;
|
| 857 |
|
|
}
|
| 858 |
|
|
|
| 859 |
|
|
/* See if DEST, produced in INSN, is used only a single time in the
|
| 860 |
|
|
sequel. If so, return a pointer to the innermost rtx expression in which
|
| 861 |
|
|
it is used.
|
| 862 |
|
|
|
| 863 |
|
|
If PLOC is nonzero, *PLOC is set to the insn containing the single use.
|
| 864 |
|
|
|
| 865 |
|
|
This routine will return usually zero either before flow is called (because
|
| 866 |
|
|
there will be no LOG_LINKS notes) or after reload (because the REG_DEAD
|
| 867 |
|
|
note can't be trusted).
|
| 868 |
|
|
|
| 869 |
|
|
If DEST is cc0_rtx, we look only at the next insn. In that case, we don't
|
| 870 |
|
|
care about REG_DEAD notes or LOG_LINKS.
|
| 871 |
|
|
|
| 872 |
|
|
Otherwise, we find the single use by finding an insn that has a
|
| 873 |
|
|
LOG_LINKS pointing at INSN and has a REG_DEAD note for DEST. If DEST is
|
| 874 |
|
|
only referenced once in that insn, we know that it must be the first
|
| 875 |
|
|
and last insn referencing DEST. */
|
| 876 |
|
|
|
| 877 |
|
|
rtx *
|
| 878 |
|
|
find_single_use (rtx dest, rtx insn, rtx *ploc)
|
| 879 |
|
|
{
|
| 880 |
|
|
rtx next;
|
| 881 |
|
|
rtx *result;
|
| 882 |
|
|
rtx link;
|
| 883 |
|
|
|
| 884 |
|
|
#ifdef HAVE_cc0
|
| 885 |
|
|
if (dest == cc0_rtx)
|
| 886 |
|
|
{
|
| 887 |
|
|
next = NEXT_INSN (insn);
|
| 888 |
|
|
if (next == 0
|
| 889 |
|
|
|| (!NONJUMP_INSN_P (next) && !JUMP_P (next)))
|
| 890 |
|
|
return 0;
|
| 891 |
|
|
|
| 892 |
|
|
result = find_single_use_1 (dest, &PATTERN (next));
|
| 893 |
|
|
if (result && ploc)
|
| 894 |
|
|
*ploc = next;
|
| 895 |
|
|
return result;
|
| 896 |
|
|
}
|
| 897 |
|
|
#endif
|
| 898 |
|
|
|
| 899 |
|
|
if (reload_completed || reload_in_progress || !REG_P (dest))
|
| 900 |
|
|
return 0;
|
| 901 |
|
|
|
| 902 |
|
|
for (next = next_nonnote_insn (insn);
|
| 903 |
|
|
next != 0 && !LABEL_P (next);
|
| 904 |
|
|
next = next_nonnote_insn (next))
|
| 905 |
|
|
if (INSN_P (next) && dead_or_set_p (next, dest))
|
| 906 |
|
|
{
|
| 907 |
|
|
for (link = LOG_LINKS (next); link; link = XEXP (link, 1))
|
| 908 |
|
|
if (XEXP (link, 0) == insn)
|
| 909 |
|
|
break;
|
| 910 |
|
|
|
| 911 |
|
|
if (link)
|
| 912 |
|
|
{
|
| 913 |
|
|
result = find_single_use_1 (dest, &PATTERN (next));
|
| 914 |
|
|
if (ploc)
|
| 915 |
|
|
*ploc = next;
|
| 916 |
|
|
return result;
|
| 917 |
|
|
}
|
| 918 |
|
|
}
|
| 919 |
|
|
|
| 920 |
|
|
return 0;
|
| 921 |
|
|
}
|
| 922 |
|
|
|
| 923 |
|
|
/* Return 1 if OP is a valid general operand for machine mode MODE.
|
| 924 |
|
|
This is either a register reference, a memory reference,
|
| 925 |
|
|
or a constant. In the case of a memory reference, the address
|
| 926 |
|
|
is checked for general validity for the target machine.
|
| 927 |
|
|
|
| 928 |
|
|
Register and memory references must have mode MODE in order to be valid,
|
| 929 |
|
|
but some constants have no machine mode and are valid for any mode.
|
| 930 |
|
|
|
| 931 |
|
|
If MODE is VOIDmode, OP is checked for validity for whatever mode
|
| 932 |
|
|
it has.
|
| 933 |
|
|
|
| 934 |
|
|
The main use of this function is as a predicate in match_operand
|
| 935 |
|
|
expressions in the machine description.
|
| 936 |
|
|
|
| 937 |
|
|
For an explanation of this function's behavior for registers of
|
| 938 |
|
|
class NO_REGS, see the comment for `register_operand'. */
|
| 939 |
|
|
|
| 940 |
|
|
int
|
| 941 |
|
|
general_operand (rtx op, enum machine_mode mode)
|
| 942 |
|
|
{
|
| 943 |
|
|
enum rtx_code code = GET_CODE (op);
|
| 944 |
|
|
|
| 945 |
|
|
if (mode == VOIDmode)
|
| 946 |
|
|
mode = GET_MODE (op);
|
| 947 |
|
|
|
| 948 |
|
|
/* Don't accept CONST_INT or anything similar
|
| 949 |
|
|
if the caller wants something floating. */
|
| 950 |
|
|
if (GET_MODE (op) == VOIDmode && mode != VOIDmode
|
| 951 |
|
|
&& GET_MODE_CLASS (mode) != MODE_INT
|
| 952 |
|
|
&& GET_MODE_CLASS (mode) != MODE_PARTIAL_INT)
|
| 953 |
|
|
return 0;
|
| 954 |
|
|
|
| 955 |
|
|
if (GET_CODE (op) == CONST_INT
|
| 956 |
|
|
&& mode != VOIDmode
|
| 957 |
|
|
&& trunc_int_for_mode (INTVAL (op), mode) != INTVAL (op))
|
| 958 |
|
|
return 0;
|
| 959 |
|
|
|
| 960 |
|
|
if (CONSTANT_P (op))
|
| 961 |
|
|
return ((GET_MODE (op) == VOIDmode || GET_MODE (op) == mode
|
| 962 |
|
|
|| mode == VOIDmode)
|
| 963 |
|
|
&& (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op))
|
| 964 |
|
|
&& LEGITIMATE_CONSTANT_P (op));
|
| 965 |
|
|
|
| 966 |
|
|
/* Except for certain constants with VOIDmode, already checked for,
|
| 967 |
|
|
OP's mode must match MODE if MODE specifies a mode. */
|
| 968 |
|
|
|
| 969 |
|
|
if (GET_MODE (op) != mode)
|
| 970 |
|
|
return 0;
|
| 971 |
|
|
|
| 972 |
|
|
if (code == SUBREG)
|
| 973 |
|
|
{
|
| 974 |
|
|
rtx sub = SUBREG_REG (op);
|
| 975 |
|
|
|
| 976 |
|
|
#ifdef INSN_SCHEDULING
|
| 977 |
|
|
/* On machines that have insn scheduling, we want all memory
|
| 978 |
|
|
reference to be explicit, so outlaw paradoxical SUBREGs.
|
| 979 |
|
|
However, we must allow them after reload so that they can
|
| 980 |
|
|
get cleaned up by cleanup_subreg_operands. */
|
| 981 |
|
|
if (!reload_completed && MEM_P (sub)
|
| 982 |
|
|
&& GET_MODE_SIZE (mode) > GET_MODE_SIZE (GET_MODE (sub)))
|
| 983 |
|
|
return 0;
|
| 984 |
|
|
#endif
|
| 985 |
|
|
/* Avoid memories with nonzero SUBREG_BYTE, as offsetting the memory
|
| 986 |
|
|
may result in incorrect reference. We should simplify all valid
|
| 987 |
|
|
subregs of MEM anyway. But allow this after reload because we
|
| 988 |
|
|
might be called from cleanup_subreg_operands.
|
| 989 |
|
|
|
| 990 |
|
|
??? This is a kludge. */
|
| 991 |
|
|
if (!reload_completed && SUBREG_BYTE (op) != 0
|
| 992 |
|
|
&& MEM_P (sub))
|
| 993 |
|
|
return 0;
|
| 994 |
|
|
|
| 995 |
|
|
/* FLOAT_MODE subregs can't be paradoxical. Combine will occasionally
|
| 996 |
|
|
create such rtl, and we must reject it. */
|
| 997 |
|
|
if (SCALAR_FLOAT_MODE_P (GET_MODE (op))
|
| 998 |
|
|
&& GET_MODE_SIZE (GET_MODE (op)) > GET_MODE_SIZE (GET_MODE (sub)))
|
| 999 |
|
|
return 0;
|
| 1000 |
|
|
|
| 1001 |
|
|
op = sub;
|
| 1002 |
|
|
code = GET_CODE (op);
|
| 1003 |
|
|
}
|
| 1004 |
|
|
|
| 1005 |
|
|
if (code == REG)
|
| 1006 |
|
|
/* A register whose class is NO_REGS is not a general operand. */
|
| 1007 |
|
|
return (REGNO (op) >= FIRST_PSEUDO_REGISTER
|
| 1008 |
|
|
|| REGNO_REG_CLASS (REGNO (op)) != NO_REGS);
|
| 1009 |
|
|
|
| 1010 |
|
|
if (code == MEM)
|
| 1011 |
|
|
{
|
| 1012 |
|
|
rtx y = XEXP (op, 0);
|
| 1013 |
|
|
|
| 1014 |
|
|
if (! volatile_ok && MEM_VOLATILE_P (op))
|
| 1015 |
|
|
return 0;
|
| 1016 |
|
|
|
| 1017 |
|
|
/* Use the mem's mode, since it will be reloaded thus. */
|
| 1018 |
|
|
if (memory_address_p (GET_MODE (op), y))
|
| 1019 |
|
|
return 1;
|
| 1020 |
|
|
}
|
| 1021 |
|
|
|
| 1022 |
|
|
return 0;
|
| 1023 |
|
|
}
|
| 1024 |
|
|
|
| 1025 |
|
|
/* Return 1 if OP is a valid memory address for a memory reference
|
| 1026 |
|
|
of mode MODE.
|
| 1027 |
|
|
|
| 1028 |
|
|
The main use of this function is as a predicate in match_operand
|
| 1029 |
|
|
expressions in the machine description. */
|
| 1030 |
|
|
|
| 1031 |
|
|
int
|
| 1032 |
|
|
address_operand (rtx op, enum machine_mode mode)
|
| 1033 |
|
|
{
|
| 1034 |
|
|
return memory_address_p (mode, op);
|
| 1035 |
|
|
}
|
| 1036 |
|
|
|
| 1037 |
|
|
/* Return 1 if OP is a register reference of mode MODE.
|
| 1038 |
|
|
If MODE is VOIDmode, accept a register in any mode.
|
| 1039 |
|
|
|
| 1040 |
|
|
The main use of this function is as a predicate in match_operand
|
| 1041 |
|
|
expressions in the machine description.
|
| 1042 |
|
|
|
| 1043 |
|
|
As a special exception, registers whose class is NO_REGS are
|
| 1044 |
|
|
not accepted by `register_operand'. The reason for this change
|
| 1045 |
|
|
is to allow the representation of special architecture artifacts
|
| 1046 |
|
|
(such as a condition code register) without extending the rtl
|
| 1047 |
|
|
definitions. Since registers of class NO_REGS cannot be used
|
| 1048 |
|
|
as registers in any case where register classes are examined,
|
| 1049 |
|
|
it is most consistent to keep this function from accepting them. */
|
| 1050 |
|
|
|
| 1051 |
|
|
int
|
| 1052 |
|
|
register_operand (rtx op, enum machine_mode mode)
|
| 1053 |
|
|
{
|
| 1054 |
|
|
if (GET_MODE (op) != mode && mode != VOIDmode)
|
| 1055 |
|
|
return 0;
|
| 1056 |
|
|
|
| 1057 |
|
|
if (GET_CODE (op) == SUBREG)
|
| 1058 |
|
|
{
|
| 1059 |
|
|
rtx sub = SUBREG_REG (op);
|
| 1060 |
|
|
|
| 1061 |
|
|
/* Before reload, we can allow (SUBREG (MEM...)) as a register operand
|
| 1062 |
|
|
because it is guaranteed to be reloaded into one.
|
| 1063 |
|
|
Just make sure the MEM is valid in itself.
|
| 1064 |
|
|
(Ideally, (SUBREG (MEM)...) should not exist after reload,
|
| 1065 |
|
|
but currently it does result from (SUBREG (REG)...) where the
|
| 1066 |
|
|
reg went on the stack.) */
|
| 1067 |
|
|
if (! reload_completed && MEM_P (sub))
|
| 1068 |
|
|
return general_operand (op, mode);
|
| 1069 |
|
|
|
| 1070 |
|
|
#ifdef CANNOT_CHANGE_MODE_CLASS
|
| 1071 |
|
|
if (REG_P (sub)
|
| 1072 |
|
|
&& REGNO (sub) < FIRST_PSEUDO_REGISTER
|
| 1073 |
|
|
&& REG_CANNOT_CHANGE_MODE_P (REGNO (sub), GET_MODE (sub), mode)
|
| 1074 |
|
|
&& GET_MODE_CLASS (GET_MODE (sub)) != MODE_COMPLEX_INT
|
| 1075 |
|
|
&& GET_MODE_CLASS (GET_MODE (sub)) != MODE_COMPLEX_FLOAT)
|
| 1076 |
|
|
return 0;
|
| 1077 |
|
|
#endif
|
| 1078 |
|
|
|
| 1079 |
|
|
/* FLOAT_MODE subregs can't be paradoxical. Combine will occasionally
|
| 1080 |
|
|
create such rtl, and we must reject it. */
|
| 1081 |
|
|
if (SCALAR_FLOAT_MODE_P (GET_MODE (op))
|
| 1082 |
|
|
&& GET_MODE_SIZE (GET_MODE (op)) > GET_MODE_SIZE (GET_MODE (sub)))
|
| 1083 |
|
|
return 0;
|
| 1084 |
|
|
|
| 1085 |
|
|
op = sub;
|
| 1086 |
|
|
}
|
| 1087 |
|
|
|
| 1088 |
|
|
/* We don't consider registers whose class is NO_REGS
|
| 1089 |
|
|
to be a register operand. */
|
| 1090 |
|
|
return (REG_P (op)
|
| 1091 |
|
|
&& (REGNO (op) >= FIRST_PSEUDO_REGISTER
|
| 1092 |
|
|
|| REGNO_REG_CLASS (REGNO (op)) != NO_REGS));
|
| 1093 |
|
|
}
|
| 1094 |
|
|
|
| 1095 |
|
|
/* Return 1 for a register in Pmode; ignore the tested mode. */
|
| 1096 |
|
|
|
| 1097 |
|
|
int
|
| 1098 |
|
|
pmode_register_operand (rtx op, enum machine_mode mode ATTRIBUTE_UNUSED)
|
| 1099 |
|
|
{
|
| 1100 |
|
|
return register_operand (op, Pmode);
|
| 1101 |
|
|
}
|
| 1102 |
|
|
|
| 1103 |
|
|
/* Return 1 if OP should match a MATCH_SCRATCH, i.e., if it is a SCRATCH
|
| 1104 |
|
|
or a hard register. */
|
| 1105 |
|
|
|
| 1106 |
|
|
int
|
| 1107 |
|
|
scratch_operand (rtx op, enum machine_mode mode)
|
| 1108 |
|
|
{
|
| 1109 |
|
|
if (GET_MODE (op) != mode && mode != VOIDmode)
|
| 1110 |
|
|
return 0;
|
| 1111 |
|
|
|
| 1112 |
|
|
return (GET_CODE (op) == SCRATCH
|
| 1113 |
|
|
|| (REG_P (op)
|
| 1114 |
|
|
&& REGNO (op) < FIRST_PSEUDO_REGISTER));
|
| 1115 |
|
|
}
|
| 1116 |
|
|
|
| 1117 |
|
|
/* Return 1 if OP is a valid immediate operand for mode MODE.
|
| 1118 |
|
|
|
| 1119 |
|
|
The main use of this function is as a predicate in match_operand
|
| 1120 |
|
|
expressions in the machine description. */
|
| 1121 |
|
|
|
| 1122 |
|
|
int
|
| 1123 |
|
|
immediate_operand (rtx op, enum machine_mode mode)
|
| 1124 |
|
|
{
|
| 1125 |
|
|
/* Don't accept CONST_INT or anything similar
|
| 1126 |
|
|
if the caller wants something floating. */
|
| 1127 |
|
|
if (GET_MODE (op) == VOIDmode && mode != VOIDmode
|
| 1128 |
|
|
&& GET_MODE_CLASS (mode) != MODE_INT
|
| 1129 |
|
|
&& GET_MODE_CLASS (mode) != MODE_PARTIAL_INT)
|
| 1130 |
|
|
return 0;
|
| 1131 |
|
|
|
| 1132 |
|
|
if (GET_CODE (op) == CONST_INT
|
| 1133 |
|
|
&& mode != VOIDmode
|
| 1134 |
|
|
&& trunc_int_for_mode (INTVAL (op), mode) != INTVAL (op))
|
| 1135 |
|
|
return 0;
|
| 1136 |
|
|
|
| 1137 |
|
|
return (CONSTANT_P (op)
|
| 1138 |
|
|
&& (GET_MODE (op) == mode || mode == VOIDmode
|
| 1139 |
|
|
|| GET_MODE (op) == VOIDmode)
|
| 1140 |
|
|
&& (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op))
|
| 1141 |
|
|
&& LEGITIMATE_CONSTANT_P (op));
|
| 1142 |
|
|
}
|
| 1143 |
|
|
|
| 1144 |
|
|
/* Returns 1 if OP is an operand that is a CONST_INT. */
|
| 1145 |
|
|
|
| 1146 |
|
|
int
|
| 1147 |
|
|
const_int_operand (rtx op, enum machine_mode mode)
|
| 1148 |
|
|
{
|
| 1149 |
|
|
if (GET_CODE (op) != CONST_INT)
|
| 1150 |
|
|
return 0;
|
| 1151 |
|
|
|
| 1152 |
|
|
if (mode != VOIDmode
|
| 1153 |
|
|
&& trunc_int_for_mode (INTVAL (op), mode) != INTVAL (op))
|
| 1154 |
|
|
return 0;
|
| 1155 |
|
|
|
| 1156 |
|
|
return 1;
|
| 1157 |
|
|
}
|
| 1158 |
|
|
|
| 1159 |
|
|
/* Returns 1 if OP is an operand that is a constant integer or constant
|
| 1160 |
|
|
floating-point number. */
|
| 1161 |
|
|
|
| 1162 |
|
|
int
|
| 1163 |
|
|
const_double_operand (rtx op, enum machine_mode mode)
|
| 1164 |
|
|
{
|
| 1165 |
|
|
/* Don't accept CONST_INT or anything similar
|
| 1166 |
|
|
if the caller wants something floating. */
|
| 1167 |
|
|
if (GET_MODE (op) == VOIDmode && mode != VOIDmode
|
| 1168 |
|
|
&& GET_MODE_CLASS (mode) != MODE_INT
|
| 1169 |
|
|
&& GET_MODE_CLASS (mode) != MODE_PARTIAL_INT)
|
| 1170 |
|
|
return 0;
|
| 1171 |
|
|
|
| 1172 |
|
|
return ((GET_CODE (op) == CONST_DOUBLE || GET_CODE (op) == CONST_INT)
|
| 1173 |
|
|
&& (mode == VOIDmode || GET_MODE (op) == mode
|
| 1174 |
|
|
|| GET_MODE (op) == VOIDmode));
|
| 1175 |
|
|
}
|
| 1176 |
|
|
|
| 1177 |
|
|
/* Return 1 if OP is a general operand that is not an immediate operand. */
|
| 1178 |
|
|
|
| 1179 |
|
|
int
|
| 1180 |
|
|
nonimmediate_operand (rtx op, enum machine_mode mode)
|
| 1181 |
|
|
{
|
| 1182 |
|
|
return (general_operand (op, mode) && ! CONSTANT_P (op));
|
| 1183 |
|
|
}
|
| 1184 |
|
|
|
| 1185 |
|
|
/* Return 1 if OP is a register reference or immediate value of mode MODE. */
|
| 1186 |
|
|
|
| 1187 |
|
|
int
|
| 1188 |
|
|
nonmemory_operand (rtx op, enum machine_mode mode)
|
| 1189 |
|
|
{
|
| 1190 |
|
|
if (CONSTANT_P (op))
|
| 1191 |
|
|
{
|
| 1192 |
|
|
/* Don't accept CONST_INT or anything similar
|
| 1193 |
|
|
if the caller wants something floating. */
|
| 1194 |
|
|
if (GET_MODE (op) == VOIDmode && mode != VOIDmode
|
| 1195 |
|
|
&& GET_MODE_CLASS (mode) != MODE_INT
|
| 1196 |
|
|
&& GET_MODE_CLASS (mode) != MODE_PARTIAL_INT)
|
| 1197 |
|
|
return 0;
|
| 1198 |
|
|
|
| 1199 |
|
|
if (GET_CODE (op) == CONST_INT
|
| 1200 |
|
|
&& mode != VOIDmode
|
| 1201 |
|
|
&& trunc_int_for_mode (INTVAL (op), mode) != INTVAL (op))
|
| 1202 |
|
|
return 0;
|
| 1203 |
|
|
|
| 1204 |
|
|
return ((GET_MODE (op) == VOIDmode || GET_MODE (op) == mode
|
| 1205 |
|
|
|| mode == VOIDmode)
|
| 1206 |
|
|
&& (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op))
|
| 1207 |
|
|
&& LEGITIMATE_CONSTANT_P (op));
|
| 1208 |
|
|
}
|
| 1209 |
|
|
|
| 1210 |
|
|
if (GET_MODE (op) != mode && mode != VOIDmode)
|
| 1211 |
|
|
return 0;
|
| 1212 |
|
|
|
| 1213 |
|
|
if (GET_CODE (op) == SUBREG)
|
| 1214 |
|
|
{
|
| 1215 |
|
|
/* Before reload, we can allow (SUBREG (MEM...)) as a register operand
|
| 1216 |
|
|
because it is guaranteed to be reloaded into one.
