1 |
38 |
julius |
/* Reload pseudo regs into hard regs for insns that require hard regs.
|
2 |
|
|
Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
|
3 |
|
|
1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
|
4 |
|
|
Free Software Foundation, Inc.
|
5 |
|
|
|
6 |
|
|
This file is part of GCC.
|
7 |
|
|
|
8 |
|
|
GCC is free software; you can redistribute it and/or modify it under
|
9 |
|
|
the terms of the GNU General Public License as published by the Free
|
10 |
|
|
Software Foundation; either version 3, or (at your option) any later
|
11 |
|
|
version.
|
12 |
|
|
|
13 |
|
|
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
|
14 |
|
|
WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
15 |
|
|
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
16 |
|
|
for more details.
|
17 |
|
|
|
18 |
|
|
You should have received a copy of the GNU General Public License
|
19 |
|
|
along with GCC; see the file COPYING3. If not see
|
20 |
|
|
<http://www.gnu.org/licenses/>. */
|
21 |
|
|
|
22 |
|
|
#include "config.h"
|
23 |
|
|
#include "system.h"
|
24 |
|
|
#include "coretypes.h"
|
25 |
|
|
#include "tm.h"
|
26 |
|
|
|
27 |
|
|
#include "machmode.h"
|
28 |
|
|
#include "hard-reg-set.h"
|
29 |
|
|
#include "rtl.h"
|
30 |
|
|
#include "tm_p.h"
|
31 |
|
|
#include "obstack.h"
|
32 |
|
|
#include "insn-config.h"
|
33 |
|
|
#include "flags.h"
|
34 |
|
|
#include "function.h"
|
35 |
|
|
#include "expr.h"
|
36 |
|
|
#include "optabs.h"
|
37 |
|
|
#include "regs.h"
|
38 |
|
|
#include "addresses.h"
|
39 |
|
|
#include "basic-block.h"
|
40 |
|
|
#include "reload.h"
|
41 |
|
|
#include "recog.h"
|
42 |
|
|
#include "output.h"
|
43 |
|
|
#include "real.h"
|
44 |
|
|
#include "toplev.h"
|
45 |
|
|
#include "except.h"
|
46 |
|
|
#include "tree.h"
|
47 |
|
|
#include "target.h"
|
48 |
|
|
|
49 |
|
|
/* This file contains the reload pass of the compiler, which is
|
50 |
|
|
run after register allocation has been done. It checks that
|
51 |
|
|
each insn is valid (operands required to be in registers really
|
52 |
|
|
are in registers of the proper class) and fixes up invalid ones
|
53 |
|
|
by copying values temporarily into registers for the insns
|
54 |
|
|
that need them.
|
55 |
|
|
|
56 |
|
|
The results of register allocation are described by the vector
|
57 |
|
|
reg_renumber; the insns still contain pseudo regs, but reg_renumber
|
58 |
|
|
can be used to find which hard reg, if any, a pseudo reg is in.
|
59 |
|
|
|
60 |
|
|
The technique we always use is to free up a few hard regs that are
|
61 |
|
|
called ``reload regs'', and for each place where a pseudo reg
|
62 |
|
|
must be in a hard reg, copy it temporarily into one of the reload regs.
|
63 |
|
|
|
64 |
|
|
Reload regs are allocated locally for every instruction that needs
|
65 |
|
|
reloads. When there are pseudos which are allocated to a register that
|
66 |
|
|
has been chosen as a reload reg, such pseudos must be ``spilled''.
|
67 |
|
|
This means that they go to other hard regs, or to stack slots if no other
|
68 |
|
|
available hard regs can be found. Spilling can invalidate more
|
69 |
|
|
insns, requiring additional need for reloads, so we must keep checking
|
70 |
|
|
until the process stabilizes.
|
71 |
|
|
|
72 |
|
|
For machines with different classes of registers, we must keep track
|
73 |
|
|
of the register class needed for each reload, and make sure that
|
74 |
|
|
we allocate enough reload registers of each class.
|
75 |
|
|
|
76 |
|
|
The file reload.c contains the code that checks one insn for
|
77 |
|
|
validity and reports the reloads that it needs. This file
|
78 |
|
|
is in charge of scanning the entire rtl code, accumulating the
|
79 |
|
|
reload needs, spilling, assigning reload registers to use for
|
80 |
|
|
fixing up each insn, and generating the new insns to copy values
|
81 |
|
|
into the reload registers. */
|
82 |
|
|
|
83 |
|
|
/* During reload_as_needed, element N contains a REG rtx for the hard reg
|
84 |
|
|
into which reg N has been reloaded (perhaps for a previous insn). */
|
85 |
|
|
static rtx *reg_last_reload_reg;
|
86 |
|
|
|
87 |
|
|
/* Elt N nonzero if reg_last_reload_reg[N] has been set in this insn
|
88 |
|
|
for an output reload that stores into reg N. */
|
89 |
|
|
static regset_head reg_has_output_reload;
|
90 |
|
|
|
91 |
|
|
/* Indicates which hard regs are reload-registers for an output reload
|
92 |
|
|
in the current insn. */
|
93 |
|
|
static HARD_REG_SET reg_is_output_reload;
|
94 |
|
|
|
95 |
|
|
/* Element N is the constant value to which pseudo reg N is equivalent,
|
96 |
|
|
or zero if pseudo reg N is not equivalent to a constant.
|
97 |
|
|
find_reloads looks at this in order to replace pseudo reg N
|
98 |
|
|
with the constant it stands for. */
|
99 |
|
|
rtx *reg_equiv_constant;
|
100 |
|
|
|
101 |
|
|
/* Element N is an invariant value to which pseudo reg N is equivalent.
|
102 |
|
|
eliminate_regs_in_insn uses this to replace pseudos in particular
|
103 |
|
|
contexts. */
|
104 |
|
|
rtx *reg_equiv_invariant;
|
105 |
|
|
|
106 |
|
|
/* Element N is a memory location to which pseudo reg N is equivalent,
|
107 |
|
|
prior to any register elimination (such as frame pointer to stack
|
108 |
|
|
pointer). Depending on whether or not it is a valid address, this value
|
109 |
|
|
is transferred to either reg_equiv_address or reg_equiv_mem. */
|
110 |
|
|
rtx *reg_equiv_memory_loc;
|
111 |
|
|
|
112 |
|
|
/* We allocate reg_equiv_memory_loc inside a varray so that the garbage
|
113 |
|
|
collector can keep track of what is inside. */
|
114 |
|
|
VEC(rtx,gc) *reg_equiv_memory_loc_vec;
|
115 |
|
|
|
116 |
|
|
/* Element N is the address of stack slot to which pseudo reg N is equivalent.
|
117 |
|
|
This is used when the address is not valid as a memory address
|
118 |
|
|
(because its displacement is too big for the machine.) */
|
119 |
|
|
rtx *reg_equiv_address;
|
120 |
|
|
|
121 |
|
|
/* Element N is the memory slot to which pseudo reg N is equivalent,
|
122 |
|
|
or zero if pseudo reg N is not equivalent to a memory slot. */
|
123 |
|
|
rtx *reg_equiv_mem;
|
124 |
|
|
|
125 |
|
|
/* Element N is an EXPR_LIST of REG_EQUIVs containing MEMs with
|
126 |
|
|
alternate representations of the location of pseudo reg N. */
|
127 |
|
|
rtx *reg_equiv_alt_mem_list;
|
128 |
|
|
|
129 |
|
|
/* Widest width in which each pseudo reg is referred to (via subreg). */
|
130 |
|
|
static unsigned int *reg_max_ref_width;
|
131 |
|
|
|
132 |
|
|
/* Element N is the list of insns that initialized reg N from its equivalent
|
133 |
|
|
constant or memory slot. */
|
134 |
|
|
rtx *reg_equiv_init;
|
135 |
|
|
int reg_equiv_init_size;
|
136 |
|
|
|
137 |
|
|
/* Vector to remember old contents of reg_renumber before spilling. */
|
138 |
|
|
static short *reg_old_renumber;
|
139 |
|
|
|
140 |
|
|
/* During reload_as_needed, element N contains the last pseudo regno reloaded
|
141 |
|
|
into hard register N. If that pseudo reg occupied more than one register,
|
142 |
|
|
reg_reloaded_contents points to that pseudo for each spill register in
|
143 |
|
|
use; all of these must remain set for an inheritance to occur. */
|
144 |
|
|
static int reg_reloaded_contents[FIRST_PSEUDO_REGISTER];
|
145 |
|
|
|
146 |
|
|
/* During reload_as_needed, element N contains the insn for which
|
147 |
|
|
hard register N was last used. Its contents are significant only
|
148 |
|
|
when reg_reloaded_valid is set for this register. */
|
149 |
|
|
static rtx reg_reloaded_insn[FIRST_PSEUDO_REGISTER];
|
150 |
|
|
|
151 |
|
|
/* Indicate if reg_reloaded_insn / reg_reloaded_contents is valid. */
|
152 |
|
|
static HARD_REG_SET reg_reloaded_valid;
|
153 |
|
|
/* Indicate if the register was dead at the end of the reload.
|
154 |
|
|
This is only valid if reg_reloaded_contents is set and valid. */
|
155 |
|
|
static HARD_REG_SET reg_reloaded_dead;
|
156 |
|
|
|
157 |
|
|
/* Indicate whether the register's current value is one that is not
|
158 |
|
|
safe to retain across a call, even for registers that are normally
|
159 |
|
|
call-saved. */
|
160 |
|
|
static HARD_REG_SET reg_reloaded_call_part_clobbered;
|
161 |
|
|
|
162 |
|
|
/* Number of spill-regs so far; number of valid elements of spill_regs. */
|
163 |
|
|
static int n_spills;
|
164 |
|
|
|
165 |
|
|
/* In parallel with spill_regs, contains REG rtx's for those regs.
