1 |
38 |
julius |
/* Move registers around to reduce number of move instructions needed.
|
2 |
|
|
Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
|
3 |
|
|
1999, 2000, 2001, 2002, 2003, 2004, 2005, 2007 Free Software Foundation, Inc.
|
4 |
|
|
|
5 |
|
|
This file is part of GCC.
|
6 |
|
|
|
7 |
|
|
GCC is free software; you can redistribute it and/or modify it under
|
8 |
|
|
the terms of the GNU General Public License as published by the Free
|
9 |
|
|
Software Foundation; either version 3, or (at your option) any later
|
10 |
|
|
version.
|
11 |
|
|
|
12 |
|
|
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
|
13 |
|
|
WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
14 |
|
|
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
15 |
|
|
for more details.
|
16 |
|
|
|
17 |
|
|
You should have received a copy of the GNU General Public License
|
18 |
|
|
along with GCC; see the file COPYING3. If not see
|
19 |
|
|
<http://www.gnu.org/licenses/>. */
|
20 |
|
|
|
21 |
|
|
|
22 |
|
|
/* This module looks for cases where matching constraints would force
|
23 |
|
|
an instruction to need a reload, and this reload would be a register
|
24 |
|
|
to register move. It then attempts to change the registers used by the
|
25 |
|
|
instruction to avoid the move instruction. */
|
26 |
|
|
|
27 |
|
|
#include "config.h"
|
28 |
|
|
#include "system.h"
|
29 |
|
|
#include "coretypes.h"
|
30 |
|
|
#include "tm.h"
|
31 |
|
|
#include "rtl.h" /* stdio.h must precede rtl.h for FFS. */
|
32 |
|
|
#include "tm_p.h"
|
33 |
|
|
#include "insn-config.h"
|
34 |
|
|
#include "recog.h"
|
35 |
|
|
#include "output.h"
|
36 |
|
|
#include "regs.h"
|
37 |
|
|
#include "hard-reg-set.h"
|
38 |
|
|
#include "flags.h"
|
39 |
|
|
#include "function.h"
|
40 |
|
|
#include "expr.h"
|
41 |
|
|
#include "basic-block.h"
|
42 |
|
|
#include "except.h"
|
43 |
|
|
#include "toplev.h"
|
44 |
|
|
#include "reload.h"
|
45 |
|
|
#include "timevar.h"
|
46 |
|
|
#include "tree-pass.h"
|
47 |
|
|
|
48 |
|
|
|
49 |
|
|
/* Turn STACK_GROWS_DOWNWARD into a boolean. */
|
50 |
|
|
#ifdef STACK_GROWS_DOWNWARD
|
51 |
|
|
#undef STACK_GROWS_DOWNWARD
|
52 |
|
|
#define STACK_GROWS_DOWNWARD 1
|
53 |
|
|
#else
|
54 |
|
|
#define STACK_GROWS_DOWNWARD 0
|
55 |
|
|
#endif
|
56 |
|
|
|
57 |
|
|
static int perhaps_ends_bb_p (rtx);
|
58 |
|
|
static int optimize_reg_copy_1 (rtx, rtx, rtx);
|
59 |
|
|
static void optimize_reg_copy_2 (rtx, rtx, rtx);
|
60 |
|
|
static void optimize_reg_copy_3 (rtx, rtx, rtx);
|
61 |
|
|
static void copy_src_to_dest (rtx, rtx, rtx, int);
|
62 |
|
|
static int *regmove_bb_head;
|
63 |
|
|
|
64 |
|
|
struct match {
|
65 |
|
|
int with[MAX_RECOG_OPERANDS];
|
66 |
|
|
enum { READ, WRITE, READWRITE } use[MAX_RECOG_OPERANDS];
|
67 |
|
|
int commutative[MAX_RECOG_OPERANDS];
|
68 |
|
|
int early_clobber[MAX_RECOG_OPERANDS];
|
69 |
|
|
};
|
70 |
|
|
|
71 |
|
|
static rtx discover_flags_reg (void);
|
72 |
|
|
static void mark_flags_life_zones (rtx);
|
73 |
|
|
static void flags_set_1 (rtx, rtx, void *);
|
74 |
|
|
|
75 |
|
|
static int try_auto_increment (rtx, rtx, rtx, rtx, HOST_WIDE_INT, int);
|
76 |
|
|
static int find_matches (rtx, struct match *);
|
77 |
|
|
static void replace_in_call_usage (rtx *, unsigned int, rtx, rtx);
|
78 |
|
|
static int fixup_match_1 (rtx, rtx, rtx, rtx, rtx, int, int, int);
|
79 |
|
|
static int stable_and_no_regs_but_for_p (rtx, rtx, rtx);
|
80 |
|
|
static int regclass_compatible_p (int, int);
|
81 |
|
|
static int replacement_quality (rtx);
|
82 |
|
|
static int fixup_match_2 (rtx, rtx, rtx, rtx);
|
83 |
|
|
|
84 |
|
|
/* Return nonzero if registers with CLASS1 and CLASS2 can be merged without
|
85 |
|
|
causing too much register allocation problems. */
|
86 |
|
|
static int
|
87 |
|
|
regclass_compatible_p (int class0, int class1)
|
88 |
|
|
{
|
89 |
|
|
return (class0 == class1
|
90 |
|
|
|| (reg_class_subset_p (class0, class1)
|
91 |
|
|
&& ! CLASS_LIKELY_SPILLED_P (class0))
|
92 |
|
|
|| (reg_class_subset_p (class1, class0)
|
93 |
|
|
&& ! CLASS_LIKELY_SPILLED_P (class1)));
|
94 |
|
|
}
|
95 |
|
|
|
96 |
|
|
/* INC_INSN is an instruction that adds INCREMENT to REG.
|
97 |
|
|
Try to fold INC_INSN as a post/pre in/decrement into INSN.
|
98 |
|
|
Iff INC_INSN_SET is nonzero, inc_insn has a destination different from src.
|
99 |
|
|
Return nonzero for success. */
|
100 |
|
|
static int
|
101 |
|
|
try_auto_increment (rtx insn, rtx inc_insn, rtx inc_insn_set, rtx reg,
|
102 |
|
|
HOST_WIDE_INT increment, int pre)
|
103 |
|
|
{
|
104 |
|
|
enum rtx_code inc_code;
|
105 |
|
|
|
106 |
|
|
rtx pset = single_set (insn);
|
107 |
|
|
if (pset)
|
108 |
|
|
{
|
109 |
|
|
/* Can't use the size of SET_SRC, we might have something like
|
110 |
|
|
(sign_extend:SI (mem:QI ... */
|
111 |
|
|
rtx use = find_use_as_address (pset, reg, 0);
|
112 |
|
|
if (use != 0 && use != (rtx) (size_t) 1)
|
113 |
|
|
{
|
114 |
|
|
int size = GET_MODE_SIZE (GET_MODE (use));
|
115 |
|
|
if (0
|
116 |
|
|
|| (HAVE_POST_INCREMENT
|
117 |
|
|
&& pre == 0 && (inc_code = POST_INC, increment == size))
|
118 |
|
|
|| (HAVE_PRE_INCREMENT
|
119 |
|
|
&& pre == 1 && (inc_code = PRE_INC, increment == size))
|
120 |
|
|
|| (HAVE_POST_DECREMENT
|
121 |
|
|
&& pre == 0 && (inc_code = POST_DEC, increment == -size))
|
122 |
|
|
|| (HAVE_PRE_DECREMENT
|
123 |
|
|
&& pre == 1 && (inc_code = PRE_DEC, increment == -size))
|
124 |
|
|
)
|
125 |
|
|
{
|
126 |
|
|
if (inc_insn_set)
|
127 |
|
|
validate_change
|
128 |
|
|
(inc_insn,
|
129 |
|
|
&SET_SRC (inc_insn_set),
|
130 |
|
|
XEXP (SET_SRC (inc_insn_set), 0), 1);
|
131 |
|
|
validate_change (insn, &XEXP (use, 0),
|
132 |
|
|
gen_rtx_fmt_e (inc_code, Pmode, reg), 1);
|
133 |
|
|
if (apply_change_group ())
|
134 |
|
|
{
|
135 |
|
|
/* If there is a REG_DEAD note on this insn, we must
|
136 |
|
|
change this not to REG_UNUSED meaning that the register
|
137 |
|
|
is set, but the value is dead. Failure to do so will
|
138 |
|
|
result in a sched1 dieing -- when it recomputes lifetime
|
139 |
|
|
information, the number of REG_DEAD notes will have
|
140 |
|
|
changed. */
|
141 |
|
|
rtx note = find_reg_note (insn, REG_DEAD, reg);
|
142 |
|
|
if (note)
|
143 |
|
|
PUT_MODE (note, REG_UNUSED);
|
144 |
|
|
|
145 |
|
|
REG_NOTES (insn)
|
146 |
|
|
= gen_rtx_EXPR_LIST (REG_INC,
|
147 |
|
|
reg, REG_NOTES (insn));
|
148 |
|
|
if (! inc_insn_set)
|
149 |
|
|
delete_insn (inc_insn);
|
150 |
|
|
return 1;
|
151 |
|
|
}
|
152 |
|
|
}
|
153 |
|
|
}
|
154 |
|
|
}
|
155 |
|
|
return 0;
|
156 |
|
|
}
|
157 |
|
|
|
158 |
|
|
/* Determine if the pattern generated by add_optab has a clobber,
|
159 |
|
|
such as might be issued for a flags hard register. To make the
|
160 |
|
|
code elsewhere simpler, we handle cc0 in this same framework.
|
161 |
|
|
|
162 |
|
|
Return the register if one was discovered. Return NULL_RTX if
|
163 |
|
|
if no flags were found. Return pc_rtx if we got confused. */
|
164 |
|
|
|
165 |
|
|
static rtx
|
166 |
|
|
discover_flags_reg (void)
|
167 |
|
|
{
|
168 |
|
|
rtx tmp;
|
169 |
|
|
tmp = gen_rtx_REG (word_mode, 10000);
|
170 |
|
|
tmp = gen_add3_insn (tmp, tmp, const2_rtx);
|
171 |
|
|
|
172 |
|
|
/* If we get something that isn't a simple set, or a
|
173 |
|
|
[(set ..) (clobber ..)], this whole function will go wrong. */
|
174 |
|
|
if (GET_CODE (tmp) == SET)
|
175 |
|
|
return NULL_RTX;
|
176 |
|
|
else if (GET_CODE (tmp) == PARALLEL)
|
177 |
|
|
{
|
178 |
|
|
int found;
|
179 |
|
|
|
180 |
|
|
if (XVECLEN (tmp, 0) != 2)
|
181 |
|
|
return pc_rtx;
|
182 |
|
|
tmp = XVECEXP (tmp, 0, 1);
|
183 |
|
|
if (GET_CODE (tmp) != CLOBBER)
|
184 |
|
|
return pc_rtx;
|
185 |
|
|
tmp = XEXP (tmp, 0);
|
186 |
|
|
|
187 |
|
|
/* Don't do anything foolish if the md wanted to clobber a
|
188 |
|
|
scratch or something. We only care about hard regs.
|
189 |
|
|
Moreover we don't like the notion of subregs of hard regs. */
|
190 |
|
|
if (GET_CODE (tmp) == SUBREG
|
191 |
|
|
&& REG_P (SUBREG_REG (tmp))
|
192 |
|
|
&& REGNO (SUBREG_REG (tmp)) < FIRST_PSEUDO_REGISTER)
|
193 |
|
|
return pc_rtx;
|
194 |
|
|
found = (REG_P (tmp) && REGNO (tmp) < FIRST_PSEUDO_REGISTER);
|
195 |
|
|
|
196 |
|
|
return (found ? tmp : NULL_RTX);
|
197 |
|
|
}
|
198 |
|
|
|
199 |
|
|
return pc_rtx;
|
200 |
|
|
}
|
201 |
|
|
|
202 |
|
|
/* It is a tedious task identifying when the flags register is live and
|
203 |
|
|
when it is safe to optimize. Since we process the instruction stream
|
204 |
|
|
multiple times, locate and record these live zones by marking the
|
205 |
|
|
mode of the instructions --
|
206 |
|
|
|
207 |
|
|
QImode is used on the instruction at which the flags becomes live.
|
208 |
|
|
|
209 |
|
|
HImode is used within the range (exclusive) that the flags are
|
210 |
|
|
live. Thus the user of the flags is not marked.
|
211 |
|
|
|
212 |
|
|
All other instructions are cleared to VOIDmode. */
|
213 |
|
|
|
214 |
|
|
/* Used to communicate with flags_set_1. */
|
215 |
|
|
static rtx flags_set_1_rtx;
|
216 |
|
|
static int flags_set_1_set;
|
217 |
|
|
|
218 |
|
|
static void
|
219 |
|
|
mark_flags_life_zones (rtx flags)
|
220 |
|
|
{
|
221 |
|
|
int flags_regno;
|
222 |
|
|
int flags_nregs;
|
223 |
|
|
basic_block block;
|
224 |
|
|
|
225 |
|
|
#ifdef HAVE_cc0
|
226 |
|
|
/* If we found a flags register on a cc0 host, bail. */
|
227 |
|
|
if (flags == NULL_RTX)
|
228 |
|
|
flags = cc0_rtx;
|
229 |
|
|
else if (flags != cc0_rtx)
|
230 |
|
|
flags = pc_rtx;
|
231 |
|
|
#endif
|
232 |
|
|
|
233 |
|
|
/* Simple cases first: if no flags, clear all modes. If confusing,
|
234 |
|
|
mark the entire function as being in a flags shadow. */
|
235 |
|
|
if (flags == NULL_RTX || flags == pc_rtx)
|
236 |
|
|
{
|
237 |
|
|
enum machine_mode mode = (flags ? HImode : VOIDmode);
|
238 |
|
|
rtx insn;
|
239 |
|
|
for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
|
240 |
|
|
PUT_MODE (insn, mode);
|
241 |
|
|
return;
|
242 |
|
|
}
|
243 |
|
|
|
244 |
|
|
#ifdef HAVE_cc0
|
245 |
|
|
flags_regno = -1;
|
246 |
|
|
flags_nregs = 1;
|
247 |
|
|
#else
|
248 |
|
|
flags_regno = REGNO (flags);
|
249 |
|
|
flags_nregs = hard_regno_nregs[flags_regno][GET_MODE (flags)];
|
250 |
|
|
#endif
|
251 |
|
|
flags_set_1_rtx = flags;
|
252 |
|
|
|
253 |
|
|
/* Process each basic block. */
|
254 |
|
|
FOR_EACH_BB_REVERSE (block)
|
255 |
|
|
{
|
256 |
|
|
rtx insn, end;
|
257 |
|
|
int live;
|
258 |
|
|
|
259 |
|
|
insn = BB_HEAD (block);
|
260 |
|
|
end = BB_END (block);
|
261 |
|
|
|
262 |
|
|
/* Look out for the (unlikely) case of flags being live across
|
263 |
|
|
basic block boundaries. */
|
264 |
|
|
live = 0;
|
265 |
|
|
#ifndef HAVE_cc0
|
266 |
|
|
{
|
267 |
|
|
int i;
|
268 |
|
|
for (i = 0; i < flags_nregs; ++i)
|
269 |
|
|
live |= REGNO_REG_SET_P (block->il.rtl->global_live_at_start,
|
270 |
|
|
flags_regno + i);
|
271 |
|
|
}
|
272 |
|
|
#endif
|
273 |
|
|
|
274 |
|
|
while (1)
|
275 |
|
|
{
|
276 |
|
|
/* Process liveness in reverse order of importance --
|
277 |
|
|
alive, death, birth. This lets more important info
|
278 |
|
|
overwrite the mode of lesser info. */
|
279 |
|
|
|
280 |
|
|
if (INSN_P (insn))
|
281 |
|
|
{
|
282 |
|
|
#ifdef HAVE_cc0
|
283 |
|
|
/* In the cc0 case, death is not marked in reg notes,
|
284 |
|
|
but is instead the mere use of cc0 when it is alive. */
|
285 |
|
|
if (live && reg_mentioned_p (cc0_rtx, PATTERN (insn)))
|
286 |
|
|
live = 0;
|
287 |
|
|
#else
|
288 |
|
|
/* In the hard reg case, we watch death notes. */
|
289 |
|
|
if (live && find_regno_note (insn, REG_DEAD, flags_regno))
|
290 |
|
|
live = 0;
|
291 |
|
|
#endif
|
292 |
|
|
PUT_MODE (insn, (live ? HImode : VOIDmode));
|
293 |
|
|
|
294 |
|
|
/* In either case, birth is denoted simply by its presence
|
295 |
|
|
as the destination of a set. */
|
296 |
|
|
flags_set_1_set = 0;
|
297 |
|
|
note_stores (PATTERN (insn), flags_set_1, NULL);
|
298 |
|
|
if (flags_set_1_set)
|
299 |
|
|
{
|
300 |
|
|
live = 1;
|
301 |
|
|
PUT_MODE (insn, QImode);
|
302 |
|
|
}
|
303 |
|
|
}
|
304 |
|
|
else
|
305 |
|
|
PUT_MODE (insn, (live ? HImode : VOIDmode));
|
306 |
|
|
|
307 |
|
|
if (insn == end)
|
308 |
|
|
break;
|
309 |
|
|
insn = NEXT_INSN (insn);
|
310 |
|
|
}
|
311 |
|
|
}
|
312 |
|
|
}
|
313 |
|
|
|
314 |
|
|
/* A subroutine of mark_flags_life_zones, called through note_stores. */
|
315 |
|
|
|
316 |
|
|
static void
|
317 |
|
|
flags_set_1 (rtx x, rtx pat, void *data ATTRIBUTE_UNUSED)
|
318 |
|
|
{
|
319 |
|
|
if (GET_CODE (pat) == SET
|
320 |
|
|
&& reg_overlap_mentioned_p (x, flags_set_1_rtx))
|
321 |
|
|
flags_set_1_set = 1;
|
322 |
|
|
}
|
323 |
|
|
|
324 |
|
|
static int *regno_src_regno;
|
325 |
|
|
|
326 |
|
|
/* Indicate how good a choice REG (which appears as a source) is to replace
|
327 |
|
|
a destination register with. The higher the returned value, the better
|
328 |
|
|
the choice. The main objective is to avoid using a register that is
|
329 |
|
|
a candidate for tying to a hard register, since the output might in
|
330 |
|
|
turn be a candidate to be tied to a different hard register. */
|
331 |
|
|
static int
|
332 |
|
|
replacement_quality (rtx reg)
|
333 |
|
|
{
|
334 |
|
|
int src_regno;
|
335 |
|
|
|
336 |
|
|
/* Bad if this isn't a register at all. */
|
337 |
|
|
if (!REG_P (reg))
|
338 |
|
|
return 0;
|
339 |
|
|
|
340 |
|
|
/* If this register is not meant to get a hard register,
|
341 |
|
|
it is a poor choice. */
|
342 |
|
|
if (REG_LIVE_LENGTH (REGNO (reg)) < 0)
|
343 |
|
|
return 0;
|
344 |
|
|
|
345 |
|
|
src_regno = regno_src_regno[REGNO (reg)];
|
346 |
|
|
|
347 |
|
|
/* If it was not copied from another register, it is fine. */
|
348 |
|
|
if (src_regno < 0)
|
349 |
|
|
return 3;
|
350 |
|
|
|
351 |
|
|
/* Copied from a hard register? */
|
352 |
|
|
if (src_regno < FIRST_PSEUDO_REGISTER)
|
353 |
|
|
return 1;
|
354 |
|
|
|
355 |
|
|
/* Copied from a pseudo register - not as bad as from a hard register,
|
356 |
|
|
yet still cumbersome, since the register live length will be lengthened
|
357 |
|
|
when the registers get tied. */
|
358 |
|
|
return 2;
|
359 |
|
|
}
|
360 |
|
|
|
361 |
|
|
/* Return 1 if INSN might end a basic block. */
|
362 |
|
|
|
363 |
|
|
static int perhaps_ends_bb_p (rtx insn)
|
364 |
|
|
{
|
365 |
|
|
switch (GET_CODE (insn))
|
366 |
|
|
{
|
367 |
|
|
case CODE_LABEL:
|
368 |
|
|
case JUMP_INSN:
|
369 |
|
|
/* These always end a basic block. */
|
370 |
|
|
return 1;
|
371 |
|
|
|
372 |
|
|
case CALL_INSN:
|
373 |
|
|
/* A CALL_INSN might be the last insn of a basic block, if it is inside
|
374 |
|
|
an EH region or if there are nonlocal gotos. Note that this test is
|
375 |
|
|
very conservative. */
|
376 |
|
|
if (nonlocal_goto_handler_labels)
|
377 |
|
|
return 1;
|
378 |
|
|
/* Fall through. */
|
379 |
|
|
default:
|
380 |
|
|
return can_throw_internal (insn);
|
381 |
|
|
}
|
382 |
|
|
}
|
383 |
|
|
|
384 |
|
|
/* INSN is a copy from SRC to DEST, both registers, and SRC does not die
|
385 |
|
|
in INSN.