|
| 1217 |
|
|
Just make sure the MEM is valid in itself.
|
| 1218 |
|
|
(Ideally, (SUBREG (MEM)...) should not exist after reload,
|
| 1219 |
|
|
but currently it does result from (SUBREG (REG)...) where the
|
| 1220 |
|
|
reg went on the stack.) */
|
| 1221 |
|
|
if (! reload_completed && MEM_P (SUBREG_REG (op)))
|
| 1222 |
|
|
return general_operand (op, mode);
|
| 1223 |
|
|
op = SUBREG_REG (op);
|
| 1224 |
|
|
}
|
| 1225 |
|
|
|
| 1226 |
|
|
/* We don't consider registers whose class is NO_REGS
|
| 1227 |
|
|
to be a register operand. */
|
| 1228 |
|
|
return (REG_P (op)
|
| 1229 |
|
|
&& (REGNO (op) >= FIRST_PSEUDO_REGISTER
|
| 1230 |
|
|
|| REGNO_REG_CLASS (REGNO (op)) != NO_REGS));
|
| 1231 |
|
|
}
|
| 1232 |
|
|
|
| 1233 |
|
|
/* Return 1 if OP is a valid operand that stands for pushing a
|
| 1234 |
|
|
value of mode MODE onto the stack.
|
| 1235 |
|
|
|
| 1236 |
|
|
The main use of this function is as a predicate in match_operand
|
| 1237 |
|
|
expressions in the machine description. */
|
| 1238 |
|
|
|
| 1239 |
|
|
int
|
| 1240 |
|
|
push_operand (rtx op, enum machine_mode mode)
|
| 1241 |
|
|
{
|
| 1242 |
|
|
unsigned int rounded_size = GET_MODE_SIZE (mode);
|
| 1243 |
|
|
|
| 1244 |
|
|
#ifdef PUSH_ROUNDING
|
| 1245 |
|
|
rounded_size = PUSH_ROUNDING (rounded_size);
|
| 1246 |
|
|
#endif
|
| 1247 |
|
|
|
| 1248 |
|
|
if (!MEM_P (op))
|
| 1249 |
|
|
return 0;
|
| 1250 |
|
|
|
| 1251 |
|
|
if (mode != VOIDmode && GET_MODE (op) != mode)
|
| 1252 |
|
|
return 0;
|
| 1253 |
|
|
|
| 1254 |
|
|
op = XEXP (op, 0);
|
| 1255 |
|
|
|
| 1256 |
|
|
if (rounded_size == GET_MODE_SIZE (mode))
|
| 1257 |
|
|
{
|
| 1258 |
|
|
if (GET_CODE (op) != STACK_PUSH_CODE)
|
| 1259 |
|
|
return 0;
|
| 1260 |
|
|
}
|
| 1261 |
|
|
else
|
| 1262 |
|
|
{
|
| 1263 |
|
|
if (GET_CODE (op) != PRE_MODIFY
|
| 1264 |
|
|
|| GET_CODE (XEXP (op, 1)) != PLUS
|
| 1265 |
|
|
|| XEXP (XEXP (op, 1), 0) != XEXP (op, 0)
|
| 1266 |
|
|
|| GET_CODE (XEXP (XEXP (op, 1), 1)) != CONST_INT
|
| 1267 |
|
|
#ifdef STACK_GROWS_DOWNWARD
|
| 1268 |
|
|
|| INTVAL (XEXP (XEXP (op, 1), 1)) != - (int) rounded_size
|
| 1269 |
|
|
#else
|
| 1270 |
|
|
|| INTVAL (XEXP (XEXP (op, 1), 1)) != (int) rounded_size
|
| 1271 |
|
|
#endif
|
| 1272 |
|
|
)
|
| 1273 |
|
|
return 0;
|
| 1274 |
|
|
}
|
| 1275 |
|
|
|
| 1276 |
|
|
return XEXP (op, 0) == stack_pointer_rtx;
|
| 1277 |
|
|
}
|
| 1278 |
|
|
|
| 1279 |
|
|
/* Return 1 if OP is a valid operand that stands for popping a
|
| 1280 |
|
|
value of mode MODE off the stack.
|
| 1281 |
|
|
|
| 1282 |
|
|
The main use of this function is as a predicate in match_operand
|
| 1283 |
|
|
expressions in the machine description. */
|
| 1284 |
|
|
|
| 1285 |
|
|
int
|
| 1286 |
|
|
pop_operand (rtx op, enum machine_mode mode)
|
| 1287 |
|
|
{
|
| 1288 |
|
|
if (!MEM_P (op))
|
| 1289 |
|
|
return 0;
|
| 1290 |
|
|
|
| 1291 |
|
|
if (mode != VOIDmode && GET_MODE (op) != mode)
|
| 1292 |
|
|
return 0;
|
| 1293 |
|
|
|
| 1294 |
|
|
op = XEXP (op, 0);
|
| 1295 |
|
|
|
| 1296 |
|
|
if (GET_CODE (op) != STACK_POP_CODE)
|
| 1297 |
|
|
return 0;
|
| 1298 |
|
|
|
| 1299 |
|
|
return XEXP (op, 0) == stack_pointer_rtx;
|
| 1300 |
|
|
}
|
| 1301 |
|
|
|
| 1302 |
|
|
/* Return 1 if ADDR is a valid memory address for mode MODE. */
|
| 1303 |
|
|
|
| 1304 |
|
|
int
|
| 1305 |
|
|
memory_address_p (enum machine_mode mode ATTRIBUTE_UNUSED, rtx addr)
|
| 1306 |
|
|
{
|
| 1307 |
|
|
GO_IF_LEGITIMATE_ADDRESS (mode, addr, win);
|
| 1308 |
|
|
return 0;
|
| 1309 |
|
|
|
| 1310 |
|
|
win:
|
| 1311 |
|
|
return 1;
|
| 1312 |
|
|
}
|
| 1313 |
|
|
|
| 1314 |
|
|
/* Return 1 if OP is a valid memory reference with mode MODE,
|
| 1315 |
|
|
including a valid address.
|
| 1316 |
|
|
|
| 1317 |
|
|
The main use of this function is as a predicate in match_operand
|
| 1318 |
|
|
expressions in the machine description. */
|
| 1319 |
|
|
|
| 1320 |
|
|
int
|
| 1321 |
|
|
memory_operand (rtx op, enum machine_mode mode)
|
| 1322 |
|
|
{
|
| 1323 |
|
|
rtx inner;
|
| 1324 |
|
|
|
| 1325 |
|
|
if (! reload_completed)
|
| 1326 |
|
|
/* Note that no SUBREG is a memory operand before end of reload pass,
|
| 1327 |
|
|
because (SUBREG (MEM...)) forces reloading into a register. */
|
| 1328 |
|
|
return MEM_P (op) && general_operand (op, mode);
|
| 1329 |
|
|
|
| 1330 |
|
|
if (mode != VOIDmode && GET_MODE (op) != mode)
|
| 1331 |
|
|
return 0;
|
| 1332 |
|
|
|
| 1333 |
|
|
inner = op;
|
| 1334 |
|
|
if (GET_CODE (inner) == SUBREG)
|
| 1335 |
|
|
inner = SUBREG_REG (inner);
|
| 1336 |
|
|
|
| 1337 |
|
|
return (MEM_P (inner) && general_operand (op, mode));
|
| 1338 |
|
|
}
|
| 1339 |
|
|
|
| 1340 |
|
|
/* Return 1 if OP is a valid indirect memory reference with mode MODE;
|
| 1341 |
|
|
that is, a memory reference whose address is a general_operand. */
|
| 1342 |
|
|
|
| 1343 |
|
|
int
|
| 1344 |
|
|
indirect_operand (rtx op, enum machine_mode mode)
|
| 1345 |
|
|
{
|
| 1346 |
|
|
/* Before reload, a SUBREG isn't in memory (see memory_operand, above). */
|
| 1347 |
|
|
if (! reload_completed
|
| 1348 |
|
|
&& GET_CODE (op) == SUBREG && MEM_P (SUBREG_REG (op)))
|
| 1349 |
|
|
{
|
| 1350 |
|
|
int offset = SUBREG_BYTE (op);
|
| 1351 |
|
|
rtx inner = SUBREG_REG (op);
|
| 1352 |
|
|
|
| 1353 |
|
|
if (mode != VOIDmode && GET_MODE (op) != mode)
|
| 1354 |
|
|
return 0;
|
| 1355 |
|
|
|
| 1356 |
|
|
/* The only way that we can have a general_operand as the resulting
|
| 1357 |
|
|
address is if OFFSET is zero and the address already is an operand
|
| 1358 |
|
|
or if the address is (plus Y (const_int -OFFSET)) and Y is an
|
| 1359 |
|
|
operand. */
|
| 1360 |
|
|
|
| 1361 |
|
|
return ((offset == 0 && general_operand (XEXP (inner, 0), Pmode))
|
| 1362 |
|
|
|| (GET_CODE (XEXP (inner, 0)) == PLUS
|
| 1363 |
|
|
&& GET_CODE (XEXP (XEXP (inner, 0), 1)) == CONST_INT
|
| 1364 |
|
|
&& INTVAL (XEXP (XEXP (inner, 0), 1)) == -offset
|
| 1365 |
|
|
&& general_operand (XEXP (XEXP (inner, 0), 0), Pmode)));
|
| 1366 |
|
|
}
|
| 1367 |
|
|
|
| 1368 |
|
|
return (MEM_P (op)
|
| 1369 |
|
|
&& memory_operand (op, mode)
|
| 1370 |
|
|
&& general_operand (XEXP (op, 0), Pmode));
|
| 1371 |
|
|
}
|
| 1372 |
|
|
|
| 1373 |
|
|
/* Return 1 if this is a comparison operator. This allows the use of
|
| 1374 |
|
|
MATCH_OPERATOR to recognize all the branch insns. */
|
| 1375 |
|
|
|
| 1376 |
|
|
int
|
| 1377 |
|
|
comparison_operator (rtx op, enum machine_mode mode)
|
| 1378 |
|
|
{
|
| 1379 |
|
|
return ((mode == VOIDmode || GET_MODE (op) == mode)
|
| 1380 |
|
|
&& COMPARISON_P (op));
|
| 1381 |
|
|
}
|
| 1382 |
|
|
|
| 1383 |
|
|
/* If BODY is an insn body that uses ASM_OPERANDS,
|
| 1384 |
|
|
return the number of operands (both input and output) in the insn.
|
| 1385 |
|
|
Otherwise return -1. */
|
| 1386 |
|
|
|
| 1387 |
|
|
int
|
| 1388 |
|
|
asm_noperands (rtx body)
|
| 1389 |
|
|
{
|
| 1390 |
|
|
switch (GET_CODE (body))
|
| 1391 |
|
|
{
|
| 1392 |
|
|
case ASM_OPERANDS:
|
| 1393 |
|
|
/* No output operands: return number of input operands. */
|
| 1394 |
|
|
return ASM_OPERANDS_INPUT_LENGTH (body);
|
| 1395 |
|
|
case SET:
|
| 1396 |
|
|
if (GET_CODE (SET_SRC (body)) == ASM_OPERANDS)
|
| 1397 |
|
|
/* Single output operand: BODY is (set OUTPUT (asm_operands ...)). */
|
| 1398 |
|
|
return ASM_OPERANDS_INPUT_LENGTH (SET_SRC (body)) + 1;
|
| 1399 |
|
|
else
|
| 1400 |
|
|
return -1;
|
| 1401 |
|
|
case PARALLEL:
|
| 1402 |
|
|
if (GET_CODE (XVECEXP (body, 0, 0)) == SET
|
| 1403 |
|
|
&& GET_CODE (SET_SRC (XVECEXP (body, 0, 0))) == ASM_OPERANDS)
|
| 1404 |
|
|
{
|
| 1405 |
|
|
/* Multiple output operands, or 1 output plus some clobbers:
|
| 1406 |
|
|
body is [(set OUTPUT (asm_operands ...))... (clobber (reg ...))...]. */
|
| 1407 |
|
|
int i;
|
| 1408 |
|
|
int n_sets;
|
| 1409 |
|
|
|
| 1410 |
|
|
/* Count backwards through CLOBBERs to determine number of SETs. */
|
| 1411 |
|
|
for (i = XVECLEN (body, 0); i > 0; i--)
|
| 1412 |
|
|
{
|
| 1413 |
|
|
if (GET_CODE (XVECEXP (body, 0, i - 1)) == SET)
|
| 1414 |
|
|
break;
|
| 1415 |
|
|
if (GET_CODE (XVECEXP (body, 0, i - 1)) != CLOBBER)
|
| 1416 |
|
|
return -1;
|
| 1417 |
|
|
}
|
| 1418 |
|
|
|
| 1419 |
|
|
/* N_SETS is now number of output operands. */
|
| 1420 |
|
|
n_sets = i;
|
| 1421 |
|
|
|
| 1422 |
|
|
/* Verify that all the SETs we have
|
| 1423 |
|
|
came from a single original asm_operands insn
|
| 1424 |
|
|
(so that invalid combinations are blocked). */
|
| 1425 |
|
|
for (i = 0; i < n_sets; i++)
|
| 1426 |
|
|
{
|
| 1427 |
|
|
rtx elt = XVECEXP (body, 0, i);
|
| 1428 |
|
|
if (GET_CODE (elt) != SET)
|
| 1429 |
|
|
return -1;
|
| 1430 |
|
|
if (GET_CODE (SET_SRC (elt)) != ASM_OPERANDS)
|
| 1431 |
|
|
return -1;
|
| 1432 |
|
|
/* If these ASM_OPERANDS rtx's came from different original insns
|
| 1433 |
|
|
then they aren't allowed together. */
|
| 1434 |
|
|
if (ASM_OPERANDS_INPUT_VEC (SET_SRC (elt))
|
| 1435 |
|
|
!= ASM_OPERANDS_INPUT_VEC (SET_SRC (XVECEXP (body, 0, 0))))
|
| 1436 |
|
|
return -1;
|
| 1437 |
|
|
}
|
| 1438 |
|
|
return (ASM_OPERANDS_INPUT_LENGTH (SET_SRC (XVECEXP (body, 0, 0)))
|
| 1439 |
|
|
+ n_sets);
|
| 1440 |
|
|
}
|
| 1441 |
|
|
else if (GET_CODE (XVECEXP (body, 0, 0)) == ASM_OPERANDS)
|
| 1442 |
|
|
{
|
| 1443 |
|
|
/* 0 outputs, but some clobbers:
|
| 1444 |
|
|
body is [(asm_operands ...) (clobber (reg ...))...]. */
|
| 1445 |
|
|
int i;
|
| 1446 |
|
|
|
| 1447 |
|
|
/* Make sure all the other parallel things really are clobbers. */
|
| 1448 |
|
|
for (i = XVECLEN (body, 0) - 1; i > 0; i--)
|
| 1449 |
|
|
if (GET_CODE (XVECEXP (body, 0, i)) != CLOBBER)
|
| 1450 |
|
|
return -1;
|
| 1451 |
|
|
|
| 1452 |
|
|
return ASM_OPERANDS_INPUT_LENGTH (XVECEXP (body, 0, 0));
|
| 1453 |
|
|
}
|
| 1454 |
|
|
else
|
| 1455 |
|
|
return -1;
|
| 1456 |
|
|
default:
|
| 1457 |
|
|
return -1;
|
| 1458 |
|
|
}
|
| 1459 |
|
|
}
|
| 1460 |
|
|
|
| 1461 |
|
|
/* Assuming BODY is an insn body that uses ASM_OPERANDS,
|
| 1462 |
|
|
copy its operands (both input and output) into the vector OPERANDS,
|
| 1463 |
|
|
the locations of the operands within the insn into the vector OPERAND_LOCS,
|
| 1464 |
|
|
and the constraints for the operands into CONSTRAINTS.
|
| 1465 |
|
|
Write the modes of the operands into MODES.
|
| 1466 |
|
|
Return the assembler-template.
|
| 1467 |
|
|
|
| 1468 |
|
|
If MODES, OPERAND_LOCS, CONSTRAINTS or OPERANDS is 0,
|
| 1469 |
|
|
we don't store that info. */
|
| 1470 |
|
|
|
| 1471 |
|
|
const char *
|
| 1472 |
|
|
decode_asm_operands (rtx body, rtx *operands, rtx **operand_locs,
|
| 1473 |
|
|
const char **constraints, enum machine_mode *modes)
|
| 1474 |
|
|
{
|
| 1475 |
|
|
int i;
|
| 1476 |
|
|
int noperands;
|
| 1477 |
|
|
const char *template = 0;
|
| 1478 |
|
|
|
| 1479 |
|
|
if (GET_CODE (body) == SET && GET_CODE (SET_SRC (body)) == ASM_OPERANDS)
|
| 1480 |
|
|
{
|
| 1481 |
|
|
rtx asmop = SET_SRC (body);
|
| 1482 |
|
|
/* Single output operand: BODY is (set OUTPUT (asm_operands ....)). */
|
| 1483 |
|
|
|
| 1484 |
|
|
noperands = ASM_OPERANDS_INPUT_LENGTH (asmop) + 1;
|
| 1485 |
|
|
|
| 1486 |
|
|
for (i = 1; i < noperands; i++)
|
| 1487 |
|
|
{
|
| 1488 |
|
|
if (operand_locs)
|
| 1489 |
|
|
operand_locs[i] = &ASM_OPERANDS_INPUT (asmop, i - 1);
|
| 1490 |
|
|
if (operands)
|
| 1491 |
|
|
operands[i] = ASM_OPERANDS_INPUT (asmop, i - 1);
|
| 1492 |
|
|
if (constraints)
|
| 1493 |
|
|
constraints[i] = ASM_OPERANDS_INPUT_CONSTRAINT (asmop, i - 1);
|
| 1494 |
|
|
if (modes)
|
| 1495 |
|
|
modes[i] = ASM_OPERANDS_INPUT_MODE (asmop, i - 1);
|
| 1496 |
|
|
}
|
| 1497 |
|
|
|
| 1498 |
|
|
/* The output is in the SET.