|
166 |
|
|
Holds the last rtx used for any given reg, or 0 if it has never
|
167 |
|
|
been used for spilling yet. This rtx is reused, provided it has
|
168 |
|
|
the proper mode. */
|
169 |
|
|
static rtx spill_reg_rtx[FIRST_PSEUDO_REGISTER];
|
170 |
|
|
|
171 |
|
|
/* In parallel with spill_regs, contains nonzero for a spill reg
|
172 |
|
|
that was stored after the last time it was used.
|
173 |
|
|
The precise value is the insn generated to do the store. */
|
174 |
|
|
static rtx spill_reg_store[FIRST_PSEUDO_REGISTER];
|
175 |
|
|
|
176 |
|
|
/* This is the register that was stored with spill_reg_store. This is a
|
177 |
|
|
copy of reload_out / reload_out_reg when the value was stored; if
|
178 |
|
|
reload_out is a MEM, spill_reg_stored_to will be set to reload_out_reg. */
|
179 |
|
|
static rtx spill_reg_stored_to[FIRST_PSEUDO_REGISTER];
|
180 |
|
|
|
181 |
|
|
/* This table is the inverse mapping of spill_regs:
|
182 |
|
|
indexed by hard reg number,
|
183 |
|
|
it contains the position of that reg in spill_regs,
|
184 |
|
|
or -1 for something that is not in spill_regs.
|
185 |
|
|
|
186 |
|
|
?!? This is no longer accurate. */
|
187 |
|
|
static short spill_reg_order[FIRST_PSEUDO_REGISTER];
|
188 |
|
|
|
189 |
|
|
/* This reg set indicates registers that can't be used as spill registers for
|
190 |
|
|
the currently processed insn. These are the hard registers which are live
|
191 |
|
|
during the insn, but not allocated to pseudos, as well as fixed
|
192 |
|
|
registers. */
|
193 |
|
|
static HARD_REG_SET bad_spill_regs;
|
194 |
|
|
|
195 |
|
|
/* These are the hard registers that can't be used as spill register for any
|
196 |
|
|
insn. This includes registers used for user variables and registers that
|
197 |
|
|
we can't eliminate. A register that appears in this set also can't be used
|
198 |
|
|
to retry register allocation. */
|
199 |
|
|
static HARD_REG_SET bad_spill_regs_global;
|
200 |
|
|
|
201 |
|
|
/* Describes order of use of registers for reloading
|
202 |
|
|
of spilled pseudo-registers. `n_spills' is the number of
|
203 |
|
|
elements that are actually valid; new ones are added at the end.
|
204 |
|
|
|
205 |
|
|
Both spill_regs and spill_reg_order are used on two occasions:
|
206 |
|
|
once during find_reload_regs, where they keep track of the spill registers
|
207 |
|
|
for a single insn, but also during reload_as_needed where they show all
|
208 |
|
|
the registers ever used by reload. For the latter case, the information
|
209 |
|
|
is calculated during finish_spills. */
|
210 |
|
|
static short spill_regs[FIRST_PSEUDO_REGISTER];
|
211 |
|
|
|
212 |
|
|
/* This vector of reg sets indicates, for each pseudo, which hard registers
|
213 |
|
|
may not be used for retrying global allocation because the register was
|
214 |
|
|
formerly spilled from one of them. If we allowed reallocating a pseudo to
|
215 |
|
|
a register that it was already allocated to, reload might not
|
216 |
|
|
terminate. */
|
217 |
|
|
static HARD_REG_SET *pseudo_previous_regs;
|
218 |
|
|
|
219 |
|
|
/* This vector of reg sets indicates, for each pseudo, which hard
|
220 |
|
|
registers may not be used for retrying global allocation because they
|
221 |
|
|
are used as spill registers during one of the insns in which the
|
222 |
|
|
pseudo is live. */
|
223 |
|
|
static HARD_REG_SET *pseudo_forbidden_regs;
|
224 |
|
|
|
225 |
|
|
/* All hard regs that have been used as spill registers for any insn are
|
226 |
|
|
marked in this set. */
|
227 |
|
|
static HARD_REG_SET used_spill_regs;
|
228 |
|
|
|
229 |
|
|
/* Index of last register assigned as a spill register. We allocate in
|
230 |
|
|
a round-robin fashion. */
|
231 |
|
|
static int last_spill_reg;
|
232 |
|
|
|
233 |
|
|
/* Nonzero if indirect addressing is supported on the machine; this means
|
234 |
|
|
that spilling (REG n) does not require reloading it into a register in
|
235 |
|
|
order to do (MEM (REG n)) or (MEM (PLUS (REG n) (CONST_INT c))). The
|
236 |
|
|
value indicates the level of indirect addressing supported, e.g., two
|
237 |
|
|
means that (MEM (MEM (REG n))) is also valid if (REG n) does not get
|
238 |
|
|
a hard register. */
|
239 |
|
|
static char spill_indirect_levels;
|
240 |
|
|
|
241 |
|
|
/* Nonzero if indirect addressing is supported when the innermost MEM is
|
242 |
|
|
of the form (MEM (SYMBOL_REF sym)). It is assumed that the level to
|
243 |
|
|
which these are valid is the same as spill_indirect_levels, above. */
|
244 |
|
|
char indirect_symref_ok;
|
245 |
|
|
|
246 |
|
|
/* Nonzero if an address (plus (reg frame_pointer) (reg ...)) is valid. */
|
247 |
|
|
char double_reg_address_ok;
|
248 |
|
|
|
249 |
|
|
/* Record the stack slot for each spilled hard register. */
|
250 |
|
|
static rtx spill_stack_slot[FIRST_PSEUDO_REGISTER];
|
251 |
|
|
|
252 |
|
|
/* Width allocated so far for that stack slot. */
|
253 |
|
|
static unsigned int spill_stack_slot_width[FIRST_PSEUDO_REGISTER];
|
254 |
|
|
|
255 |
|
|
/* Record which pseudos needed to be spilled. */
|
256 |
|
|
static regset_head spilled_pseudos;
|
257 |
|
|
|
258 |
|
|
/* Used for communication between order_regs_for_reload and count_pseudo.
|
259 |
|
|
Used to avoid counting one pseudo twice. */
|
260 |
|
|
static regset_head pseudos_counted;
|
261 |
|
|
|
262 |
|
|
/* First uid used by insns created by reload in this function.
|
263 |
|
|
Used in find_equiv_reg. */
|
264 |
|
|
int reload_first_uid;
|
265 |
|
|
|
266 |
|
|
/* Flag set by local-alloc or global-alloc if anything is live in
|
267 |
|
|
a call-clobbered reg across calls. */
|
268 |
|
|
int caller_save_needed;
|
269 |
|
|
|
270 |
|
|
/* Set to 1 while reload_as_needed is operating.
|
271 |
|
|
Required by some machines to handle any generated moves differently. */
|
272 |
|
|
int reload_in_progress = 0;
|
273 |
|
|
|
274 |
|
|
/* These arrays record the insn_code of insns that may be needed to
|
275 |
|
|
perform input and output reloads of special objects. They provide a
|
276 |
|
|
place to pass a scratch register. */
|
277 |
|
|
enum insn_code reload_in_optab[NUM_MACHINE_MODES];
|
278 |
|
|
enum insn_code reload_out_optab[NUM_MACHINE_MODES];
|
279 |
|
|
|
280 |
|
|
/* This obstack is used for allocation of rtl during register elimination.
|
281 |
|
|
The allocated storage can be freed once find_reloads has processed the
|
282 |
|
|
insn. */
|
283 |
|
|
static struct obstack reload_obstack;
|
284 |
|
|
|
285 |
|
|
/* Points to the beginning of the reload_obstack. All insn_chain structures
|
286 |
|
|
are allocated first. */
|
287 |
|
|
static char *reload_startobj;
|
288 |
|
|
|
289 |
|
|
/* The point after all insn_chain structures. Used to quickly deallocate
|
290 |
|
|
memory allocated in copy_reloads during calculate_needs_all_insns. */
|
291 |
|
|
static char *reload_firstobj;
|
292 |
|
|
|
293 |
|
|
/* This points before all local rtl generated by register elimination.
|
294 |
|
|
Used to quickly free all memory after processing one insn. */
|
295 |
|
|
static char *reload_insn_firstobj;
|
296 |
|
|
|
297 |
|
|
/* List of insn_chain instructions, one for every insn that reload needs to
|
298 |
|
|
examine. */
|
299 |
|
|
struct insn_chain *reload_insn_chain;
|
300 |
|
|
|
301 |
|
|
/* List of all insns needing reloads. */
|
302 |
|
|
static struct insn_chain *insns_need_reload;
|
303 |
|
|
|
304 |
|
|
/* This structure is used to record information about register eliminations.
|
305 |
|
|
Each array entry describes one possible way of eliminating a register
|
306 |
|
|
in favor of another. If there is more than one way of eliminating a
|
307 |
|
|
particular register, the most preferred should be specified first. */
|
308 |
|
|
|
309 |
|
|
struct elim_table
|
310 |
|
|
{
|
311 |
|
|
int from; /* Register number to be eliminated. */
|
312 |
|
|
int to; /* Register number used as replacement. */
|
313 |
|
|
HOST_WIDE_INT initial_offset; /* Initial difference between values. */
|
314 |
|
|
int can_eliminate; /* Nonzero if this elimination can be done. */
|
315 |
|
|
int can_eliminate_previous; /* Value of CAN_ELIMINATE in previous scan over
|
316 |
|
|
insns made by reload. */
|
317 |
|
|
HOST_WIDE_INT offset; /* Current offset between the two regs. */
|
318 |
|
|
HOST_WIDE_INT previous_offset;/* Offset at end of previous insn. */
|
319 |
|
|
int ref_outside_mem; /* "to" has been referenced outside a MEM. */
|
320 |
|
|
rtx from_rtx; /* REG rtx for the register to be eliminated.