|
386 |
|
|
|
387 |
|
|
Search forward to see if SRC dies before either it or DEST is modified,
|
388 |
|
|
but don't scan past the end of a basic block. If so, we can replace SRC
|
389 |
|
|
with DEST and let SRC die in INSN.
|
390 |
|
|
|
391 |
|
|
This will reduce the number of registers live in that range and may enable
|
392 |
|
|
DEST to be tied to SRC, thus often saving one register in addition to a
|
393 |
|
|
register-register copy. */
|
394 |
|
|
|
395 |
|
|
static int
|
396 |
|
|
optimize_reg_copy_1 (rtx insn, rtx dest, rtx src)
|
397 |
|
|
{
|
398 |
|
|
rtx p, q;
|
399 |
|
|
rtx note;
|
400 |
|
|
rtx dest_death = 0;
|
401 |
|
|
int sregno = REGNO (src);
|
402 |
|
|
int dregno = REGNO (dest);
|
403 |
|
|
|
404 |
|
|
/* We don't want to mess with hard regs if register classes are small. */
|
405 |
|
|
if (sregno == dregno
|
406 |
|
|
|| (SMALL_REGISTER_CLASSES
|
407 |
|
|
&& (sregno < FIRST_PSEUDO_REGISTER
|
408 |
|
|
|| dregno < FIRST_PSEUDO_REGISTER))
|
409 |
|
|
/* We don't see all updates to SP if they are in an auto-inc memory
|
410 |
|
|
reference, so we must disallow this optimization on them. */
|
411 |
|
|
|| sregno == STACK_POINTER_REGNUM || dregno == STACK_POINTER_REGNUM)
|
412 |
|
|
return 0;
|
413 |
|
|
|
414 |
|
|
for (p = NEXT_INSN (insn); p; p = NEXT_INSN (p))
|
415 |
|
|
{
|
416 |
|
|
/* ??? We can't scan past the end of a basic block without updating
|
417 |
|
|
the register lifetime info (REG_DEAD/basic_block_live_at_start). */
|
418 |
|
|
if (perhaps_ends_bb_p (p))
|
419 |
|
|
break;
|
420 |
|
|
else if (! INSN_P (p))
|
421 |
|
|
continue;
|
422 |
|
|
|
423 |
|
|
if (reg_set_p (src, p) || reg_set_p (dest, p)
|
424 |
|
|
/* If SRC is an asm-declared register, it must not be replaced
|
425 |
|
|
in any asm. Unfortunately, the REG_EXPR tree for the asm
|
426 |
|
|
variable may be absent in the SRC rtx, so we can't check the
|
427 |
|
|
actual register declaration easily (the asm operand will have
|
428 |
|
|
it, though). To avoid complicating the test for a rare case,
|
429 |
|
|
we just don't perform register replacement for a hard reg
|
430 |
|
|
mentioned in an asm. */
|
431 |
|
|
|| (sregno < FIRST_PSEUDO_REGISTER
|
432 |
|
|
&& asm_noperands (PATTERN (p)) >= 0
|
433 |
|
|
&& reg_overlap_mentioned_p (src, PATTERN (p)))
|
434 |
|
|
/* Don't change hard registers used by a call. */
|
435 |
|
|
|| (CALL_P (p) && sregno < FIRST_PSEUDO_REGISTER
|
436 |
|
|
&& find_reg_fusage (p, USE, src))
|
437 |
|
|
/* Don't change a USE of a register. */
|
438 |
|
|
|| (GET_CODE (PATTERN (p)) == USE
|
439 |
|
|
&& reg_overlap_mentioned_p (src, XEXP (PATTERN (p), 0))))
|
440 |
|
|
break;
|
441 |
|
|
|
442 |
|
|
/* See if all of SRC dies in P. This test is slightly more
|
443 |
|
|
conservative than it needs to be. */
|
444 |
|
|
if ((note = find_regno_note (p, REG_DEAD, sregno)) != 0
|
445 |
|
|
&& GET_MODE (XEXP (note, 0)) == GET_MODE (src))
|
446 |
|
|
{
|
447 |
|
|
int failed = 0;
|
448 |
|
|
int d_length = 0;
|
449 |
|
|
int s_length = 0;
|
450 |
|
|
int d_n_calls = 0;
|
451 |
|
|
int s_n_calls = 0;
|
452 |
|
|
|
453 |
|
|
/* We can do the optimization. Scan forward from INSN again,
|
454 |
|
|
replacing regs as we go. Set FAILED if a replacement can't
|
455 |
|
|
be done. In that case, we can't move the death note for SRC.
|
456 |
|
|
This should be rare. */
|
457 |
|
|
|
458 |
|
|
/* Set to stop at next insn. */
|
459 |
|
|
for (q = next_real_insn (insn);
|
460 |
|
|
q != next_real_insn (p);
|
461 |
|
|
q = next_real_insn (q))
|
462 |
|
|
{
|
463 |
|
|
if (reg_overlap_mentioned_p (src, PATTERN (q)))
|
464 |
|
|
{
|
465 |
|
|
/* If SRC is a hard register, we might miss some
|
466 |
|
|
overlapping registers with validate_replace_rtx,
|
467 |
|
|
so we would have to undo it. We can't if DEST is
|
468 |
|
|
present in the insn, so fail in that combination
|
469 |
|
|
of cases. */
|
470 |
|
|
if (sregno < FIRST_PSEUDO_REGISTER
|
471 |
|
|
&& reg_mentioned_p (dest, PATTERN (q)))
|
472 |
|
|
failed = 1;
|
473 |
|
|
|
474 |
|
|
/* Replace all uses and make sure that the register
|
475 |
|
|
isn't still present. */
|
476 |
|
|
else if (validate_replace_rtx (src, dest, q)
|
477 |
|
|
&& (sregno >= FIRST_PSEUDO_REGISTER
|
478 |
|
|
|| ! reg_overlap_mentioned_p (src,
|
479 |
|
|
PATTERN (q))))
|
480 |
|
|
;
|
481 |
|
|
else
|
482 |
|
|
{
|
483 |
|
|
validate_replace_rtx (dest, src, q);
|
484 |
|
|
failed = 1;
|
485 |
|
|
}
|
486 |
|
|
}
|
487 |
|
|
|
488 |
|
|
/* For SREGNO, count the total number of insns scanned.
|
489 |
|
|
For DREGNO, count the total number of insns scanned after
|
490 |
|
|
passing the death note for DREGNO. */
|
491 |
|
|
s_length++;
|
492 |
|
|
if (dest_death)
|
493 |
|
|
d_length++;
|
494 |
|
|
|
495 |
|
|
/* If the insn in which SRC dies is a CALL_INSN, don't count it
|
496 |
|
|
as a call that has been crossed. Otherwise, count it. */
|
497 |
|
|
if (q != p && CALL_P (q))
|
498 |
|
|
{
|
499 |
|
|
/* Similarly, total calls for SREGNO, total calls beyond
|
500 |
|
|
the death note for DREGNO. */
|
501 |
|
|
s_n_calls++;
|
502 |
|
|
if (dest_death)
|
503 |
|
|
d_n_calls++;
|
504 |
|
|
}
|
505 |
|
|
|
506 |
|
|
/* If DEST dies here, remove the death note and save it for
|
507 |
|
|
later. Make sure ALL of DEST dies here; again, this is
|
508 |
|
|
overly conservative. */
|
509 |
|
|
if (dest_death == 0
|
510 |
|
|
&& (dest_death = find_regno_note (q, REG_DEAD, dregno)) != 0)
|
511 |
|
|
{
|
512 |
|
|
if (GET_MODE (XEXP (dest_death, 0)) != GET_MODE (dest))
|
513 |
|
|
failed = 1, dest_death = 0;
|
514 |
|
|
else
|
515 |
|
|
remove_note (q, dest_death);
|
516 |
|
|
}
|
517 |
|
|
}
|
518 |
|
|
|
519 |
|
|
if (! failed)
|
520 |
|
|
{
|
521 |
|
|
/* These counters need to be updated if and only if we are
|
522 |
|
|
going to move the REG_DEAD note. */
|
523 |
|
|
if (sregno >= FIRST_PSEUDO_REGISTER)
|
524 |
|
|
{
|
525 |
|
|
if (REG_LIVE_LENGTH (sregno) >= 0)
|
526 |
|
|
{
|
527 |
|
|
REG_LIVE_LENGTH (sregno) -= s_length;
|
528 |
|
|
/* REG_LIVE_LENGTH is only an approximation after
|
529 |
|
|
combine if sched is not run, so make sure that we
|
530 |
|
|
still have a reasonable value. */
|
531 |
|
|
if (REG_LIVE_LENGTH (sregno) < 2)
|
532 |
|
|
REG_LIVE_LENGTH (sregno) = 2;
|
533 |
|
|
}
|
534 |
|
|
|
535 |
|
|
REG_N_CALLS_CROSSED (sregno) -= s_n_calls;
|
536 |
|
|
}
|
537 |
|
|
|
538 |
|
|
/* Move death note of SRC from P to INSN. */
|
539 |
|
|
remove_note (p, note);
|
540 |
|
|
XEXP (note, 1) = REG_NOTES (insn);
|
541 |
|
|
REG_NOTES (insn) = note;
|
542 |
|
|
}
|
543 |
|
|
|
544 |
|
|
/* DEST is also dead if INSN has a REG_UNUSED note for DEST. */
|
545 |
|
|
if (! dest_death
|
546 |
|
|
&& (dest_death = find_regno_note (insn, REG_UNUSED, dregno)))
|
547 |
|
|
{
|
548 |
|
|
PUT_REG_NOTE_KIND (dest_death, REG_DEAD);
|
549 |
|
|
remove_note (insn, dest_death);
|
550 |
|
|
}
|
551 |
|
|
|
552 |
|
|
/* Put death note of DEST on P if we saw it die. */
|
553 |
|
|
if (dest_death)
|
554 |
|
|
{
|
555 |
|
|
XEXP (dest_death, 1) = REG_NOTES (p);
|
556 |
|
|
REG_NOTES (p) = dest_death;
|
557 |
|
|
|
558 |
|
|
if (dregno >= FIRST_PSEUDO_REGISTER)
|
559 |
|
|
{
|
560 |
|
|
/* If and only if we are moving the death note for DREGNO,
|
561 |
|
|
then we need to update its counters. */
|
562 |
|
|
if (REG_LIVE_LENGTH (dregno) >= 0)
|
563 |
|
|
REG_LIVE_LENGTH (dregno) += d_length;
|
564 |
|
|
REG_N_CALLS_CROSSED (dregno) += d_n_calls;
|
565 |
|
|
}
|
566 |
|
|
}
|
567 |
|
|
|
568 |
|
|
return ! failed;
|
569 |
|
|
}
|
570 |
|
|
|
571 |
|
|
/* If SRC is a hard register which is set or killed in some other
|
572 |
|
|
way, we can't do this optimization. */
|
573 |
|
|
else if (sregno < FIRST_PSEUDO_REGISTER
|
574 |
|
|
&& dead_or_set_p (p, src))
|
575 |
|
|
break;
|
576 |
|
|
}
|
577 |
|
|
return 0;
|
578 |
|
|
}
|
579 |
|
|
|
580 |
|
|
/* INSN is a copy of SRC to DEST, in which SRC dies. See if we now have
|
581 |
|
|
a sequence of insns that modify DEST followed by an insn that sets
|
582 |
|
|
SRC to DEST in which DEST dies, with no prior modification of DEST.
|
583 |
|
|
(There is no need to check if the insns in between actually modify
|
584 |
|
|
DEST. We should not have cases where DEST is not modified, but
|
585 |
|
|
the optimization is safe if no such modification is detected.)
|
586 |
|
|
In that case, we can replace all uses of DEST, starting with INSN and
|
587 |
|
|
ending with the set of SRC to DEST, with SRC. We do not do this
|
588 |
|
|
optimization if a CALL_INSN is crossed unless SRC already crosses a
|
589 |
|
|
call or if DEST dies before the copy back to SRC.
|
590 |
|
|
|
591 |
|
|
It is assumed that DEST and SRC are pseudos; it is too complicated to do
|
592 |
|
|
this for hard registers since the substitutions we may make might fail. */
|
593 |
|
|
|
594 |
|
|
static void
|
595 |
|
|
optimize_reg_copy_2 (rtx insn, rtx dest, rtx src)
|
596 |
|
|
{
|
597 |
|
|
rtx p, q;
|
598 |
|
|
rtx set;
|
599 |
|
|
int sregno = REGNO (src);
|
600 |
|
|
int dregno = REGNO (dest);
|
601 |
|
|
|
602 |
|
|
for (p = NEXT_INSN (insn); p; p = NEXT_INSN (p))
|
603 |
|
|
{
|
604 |
|
|
/* ??? We can't scan past the end of a basic block without updating
|
605 |
|
|
the register lifetime info (REG_DEAD/basic_block_live_at_start). */
|
606 |
|
|
if (perhaps_ends_bb_p (p))
|
607 |
|
|
break;
|
608 |
|
|
else if (! INSN_P (p))
|
609 |
|
|
continue;
|
610 |
|
|
|
611 |
|
|
set = single_set (p);
|
612 |
|
|
if (set && SET_SRC (set) == dest && SET_DEST (set) == src
|
613 |
|
|
&& find_reg_note (p, REG_DEAD, dest))
|
614 |
|
|
{
|
615 |
|
|
/* We can do the optimization. Scan forward from INSN again,
|
616 |
|
|
replacing regs as we go. */
|
617 |
|
|
|
618 |
|
|
/* Set to stop at next insn. */
|
619 |
|
|
for (q = insn; q != NEXT_INSN (p); q = NEXT_INSN (q))
|
620 |
|
|
if (INSN_P (q))
|
621 |
|
|
{
|
622 |
|
|
if (reg_mentioned_p (dest, PATTERN (q)))
|
623 |
|
|
PATTERN (q) = replace_rtx (PATTERN (q), dest, src);
|
624 |
|
|
|
625 |
|
|
|
626 |
|
|
if (CALL_P (q))
|
627 |
|
|
{
|
628 |
|
|
REG_N_CALLS_CROSSED (dregno)--;
|
629 |
|
|
REG_N_CALLS_CROSSED (sregno)++;
|
630 |
|
|
}
|
631 |
|
|
}
|
632 |
|
|
|
633 |
|
|
remove_note (p, find_reg_note (p, REG_DEAD, dest));
|
634 |
|
|
REG_N_DEATHS (dregno)--;
|
635 |
|
|
remove_note (insn, find_reg_note (insn, REG_DEAD, src));
|
636 |
|
|
REG_N_DEATHS (sregno)--;
|
637 |
|
|
return;
|
638 |
|
|
}
|
639 |
|
|
|
640 |
|
|
if (reg_set_p (src, p)
|
641 |
|
|
|| find_reg_note (p, REG_DEAD, dest)
|
642 |
|
|
|| (CALL_P (p) && REG_N_CALLS_CROSSED (sregno) == 0))
|
643 |
|
|
break;
|
644 |
|
|
}
|
645 |
|
|
}
|
646 |
|
|
/* INSN is a ZERO_EXTEND or SIGN_EXTEND of SRC to DEST.