|
| 1499 |
|
|
Its constraint is in the ASM_OPERANDS itself. */
|
| 1500 |
|
|
if (operands)
|
| 1501 |
|
|
operands[0] = SET_DEST (body);
|
| 1502 |
|
|
if (operand_locs)
|
| 1503 |
|
|
operand_locs[0] = &SET_DEST (body);
|
| 1504 |
|
|
if (constraints)
|
| 1505 |
|
|
constraints[0] = ASM_OPERANDS_OUTPUT_CONSTRAINT (asmop);
|
| 1506 |
|
|
if (modes)
|
| 1507 |
|
|
modes[0] = GET_MODE (SET_DEST (body));
|
| 1508 |
|
|
template = ASM_OPERANDS_TEMPLATE (asmop);
|
| 1509 |
|
|
}
|
| 1510 |
|
|
else if (GET_CODE (body) == ASM_OPERANDS)
|
| 1511 |
|
|
{
|
| 1512 |
|
|
rtx asmop = body;
|
| 1513 |
|
|
/* No output operands: BODY is (asm_operands ....). */
|
| 1514 |
|
|
|
| 1515 |
|
|
noperands = ASM_OPERANDS_INPUT_LENGTH (asmop);
|
| 1516 |
|
|
|
| 1517 |
|
|
/* The input operands are found in the 1st element vector. */
|
| 1518 |
|
|
/* Constraints for inputs are in the 2nd element vector. */
|
| 1519 |
|
|
for (i = 0; i < noperands; i++)
|
| 1520 |
|
|
{
|
| 1521 |
|
|
if (operand_locs)
|
| 1522 |
|
|
operand_locs[i] = &ASM_OPERANDS_INPUT (asmop, i);
|
| 1523 |
|
|
if (operands)
|
| 1524 |
|
|
operands[i] = ASM_OPERANDS_INPUT (asmop, i);
|
| 1525 |
|
|
if (constraints)
|
| 1526 |
|
|
constraints[i] = ASM_OPERANDS_INPUT_CONSTRAINT (asmop, i);
|
| 1527 |
|
|
if (modes)
|
| 1528 |
|
|
modes[i] = ASM_OPERANDS_INPUT_MODE (asmop, i);
|
| 1529 |
|
|
}
|
| 1530 |
|
|
template = ASM_OPERANDS_TEMPLATE (asmop);
|
| 1531 |
|
|
}
|
| 1532 |
|
|
else if (GET_CODE (body) == PARALLEL
|
| 1533 |
|
|
&& GET_CODE (XVECEXP (body, 0, 0)) == SET
|
| 1534 |
|
|
&& GET_CODE (SET_SRC (XVECEXP (body, 0, 0))) == ASM_OPERANDS)
|
| 1535 |
|
|
{
|
| 1536 |
|
|
rtx asmop = SET_SRC (XVECEXP (body, 0, 0));
|
| 1537 |
|
|
int nparallel = XVECLEN (body, 0); /* Includes CLOBBERs. */
|
| 1538 |
|
|
int nin = ASM_OPERANDS_INPUT_LENGTH (asmop);
|
| 1539 |
|
|
int nout = 0; /* Does not include CLOBBERs. */
|
| 1540 |
|
|
|
| 1541 |
|
|
/* At least one output, plus some CLOBBERs. */
|
| 1542 |
|
|
|
| 1543 |
|
|
/* The outputs are in the SETs.
|
| 1544 |
|
|
Their constraints are in the ASM_OPERANDS itself. */
|
| 1545 |
|
|
for (i = 0; i < nparallel; i++)
|
| 1546 |
|
|
{
|
| 1547 |
|
|
if (GET_CODE (XVECEXP (body, 0, i)) == CLOBBER)
|
| 1548 |
|
|
break; /* Past last SET */
|
| 1549 |
|
|
|
| 1550 |
|
|
if (operands)
|
| 1551 |
|
|
operands[i] = SET_DEST (XVECEXP (body, 0, i));
|
| 1552 |
|
|
if (operand_locs)
|
| 1553 |
|
|
operand_locs[i] = &SET_DEST (XVECEXP (body, 0, i));
|
| 1554 |
|
|
if (constraints)
|
| 1555 |
|
|
constraints[i] = XSTR (SET_SRC (XVECEXP (body, 0, i)), 1);
|
| 1556 |
|
|
if (modes)
|
| 1557 |
|
|
modes[i] = GET_MODE (SET_DEST (XVECEXP (body, 0, i)));
|
| 1558 |
|
|
nout++;
|
| 1559 |
|
|
}
|
| 1560 |
|
|
|
| 1561 |
|
|
for (i = 0; i < nin; i++)
|
| 1562 |
|
|
{
|
| 1563 |
|
|
if (operand_locs)
|
| 1564 |
|
|
operand_locs[i + nout] = &ASM_OPERANDS_INPUT (asmop, i);
|
| 1565 |
|
|
if (operands)
|
| 1566 |
|
|
operands[i + nout] = ASM_OPERANDS_INPUT (asmop, i);
|
| 1567 |
|
|
if (constraints)
|
| 1568 |
|
|
constraints[i + nout] = ASM_OPERANDS_INPUT_CONSTRAINT (asmop, i);
|
| 1569 |
|
|
if (modes)
|
| 1570 |
|
|
modes[i + nout] = ASM_OPERANDS_INPUT_MODE (asmop, i);
|
| 1571 |
|
|
}
|
| 1572 |
|
|
|
| 1573 |
|
|
template = ASM_OPERANDS_TEMPLATE (asmop);
|
| 1574 |
|
|
}
|
| 1575 |
|
|
else if (GET_CODE (body) == PARALLEL
|
| 1576 |
|
|
&& GET_CODE (XVECEXP (body, 0, 0)) == ASM_OPERANDS)
|
| 1577 |
|
|
{
|
| 1578 |
|
|
/* No outputs, but some CLOBBERs. */
|
| 1579 |
|
|
|
| 1580 |
|
|
rtx asmop = XVECEXP (body, 0, 0);
|
| 1581 |
|
|
int nin = ASM_OPERANDS_INPUT_LENGTH (asmop);
|
| 1582 |
|
|
|
| 1583 |
|
|
for (i = 0; i < nin; i++)
|
| 1584 |
|
|
{
|
| 1585 |
|
|
if (operand_locs)
|
| 1586 |
|
|
operand_locs[i] = &ASM_OPERANDS_INPUT (asmop, i);
|
| 1587 |
|
|
if (operands)
|
| 1588 |
|
|
operands[i] = ASM_OPERANDS_INPUT (asmop, i);
|
| 1589 |
|
|
if (constraints)
|
| 1590 |
|
|
constraints[i] = ASM_OPERANDS_INPUT_CONSTRAINT (asmop, i);
|
| 1591 |
|
|
if (modes)
|
| 1592 |
|
|
modes[i] = ASM_OPERANDS_INPUT_MODE (asmop, i);
|
| 1593 |
|
|
}
|
| 1594 |
|
|
|
| 1595 |
|
|
template = ASM_OPERANDS_TEMPLATE (asmop);
|
| 1596 |
|
|
}
|
| 1597 |
|
|
|
| 1598 |
|
|
return template;
|
| 1599 |
|
|
}
|
| 1600 |
|
|
|
| 1601 |
|
|
/* Check if an asm_operand matches its constraints.
|
| 1602 |
|
|
Return > 0 if ok, = 0 if bad, < 0 if inconclusive. */
|
| 1603 |
|
|
|
| 1604 |
|
|
int
|
| 1605 |
|
|
asm_operand_ok (rtx op, const char *constraint)
|
| 1606 |
|
|
{
|
| 1607 |
|
|
int result = 0;
|
| 1608 |
|
|
|
| 1609 |
|
|
/* Use constrain_operands after reload. */
|
| 1610 |
|
|
gcc_assert (!reload_completed);
|
| 1611 |
|
|
|
| 1612 |
|
|
while (*constraint)
|
| 1613 |
|
|
{
|
| 1614 |
|
|
char c = *constraint;
|
| 1615 |
|
|
int len;
|
| 1616 |
|
|
switch (c)
|
| 1617 |
|
|
{
|
| 1618 |
|
|
case ',':
|
| 1619 |
|
|
constraint++;
|
| 1620 |
|
|
continue;
|
| 1621 |
|
|
case '=':
|
| 1622 |
|
|
case '+':
|
| 1623 |
|
|
case '*':
|
| 1624 |
|
|
case '%':
|
| 1625 |
|
|
case '!':
|
| 1626 |
|
|
case '#':
|
| 1627 |
|
|
case '&':
|
| 1628 |
|
|
case '?':
|
| 1629 |
|
|
break;
|
| 1630 |
|
|
|
| 1631 |
|
|
case '0': case '1': case '2': case '3': case '4':
|
| 1632 |
|
|
case '5': case '6': case '7': case '8': case '9':
|
| 1633 |
|
|
/* For best results, our caller should have given us the
|
| 1634 |
|
|
proper matching constraint, but we can't actually fail
|
| 1635 |
|
|
the check if they didn't. Indicate that results are
|
| 1636 |
|
|
inconclusive. */
|
| 1637 |
|
|
do
|
| 1638 |
|
|
constraint++;
|
| 1639 |
|
|
while (ISDIGIT (*constraint));
|
| 1640 |
|
|
if (! result)
|
| 1641 |
|
|
result = -1;
|
| 1642 |
|
|
continue;
|
| 1643 |
|
|
|
| 1644 |
|
|
case 'p':
|
| 1645 |
|
|
if (address_operand (op, VOIDmode))
|
| 1646 |
|
|
result = 1;
|
| 1647 |
|
|
break;
|
| 1648 |
|
|
|
| 1649 |
|
|
case 'm':
|
| 1650 |
|
|
case 'V': /* non-offsettable */
|
| 1651 |
|
|
if (memory_operand (op, VOIDmode))
|
| 1652 |
|
|
result = 1;
|
| 1653 |
|
|
break;
|
| 1654 |
|
|
|
| 1655 |
|
|
case 'o': /* offsettable */
|
| 1656 |
|
|
if (offsettable_nonstrict_memref_p (op))
|
| 1657 |
|
|
result = 1;
|
| 1658 |
|
|
break;
|
| 1659 |
|
|
|
| 1660 |
|
|
case '<':
|
| 1661 |
|
|
/* ??? Before flow, auto inc/dec insns are not supposed to exist,
|
| 1662 |
|
|
excepting those that expand_call created. Further, on some
|
| 1663 |
|
|
machines which do not have generalized auto inc/dec, an inc/dec
|
| 1664 |
|
|
is not a memory_operand.
|
| 1665 |
|
|
|
| 1666 |
|
|
Match any memory and hope things are resolved after reload. */
|
| 1667 |
|
|
|
| 1668 |
|
|
if (MEM_P (op)
|
| 1669 |
|
|
&& (1
|
| 1670 |
|
|
|| GET_CODE (XEXP (op, 0)) == PRE_DEC
|
| 1671 |
|
|
|| GET_CODE (XEXP (op, 0)) == POST_DEC))
|
| 1672 |
|
|
result = 1;
|
| 1673 |
|
|
break;
|
| 1674 |
|
|
|
| 1675 |
|
|
case '>':
|
| 1676 |
|
|
if (MEM_P (op)
|
| 1677 |
|
|
&& (1
|
| 1678 |
|
|
|| GET_CODE (XEXP (op, 0)) == PRE_INC
|
| 1679 |
|
|
|| GET_CODE (XEXP (op, 0)) == POST_INC))
|
| 1680 |
|
|
result = 1;
|
| 1681 |
|
|
break;
|
| 1682 |
|
|
|
| 1683 |
|
|
case 'E':
|
| 1684 |
|
|
case 'F':
|
| 1685 |
|
|
if (GET_CODE (op) == CONST_DOUBLE
|
| 1686 |
|
|
|| (GET_CODE (op) == CONST_VECTOR
|
| 1687 |
|
|
&& GET_MODE_CLASS (GET_MODE (op)) == MODE_VECTOR_FLOAT))
|
| 1688 |
|
|
result = 1;
|
| 1689 |
|
|
break;
|
| 1690 |
|
|
|
| 1691 |
|
|
case 'G':
|
| 1692 |
|
|
if (GET_CODE (op) == CONST_DOUBLE
|
| 1693 |
|
|
&& CONST_DOUBLE_OK_FOR_CONSTRAINT_P (op, 'G', constraint))
|
| 1694 |
|
|
result = 1;
|
| 1695 |
|
|
break;
|
| 1696 |
|
|
case 'H':
|
| 1697 |
|
|
if (GET_CODE (op) == CONST_DOUBLE
|
| 1698 |
|
|
&& CONST_DOUBLE_OK_FOR_CONSTRAINT_P (op, 'H', constraint))
|
| 1699 |
|
|
result = 1;
|
| 1700 |
|
|
break;
|
| 1701 |
|
|
|
| 1702 |
|
|
case 's':
|
| 1703 |
|
|
if (GET_CODE (op) == CONST_INT
|
| 1704 |
|
|
|| (GET_CODE (op) == CONST_DOUBLE
|
| 1705 |
|
|
&& GET_MODE (op) == VOIDmode))
|
| 1706 |
|
|
break;
|
| 1707 |
|
|
/* Fall through. */
|
| 1708 |
|
|
|
| 1709 |
|
|
case 'i':
|
| 1710 |
|
|
if (CONSTANT_P (op) && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op)))
|
| 1711 |
|
|
result = 1;
|
| 1712 |
|
|
break;
|
| 1713 |
|
|
|
| 1714 |
|
|
case 'n':
|
| 1715 |
|
|
if (GET_CODE (op) == CONST_INT
|
| 1716 |
|
|
|| (GET_CODE (op) == CONST_DOUBLE
|
| 1717 |
|
|
&& GET_MODE (op) == VOIDmode))
|
| 1718 |
|
|
result = 1;
|
| 1719 |
|
|
break;
|
| 1720 |
|
|
|
| 1721 |
|
|
case 'I':
|
| 1722 |
|
|
if (GET_CODE (op) == CONST_INT
|
| 1723 |
|
|
&& CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), 'I', constraint))
|
| 1724 |
|
|
result = 1;
|
| 1725 |
|
|
break;
|
| 1726 |
|
|
case 'J':
|
| 1727 |
|
|
if (GET_CODE (op) == CONST_INT
|
| 1728 |
|
|
&& CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), 'J', constraint))
|
| 1729 |
|
|
result = 1;
|
| 1730 |
|
|
break;
|
| 1731 |
|
|
case 'K':
|
| 1732 |
|
|
if (GET_CODE (op) == CONST_INT
|
| 1733 |
|
|
&& CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), 'K', constraint))
|
| 1734 |
|
|
result = 1;
|
| 1735 |
|
|
break;
|
| 1736 |
|
|
case 'L':
|
| 1737 |
|
|
if (GET_CODE (op) == CONST_INT
|
| 1738 |
|
|
&& CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), 'L', constraint))
|
| 1739 |
|
|
result = 1;
|
| 1740 |
|
|
break;
|
| 1741 |
|
|
case 'M':
|
| 1742 |
|
|
if (GET_CODE (op) == CONST_INT
|
| 1743 |
|
|
&& CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), 'M', constraint))
|
| 1744 |
|
|
result = 1;
|
| 1745 |
|
|
break;
|
| 1746 |
|
|
case 'N':
|
| 1747 |
|
|
if (GET_CODE (op) == CONST_INT
|
| 1748 |
|
|
&& CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), 'N', constraint))
|
| 1749 |
|
|
result = 1;
|
| 1750 |
|
|
break;
|
| 1751 |
|
|
case 'O':
|
| 1752 |
|
|
if (GET_CODE (op) == CONST_INT
|
| 1753 |
|
|
&& CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), 'O', constraint))
|
| 1754 |
|
|
result = 1;
|
| 1755 |
|
|
break;
|
| 1756 |
|
|
case 'P':
|
| 1757 |
|
|
if (GET_CODE (op) == CONST_INT
|
| 1758 |
|
|
&& CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), 'P', constraint))
|
| 1759 |
|
|
result = 1;
|
| 1760 |
|
|
break;
|
| 1761 |
|
|
|
| 1762 |
|
|
case 'X':
|
| 1763 |
|
|
result = 1;
|
| 1764 |
|
|
break;
|
| 1765 |
|
|
|
| 1766 |
|
|
case 'g':
|
| 1767 |
|
|
if (general_operand (op, VOIDmode))
|
| 1768 |
|
|
result = 1;
|
| 1769 |
|
|
break;
|
| 1770 |
|
|
|
| 1771 |
|
|
default:
|
| 1772 |
|
|
/* For all other letters, we first check for a register class,
|
| 1773 |
|
|
otherwise it is an EXTRA_CONSTRAINT. */
|
| 1774 |
|
|
if (REG_CLASS_FROM_CONSTRAINT (c, constraint) != NO_REGS)
|
| 1775 |
|
|
{
|
| 1776 |
|
|
case 'r':
|
| 1777 |
|
|
if (GET_MODE (op) == BLKmode)
|
| 1778 |
|
|
break;
|
| 1779 |
|
|
if (register_operand (op, VOIDmode))
|
| 1780 |
|
|
result = 1;
|
| 1781 |
|
|
}
|
| 1782 |
|
|
#ifdef EXTRA_CONSTRAINT_STR
|
| 1783 |
|
|
else if (EXTRA_CONSTRAINT_STR (op, c, constraint))
|
| 1784 |
|
|
result = 1;
|
| 1785 |
|
|
else if (EXTRA_MEMORY_CONSTRAINT (c, constraint)
|
| 1786 |
|
|
/* Every memory operand can be reloaded to fit. */
|
| 1787 |
|
|
&& memory_operand (op, VOIDmode))
|
| 1788 |
|
|
result = 1;
|
| 1789 |
|
|
else if (EXTRA_ADDRESS_CONSTRAINT (c, constraint)
|
| 1790 |
|
|
/* Every address operand can be reloaded to fit. */
|
| 1791 |
|
|
&& address_operand (op, VOIDmode))
|
| 1792 |
|
|
result = 1;
|
| 1793 |
|
|
#endif
|
| 1794 |
|
|
break;
|
| 1795 |
|
|
}
|
| 1796 |
|
|
len = CONSTRAINT_LEN (c, constraint);
|
| 1797 |
|
|
do
|
| 1798 |
|
|
constraint++;
|
| 1799 |
|
|
while (--len && *constraint);
|
| 1800 |
|
|
if (len)
|
| 1801 |
|
|
return 0;
|
| 1802 |
|
|
}
|
| 1803 |
|
|
|
| 1804 |
|
|
return result;
|
| 1805 |
|
|
}
|
| 1806 |
|
|
|
| 1807 |
|
|
/* Given an rtx *P, if it is a sum containing an integer constant term,
|
| 1808 |
|
|
return the location (type rtx *) of the pointer to that constant term.
|
| 1809 |
|
|
Otherwise, return a null pointer. */
|
| 1810 |
|
|
|
| 1811 |
|
|
rtx *
|
| 1812 |
|
|
find_constant_term_loc (rtx *p)
|
| 1813 |
|
|
{
|
| 1814 |
|
|
rtx *tem;
|
| 1815 |
|
|
enum rtx_code code = GET_CODE (*p);
|
| 1816 |
|
|
|
| 1817 |
|
|
/* If *P IS such a constant term, P is its location. */
|
| 1818 |
|
|
|
| 1819 |
|
|
if (code == CONST_INT || code == SYMBOL_REF || code == LABEL_REF
|
| 1820 |
|
|
|| code == CONST)
|
| 1821 |
|
|
return p;
|
| 1822 |
|
|
|
| 1823 |
|
|
/* Otherwise, if not a sum, it has no constant term. */
|
| 1824 |
|
|
|
| 1825 |
|
|
if (GET_CODE (*p) != PLUS)
|
| 1826 |
|
|
return 0;
|
| 1827 |
|
|
|
| 1828 |
|
|
/* If one of the summands is constant, return its location. */
|
| 1829 |
|
|
|
| 1830 |
|
|
if (XEXP (*p, 0) && CONSTANT_P (XEXP (*p, 0))
|
| 1831 |
|
|
&& XEXP (*p, 1) && CONSTANT_P (XEXP (*p, 1)))
|
| 1832 |
|
|
return p;
|
| 1833 |
|
|
|
| 1834 |
|
|
/* Otherwise, check each summand for containing a constant term. */
|
| 1835 |
|
|
|
| 1836 |
|
|
if (XEXP (*p, 0) != 0)
|
| 1837 |
|
|
{
|
| 1838 |
|
|
tem = find_constant_term_loc (&XEXP (*p, 0));
|
| 1839 |
|
|
if (tem != 0)
|
| 1840 |
|
|
return tem;
|
| 1841 |
|
|
}
|
| 1842 |
|
|
|
| 1843 |
|
|
if (XEXP (*p, 1) != 0)
|
| 1844 |
|
|
{
|
| 1845 |
|
|
tem = find_constant_term_loc (&XEXP (*p, 1));
|
| 1846 |
|
|
if (tem != 0)
|
| 1847 |
|
|
return tem;
|
| 1848 |
|
|
}
|
| 1849 |
|
|
|
| 1850 |
|
|
return 0;
|
| 1851 |
|
|
}
|
| 1852 |
|
|
|
| 1853 |
|
|
/* Return 1 if OP is a memory reference
|
| 1854 |
|
|
whose address contains no side effects
|
| 1855 |
|
|
and remains valid after the addition
|
| 1856 |
|
|
of a positive integer less than the
|
| 1857 |
|
|
size of the object being referenced.