|
321 |
|
|
We cannot simply compare the number since
|
322 |
|
|
we might then spuriously replace a hard
|
323 |
|
|
register corresponding to a pseudo
|
324 |
|
|
assigned to the reg to be eliminated. */
|
325 |
|
|
rtx to_rtx; /* REG rtx for the replacement. */
|
326 |
|
|
};
|
327 |
|
|
|
328 |
|
|
static struct elim_table *reg_eliminate = 0;
|
329 |
|
|
|
330 |
|
|
/* This is an intermediate structure to initialize the table. It has
|
331 |
|
|
exactly the members provided by ELIMINABLE_REGS. */
|
332 |
|
|
static const struct elim_table_1
|
333 |
|
|
{
|
334 |
|
|
const int from;
|
335 |
|
|
const int to;
|
336 |
|
|
} reg_eliminate_1[] =
|
337 |
|
|
|
338 |
|
|
/* If a set of eliminable registers was specified, define the table from it.
|
339 |
|
|
Otherwise, default to the normal case of the frame pointer being
|
340 |
|
|
replaced by the stack pointer. */
|
341 |
|
|
|
342 |
|
|
#ifdef ELIMINABLE_REGS
|
343 |
|
|
ELIMINABLE_REGS;
|
344 |
|
|
#else
|
345 |
|
|
{{ FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}};
|
346 |
|
|
#endif
|
347 |
|
|
|
348 |
|
|
#define NUM_ELIMINABLE_REGS ARRAY_SIZE (reg_eliminate_1)
|
349 |
|
|
|
350 |
|
|
/* Record the number of pending eliminations that have an offset not equal
|
351 |
|
|
to their initial offset. If nonzero, we use a new copy of each
|
352 |
|
|
replacement result in any insns encountered. */
|
353 |
|
|
int num_not_at_initial_offset;
|
354 |
|
|
|
355 |
|
|
/* Count the number of registers that we may be able to eliminate. */
|
356 |
|
|
static int num_eliminable;
|
357 |
|
|
/* And the number of registers that are equivalent to a constant that
|
358 |
|
|
can be eliminated to frame_pointer / arg_pointer + constant. */
|
359 |
|
|
static int num_eliminable_invariants;
|
360 |
|
|
|
361 |
|
|
/* For each label, we record the offset of each elimination. If we reach
|
362 |
|
|
a label by more than one path and an offset differs, we cannot do the
|
363 |
|
|
elimination. This information is indexed by the difference of the
|
364 |
|
|
number of the label and the first label number. We can't offset the
|
365 |
|
|
pointer itself as this can cause problems on machines with segmented
|
366 |
|
|
memory. The first table is an array of flags that records whether we
|
367 |
|
|
have yet encountered a label and the second table is an array of arrays,
|
368 |
|
|
one entry in the latter array for each elimination. */
|
369 |
|
|
|
370 |
|
|
static int first_label_num;
|
371 |
|
|
static char *offsets_known_at;
|
372 |
|
|
static HOST_WIDE_INT (*offsets_at)[NUM_ELIMINABLE_REGS];
|
373 |
|
|
|
374 |
|
|
/* Number of labels in the current function. */
|
375 |
|
|
|
376 |
|
|
static int num_labels;
|
377 |
|
|
|
378 |
|
|
static void replace_pseudos_in (rtx *, enum machine_mode, rtx);
|
379 |
|
|
static void maybe_fix_stack_asms (void);
|
380 |
|
|
static void copy_reloads (struct insn_chain *);
|
381 |
|
|
static void calculate_needs_all_insns (int);
|
382 |
|
|
static int find_reg (struct insn_chain *, int);
|
383 |
|
|
static void find_reload_regs (struct insn_chain *);
|
384 |
|
|
static void select_reload_regs (void);
|
385 |
|
|
static void delete_caller_save_insns (void);
|
386 |
|
|
|
387 |
|
|
static void spill_failure (rtx, enum reg_class);
|
388 |
|
|
static void count_spilled_pseudo (int, int, int);
|
389 |
|
|
static void delete_dead_insn (rtx);
|
390 |
|
|
static void alter_reg (int, int);
|
391 |
|
|
static void set_label_offsets (rtx, rtx, int);
|
392 |
|
|
static void check_eliminable_occurrences (rtx);
|
393 |
|
|
static void elimination_effects (rtx, enum machine_mode);
|
394 |
|
|
static int eliminate_regs_in_insn (rtx, int);
|
395 |
|
|
static void update_eliminable_offsets (void);
|
396 |
|
|
static void mark_not_eliminable (rtx, rtx, void *);
|
397 |
|
|
static void set_initial_elim_offsets (void);
|
398 |
|
|
static bool verify_initial_elim_offsets (void);
|
399 |
|
|
static void set_initial_label_offsets (void);
|
400 |
|
|
static void set_offsets_for_label (rtx);
|
401 |
|
|
static void init_elim_table (void);
|
402 |
|
|
static void update_eliminables (HARD_REG_SET *);
|
403 |
|
|
static void spill_hard_reg (unsigned int, int);
|
404 |
|
|
static int finish_spills (int);
|
405 |
|
|
static void scan_paradoxical_subregs (rtx);
|
406 |
|
|
static void count_pseudo (int);
|
407 |
|
|
static void order_regs_for_reload (struct insn_chain *);
|
408 |
|
|
static void reload_as_needed (int);
|
409 |
|
|
static void forget_old_reloads_1 (rtx, rtx, void *);
|
410 |
|
|
static void forget_marked_reloads (regset);
|
411 |
|
|
static int reload_reg_class_lower (const void *, const void *);
|
412 |
|
|
static void mark_reload_reg_in_use (unsigned int, int, enum reload_type,
|
413 |
|
|
enum machine_mode);
|
414 |
|
|
static void clear_reload_reg_in_use (unsigned int, int, enum reload_type,
|
415 |
|
|
enum machine_mode);
|
416 |
|
|
static int reload_reg_free_p (unsigned int, int, enum reload_type);
|
417 |
|
|
static int reload_reg_free_for_value_p (int, int, int, enum reload_type,
|
418 |
|
|
rtx, rtx, int, int);
|
419 |
|
|
static int free_for_value_p (int, enum machine_mode, int, enum reload_type,
|
420 |
|
|
rtx, rtx, int, int);
|
421 |
|
|
static int reload_reg_reaches_end_p (unsigned int, int, enum reload_type);
|
422 |
|
|
static int allocate_reload_reg (struct insn_chain *, int, int);
|
423 |
|
|
static int conflicts_with_override (rtx);
|
424 |
|
|
static void failed_reload (rtx, int);
|
425 |
|
|
static int set_reload_reg (int, int);
|
426 |
|
|
static void choose_reload_regs_init (struct insn_chain *, rtx *);
|
427 |
|
|
static void choose_reload_regs (struct insn_chain *);
|
428 |
|
|
static void merge_assigned_reloads (rtx);
|
429 |
|
|
static void emit_input_reload_insns (struct insn_chain *, struct reload *,
|
430 |
|
|
rtx, int);
|
431 |
|
|
static void emit_output_reload_insns (struct insn_chain *, struct reload *,
|
432 |
|
|
int);
|
433 |
|
|
static void do_input_reload (struct insn_chain *, struct reload *, int);
|
434 |
|
|
static void do_output_reload (struct insn_chain *, struct reload *, int);
|
435 |
|
|
static bool inherit_piecemeal_p (int, int);
|
436 |
|
|
static void emit_reload_insns (struct insn_chain *);
|
437 |
|
|
static void delete_output_reload (rtx, int, int);
|
438 |
|
|
static void delete_address_reloads (rtx, rtx);
|
439 |
|
|
static void delete_address_reloads_1 (rtx, rtx, rtx);
|
440 |
|
|
static rtx inc_for_reload (rtx, rtx, rtx, int);
|
441 |
|
|
#ifdef AUTO_INC_DEC
|
442 |
|
|
static void add_auto_inc_notes (rtx, rtx);
|
443 |
|
|
#endif
|
444 |
|
|
static void copy_eh_notes (rtx, rtx);
|
445 |
|
|
static int reloads_conflict (int, int);
|
446 |
|
|
static rtx gen_reload (rtx, rtx, int, enum reload_type);
|
447 |
|
|
static rtx emit_insn_if_valid_for_reload (rtx);
|
448 |
|
|
|
449 |
|
|
/* Initialize the reload pass once per compilation. */
|
450 |
|
|
|
451 |
|
|
void
|
452 |
|
|
init_reload (void)
|
453 |
|
|
{
|
454 |
|
|
int i;
|
455 |
|
|
|
456 |
|
|
/* Often (MEM (REG n)) is still valid even if (REG n) is put on the stack.