|
647 |
|
|
Look if SRC dies there, and if it is only set once, by loading
|
648 |
|
|
it from memory. If so, try to incorporate the zero/sign extension
|
649 |
|
|
into the memory read, change SRC to the mode of DEST, and alter
|
650 |
|
|
the remaining accesses to use the appropriate SUBREG. This allows
|
651 |
|
|
SRC and DEST to be tied later. */
|
652 |
|
|
static void
|
653 |
|
|
optimize_reg_copy_3 (rtx insn, rtx dest, rtx src)
|
654 |
|
|
{
|
655 |
|
|
rtx src_reg = XEXP (src, 0);
|
656 |
|
|
int src_no = REGNO (src_reg);
|
657 |
|
|
int dst_no = REGNO (dest);
|
658 |
|
|
rtx p, set;
|
659 |
|
|
enum machine_mode old_mode;
|
660 |
|
|
|
661 |
|
|
if (src_no < FIRST_PSEUDO_REGISTER
|
662 |
|
|
|| dst_no < FIRST_PSEUDO_REGISTER
|
663 |
|
|
|| ! find_reg_note (insn, REG_DEAD, src_reg)
|
664 |
|
|
|| REG_N_DEATHS (src_no) != 1
|
665 |
|
|
|| REG_N_SETS (src_no) != 1)
|
666 |
|
|
return;
|
667 |
|
|
for (p = PREV_INSN (insn); p && ! reg_set_p (src_reg, p); p = PREV_INSN (p))
|
668 |
|
|
/* ??? We can't scan past the end of a basic block without updating
|
669 |
|
|
the register lifetime info (REG_DEAD/basic_block_live_at_start). */
|
670 |
|
|
if (perhaps_ends_bb_p (p))
|
671 |
|
|
break;
|
672 |
|
|
|
673 |
|
|
if (! p)
|
674 |
|
|
return;
|
675 |
|
|
|
676 |
|
|
if (! (set = single_set (p))
|
677 |
|
|
|| !MEM_P (SET_SRC (set))
|
678 |
|
|
/* If there's a REG_EQUIV note, this must be an insn that loads an
|
679 |
|
|
argument. Prefer keeping the note over doing this optimization. */
|
680 |
|
|
|| find_reg_note (p, REG_EQUIV, NULL_RTX)
|
681 |
|
|
|| SET_DEST (set) != src_reg)
|
682 |
|
|
return;
|
683 |
|
|
|
684 |
|
|
/* Be conservative: although this optimization is also valid for
|
685 |
|
|
volatile memory references, that could cause trouble in later passes. */
|
686 |
|
|
if (MEM_VOLATILE_P (SET_SRC (set)))
|
687 |
|
|
return;
|
688 |
|
|
|
689 |
|
|
/* Do not use a SUBREG to truncate from one mode to another if truncation
|
690 |
|
|
is not a nop. */
|
691 |
|
|
if (GET_MODE_BITSIZE (GET_MODE (src_reg)) <= GET_MODE_BITSIZE (GET_MODE (src))
|
692 |
|
|
&& !TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (GET_MODE (src)),
|
693 |
|
|
GET_MODE_BITSIZE (GET_MODE (src_reg))))
|
694 |
|
|
return;
|
695 |
|
|
|
696 |
|
|
old_mode = GET_MODE (src_reg);
|
697 |
|
|
PUT_MODE (src_reg, GET_MODE (src));
|
698 |
|
|
XEXP (src, 0) = SET_SRC (set);
|
699 |
|
|
|
700 |
|
|
/* Include this change in the group so that it's easily undone if
|
701 |
|
|
one of the changes in the group is invalid. */
|
702 |
|
|
validate_change (p, &SET_SRC (set), src, 1);
|
703 |
|
|
|
704 |
|
|
/* Now walk forward making additional replacements. We want to be able
|
705 |
|
|
to undo all the changes if a later substitution fails. */
|
706 |
|
|
while (p = NEXT_INSN (p), p != insn)
|
707 |
|
|
{
|
708 |
|
|
if (! INSN_P (p))
|
709 |
|
|
continue;
|
710 |
|
|
|
711 |
|
|
/* Make a tentative change. */
|
712 |
|
|
validate_replace_rtx_group (src_reg,
|
713 |
|
|
gen_lowpart_SUBREG (old_mode, src_reg),
|
714 |
|
|
p);
|
715 |
|
|
}
|
716 |
|
|
|
717 |
|
|
validate_replace_rtx_group (src, src_reg, insn);
|
718 |
|
|
|
719 |
|
|
/* Now see if all the changes are valid. */
|
720 |
|
|
if (! apply_change_group ())
|
721 |
|
|
{
|
722 |
|
|
/* One or more changes were no good. Back out everything. */
|
723 |
|
|
PUT_MODE (src_reg, old_mode);
|
724 |
|
|
XEXP (src, 0) = src_reg;
|
725 |
|
|
}
|
726 |
|
|
else
|
727 |
|
|
{
|
728 |
|
|
rtx note = find_reg_note (p, REG_EQUAL, NULL_RTX);
|
729 |
|
|
if (note)
|
730 |
|
|
remove_note (p, note);
|
731 |
|
|
}
|
732 |
|
|
}
|
733 |
|
|
|
734 |
|
|
|
735 |
|
|
/* If we were not able to update the users of src to use dest directly, try
|
736 |
|
|
instead moving the value to dest directly before the operation. */
|
737 |
|
|
|
738 |
|
|
static void
|
739 |
|
|
copy_src_to_dest (rtx insn, rtx src, rtx dest, int old_max_uid)
|
740 |
|
|
{
|
741 |
|
|
rtx seq;
|
742 |
|
|
rtx link;
|
743 |
|
|
rtx next;
|
744 |
|
|
rtx set;
|
745 |
|
|
rtx move_insn;
|
746 |
|
|
rtx *p_insn_notes;
|
747 |
|
|
rtx *p_move_notes;
|
748 |
|
|
int src_regno;
|
749 |
|
|
int dest_regno;
|
750 |
|
|
int bb;
|
751 |
|
|
int insn_uid;
|
752 |
|
|
int move_uid;
|
753 |
|
|
|
754 |
|
|
/* A REG_LIVE_LENGTH of -1 indicates the register is equivalent to a constant
|
755 |
|
|
or memory location and is used infrequently; a REG_LIVE_LENGTH of -2 is
|
756 |
|
|
parameter when there is no frame pointer that is not allocated a register.
|
757 |
|
|
For now, we just reject them, rather than incrementing the live length. */
|
758 |
|
|
|
759 |
|
|
if (REG_P (src)
|
760 |
|
|
&& REG_LIVE_LENGTH (REGNO (src)) > 0
|
761 |
|
|
&& REG_P (dest)
|
762 |
|
|
&& REG_LIVE_LENGTH (REGNO (dest)) > 0
|
763 |
|
|
&& (set = single_set (insn)) != NULL_RTX
|
764 |
|
|
&& !reg_mentioned_p (dest, SET_SRC (set))
|
765 |
|
|
&& GET_MODE (src) == GET_MODE (dest))
|
766 |
|
|
{
|
767 |
|
|
int old_num_regs = reg_rtx_no;
|
768 |
|
|
|
769 |
|
|
/* Generate the src->dest move. */
|
770 |
|
|
start_sequence ();
|
771 |
|
|
emit_move_insn (dest, src);
|
772 |
|
|
seq = get_insns ();
|
773 |
|
|
end_sequence ();
|
774 |
|
|
/* If this sequence uses new registers, we may not use it. */
|
775 |
|
|
if (old_num_regs != reg_rtx_no
|
776 |
|
|
|| ! validate_replace_rtx (src, dest, insn))
|
777 |
|
|
{
|
778 |
|
|
/* We have to restore reg_rtx_no to its old value, lest
|
779 |
|
|
recompute_reg_usage will try to compute the usage of the
|
780 |
|
|
new regs, yet reg_n_info is not valid for them. */
|
781 |
|
|
reg_rtx_no = old_num_regs;
|
782 |
|
|
return;
|
783 |
|
|
}
|
784 |
|
|
emit_insn_before (seq, insn);
|
785 |
|
|
move_insn = PREV_INSN (insn);
|
786 |
|
|
p_move_notes = ®_NOTES (move_insn);
|
787 |
|
|
p_insn_notes = ®_NOTES (insn);
|
788 |
|
|
|
789 |
|
|
/* Move any notes mentioning src to the move instruction. */
|
790 |
|
|
for (link = REG_NOTES (insn); link != NULL_RTX; link = next)
|
791 |
|
|
{
|
792 |
|
|
next = XEXP (link, 1);
|
793 |
|
|
if (XEXP (link, 0) == src)
|
794 |
|
|
{
|
795 |
|
|
*p_move_notes = link;
|
796 |
|
|
p_move_notes = &XEXP (link, 1);
|
797 |
|
|
}
|
798 |
|
|
else
|
799 |
|
|
{
|
800 |
|
|
*p_insn_notes = link;
|
801 |
|
|
p_insn_notes = &XEXP (link, 1);
|
802 |
|
|
}
|
803 |
|
|
}
|
804 |
|
|
|
805 |
|
|
*p_move_notes = NULL_RTX;
|
806 |
|
|
*p_insn_notes = NULL_RTX;
|
807 |
|
|
|
808 |
|
|
/* Is the insn the head of a basic block? If so extend it. */
|
809 |
|
|
insn_uid = INSN_UID (insn);
|
810 |
|
|
move_uid = INSN_UID (move_insn);
|
811 |
|
|
if (insn_uid < old_max_uid)
|
812 |
|
|
{
|
813 |
|
|
bb = regmove_bb_head[insn_uid];
|
814 |
|
|
if (bb >= 0)
|
815 |
|
|
{
|
816 |
|
|
BB_HEAD (BASIC_BLOCK (bb)) = move_insn;
|
817 |
|
|
regmove_bb_head[insn_uid] = -1;
|
818 |
|
|
}
|
819 |
|
|
}
|
820 |
|
|
|
821 |
|
|
/* Update the various register tables. */
|
822 |
|
|
dest_regno = REGNO (dest);
|
823 |
|
|
REG_N_SETS (dest_regno) ++;
|
824 |
|
|
REG_LIVE_LENGTH (dest_regno)++;
|
825 |
|
|
if (REGNO_FIRST_UID (dest_regno) == insn_uid)
|
826 |
|
|
REGNO_FIRST_UID (dest_regno) = move_uid;
|
827 |
|
|
|
828 |
|
|
src_regno = REGNO (src);
|
829 |
|
|
if (! find_reg_note (move_insn, REG_DEAD, src))
|
830 |
|
|
REG_LIVE_LENGTH (src_regno)++;
|
831 |
|
|
|
832 |
|
|
if (REGNO_FIRST_UID (src_regno) == insn_uid)
|
833 |
|
|
REGNO_FIRST_UID (src_regno) = move_uid;
|
834 |
|
|
|
835 |
|
|
if (REGNO_LAST_UID (src_regno) == insn_uid)
|
836 |
|
|
REGNO_LAST_UID (src_regno) = move_uid;
|
837 |
|
|
}
|
838 |
|
|
}
|
839 |
|
|
|
840 |
|
|
/* reg_set_in_bb[REGNO] points to basic block iff the register is set
|
841 |
|
|
only once in the given block and has REG_EQUAL note. */
|
842 |
|
|
|
843 |
|
|
basic_block *reg_set_in_bb;
|
844 |
|
|
|
845 |
|
|
/* Size of reg_set_in_bb array. */
|
846 |
|
|
static unsigned int max_reg_computed;
|
847 |
|
|
|
848 |
|
|
|
849 |
|
|
/* Return whether REG is set in only one location, and is set to a
|
850 |
|
|
constant, but is set in a different basic block from INSN (an
|
851 |
|
|
instructions which uses REG). In this case REG is equivalent to a
|
852 |
|
|
constant, and we don't want to break that equivalence, because that
|
853 |
|
|
may increase register pressure and make reload harder. If REG is
|
854 |
|
|
set in the same basic block as INSN, we don't worry about it,
|
855 |
|
|
because we'll probably need a register anyhow (??? but what if REG
|
856 |
|
|
is used in a different basic block as well as this one?). FIRST is
|
857 |
|
|
the first insn in the function. */
|
858 |
|
|
|
859 |
|
|
static bool
|
860 |
|
|
reg_is_remote_constant_p (rtx reg, rtx insn)
|
861 |
|
|
{
|
862 |
|
|
basic_block bb;
|
863 |
|
|
rtx p;
|
864 |
|
|
int max;
|
865 |
|
|
|
866 |
|
|
if (!reg_set_in_bb)
|
867 |
|
|
{
|
868 |
|
|
max_reg_computed = max = max_reg_num ();
|
869 |
|
|
reg_set_in_bb = xcalloc (max, sizeof (*reg_set_in_bb));
|
870 |
|
|
|
871 |
|
|
FOR_EACH_BB (bb)
|
872 |
|
|
for (p = BB_HEAD (bb); p != NEXT_INSN (BB_END (bb));
|
873 |
|
|
p = NEXT_INSN (p))
|
874 |
|
|
{
|
875 |
|
|
rtx s;
|
876 |
|
|
|
877 |
|
|
if (!INSN_P (p))
|
878 |
|
|
continue;
|
879 |
|
|
s = single_set (p);
|
880 |
|
|
/* This is the instruction which sets REG. If there is a
|
881 |
|
|
REG_EQUAL note, then REG is equivalent to a constant. */
|
882 |
|
|
if (s != 0
|
883 |
|
|
&& REG_P (SET_DEST (s))
|
884 |
|
|
&& REG_N_SETS (REGNO (SET_DEST (s))) == 1
|
885 |
|
|
&& find_reg_note (p, REG_EQUAL, NULL_RTX))
|
886 |
|
|
reg_set_in_bb[REGNO (SET_DEST (s))] = bb;
|
887 |
|
|
}
|
888 |
|
|
}
|
889 |
|
|
gcc_assert (REGNO (reg) < max_reg_computed);
|
890 |
|
|
if (reg_set_in_bb[REGNO (reg)] == NULL)
|
891 |
|
|
return false;
|
892 |
|
|
if (reg_set_in_bb[REGNO (reg)] != BLOCK_FOR_INSN (insn))
|
893 |
|
|
return true;
|
894 |
|
|
/* Look for the set. */
|
895 |
|
|
for (p = BB_HEAD (BLOCK_FOR_INSN (insn)); p != insn; p = NEXT_INSN (p))
|
896 |
|
|
{
|
897 |
|
|
rtx s;
|
898 |
|
|
|
899 |
|
|
if (!INSN_P (p))
|
900 |
|
|
continue;
|
901 |
|
|
s = single_set (p);
|
902 |
|
|
if (s != 0
|
903 |
|
|
&& REG_P (SET_DEST (s)) && REGNO (SET_DEST (s)) == REGNO (reg))
|
904 |
|
|
{
|
905 |
|
|
/* The register is set in the same basic block. */
|
906 |
|
|
return false;
|
907 |
|
|
}
|
908 |
|
|
}
|
909 |
|
|
return true;
|
910 |
|
|
}
|
911 |
|
|
|
912 |
|
|
/* INSN is adding a CONST_INT to a REG. We search backwards looking for
|
913 |
|
|
another add immediate instruction with the same source and dest registers,
|
914 |
|
|
and if we find one, we change INSN to an increment, and return 1. If
|
915 |
|
|
no changes are made, we return 0.
|
916 |
|
|
|
917 |
|
|
This changes
|
918 |
|
|
(set (reg100) (plus reg1 offset1))
|
919 |
|
|
...
|
920 |
|
|
(set (reg100) (plus reg1 offset2))
|
921 |
|
|
to
|
922 |
|
|
(set (reg100) (plus reg1 offset1))
|
923 |
|
|
...