|
| 1858 |
|
|
|
| 1859 |
|
|
We assume that the original address is valid and do not check it.
|
| 1860 |
|
|
|
| 1861 |
|
|
This uses strict_memory_address_p as a subroutine, so
|
| 1862 |
|
|
don't use it before reload. */
|
| 1863 |
|
|
|
| 1864 |
|
|
int
|
| 1865 |
|
|
offsettable_memref_p (rtx op)
|
| 1866 |
|
|
{
|
| 1867 |
|
|
return ((MEM_P (op))
|
| 1868 |
|
|
&& offsettable_address_p (1, GET_MODE (op), XEXP (op, 0)));
|
| 1869 |
|
|
}
|
| 1870 |
|
|
|
| 1871 |
|
|
/* Similar, but don't require a strictly valid mem ref:
|
| 1872 |
|
|
consider pseudo-regs valid as index or base regs. */
|
| 1873 |
|
|
|
| 1874 |
|
|
int
|
| 1875 |
|
|
offsettable_nonstrict_memref_p (rtx op)
|
| 1876 |
|
|
{
|
| 1877 |
|
|
return ((MEM_P (op))
|
| 1878 |
|
|
&& offsettable_address_p (0, GET_MODE (op), XEXP (op, 0)));
|
| 1879 |
|
|
}
|
| 1880 |
|
|
|
| 1881 |
|
|
/* Return 1 if Y is a memory address which contains no side effects
|
| 1882 |
|
|
and would remain valid after the addition of a positive integer
|
| 1883 |
|
|
less than the size of that mode.
|
| 1884 |
|
|
|
| 1885 |
|
|
We assume that the original address is valid and do not check it.
|
| 1886 |
|
|
We do check that it is valid for narrower modes.
|
| 1887 |
|
|
|
| 1888 |
|
|
If STRICTP is nonzero, we require a strictly valid address,
|
| 1889 |
|
|
for the sake of use in reload.c. */
|
| 1890 |
|
|
|
| 1891 |
|
|
int
|
| 1892 |
|
|
offsettable_address_p (int strictp, enum machine_mode mode, rtx y)
|
| 1893 |
|
|
{
|
| 1894 |
|
|
enum rtx_code ycode = GET_CODE (y);
|
| 1895 |
|
|
rtx z;
|
| 1896 |
|
|
rtx y1 = y;
|
| 1897 |
|
|
rtx *y2;
|
| 1898 |
|
|
int (*addressp) (enum machine_mode, rtx) =
|
| 1899 |
|
|
(strictp ? strict_memory_address_p : memory_address_p);
|
| 1900 |
|
|
unsigned int mode_sz = GET_MODE_SIZE (mode);
|
| 1901 |
|
|
|
| 1902 |
|
|
if (CONSTANT_ADDRESS_P (y))
|
| 1903 |
|
|
return 1;
|
| 1904 |
|
|
|
| 1905 |
|
|
/* Adjusting an offsettable address involves changing to a narrower mode.
|
| 1906 |
|
|
Make sure that's OK. */
|
| 1907 |
|
|
|
| 1908 |
|
|
if (mode_dependent_address_p (y))
|
| 1909 |
|
|
return 0;
|
| 1910 |
|
|
|
| 1911 |
|
|
/* ??? How much offset does an offsettable BLKmode reference need?
|
| 1912 |
|
|
Clearly that depends on the situation in which it's being used.
|
| 1913 |
|
|
However, the current situation in which we test 0xffffffff is
|
| 1914 |
|
|
less than ideal. Caveat user. */
|
| 1915 |
|
|
if (mode_sz == 0)
|
| 1916 |
|
|
mode_sz = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
|
| 1917 |
|
|
|
| 1918 |
|
|
/* If the expression contains a constant term,
|
| 1919 |
|
|
see if it remains valid when max possible offset is added. */
|
| 1920 |
|
|
|
| 1921 |
|
|
if ((ycode == PLUS) && (y2 = find_constant_term_loc (&y1)))
|
| 1922 |
|
|
{
|
| 1923 |
|
|
int good;
|
| 1924 |
|
|
|
| 1925 |
|
|
y1 = *y2;
|
| 1926 |
|
|
*y2 = plus_constant (*y2, mode_sz - 1);
|
| 1927 |
|
|
/* Use QImode because an odd displacement may be automatically invalid
|
| 1928 |
|
|
for any wider mode. But it should be valid for a single byte. */
|
| 1929 |
|
|
good = (*addressp) (QImode, y);
|
| 1930 |
|
|
|
| 1931 |
|
|
/* In any case, restore old contents of memory. */
|
| 1932 |
|
|
*y2 = y1;
|
| 1933 |
|
|
return good;
|
| 1934 |
|
|
}
|
| 1935 |
|
|
|
| 1936 |
|
|
if (GET_RTX_CLASS (ycode) == RTX_AUTOINC)
|
| 1937 |
|
|
return 0;
|
| 1938 |
|
|
|
| 1939 |
|
|
/* The offset added here is chosen as the maximum offset that
|
| 1940 |
|
|
any instruction could need to add when operating on something
|
| 1941 |
|
|
of the specified mode. We assume that if Y and Y+c are
|
| 1942 |
|
|
valid addresses then so is Y+d for all 0<d<c. adjust_address will
|
| 1943 |
|
|
go inside a LO_SUM here, so we do so as well. */
|
| 1944 |
|
|
if (GET_CODE (y) == LO_SUM
|
| 1945 |
|
|
&& mode != BLKmode
|
| 1946 |
|
|
&& mode_sz <= GET_MODE_ALIGNMENT (mode) / BITS_PER_UNIT)
|
| 1947 |
|
|
z = gen_rtx_LO_SUM (GET_MODE (y), XEXP (y, 0),
|
| 1948 |
|
|
plus_constant (XEXP (y, 1), mode_sz - 1));
|
| 1949 |
|
|
else
|
| 1950 |
|
|
z = plus_constant (y, mode_sz - 1);
|
| 1951 |
|
|
|
| 1952 |
|
|
/* Use QImode because an odd displacement may be automatically invalid
|
| 1953 |
|
|
for any wider mode. But it should be valid for a single byte. */
|
| 1954 |
|
|
return (*addressp) (QImode, z);
|
| 1955 |
|
|
}
|
| 1956 |
|
|
|
| 1957 |
|
|
/* Return 1 if ADDR is an address-expression whose effect depends
|
| 1958 |
|
|
on the mode of the memory reference it is used in.
|
| 1959 |
|
|
|
| 1960 |
|
|
Autoincrement addressing is a typical example of mode-dependence
|
| 1961 |
|
|
because the amount of the increment depends on the mode. */
|
| 1962 |
|
|
|
| 1963 |
|
|
int
|
| 1964 |
|
|
mode_dependent_address_p (rtx addr ATTRIBUTE_UNUSED /* Maybe used in GO_IF_MODE_DEPENDENT_ADDRESS. */)
|
| 1965 |
|
|
{
|
| 1966 |
|
|
GO_IF_MODE_DEPENDENT_ADDRESS (addr, win);
|
| 1967 |
|
|
return 0;
|
| 1968 |
|
|
/* Label `win' might (not) be used via GO_IF_MODE_DEPENDENT_ADDRESS. */
|
| 1969 |
|
|
win: ATTRIBUTE_UNUSED_LABEL
|
| 1970 |
|
|
return 1;
|
| 1971 |
|
|
}
|
| 1972 |
|
|
|
| 1973 |
|
|
/* Like extract_insn, but save insn extracted and don't extract again, when
|
| 1974 |
|
|
called again for the same insn expecting that recog_data still contain the
|
| 1975 |
|
|
valid information. This is used primary by gen_attr infrastructure that
|
| 1976 |
|
|
often does extract insn again and again. */
|
| 1977 |
|
|
void
|
| 1978 |
|
|
extract_insn_cached (rtx insn)
|
| 1979 |
|
|
{
|
| 1980 |
|
|
if (recog_data.insn == insn && INSN_CODE (insn) >= 0)
|
| 1981 |
|
|
return;
|
| 1982 |
|
|
extract_insn (insn);
|
| 1983 |
|
|
recog_data.insn = insn;
|
| 1984 |
|
|
}
|
| 1985 |
|
|
|
| 1986 |
|
|
/* Do cached extract_insn, constrain_operands and complain about failures.
|
| 1987 |
|
|
Used by insn_attrtab. */
|
| 1988 |
|
|
void
|
| 1989 |
|
|
extract_constrain_insn_cached (rtx insn)
|
| 1990 |
|
|
{
|
| 1991 |
|
|
extract_insn_cached (insn);
|
| 1992 |
|
|
if (which_alternative == -1
|
| 1993 |
|
|
&& !constrain_operands (reload_completed))
|
| 1994 |
|
|
fatal_insn_not_found (insn);
|
| 1995 |
|
|
}
|
| 1996 |
|
|
|
| 1997 |
|
|
/* Do cached constrain_operands and complain about failures. */
|
| 1998 |
|
|
int
|
| 1999 |
|
|
constrain_operands_cached (int strict)
|
| 2000 |
|
|
{
|
| 2001 |
|
|
if (which_alternative == -1)
|
| 2002 |
|
|
return constrain_operands (strict);
|
| 2003 |
|
|
else
|
| 2004 |
|
|
return 1;
|
| 2005 |
|
|
}
|
| 2006 |
|
|
|
| 2007 |
|
|
/* Analyze INSN and fill in recog_data. */
|
| 2008 |
|
|
|
| 2009 |
|
|
void
|
| 2010 |
|
|
extract_insn (rtx insn)
|
| 2011 |
|
|
{
|
| 2012 |
|
|
int i;
|
| 2013 |
|
|
int icode;
|
| 2014 |
|
|
int noperands;
|
| 2015 |
|
|
rtx body = PATTERN (insn);
|
| 2016 |
|
|
|
| 2017 |
|
|
recog_data.insn = NULL;
|
| 2018 |
|
|
recog_data.n_operands = 0;
|
| 2019 |
|
|
recog_data.n_alternatives = 0;
|
| 2020 |
|
|
recog_data.n_dups = 0;
|
| 2021 |
|
|
which_alternative = -1;
|
| 2022 |
|
|
|
| 2023 |
|
|
switch (GET_CODE (body))
|
| 2024 |
|
|
{
|
| 2025 |
|
|
case USE:
|
| 2026 |
|
|
case CLOBBER:
|
| 2027 |
|
|
case ASM_INPUT:
|
| 2028 |
|
|
case ADDR_VEC:
|
| 2029 |
|
|
case ADDR_DIFF_VEC:
|
| 2030 |
|
|
return;
|
| 2031 |
|
|
|
| 2032 |
|
|
case SET:
|
| 2033 |
|
|
if (GET_CODE (SET_SRC (body)) == ASM_OPERANDS)
|
| 2034 |
|
|
goto asm_insn;
|
| 2035 |
|
|
else
|
| 2036 |
|
|
goto normal_insn;
|
| 2037 |
|
|
case PARALLEL:
|
| 2038 |
|
|
if ((GET_CODE (XVECEXP (body, 0, 0)) == SET
|
| 2039 |
|
|
&& GET_CODE (SET_SRC (XVECEXP (body, 0, 0))) == ASM_OPERANDS)
|
| 2040 |
|
|
|| GET_CODE (XVECEXP (body, 0, 0)) == ASM_OPERANDS)
|
| 2041 |
|
|
goto asm_insn;
|
| 2042 |
|
|
else
|
| 2043 |
|
|
goto normal_insn;
|
| 2044 |
|
|
case ASM_OPERANDS:
|
| 2045 |
|
|
asm_insn:
|
| 2046 |
|
|
recog_data.n_operands = noperands = asm_noperands (body);
|
| 2047 |
|
|
if (noperands >= 0)
|
| 2048 |
|
|
{
|
| 2049 |
|
|
/* This insn is an `asm' with operands. */
|
| 2050 |
|
|
|
| 2051 |
|
|
/* expand_asm_operands makes sure there aren't too many operands. */
|
| 2052 |
|
|
gcc_assert (noperands <= MAX_RECOG_OPERANDS);
|
| 2053 |
|
|
|
| 2054 |
|
|
/* Now get the operand values and constraints out of the insn. */
|
| 2055 |
|
|
decode_asm_operands (body, recog_data.operand,
|
| 2056 |
|
|
recog_data.operand_loc,
|
| 2057 |
|
|
recog_data.constraints,
|
| 2058 |
|
|
recog_data.operand_mode);
|
| 2059 |
|
|
if (noperands > 0)
|
| 2060 |
|
|
{
|
| 2061 |
|
|
const char *p = recog_data.constraints[0];
|
| 2062 |
|
|
recog_data.n_alternatives = 1;
|
| 2063 |
|
|
while (*p)
|
| 2064 |
|
|
recog_data.n_alternatives += (*p++ == ',');
|
| 2065 |
|
|
}
|
| 2066 |
|
|
break;
|
| 2067 |
|
|
}
|
| 2068 |
|
|
fatal_insn_not_found (insn);
|
| 2069 |
|
|
|
| 2070 |
|
|
default:
|
| 2071 |
|
|
normal_insn:
|
| 2072 |
|
|
/* Ordinary insn: recognize it, get the operands via insn_extract
|
| 2073 |
|
|
and get the constraints. */
|
| 2074 |
|
|
|
| 2075 |
|
|
icode = recog_memoized (insn);
|
| 2076 |
|
|
if (icode < 0)
|
| 2077 |
|
|
fatal_insn_not_found (insn);
|
| 2078 |
|
|
|
| 2079 |
|
|
recog_data.n_operands = noperands = insn_data[icode].n_operands;
|
| 2080 |
|
|
recog_data.n_alternatives = insn_data[icode].n_alternatives;
|
| 2081 |
|
|
recog_data.n_dups = insn_data[icode].n_dups;
|
| 2082 |
|
|
|
| 2083 |
|
|
insn_extract (insn);
|
| 2084 |
|
|
|
| 2085 |
|
|
for (i = 0; i < noperands; i++)
|
| 2086 |
|
|
{
|
| 2087 |
|
|
recog_data.constraints[i] = insn_data[icode].operand[i].constraint;
|
| 2088 |
|
|
recog_data.operand_mode[i] = insn_data[icode].operand[i].mode;
|
| 2089 |
|
|
/* VOIDmode match_operands gets mode from their real operand. */
|
| 2090 |
|
|
if (recog_data.operand_mode[i] == VOIDmode)
|
| 2091 |
|
|
recog_data.operand_mode[i] = GET_MODE (recog_data.operand[i]);
|
| 2092 |
|
|
}
|
| 2093 |
|
|
}
|
| 2094 |
|
|
for (i = 0; i < noperands; i++)
|
| 2095 |
|
|
recog_data.operand_type[i]
|
| 2096 |
|
|
= (recog_data.constraints[i][0] == '=' ? OP_OUT
|
| 2097 |
|
|
: recog_data.constraints[i][0] == '+' ? OP_INOUT
|
| 2098 |
|
|
: OP_IN);
|
| 2099 |
|
|
|
| 2100 |
|
|
gcc_assert (recog_data.n_alternatives <= MAX_RECOG_ALTERNATIVES);
|
| 2101 |
|
|
}
|
| 2102 |
|
|
|
| 2103 |
|
|
/* After calling extract_insn, you can use this function to extract some
|
| 2104 |
|
|
information from the constraint strings into a more usable form.
|
| 2105 |
|
|
The collected data is stored in recog_op_alt. */
|
| 2106 |
|
|
void
|
| 2107 |
|
|
preprocess_constraints (void)
|
| 2108 |
|
|
{
|
| 2109 |
|
|
int i;
|
| 2110 |
|
|
|
| 2111 |
|
|
for (i = 0; i < recog_data.n_operands; i++)
|
| 2112 |
|
|
memset (recog_op_alt[i], 0, (recog_data.n_alternatives
|
| 2113 |
|
|
* sizeof (struct operand_alternative)));
|
| 2114 |
|
|
|
| 2115 |
|
|
for (i = 0; i < recog_data.n_operands; i++)
|
| 2116 |
|
|
{
|
| 2117 |
|
|
int j;
|
| 2118 |
|
|
struct operand_alternative *op_alt;
|
| 2119 |
|
|
const char *p = recog_data.constraints[i];
|
| 2120 |
|
|
|
| 2121 |
|
|
op_alt = recog_op_alt[i];
|
| 2122 |
|
|
|
| 2123 |
|
|
for (j = 0; j < recog_data.n_alternatives; j++)
|
| 2124 |
|
|
{
|
| 2125 |
|
|
op_alt[j].cl = NO_REGS;
|
| 2126 |
|
|
op_alt[j].constraint = p;
|
| 2127 |
|
|
op_alt[j].matches = -1;
|
| 2128 |
|
|
op_alt[j].matched = -1;
|
| 2129 |
|
|
|
| 2130 |
|
|
if (*p == '\0' || *p == ',')
|
| 2131 |
|
|
{
|
| 2132 |
|
|
op_alt[j].anything_ok = 1;
|
| 2133 |
|
|
continue;
|
| 2134 |
|
|
}
|
| 2135 |
|
|
|
| 2136 |
|
|
for (;;)
|
| 2137 |
|
|
{
|
| 2138 |
|
|
char c = *p;
|
| 2139 |
|
|
if (c == '#')
|
| 2140 |
|
|
do
|
| 2141 |
|
|
c = *++p;
|
| 2142 |
|
|
while (c != ',' && c != '\0');
|
| 2143 |
|
|
if (c == ',' || c == '\0')
|
| 2144 |
|
|
{
|
| 2145 |
|
|
p++;
|
| 2146 |
|
|
break;
|
| 2147 |
|
|
}
|
| 2148 |
|
|
|
| 2149 |
|
|
switch (c)
|
| 2150 |
|
|
{
|
| 2151 |
|
|
case '=': case '+': case '*': case '%':
|
| 2152 |
|
|
case 'E': case 'F': case 'G': case 'H':
|
| 2153 |
|
|
case 's': case 'i': case 'n':
|
| 2154 |
|
|
case 'I': case 'J': case 'K': case 'L':
|
| 2155 |
|
|
case 'M': case 'N': case 'O': case 'P':
|
| 2156 |
|
|
/* These don't say anything we care about. */
|
| 2157 |
|
|
break;
|
| 2158 |
|
|
|
| 2159 |
|
|
case '?':
|
| 2160 |
|
|
op_alt[j].reject += 6;
|
| 2161 |
|
|
break;
|
| 2162 |
|
|
case '!':
|
| 2163 |
|
|
op_alt[j].reject += 600;
|
| 2164 |
|
|
break;
|
| 2165 |
|
|
case '&':
|
| 2166 |
|
|
op_alt[j].earlyclobber = 1;
|
| 2167 |
|
|
break;
|
| 2168 |
|
|
|
| 2169 |
|
|
case '0': case '1': case '2': case '3': case '4':
|
| 2170 |
|
|
case '5': case '6': case '7': case '8': case '9':
|
| 2171 |
|
|
{
|
| 2172 |
|
|
char *end;
|
| 2173 |
|
|
op_alt[j].matches = strtoul (p, &end, 10);
|
| 2174 |
|
|
recog_op_alt[op_alt[j].matches][j].matched = i;
|
| 2175 |
|
|
p = end;
|
| 2176 |
|
|
}
|
| 2177 |
|
|
continue;
|
| 2178 |
|
|
|
| 2179 |
|
|
case 'm':
|
| 2180 |
|
|
op_alt[j].memory_ok = 1;
|
| 2181 |
|
|
break;
|
| 2182 |
|
|
case '<':
|
| 2183 |
|
|
op_alt[j].decmem_ok = 1;
|
| 2184 |
|
|
break;
|
| 2185 |
|
|
case '>':
|
| 2186 |
|
|
op_alt[j].incmem_ok = 1;
|
| 2187 |
|
|
break;
|
| 2188 |
|
|
case 'V':
|
| 2189 |
|
|
op_alt[j].nonoffmem_ok = 1;
|
| 2190 |
|
|
break;
|
| 2191 |
|
|
case 'o':
|
| 2192 |
|
|
op_alt[j].offmem_ok = 1;
|
| 2193 |
|
|
break;
|
| 2194 |
|
|
case 'X':
|
| 2195 |
|
|
op_alt[j].anything_ok = 1;
|
| 2196 |
|
|
break;
|
| 2197 |
|
|
|
| 2198 |
|
|
case 'p':
|
| 2199 |
|
|
op_alt[j].is_address = 1;
|
| 2200 |
|
|
op_alt[j].cl = reg_class_subunion[(int) op_alt[j].cl]
|
| 2201 |
|
|
[(int) base_reg_class (VOIDmode, ADDRESS, SCRATCH)];
|
| 2202 |
|
|
break;
|
| 2203 |
|
|
|
| 2204 |
|
|
case 'g':
|
| 2205 |
|
|
case 'r':
|
| 2206 |
|
|
op_alt[j].cl =
|
| 2207 |
|
|
reg_class_subunion[(int) op_alt[j].cl][(int) GENERAL_REGS];
|
| 2208 |
|
|
break;
|
| 2209 |
|
|
|
| 2210 |
|
|
default:
|
| 2211 |
|
|
if (EXTRA_MEMORY_CONSTRAINT (c, p))
|
| 2212 |
|
|
{
|
| 2213 |
|
|
op_alt[j].memory_ok = 1;
|
| 2214 |
|
|
break;
|
| 2215 |
|
|
}
|
| 2216 |
|
|
if (EXTRA_ADDRESS_CONSTRAINT (c, p))
|
| 2217 |
|
|
{
|
| 2218 |
|
|
op_alt[j].is_address = 1;
|
| 2219 |
|
|
op_alt[j].cl
|
| 2220 |
|
|
= (reg_class_subunion
|
| 2221 |
|
|
[(int) op_alt[j].cl]
|
| 2222 |
|
|
[(int) base_reg_class (VOIDmode, ADDRESS,
|
| 2223 |
|
|
SCRATCH)]);
|
| 2224 |
|
|
break;
|
| 2225 |
|
|
}
|
| 2226 |
|
|
|
| 2227 |
|
|
op_alt[j].cl
|
| 2228 |
|
|
= (reg_class_subunion
|
| 2229 |
|
|
[(int) op_alt[j].cl]
|
| 2230 |
|
|
[(int) REG_CLASS_FROM_CONSTRAINT ((unsigned char) c, p)]);
|
| 2231 |
|
|
break;
|
| 2232 |
|
|
}
|
| 2233 |
|
|
p += CONSTRAINT_LEN (c, p);
|
| 2234 |
|
|
}
|
| 2235 |
|
|
}
|
| 2236 |
|
|
}
|
| 2237 |
|
|
}
|
| 2238 |
|
|
|
| 2239 |
|
|
/* Check the operands of an insn against the insn's operand constraints
|
| 2240 |
|
|
and return 1 if they are valid.