|
457 |
|
|
Set spill_indirect_levels to the number of levels such addressing is
|
458 |
|
|
permitted, zero if it is not permitted at all. */
|
459 |
|
|
|
460 |
|
|
rtx tem
|
461 |
|
|
= gen_rtx_MEM (Pmode,
|
462 |
|
|
gen_rtx_PLUS (Pmode,
|
463 |
|
|
gen_rtx_REG (Pmode,
|
464 |
|
|
LAST_VIRTUAL_REGISTER + 1),
|
465 |
|
|
GEN_INT (4)));
|
466 |
|
|
spill_indirect_levels = 0;
|
467 |
|
|
|
468 |
|
|
while (memory_address_p (QImode, tem))
|
469 |
|
|
{
|
470 |
|
|
spill_indirect_levels++;
|
471 |
|
|
tem = gen_rtx_MEM (Pmode, tem);
|
472 |
|
|
}
|
473 |
|
|
|
474 |
|
|
/* See if indirect addressing is valid for (MEM (SYMBOL_REF ...)). */
|
475 |
|
|
|
476 |
|
|
tem = gen_rtx_MEM (Pmode, gen_rtx_SYMBOL_REF (Pmode, "foo"));
|
477 |
|
|
indirect_symref_ok = memory_address_p (QImode, tem);
|
478 |
|
|
|
479 |
|
|
/* See if reg+reg is a valid (and offsettable) address. */
|
480 |
|
|
|
481 |
|
|
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
|
482 |
|
|
{
|
483 |
|
|
tem = gen_rtx_PLUS (Pmode,
|
484 |
|
|
gen_rtx_REG (Pmode, HARD_FRAME_POINTER_REGNUM),
|
485 |
|
|
gen_rtx_REG (Pmode, i));
|
486 |
|
|
|
487 |
|
|
/* This way, we make sure that reg+reg is an offsettable address. */
|
488 |
|
|
tem = plus_constant (tem, 4);
|
489 |
|
|
|
490 |
|
|
if (memory_address_p (QImode, tem))
|
491 |
|
|
{
|
492 |
|
|
double_reg_address_ok = 1;
|
493 |
|
|
break;
|
494 |
|
|
}
|
495 |
|
|
}
|
496 |
|
|
|
497 |
|
|
/* Initialize obstack for our rtl allocation. */
|
498 |
|
|
gcc_obstack_init (&reload_obstack);
|
499 |
|
|
reload_startobj = obstack_alloc (&reload_obstack, 0);
|
500 |
|
|
|
501 |
|
|
INIT_REG_SET (&spilled_pseudos);
|
502 |
|
|
INIT_REG_SET (&pseudos_counted);
|
503 |
|
|
}
|
504 |
|
|
|
505 |
|
|
/* List of insn chains that are currently unused. */
|
506 |
|
|
static struct insn_chain *unused_insn_chains = 0;
|
507 |
|
|
|
508 |
|
|
/* Allocate an empty insn_chain structure. */
|
509 |
|
|
struct insn_chain *
|
510 |
|
|
new_insn_chain (void)
|
511 |
|
|
{
|
512 |
|
|
struct insn_chain *c;
|
513 |
|
|
|
514 |
|
|
if (unused_insn_chains == 0)
|
515 |
|
|
{
|
516 |
|
|
c = obstack_alloc (&reload_obstack, sizeof (struct insn_chain));
|
517 |
|
|
INIT_REG_SET (&c->live_throughout);
|
518 |
|
|
INIT_REG_SET (&c->dead_or_set);
|
519 |
|
|
}
|
520 |
|
|
else
|
521 |
|
|
{
|
522 |
|
|
c = unused_insn_chains;
|
523 |
|
|
unused_insn_chains = c->next;
|
524 |
|
|
}
|
525 |
|
|
c->is_caller_save_insn = 0;
|
526 |
|
|
c->need_operand_change = 0;
|
527 |
|
|
c->need_reload = 0;
|
528 |
|
|
c->need_elim = 0;
|
529 |
|
|
return c;
|
530 |
|
|
}
|
531 |
|
|
|
532 |
|
|
/* Small utility function to set all regs in hard reg set TO which are
|
533 |
|
|
allocated to pseudos in regset FROM. */
|
534 |
|
|
|
535 |
|
|
void
|
536 |
|
|
compute_use_by_pseudos (HARD_REG_SET *to, regset from)
|
537 |
|
|
{
|
538 |
|
|
unsigned int regno;
|
539 |
|
|
reg_set_iterator rsi;
|
540 |
|
|
|
541 |
|
|
EXECUTE_IF_SET_IN_REG_SET (from, FIRST_PSEUDO_REGISTER, regno, rsi)
|
542 |
|
|
{
|
543 |
|
|
int r = reg_renumber[regno];
|
544 |
|
|
int nregs;
|
545 |
|
|
|
546 |
|
|
if (r < 0)
|
547 |
|
|
{
|
548 |
|
|
/* reload_combine uses the information from
|
549 |
|
|
BASIC_BLOCK->global_live_at_start, which might still
|
550 |
|
|
contain registers that have not actually been allocated
|
551 |
|
|
since they have an equivalence. */
|
552 |
|
|
gcc_assert (reload_completed);
|
553 |
|
|
}
|
554 |
|
|
else
|
555 |
|
|
{
|
556 |
|
|
nregs = hard_regno_nregs[r][PSEUDO_REGNO_MODE (regno)];
|
557 |
|
|
while (nregs-- > 0)
|
558 |
|
|
SET_HARD_REG_BIT (*to, r + nregs);
|
559 |
|
|
}
|
560 |
|
|
}
|
561 |
|
|
}
|
562 |
|
|
|
563 |
|
|
/* Replace all pseudos found in LOC with their corresponding
|
564 |
|
|
equivalences. */
|
565 |
|
|
|
566 |
|
|
static void
|
567 |
|
|
replace_pseudos_in (rtx *loc, enum machine_mode mem_mode, rtx usage)
|
568 |
|
|
{
|
569 |
|
|
rtx x = *loc;
|
570 |
|
|
enum rtx_code code;
|
571 |
|
|
const char *fmt;
|
572 |
|
|
int i, j;
|
573 |
|
|
|
574 |
|
|
if (! x)
|
575 |
|
|
return;
|
576 |
|
|
|
577 |
|
|
code = GET_CODE (x);
|
578 |
|
|
if (code == REG)
|
579 |
|
|
{
|
580 |
|
|
unsigned int regno = REGNO (x);
|
581 |
|
|
|
582 |
|
|
if (regno < FIRST_PSEUDO_REGISTER)
|
583 |
|
|
return;
|
584 |
|
|
|
585 |
|
|
x = eliminate_regs (x, mem_mode, usage);
|
586 |
|
|
if (x != *loc)
|
587 |
|
|
{
|
588 |
|
|
*loc = x;
|
589 |
|
|
replace_pseudos_in (loc, mem_mode, usage);
|
590 |
|
|
return;
|
591 |
|
|
}
|
592 |
|
|
|
593 |
|
|
if (reg_equiv_constant[regno])
|
594 |
|
|
*loc = reg_equiv_constant[regno];
|
595 |
|
|
else if (reg_equiv_mem[regno])
|
596 |
|
|
*loc = reg_equiv_mem[regno];
|
597 |
|
|
else if (reg_equiv_address[regno])
|
598 |
|
|
*loc = gen_rtx_MEM (GET_MODE (x), reg_equiv_address[regno]);
|
599 |
|
|
else
|
600 |
|
|
{
|
601 |
|
|
gcc_assert (!REG_P (regno_reg_rtx[regno])
|
602 |
|
|
|| REGNO (regno_reg_rtx[regno]) != regno);
|
603 |
|
|
*loc = regno_reg_rtx[regno];
|
604 |
|
|
}
|
605 |
|
|
|
606 |
|
|
return;
|
607 |
|
|
}
|
608 |
|
|
else if (code == MEM)
|
609 |
|
|
{
|
610 |
|
|
replace_pseudos_in (& XEXP (x, 0), GET_MODE (x), usage);
|
611 |
|
|
return;
|
612 |
|
|
}
|
613 |
|
|
|
614 |
|
|
/* Process each of our operands recursively. */
|
615 |
|
|
fmt = GET_RTX_FORMAT (code);
|
616 |
|
|
for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
|
617 |
|
|
if (*fmt == 'e')
|
618 |
|
|
replace_pseudos_in (&XEXP (x, i), mem_mode, usage);
|
619 |
|
|
else if (*fmt == 'E')
|
620 |
|
|
for (j = 0; j < XVECLEN (x, i); j++)
|
621 |
|
|
replace_pseudos_in (& XVECEXP (x, i, j), mem_mode, usage);
|
622 |
|
|
}
|
623 |
|
|
|
624 |
|
|
|
625 |
|
|
/* Global variables used by reload and its subroutines. */
|
626 |
|
|
|
627 |
|
|
/* Set during calculate_needs if an insn needs register elimination. */
|
628 |
|
|
static int something_needs_elimination;
|
629 |
|
|
/* Set during calculate_needs if an insn needs an operand changed. */
|
630 |
|
|
static int something_needs_operands_changed;
|
631 |
|
|
|
632 |
|
|
/* Nonzero means we couldn't get enough spill regs. */
|
633 |
|
|
static int failure;
|
634 |
|
|
|
635 |
|
|
/* Main entry point for the reload pass.
|
636 |
|
|
|
637 |
|
|
FIRST is the first insn of the function being compiled.
|
638 |
|
|
|
639 |
|
|
GLOBAL nonzero means we were called from global_alloc
|
640 |
|
|
and should attempt to reallocate any pseudoregs that we
|
641 |
|
|
displace from hard regs we will use for reloads.
|
642 |
|
|
If GLOBAL is zero, we do not have enough information to do that,
|
643 |
|
|
so any pseudo reg that is spilled must go to the stack.
|
644 |
|
|
|
645 |
|
|
Return value is nonzero if reload failed
|
646 |
|
|
and we must not do any more for this function. */
|
647 |
|
|
|
648 |
|
|
int
|
649 |
|
|
reload (rtx first, int global)
|
650 |
|
|
{
|
651 |
|
|
int i;
|
652 |
|
|
rtx insn;
|
653 |
|
|
struct elim_table *ep;
|
654 |
|
|
basic_block bb;
|
655 |
|
|
|
656 |
|
|
/* Make sure even insns with volatile mem refs are recognizable. */
|
657 |
|
|
init_recog ();
|
658 |
|
|
|
659 |
|
|
failure = 0;
|
660 |
|
|
|
661 |
|
|
reload_firstobj = obstack_alloc (&reload_obstack, 0);
|
662 |
|
|
|
663 |
|
|
/* Make sure that the last insn in the chain
|
664 |
|
|
is not something that needs reloading. */
|
665 |
|
|
emit_note (NOTE_INSN_DELETED);
|
666 |
|
|
|
667 |
|
|
/* Enable find_equiv_reg to distinguish insns made by reload. */
|
668 |
|
|
reload_first_uid = get_max_uid ();
|
669 |
|
|
|
670 |
|
|
#ifdef SECONDARY_MEMORY_NEEDED
|
671 |
|
|
/* Initialize the secondary memory table. */
|
672 |
|
|
clear_secondary_mem ();
|
673 |
|
|
#endif
|
674 |
|
|
|
675 |
|
|
/* We don't have a stack slot for any spill reg yet. */
|
676 |
|
|
memset (spill_stack_slot, 0, sizeof spill_stack_slot);
|
677 |
|
|
memset (spill_stack_slot_width, 0, sizeof spill_stack_slot_width);
|
678 |
|
|
|
679 |
|
|
/* Initialize the save area information for caller-save, in case some
|
680 |
|
|
are needed. */
|
681 |
|
|
init_save_areas ();
|
682 |
|
|
|
683 |
|
|
/* Compute which hard registers are now in use
|
684 |
|
|
as homes for pseudo registers.