|
924 |
|
|
(set (reg100) (plus reg100 offset2-offset1)) */
|
925 |
|
|
|
926 |
|
|
/* ??? What does this comment mean? */
|
927 |
|
|
/* cse disrupts preincrement / postdecrement sequences when it finds a
|
928 |
|
|
hard register as ultimate source, like the frame pointer. */
|
929 |
|
|
|
930 |
|
|
static int
|
931 |
|
|
fixup_match_2 (rtx insn, rtx dst, rtx src, rtx offset)
|
932 |
|
|
{
|
933 |
|
|
rtx p, dst_death = 0;
|
934 |
|
|
int length, num_calls = 0;
|
935 |
|
|
|
936 |
|
|
/* If SRC dies in INSN, we'd have to move the death note. This is
|
937 |
|
|
considered to be very unlikely, so we just skip the optimization
|
938 |
|
|
in this case. */
|
939 |
|
|
if (find_regno_note (insn, REG_DEAD, REGNO (src)))
|
940 |
|
|
return 0;
|
941 |
|
|
|
942 |
|
|
/* Scan backward to find the first instruction that sets DST. */
|
943 |
|
|
|
944 |
|
|
for (length = 0, p = PREV_INSN (insn); p; p = PREV_INSN (p))
|
945 |
|
|
{
|
946 |
|
|
rtx pset;
|
947 |
|
|
|
948 |
|
|
/* ??? We can't scan past the end of a basic block without updating
|
949 |
|
|
the register lifetime info (REG_DEAD/basic_block_live_at_start). */
|
950 |
|
|
if (perhaps_ends_bb_p (p))
|
951 |
|
|
break;
|
952 |
|
|
else if (! INSN_P (p))
|
953 |
|
|
continue;
|
954 |
|
|
|
955 |
|
|
if (find_regno_note (p, REG_DEAD, REGNO (dst)))
|
956 |
|
|
dst_death = p;
|
957 |
|
|
if (! dst_death)
|
958 |
|
|
length++;
|
959 |
|
|
|
960 |
|
|
pset = single_set (p);
|
961 |
|
|
if (pset && SET_DEST (pset) == dst
|
962 |
|
|
&& GET_CODE (SET_SRC (pset)) == PLUS
|
963 |
|
|
&& XEXP (SET_SRC (pset), 0) == src
|
964 |
|
|
&& GET_CODE (XEXP (SET_SRC (pset), 1)) == CONST_INT)
|
965 |
|
|
{
|
966 |
|
|
HOST_WIDE_INT newconst
|
967 |
|
|
= INTVAL (offset) - INTVAL (XEXP (SET_SRC (pset), 1));
|
968 |
|
|
rtx add = gen_add3_insn (dst, dst, GEN_INT (newconst));
|
969 |
|
|
|
970 |
|
|
if (add && validate_change (insn, &PATTERN (insn), add, 0))
|
971 |
|
|
{
|
972 |
|
|
/* Remove the death note for DST from DST_DEATH. */
|
973 |
|
|
if (dst_death)
|
974 |
|
|
{
|
975 |
|
|
remove_death (REGNO (dst), dst_death);
|
976 |
|
|
REG_LIVE_LENGTH (REGNO (dst)) += length;
|
977 |
|
|
REG_N_CALLS_CROSSED (REGNO (dst)) += num_calls;
|
978 |
|
|
}
|
979 |
|
|
|
980 |
|
|
if (dump_file)
|
981 |
|
|
fprintf (dump_file,
|
982 |
|
|
"Fixed operand of insn %d.\n",
|
983 |
|
|
INSN_UID (insn));
|
984 |
|
|
|
985 |
|
|
#ifdef AUTO_INC_DEC
|
986 |
|
|
for (p = PREV_INSN (insn); p; p = PREV_INSN (p))
|
987 |
|
|
{
|
988 |
|
|
if (LABEL_P (p)
|
989 |
|
|
|| JUMP_P (p))
|
990 |
|
|
break;
|
991 |
|
|
if (! INSN_P (p))
|
992 |
|
|
continue;
|
993 |
|
|
if (reg_overlap_mentioned_p (dst, PATTERN (p)))
|
994 |
|
|
{
|
995 |
|
|
if (try_auto_increment (p, insn, 0, dst, newconst, 0))
|
996 |
|
|
return 1;
|
997 |
|
|
break;
|
998 |
|
|
}
|
999 |
|
|
}
|
1000 |
|
|
for (p = NEXT_INSN (insn); p; p = NEXT_INSN (p))
|
1001 |
|
|
{
|
1002 |
|
|
if (LABEL_P (p)
|
1003 |
|
|
|| JUMP_P (p))
|
1004 |
|
|
break;
|
1005 |
|
|
if (! INSN_P (p))
|
1006 |
|
|
continue;
|
1007 |
|
|
if (reg_overlap_mentioned_p (dst, PATTERN (p)))
|
1008 |
|
|
{
|
1009 |
|
|
try_auto_increment (p, insn, 0, dst, newconst, 1);
|
1010 |
|
|
break;
|
1011 |
|
|
}
|
1012 |
|
|
}
|
1013 |
|
|
#endif
|
1014 |
|
|
return 1;
|
1015 |
|
|
}
|
1016 |
|
|
}
|
1017 |
|
|
|
1018 |
|
|
if (reg_set_p (dst, PATTERN (p)))
|
1019 |
|
|
break;
|
1020 |
|
|
|
1021 |
|
|
/* If we have passed a call instruction, and the
|
1022 |
|
|
pseudo-reg SRC is not already live across a call,
|
1023 |
|
|
then don't perform the optimization. */
|
1024 |
|
|
/* reg_set_p is overly conservative for CALL_INSNS, thinks that all
|
1025 |
|
|
hard regs are clobbered. Thus, we only use it for src for
|
1026 |
|
|
non-call insns. */
|
1027 |
|
|
if (CALL_P (p))
|
1028 |
|
|
{
|
1029 |
|
|
if (! dst_death)
|
1030 |
|
|
num_calls++;
|
1031 |
|
|
|
1032 |
|
|
if (REG_N_CALLS_CROSSED (REGNO (src)) == 0)
|
1033 |
|
|
break;
|
1034 |
|
|
|
1035 |
|
|
if (call_used_regs [REGNO (dst)]
|
1036 |
|
|
|| find_reg_fusage (p, CLOBBER, dst))
|
1037 |
|
|
break;
|
1038 |
|
|
}
|
1039 |
|
|
else if (reg_set_p (src, PATTERN (p)))
|
1040 |
|
|
break;
|
1041 |
|
|
}
|
1042 |
|
|
|
1043 |
|
|
return 0;
|
1044 |
|
|
}
|
1045 |
|
|
|
1046 |
|
|
/* Main entry for the register move optimization.
|
1047 |
|
|
F is the first instruction.
|
1048 |
|
|
NREGS is one plus the highest pseudo-reg number used in the instruction.
|
1049 |
|
|
REGMOVE_DUMP_FILE is a stream for output of a trace of actions taken
|
1050 |
|
|
(or 0 if none should be output). */
|
1051 |
|
|
|
1052 |
|
|
static void
|
1053 |
|
|
regmove_optimize (rtx f, int nregs)
|
1054 |
|
|
{
|
1055 |
|
|
int old_max_uid = get_max_uid ();
|
1056 |
|
|
rtx insn;
|
1057 |
|
|
struct match match;
|
1058 |
|
|
int pass;
|
1059 |
|
|
int i;
|
1060 |
|
|
rtx copy_src, copy_dst;
|
1061 |
|
|
basic_block bb;
|
1062 |
|
|
|
1063 |
|
|
/* ??? Hack. Regmove doesn't examine the CFG, and gets mightily
|
1064 |
|
|
confused by non-call exceptions ending blocks. */
|
1065 |
|
|
if (flag_non_call_exceptions)
|
1066 |
|
|
return;
|
1067 |
|
|
|
1068 |
|
|
/* Find out where a potential flags register is live, and so that we
|
1069 |
|
|
can suppress some optimizations in those zones. */
|
1070 |
|
|
mark_flags_life_zones (discover_flags_reg ());
|
1071 |
|
|
|
1072 |
|
|
regno_src_regno = XNEWVEC (int, nregs);
|
1073 |
|
|
for (i = nregs; --i >= 0; ) regno_src_regno[i] = -1;
|
1074 |
|
|
|
1075 |
|
|
regmove_bb_head = XNEWVEC (int, old_max_uid + 1);
|
1076 |
|
|
for (i = old_max_uid; i >= 0; i--) regmove_bb_head[i] = -1;
|
1077 |
|
|
FOR_EACH_BB (bb)
|
1078 |
|
|
regmove_bb_head[INSN_UID (BB_HEAD (bb))] = bb->index;
|
1079 |
|
|
|
1080 |
|
|
/* A forward/backward pass. Replace output operands with input operands. */
|
1081 |
|
|
|
1082 |
|
|
for (pass = 0; pass <= 2; pass++)
|
1083 |
|
|
{
|
1084 |
|
|
if (! flag_regmove && pass >= flag_expensive_optimizations)
|
1085 |
|
|
goto done;
|
1086 |
|
|
|
1087 |
|
|
if (dump_file)
|
1088 |
|
|
fprintf (dump_file, "Starting %s pass...\n",
|
1089 |
|
|
pass ? "backward" : "forward");
|
1090 |
|
|
|
1091 |
|
|
for (insn = pass ? get_last_insn () : f; insn;
|
1092 |
|
|
insn = pass ? PREV_INSN (insn) : NEXT_INSN (insn))
|
1093 |
|
|
{
|
1094 |
|
|
rtx set;
|
1095 |
|
|
int op_no, match_no;
|
1096 |
|
|
|
1097 |
|
|
set = single_set (insn);
|
1098 |
|
|
if (! set)
|
1099 |
|
|
continue;
|
1100 |
|
|
|
1101 |
|
|
if (flag_expensive_optimizations && ! pass
|
1102 |
|
|
&& (GET_CODE (SET_SRC (set)) == SIGN_EXTEND
|
1103 |
|
|
|| GET_CODE (SET_SRC (set)) == ZERO_EXTEND)
|
1104 |
|
|
&& REG_P (XEXP (SET_SRC (set), 0))
|
1105 |
|
|
&& REG_P (SET_DEST (set)))
|
1106 |
|
|
optimize_reg_copy_3 (insn, SET_DEST (set), SET_SRC (set));
|
1107 |
|
|
|
1108 |
|
|
if (flag_expensive_optimizations && ! pass
|
1109 |
|
|
&& REG_P (SET_SRC (set))
|
1110 |
|
|
&& REG_P (SET_DEST (set)))
|
1111 |
|
|
{
|
1112 |
|
|
/* If this is a register-register copy where SRC is not dead,
|
1113 |
|
|
see if we can optimize it. If this optimization succeeds,
|
1114 |
|
|
it will become a copy where SRC is dead. */
|
1115 |
|
|
if ((find_reg_note (insn, REG_DEAD, SET_SRC (set))
|
1116 |
|
|
|| optimize_reg_copy_1 (insn, SET_DEST (set), SET_SRC (set)))
|
1117 |
|
|
&& REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER)
|
1118 |
|
|
{
|
1119 |
|
|
/* Similarly for a pseudo-pseudo copy when SRC is dead. */
|
1120 |
|
|
if (REGNO (SET_SRC (set)) >= FIRST_PSEUDO_REGISTER)
|
1121 |
|
|
optimize_reg_copy_2 (insn, SET_DEST (set), SET_SRC (set));
|
1122 |
|
|
if (regno_src_regno[REGNO (SET_DEST (set))] < 0
|
1123 |
|
|
&& SET_SRC (set) != SET_DEST (set))
|
1124 |
|
|
{
|
1125 |
|
|
int srcregno = REGNO (SET_SRC (set));
|
1126 |
|
|
if (regno_src_regno[srcregno] >= 0)
|
1127 |
|
|
srcregno = regno_src_regno[srcregno];
|
1128 |
|
|
regno_src_regno[REGNO (SET_DEST (set))] = srcregno;
|
1129 |
|
|
}
|
1130 |
|
|
}
|
1131 |
|
|
}
|
1132 |
|
|
if (! flag_regmove)
|
1133 |
|
|
continue;
|
1134 |
|
|
|
1135 |
|
|
if (! find_matches (insn, &match))
|
1136 |
|
|
continue;
|
1137 |
|
|
|
1138 |
|
|
/* Now scan through the operands looking for a source operand
|
1139 |
|
|
which is supposed to match the destination operand.
|
1140 |
|
|
Then scan forward for an instruction which uses the dest
|
1141 |
|
|
operand.
|
1142 |
|
|
If it dies there, then replace the dest in both operands with
|
1143 |
|
|
the source operand. */
|
1144 |
|
|
|
1145 |
|
|
for (op_no = 0; op_no < recog_data.n_operands; op_no++)
|
1146 |
|
|
{
|
1147 |
|
|
rtx src, dst, src_subreg;
|
1148 |
|
|
enum reg_class src_class, dst_class;
|
1149 |
|
|
|
1150 |
|
|
match_no = match.with[op_no];
|
1151 |
|
|
|
1152 |
|
|
/* Nothing to do if the two operands aren't supposed to match. */
|
1153 |
|
|
if (match_no < 0)
|
1154 |
|
|
continue;
|
1155 |
|
|
|
1156 |
|
|
src = recog_data.operand[op_no];
|
1157 |
|
|
dst = recog_data.operand[match_no];
|
1158 |
|
|
|
1159 |
|
|
if (!REG_P (src))
|
1160 |
|
|
continue;
|
1161 |
|
|
|
1162 |
|
|
src_subreg = src;
|
1163 |
|
|
if (GET_CODE (dst) == SUBREG
|
1164 |
|
|
&& GET_MODE_SIZE (GET_MODE (dst))
|
1165 |
|
|
>= GET_MODE_SIZE (GET_MODE (SUBREG_REG (dst))))
|
1166 |
|
|
{
|
1167 |
|
|
dst = SUBREG_REG (dst);
|
1168 |
|
|
src_subreg = lowpart_subreg (GET_MODE (dst),
|
1169 |
|
|
src, GET_MODE (src));
|
1170 |
|
|
if (!src_subreg)
|
1171 |
|
|
continue;
|
1172 |
|
|
}
|
1173 |
|
|
if (!REG_P (dst)
|
1174 |
|
|
|| REGNO (dst) < FIRST_PSEUDO_REGISTER)
|
1175 |
|
|
continue;
|
1176 |
|
|
|
1177 |
|
|
if (REGNO (src) < FIRST_PSEUDO_REGISTER)
|
1178 |
|
|
{
|
1179 |
|
|
if (match.commutative[op_no] < op_no)
|
1180 |
|
|
regno_src_regno[REGNO (dst)] = REGNO (src);
|
1181 |
|
|
continue;
|
1182 |
|
|
}
|
1183 |
|
|
|
1184 |
|
|
if (REG_LIVE_LENGTH (REGNO (src)) < 0)
|
1185 |
|
|
continue;
|
1186 |
|
|
|
1187 |
|
|
/* op_no/src must be a read-only operand, and
|
1188 |
|
|
match_operand/dst must be a write-only operand. */
|
1189 |
|
|
if (match.use[op_no] != READ
|
1190 |
|
|
|| match.use[match_no] != WRITE)
|
1191 |
|
|
continue;
|
1192 |
|
|
|
1193 |
|
|
if (match.early_clobber[match_no]
|
1194 |
|
|
&& count_occurrences (PATTERN (insn), src, 0) > 1)
|
1195 |
|
|
continue;
|
1196 |
|
|
|
1197 |
|
|
/* Make sure match_operand is the destination. */
|
1198 |
|
|
if (recog_data.operand[match_no] != SET_DEST (set))
|
1199 |
|
|
continue;
|
1200 |
|
|
|
1201 |
|
|
/* If the operands already match, then there is nothing to do. */
|
1202 |
|
|
if (operands_match_p (src, dst))
|
1203 |
|
|
continue;
|
1204 |
|
|
|
1205 |
|
|
/* But in the commutative case, we might find a better match. */
|
1206 |
|
|
if (match.commutative[op_no] >= 0)
|
1207 |
|
|
{
|
1208 |
|
|
rtx comm = recog_data.operand[match.commutative[op_no]];
|
1209 |
|
|
if (operands_match_p (comm, dst)
|
1210 |
|
|
&& (replacement_quality (comm)
|
1211 |
|
|
>= replacement_quality (src)))
|
1212 |
|
|
continue;
|
1213 |
|
|
}
|
1214 |
|
|
|
1215 |
|
|
src_class = reg_preferred_class (REGNO (src));
|
1216 |
|
|
dst_class = reg_preferred_class (REGNO (dst));
|
1217 |
|
|
if (! regclass_compatible_p (src_class, dst_class))
|
1218 |
|
|
continue;
|
1219 |
|
|
|
1220 |
|
|
if (GET_MODE (src) != GET_MODE (dst))
|
1221 |
|
|
continue;
|
1222 |
|
|
|
1223 |
|
|
if (fixup_match_1 (insn, set, src, src_subreg, dst, pass,
|
1224 |
|
|
op_no, match_no))
|
1225 |
|
|
break;
|
1226 |
|
|
}
|
1227 |
|
|
}
|
1228 |
|
|
}
|
1229 |
|
|
|
1230 |
|
|
/* A backward pass. Replace input operands with output operands. */
|
1231 |
|
|
|
1232 |
|
|
if (dump_file)
|
1233 |
|
|
fprintf (dump_file, "Starting backward pass...\n");
|
1234 |
|
|
|
1235 |
|
|
for (insn = get_last_insn (); insn; insn = PREV_INSN (insn))
|
1236 |
|
|
{
|
1237 |
|
|
if (INSN_P (insn))
|
1238 |
|
|
{
|
1239 |
|
|
int op_no, match_no;
|
1240 |
|
|
int success = 0;
|
1241 |
|
|
|
1242 |
|
|
if (! find_matches (insn, &match))
|
1243 |
|
|
continue;
|
1244 |
|
|
|
1245 |
|
|
/* Now scan through the operands looking for a destination operand
|
1246 |
|
|
which is supposed to match a source operand.