|
| 2241 |
|
|
The information about the insn's operands, constraints, operand modes
|
| 2242 |
|
|
etc. is obtained from the global variables set up by extract_insn.
|
| 2243 |
|
|
|
| 2244 |
|
|
WHICH_ALTERNATIVE is set to a number which indicates which
|
| 2245 |
|
|
alternative of constraints was matched: 0 for the first alternative,
|
| 2246 |
|
|
1 for the next, etc.
|
| 2247 |
|
|
|
| 2248 |
|
|
In addition, when two operands are required to match
|
| 2249 |
|
|
and it happens that the output operand is (reg) while the
|
| 2250 |
|
|
input operand is --(reg) or ++(reg) (a pre-inc or pre-dec),
|
| 2251 |
|
|
make the output operand look like the input.
|
| 2252 |
|
|
This is because the output operand is the one the template will print.
|
| 2253 |
|
|
|
| 2254 |
|
|
This is used in final, just before printing the assembler code and by
|
| 2255 |
|
|
the routines that determine an insn's attribute.
|
| 2256 |
|
|
|
| 2257 |
|
|
If STRICT is a positive nonzero value, it means that we have been
|
| 2258 |
|
|
called after reload has been completed. In that case, we must
|
| 2259 |
|
|
do all checks strictly. If it is zero, it means that we have been called
|
| 2260 |
|
|
before reload has completed. In that case, we first try to see if we can
|
| 2261 |
|
|
find an alternative that matches strictly. If not, we try again, this
|
| 2262 |
|
|
time assuming that reload will fix up the insn. This provides a "best
|
| 2263 |
|
|
guess" for the alternative and is used to compute attributes of insns prior
|
| 2264 |
|
|
to reload. A negative value of STRICT is used for this internal call. */
|
| 2265 |
|
|
|
| 2266 |
|
|
struct funny_match
|
| 2267 |
|
|
{
|
| 2268 |
|
|
int this, other;
|
| 2269 |
|
|
};
|
| 2270 |
|
|
|
| 2271 |
|
|
int
|
| 2272 |
|
|
constrain_operands (int strict)
|
| 2273 |
|
|
{
|
| 2274 |
|
|
const char *constraints[MAX_RECOG_OPERANDS];
|
| 2275 |
|
|
int matching_operands[MAX_RECOG_OPERANDS];
|
| 2276 |
|
|
int earlyclobber[MAX_RECOG_OPERANDS];
|
| 2277 |
|
|
int c;
|
| 2278 |
|
|
|
| 2279 |
|
|
struct funny_match funny_match[MAX_RECOG_OPERANDS];
|
| 2280 |
|
|
int funny_match_index;
|
| 2281 |
|
|
|
| 2282 |
|
|
which_alternative = 0;
|
| 2283 |
|
|
if (recog_data.n_operands == 0 || recog_data.n_alternatives == 0)
|
| 2284 |
|
|
return 1;
|
| 2285 |
|
|
|
| 2286 |
|
|
for (c = 0; c < recog_data.n_operands; c++)
|
| 2287 |
|
|
{
|
| 2288 |
|
|
constraints[c] = recog_data.constraints[c];
|
| 2289 |
|
|
matching_operands[c] = -1;
|
| 2290 |
|
|
}
|
| 2291 |
|
|
|
| 2292 |
|
|
do
|
| 2293 |
|
|
{
|
| 2294 |
|
|
int seen_earlyclobber_at = -1;
|
| 2295 |
|
|
int opno;
|
| 2296 |
|
|
int lose = 0;
|
| 2297 |
|
|
funny_match_index = 0;
|
| 2298 |
|
|
|
| 2299 |
|
|
for (opno = 0; opno < recog_data.n_operands; opno++)
|
| 2300 |
|
|
{
|
| 2301 |
|
|
rtx op = recog_data.operand[opno];
|
| 2302 |
|
|
enum machine_mode mode = GET_MODE (op);
|
| 2303 |
|
|
const char *p = constraints[opno];
|
| 2304 |
|
|
int offset = 0;
|
| 2305 |
|
|
int win = 0;
|
| 2306 |
|
|
int val;
|
| 2307 |
|
|
int len;
|
| 2308 |
|
|
|
| 2309 |
|
|
earlyclobber[opno] = 0;
|
| 2310 |
|
|
|
| 2311 |
|
|
/* A unary operator may be accepted by the predicate, but it
|
| 2312 |
|
|
is irrelevant for matching constraints. */
|
| 2313 |
|
|
if (UNARY_P (op))
|
| 2314 |
|
|
op = XEXP (op, 0);
|
| 2315 |
|
|
|
| 2316 |
|
|
if (GET_CODE (op) == SUBREG)
|
| 2317 |
|
|
{
|
| 2318 |
|
|
if (REG_P (SUBREG_REG (op))
|
| 2319 |
|
|
&& REGNO (SUBREG_REG (op)) < FIRST_PSEUDO_REGISTER)
|
| 2320 |
|
|
offset = subreg_regno_offset (REGNO (SUBREG_REG (op)),
|
| 2321 |
|
|
GET_MODE (SUBREG_REG (op)),
|
| 2322 |
|
|
SUBREG_BYTE (op),
|
| 2323 |
|
|
GET_MODE (op));
|
| 2324 |
|
|
op = SUBREG_REG (op);
|
| 2325 |
|
|
}
|
| 2326 |
|
|
|
| 2327 |
|
|
/* An empty constraint or empty alternative
|
| 2328 |
|
|
allows anything which matched the pattern. */
|
| 2329 |
|
|
if (*p == 0 || *p == ',')
|
| 2330 |
|
|
win = 1;
|
| 2331 |
|
|
|
| 2332 |
|
|
do
|
| 2333 |
|
|
switch (c = *p, len = CONSTRAINT_LEN (c, p), c)
|
| 2334 |
|
|
{
|
| 2335 |
|
|
case '\0':
|
| 2336 |
|
|
len = 0;
|
| 2337 |
|
|
break;
|
| 2338 |
|
|
case ',':
|
| 2339 |
|
|
c = '\0';
|
| 2340 |
|
|
break;
|
| 2341 |
|
|
|
| 2342 |
|
|
case '?': case '!': case '*': case '%':
|
| 2343 |
|
|
case '=': case '+':
|
| 2344 |
|
|
break;
|
| 2345 |
|
|
|
| 2346 |
|
|
case '#':
|
| 2347 |
|
|
/* Ignore rest of this alternative as far as
|
| 2348 |
|
|
constraint checking is concerned. */
|
| 2349 |
|
|
do
|
| 2350 |
|
|
p++;
|
| 2351 |
|
|
while (*p && *p != ',');
|
| 2352 |
|
|
len = 0;
|
| 2353 |
|
|
break;
|
| 2354 |
|
|
|
| 2355 |
|
|
case '&':
|
| 2356 |
|
|
earlyclobber[opno] = 1;
|
| 2357 |
|
|
if (seen_earlyclobber_at < 0)
|
| 2358 |
|
|
seen_earlyclobber_at = opno;
|
| 2359 |
|
|
break;
|
| 2360 |
|
|
|
| 2361 |
|
|
case '0': case '1': case '2': case '3': case '4':
|
| 2362 |
|
|
case '5': case '6': case '7': case '8': case '9':
|
| 2363 |
|
|
{
|
| 2364 |
|
|
/* This operand must be the same as a previous one.
|
| 2365 |
|
|
This kind of constraint is used for instructions such
|
| 2366 |
|
|
as add when they take only two operands.
|
| 2367 |
|
|
|
| 2368 |
|
|
Note that the lower-numbered operand is passed first.
|
| 2369 |
|
|
|
| 2370 |
|
|
If we are not testing strictly, assume that this
|
| 2371 |
|
|
constraint will be satisfied. */
|
| 2372 |
|
|
|
| 2373 |
|
|
char *end;
|
| 2374 |
|
|
int match;
|
| 2375 |
|
|
|
| 2376 |
|
|
match = strtoul (p, &end, 10);
|
| 2377 |
|
|
p = end;
|
| 2378 |
|
|
|
| 2379 |
|
|
if (strict < 0)
|
| 2380 |
|
|
val = 1;
|
| 2381 |
|
|
else
|
| 2382 |
|
|
{
|
| 2383 |
|
|
rtx op1 = recog_data.operand[match];
|
| 2384 |
|
|
rtx op2 = recog_data.operand[opno];
|
| 2385 |
|
|
|
| 2386 |
|
|
/* A unary operator may be accepted by the predicate,
|
| 2387 |
|
|
but it is irrelevant for matching constraints. */
|
| 2388 |
|
|
if (UNARY_P (op1))
|
| 2389 |
|
|
op1 = XEXP (op1, 0);
|
| 2390 |
|
|
if (UNARY_P (op2))
|
| 2391 |
|
|
op2 = XEXP (op2, 0);
|
| 2392 |
|
|
|
| 2393 |
|
|
val = operands_match_p (op1, op2);
|
| 2394 |
|
|
}
|
| 2395 |
|
|
|
| 2396 |
|
|
matching_operands[opno] = match;
|
| 2397 |
|
|
matching_operands[match] = opno;
|
| 2398 |
|
|
|
| 2399 |
|
|
if (val != 0)
|
| 2400 |
|
|
win = 1;
|
| 2401 |
|
|
|
| 2402 |
|
|
/* If output is *x and input is *--x, arrange later
|
| 2403 |
|
|
to change the output to *--x as well, since the
|
| 2404 |
|
|
output op is the one that will be printed. */
|
| 2405 |
|
|
if (val == 2 && strict > 0)
|
| 2406 |
|
|
{
|
| 2407 |
|
|
funny_match[funny_match_index].this = opno;
|
| 2408 |
|
|
funny_match[funny_match_index++].other = match;
|
| 2409 |
|
|
}
|
| 2410 |
|
|
}
|
| 2411 |
|
|
len = 0;
|
| 2412 |
|
|
break;
|
| 2413 |
|
|
|
| 2414 |
|
|
case 'p':
|
| 2415 |
|
|
/* p is used for address_operands. When we are called by
|
| 2416 |
|
|
gen_reload, no one will have checked that the address is
|
| 2417 |
|
|
strictly valid, i.e., that all pseudos requiring hard regs
|
| 2418 |
|
|
have gotten them. */
|
| 2419 |
|
|
if (strict <= 0
|
| 2420 |
|
|
|| (strict_memory_address_p (recog_data.operand_mode[opno],
|
| 2421 |
|
|
op)))
|
| 2422 |
|
|
win = 1;
|
| 2423 |
|
|
break;
|
| 2424 |
|
|
|
| 2425 |
|
|
/* No need to check general_operand again;
|
| 2426 |
|
|
it was done in insn-recog.c. Well, except that reload
|
| 2427 |
|
|
doesn't check the validity of its replacements, but
|
| 2428 |
|
|
that should only matter when there's a bug. */
|
| 2429 |
|
|
case 'g':
|
| 2430 |
|
|
/* Anything goes unless it is a REG and really has a hard reg
|
| 2431 |
|
|
but the hard reg is not in the class GENERAL_REGS. */
|
| 2432 |
|
|
if (REG_P (op))
|
| 2433 |
|
|
{
|
| 2434 |
|
|
if (strict < 0
|
| 2435 |
|
|
|| GENERAL_REGS == ALL_REGS
|
| 2436 |
|
|
|| (reload_in_progress
|
| 2437 |
|
|
&& REGNO (op) >= FIRST_PSEUDO_REGISTER)
|
| 2438 |
|
|
|| reg_fits_class_p (op, GENERAL_REGS, offset, mode))
|
| 2439 |
|
|
win = 1;
|
| 2440 |
|
|
}
|
| 2441 |
|
|
else if (strict < 0 || general_operand (op, mode))
|
| 2442 |
|
|
win = 1;
|
| 2443 |
|
|
break;
|
| 2444 |
|
|
|
| 2445 |
|
|
case 'X':
|
| 2446 |
|
|
/* This is used for a MATCH_SCRATCH in the cases when
|
| 2447 |
|
|
we don't actually need anything. So anything goes
|
| 2448 |
|
|
any time. */
|
| 2449 |
|
|
win = 1;
|
| 2450 |
|
|
break;
|
| 2451 |
|
|
|
| 2452 |
|
|
case 'm':
|
| 2453 |
|
|
/* Memory operands must be valid, to the extent
|
| 2454 |
|
|
required by STRICT. */
|
| 2455 |
|
|
if (MEM_P (op))
|
| 2456 |
|
|
{
|
| 2457 |
|
|
if (strict > 0
|
| 2458 |
|
|
&& !strict_memory_address_p (GET_MODE (op),
|
| 2459 |
|
|
XEXP (op, 0)))
|
| 2460 |
|
|
break;
|
| 2461 |
|
|
if (strict == 0
|
| 2462 |
|
|
&& !memory_address_p (GET_MODE (op), XEXP (op, 0)))
|
| 2463 |
|
|
break;
|
| 2464 |
|
|
win = 1;
|
| 2465 |
|
|
}
|
| 2466 |
|
|
/* Before reload, accept what reload can turn into mem. */
|
| 2467 |
|
|
else if (strict < 0 && CONSTANT_P (op))
|
| 2468 |
|
|
win = 1;
|
| 2469 |
|
|
/* During reload, accept a pseudo */
|
| 2470 |
|
|
else if (reload_in_progress && REG_P (op)
|
| 2471 |
|
|
&& REGNO (op) >= FIRST_PSEUDO_REGISTER)
|
| 2472 |
|
|
win = 1;
|
| 2473 |
|
|
break;
|
| 2474 |
|
|
|
| 2475 |
|
|
case '<':
|
| 2476 |
|
|
if (MEM_P (op)
|
| 2477 |
|
|
&& (GET_CODE (XEXP (op, 0)) == PRE_DEC
|
| 2478 |
|
|
|| GET_CODE (XEXP (op, 0)) == POST_DEC))
|
| 2479 |
|
|
win = 1;
|
| 2480 |
|
|
break;
|
| 2481 |
|
|
|
| 2482 |
|
|
case '>':
|
| 2483 |
|
|
if (MEM_P (op)
|
| 2484 |
|
|
&& (GET_CODE (XEXP (op, 0)) == PRE_INC
|
| 2485 |
|
|
|| GET_CODE (XEXP (op, 0)) == POST_INC))
|
| 2486 |
|
|
win = 1;
|
| 2487 |
|
|
break;
|
| 2488 |
|
|
|
| 2489 |
|
|
case 'E':
|
| 2490 |
|
|
case 'F':
|
| 2491 |
|
|
if (GET_CODE (op) == CONST_DOUBLE
|
| 2492 |
|
|
|| (GET_CODE (op) == CONST_VECTOR
|
| 2493 |
|
|
&& GET_MODE_CLASS (GET_MODE (op)) == MODE_VECTOR_FLOAT))
|
| 2494 |
|
|
win = 1;
|
| 2495 |
|
|
break;
|
| 2496 |
|
|
|
| 2497 |
|
|
case 'G':
|
| 2498 |
|
|
case 'H':
|
| 2499 |
|
|
if (GET_CODE (op) == CONST_DOUBLE
|
| 2500 |
|
|
&& CONST_DOUBLE_OK_FOR_CONSTRAINT_P (op, c, p))
|
| 2501 |
|
|
win = 1;
|
| 2502 |
|
|
break;
|
| 2503 |
|
|
|
| 2504 |
|
|
case 's':
|
| 2505 |
|
|
if (GET_CODE (op) == CONST_INT
|
| 2506 |
|
|
|| (GET_CODE (op) == CONST_DOUBLE
|
| 2507 |
|
|
&& GET_MODE (op) == VOIDmode))
|
| 2508 |
|
|
break;
|
| 2509 |
|
|
case 'i':
|
| 2510 |
|
|
if (CONSTANT_P (op))
|
| 2511 |
|
|
win = 1;
|
| 2512 |
|
|
break;
|
| 2513 |
|
|
|
| 2514 |
|
|
case 'n':
|
| 2515 |
|
|
if (GET_CODE (op) == CONST_INT
|
| 2516 |
|
|
|| (GET_CODE (op) == CONST_DOUBLE
|
| 2517 |
|
|
&& GET_MODE (op) == VOIDmode))
|
| 2518 |
|
|
win = 1;
|
| 2519 |
|
|
break;
|
| 2520 |
|
|
|
| 2521 |
|
|
case 'I':
|
| 2522 |
|
|
case 'J':
|
| 2523 |
|
|
case 'K':
|
| 2524 |
|
|
case 'L':
|
| 2525 |
|
|
case 'M':
|
| 2526 |
|
|
case 'N':
|
| 2527 |
|
|
case 'O':
|
| 2528 |
|
|
case 'P':
|
| 2529 |
|
|
if (GET_CODE (op) == CONST_INT
|
| 2530 |
|
|
&& CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), c, p))
|
| 2531 |
|
|
win = 1;
|
| 2532 |
|
|
break;
|
| 2533 |
|
|
|
| 2534 |
|
|
case 'V':
|
| 2535 |
|
|
if (MEM_P (op)
|
| 2536 |
|
|
&& ((strict > 0 && ! offsettable_memref_p (op))
|
| 2537 |
|
|
|| (strict < 0
|
| 2538 |
|
|
&& !(CONSTANT_P (op) || MEM_P (op)))
|
| 2539 |
|
|
|| (reload_in_progress
|
| 2540 |
|
|
&& !(REG_P (op)
|
| 2541 |
|
|
&& REGNO (op) >= FIRST_PSEUDO_REGISTER))))
|
| 2542 |
|
|
win = 1;
|
| 2543 |
|
|
break;
|
| 2544 |
|
|
|
| 2545 |
|
|
case 'o':
|
| 2546 |
|
|
if ((strict > 0 && offsettable_memref_p (op))
|
| 2547 |
|
|
|| (strict == 0 && offsettable_nonstrict_memref_p (op))
|
| 2548 |
|
|
/* Before reload, accept what reload can handle. */
|
| 2549 |
|
|
|| (strict < 0
|
| 2550 |
|
|
&& (CONSTANT_P (op) || MEM_P (op)))
|
| 2551 |
|
|
/* During reload, accept a pseudo */
|
| 2552 |
|
|
|| (reload_in_progress && REG_P (op)
|
| 2553 |
|
|
&& REGNO (op) >= FIRST_PSEUDO_REGISTER))
|
| 2554 |
|
|
win = 1;
|
| 2555 |
|
|
break;
|
| 2556 |
|
|
|
| 2557 |
|
|
default:
|
| 2558 |
|
|
{
|
| 2559 |
|
|
enum reg_class cl;
|
| 2560 |
|
|
|
| 2561 |
|
|
cl = (c == 'r'
|
| 2562 |
|
|
? GENERAL_REGS : REG_CLASS_FROM_CONSTRAINT (c, p));
|
| 2563 |
|
|
if (cl != NO_REGS)
|
| 2564 |
|
|
{
|
| 2565 |
|
|
if (strict < 0
|
| 2566 |
|
|
|| (strict == 0
|
| 2567 |
|
|
&& REG_P (op)
|
| 2568 |
|
|
&& REGNO (op) >= FIRST_PSEUDO_REGISTER)
|
| 2569 |
|
|
|| (strict == 0 && GET_CODE (op) == SCRATCH)
|
| 2570 |
|
|
|| (REG_P (op)
|
| 2571 |
|
|
&& reg_fits_class_p (op, cl, offset, mode)))
|
| 2572 |
|
|
win = 1;
|
| 2573 |
|
|
}
|
| 2574 |
|
|
#ifdef EXTRA_CONSTRAINT_STR
|
| 2575 |
|
|
else if (EXTRA_CONSTRAINT_STR (op, c, p))
|
| 2576 |
|
|
win = 1;
|
| 2577 |
|
|
|
| 2578 |
|
|
else if (EXTRA_MEMORY_CONSTRAINT (c, p)
|
| 2579 |
|
|
/* Every memory operand can be reloaded to fit. */
|
| 2580 |
|
|
&& ((strict < 0 && MEM_P (op))
|
| 2581 |
|
|
/* Before reload, accept what reload can turn
|
| 2582 |
|
|
into mem. */
|
| 2583 |
|
|
|| (strict < 0 && CONSTANT_P (op))
|
| 2584 |
|
|
/* During reload, accept a pseudo */
|
| 2585 |
|
|
|| (reload_in_progress && REG_P (op)
|
| 2586 |
|
|
&& REGNO (op) >= FIRST_PSEUDO_REGISTER)))
|
| 2587 |
|
|
win = 1;
|
| 2588 |
|
|
else if (EXTRA_ADDRESS_CONSTRAINT (c, p)
|
| 2589 |
|
|
/* Every address operand can be reloaded to fit. */
|
| 2590 |
|
|
&& strict < 0)
|
| 2591 |
|
|
win = 1;
|
| 2592 |
|
|
#endif
|
| 2593 |
|
|
break;
|
| 2594 |
|
|
}
|
| 2595 |
|
|
}
|
| 2596 |
|
|
while (p += len, c);
|
| 2597 |
|
|
|
| 2598 |
|
|
constraints[opno] = p;
|
| 2599 |
|
|
/* If this operand did not win somehow,
|
| 2600 |
|
|
this alternative loses. */
|
| 2601 |
|
|
if (! win)
|
| 2602 |
|
|
lose = 1;
|
| 2603 |
|
|
}
|
| 2604 |
|
|
/* This alternative won; the operands are ok.