|
685 |
|
|
This is done here rather than (eg) in global_alloc
|
686 |
|
|
because this point is reached even if not optimizing. */
|
687 |
|
|
for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
|
688 |
|
|
mark_home_live (i);
|
689 |
|
|
|
690 |
|
|
/* A function that receives a nonlocal goto must save all call-saved
|
691 |
|
|
registers. */
|
692 |
|
|
if (current_function_has_nonlocal_label)
|
693 |
|
|
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
|
694 |
|
|
if (! call_used_regs[i] && ! fixed_regs[i] && ! LOCAL_REGNO (i))
|
695 |
|
|
regs_ever_live[i] = 1;
|
696 |
|
|
|
697 |
|
|
/* Find all the pseudo registers that didn't get hard regs
|
698 |
|
|
but do have known equivalent constants or memory slots.
|
699 |
|
|
These include parameters (known equivalent to parameter slots)
|
700 |
|
|
and cse'd or loop-moved constant memory addresses.
|
701 |
|
|
|
702 |
|
|
Record constant equivalents in reg_equiv_constant
|
703 |
|
|
so they will be substituted by find_reloads.
|
704 |
|
|
Record memory equivalents in reg_mem_equiv so they can
|
705 |
|
|
be substituted eventually by altering the REG-rtx's. */
|
706 |
|
|
|
707 |
|
|
reg_equiv_constant = XCNEWVEC (rtx, max_regno);
|
708 |
|
|
reg_equiv_invariant = XCNEWVEC (rtx, max_regno);
|
709 |
|
|
reg_equiv_mem = XCNEWVEC (rtx, max_regno);
|
710 |
|
|
reg_equiv_alt_mem_list = XCNEWVEC (rtx, max_regno);
|
711 |
|
|
reg_equiv_address = XCNEWVEC (rtx, max_regno);
|
712 |
|
|
reg_max_ref_width = XCNEWVEC (unsigned int, max_regno);
|
713 |
|
|
reg_old_renumber = XCNEWVEC (short, max_regno);
|
714 |
|
|
memcpy (reg_old_renumber, reg_renumber, max_regno * sizeof (short));
|
715 |
|
|
pseudo_forbidden_regs = XNEWVEC (HARD_REG_SET, max_regno);
|
716 |
|
|
pseudo_previous_regs = XCNEWVEC (HARD_REG_SET, max_regno);
|
717 |
|
|
|
718 |
|
|
CLEAR_HARD_REG_SET (bad_spill_regs_global);
|
719 |
|
|
|
720 |
|
|
/* Look for REG_EQUIV notes; record what each pseudo is equivalent
|
721 |
|
|
to. Also find all paradoxical subregs and find largest such for
|
722 |
|
|
each pseudo. */
|
723 |
|
|
|
724 |
|
|
num_eliminable_invariants = 0;
|
725 |
|
|
for (insn = first; insn; insn = NEXT_INSN (insn))
|
726 |
|
|
{
|
727 |
|
|
rtx set = single_set (insn);
|
728 |
|
|
|
729 |
|
|
/* We may introduce USEs that we want to remove at the end, so
|
730 |
|
|
we'll mark them with QImode. Make sure there are no
|
731 |
|
|
previously-marked insns left by say regmove. */
|
732 |
|
|
if (INSN_P (insn) && GET_CODE (PATTERN (insn)) == USE
|
733 |
|
|
&& GET_MODE (insn) != VOIDmode)
|
734 |
|
|
PUT_MODE (insn, VOIDmode);
|
735 |
|
|
|
736 |
|
|
if (INSN_P (insn))
|
737 |
|
|
scan_paradoxical_subregs (PATTERN (insn));
|
738 |
|
|
|
739 |
|
|
if (set != 0 && REG_P (SET_DEST (set)))
|
740 |
|
|
{
|
741 |
|
|
rtx note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
|
742 |
|
|
rtx x;
|
743 |
|
|
|
744 |
|
|
if (! note)
|
745 |
|
|
continue;
|
746 |
|
|
|
747 |
|
|
i = REGNO (SET_DEST (set));
|
748 |
|
|
x = XEXP (note, 0);
|
749 |
|
|
|
750 |
|
|
if (i <= LAST_VIRTUAL_REGISTER)
|
751 |
|
|
continue;
|
752 |
|
|
|
753 |
|
|
if (! function_invariant_p (x)
|
754 |
|
|
|| ! flag_pic
|
755 |
|
|
/* A function invariant is often CONSTANT_P but may
|
756 |
|
|
include a register. We promise to only pass
|
757 |
|
|
CONSTANT_P objects to LEGITIMATE_PIC_OPERAND_P. */
|
758 |
|
|
|| (CONSTANT_P (x)
|
759 |
|
|
&& LEGITIMATE_PIC_OPERAND_P (x)))
|
760 |
|
|
{
|
761 |
|
|
/* It can happen that a REG_EQUIV note contains a MEM
|
762 |
|
|
that is not a legitimate memory operand. As later
|
763 |
|
|
stages of reload assume that all addresses found
|
764 |
|
|
in the reg_equiv_* arrays were originally legitimate,
|
765 |
|
|
we ignore such REG_EQUIV notes. */
|
766 |
|
|
if (memory_operand (x, VOIDmode))
|
767 |
|
|
{
|
768 |
|
|
/* Always unshare the equivalence, so we can
|
769 |
|
|
substitute into this insn without touching the
|
770 |
|
|
equivalence. */
|
771 |
|
|
reg_equiv_memory_loc[i] = copy_rtx (x);
|
772 |
|
|
}
|
773 |
|
|
else if (function_invariant_p (x))
|
774 |
|
|
{
|
775 |
|
|
if (GET_CODE (x) == PLUS)
|
776 |
|
|
{
|
777 |
|
|
/* This is PLUS of frame pointer and a constant,
|
778 |
|
|
and might be shared. Unshare it. */
|
779 |
|
|
reg_equiv_invariant[i] = copy_rtx (x);
|
780 |
|
|
num_eliminable_invariants++;
|
781 |
|
|
}
|
782 |
|
|
else if (x == frame_pointer_rtx || x == arg_pointer_rtx)
|
783 |
|
|
{
|
784 |
|
|
reg_equiv_invariant[i] = x;
|
785 |
|
|
num_eliminable_invariants++;
|
786 |
|
|
}
|
787 |
|
|
else if (LEGITIMATE_CONSTANT_P (x))
|
788 |
|
|
reg_equiv_constant[i] = x;
|
789 |
|
|
else
|
790 |
|
|
{
|
791 |
|
|
reg_equiv_memory_loc[i]
|
792 |
|
|
= force_const_mem (GET_MODE (SET_DEST (set)), x);
|
793 |
|
|
if (! reg_equiv_memory_loc[i])
|
794 |
|
|
reg_equiv_init[i] = NULL_RTX;
|
795 |
|
|
}
|
796 |
|
|
}
|
797 |
|
|
else
|
798 |
|
|
{
|
799 |
|
|
reg_equiv_init[i] = NULL_RTX;
|
800 |
|
|
continue;
|
801 |
|
|
}
|
802 |
|
|
}
|
803 |
|
|
else
|
804 |
|
|
reg_equiv_init[i] = NULL_RTX;
|
805 |
|
|
}
|
806 |
|
|
}
|
807 |
|
|
|
808 |
|
|
if (dump_file)
|
809 |
|
|
for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
|
810 |
|
|
if (reg_equiv_init[i])
|
811 |
|
|
{
|
812 |
|
|
fprintf (dump_file, "init_insns for %u: ", i);
|
813 |
|
|
print_inline_rtx (dump_file, reg_equiv_init[i], 20);
|
814 |
|
|
fprintf (dump_file, "\n");
|
815 |
|
|
}
|
816 |
|
|
|
817 |
|
|
init_elim_table ();
|
818 |
|
|
|
819 |
|
|
first_label_num = get_first_label_num ();
|
820 |
|
|
num_labels = max_label_num () - first_label_num;
|
821 |
|
|
|
822 |
|
|
/* Allocate the tables used to store offset information at labels. */
|
823 |
|
|
/* We used to use alloca here, but the size of what it would try to
|
824 |
|
|
allocate would occasionally cause it to exceed the stack limit and
|
825 |
|
|
cause a core dump. */
|
826 |
|
|
offsets_known_at = XNEWVEC (char, num_labels);
|
827 |
|
|
offsets_at = (HOST_WIDE_INT (*)[NUM_ELIMINABLE_REGS]) xmalloc (num_labels * NUM_ELIMINABLE_REGS * sizeof (HOST_WIDE_INT));
|
828 |
|
|
|
829 |
|
|
/* Alter each pseudo-reg rtx to contain its hard reg number.
|
830 |
|
|
Assign stack slots to the pseudos that lack hard regs or equivalents.
|
831 |
|
|
Do not touch virtual registers. */
|
832 |
|
|
|
833 |
|
|
for (i = LAST_VIRTUAL_REGISTER + 1; i < max_regno; i++)
|
834 |
|
|
alter_reg (i, -1);
|
835 |
|
|
|
836 |
|
|
/* If we have some registers we think can be eliminated, scan all insns to
|
837 |
|
|
see if there is an insn that sets one of these registers to something
|
838 |
|
|
other than itself plus a constant. If so, the register cannot be
|
839 |
|
|
eliminated. Doing this scan here eliminates an extra pass through the
|
840 |
|
|
main reload loop in the most common case where register elimination
|
841 |
|
|
cannot be done. */
|
842 |
|
|
for (insn = first; insn && num_eliminable; insn = NEXT_INSN (insn))
|
843 |
|
|
if (INSN_P (insn))
|
844 |
|
|
note_stores (PATTERN (insn), mark_not_eliminable, NULL);
|
845 |
|
|
|
846 |
|
|
maybe_fix_stack_asms ();
|
847 |
|
|
|
848 |
|
|
insns_need_reload = 0;
|
849 |
|
|
something_needs_elimination = 0;
|
850 |
|
|
|
851 |
|
|
/* Initialize to -1, which means take the first spill register. */
|
852 |
|
|
last_spill_reg = -1;
|
853 |
|
|
|
854 |
|
|
/* Spill any hard regs that we know we can't eliminate. */
|
855 |
|
|
CLEAR_HARD_REG_SET (used_spill_regs);
|
856 |
|
|
/* There can be multiple ways to eliminate a register;
|
857 |
|
|
they should be listed adjacently.