|
1247 |
|
|
Then scan backward for an instruction which sets the source
|
1248 |
|
|
operand. If safe, then replace the source operand with the
|
1249 |
|
|
dest operand in both instructions. */
|
1250 |
|
|
|
1251 |
|
|
copy_src = NULL_RTX;
|
1252 |
|
|
copy_dst = NULL_RTX;
|
1253 |
|
|
for (op_no = 0; op_no < recog_data.n_operands; op_no++)
|
1254 |
|
|
{
|
1255 |
|
|
rtx set, p, src, dst;
|
1256 |
|
|
rtx src_note, dst_note;
|
1257 |
|
|
int num_calls = 0;
|
1258 |
|
|
enum reg_class src_class, dst_class;
|
1259 |
|
|
int length;
|
1260 |
|
|
|
1261 |
|
|
match_no = match.with[op_no];
|
1262 |
|
|
|
1263 |
|
|
/* Nothing to do if the two operands aren't supposed to match. */
|
1264 |
|
|
if (match_no < 0)
|
1265 |
|
|
continue;
|
1266 |
|
|
|
1267 |
|
|
dst = recog_data.operand[match_no];
|
1268 |
|
|
src = recog_data.operand[op_no];
|
1269 |
|
|
|
1270 |
|
|
if (!REG_P (src))
|
1271 |
|
|
continue;
|
1272 |
|
|
|
1273 |
|
|
if (!REG_P (dst)
|
1274 |
|
|
|| REGNO (dst) < FIRST_PSEUDO_REGISTER
|
1275 |
|
|
|| REG_LIVE_LENGTH (REGNO (dst)) < 0
|
1276 |
|
|
|| GET_MODE (src) != GET_MODE (dst))
|
1277 |
|
|
continue;
|
1278 |
|
|
|
1279 |
|
|
/* If the operands already match, then there is nothing to do. */
|
1280 |
|
|
if (operands_match_p (src, dst))
|
1281 |
|
|
continue;
|
1282 |
|
|
|
1283 |
|
|
if (match.commutative[op_no] >= 0)
|
1284 |
|
|
{
|
1285 |
|
|
rtx comm = recog_data.operand[match.commutative[op_no]];
|
1286 |
|
|
if (operands_match_p (comm, dst))
|
1287 |
|
|
continue;
|
1288 |
|
|
}
|
1289 |
|
|
|
1290 |
|
|
set = single_set (insn);
|
1291 |
|
|
if (! set)
|
1292 |
|
|
continue;
|
1293 |
|
|
|
1294 |
|
|
/* Note that single_set ignores parts of a parallel set for
|
1295 |
|
|
which one of the destinations is REG_UNUSED. We can't
|
1296 |
|
|
handle that here, since we can wind up rewriting things
|
1297 |
|
|
such that a single register is set twice within a single
|
1298 |
|
|
parallel. */
|
1299 |
|
|
if (reg_set_p (src, insn))
|
1300 |
|
|
continue;
|
1301 |
|
|
|
1302 |
|
|
/* match_no/dst must be a write-only operand, and
|
1303 |
|
|
operand_operand/src must be a read-only operand. */
|
1304 |
|
|
if (match.use[op_no] != READ
|
1305 |
|
|
|| match.use[match_no] != WRITE)
|
1306 |
|
|
continue;
|
1307 |
|
|
|
1308 |
|
|
if (match.early_clobber[match_no]
|
1309 |
|
|
&& count_occurrences (PATTERN (insn), src, 0) > 1)
|
1310 |
|
|
continue;
|
1311 |
|
|
|
1312 |
|
|
/* Make sure match_no is the destination. */
|
1313 |
|
|
if (recog_data.operand[match_no] != SET_DEST (set))
|
1314 |
|
|
continue;
|
1315 |
|
|
|
1316 |
|
|
if (REGNO (src) < FIRST_PSEUDO_REGISTER)
|
1317 |
|
|
{
|
1318 |
|
|
if (GET_CODE (SET_SRC (set)) == PLUS
|
1319 |
|
|
&& GET_CODE (XEXP (SET_SRC (set), 1)) == CONST_INT
|
1320 |
|
|
&& XEXP (SET_SRC (set), 0) == src
|
1321 |
|
|
&& fixup_match_2 (insn, dst, src,
|
1322 |
|
|
XEXP (SET_SRC (set), 1)))
|
1323 |
|
|
break;
|
1324 |
|
|
continue;
|
1325 |
|
|
}
|
1326 |
|
|
src_class = reg_preferred_class (REGNO (src));
|
1327 |
|
|
dst_class = reg_preferred_class (REGNO (dst));
|
1328 |
|
|
|
1329 |
|
|
if (! (src_note = find_reg_note (insn, REG_DEAD, src)))
|
1330 |
|
|
{
|
1331 |
|
|
/* We used to force the copy here like in other cases, but
|
1332 |
|
|
it produces worse code, as it eliminates no copy
|
1333 |
|
|
instructions and the copy emitted will be produced by
|
1334 |
|
|
reload anyway. On patterns with multiple alternatives,
|
1335 |
|
|
there may be better solution available.
|
1336 |
|
|
|
1337 |
|
|
In particular this change produced slower code for numeric
|
1338 |
|
|
i387 programs. */
|
1339 |
|
|
|
1340 |
|
|
continue;
|
1341 |
|
|
}
|
1342 |
|
|
|
1343 |
|
|
if (! regclass_compatible_p (src_class, dst_class))
|
1344 |
|
|
{
|
1345 |
|
|
if (!copy_src)
|
1346 |
|
|
{
|
1347 |
|
|
copy_src = src;
|
1348 |
|
|
copy_dst = dst;
|
1349 |
|
|
}
|
1350 |
|
|
continue;
|
1351 |
|
|
}
|
1352 |
|
|
|
1353 |
|
|
/* Can not modify an earlier insn to set dst if this insn
|
1354 |
|
|
uses an old value in the source. */
|
1355 |
|
|
if (reg_overlap_mentioned_p (dst, SET_SRC (set)))
|
1356 |
|
|
{
|
1357 |
|
|
if (!copy_src)
|
1358 |
|
|
{
|
1359 |
|
|
copy_src = src;
|
1360 |
|
|
copy_dst = dst;
|
1361 |
|
|
}
|
1362 |
|
|
continue;
|
1363 |
|
|
}
|
1364 |
|
|
|
1365 |
|
|
/* If src is set once in a different basic block,
|
1366 |
|
|
and is set equal to a constant, then do not use
|
1367 |
|
|
it for this optimization, as this would make it
|
1368 |
|
|
no longer equivalent to a constant. */
|
1369 |
|
|
|
1370 |
|
|
if (reg_is_remote_constant_p (src, insn))
|
1371 |
|
|
{
|
1372 |
|
|
if (!copy_src)
|
1373 |
|
|
{
|
1374 |
|
|
copy_src = src;
|
1375 |
|
|
copy_dst = dst;
|
1376 |
|
|
}
|
1377 |
|
|
continue;
|
1378 |
|
|
}
|
1379 |
|
|
|
1380 |
|
|
|
1381 |
|
|
if (dump_file)
|
1382 |
|
|
fprintf (dump_file,
|
1383 |
|
|
"Could fix operand %d of insn %d matching operand %d.\n",
|
1384 |
|
|
op_no, INSN_UID (insn), match_no);
|
1385 |
|
|
|
1386 |
|
|
/* Scan backward to find the first instruction that uses
|
1387 |
|
|
the input operand. If the operand is set here, then
|
1388 |
|
|
replace it in both instructions with match_no. */
|
1389 |
|
|
|
1390 |
|
|
for (length = 0, p = PREV_INSN (insn); p; p = PREV_INSN (p))
|
1391 |
|
|
{
|
1392 |
|
|
rtx pset;
|
1393 |
|
|
|
1394 |
|
|
/* ??? We can't scan past the end of a basic block without
|
1395 |
|
|
updating the register lifetime info
|
1396 |
|
|
(REG_DEAD/basic_block_live_at_start). */
|
1397 |
|
|
if (perhaps_ends_bb_p (p))
|
1398 |
|
|
break;
|
1399 |
|
|
else if (! INSN_P (p))
|
1400 |
|
|
continue;
|
1401 |
|
|
|
1402 |
|
|
length++;
|
1403 |
|
|
|
1404 |
|
|
/* ??? See if all of SRC is set in P. This test is much
|
1405 |
|
|
more conservative than it needs to be. */
|
1406 |
|
|
pset = single_set (p);
|
1407 |
|
|
if (pset && SET_DEST (pset) == src)
|
1408 |
|
|
{
|
1409 |
|
|
/* We use validate_replace_rtx, in case there
|
1410 |
|
|
are multiple identical source operands. All of
|
1411 |
|
|
them have to be changed at the same time. */
|
1412 |
|
|
if (validate_replace_rtx (src, dst, insn))
|
1413 |
|
|
{
|
1414 |
|
|
if (validate_change (p, &SET_DEST (pset),
|
1415 |
|
|
dst, 0))
|
1416 |
|
|
success = 1;
|
1417 |
|
|
else
|
1418 |
|
|
{
|
1419 |
|
|
/* Change all source operands back.
|
1420 |
|
|
This modifies the dst as a side-effect. */
|
1421 |
|
|
validate_replace_rtx (dst, src, insn);
|
1422 |
|
|
/* Now make sure the dst is right. */
|
1423 |
|
|
validate_change (insn,
|
1424 |
|
|
recog_data.operand_loc[match_no],
|
1425 |
|
|
dst, 0);
|
1426 |
|
|
}
|
1427 |
|
|
}
|
1428 |
|
|
break;
|
1429 |
|
|
}
|
1430 |
|
|
|
1431 |
|
|
if (reg_overlap_mentioned_p (src, PATTERN (p))
|
1432 |
|
|
|| reg_overlap_mentioned_p (dst, PATTERN (p)))
|
1433 |
|
|
break;
|
1434 |
|
|
|
1435 |
|
|
/* If we have passed a call instruction, and the
|
1436 |
|
|
pseudo-reg DST is not already live across a call,
|
1437 |
|
|
then don't perform the optimization. */
|
1438 |
|
|
if (CALL_P (p))
|
1439 |
|
|
{
|
1440 |
|
|
num_calls++;
|
1441 |
|
|
|
1442 |
|
|
if (REG_N_CALLS_CROSSED (REGNO (dst)) == 0)
|
1443 |
|
|
break;
|
1444 |
|
|
}
|
1445 |
|
|
}
|
1446 |
|
|
|
1447 |
|
|
if (success)
|
1448 |
|
|
{
|
1449 |
|
|
int dstno, srcno;
|
1450 |
|
|
|
1451 |
|
|
/* Remove the death note for SRC from INSN. */
|
1452 |
|
|
remove_note (insn, src_note);
|
1453 |
|
|
/* Move the death note for SRC to P if it is used
|
1454 |
|
|
there. */
|
1455 |
|
|
if (reg_overlap_mentioned_p (src, PATTERN (p)))
|
1456 |
|
|
{
|
1457 |
|
|
XEXP (src_note, 1) = REG_NOTES (p);
|
1458 |
|
|
REG_NOTES (p) = src_note;
|
1459 |
|
|
}
|
1460 |
|
|
/* If there is a REG_DEAD note for DST on P, then remove
|
1461 |
|
|
it, because DST is now set there. */
|
1462 |
|
|
if ((dst_note = find_reg_note (p, REG_DEAD, dst)))
|
1463 |
|
|
remove_note (p, dst_note);
|
1464 |
|
|
|
1465 |
|
|
dstno = REGNO (dst);
|
1466 |
|
|
srcno = REGNO (src);
|
1467 |
|
|
|
1468 |
|
|
REG_N_SETS (dstno)++;
|
1469 |
|
|
REG_N_SETS (srcno)--;
|
1470 |
|
|
|
1471 |
|
|
REG_N_CALLS_CROSSED (dstno) += num_calls;
|
1472 |
|
|
REG_N_CALLS_CROSSED (srcno) -= num_calls;
|
1473 |
|
|
|
1474 |
|
|
REG_LIVE_LENGTH (dstno) += length;
|
1475 |
|
|
if (REG_LIVE_LENGTH (srcno) >= 0)
|
1476 |
|
|
{
|
1477 |
|
|
REG_LIVE_LENGTH (srcno) -= length;
|
1478 |
|
|
/* REG_LIVE_LENGTH is only an approximation after
|
1479 |
|
|
combine if sched is not run, so make sure that we
|
1480 |
|
|
still have a reasonable value. */
|
1481 |
|
|
if (REG_LIVE_LENGTH (srcno) < 2)
|
1482 |
|
|
REG_LIVE_LENGTH (srcno) = 2;
|
1483 |
|
|
}
|
1484 |
|
|
|
1485 |
|
|
if (dump_file)
|
1486 |
|
|
fprintf (dump_file,
|
1487 |
|
|
"Fixed operand %d of insn %d matching operand %d.\n",
|
1488 |
|
|
op_no, INSN_UID (insn), match_no);
|
1489 |
|
|
|
1490 |
|
|
break;
|
1491 |
|
|
}
|
1492 |
|
|
}
|
1493 |
|
|
|
1494 |
|
|
/* If we weren't able to replace any of the alternatives, try an
|
1495 |
|
|
alternative approach of copying the source to the destination. */
|
1496 |
|
|
if (!success && copy_src != NULL_RTX)
|
1497 |
|
|
copy_src_to_dest (insn, copy_src, copy_dst, old_max_uid);
|
1498 |
|
|
|
1499 |
|
|
}
|
1500 |
|
|
}
|
1501 |
|
|
|
1502 |
|
|
/* In fixup_match_1, some insns may have been inserted after basic block
|
1503 |
|
|
ends. Fix that here. */
|
1504 |
|
|
FOR_EACH_BB (bb)
|
1505 |
|
|
{
|
1506 |
|
|
rtx end = BB_END (bb);
|
1507 |
|
|
rtx new = end;
|
1508 |
|
|
rtx next = NEXT_INSN (new);
|
1509 |
|
|
while (next != 0 && INSN_UID (next) >= old_max_uid
|
1510 |
|
|
&& (bb->next_bb == EXIT_BLOCK_PTR || BB_HEAD (bb->next_bb) != next))
|
1511 |
|
|
new = next, next = NEXT_INSN (new);
|
1512 |
|
|
BB_END (bb) = new;
|
1513 |
|
|
}
|
1514 |
|
|
|
1515 |
|
|
done:
|
1516 |
|
|
/* Clean up. */
|
1517 |
|
|
free (regno_src_regno);
|
1518 |
|
|
free (regmove_bb_head);
|
1519 |
|
|
if (reg_set_in_bb)
|
1520 |
|
|
{
|
1521 |
|
|
free (reg_set_in_bb);
|
1522 |
|
|
reg_set_in_bb = NULL;
|
1523 |
|
|
}
|
1524 |
|
|
}
|
1525 |
|
|
|
1526 |
|
|
/* Returns nonzero if INSN's pattern has matching constraints for any operand.
|
1527 |
|
|
Returns 0 if INSN can't be recognized, or if the alternative can't be
|
1528 |
|
|
determined.
|
1529 |
|
|
|
1530 |
|
|
Initialize the info in MATCHP based on the constraints. */
|
1531 |
|
|
|
1532 |
|
|
static int
|
1533 |
|
|
find_matches (rtx insn, struct match *matchp)
|
1534 |
|
|
{
|
1535 |
|
|
int likely_spilled[MAX_RECOG_OPERANDS];
|
1536 |
|
|
int op_no;
|
1537 |
|
|
int any_matches = 0;
|
1538 |
|
|
|
1539 |
|
|
extract_insn (insn);
|
1540 |
|
|
if (! constrain_operands (0))
|
1541 |
|
|
return 0;
|
1542 |
|
|
|
1543 |
|
|
/* Must initialize this before main loop, because the code for
|
1544 |
|
|
the commutative case may set matches for operands other than
|
1545 |
|
|
the current one. */
|
1546 |
|
|
for (op_no = recog_data.n_operands; --op_no >= 0; )
|
1547 |
|
|
matchp->with[op_no] = matchp->commutative[op_no] = -1;
|
1548 |
|
|
|
1549 |
|
|
for (op_no = 0; op_no < recog_data.n_operands; op_no++)
|
1550 |
|
|
{
|
1551 |
|
|
const char *p;
|
1552 |
|
|
char c;
|
1553 |
|
|
int i = 0;
|
1554 |
|
|
|
1555 |
|
|
p = recog_data.constraints[op_no];
|
1556 |
|
|
|
1557 |
|
|
likely_spilled[op_no] = 0;
|
1558 |
|
|
matchp->use[op_no] = READ;
|
1559 |
|
|
matchp->early_clobber[op_no] = 0;
|
1560 |
|
|
if (*p == '=')
|
1561 |
|
|
matchp->use[op_no] = WRITE;
|
1562 |
|
|
else if (*p == '+')
|
1563 |
|
|
matchp->use[op_no] = READWRITE;
|
1564 |
|
|
|
1565 |
|
|
for (;*p && i < which_alternative; p++)
|
1566 |
|
|
if (*p == ',')
|
1567 |
|
|
i++;
|
1568 |
|
|
|
1569 |
|
|
while ((c = *p) != '\0' && c != ',')
|
1570 |
|
|
{
|
1571 |
|
|
switch (c)
|
1572 |
|
|
{
|
1573 |
|
|
case '=':
|
1574 |
|
|
break;
|
1575 |
|
|
case '+':
|
1576 |
|
|
break;
|
1577 |
|
|
case '&':
|
1578 |
|
|
matchp->early_clobber[op_no] = 1;
|
1579 |
|
|
break;
|
1580 |
|
|
case '%':
|
1581 |
|
|
matchp->commutative[op_no] = op_no + 1;
|
1582 |
|
|
matchp->commutative[op_no + 1] = op_no;
|
1583 |
|
|
break;
|
1584 |
|
|
|
1585 |
|
|
case '0': case '1': case '2': case '3': case '4':
|
1586 |
|
|
case '5': case '6': case '7': case '8': case '9':
|
1587 |
|
|
{
|
1588 |
|
|
char *end;
|
1589 |
|
|
unsigned long match_ul = strtoul (p, &end, 10);
|
1590 |
|
|
int match = match_ul;
|
1591 |
|
|
|
1592 |
|
|
p = end;
|
1593 |
|
|
|
1594 |
|
|
if (match < op_no && likely_spilled[match])
|
1595 |
|
|
continue;
|
1596 |
|
|
matchp->with[op_no] = match;
|
1597 |
|
|
any_matches = 1;
|
1598 |
|
|
if (matchp->commutative[op_no] >= 0)
|
1599 |
|
|
matchp->with[matchp->commutative[op_no]] = match;
|
1600 |
|
|
}
|
1601 |
|
|
continue;
|
1602 |
|
|
|
1603 |
|
|
case 'a': case 'b': case 'c': case 'd': case 'e': case 'f': case 'h':
|
1604 |
|
|
case 'j': case 'k': case 'l': case 'p': case 'q': case 't': case 'u':
|
1605 |
|
|
case 'v': case 'w': case 'x': case 'y': case 'z': case 'A': case 'B':
|
1606 |
|
|
case 'C': case 'D': case 'W': case 'Y': case 'Z':
|
1607 |
|
|
if (CLASS_LIKELY_SPILLED_P (REG_CLASS_FROM_CONSTRAINT ((unsigned char) c, p) ))
|
1608 |
|
|
likely_spilled[op_no] = 1;
|
1609 |
|
|
break;
|
1610 |
|
|
}
|
1611 |
|
|
p += CONSTRAINT_LEN (c, p);
|
1612 |
|
|
}
|
1613 |
|
|
}
|
1614 |
|
|
return any_matches;
|
1615 |
|
|
}
|
1616 |
|
|
|
1617 |
|
|
/* Try to replace all occurrences of DST_REG with SRC in LOC, that is
|
1618 |
|
|
assumed to be in INSN. */
|
1619 |
|
|
|
1620 |
|
|
static void
|
1621 |
|
|
replace_in_call_usage (rtx *loc, unsigned int dst_reg, rtx src, rtx insn)
|
1622 |
|
|
{
|
1623 |
|
|
rtx x = *loc;
|
1624 |
|
|
enum rtx_code code;
|
1625 |
|
|
const char *fmt;
|
1626 |
|
|
int i, j;
|
1627 |
|
|
|
1628 |
|
|
if (! x)
|
1629 |
|
|
return;
|
1630 |
|
|
|
1631 |
|
|
code = GET_CODE (x);
|
1632 |
|
|
if (code == REG)
|
1633 |
|
|
{
|
1634 |
|
|
if (REGNO (x) != dst_reg)
|
1635 |
|
|
return;
|
1636 |
|
|
|
1637 |
|
|
validate_change (insn, loc, src, 1);
|
1638 |
|
|
|
1639 |
|
|
return;
|
1640 |
|
|
}
|
1641 |
|
|
|
1642 |
|
|
/* Process each of our operands recursively. */
|
1643 |
|
|
fmt = GET_RTX_FORMAT (code);
|
1644 |
|
|
for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
|
1645 |
|
|
if (*fmt == 'e')
|
1646 |
|
|
replace_in_call_usage (&XEXP (x, i), dst_reg, src, insn);
|
1647 |
|
|
else if (*fmt == 'E')
|
1648 |
|
|
for (j = 0; j < XVECLEN (x, i); j++)
|
1649 |
|
|
replace_in_call_usage (& XVECEXP (x, i, j), dst_reg, src, insn);
|
1650 |
|
|
}
|
1651 |
|
|
|
1652 |
|
|
/* Try to replace output operand DST in SET, with input operand SRC. SET is
|
1653 |
|
|
the only set in INSN. INSN has just been recognized and constrained.