|
| 2605 |
|
|
Change whichever operands this alternative says to change. */
|
| 2606 |
|
|
if (! lose)
|
| 2607 |
|
|
{
|
| 2608 |
|
|
int opno, eopno;
|
| 2609 |
|
|
|
| 2610 |
|
|
/* See if any earlyclobber operand conflicts with some other
|
| 2611 |
|
|
operand. */
|
| 2612 |
|
|
|
| 2613 |
|
|
if (strict > 0 && seen_earlyclobber_at >= 0)
|
| 2614 |
|
|
for (eopno = seen_earlyclobber_at;
|
| 2615 |
|
|
eopno < recog_data.n_operands;
|
| 2616 |
|
|
eopno++)
|
| 2617 |
|
|
/* Ignore earlyclobber operands now in memory,
|
| 2618 |
|
|
because we would often report failure when we have
|
| 2619 |
|
|
two memory operands, one of which was formerly a REG. */
|
| 2620 |
|
|
if (earlyclobber[eopno]
|
| 2621 |
|
|
&& REG_P (recog_data.operand[eopno]))
|
| 2622 |
|
|
for (opno = 0; opno < recog_data.n_operands; opno++)
|
| 2623 |
|
|
if ((MEM_P (recog_data.operand[opno])
|
| 2624 |
|
|
|| recog_data.operand_type[opno] != OP_OUT)
|
| 2625 |
|
|
&& opno != eopno
|
| 2626 |
|
|
/* Ignore things like match_operator operands. */
|
| 2627 |
|
|
&& *recog_data.constraints[opno] != 0
|
| 2628 |
|
|
&& ! (matching_operands[opno] == eopno
|
| 2629 |
|
|
&& operands_match_p (recog_data.operand[opno],
|
| 2630 |
|
|
recog_data.operand[eopno]))
|
| 2631 |
|
|
&& ! safe_from_earlyclobber (recog_data.operand[opno],
|
| 2632 |
|
|
recog_data.operand[eopno]))
|
| 2633 |
|
|
lose = 1;
|
| 2634 |
|
|
|
| 2635 |
|
|
if (! lose)
|
| 2636 |
|
|
{
|
| 2637 |
|
|
while (--funny_match_index >= 0)
|
| 2638 |
|
|
{
|
| 2639 |
|
|
recog_data.operand[funny_match[funny_match_index].other]
|
| 2640 |
|
|
= recog_data.operand[funny_match[funny_match_index].this];
|
| 2641 |
|
|
}
|
| 2642 |
|
|
|
| 2643 |
|
|
return 1;
|
| 2644 |
|
|
}
|
| 2645 |
|
|
}
|
| 2646 |
|
|
|
| 2647 |
|
|
which_alternative++;
|
| 2648 |
|
|
}
|
| 2649 |
|
|
while (which_alternative < recog_data.n_alternatives);
|
| 2650 |
|
|
|
| 2651 |
|
|
which_alternative = -1;
|
| 2652 |
|
|
/* If we are about to reject this, but we are not to test strictly,
|
| 2653 |
|
|
try a very loose test. Only return failure if it fails also. */
|
| 2654 |
|
|
if (strict == 0)
|
| 2655 |
|
|
return constrain_operands (-1);
|
| 2656 |
|
|
else
|
| 2657 |
|
|
return 0;
|
| 2658 |
|
|
}
|
| 2659 |
|
|
|
| 2660 |
|
|
/* Return 1 iff OPERAND (assumed to be a REG rtx)
|
| 2661 |
|
|
is a hard reg in class CLASS when its regno is offset by OFFSET
|
| 2662 |
|
|
and changed to mode MODE.
|
| 2663 |
|
|
If REG occupies multiple hard regs, all of them must be in CLASS. */
|
| 2664 |
|
|
|
| 2665 |
|
|
int
|
| 2666 |
|
|
reg_fits_class_p (rtx operand, enum reg_class cl, int offset,
|
| 2667 |
|
|
enum machine_mode mode)
|
| 2668 |
|
|
{
|
| 2669 |
|
|
int regno = REGNO (operand);
|
| 2670 |
|
|
|
| 2671 |
|
|
if (cl == NO_REGS)
|
| 2672 |
|
|
return 0;
|
| 2673 |
|
|
|
| 2674 |
|
|
if (regno < FIRST_PSEUDO_REGISTER
|
| 2675 |
|
|
&& TEST_HARD_REG_BIT (reg_class_contents[(int) cl],
|
| 2676 |
|
|
regno + offset))
|
| 2677 |
|
|
{
|
| 2678 |
|
|
int sr;
|
| 2679 |
|
|
regno += offset;
|
| 2680 |
|
|
for (sr = hard_regno_nregs[regno][mode] - 1;
|
| 2681 |
|
|
sr > 0; sr--)
|
| 2682 |
|
|
if (! TEST_HARD_REG_BIT (reg_class_contents[(int) cl],
|
| 2683 |
|
|
regno + sr))
|
| 2684 |
|
|
break;
|
| 2685 |
|
|
return sr == 0;
|
| 2686 |
|
|
}
|
| 2687 |
|
|
|
| 2688 |
|
|
return 0;
|
| 2689 |
|
|
}
|
| 2690 |
|
|
|
| 2691 |
|
|
/* Split single instruction. Helper function for split_all_insns and
|
| 2692 |
|
|
split_all_insns_noflow. Return last insn in the sequence if successful,
|
| 2693 |
|
|
or NULL if unsuccessful. */
|
| 2694 |
|
|
|
| 2695 |
|
|
static rtx
|
| 2696 |
|
|
split_insn (rtx insn)
|
| 2697 |
|
|
{
|
| 2698 |
|
|
/* Split insns here to get max fine-grain parallelism. */
|
| 2699 |
|
|
rtx first = PREV_INSN (insn);
|
| 2700 |
|
|
rtx last = try_split (PATTERN (insn), insn, 1);
|
| 2701 |
|
|
|
| 2702 |
|
|
if (last == insn)
|
| 2703 |
|
|
return NULL_RTX;
|
| 2704 |
|
|
|
| 2705 |
|
|
/* try_split returns the NOTE that INSN became. */
|
| 2706 |
|
|
SET_INSN_DELETED (insn);
|
| 2707 |
|
|
|
| 2708 |
|
|
/* ??? Coddle to md files that generate subregs in post-reload
|
| 2709 |
|
|
splitters instead of computing the proper hard register. */
|
| 2710 |
|
|
if (reload_completed && first != last)
|
| 2711 |
|
|
{
|
| 2712 |
|
|
first = NEXT_INSN (first);
|
| 2713 |
|
|
for (;;)
|
| 2714 |
|
|
{
|
| 2715 |
|
|
if (INSN_P (first))
|
| 2716 |
|
|
cleanup_subreg_operands (first);
|
| 2717 |
|
|
if (first == last)
|
| 2718 |
|
|
break;
|
| 2719 |
|
|
first = NEXT_INSN (first);
|
| 2720 |
|
|
}
|
| 2721 |
|
|
}
|
| 2722 |
|
|
return last;
|
| 2723 |
|
|
}
|
| 2724 |
|
|
|
| 2725 |
|
|
/* Split all insns in the function. If UPD_LIFE, update life info after. */
|
| 2726 |
|
|
|
| 2727 |
|
|
void
|
| 2728 |
|
|
split_all_insns (int upd_life)
|
| 2729 |
|
|
{
|
| 2730 |
|
|
sbitmap blocks;
|
| 2731 |
|
|
bool changed;
|
| 2732 |
|
|
basic_block bb;
|
| 2733 |
|
|
|
| 2734 |
|
|
blocks = sbitmap_alloc (last_basic_block);
|
| 2735 |
|
|
sbitmap_zero (blocks);
|
| 2736 |
|
|
changed = false;
|
| 2737 |
|
|
|
| 2738 |
|
|
FOR_EACH_BB_REVERSE (bb)
|
| 2739 |
|
|
{
|
| 2740 |
|
|
rtx insn, next;
|
| 2741 |
|
|
bool finish = false;
|
| 2742 |
|
|
|
| 2743 |
|
|
for (insn = BB_HEAD (bb); !finish ; insn = next)
|
| 2744 |
|
|
{
|
| 2745 |
|
|
/* Can't use `next_real_insn' because that might go across
|
| 2746 |
|
|
CODE_LABELS and short-out basic blocks. */
|
| 2747 |
|
|
next = NEXT_INSN (insn);
|
| 2748 |
|
|
finish = (insn == BB_END (bb));
|
| 2749 |
|
|
if (INSN_P (insn))
|
| 2750 |
|
|
{
|
| 2751 |
|
|
rtx set = single_set (insn);
|
| 2752 |
|
|
|
| 2753 |
|
|
/* Don't split no-op move insns. These should silently
|
| 2754 |
|
|
disappear later in final. Splitting such insns would
|
| 2755 |
|
|
break the code that handles REG_NO_CONFLICT blocks. */
|
| 2756 |
|
|
if (set && set_noop_p (set))
|
| 2757 |
|
|
{
|
| 2758 |
|
|
/* Nops get in the way while scheduling, so delete them
|
| 2759 |
|
|
now if register allocation has already been done. It
|
| 2760 |
|
|
is too risky to try to do this before register
|
| 2761 |
|
|
allocation, and there are unlikely to be very many
|
| 2762 |
|
|
nops then anyways. */
|
| 2763 |
|
|
if (reload_completed)
|
| 2764 |
|
|
{
|
| 2765 |
|
|
/* If the no-op set has a REG_UNUSED note, we need
|
| 2766 |
|
|
to update liveness information. */
|
| 2767 |
|
|
if (find_reg_note (insn, REG_UNUSED, NULL_RTX))
|
| 2768 |
|
|
{
|
| 2769 |
|
|
SET_BIT (blocks, bb->index);
|
| 2770 |
|
|
changed = true;
|
| 2771 |
|
|
}
|
| 2772 |
|
|
/* ??? Is life info affected by deleting edges? */
|
| 2773 |
|
|
delete_insn_and_edges (insn);
|
| 2774 |
|
|
}
|
| 2775 |
|
|
}
|
| 2776 |
|
|
else
|
| 2777 |
|
|
{
|
| 2778 |
|
|
rtx last = split_insn (insn);
|
| 2779 |
|
|
if (last)
|
| 2780 |
|
|
{
|
| 2781 |
|
|
/* The split sequence may include barrier, but the
|
| 2782 |
|
|
BB boundary we are interested in will be set to
|
| 2783 |
|
|
previous one. */
|
| 2784 |
|
|
|
| 2785 |
|
|
while (BARRIER_P (last))
|
| 2786 |
|
|
last = PREV_INSN (last);
|
| 2787 |
|
|
SET_BIT (blocks, bb->index);
|
| 2788 |
|
|
changed = true;
|
| 2789 |
|
|
}
|
| 2790 |
|
|
}
|
| 2791 |
|
|
}
|
| 2792 |
|
|
}
|
| 2793 |
|
|
}
|
| 2794 |
|
|
|
| 2795 |
|
|
if (changed)
|
| 2796 |
|
|
{
|
| 2797 |
|
|
int old_last_basic_block = last_basic_block;
|
| 2798 |
|
|
|
| 2799 |
|
|
find_many_sub_basic_blocks (blocks);
|
| 2800 |
|
|
|
| 2801 |
|
|
if (old_last_basic_block != last_basic_block && upd_life)
|
| 2802 |
|
|
blocks = sbitmap_resize (blocks, last_basic_block, 1);
|
| 2803 |
|
|
}
|
| 2804 |
|
|
|
| 2805 |
|
|
if (changed && upd_life)
|
| 2806 |
|
|
update_life_info (blocks, UPDATE_LIFE_GLOBAL_RM_NOTES,
|
| 2807 |
|
|
PROP_DEATH_NOTES);
|
| 2808 |
|
|
|
| 2809 |
|
|
#ifdef ENABLE_CHECKING
|
| 2810 |
|
|
verify_flow_info ();
|
| 2811 |
|
|
#endif
|
| 2812 |
|
|
|
| 2813 |
|
|
sbitmap_free (blocks);
|
| 2814 |
|
|
}
|
| 2815 |
|
|
|
| 2816 |
|
|
/* Same as split_all_insns, but do not expect CFG to be available.
|
| 2817 |
|
|
Used by machine dependent reorg passes. */
|
| 2818 |
|
|
|
| 2819 |
|
|
unsigned int
|
| 2820 |
|
|
split_all_insns_noflow (void)
|
| 2821 |
|
|
{
|
| 2822 |
|
|
rtx next, insn;
|
| 2823 |
|
|
|
| 2824 |
|
|
for (insn = get_insns (); insn; insn = next)
|
| 2825 |
|
|
{
|
| 2826 |
|
|
next = NEXT_INSN (insn);
|
| 2827 |
|
|
if (INSN_P (insn))
|
| 2828 |
|
|
{
|
| 2829 |
|
|
/* Don't split no-op move insns. These should silently
|
| 2830 |
|
|
disappear later in final. Splitting such insns would
|
| 2831 |
|
|
break the code that handles REG_NO_CONFLICT blocks. */
|
| 2832 |
|
|
rtx set = single_set (insn);
|
| 2833 |
|
|
if (set && set_noop_p (set))
|
| 2834 |
|
|
{
|
| 2835 |
|
|
/* Nops get in the way while scheduling, so delete them
|
| 2836 |
|
|
now if register allocation has already been done. It
|
| 2837 |
|
|
is too risky to try to do this before register
|
| 2838 |
|
|
allocation, and there are unlikely to be very many
|
| 2839 |
|
|
nops then anyways.
|
| 2840 |
|
|
|
| 2841 |
|
|
??? Should we use delete_insn when the CFG isn't valid? */
|
| 2842 |
|
|
if (reload_completed)
|
| 2843 |
|
|
delete_insn_and_edges (insn);
|
| 2844 |
|
|
}
|
| 2845 |
|
|
else
|
| 2846 |
|
|
split_insn (insn);
|
| 2847 |
|
|
}
|
| 2848 |
|
|
}
|
| 2849 |
|
|
return 0;
|
| 2850 |
|
|
}
|
| 2851 |
|
|
|
| 2852 |
|
|
#ifdef HAVE_peephole2
|
| 2853 |
|
|
struct peep2_insn_data
|
| 2854 |
|
|
{
|
| 2855 |
|
|
rtx insn;
|
| 2856 |
|
|
regset live_before;
|
| 2857 |
|
|
};
|
| 2858 |
|
|
|
| 2859 |
|
|
static struct peep2_insn_data peep2_insn_data[MAX_INSNS_PER_PEEP2 + 1];
|
| 2860 |
|
|
static int peep2_current;
|
| 2861 |
|
|
/* The number of instructions available to match a peep2. */
|
| 2862 |
|
|
int peep2_current_count;
|
| 2863 |
|
|
|
| 2864 |
|
|
/* A non-insn marker indicating the last insn of the block.