|
858 |
|
|
Elimination for any register fails only if all possible ways fail. */
|
859 |
|
|
for (ep = reg_eliminate; ep < ®_eliminate[NUM_ELIMINABLE_REGS]; )
|
860 |
|
|
{
|
861 |
|
|
int from = ep->from;
|
862 |
|
|
int can_eliminate = 0;
|
863 |
|
|
do
|
864 |
|
|
{
|
865 |
|
|
can_eliminate |= ep->can_eliminate;
|
866 |
|
|
ep++;
|
867 |
|
|
}
|
868 |
|
|
while (ep < ®_eliminate[NUM_ELIMINABLE_REGS] && ep->from == from);
|
869 |
|
|
if (! can_eliminate)
|
870 |
|
|
spill_hard_reg (from, 1);
|
871 |
|
|
}
|
872 |
|
|
|
873 |
|
|
#if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
|
874 |
|
|
if (frame_pointer_needed)
|
875 |
|
|
spill_hard_reg (HARD_FRAME_POINTER_REGNUM, 1);
|
876 |
|
|
#endif
|
877 |
|
|
finish_spills (global);
|
878 |
|
|
|
879 |
|
|
/* From now on, we may need to generate moves differently. We may also
|
880 |
|
|
allow modifications of insns which cause them to not be recognized.
|
881 |
|
|
Any such modifications will be cleaned up during reload itself. */
|
882 |
|
|
reload_in_progress = 1;
|
883 |
|
|
|
884 |
|
|
/* This loop scans the entire function each go-round
|
885 |
|
|
and repeats until one repetition spills no additional hard regs. */
|
886 |
|
|
for (;;)
|
887 |
|
|
{
|
888 |
|
|
int something_changed;
|
889 |
|
|
int did_spill;
|
890 |
|
|
|
891 |
|
|
HOST_WIDE_INT starting_frame_size;
|
892 |
|
|
|
893 |
|
|
/* Round size of stack frame to stack_alignment_needed. This must be done
|
894 |
|
|
here because the stack size may be a part of the offset computation
|
895 |
|
|
for register elimination, and there might have been new stack slots
|
896 |
|
|
created in the last iteration of this loop. */
|
897 |
|
|
if (cfun->stack_alignment_needed)
|
898 |
|
|
assign_stack_local (BLKmode, 0, cfun->stack_alignment_needed);
|
899 |
|
|
|
900 |
|
|
starting_frame_size = get_frame_size ();
|
901 |
|
|
|
902 |
|
|
set_initial_elim_offsets ();
|
903 |
|
|
set_initial_label_offsets ();
|
904 |
|
|
|
905 |
|
|
/* For each pseudo register that has an equivalent location defined,
|
906 |
|
|
try to eliminate any eliminable registers (such as the frame pointer)
|
907 |
|
|
assuming initial offsets for the replacement register, which
|
908 |
|
|
is the normal case.
|
909 |
|
|
|
910 |
|
|
If the resulting location is directly addressable, substitute
|
911 |
|
|
the MEM we just got directly for the old REG.
|
912 |
|
|
|
913 |
|
|
If it is not addressable but is a constant or the sum of a hard reg
|
914 |
|
|
and constant, it is probably not addressable because the constant is
|
915 |
|
|
out of range, in that case record the address; we will generate
|
916 |
|
|
hairy code to compute the address in a register each time it is
|
917 |
|
|
needed. Similarly if it is a hard register, but one that is not
|
918 |
|
|
valid as an address register.
|
919 |
|
|
|
920 |
|
|
If the location is not addressable, but does not have one of the
|
921 |
|
|
above forms, assign a stack slot. We have to do this to avoid the
|
922 |
|
|
potential of producing lots of reloads if, e.g., a location involves
|
923 |
|
|
a pseudo that didn't get a hard register and has an equivalent memory
|
924 |
|
|
location that also involves a pseudo that didn't get a hard register.
|
925 |
|
|
|
926 |
|
|
Perhaps at some point we will improve reload_when_needed handling
|
927 |
|
|
so this problem goes away. But that's very hairy. */
|
928 |
|
|
|
929 |
|
|
for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
|
930 |
|
|
if (reg_renumber[i] < 0 && reg_equiv_memory_loc[i])
|
931 |
|
|
{
|
932 |
|
|
rtx x = eliminate_regs (reg_equiv_memory_loc[i], 0, NULL_RTX);
|
933 |
|
|
|
934 |
|
|
if (strict_memory_address_p (GET_MODE (regno_reg_rtx[i]),
|
935 |
|
|
XEXP (x, 0)))
|
936 |
|
|
reg_equiv_mem[i] = x, reg_equiv_address[i] = 0;
|
937 |
|
|
else if (CONSTANT_P (XEXP (x, 0))
|
938 |
|
|
|| (REG_P (XEXP (x, 0))
|
939 |
|
|
&& REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER)
|
940 |
|
|
|| (GET_CODE (XEXP (x, 0)) == PLUS
|
941 |
|
|
&& REG_P (XEXP (XEXP (x, 0), 0))
|
942 |
|
|
&& (REGNO (XEXP (XEXP (x, 0), 0))
|
943 |
|
|
< FIRST_PSEUDO_REGISTER)
|
944 |
|
|
&& CONSTANT_P (XEXP (XEXP (x, 0), 1))))
|
945 |
|
|
reg_equiv_address[i] = XEXP (x, 0), reg_equiv_mem[i] = 0;
|
946 |
|
|
else
|
947 |
|
|
{
|
948 |
|
|
/* Make a new stack slot. Then indicate that something
|
949 |
|
|
changed so we go back and recompute offsets for
|
950 |
|
|
eliminable registers because the allocation of memory
|
951 |
|
|
below might change some offset. reg_equiv_{mem,address}
|
952 |
|
|
will be set up for this pseudo on the next pass around
|
953 |
|
|
the loop. */
|
954 |
|
|
reg_equiv_memory_loc[i] = 0;
|
955 |
|
|
reg_equiv_init[i] = 0;
|
956 |
|
|
alter_reg (i, -1);
|
957 |
|
|
}
|
958 |
|
|
}
|
959 |
|
|
|
960 |
|
|
if (caller_save_needed)
|
961 |
|
|
setup_save_areas ();
|
962 |
|
|
|
963 |
|
|
/* If we allocated another stack slot, redo elimination bookkeeping. */
|
964 |
|
|
if (starting_frame_size != get_frame_size ())
|
965 |
|
|
continue;
|
966 |
|
|
|
967 |
|
|
if (caller_save_needed)
|
968 |
|
|
{
|
969 |
|
|
save_call_clobbered_regs ();
|
970 |
|
|
/* That might have allocated new insn_chain structures. */
|
971 |
|
|
reload_firstobj = obstack_alloc (&reload_obstack, 0);
|
972 |
|
|
}
|
973 |
|
|
|
974 |
|
|
calculate_needs_all_insns (global);
|
975 |
|
|
|
976 |
|
|
CLEAR_REG_SET (&spilled_pseudos);
|
977 |
|
|
did_spill = 0;
|
978 |
|
|
|
979 |
|
|
something_changed = 0;
|
980 |
|
|
|
981 |
|
|
/* If we allocated any new memory locations, make another pass
|
982 |
|
|
since it might have changed elimination offsets. */
|
983 |
|
|
if (starting_frame_size != get_frame_size ())
|
984 |
|
|
something_changed = 1;
|
985 |
|
|
|
986 |
|
|
/* Even if the frame size remained the same, we might still have
|
987 |
|
|
changed elimination offsets, e.g. if find_reloads called
|
988 |
|
|
force_const_mem requiring the back end to allocate a constant
|
989 |
|
|
pool base register that needs to be saved on the stack. */
|
990 |
|
|
else if (!verify_initial_elim_offsets ())
|
991 |
|
|
something_changed = 1;
|
992 |
|
|
|
993 |
|
|
{
|
994 |
|
|
HARD_REG_SET to_spill;
|
995 |
|
|
CLEAR_HARD_REG_SET (to_spill);
|
996 |
|
|
update_eliminables (&to_spill);
|
997 |
|
|
AND_COMPL_HARD_REG_SET(used_spill_regs, to_spill);
|
998 |
|
|
|
999 |
|
|
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
|
1000 |
|
|
if (TEST_HARD_REG_BIT (to_spill, i))
|
1001 |
|
|
{
|
1002 |
|
|
spill_hard_reg (i, 1);
|
1003 |
|
|
did_spill = 1;
|
1004 |
|
|
|
1005 |
|
|
/* Regardless of the state of spills, if we previously had
|
1006 |
|
|
a register that we thought we could eliminate, but now can
|
1007 |
|
|
not eliminate, we must run another pass.
|
1008 |
|
|
|
1009 |
|
|
Consider pseudos which have an entry in reg_equiv_* which
|
1010 |
|
|
reference an eliminable register. We must make another pass
|
1011 |
|
|
to update reg_equiv_* so that we do not substitute in the
|
1012 |
|
|
old value from when we thought the elimination could be
|
1013 |
|
|
performed. */
|
1014 |
|
|
something_changed = 1;
|
1015 |
|
|
}
|
1016 |
|
|
}
|
1017 |
|
|
|
1018 |
|
|
select_reload_regs ();
|
1019 |
|
|
if (failure)
|
1020 |
|
|
goto failed;
|
1021 |
|
|
|
1022 |
|
|
if (insns_need_reload != 0 || did_spill)
|
1023 |
|
|
something_changed |= finish_spills (global);
|
1024 |
|
|
|
1025 |
|
|
if (! something_changed)
|
1026 |
|
|
break;
|
1027 |
|
|
|
1028 |
|
|
if (caller_save_needed)
|
1029 |
|
|
delete_caller_save_insns ();
|
1030 |
|
|
|
1031 |
|
|
obstack_free (&reload_obstack, reload_firstobj);
|
1032 |
|
|
}
|
1033 |
|
|
|
1034 |
|
|
/* If global-alloc was run, notify it of any register eliminations we have
|
1035 |
|
|
done. */
|
1036 |
|
|
if (global)
|
1037 |
|
|
for (ep = reg_eliminate; ep < ®_eliminate[NUM_ELIMINABLE_REGS]; ep++)
|
1038 |
|
|
if (ep->can_eliminate)
|
1039 |
|
|
mark_elimination (ep->from, ep->to);
|
1040 |
|
|
|
1041 |
|
|
/* If a pseudo has no hard reg, delete the insns that made the equivalence.