|
1654 |
|
|
SRC is operand number OPERAND_NUMBER in INSN.
|
1655 |
|
|
DST is operand number MATCH_NUMBER in INSN.
|
1656 |
|
|
If BACKWARD is nonzero, we have been called in a backward pass.
|
1657 |
|
|
Return nonzero for success. */
|
1658 |
|
|
|
1659 |
|
|
static int
|
1660 |
|
|
fixup_match_1 (rtx insn, rtx set, rtx src, rtx src_subreg, rtx dst,
|
1661 |
|
|
int backward, int operand_number, int match_number)
|
1662 |
|
|
{
|
1663 |
|
|
rtx p;
|
1664 |
|
|
rtx post_inc = 0, post_inc_set = 0, search_end = 0;
|
1665 |
|
|
int success = 0;
|
1666 |
|
|
int num_calls = 0, s_num_calls = 0;
|
1667 |
|
|
enum rtx_code code = NOTE;
|
1668 |
|
|
HOST_WIDE_INT insn_const = 0, newconst = 0;
|
1669 |
|
|
rtx overlap = 0; /* need to move insn ? */
|
1670 |
|
|
rtx src_note = find_reg_note (insn, REG_DEAD, src), dst_note = NULL_RTX;
|
1671 |
|
|
int length, s_length;
|
1672 |
|
|
|
1673 |
|
|
if (! src_note)
|
1674 |
|
|
{
|
1675 |
|
|
/* Look for (set (regX) (op regA constX))
|
1676 |
|
|
(set (regY) (op regA constY))
|
1677 |
|
|
and change that to
|
1678 |
|
|
(set (regA) (op regA constX)).
|
1679 |
|
|
(set (regY) (op regA constY-constX)).
|
1680 |
|
|
This works for add and shift operations, if
|
1681 |
|
|
regA is dead after or set by the second insn. */
|
1682 |
|
|
|
1683 |
|
|
code = GET_CODE (SET_SRC (set));
|
1684 |
|
|
if ((code == PLUS || code == LSHIFTRT
|
1685 |
|
|
|| code == ASHIFT || code == ASHIFTRT)
|
1686 |
|
|
&& XEXP (SET_SRC (set), 0) == src
|
1687 |
|
|
&& GET_CODE (XEXP (SET_SRC (set), 1)) == CONST_INT)
|
1688 |
|
|
insn_const = INTVAL (XEXP (SET_SRC (set), 1));
|
1689 |
|
|
else if (! stable_and_no_regs_but_for_p (SET_SRC (set), src, dst))
|
1690 |
|
|
return 0;
|
1691 |
|
|
else
|
1692 |
|
|
/* We might find a src_note while scanning. */
|
1693 |
|
|
code = NOTE;
|
1694 |
|
|
}
|
1695 |
|
|
|
1696 |
|
|
if (dump_file)
|
1697 |
|
|
fprintf (dump_file,
|
1698 |
|
|
"Could fix operand %d of insn %d matching operand %d.\n",
|
1699 |
|
|
operand_number, INSN_UID (insn), match_number);
|
1700 |
|
|
|
1701 |
|
|
/* If SRC is equivalent to a constant set in a different basic block,
|
1702 |
|
|
then do not use it for this optimization. We want the equivalence
|
1703 |
|
|
so that if we have to reload this register, we can reload the
|
1704 |
|
|
constant, rather than extending the lifespan of the register. */
|
1705 |
|
|
if (reg_is_remote_constant_p (src, insn))
|
1706 |
|
|
return 0;
|
1707 |
|
|
|
1708 |
|
|
/* Scan forward to find the next instruction that
|
1709 |
|
|
uses the output operand. If the operand dies here,
|
1710 |
|
|
then replace it in both instructions with
|
1711 |
|
|
operand_number. */
|
1712 |
|
|
|
1713 |
|
|
for (length = s_length = 0, p = NEXT_INSN (insn); p; p = NEXT_INSN (p))
|
1714 |
|
|
{
|
1715 |
|
|
if (CALL_P (p))
|
1716 |
|
|
replace_in_call_usage (& CALL_INSN_FUNCTION_USAGE (p),
|
1717 |
|
|
REGNO (dst), src, p);
|
1718 |
|
|
|
1719 |
|
|
/* ??? We can't scan past the end of a basic block without updating
|
1720 |
|
|
the register lifetime info (REG_DEAD/basic_block_live_at_start). */
|
1721 |
|
|
if (perhaps_ends_bb_p (p))
|
1722 |
|
|
break;
|
1723 |
|
|
else if (! INSN_P (p))
|
1724 |
|
|
continue;
|
1725 |
|
|
|
1726 |
|
|
length++;
|
1727 |
|
|
if (src_note)
|
1728 |
|
|
s_length++;
|
1729 |
|
|
|
1730 |
|
|
if (reg_set_p (src, p) || reg_set_p (dst, p)
|
1731 |
|
|
|| (GET_CODE (PATTERN (p)) == USE
|
1732 |
|
|
&& reg_overlap_mentioned_p (src, XEXP (PATTERN (p), 0))))
|
1733 |
|
|
break;
|
1734 |
|
|
|
1735 |
|
|
/* See if all of DST dies in P. This test is
|
1736 |
|
|
slightly more conservative than it needs to be. */
|
1737 |
|
|
if ((dst_note = find_regno_note (p, REG_DEAD, REGNO (dst)))
|
1738 |
|
|
&& (GET_MODE (XEXP (dst_note, 0)) == GET_MODE (dst)))
|
1739 |
|
|
{
|
1740 |
|
|
/* If we would be moving INSN, check that we won't move it
|
1741 |
|
|
into the shadow of a live a live flags register. */
|
1742 |
|
|
/* ??? We only try to move it in front of P, although
|
1743 |
|
|
we could move it anywhere between OVERLAP and P. */
|
1744 |
|
|
if (overlap && GET_MODE (PREV_INSN (p)) != VOIDmode)
|
1745 |
|
|
break;
|
1746 |
|
|
|
1747 |
|
|
if (! src_note)
|
1748 |
|
|
{
|
1749 |
|
|
rtx q;
|
1750 |
|
|
rtx set2 = NULL_RTX;
|
1751 |
|
|
|
1752 |
|
|
/* If an optimization is done, the value of SRC while P
|
1753 |
|
|
is executed will be changed. Check that this is OK. */
|
1754 |
|
|
if (reg_overlap_mentioned_p (src, PATTERN (p)))
|
1755 |
|
|
break;
|
1756 |
|
|
for (q = p; q; q = NEXT_INSN (q))
|
1757 |
|
|
{
|
1758 |
|
|
/* ??? We can't scan past the end of a basic block without
|
1759 |
|
|
updating the register lifetime info
|
1760 |
|
|
(REG_DEAD/basic_block_live_at_start). */
|
1761 |
|
|
if (perhaps_ends_bb_p (q))
|
1762 |
|
|
{
|
1763 |
|
|
q = 0;
|
1764 |
|
|
break;
|
1765 |
|
|
}
|
1766 |
|
|
else if (! INSN_P (q))
|
1767 |
|
|
continue;
|
1768 |
|
|
else if (reg_overlap_mentioned_p (src, PATTERN (q))
|
1769 |
|
|
|| reg_set_p (src, q))
|
1770 |
|
|
break;
|
1771 |
|
|
}
|
1772 |
|
|
if (q)
|
1773 |
|
|
set2 = single_set (q);
|
1774 |
|
|
if (! q || ! set2 || GET_CODE (SET_SRC (set2)) != code
|
1775 |
|
|
|| XEXP (SET_SRC (set2), 0) != src
|
1776 |
|
|
|| GET_CODE (XEXP (SET_SRC (set2), 1)) != CONST_INT
|
1777 |
|
|
|| (SET_DEST (set2) != src
|
1778 |
|
|
&& ! find_reg_note (q, REG_DEAD, src)))
|
1779 |
|
|
{
|
1780 |
|
|
/* If this is a PLUS, we can still save a register by doing
|
1781 |
|
|
src += insn_const;
|
1782 |
|
|
P;
|
1783 |
|
|
src -= insn_const; .
|
1784 |
|
|
This also gives opportunities for subsequent
|
1785 |
|
|
optimizations in the backward pass, so do it there. */
|
1786 |
|
|
if (code == PLUS && backward
|
1787 |
|
|
/* Don't do this if we can likely tie DST to SET_DEST
|
1788 |
|
|
of P later; we can't do this tying here if we got a
|
1789 |
|
|
hard register. */
|
1790 |
|
|
&& ! (dst_note && ! REG_N_CALLS_CROSSED (REGNO (dst))
|
1791 |
|
|
&& single_set (p)
|
1792 |
|
|
&& REG_P (SET_DEST (single_set (p)))
|
1793 |
|
|
&& (REGNO (SET_DEST (single_set (p)))
|
1794 |
|
|
< FIRST_PSEUDO_REGISTER))
|
1795 |
|
|
/* We may only emit an insn directly after P if we
|
1796 |
|
|
are not in the shadow of a live flags register. */
|
1797 |
|
|
&& GET_MODE (p) == VOIDmode)
|
1798 |
|
|
{
|
1799 |
|
|
search_end = q;
|
1800 |
|
|
q = insn;
|
1801 |
|
|
set2 = set;
|
1802 |
|
|
newconst = -insn_const;
|
1803 |
|
|
code = MINUS;
|
1804 |
|
|
}
|
1805 |
|
|
else
|
1806 |
|
|
break;
|
1807 |
|
|
}
|
1808 |
|
|
else
|
1809 |
|
|
{
|
1810 |
|
|
newconst = INTVAL (XEXP (SET_SRC (set2), 1)) - insn_const;
|
1811 |
|
|
/* Reject out of range shifts. */
|
1812 |
|
|
if (code != PLUS
|
1813 |
|
|
&& (newconst < 0
|
1814 |
|
|
|| ((unsigned HOST_WIDE_INT) newconst
|
1815 |
|
|
>= (GET_MODE_BITSIZE (GET_MODE
|
1816 |
|
|
(SET_SRC (set2)))))))
|
1817 |
|
|
break;
|
1818 |
|
|
if (code == PLUS)
|
1819 |
|
|
{
|
1820 |
|
|
post_inc = q;
|
1821 |
|
|
if (SET_DEST (set2) != src)
|
1822 |
|
|
post_inc_set = set2;
|
1823 |
|
|
}
|
1824 |
|
|
}
|
1825 |
|
|
/* We use 1 as last argument to validate_change so that all
|
1826 |
|
|
changes are accepted or rejected together by apply_change_group
|
1827 |
|
|
when it is called by validate_replace_rtx . */
|
1828 |
|
|
validate_change (q, &XEXP (SET_SRC (set2), 1),
|
1829 |
|
|
GEN_INT (newconst), 1);
|
1830 |
|
|
}
|
1831 |
|
|
validate_change (insn, recog_data.operand_loc[match_number], src, 1);
|
1832 |
|
|
if (validate_replace_rtx (dst, src_subreg, p))
|
1833 |
|
|
success = 1;
|
1834 |
|
|
break;
|
1835 |
|
|
}
|
1836 |
|
|
|
1837 |
|
|
if (reg_overlap_mentioned_p (dst, PATTERN (p)))
|
1838 |
|
|
break;
|
1839 |
|
|
if (! src_note && reg_overlap_mentioned_p (src, PATTERN (p)))
|
1840 |
|
|
{
|
1841 |
|
|
/* INSN was already checked to be movable wrt. the registers that it
|
1842 |
|
|
sets / uses when we found no REG_DEAD note for src on it, but it
|
1843 |
|
|
still might clobber the flags register. We'll have to check that
|
1844 |
|
|
we won't insert it into the shadow of a live flags register when
|
1845 |
|
|
we finally know where we are to move it. */
|
1846 |
|
|
overlap = p;
|
1847 |
|
|
src_note = find_reg_note (p, REG_DEAD, src);
|
1848 |
|
|
}
|
1849 |
|
|
|
1850 |
|
|
/* If we have passed a call instruction, and the pseudo-reg SRC is not
|
1851 |
|
|
already live across a call, then don't perform the optimization. */
|
1852 |
|
|
if (CALL_P (p))
|
1853 |
|
|
{
|
1854 |
|
|
if (REG_N_CALLS_CROSSED (REGNO (src)) == 0)
|
1855 |
|
|
break;
|
1856 |
|
|
|
1857 |
|
|
num_calls++;
|
1858 |
|
|
|
1859 |
|
|
if (src_note)
|
1860 |
|
|
s_num_calls++;
|
1861 |
|
|
|
1862 |
|
|
}
|
1863 |
|
|
}
|
1864 |
|
|
|
1865 |
|
|
if (! success)
|
1866 |
|
|
return 0;
|
1867 |
|
|
|
1868 |
|
|
/* Remove the death note for DST from P. */
|
1869 |
|
|
remove_note (p, dst_note);
|
1870 |
|
|
if (code == MINUS)
|
1871 |
|
|
{
|
1872 |
|
|
post_inc = emit_insn_after (copy_rtx (PATTERN (insn)), p);
|
1873 |
|
|
if ((HAVE_PRE_INCREMENT || HAVE_PRE_DECREMENT)
|
1874 |
|
|
&& search_end
|
1875 |
|
|
&& try_auto_increment (search_end, post_inc, 0, src, newconst, 1))
|
1876 |
|
|
post_inc = 0;
|
1877 |
|
|
validate_change (insn, &XEXP (SET_SRC (set), 1), GEN_INT (insn_const), 0);
|
1878 |
|
|
REG_N_SETS (REGNO (src))++;
|
1879 |
|
|
REG_LIVE_LENGTH (REGNO (src))++;
|
1880 |
|
|
}
|
1881 |
|
|
if (overlap)
|
1882 |
|
|
{
|
1883 |
|
|
/* The lifetime of src and dest overlap,
|
1884 |
|
|
but we can change this by moving insn. */
|
1885 |
|
|
rtx pat = PATTERN (insn);
|
1886 |
|
|
if (src_note)
|
1887 |
|
|
remove_note (overlap, src_note);
|
1888 |
|
|
if ((HAVE_POST_INCREMENT || HAVE_POST_DECREMENT)
|
1889 |
|
|
&& code == PLUS
|
1890 |
|
|
&& try_auto_increment (overlap, insn, 0, src, insn_const, 0))
|
1891 |
|
|
insn = overlap;
|
1892 |
|
|
else
|
1893 |
|
|
{
|
1894 |
|
|
rtx notes = REG_NOTES (insn);
|
1895 |
|
|
|
1896 |
|
|
emit_insn_after_with_line_notes (pat, PREV_INSN (p), insn);
|
1897 |
|
|
delete_insn (insn);
|
1898 |
|
|
/* emit_insn_after_with_line_notes has no
|
1899 |
|
|
return value, so search for the new insn. */
|
1900 |
|
|
insn = p;
|
1901 |
|
|
while (! INSN_P (insn) || PATTERN (insn) != pat)
|
1902 |
|
|
insn = PREV_INSN (insn);
|
1903 |
|
|
|
1904 |
|
|
REG_NOTES (insn) = notes;
|
1905 |
|
|
}
|
1906 |
|
|
}
|
1907 |
|
|
/* Sometimes we'd generate src = const; src += n;
|
1908 |
|
|
if so, replace the instruction that set src
|
1909 |
|
|
in the first place. */
|
1910 |
|
|
|
1911 |
|
|
if (! overlap && (code == PLUS || code == MINUS))
|
1912 |
|
|
{
|
1913 |
|
|
rtx note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
|
1914 |
|
|
rtx q, set2 = NULL_RTX;
|
1915 |
|
|
int num_calls2 = 0, s_length2 = 0;
|
1916 |
|
|
|
1917 |
|
|
if (note && CONSTANT_P (XEXP (note, 0)))
|
1918 |
|
|
{
|
1919 |
|
|
for (q = PREV_INSN (insn); q; q = PREV_INSN (q))
|
1920 |
|
|
{
|
1921 |
|
|
/* ??? We can't scan past the end of a basic block without
|
1922 |
|
|
updating the register lifetime info
|
1923 |
|
|
(REG_DEAD/basic_block_live_at_start). */
|
1924 |
|
|
if (perhaps_ends_bb_p (q))
|
1925 |
|
|
{
|
1926 |
|
|
q = 0;
|
1927 |
|
|
break;
|
1928 |
|
|
}
|
1929 |
|
|
else if (! INSN_P (q))
|
1930 |
|
|
continue;
|
1931 |
|
|
|
1932 |
|
|
s_length2++;
|
1933 |
|
|
if (reg_set_p (src, q))
|
1934 |
|
|
{
|
1935 |
|
|
set2 = single_set (q);
|
1936 |
|
|
break;
|
1937 |
|
|
}
|
1938 |
|
|
if (reg_overlap_mentioned_p (src, PATTERN (q)))
|
1939 |
|
|
{
|
1940 |
|
|
q = 0;
|
1941 |
|
|
break;
|
1942 |
|
|
}
|
1943 |
|
|
if (CALL_P (p))
|
1944 |
|
|
num_calls2++;
|
1945 |
|
|
}
|
1946 |
|
|
if (q && set2 && SET_DEST (set2) == src && CONSTANT_P (SET_SRC (set2))
|
1947 |
|
|
&& validate_change (insn, &SET_SRC (set), XEXP (note, 0), 0))
|
1948 |
|
|
{
|
1949 |
|
|
delete_insn (q);
|
1950 |
|
|
REG_N_SETS (REGNO (src))--;
|
1951 |
|
|
REG_N_CALLS_CROSSED (REGNO (src)) -= num_calls2;
|
1952 |
|
|
REG_LIVE_LENGTH (REGNO (src)) -= s_length2;
|
1953 |
|
|
insn_const = 0;
|
1954 |
|
|
}
|
1955 |
|
|
}
|
1956 |
|
|
}
|
1957 |
|
|
|
1958 |
|
|
if ((HAVE_PRE_INCREMENT || HAVE_PRE_DECREMENT)
|
1959 |
|
|
&& (code == PLUS || code == MINUS) && insn_const
|
1960 |
|
|
&& try_auto_increment (p, insn, 0, src, insn_const, 1))
|
1961 |
|
|
insn = p;
|
1962 |
|
|
else if ((HAVE_POST_INCREMENT || HAVE_POST_DECREMENT)
|
1963 |
|
|
&& post_inc
|
1964 |
|
|
&& try_auto_increment (p, post_inc, post_inc_set, src, newconst, 0))
|
1965 |
|
|
post_inc = 0;
|
1966 |
|
|
/* If post_inc still prevails, try to find an
|
1967 |
|
|
insn where it can be used as a pre-in/decrement.