|
| 2865 |
|
|
The live_before regset for this element is correct, indicating
|
| 2866 |
|
|
global_live_at_end for the block. */
|
| 2867 |
|
|
#define PEEP2_EOB pc_rtx
|
| 2868 |
|
|
|
| 2869 |
|
|
/* Return the Nth non-note insn after `current', or return NULL_RTX if it
|
| 2870 |
|
|
does not exist. Used by the recognizer to find the next insn to match
|
| 2871 |
|
|
in a multi-insn pattern. */
|
| 2872 |
|
|
|
| 2873 |
|
|
rtx
|
| 2874 |
|
|
peep2_next_insn (int n)
|
| 2875 |
|
|
{
|
| 2876 |
|
|
gcc_assert (n <= peep2_current_count);
|
| 2877 |
|
|
|
| 2878 |
|
|
n += peep2_current;
|
| 2879 |
|
|
if (n >= MAX_INSNS_PER_PEEP2 + 1)
|
| 2880 |
|
|
n -= MAX_INSNS_PER_PEEP2 + 1;
|
| 2881 |
|
|
|
| 2882 |
|
|
return peep2_insn_data[n].insn;
|
| 2883 |
|
|
}
|
| 2884 |
|
|
|
| 2885 |
|
|
/* Return true if REGNO is dead before the Nth non-note insn
|
| 2886 |
|
|
after `current'. */
|
| 2887 |
|
|
|
| 2888 |
|
|
int
|
| 2889 |
|
|
peep2_regno_dead_p (int ofs, int regno)
|
| 2890 |
|
|
{
|
| 2891 |
|
|
gcc_assert (ofs < MAX_INSNS_PER_PEEP2 + 1);
|
| 2892 |
|
|
|
| 2893 |
|
|
ofs += peep2_current;
|
| 2894 |
|
|
if (ofs >= MAX_INSNS_PER_PEEP2 + 1)
|
| 2895 |
|
|
ofs -= MAX_INSNS_PER_PEEP2 + 1;
|
| 2896 |
|
|
|
| 2897 |
|
|
gcc_assert (peep2_insn_data[ofs].insn != NULL_RTX);
|
| 2898 |
|
|
|
| 2899 |
|
|
return ! REGNO_REG_SET_P (peep2_insn_data[ofs].live_before, regno);
|
| 2900 |
|
|
}
|
| 2901 |
|
|
|
| 2902 |
|
|
/* Similarly for a REG. */
|
| 2903 |
|
|
|
| 2904 |
|
|
int
|
| 2905 |
|
|
peep2_reg_dead_p (int ofs, rtx reg)
|
| 2906 |
|
|
{
|
| 2907 |
|
|
int regno, n;
|
| 2908 |
|
|
|
| 2909 |
|
|
gcc_assert (ofs < MAX_INSNS_PER_PEEP2 + 1);
|
| 2910 |
|
|
|
| 2911 |
|
|
ofs += peep2_current;
|
| 2912 |
|
|
if (ofs >= MAX_INSNS_PER_PEEP2 + 1)
|
| 2913 |
|
|
ofs -= MAX_INSNS_PER_PEEP2 + 1;
|
| 2914 |
|
|
|
| 2915 |
|
|
gcc_assert (peep2_insn_data[ofs].insn != NULL_RTX);
|
| 2916 |
|
|
|
| 2917 |
|
|
regno = REGNO (reg);
|
| 2918 |
|
|
n = hard_regno_nregs[regno][GET_MODE (reg)];
|
| 2919 |
|
|
while (--n >= 0)
|
| 2920 |
|
|
if (REGNO_REG_SET_P (peep2_insn_data[ofs].live_before, regno + n))
|
| 2921 |
|
|
return 0;
|
| 2922 |
|
|
return 1;
|
| 2923 |
|
|
}
|
| 2924 |
|
|
|
| 2925 |
|
|
/* Try to find a hard register of mode MODE, matching the register class in
|
| 2926 |
|
|
CLASS_STR, which is available at the beginning of insn CURRENT_INSN and
|
| 2927 |
|
|
remains available until the end of LAST_INSN. LAST_INSN may be NULL_RTX,
|
| 2928 |
|
|
in which case the only condition is that the register must be available
|
| 2929 |
|
|
before CURRENT_INSN.
|
| 2930 |
|
|
Registers that already have bits set in REG_SET will not be considered.
|
| 2931 |
|
|
|
| 2932 |
|
|
If an appropriate register is available, it will be returned and the
|
| 2933 |
|
|
corresponding bit(s) in REG_SET will be set; otherwise, NULL_RTX is
|
| 2934 |
|
|
returned. */
|
| 2935 |
|
|
|
| 2936 |
|
|
rtx
|
| 2937 |
|
|
peep2_find_free_register (int from, int to, const char *class_str,
|
| 2938 |
|
|
enum machine_mode mode, HARD_REG_SET *reg_set)
|
| 2939 |
|
|
{
|
| 2940 |
|
|
static int search_ofs;
|
| 2941 |
|
|
enum reg_class cl;
|
| 2942 |
|
|
HARD_REG_SET live;
|
| 2943 |
|
|
int i;
|
| 2944 |
|
|
|
| 2945 |
|
|
gcc_assert (from < MAX_INSNS_PER_PEEP2 + 1);
|
| 2946 |
|
|
gcc_assert (to < MAX_INSNS_PER_PEEP2 + 1);
|
| 2947 |
|
|
|
| 2948 |
|
|
from += peep2_current;
|
| 2949 |
|
|
if (from >= MAX_INSNS_PER_PEEP2 + 1)
|
| 2950 |
|
|
from -= MAX_INSNS_PER_PEEP2 + 1;
|
| 2951 |
|
|
to += peep2_current;
|
| 2952 |
|
|
if (to >= MAX_INSNS_PER_PEEP2 + 1)
|
| 2953 |
|
|
to -= MAX_INSNS_PER_PEEP2 + 1;
|
| 2954 |
|
|
|
| 2955 |
|
|
gcc_assert (peep2_insn_data[from].insn != NULL_RTX);
|
| 2956 |
|
|
REG_SET_TO_HARD_REG_SET (live, peep2_insn_data[from].live_before);
|
| 2957 |
|
|
|
| 2958 |
|
|
while (from != to)
|
| 2959 |
|
|
{
|
| 2960 |
|
|
HARD_REG_SET this_live;
|
| 2961 |
|
|
|
| 2962 |
|
|
if (++from >= MAX_INSNS_PER_PEEP2 + 1)
|
| 2963 |
|
|
from = 0;
|
| 2964 |
|
|
gcc_assert (peep2_insn_data[from].insn != NULL_RTX);
|
| 2965 |
|
|
REG_SET_TO_HARD_REG_SET (this_live, peep2_insn_data[from].live_before);
|
| 2966 |
|
|
IOR_HARD_REG_SET (live, this_live);
|
| 2967 |
|
|
}
|
| 2968 |
|
|
|
| 2969 |
|
|
cl = (class_str[0] == 'r' ? GENERAL_REGS
|
| 2970 |
|
|
: REG_CLASS_FROM_CONSTRAINT (class_str[0], class_str));
|
| 2971 |
|
|
|
| 2972 |
|
|
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
|
| 2973 |
|
|
{
|
| 2974 |
|
|
int raw_regno, regno, success, j;
|
| 2975 |
|
|
|
| 2976 |
|
|
/* Distribute the free registers as much as possible. */
|
| 2977 |
|
|
raw_regno = search_ofs + i;
|
| 2978 |
|
|
if (raw_regno >= FIRST_PSEUDO_REGISTER)
|
| 2979 |
|
|
raw_regno -= FIRST_PSEUDO_REGISTER;
|
| 2980 |
|
|
#ifdef REG_ALLOC_ORDER
|
| 2981 |
|
|
regno = reg_alloc_order[raw_regno];
|
| 2982 |
|
|
#else
|
| 2983 |
|
|
regno = raw_regno;
|
| 2984 |
|
|
#endif
|
| 2985 |
|
|
|
| 2986 |
|
|
/* Don't allocate fixed registers. */
|
| 2987 |
|
|
if (fixed_regs[regno])
|
| 2988 |
|
|
continue;
|
| 2989 |
|
|
/* Make sure the register is of the right class. */
|
| 2990 |
|
|
if (! TEST_HARD_REG_BIT (reg_class_contents[cl], regno))
|
| 2991 |
|
|
continue;
|
| 2992 |
|
|
/* And can support the mode we need. */
|
| 2993 |
|
|
if (! HARD_REGNO_MODE_OK (regno, mode))
|
| 2994 |
|
|
continue;
|
| 2995 |
|
|
/* And that we don't create an extra save/restore. */
|
| 2996 |
|
|
if (! call_used_regs[regno] && ! regs_ever_live[regno])
|
| 2997 |
|
|
continue;
|
| 2998 |
|
|
/* And we don't clobber traceback for noreturn functions. */
|
| 2999 |
|
|
if ((regno == FRAME_POINTER_REGNUM || regno == HARD_FRAME_POINTER_REGNUM)
|
| 3000 |
|
|
&& (! reload_completed || frame_pointer_needed))
|
| 3001 |
|
|
continue;
|
| 3002 |
|
|
|
| 3003 |
|
|
success = 1;
|
| 3004 |
|
|
for (j = hard_regno_nregs[regno][mode] - 1; j >= 0; j--)
|
| 3005 |
|
|
{
|
| 3006 |
|
|
if (TEST_HARD_REG_BIT (*reg_set, regno + j)
|
| 3007 |
|
|
|| TEST_HARD_REG_BIT (live, regno + j))
|
| 3008 |
|
|
{
|
| 3009 |
|
|
success = 0;
|
| 3010 |
|
|
break;
|
| 3011 |
|
|
}
|
| 3012 |
|
|
}
|
| 3013 |
|
|
if (success)
|
| 3014 |
|
|
{
|
| 3015 |
|
|
for (j = hard_regno_nregs[regno][mode] - 1; j >= 0; j--)
|
| 3016 |
|
|
SET_HARD_REG_BIT (*reg_set, regno + j);
|
| 3017 |
|
|
|
| 3018 |
|
|
/* Start the next search with the next register. */
|
| 3019 |
|
|
if (++raw_regno >= FIRST_PSEUDO_REGISTER)
|
| 3020 |
|
|
raw_regno = 0;
|
| 3021 |
|
|
search_ofs = raw_regno;
|
| 3022 |
|
|
|
| 3023 |
|
|
return gen_rtx_REG (mode, regno);
|
| 3024 |
|
|
}
|
| 3025 |
|
|
}
|
| 3026 |
|
|
|
| 3027 |
|
|
search_ofs = 0;
|
| 3028 |
|
|
return NULL_RTX;
|
| 3029 |
|
|
}
|
| 3030 |
|
|
|
| 3031 |
|
|
/* Perform the peephole2 optimization pass. */
|
| 3032 |
|
|
|
| 3033 |
|
|
static void
|
| 3034 |
|
|
peephole2_optimize (void)
|
| 3035 |
|
|
{
|
| 3036 |
|
|
rtx insn, prev;
|
| 3037 |
|
|
regset live;
|
| 3038 |
|
|
int i;
|
| 3039 |
|
|
basic_block bb;
|
| 3040 |
|
|
#ifdef HAVE_conditional_execution
|
| 3041 |
|
|
sbitmap blocks;
|
| 3042 |
|
|
bool changed;
|
| 3043 |
|
|
#endif
|
| 3044 |
|
|
bool do_cleanup_cfg = false;
|
| 3045 |
|
|
bool do_global_life_update = false;
|
| 3046 |
|
|
bool do_rebuild_jump_labels = false;
|
| 3047 |
|
|
|
| 3048 |
|
|
/* Initialize the regsets we're going to use. */
|
| 3049 |
|
|
for (i = 0; i < MAX_INSNS_PER_PEEP2 + 1; ++i)
|
| 3050 |
|
|
peep2_insn_data[i].live_before = ALLOC_REG_SET (®_obstack);
|
| 3051 |
|
|
live = ALLOC_REG_SET (®_obstack);
|
| 3052 |
|
|
|
| 3053 |
|
|
#ifdef HAVE_conditional_execution
|
| 3054 |
|
|
blocks = sbitmap_alloc (last_basic_block);
|
| 3055 |
|
|
sbitmap_zero (blocks);
|
| 3056 |
|
|
changed = false;
|
| 3057 |
|
|
#else
|
| 3058 |
|
|
count_or_remove_death_notes (NULL, 1);
|
| 3059 |
|
|
#endif
|
| 3060 |
|
|
|
| 3061 |
|
|
FOR_EACH_BB_REVERSE (bb)
|
| 3062 |
|
|
{
|
| 3063 |
|
|
struct propagate_block_info *pbi;
|
| 3064 |
|
|
reg_set_iterator rsi;
|
| 3065 |
|
|
unsigned int j;
|
| 3066 |
|
|
|
| 3067 |
|
|
/* Indicate that all slots except the last holds invalid data. */
|
| 3068 |
|
|
for (i = 0; i < MAX_INSNS_PER_PEEP2; ++i)
|
| 3069 |
|
|
peep2_insn_data[i].insn = NULL_RTX;
|
| 3070 |
|
|
peep2_current_count = 0;
|
| 3071 |
|
|
|
| 3072 |
|
|
/* Indicate that the last slot contains live_after data. */
|
| 3073 |
|
|
peep2_insn_data[MAX_INSNS_PER_PEEP2].insn = PEEP2_EOB;
|
| 3074 |
|
|
peep2_current = MAX_INSNS_PER_PEEP2;
|
| 3075 |
|
|
|
| 3076 |
|
|
/* Start up propagation. */
|
| 3077 |
|
|
COPY_REG_SET (live, bb->il.rtl->global_live_at_end);
|
| 3078 |
|
|
COPY_REG_SET (peep2_insn_data[MAX_INSNS_PER_PEEP2].live_before, live);
|
| 3079 |
|
|
|
| 3080 |
|
|
#ifdef HAVE_conditional_execution
|
| 3081 |
|
|
pbi = init_propagate_block_info (bb, live, NULL, NULL, 0);
|
| 3082 |
|
|
#else
|
| 3083 |
|
|
pbi = init_propagate_block_info (bb, live, NULL, NULL, PROP_DEATH_NOTES);
|
| 3084 |
|
|
#endif
|
| 3085 |
|
|
|
| 3086 |
|
|
for (insn = BB_END (bb); ; insn = prev)
|
| 3087 |
|
|
{
|
| 3088 |
|
|
prev = PREV_INSN (insn);
|
| 3089 |
|
|
if (INSN_P (insn))
|
| 3090 |
|
|
{
|
| 3091 |
|
|
rtx try, before_try, x;
|
| 3092 |
|
|
int match_len;
|
| 3093 |
|
|
rtx note;
|
| 3094 |
|
|
bool was_call = false;
|
| 3095 |
|
|
|
| 3096 |
|
|
/* Record this insn. */
|
| 3097 |
|
|
if (--peep2_current < 0)
|
| 3098 |
|
|
peep2_current = MAX_INSNS_PER_PEEP2;
|
| 3099 |
|
|
if (peep2_current_count < MAX_INSNS_PER_PEEP2
|
| 3100 |
|
|
&& peep2_insn_data[peep2_current].insn == NULL_RTX)
|
| 3101 |
|
|
peep2_current_count++;
|
| 3102 |
|
|
peep2_insn_data[peep2_current].insn = insn;
|
| 3103 |
|
|
propagate_one_insn (pbi, insn);
|
| 3104 |
|
|
COPY_REG_SET (peep2_insn_data[peep2_current].live_before, live);
|
| 3105 |
|
|
|
| 3106 |
|
|
if (RTX_FRAME_RELATED_P (insn))
|
| 3107 |
|
|
{
|
| 3108 |
|
|
/* If an insn has RTX_FRAME_RELATED_P set, peephole
|
| 3109 |
|
|
substitution would lose the
|
| 3110 |
|
|
REG_FRAME_RELATED_EXPR that is attached. */
|
| 3111 |
|
|
peep2_current_count = 0;
|
| 3112 |
|
|
try = NULL;
|
| 3113 |
|
|
}
|
| 3114 |
|
|
else
|
| 3115 |
|
|
/* Match the peephole. */
|
| 3116 |
|
|
try = peephole2_insns (PATTERN (insn), insn, &match_len);
|
| 3117 |
|
|
|
| 3118 |
|
|
if (try != NULL)
|
| 3119 |
|
|
{
|
| 3120 |
|
|
/* If we are splitting a CALL_INSN, look for the CALL_INSN
|
| 3121 |
|
|
in SEQ and copy our CALL_INSN_FUNCTION_USAGE and other
|
| 3122 |
|
|
cfg-related call notes. */
|
| 3123 |
|
|
for (i = 0; i <= match_len; ++i)
|
| 3124 |
|
|
{
|
| 3125 |
|
|
int j;
|
| 3126 |
|
|
rtx old_insn, new_insn, note;
|
| 3127 |
|
|
|
| 3128 |
|
|
j = i + peep2_current;
|
| 3129 |
|
|
if (j >= MAX_INSNS_PER_PEEP2 + 1)
|
| 3130 |
|
|
j -= MAX_INSNS_PER_PEEP2 + 1;
|
| 3131 |
|
|
old_insn = peep2_insn_data[j].insn;
|
| 3132 |
|
|
if (!CALL_P (old_insn))
|
| 3133 |
|
|
continue;
|
| 3134 |
|
|
was_call = true;
|
| 3135 |
|
|
|
| 3136 |
|
|
new_insn = try;
|
| 3137 |
|
|
while (new_insn != NULL_RTX)
|
| 3138 |
|
|
{
|
| 3139 |
|
|
if (CALL_P (new_insn))
|
| 3140 |
|
|
break;
|
| 3141 |
|
|
new_insn = NEXT_INSN (new_insn);
|
| 3142 |
|
|
}
|
| 3143 |
|
|
|
| 3144 |
|
|
gcc_assert (new_insn != NULL_RTX);
|
| 3145 |
|
|
|
| 3146 |
|
|
CALL_INSN_FUNCTION_USAGE (new_insn)
|
| 3147 |
|
|
= CALL_INSN_FUNCTION_USAGE (old_insn);
|
| 3148 |
|
|
|
| 3149 |
|
|
for (note = REG_NOTES (old_insn);
|
| 3150 |
|
|
note;
|
| 3151 |
|
|
note = XEXP (note, 1))
|
| 3152 |
|
|
switch (REG_NOTE_KIND (note))
|
| 3153 |
|
|
{
|
| 3154 |
|
|
case REG_NORETURN:
|
| 3155 |
|
|
case REG_SETJMP:
|
| 3156 |
|
|
REG_NOTES (new_insn)
|
| 3157 |
|
|
= gen_rtx_EXPR_LIST (REG_NOTE_KIND (note),
|
| 3158 |
|
|
XEXP (note, 0),
|
| 3159 |
|
|
REG_NOTES (new_insn));
|
| 3160 |
|
|
default:
|
| 3161 |
|
|
/* Discard all other reg notes. */
|
| 3162 |
|
|
break;
|
| 3163 |
|
|
}
|
| 3164 |
|
|
|
| 3165 |
|
|
/* Croak if there is another call in the sequence. */
|
| 3166 |
|
|
while (++i <= match_len)
|
| 3167 |
|
|
{
|
| 3168 |
|
|
j = i + peep2_current;
|
| 3169 |
|
|
if (j >= MAX_INSNS_PER_PEEP2 + 1)
|
| 3170 |
|
|
j -= MAX_INSNS_PER_PEEP2 + 1;
|
| 3171 |
|
|
old_insn = peep2_insn_data[j].insn;
|
| 3172 |
|
|
gcc_assert (!CALL_P (old_insn));
|
| 3173 |
|
|
}
|
| 3174 |
|
|
break;
|
| 3175 |
|
|
}
|
| 3176 |
|
|
|
| 3177 |
|
|
i = match_len + peep2_current;
|
| 3178 |
|
|
if (i >= MAX_INSNS_PER_PEEP2 + 1)
|
| 3179 |
|
|
i -= MAX_INSNS_PER_PEEP2 + 1;
|
| 3180 |
|
|
|
| 3181 |
|
|
note = find_reg_note (peep2_insn_data[i].insn,
|
| 3182 |
|
|
REG_EH_REGION, NULL_RTX);
|
| 3183 |
|
|
|
| 3184 |
|
|
/* Replace the old sequence with the new. */
|
| 3185 |
|
|
try = emit_insn_after_setloc (try, peep2_insn_data[i].insn,
|
| 3186 |
|
|
INSN_LOCATOR (peep2_insn_data[i].insn));
|
| 3187 |
|
|
before_try = PREV_INSN (insn);
|
| 3188 |
|
|
delete_insn_chain (insn, peep2_insn_data[i].insn);
|
| 3189 |
|
|
|
| 3190 |
|
|
/* Re-insert the EH_REGION notes. */
|
| 3191 |
|
|
if (note || (was_call && nonlocal_goto_handler_labels))
|
| 3192 |
|
|
{
|
| 3193 |
|
|
edge eh_edge;
|
| 3194 |
|
|
edge_iterator ei;
|
| 3195 |
|
|
|
| 3196 |
|
|
FOR_EACH_EDGE (eh_edge, ei, bb->succs)
|
| 3197 |
|
|
if (eh_edge->flags & (EDGE_EH | EDGE_ABNORMAL_CALL))
|
| 3198 |
|
|
break;
|
| 3199 |
|
|
|
| 3200 |
|
|
for (x = try ; x != before_try ; x = PREV_INSN (x))
|
| 3201 |
|
|
if (CALL_P (x)
|
| 3202 |
|
|
|| (flag_non_call_exceptions
|
| 3203 |
|
|
&& may_trap_p (PATTERN (x))
|
| 3204 |
|
|
&& !find_reg_note (x, REG_EH_REGION, NULL)))
|
| 3205 |
|
|
{
|
| 3206 |
|
|
if (note)
|
| 3207 |
|
|
REG_NOTES (x)
|
| 3208 |
|
|
= gen_rtx_EXPR_LIST (REG_EH_REGION,
|
| 3209 |
|
|
XEXP (note, 0),
|
| 3210 |
|
|
REG_NOTES (x));
|
| 3211 |
|
|
|
| 3212 |
|
|
if (x != BB_END (bb) && eh_edge)
|
| 3213 |
|
|
{
|
| 3214 |
|
|
edge nfte, nehe;
|
| 3215 |
|
|
int flags;
|
| 3216 |
|
|
|
| 3217 |
|
|
nfte = split_block (bb, x);
|
| 3218 |
|
|
flags = (eh_edge->flags
|
| 3219 |
|
|
& (EDGE_EH | EDGE_ABNORMAL));
|
| 3220 |
|
|
if (CALL_P (x))
|
| 3221 |
|
|
flags |= EDGE_ABNORMAL_CALL;
|
| 3222 |
|
|
nehe = make_edge (nfte->src, eh_edge->dest,
|
| 3223 |
|
|
flags);
|
| 3224 |
|
|
|
| 3225 |
|
|
nehe->probability = eh_edge->probability;
|
| 3226 |
|
|
nfte->probability
|
| 3227 |
|
|
= REG_BR_PROB_BASE - nehe->probability;
|
| 3228 |
|
|
|
| 3229 |
|
|
do_cleanup_cfg |= purge_dead_edges (nfte->dest);
|
| 3230 |
|
|
#ifdef HAVE_conditional_execution
|
| 3231 |
|
|
SET_BIT (blocks, nfte->dest->index);
|
| 3232 |
|
|
changed = true;
|
| 3233 |
|
|
#endif
|
| 3234 |
|
|
bb = nfte->src;
|
| 3235 |
|
|
eh_edge = nehe;
|
| 3236 |
|
|
}
|
| 3237 |
|
|
}
|
| 3238 |
|
|
|
| 3239 |
|
|
/* Converting possibly trapping insn to non-trapping is
|
| 3240 |
|
|
possible. Zap dummy outgoing edges. */
|
| 3241 |
|
|
do_cleanup_cfg |= purge_dead_edges (bb);
|
| 3242 |
|
|
}
|
| 3243 |
|
|
|
| 3244 |
|
|
#ifdef HAVE_conditional_execution
|
| 3245 |
|
|
/* With conditional execution, we cannot back up the
|
| 3246 |
|
|
live information so easily, since the conditional
|
| 3247 |
|
|
death data structures are not so self-contained.