|
1042 |
|
|
If that insn didn't set the register (i.e., it copied the register to
|
1043 |
|
|
memory), just delete that insn instead of the equivalencing insn plus
|
1044 |
|
|
anything now dead. If we call delete_dead_insn on that insn, we may
|
1045 |
|
|
delete the insn that actually sets the register if the register dies
|
1046 |
|
|
there and that is incorrect. */
|
1047 |
|
|
|
1048 |
|
|
for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
|
1049 |
|
|
{
|
1050 |
|
|
if (reg_renumber[i] < 0 && reg_equiv_init[i] != 0)
|
1051 |
|
|
{
|
1052 |
|
|
rtx list;
|
1053 |
|
|
for (list = reg_equiv_init[i]; list; list = XEXP (list, 1))
|
1054 |
|
|
{
|
1055 |
|
|
rtx equiv_insn = XEXP (list, 0);
|
1056 |
|
|
|
1057 |
|
|
/* If we already deleted the insn or if it may trap, we can't
|
1058 |
|
|
delete it. The latter case shouldn't happen, but can
|
1059 |
|
|
if an insn has a variable address, gets a REG_EH_REGION
|
1060 |
|
|
note added to it, and then gets converted into a load
|
1061 |
|
|
from a constant address. */
|
1062 |
|
|
if (NOTE_P (equiv_insn)
|
1063 |
|
|
|| can_throw_internal (equiv_insn))
|
1064 |
|
|
;
|
1065 |
|
|
else if (reg_set_p (regno_reg_rtx[i], PATTERN (equiv_insn)))
|
1066 |
|
|
delete_dead_insn (equiv_insn);
|
1067 |
|
|
else
|
1068 |
|
|
SET_INSN_DELETED (equiv_insn);
|
1069 |
|
|
}
|
1070 |
|
|
}
|
1071 |
|
|
}
|
1072 |
|
|
|
1073 |
|
|
/* Use the reload registers where necessary
|
1074 |
|
|
by generating move instructions to move the must-be-register
|
1075 |
|
|
values into or out of the reload registers. */
|
1076 |
|
|
|
1077 |
|
|
if (insns_need_reload != 0 || something_needs_elimination
|
1078 |
|
|
|| something_needs_operands_changed)
|
1079 |
|
|
{
|
1080 |
|
|
HOST_WIDE_INT old_frame_size = get_frame_size ();
|
1081 |
|
|
|
1082 |
|
|
reload_as_needed (global);
|
1083 |
|
|
|
1084 |
|
|
gcc_assert (old_frame_size == get_frame_size ());
|
1085 |
|
|
|
1086 |
|
|
gcc_assert (verify_initial_elim_offsets ());
|
1087 |
|
|
}
|
1088 |
|
|
|
1089 |
|
|
/* If we were able to eliminate the frame pointer, show that it is no
|
1090 |
|
|
longer live at the start of any basic block. If it ls live by
|
1091 |
|
|
virtue of being in a pseudo, that pseudo will be marked live
|
1092 |
|
|
and hence the frame pointer will be known to be live via that
|
1093 |
|
|
pseudo. */
|
1094 |
|
|
|
1095 |
|
|
if (! frame_pointer_needed)
|
1096 |
|
|
FOR_EACH_BB (bb)
|
1097 |
|
|
CLEAR_REGNO_REG_SET (bb->il.rtl->global_live_at_start,
|
1098 |
|
|
HARD_FRAME_POINTER_REGNUM);
|
1099 |
|
|
|
1100 |
|
|
/* Come here (with failure set nonzero) if we can't get enough spill
|
1101 |
|
|
regs. */
|
1102 |
|
|
failed:
|
1103 |
|
|
|
1104 |
|
|
CLEAR_REG_SET (&spilled_pseudos);
|
1105 |
|
|
reload_in_progress = 0;
|
1106 |
|
|
|
1107 |
|
|
/* Now eliminate all pseudo regs by modifying them into
|
1108 |
|
|
their equivalent memory references.
|
1109 |
|
|
The REG-rtx's for the pseudos are modified in place,
|
1110 |
|
|
so all insns that used to refer to them now refer to memory.
|
1111 |
|
|
|
1112 |
|
|
For a reg that has a reg_equiv_address, all those insns
|
1113 |
|
|
were changed by reloading so that no insns refer to it any longer;
|
1114 |
|
|
but the DECL_RTL of a variable decl may refer to it,
|
1115 |
|
|
and if so this causes the debugging info to mention the variable. */
|
1116 |
|
|
|
1117 |
|
|
for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
|
1118 |
|
|
{
|
1119 |
|
|
rtx addr = 0;
|
1120 |
|
|
|
1121 |
|
|
if (reg_equiv_mem[i])
|
1122 |
|
|
addr = XEXP (reg_equiv_mem[i], 0);
|
1123 |
|
|
|
1124 |
|
|
if (reg_equiv_address[i])
|
1125 |
|
|
addr = reg_equiv_address[i];
|
1126 |
|
|
|
1127 |
|
|
if (addr)
|
1128 |
|
|
{
|
1129 |
|
|
if (reg_renumber[i] < 0)
|
1130 |
|
|
{
|
1131 |
|
|
rtx reg = regno_reg_rtx[i];
|
1132 |
|
|
|
1133 |
|
|
REG_USERVAR_P (reg) = 0;
|
1134 |
|
|
PUT_CODE (reg, MEM);
|
1135 |
|
|
XEXP (reg, 0) = addr;
|
1136 |
|
|
if (reg_equiv_memory_loc[i])
|
1137 |
|
|
MEM_COPY_ATTRIBUTES (reg, reg_equiv_memory_loc[i]);
|
1138 |
|
|
else
|
1139 |
|
|
{
|
1140 |
|
|
MEM_IN_STRUCT_P (reg) = MEM_SCALAR_P (reg) = 0;
|
1141 |
|
|
MEM_ATTRS (reg) = 0;
|
1142 |
|
|
}
|
1143 |
|
|
MEM_NOTRAP_P (reg) = 1;
|
1144 |
|
|
}
|
1145 |
|
|
else if (reg_equiv_mem[i])
|
1146 |
|
|
XEXP (reg_equiv_mem[i], 0) = addr;
|
1147 |
|
|
}
|
1148 |
|
|
}
|
1149 |
|
|
|
1150 |
|
|
/* We must set reload_completed now since the cleanup_subreg_operands call
|
1151 |
|
|
below will re-recognize each insn and reload may have generated insns
|
1152 |
|
|
which are only valid during and after reload. */
|
1153 |
|
|
reload_completed = 1;
|
1154 |
|
|
|
1155 |
|
|
/* Make a pass over all the insns and delete all USEs which we inserted
|
1156 |
|
|
only to tag a REG_EQUAL note on them. Remove all REG_DEAD and REG_UNUSED
|
1157 |
|
|
notes. Delete all CLOBBER insns, except those that refer to the return
|
1158 |
|
|
value and the special mem:BLK CLOBBERs added to prevent the scheduler
|
1159 |
|
|
from misarranging variable-array code, and simplify (subreg (reg))
|
1160 |
|
|
operands. Also remove all REG_RETVAL and REG_LIBCALL notes since they
|
1161 |
|
|
are no longer useful or accurate. Strip and regenerate REG_INC notes
|
1162 |
|
|
that may have been moved around. */
|
1163 |
|
|
|
1164 |
|
|
for (insn = first; insn; insn = NEXT_INSN (insn))
|
1165 |
|
|
if (INSN_P (insn))
|
1166 |
|
|
{
|
1167 |
|
|
rtx *pnote;
|
1168 |
|
|
|
1169 |
|
|
if (CALL_P (insn))
|
1170 |
|
|
replace_pseudos_in (& CALL_INSN_FUNCTION_USAGE (insn),
|
1171 |
|
|
VOIDmode, CALL_INSN_FUNCTION_USAGE (insn));
|
1172 |
|
|
|
1173 |
|
|
if ((GET_CODE (PATTERN (insn)) == USE
|
1174 |
|
|
/* We mark with QImode USEs introduced by reload itself. */
|
1175 |
|
|
&& (GET_MODE (insn) == QImode
|
1176 |
|
|
|| find_reg_note (insn, REG_EQUAL, NULL_RTX)))
|
1177 |
|
|
|| (GET_CODE (PATTERN (insn)) == CLOBBER
|
1178 |
|
|
&& (!MEM_P (XEXP (PATTERN (insn), 0))
|
1179 |
|
|
|| GET_MODE (XEXP (PATTERN (insn), 0)) != BLKmode
|
1180 |
|
|
|| (GET_CODE (XEXP (XEXP (PATTERN (insn), 0), 0)) != SCRATCH
|
1181 |
|
|
&& XEXP (XEXP (PATTERN (insn), 0), 0)
|
1182 |
|
|
!= stack_pointer_rtx))
|
1183 |
|
|
&& (!REG_P (XEXP (PATTERN (insn), 0))
|
1184 |
|
|
|| ! REG_FUNCTION_VALUE_P (XEXP (PATTERN (insn), 0)))))
|
1185 |
|
|
{
|
1186 |
|
|
delete_insn (insn);
|
1187 |
|
|
continue;
|
1188 |
|
|
}
|
1189 |
|
|
|
1190 |
|
|
/* Some CLOBBERs may survive until here and still reference unassigned
|
1191 |
|
|
pseudos with const equivalent, which may in turn cause ICE in later
|
1192 |
|
|
passes if the reference remains in place. */
|
1193 |
|
|
if (GET_CODE (PATTERN (insn)) == CLOBBER)
|
1194 |
|
|
replace_pseudos_in (& XEXP (PATTERN (insn), 0),
|
1195 |
|
|
VOIDmode, PATTERN (insn));
|
1196 |
|
|
|
1197 |
|
|
/* Discard obvious no-ops, even without -O. This optimization
|
1198 |
|
|
is fast and doesn't interfere with debugging. */
|
1199 |
|
|
if (NONJUMP_INSN_P (insn)
|
1200 |
|
|
&& GET_CODE (PATTERN (insn)) == SET
|
1201 |
|
|
&& REG_P (SET_SRC (PATTERN (insn)))
|
1202 |
|
|
&& REG_P (SET_DEST (PATTERN (insn)))
|
1203 |
|
|
&& (REGNO (SET_SRC (PATTERN (insn)))
|
1204 |
|
|
== REGNO (SET_DEST (PATTERN (insn)))))
|
1205 |
|
|
{
|
1206 |
|
|
delete_insn (insn);
|
1207 |
|
|
continue;
|
1208 |
|
|
}
|
1209 |
|
|
|
1210 |
|
|
pnote = ®_NOTES (insn);
|
1211 |
|
|
while (*pnote != 0)
|
1212 |
|
|
{
|
1213 |
|
|
if (REG_NOTE_KIND (*pnote) == REG_DEAD
|
1214 |
|
|
|| REG_NOTE_KIND (*pnote) == REG_UNUSED
|
1215 |
|
|
|| REG_NOTE_KIND (*pnote) == REG_INC
|
1216 |
|
|
|| REG_NOTE_KIND (*pnote) == REG_RETVAL
|
1217 |
|
|
|| REG_NOTE_KIND (*pnote) == REG_LIBCALL)
|
1218 |
|
|
*pnote = XEXP (*pnote, 1);
|
1219 |
|
|
else
|
1220 |
|
|
pnote = &XEXP (*pnote, 1);
|
1221 |
|
|
}
|
1222 |
|
|
|
1223 |
|
|
#ifdef AUTO_INC_DEC
|
1224 |
|
|
add_auto_inc_notes (insn, PATTERN (insn));
|
1225 |
|
|
#endif
|
1226 |
|
|
|
1227 |
|
|
/* Simplify (subreg (reg)) if it appears as an operand. */
|
1228 |
|
|
cleanup_subreg_operands (insn);
|
1229 |
|
|
|
1230 |
|
|
/* Clean up invalid ASMs so that they don't confuse later passes.