|
1968 |
|
|
If code is MINUS, this was already tried. */
|
1969 |
|
|
if (post_inc && code == PLUS
|
1970 |
|
|
/* Check that newconst is likely to be usable
|
1971 |
|
|
in a pre-in/decrement before starting the search. */
|
1972 |
|
|
&& ((HAVE_PRE_INCREMENT && newconst > 0 && newconst <= MOVE_MAX)
|
1973 |
|
|
|| (HAVE_PRE_DECREMENT && newconst < 0 && newconst >= -MOVE_MAX))
|
1974 |
|
|
&& exact_log2 (newconst))
|
1975 |
|
|
{
|
1976 |
|
|
rtx q, inc_dest;
|
1977 |
|
|
|
1978 |
|
|
inc_dest = post_inc_set ? SET_DEST (post_inc_set) : src;
|
1979 |
|
|
for (q = post_inc; (q = NEXT_INSN (q)); )
|
1980 |
|
|
{
|
1981 |
|
|
/* ??? We can't scan past the end of a basic block without updating
|
1982 |
|
|
the register lifetime info
|
1983 |
|
|
(REG_DEAD/basic_block_live_at_start). */
|
1984 |
|
|
if (perhaps_ends_bb_p (q))
|
1985 |
|
|
break;
|
1986 |
|
|
else if (! INSN_P (q))
|
1987 |
|
|
continue;
|
1988 |
|
|
else if (src != inc_dest
|
1989 |
|
|
&& (reg_overlap_mentioned_p (src, PATTERN (q))
|
1990 |
|
|
|| reg_set_p (src, q)))
|
1991 |
|
|
break;
|
1992 |
|
|
else if (reg_set_p (inc_dest, q))
|
1993 |
|
|
break;
|
1994 |
|
|
else if (reg_overlap_mentioned_p (inc_dest, PATTERN (q)))
|
1995 |
|
|
{
|
1996 |
|
|
try_auto_increment (q, post_inc,
|
1997 |
|
|
post_inc_set, inc_dest, newconst, 1);
|
1998 |
|
|
break;
|
1999 |
|
|
}
|
2000 |
|
|
}
|
2001 |
|
|
}
|
2002 |
|
|
|
2003 |
|
|
/* Move the death note for DST to INSN if it is used
|
2004 |
|
|
there. */
|
2005 |
|
|
if (reg_overlap_mentioned_p (dst, PATTERN (insn)))
|
2006 |
|
|
{
|
2007 |
|
|
XEXP (dst_note, 1) = REG_NOTES (insn);
|
2008 |
|
|
REG_NOTES (insn) = dst_note;
|
2009 |
|
|
}
|
2010 |
|
|
|
2011 |
|
|
if (src_note)
|
2012 |
|
|
{
|
2013 |
|
|
/* Move the death note for SRC from INSN to P. */
|
2014 |
|
|
if (! overlap)
|
2015 |
|
|
remove_note (insn, src_note);
|
2016 |
|
|
XEXP (src_note, 1) = REG_NOTES (p);
|
2017 |
|
|
REG_NOTES (p) = src_note;
|
2018 |
|
|
|
2019 |
|
|
REG_N_CALLS_CROSSED (REGNO (src)) += s_num_calls;
|
2020 |
|
|
}
|
2021 |
|
|
|
2022 |
|
|
REG_N_SETS (REGNO (src))++;
|
2023 |
|
|
REG_N_SETS (REGNO (dst))--;
|
2024 |
|
|
|
2025 |
|
|
REG_N_CALLS_CROSSED (REGNO (dst)) -= num_calls;
|
2026 |
|
|
|
2027 |
|
|
REG_LIVE_LENGTH (REGNO (src)) += s_length;
|
2028 |
|
|
if (REG_LIVE_LENGTH (REGNO (dst)) >= 0)
|
2029 |
|
|
{
|
2030 |
|
|
REG_LIVE_LENGTH (REGNO (dst)) -= length;
|
2031 |
|
|
/* REG_LIVE_LENGTH is only an approximation after
|
2032 |
|
|
combine if sched is not run, so make sure that we
|
2033 |
|
|
still have a reasonable value. */
|
2034 |
|
|
if (REG_LIVE_LENGTH (REGNO (dst)) < 2)
|
2035 |
|
|
REG_LIVE_LENGTH (REGNO (dst)) = 2;
|
2036 |
|
|
}
|
2037 |
|
|
if (dump_file)
|
2038 |
|
|
fprintf (dump_file,
|
2039 |
|
|
"Fixed operand %d of insn %d matching operand %d.\n",
|
2040 |
|
|
operand_number, INSN_UID (insn), match_number);
|
2041 |
|
|
return 1;
|
2042 |
|
|
}
|
2043 |
|
|
|
2044 |
|
|
|
2045 |
|
|
/* Return nonzero if X is stable and mentions no registers but for
|
2046 |
|
|
mentioning SRC or mentioning / changing DST . If in doubt, presume
|
2047 |
|
|
it is unstable.
|
2048 |
|
|
The rationale is that we want to check if we can move an insn easily
|
2049 |
|
|
while just paying attention to SRC and DST. */
|
2050 |
|
|
static int
|
2051 |
|
|
stable_and_no_regs_but_for_p (rtx x, rtx src, rtx dst)
|
2052 |
|
|
{
|
2053 |
|
|
RTX_CODE code = GET_CODE (x);
|
2054 |
|
|
switch (GET_RTX_CLASS (code))
|
2055 |
|
|
{
|
2056 |
|
|
case RTX_UNARY:
|
2057 |
|
|
case RTX_BIN_ARITH:
|
2058 |
|
|
case RTX_COMM_ARITH:
|
2059 |
|
|
case RTX_COMPARE:
|
2060 |
|
|
case RTX_COMM_COMPARE:
|
2061 |
|
|
case RTX_TERNARY:
|
2062 |
|
|
case RTX_BITFIELD_OPS:
|
2063 |
|
|
{
|
2064 |
|
|
int i;
|
2065 |
|
|
const char *fmt = GET_RTX_FORMAT (code);
|
2066 |
|
|
for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
|
2067 |
|
|
if (fmt[i] == 'e'
|
2068 |
|
|
&& ! stable_and_no_regs_but_for_p (XEXP (x, i), src, dst))
|
2069 |
|
|
return 0;
|
2070 |
|
|
return 1;
|
2071 |
|
|
}
|
2072 |
|
|
case RTX_OBJ:
|
2073 |
|
|
if (code == REG)
|
2074 |
|
|
return x == src || x == dst;
|
2075 |
|
|
/* If this is a MEM, look inside - there might be a register hidden in
|
2076 |
|
|
the address of an unchanging MEM. */
|
2077 |
|
|
if (code == MEM
|
2078 |
|
|
&& ! stable_and_no_regs_but_for_p (XEXP (x, 0), src, dst))
|
2079 |
|
|
return 0;
|
2080 |
|
|
/* Fall through. */
|
2081 |
|
|
default:
|
2082 |
|
|
return ! rtx_unstable_p (x);
|
2083 |
|
|
}
|
2084 |
|
|
}
|
2085 |
|
|
|
2086 |
|
|
/* Track stack adjustments and stack memory references. Attempt to
|
2087 |
|
|
reduce the number of stack adjustments by back-propagating across
|
2088 |
|
|
the memory references.
|
2089 |
|
|
|
2090 |
|
|
This is intended primarily for use with targets that do not define
|
2091 |
|
|
ACCUMULATE_OUTGOING_ARGS. It is of significantly more value to
|
2092 |
|
|
targets that define PREFERRED_STACK_BOUNDARY more aligned than
|
2093 |
|
|
STACK_BOUNDARY (e.g. x86), or if not all registers can be pushed
|
2094 |
|
|
(e.g. x86 fp regs) which would ordinarily have to be implemented
|
2095 |
|
|
as a sub/mov pair due to restrictions in calls.c.
|
2096 |
|
|
|
2097 |
|
|
Propagation stops when any of the insns that need adjusting are
|
2098 |
|
|
(a) no longer valid because we've exceeded their range, (b) a
|
2099 |
|
|
non-trivial push instruction, or (c) a call instruction.
|
2100 |
|
|
|
2101 |
|
|
Restriction B is based on the assumption that push instructions
|
2102 |
|
|
are smaller or faster. If a port really wants to remove all
|
2103 |
|
|
pushes, it should have defined ACCUMULATE_OUTGOING_ARGS. The
|
2104 |
|
|
one exception that is made is for an add immediately followed
|
2105 |
|
|
by a push. */
|
2106 |
|
|
|
2107 |
|
|
/* This structure records stack memory references between stack adjusting
|
2108 |
|
|
instructions. */
|
2109 |
|
|
|
2110 |
|
|
struct csa_memlist
|
2111 |
|
|
{
|
2112 |
|
|
HOST_WIDE_INT sp_offset;
|
2113 |
|
|
rtx insn, *mem;
|
2114 |
|
|
struct csa_memlist *next;
|
2115 |
|
|
};
|
2116 |
|
|
|
2117 |
|
|
static int stack_memref_p (rtx);
|
2118 |
|
|
static rtx single_set_for_csa (rtx);
|
2119 |
|
|
static void free_csa_memlist (struct csa_memlist *);
|
2120 |
|
|
static struct csa_memlist *record_one_stack_memref (rtx, rtx *,
|
2121 |
|
|
struct csa_memlist *);
|
2122 |
|
|
static int try_apply_stack_adjustment (rtx, struct csa_memlist *,
|
2123 |
|
|
HOST_WIDE_INT, HOST_WIDE_INT);
|
2124 |
|
|
static void combine_stack_adjustments_for_block (basic_block);
|
2125 |
|
|
static int record_stack_memrefs (rtx *, void *);
|
2126 |
|
|
|
2127 |
|
|
|
2128 |
|
|
/* Main entry point for stack adjustment combination. */
|
2129 |
|
|
|
2130 |
|
|
static void
|
2131 |
|
|
combine_stack_adjustments (void)
|
2132 |
|
|
{
|
2133 |
|
|
basic_block bb;
|
2134 |
|
|
|
2135 |
|
|
FOR_EACH_BB (bb)
|
2136 |
|
|
combine_stack_adjustments_for_block (bb);
|
2137 |
|
|
}
|
2138 |
|
|
|
2139 |
|
|
/* Recognize a MEM of the form (sp) or (plus sp const). */
|
2140 |
|
|
|
2141 |
|
|
static int
|
2142 |
|
|
stack_memref_p (rtx x)
|
2143 |
|
|
{
|
2144 |
|
|
if (!MEM_P (x))
|
2145 |
|
|
return 0;
|
2146 |
|
|
x = XEXP (x, 0);
|
2147 |
|
|
|
2148 |
|
|
if (x == stack_pointer_rtx)
|
2149 |
|
|
return 1;
|
2150 |
|
|
if (GET_CODE (x) == PLUS
|
2151 |
|
|
&& XEXP (x, 0) == stack_pointer_rtx
|
2152 |
|
|
&& GET_CODE (XEXP (x, 1)) == CONST_INT)
|
2153 |
|
|
return 1;
|
2154 |
|
|
|
2155 |
|
|
return 0;
|
2156 |
|
|
}
|
2157 |
|
|
|
2158 |
|
|
/* Recognize either normal single_set or the hack in i386.md for
|
2159 |
|
|
tying fp and sp adjustments. */
|
2160 |
|
|
|
2161 |
|
|
static rtx
|
2162 |
|
|
single_set_for_csa (rtx insn)
|
2163 |
|
|
{
|
2164 |
|
|
int i;
|
2165 |
|
|
rtx tmp = single_set (insn);
|
2166 |
|
|
if (tmp)
|
2167 |
|
|
return tmp;
|
2168 |
|
|
|
2169 |
|
|
if (!NONJUMP_INSN_P (insn)
|
2170 |
|
|
|| GET_CODE (PATTERN (insn)) != PARALLEL)
|
2171 |
|
|
return NULL_RTX;
|
2172 |
|
|
|
2173 |
|
|
tmp = PATTERN (insn);
|
2174 |
|
|
if (GET_CODE (XVECEXP (tmp, 0, 0)) != SET)
|
2175 |
|
|
return NULL_RTX;
|
2176 |
|
|
|
2177 |
|
|
for (i = 1; i < XVECLEN (tmp, 0); ++i)
|
2178 |
|
|
{
|
2179 |
|
|
rtx this = XVECEXP (tmp, 0, i);
|
2180 |
|
|
|
2181 |
|
|
/* The special case is allowing a no-op set. */
|
2182 |
|
|
if (GET_CODE (this) == SET
|
2183 |
|
|
&& SET_SRC (this) == SET_DEST (this))
|
2184 |
|
|
;
|
2185 |
|
|
else if (GET_CODE (this) != CLOBBER
|
2186 |
|
|
&& GET_CODE (this) != USE)
|
2187 |
|
|
return NULL_RTX;
|
2188 |
|
|
}
|
2189 |
|
|
|
2190 |
|
|
return XVECEXP (tmp, 0, 0);
|
2191 |
|
|
}
|
2192 |
|
|
|
2193 |
|
|
/* Free the list of csa_memlist nodes. */
|
2194 |
|
|
|
2195 |
|
|
static void
|
2196 |
|
|
free_csa_memlist (struct csa_memlist *memlist)
|
2197 |
|
|
{
|
2198 |
|
|
struct csa_memlist *next;
|
2199 |
|
|
for (; memlist ; memlist = next)
|
2200 |
|
|
{
|
2201 |
|
|
next = memlist->next;
|
2202 |
|
|
free (memlist);
|
2203 |
|
|
}
|
2204 |
|
|
}
|
2205 |
|
|
|
2206 |
|
|
/* Create a new csa_memlist node from the given memory reference.