|
| 3248 |
|
|
So record that we've made a modification to this
|
| 3249 |
|
|
block and update life information at the end. */
|
| 3250 |
|
|
SET_BIT (blocks, bb->index);
|
| 3251 |
|
|
changed = true;
|
| 3252 |
|
|
|
| 3253 |
|
|
for (i = 0; i < MAX_INSNS_PER_PEEP2 + 1; ++i)
|
| 3254 |
|
|
peep2_insn_data[i].insn = NULL_RTX;
|
| 3255 |
|
|
peep2_insn_data[peep2_current].insn = PEEP2_EOB;
|
| 3256 |
|
|
peep2_current_count = 0;
|
| 3257 |
|
|
#else
|
| 3258 |
|
|
/* Back up lifetime information past the end of the
|
| 3259 |
|
|
newly created sequence. */
|
| 3260 |
|
|
if (++i >= MAX_INSNS_PER_PEEP2 + 1)
|
| 3261 |
|
|
i = 0;
|
| 3262 |
|
|
COPY_REG_SET (live, peep2_insn_data[i].live_before);
|
| 3263 |
|
|
|
| 3264 |
|
|
/* Update life information for the new sequence. */
|
| 3265 |
|
|
x = try;
|
| 3266 |
|
|
do
|
| 3267 |
|
|
{
|
| 3268 |
|
|
if (INSN_P (x))
|
| 3269 |
|
|
{
|
| 3270 |
|
|
if (--i < 0)
|
| 3271 |
|
|
i = MAX_INSNS_PER_PEEP2;
|
| 3272 |
|
|
if (peep2_current_count < MAX_INSNS_PER_PEEP2
|
| 3273 |
|
|
&& peep2_insn_data[i].insn == NULL_RTX)
|
| 3274 |
|
|
peep2_current_count++;
|
| 3275 |
|
|
peep2_insn_data[i].insn = x;
|
| 3276 |
|
|
propagate_one_insn (pbi, x);
|
| 3277 |
|
|
COPY_REG_SET (peep2_insn_data[i].live_before, live);
|
| 3278 |
|
|
}
|
| 3279 |
|
|
x = PREV_INSN (x);
|
| 3280 |
|
|
}
|
| 3281 |
|
|
while (x != prev);
|
| 3282 |
|
|
|
| 3283 |
|
|
/* ??? Should verify that LIVE now matches what we
|
| 3284 |
|
|
had before the new sequence. */
|
| 3285 |
|
|
|
| 3286 |
|
|
peep2_current = i;
|
| 3287 |
|
|
#endif
|
| 3288 |
|
|
|
| 3289 |
|
|
/* If we generated a jump instruction, it won't have
|
| 3290 |
|
|
JUMP_LABEL set. Recompute after we're done. */
|
| 3291 |
|
|
for (x = try; x != before_try; x = PREV_INSN (x))
|
| 3292 |
|
|
if (JUMP_P (x))
|
| 3293 |
|
|
{
|
| 3294 |
|
|
do_rebuild_jump_labels = true;
|
| 3295 |
|
|
break;
|
| 3296 |
|
|
}
|
| 3297 |
|
|
}
|
| 3298 |
|
|
}
|
| 3299 |
|
|
|
| 3300 |
|
|
if (insn == BB_HEAD (bb))
|
| 3301 |
|
|
break;
|
| 3302 |
|
|
}
|
| 3303 |
|
|
|
| 3304 |
|
|
/* Some peepholes can decide the don't need one or more of their
|
| 3305 |
|
|
inputs. If this happens, local life update is not enough. */
|
| 3306 |
|
|
EXECUTE_IF_AND_COMPL_IN_BITMAP (bb->il.rtl->global_live_at_start, live,
|
| 3307 |
|
|
0, j, rsi)
|
| 3308 |
|
|
{
|
| 3309 |
|
|
do_global_life_update = true;
|
| 3310 |
|
|
break;
|
| 3311 |
|
|
}
|
| 3312 |
|
|
|
| 3313 |
|
|
free_propagate_block_info (pbi);
|
| 3314 |
|
|
}
|
| 3315 |
|
|
|
| 3316 |
|
|
for (i = 0; i < MAX_INSNS_PER_PEEP2 + 1; ++i)
|
| 3317 |
|
|
FREE_REG_SET (peep2_insn_data[i].live_before);
|
| 3318 |
|
|
FREE_REG_SET (live);
|
| 3319 |
|
|
|
| 3320 |
|
|
if (do_rebuild_jump_labels)
|
| 3321 |
|
|
rebuild_jump_labels (get_insns ());
|
| 3322 |
|
|
|
| 3323 |
|
|
/* If we eliminated EH edges, we may be able to merge blocks. Further,
|
| 3324 |
|
|
we've changed global life since exception handlers are no longer
|
| 3325 |
|
|
reachable. */
|
| 3326 |
|
|
if (do_cleanup_cfg)
|
| 3327 |
|
|
{
|
| 3328 |
|
|
cleanup_cfg (0);
|
| 3329 |
|
|
do_global_life_update = true;
|
| 3330 |
|
|
}
|
| 3331 |
|
|
if (do_global_life_update)
|
| 3332 |
|
|
update_life_info (0, UPDATE_LIFE_GLOBAL_RM_NOTES, PROP_DEATH_NOTES);
|
| 3333 |
|
|
#ifdef HAVE_conditional_execution
|
| 3334 |
|
|
else
|
| 3335 |
|
|
{
|
| 3336 |
|
|
count_or_remove_death_notes (blocks, 1);
|
| 3337 |
|
|
update_life_info (blocks, UPDATE_LIFE_LOCAL, PROP_DEATH_NOTES);
|
| 3338 |
|
|
}
|
| 3339 |
|
|
sbitmap_free (blocks);
|
| 3340 |
|
|
#endif
|
| 3341 |
|
|
}
|
| 3342 |
|
|
#endif /* HAVE_peephole2 */
|
| 3343 |
|
|
|
| 3344 |
|
|
/* Common predicates for use with define_bypass. */
|
| 3345 |
|
|
|
| 3346 |
|
|
/* True if the dependency between OUT_INSN and IN_INSN is on the store
|
| 3347 |
|
|
data not the address operand(s) of the store. IN_INSN must be
|
| 3348 |
|
|
single_set. OUT_INSN must be either a single_set or a PARALLEL with
|
| 3349 |
|
|
SETs inside. */
|
| 3350 |
|
|
|
| 3351 |
|
|
int
|
| 3352 |
|
|
store_data_bypass_p (rtx out_insn, rtx in_insn)
|
| 3353 |
|
|
{
|
| 3354 |
|
|
rtx out_set, in_set;
|
| 3355 |
|
|
|
| 3356 |
|
|
in_set = single_set (in_insn);
|
| 3357 |
|
|
gcc_assert (in_set);
|
| 3358 |
|
|
|
| 3359 |
|
|
if (!MEM_P (SET_DEST (in_set)))
|
| 3360 |
|
|
return false;
|
| 3361 |
|
|
|
| 3362 |
|
|
out_set = single_set (out_insn);
|
| 3363 |
|
|
if (out_set)
|
| 3364 |
|
|
{
|
| 3365 |
|
|
if (reg_mentioned_p (SET_DEST (out_set), SET_DEST (in_set)))
|
| 3366 |
|
|
return false;
|
| 3367 |
|
|
}
|
| 3368 |
|
|
else
|
| 3369 |
|
|
{
|
| 3370 |
|
|
rtx out_pat;
|
| 3371 |
|
|
int i;
|
| 3372 |
|
|
|
| 3373 |
|
|
out_pat = PATTERN (out_insn);
|
| 3374 |
|
|
gcc_assert (GET_CODE (out_pat) == PARALLEL);
|
| 3375 |
|
|
|
| 3376 |
|
|
for (i = 0; i < XVECLEN (out_pat, 0); i++)
|
| 3377 |
|
|
{
|
| 3378 |
|
|
rtx exp = XVECEXP (out_pat, 0, i);
|
| 3379 |
|
|
|
| 3380 |
|
|
if (GET_CODE (exp) == CLOBBER)
|
| 3381 |
|
|
continue;
|
| 3382 |
|
|
|
| 3383 |
|
|
gcc_assert (GET_CODE (exp) == SET);
|
| 3384 |
|
|
|
| 3385 |
|
|
if (reg_mentioned_p (SET_DEST (exp), SET_DEST (in_set)))
|
| 3386 |
|
|
return false;
|
| 3387 |
|
|
}
|
| 3388 |
|
|
}
|
| 3389 |
|
|
|
| 3390 |
|
|
return true;
|
| 3391 |
|
|
}
|
| 3392 |
|
|
|
| 3393 |
|
|
/* True if the dependency between OUT_INSN and IN_INSN is in the IF_THEN_ELSE
|
| 3394 |
|
|
condition, and not the THEN or ELSE branch. OUT_INSN may be either a single
|
| 3395 |
|
|
or multiple set; IN_INSN should be single_set for truth, but for convenience
|
| 3396 |
|
|
of insn categorization may be any JUMP or CALL insn. */
|
| 3397 |
|
|
|
| 3398 |
|
|
int
|
| 3399 |
|
|
if_test_bypass_p (rtx out_insn, rtx in_insn)
|
| 3400 |
|
|
{
|
| 3401 |
|
|
rtx out_set, in_set;
|
| 3402 |
|
|
|
| 3403 |
|
|
in_set = single_set (in_insn);
|
| 3404 |
|
|
if (! in_set)
|
| 3405 |
|
|
{
|
| 3406 |
|
|
gcc_assert (JUMP_P (in_insn) || CALL_P (in_insn));
|
| 3407 |
|
|
return false;
|
| 3408 |
|
|
}
|
| 3409 |
|
|
|
| 3410 |
|
|
if (GET_CODE (SET_SRC (in_set)) != IF_THEN_ELSE)
|
| 3411 |
|
|
return false;
|
| 3412 |
|
|
in_set = SET_SRC (in_set);
|
| 3413 |
|
|
|
| 3414 |
|
|
out_set = single_set (out_insn);
|
| 3415 |
|
|
if (out_set)
|
| 3416 |
|
|
{
|
| 3417 |
|
|
if (reg_mentioned_p (SET_DEST (out_set), XEXP (in_set, 1))
|
| 3418 |
|
|
|| reg_mentioned_p (SET_DEST (out_set), XEXP (in_set, 2)))
|
| 3419 |
|
|
return false;
|
| 3420 |
|
|
}
|
| 3421 |
|
|
else
|
| 3422 |
|
|
{
|
| 3423 |
|
|
rtx out_pat;
|
| 3424 |
|
|
int i;
|
| 3425 |
|
|
|
| 3426 |
|
|
out_pat = PATTERN (out_insn);
|
| 3427 |
|
|
gcc_assert (GET_CODE (out_pat) == PARALLEL);
|
| 3428 |
|
|
|
| 3429 |
|
|
for (i = 0; i < XVECLEN (out_pat, 0); i++)
|
| 3430 |
|
|
{
|
| 3431 |
|
|
rtx exp = XVECEXP (out_pat, 0, i);
|
| 3432 |
|
|
|
| 3433 |
|
|
if (GET_CODE (exp) == CLOBBER)
|
| 3434 |
|
|
continue;
|
| 3435 |
|
|
|
| 3436 |
|
|
gcc_assert (GET_CODE (exp) == SET);
|
| 3437 |
|
|
|
| 3438 |
|
|
if (reg_mentioned_p (SET_DEST (out_set), XEXP (in_set, 1))
|
| 3439 |
|
|
|| reg_mentioned_p (SET_DEST (out_set), XEXP (in_set, 2)))
|
| 3440 |
|
|
return false;
|
| 3441 |
|
|
}
|
| 3442 |
|
|
}
|
| 3443 |
|
|
|
| 3444 |
|
|
return true;
|
| 3445 |
|
|
}
|
| 3446 |
|
|
|
| 3447 |
|
|
static bool
|
| 3448 |
|
|
gate_handle_peephole2 (void)
|
| 3449 |
|
|
{
|
| 3450 |
|
|
return (optimize > 0 && flag_peephole2);
|
| 3451 |
|
|
}
|
| 3452 |
|
|
|
| 3453 |
|
|
static unsigned int
|
| 3454 |
|
|
rest_of_handle_peephole2 (void)
|
| 3455 |
|
|
{
|
| 3456 |
|
|
#ifdef HAVE_peephole2
|
| 3457 |
|
|
peephole2_optimize ();
|
| 3458 |
|
|
#endif
|
| 3459 |
|
|
return 0;
|
| 3460 |
|
|
}
|
| 3461 |
|
|
|
| 3462 |
|
|
struct tree_opt_pass pass_peephole2 =
|
| 3463 |
|
|
{
|
| 3464 |
|
|
"peephole2", /* name */
|
| 3465 |
|
|
gate_handle_peephole2, /* gate */
|
| 3466 |
|
|
rest_of_handle_peephole2, /* execute */
|
| 3467 |
|
|
NULL, /* sub */
|
| 3468 |
|
|
NULL, /* next */
|
| 3469 |
|
|
0, /* static_pass_number */
|
| 3470 |
|
|
TV_PEEPHOLE2, /* tv_id */
|
| 3471 |
|
|
0, /* properties_required */
|
| 3472 |
|
|
0, /* properties_provided */
|
| 3473 |
|
|
0, /* properties_destroyed */
|
| 3474 |
|
|
0, /* todo_flags_start */
|
| 3475 |
|
|
TODO_dump_func, /* todo_flags_finish */
|
| 3476 |
|
|
'z' /* letter */
|
| 3477 |
|
|
};
|
| 3478 |
|
|
|
| 3479 |
|
|
static unsigned int
|
| 3480 |
|
|
rest_of_handle_split_all_insns (void)
|
| 3481 |
|
|
{
|
| 3482 |
|
|
split_all_insns (1);
|
| 3483 |
|
|
return 0;
|
| 3484 |
|
|
}
|
| 3485 |
|
|
|
| 3486 |
|
|
struct tree_opt_pass pass_split_all_insns =
|
| 3487 |
|
|
{
|
| 3488 |
|
|
"split1", /* name */
|
| 3489 |
|
|
NULL, /* gate */
|
| 3490 |
|
|
rest_of_handle_split_all_insns, /* execute */
|
| 3491 |
|
|
NULL, /* sub */
|
| 3492 |
|
|
NULL, /* next */
|
| 3493 |
|
|
0, /* static_pass_number */
|
| 3494 |
|
|
0, /* tv_id */
|
| 3495 |
|
|
0, /* properties_required */
|
| 3496 |
|
|
0, /* properties_provided */
|
| 3497 |
|
|
0, /* properties_destroyed */
|
| 3498 |
|
|
0, /* todo_flags_start */
|
| 3499 |
|
|
TODO_dump_func, /* todo_flags_finish */
|
| 3500 |
|
|
|
| 3501 |
|
|
};
|
| 3502 |
|
|
|
| 3503 |
|
|
/* The placement of the splitting that we do for shorten_branches
|
| 3504 |
|
|
depends on whether regstack is used by the target or not. */
|
| 3505 |
|
|
static bool
|
| 3506 |
|
|
gate_do_final_split (void)
|
| 3507 |
|
|
{
|
| 3508 |
|
|
#if defined (HAVE_ATTR_length) && !defined (STACK_REGS)
|
| 3509 |
|
|
return 1;
|
| 3510 |
|
|
#else
|
| 3511 |
|
|
return 0;
|
| 3512 |
|
|
#endif
|
| 3513 |
|
|
}
|
| 3514 |
|
|
|
| 3515 |
|
|
struct tree_opt_pass pass_split_for_shorten_branches =
|
| 3516 |
|
|
{
|
| 3517 |
|
|
"split3", /* name */
|
| 3518 |
|
|
gate_do_final_split, /* gate */
|
| 3519 |
|
|
split_all_insns_noflow, /* execute */
|
| 3520 |
|
|
NULL, /* sub */
|
| 3521 |
|
|
NULL, /* next */
|
| 3522 |
|
|
0, /* static_pass_number */
|
| 3523 |
|
|
TV_SHORTEN_BRANCH, /* tv_id */
|
| 3524 |
|
|
0, /* properties_required */
|
| 3525 |
|
|
0, /* properties_provided */
|
| 3526 |
|
|
0, /* properties_destroyed */
|
| 3527 |
|
|
0, /* todo_flags_start */
|
| 3528 |
|
|
TODO_dump_func, /* todo_flags_finish */
|
| 3529 |
|
|
|
| 3530 |
|
|
};
|
| 3531 |
|
|
|
| 3532 |
|
|
|
| 3533 |
|
|
static bool
|
| 3534 |
|
|
gate_handle_split_before_regstack (void)
|
| 3535 |
|
|
{
|
| 3536 |
|
|
#if defined (HAVE_ATTR_length) && defined (STACK_REGS)
|
| 3537 |
|
|
/* If flow2 creates new instructions which need splitting
|
| 3538 |
|
|
and scheduling after reload is not done, they might not be
|
| 3539 |
|
|
split until final which doesn't allow splitting
|
| 3540 |
|
|
if HAVE_ATTR_length. */
|
| 3541 |
|
|
# ifdef INSN_SCHEDULING
|
| 3542 |
|
|
return (optimize && !flag_schedule_insns_after_reload);
|
| 3543 |
|
|
# else
|
| 3544 |
|
|
return (optimize);
|
| 3545 |
|
|
# endif
|
| 3546 |
|
|
#else
|
| 3547 |
|
|
return 0;
|
| 3548 |
|
|
#endif
|
| 3549 |
|
|
}
|
| 3550 |
|
|
|
| 3551 |
|
|
struct tree_opt_pass pass_split_before_regstack =
|
| 3552 |
|
|
{
|
| 3553 |
|
|
"split2", /* name */
|
| 3554 |
|
|
gate_handle_split_before_regstack, /* gate */
|
| 3555 |
|
|
rest_of_handle_split_all_insns, /* execute */
|
| 3556 |
|
|
NULL, /* sub */
|
| 3557 |
|
|
NULL, /* next */
|
| 3558 |
|
|
0, /* static_pass_number */
|
| 3559 |
|
|
TV_SHORTEN_BRANCH, /* tv_id */
|
| 3560 |
|
|
0, /* properties_required */
|
| 3561 |
|
|
0, /* properties_provided */
|
| 3562 |
|
|
0, /* properties_destroyed */
|
| 3563 |
|
|
0, /* todo_flags_start */
|
| 3564 |
|
|
TODO_dump_func, /* todo_flags_finish */
|
| 3565 |
|
|
|
| 3566 |
|
|
};
|