|
2207 |
|
|
It is already known that the memory is stack_memref_p. */
|
2208 |
|
|
|
2209 |
|
|
static struct csa_memlist *
|
2210 |
|
|
record_one_stack_memref (rtx insn, rtx *mem, struct csa_memlist *next_memlist)
|
2211 |
|
|
{
|
2212 |
|
|
struct csa_memlist *ml;
|
2213 |
|
|
|
2214 |
|
|
ml = XNEW (struct csa_memlist);
|
2215 |
|
|
|
2216 |
|
|
if (XEXP (*mem, 0) == stack_pointer_rtx)
|
2217 |
|
|
ml->sp_offset = 0;
|
2218 |
|
|
else
|
2219 |
|
|
ml->sp_offset = INTVAL (XEXP (XEXP (*mem, 0), 1));
|
2220 |
|
|
|
2221 |
|
|
ml->insn = insn;
|
2222 |
|
|
ml->mem = mem;
|
2223 |
|
|
ml->next = next_memlist;
|
2224 |
|
|
|
2225 |
|
|
return ml;
|
2226 |
|
|
}
|
2227 |
|
|
|
2228 |
|
|
/* Attempt to apply ADJUST to the stack adjusting insn INSN, as well
|
2229 |
|
|
as each of the memories in MEMLIST. Return true on success. */
|
2230 |
|
|
|
2231 |
|
|
static int
|
2232 |
|
|
try_apply_stack_adjustment (rtx insn, struct csa_memlist *memlist, HOST_WIDE_INT new_adjust,
|
2233 |
|
|
HOST_WIDE_INT delta)
|
2234 |
|
|
{
|
2235 |
|
|
struct csa_memlist *ml;
|
2236 |
|
|
rtx set;
|
2237 |
|
|
|
2238 |
|
|
set = single_set_for_csa (insn);
|
2239 |
|
|
validate_change (insn, &XEXP (SET_SRC (set), 1), GEN_INT (new_adjust), 1);
|
2240 |
|
|
|
2241 |
|
|
for (ml = memlist; ml ; ml = ml->next)
|
2242 |
|
|
validate_change
|
2243 |
|
|
(ml->insn, ml->mem,
|
2244 |
|
|
replace_equiv_address_nv (*ml->mem,
|
2245 |
|
|
plus_constant (stack_pointer_rtx,
|
2246 |
|
|
ml->sp_offset - delta)), 1);
|
2247 |
|
|
|
2248 |
|
|
if (apply_change_group ())
|
2249 |
|
|
{
|
2250 |
|
|
/* Succeeded. Update our knowledge of the memory references. */
|
2251 |
|
|
for (ml = memlist; ml ; ml = ml->next)
|
2252 |
|
|
ml->sp_offset -= delta;
|
2253 |
|
|
|
2254 |
|
|
return 1;
|
2255 |
|
|
}
|
2256 |
|
|
else
|
2257 |
|
|
return 0;
|
2258 |
|
|
}
|
2259 |
|
|
|
2260 |
|
|
/* Called via for_each_rtx and used to record all stack memory references in
|
2261 |
|
|
the insn and discard all other stack pointer references. */
|
2262 |
|
|
struct record_stack_memrefs_data
|
2263 |
|
|
{
|
2264 |
|
|
rtx insn;
|
2265 |
|
|
struct csa_memlist *memlist;
|
2266 |
|
|
};
|
2267 |
|
|
|
2268 |
|
|
static int
|
2269 |
|
|
record_stack_memrefs (rtx *xp, void *data)
|
2270 |
|
|
{
|
2271 |
|
|
rtx x = *xp;
|
2272 |
|
|
struct record_stack_memrefs_data *d =
|
2273 |
|
|
(struct record_stack_memrefs_data *) data;
|
2274 |
|
|
if (!x)
|
2275 |
|
|
return 0;
|
2276 |
|
|
switch (GET_CODE (x))
|
2277 |
|
|
{
|
2278 |
|
|
case MEM:
|
2279 |
|
|
if (!reg_mentioned_p (stack_pointer_rtx, x))
|
2280 |
|
|
return -1;
|
2281 |
|
|
/* We are not able to handle correctly all possible memrefs containing
|
2282 |
|
|
stack pointer, so this check is necessary. */
|
2283 |
|
|
if (stack_memref_p (x))
|
2284 |
|
|
{
|
2285 |
|
|
d->memlist = record_one_stack_memref (d->insn, xp, d->memlist);
|
2286 |
|
|
return -1;
|
2287 |
|
|
}
|
2288 |
|
|
return 1;
|
2289 |
|
|
case REG:
|
2290 |
|
|
/* ??? We want be able to handle non-memory stack pointer
|
2291 |
|
|
references later. For now just discard all insns referring to
|
2292 |
|
|
stack pointer outside mem expressions. We would probably
|
2293 |
|
|
want to teach validate_replace to simplify expressions first.
|
2294 |
|
|
|
2295 |
|
|
We can't just compare with STACK_POINTER_RTX because the
|
2296 |
|
|
reference to the stack pointer might be in some other mode.
|
2297 |
|
|
In particular, an explicit clobber in an asm statement will
|
2298 |
|
|
result in a QImode clobber. */
|
2299 |
|
|
if (REGNO (x) == STACK_POINTER_REGNUM)
|
2300 |
|
|
return 1;
|
2301 |
|
|
break;
|
2302 |
|
|
default:
|
2303 |
|
|
break;
|
2304 |
|
|
}
|
2305 |
|
|
return 0;
|
2306 |
|
|
}
|
2307 |
|
|
|
2308 |
|
|
/* Subroutine of combine_stack_adjustments, called for each basic block. */
|
2309 |
|
|
|
2310 |
|
|
static void
|
2311 |
|
|
combine_stack_adjustments_for_block (basic_block bb)
|
2312 |
|
|
{
|
2313 |
|
|
HOST_WIDE_INT last_sp_adjust = 0;
|
2314 |
|
|
rtx last_sp_set = NULL_RTX;
|
2315 |
|
|
struct csa_memlist *memlist = NULL;
|
2316 |
|
|
rtx insn, next, set;
|
2317 |
|
|
struct record_stack_memrefs_data data;
|
2318 |
|
|
bool end_of_block = false;
|
2319 |
|
|
|
2320 |
|
|
for (insn = BB_HEAD (bb); !end_of_block ; insn = next)
|
2321 |
|
|
{
|
2322 |
|
|
end_of_block = insn == BB_END (bb);
|
2323 |
|
|
next = NEXT_INSN (insn);
|
2324 |
|
|
|
2325 |
|
|
if (! INSN_P (insn))
|
2326 |
|
|
continue;
|
2327 |
|
|
|
2328 |
|
|
set = single_set_for_csa (insn);
|
2329 |
|
|
if (set)
|
2330 |
|
|
{
|
2331 |
|
|
rtx dest = SET_DEST (set);
|
2332 |
|
|
rtx src = SET_SRC (set);
|
2333 |
|
|
|
2334 |
|
|
/* Find constant additions to the stack pointer. */
|
2335 |
|
|
if (dest == stack_pointer_rtx
|
2336 |
|
|
&& GET_CODE (src) == PLUS
|
2337 |
|
|
&& XEXP (src, 0) == stack_pointer_rtx
|
2338 |
|
|
&& GET_CODE (XEXP (src, 1)) == CONST_INT)
|
2339 |
|
|
{
|
2340 |
|
|
HOST_WIDE_INT this_adjust = INTVAL (XEXP (src, 1));
|
2341 |
|
|
|
2342 |
|
|
/* If we've not seen an adjustment previously, record
|
2343 |
|
|
it now and continue. */
|
2344 |
|
|
if (! last_sp_set)
|
2345 |
|
|
{
|
2346 |
|
|
last_sp_set = insn;
|
2347 |
|
|
last_sp_adjust = this_adjust;
|
2348 |
|
|
continue;
|
2349 |
|
|
}
|
2350 |
|
|
|
2351 |
|
|
/* If not all recorded memrefs can be adjusted, or the
|
2352 |
|
|
adjustment is now too large for a constant addition,
|
2353 |
|
|
we cannot merge the two stack adjustments.
|
2354 |
|
|
|
2355 |
|
|
Also we need to be careful to not move stack pointer
|
2356 |
|
|
such that we create stack accesses outside the allocated
|
2357 |
|
|
area. We can combine an allocation into the first insn,
|
2358 |
|
|
or a deallocation into the second insn. We can not
|
2359 |
|
|
combine an allocation followed by a deallocation.
|
2360 |
|
|
|
2361 |
|
|
The only somewhat frequent occurrence of the later is when
|
2362 |
|
|
a function allocates a stack frame but does not use it.
|
2363 |
|
|
For this case, we would need to analyze rtl stream to be
|
2364 |
|
|
sure that allocated area is really unused. This means not
|
2365 |
|
|
only checking the memory references, but also all registers
|
2366 |
|
|
or global memory references possibly containing a stack
|
2367 |
|
|
frame address.
|
2368 |
|
|
|
2369 |
|
|
Perhaps the best way to address this problem is to teach
|
2370 |
|
|
gcc not to allocate stack for objects never used. */
|
2371 |
|
|
|
2372 |
|
|
/* Combine an allocation into the first instruction. */
|
2373 |
|
|
if (STACK_GROWS_DOWNWARD ? this_adjust <= 0 : this_adjust >= 0)
|
2374 |
|
|
{
|
2375 |
|
|
if (try_apply_stack_adjustment (last_sp_set, memlist,
|
2376 |
|
|
last_sp_adjust + this_adjust,
|
2377 |
|
|
this_adjust))
|
2378 |
|
|
{
|
2379 |
|
|
/* It worked! */
|
2380 |
|
|
delete_insn (insn);
|
2381 |
|
|
last_sp_adjust += this_adjust;
|
2382 |
|
|
continue;
|
2383 |
|
|
}
|
2384 |
|
|
}
|
2385 |
|
|
|
2386 |
|
|
/* Otherwise we have a deallocation. Do not combine with
|
2387 |
|
|
a previous allocation. Combine into the second insn. */
|
2388 |
|
|
else if (STACK_GROWS_DOWNWARD
|
2389 |
|
|
? last_sp_adjust >= 0 : last_sp_adjust <= 0)
|
2390 |
|
|
{
|
2391 |
|
|
if (try_apply_stack_adjustment (insn, memlist,
|
2392 |
|
|
last_sp_adjust + this_adjust,
|
2393 |
|
|
-last_sp_adjust))
|
2394 |
|
|
{
|
2395 |
|
|
/* It worked! */
|
2396 |
|
|
delete_insn (last_sp_set);
|
2397 |
|
|
last_sp_set = insn;
|
2398 |
|
|
last_sp_adjust += this_adjust;
|
2399 |
|
|
free_csa_memlist (memlist);
|
2400 |
|
|
memlist = NULL;
|
2401 |
|
|
continue;
|
2402 |
|
|
}
|
2403 |
|
|
}
|
2404 |
|
|
|
2405 |
|
|
/* Combination failed. Restart processing from here. If
|
2406 |
|
|
deallocation+allocation conspired to cancel, we can
|
2407 |
|
|
delete the old deallocation insn. */
|
2408 |
|
|
if (last_sp_set && last_sp_adjust == 0)
|
2409 |
|
|
delete_insn (insn);
|
2410 |
|
|
free_csa_memlist (memlist);
|
2411 |
|
|
memlist = NULL;
|
2412 |
|
|
last_sp_set = insn;
|
2413 |
|
|
last_sp_adjust = this_adjust;
|
2414 |
|
|
continue;
|
2415 |
|
|
}
|
2416 |
|
|
|
2417 |
|
|
/* Find a predecrement of exactly the previous adjustment and
|
2418 |
|
|
turn it into a direct store. Obviously we can't do this if
|
2419 |
|
|
there were any intervening uses of the stack pointer. */
|
2420 |
|
|
if (memlist == NULL
|
2421 |
|
|
&& MEM_P (dest)
|
2422 |
|
|
&& ((GET_CODE (XEXP (dest, 0)) == PRE_DEC
|
2423 |
|
|
&& (last_sp_adjust
|
2424 |
|
|
== (HOST_WIDE_INT) GET_MODE_SIZE (GET_MODE (dest))))
|
2425 |
|
|
|| (GET_CODE (XEXP (dest, 0)) == PRE_MODIFY
|
2426 |
|
|
&& GET_CODE (XEXP (XEXP (dest, 0), 1)) == PLUS
|
2427 |
|
|
&& XEXP (XEXP (XEXP (dest, 0), 1), 0) == stack_pointer_rtx
|
2428 |
|
|
&& (GET_CODE (XEXP (XEXP (XEXP (dest, 0), 1), 1))
|
2429 |
|
|
== CONST_INT)
|
2430 |
|
|
&& (INTVAL (XEXP (XEXP (XEXP (dest, 0), 1), 1))
|
2431 |
|
|
== -last_sp_adjust)))
|
2432 |
|
|
&& XEXP (XEXP (dest, 0), 0) == stack_pointer_rtx
|
2433 |
|
|
&& ! reg_mentioned_p (stack_pointer_rtx, src)
|
2434 |
|
|
&& memory_address_p (GET_MODE (dest), stack_pointer_rtx)
|
2435 |
|
|
&& validate_change (insn, &SET_DEST (set),
|
2436 |
|
|
replace_equiv_address (dest,
|
2437 |
|
|
stack_pointer_rtx),
|
2438 |
|
|
0))
|
2439 |
|
|
{
|
2440 |
|
|
delete_insn (last_sp_set);
|
2441 |
|
|
free_csa_memlist (memlist);
|
2442 |
|
|
memlist = NULL;
|
2443 |
|
|
last_sp_set = NULL_RTX;
|
2444 |
|
|
last_sp_adjust = 0;
|
2445 |
|
|
continue;
|
2446 |
|
|
}
|
2447 |
|
|
}
|
2448 |
|
|
|
2449 |
|
|
data.insn = insn;
|
2450 |
|
|
data.memlist = memlist;
|
2451 |
|
|
if (!CALL_P (insn) && last_sp_set
|
2452 |
|
|
&& !for_each_rtx (&PATTERN (insn), record_stack_memrefs, &data))
|
2453 |
|
|
{
|
2454 |
|
|
memlist = data.memlist;
|
2455 |
|
|
continue;
|
2456 |
|
|
}
|
2457 |
|
|
memlist = data.memlist;
|
2458 |
|
|
|
2459 |
|
|
/* Otherwise, we were not able to process the instruction.
|
2460 |
|
|
Do not continue collecting data across such a one. */
|
2461 |
|
|
if (last_sp_set
|
2462 |
|
|
&& (CALL_P (insn)
|
2463 |
|
|
|| reg_mentioned_p (stack_pointer_rtx, PATTERN (insn))))
|
2464 |
|
|
{
|
2465 |
|
|
if (last_sp_set && last_sp_adjust == 0)
|
2466 |
|
|
delete_insn (last_sp_set);
|
2467 |
|
|
free_csa_memlist (memlist);
|
2468 |
|
|
memlist = NULL;
|
2469 |
|
|
last_sp_set = NULL_RTX;
|
2470 |
|
|
last_sp_adjust = 0;
|
2471 |
|
|
}
|
2472 |
|
|
}
|
2473 |
|
|
|
2474 |
|
|
if (last_sp_set && last_sp_adjust == 0)
|
2475 |
|
|
delete_insn (last_sp_set);
|
2476 |
|
|
|
2477 |
|
|
if (memlist)
|
2478 |
|
|
free_csa_memlist (memlist);
|
2479 |
|
|
}
|
2480 |
|
|
|
2481 |
|
|
static bool
|
2482 |
|
|
gate_handle_regmove (void)
|
2483 |
|
|
{
|
2484 |
|
|
return (optimize > 0 && flag_regmove);
|
2485 |
|
|
}
|
2486 |
|
|
|
2487 |
|
|
|
2488 |
|
|
/* Register allocation pre-pass, to reduce number of moves necessary
|
2489 |
|
|
for two-address machines. */
|
2490 |
|
|
static unsigned int
|
2491 |
|
|
rest_of_handle_regmove (void)
|
2492 |
|
|
{
|
2493 |
|
|
regmove_optimize (get_insns (), max_reg_num ());
|
2494 |
|
|
cleanup_cfg (CLEANUP_EXPENSIVE | CLEANUP_UPDATE_LIFE);
|
2495 |
|
|
return 0;
|
2496 |
|
|
}
|
2497 |
|
|
|
2498 |
|
|
struct tree_opt_pass pass_regmove =
|
2499 |
|
|
{
|
2500 |
|
|
"regmove", /* name */
|
2501 |
|
|
gate_handle_regmove, /* gate */
|
2502 |
|
|
rest_of_handle_regmove, /* execute */
|
2503 |
|
|
NULL, /* sub */
|
2504 |
|
|
NULL, /* next */
|
2505 |
|
|
0, /* static_pass_number */
|
2506 |
|
|
TV_REGMOVE, /* tv_id */
|
2507 |
|
|
0, /* properties_required */
|
2508 |
|
|
0, /* properties_provided */
|
2509 |
|
|
0, /* properties_destroyed */
|
2510 |
|
|
0, /* todo_flags_start */
|
2511 |
|
|
TODO_dump_func |
|
2512 |
|
|
TODO_ggc_collect, /* todo_flags_finish */
|
2513 |
|
|
'N' /* letter */
|
2514 |
|
|
};
|
2515 |
|
|
|
2516 |
|
|
|
2517 |
|
|
static bool
|
2518 |
|
|
gate_handle_stack_adjustments (void)
|
2519 |
|
|
{
|
2520 |
|
|
return (optimize > 0);
|
2521 |
|
|
}
|
2522 |
|
|
|
2523 |
|
|
static unsigned int
|
2524 |
|
|
rest_of_handle_stack_adjustments (void)
|
2525 |
|
|
{
|
2526 |
|
|
life_analysis (PROP_POSTRELOAD);
|
2527 |
|
|
cleanup_cfg (CLEANUP_EXPENSIVE | CLEANUP_UPDATE_LIFE
|
2528 |
|
|
| (flag_crossjumping ? CLEANUP_CROSSJUMP : 0));
|
2529 |
|
|
|
2530 |
|
|
/* This is kind of a heuristic. We need to run combine_stack_adjustments
|
2531 |
|
|
even for machines with possibly nonzero RETURN_POPS_ARGS
|
2532 |
|
|
and ACCUMULATE_OUTGOING_ARGS. We expect that only ports having
|
2533 |
|
|
push instructions will have popping returns. */
|
2534 |
|
|
#ifndef PUSH_ROUNDING
|
2535 |
|
|
if (!ACCUMULATE_OUTGOING_ARGS)
|
2536 |
|
|
#endif
|
2537 |
|
|
combine_stack_adjustments ();
|
2538 |
|
|
return 0;
|
2539 |
|
|
}
|
2540 |
|
|
|
2541 |
|
|
struct tree_opt_pass pass_stack_adjustments =
|
2542 |
|
|
{
|
2543 |
|
|
"csa", /* name */
|
2544 |
|
|
gate_handle_stack_adjustments, /* gate */
|
2545 |
|
|
rest_of_handle_stack_adjustments, /* execute */
|
2546 |
|
|
NULL, /* sub */
|
2547 |
|
|
NULL, /* next */
|
2548 |
|
|
0, /* static_pass_number */
|
2549 |
|
|
0, /* tv_id */
|
2550 |
|
|
0, /* properties_required */
|
2551 |
|
|
0, /* properties_provided */
|
2552 |
|
|
0, /* properties_destroyed */
|
2553 |
|
|
0, /* todo_flags_start */
|
2554 |
|
|
TODO_dump_func |
|
2555 |
|
|
TODO_ggc_collect, /* todo_flags_finish */
|
2556 |
|
|
|
2557 |
|
|
};
|
2558 |
|
|
|