|
1231 |
|
|
See PR 21299. */
|
1232 |
|
|
if (asm_noperands (PATTERN (insn)) >= 0)
|
1233 |
|
|
{
|
1234 |
|
|
extract_insn (insn);
|
1235 |
|
|
if (!constrain_operands (1))
|
1236 |
|
|
{
|
1237 |
|
|
error_for_asm (insn,
|
1238 |
|
|
"%<asm%> operand has impossible constraints");
|
1239 |
|
|
delete_insn (insn);
|
1240 |
|
|
continue;
|
1241 |
|
|
}
|
1242 |
|
|
}
|
1243 |
|
|
}
|
1244 |
|
|
|
1245 |
|
|
/* If we are doing stack checking, give a warning if this function's
|
1246 |
|
|
frame size is larger than we expect. */
|
1247 |
|
|
if (flag_stack_check && ! STACK_CHECK_BUILTIN)
|
1248 |
|
|
{
|
1249 |
|
|
HOST_WIDE_INT size = get_frame_size () + STACK_CHECK_FIXED_FRAME_SIZE;
|
1250 |
|
|
static int verbose_warned = 0;
|
1251 |
|
|
|
1252 |
|
|
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
|
1253 |
|
|
if (regs_ever_live[i] && ! fixed_regs[i] && call_used_regs[i])
|
1254 |
|
|
size += UNITS_PER_WORD;
|
1255 |
|
|
|
1256 |
|
|
if (size > STACK_CHECK_MAX_FRAME_SIZE)
|
1257 |
|
|
{
|
1258 |
|
|
warning (0, "frame size too large for reliable stack checking");
|
1259 |
|
|
if (! verbose_warned)
|
1260 |
|
|
{
|
1261 |
|
|
warning (0, "try reducing the number of local variables");
|
1262 |
|
|
verbose_warned = 1;
|
1263 |
|
|
}
|
1264 |
|
|
}
|
1265 |
|
|
}
|
1266 |
|
|
|
1267 |
|
|
/* Indicate that we no longer have known memory locations or constants. */
|
1268 |
|
|
if (reg_equiv_constant)
|
1269 |
|
|
free (reg_equiv_constant);
|
1270 |
|
|
if (reg_equiv_invariant)
|
1271 |
|
|
free (reg_equiv_invariant);
|
1272 |
|
|
reg_equiv_constant = 0;
|
1273 |
|
|
reg_equiv_invariant = 0;
|
1274 |
|
|
VEC_free (rtx, gc, reg_equiv_memory_loc_vec);
|
1275 |
|
|
reg_equiv_memory_loc = 0;
|
1276 |
|
|
|
1277 |
|
|
if (offsets_known_at)
|
1278 |
|
|
free (offsets_known_at);
|
1279 |
|
|
if (offsets_at)
|
1280 |
|
|
free (offsets_at);
|
1281 |
|
|
|
1282 |
|
|
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
|
1283 |
|
|
if (reg_equiv_alt_mem_list[i])
|
1284 |
|
|
free_EXPR_LIST_list (®_equiv_alt_mem_list[i]);
|
1285 |
|
|
free (reg_equiv_alt_mem_list);
|
1286 |
|
|
|
1287 |
|
|
free (reg_equiv_mem);
|
1288 |
|
|
reg_equiv_init = 0;
|
1289 |
|
|
free (reg_equiv_address);
|
1290 |
|
|
free (reg_max_ref_width);
|
1291 |
|
|
free (reg_old_renumber);
|
1292 |
|
|
free (pseudo_previous_regs);
|
1293 |
|
|
free (pseudo_forbidden_regs);
|
1294 |
|
|
|
1295 |
|
|
CLEAR_HARD_REG_SET (used_spill_regs);
|
1296 |
|
|
for (i = 0; i < n_spills; i++)
|
1297 |
|
|
SET_HARD_REG_BIT (used_spill_regs, spill_regs[i]);
|
1298 |
|
|
|
1299 |
|
|
/* Free all the insn_chain structures at once. */
|
1300 |
|
|
obstack_free (&reload_obstack, reload_startobj);
|
1301 |
|
|
unused_insn_chains = 0;
|
1302 |
|
|
fixup_abnormal_edges ();
|
1303 |
|
|
|
1304 |
|
|
/* Replacing pseudos with their memory equivalents might have
|
1305 |
|
|
created shared rtx. Subsequent passes would get confused
|
1306 |
|
|
by this, so unshare everything here. */
|
1307 |
|
|
unshare_all_rtl_again (first);
|
1308 |
|
|
|
1309 |
|
|
#ifdef STACK_BOUNDARY
|
1310 |
|
|
/* init_emit has set the alignment of the hard frame pointer
|
1311 |
|
|
to STACK_BOUNDARY. It is very likely no longer valid if
|
1312 |
|
|
the hard frame pointer was used for register allocation. */
|
1313 |
|
|
if (!frame_pointer_needed)
|
1314 |
|
|
REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM) = BITS_PER_UNIT;
|
1315 |
|
|
#endif
|
1316 |
|
|
|
1317 |
|
|
return failure;
|
1318 |
|
|
}
|
1319 |
|
|
|
1320 |
|
|
/* Yet another special case. Unfortunately, reg-stack forces people to
|
1321 |
|
|
write incorrect clobbers in asm statements. These clobbers must not
|
1322 |
|
|
cause the register to appear in bad_spill_regs, otherwise we'll call
|
1323 |
|
|
fatal_insn later. We clear the corresponding regnos in the live
|
1324 |
|
|
register sets to avoid this.
|
1325 |
|
|
The whole thing is rather sick, I'm afraid. */
|
1326 |
|
|
|
1327 |
|
|
static void
|
1328 |
|
|
maybe_fix_stack_asms (void)
|
1329 |
|
|
{
|
1330 |
|
|
#ifdef STACK_REGS
|
1331 |
|
|
const char *constraints[MAX_RECOG_OPERANDS];
|
1332 |
|
|
enum machine_mode operand_mode[MAX_RECOG_OPERANDS];
|
1333 |
|
|
struct insn_chain *chain;
|
1334 |
|
|
|
1335 |
|
|
for (chain = reload_insn_chain; chain != 0; chain = chain->next)
|
1336 |
|
|
{
|
1337 |
|
|
int i, noperands;
|
1338 |
|
|
HARD_REG_SET clobbered, allowed;
|
1339 |
|
|
rtx pat;
|
1340 |
|
|
|
1341 |
|
|
if (! INSN_P (chain->insn)
|
1342 |
|
|
|| (noperands = asm_noperands (PATTERN (chain->insn))) < 0)
|
1343 |
|
|
continue;
|
1344 |
|
|
pat = PATTERN (chain->insn);
|
1345 |
|
|
if (GET_CODE (pat) != PARALLEL)
|
1346 |
|
|
continue;
|
1347 |
|
|
|
1348 |
|
|
CLEAR_HARD_REG_SET (clobbered);
|
1349 |
|
|
CLEAR_HARD_REG_SET (allowed);
|
1350 |
|
|
|
1351 |
|
|
/* First, make a mask of all stack regs that are clobbered. */
|
1352 |
|
|
for (i = 0; i < XVECLEN (pat, 0); i++)
|
1353 |
|
|
{
|
1354 |
|
|
rtx t = XVECEXP (pat, 0, i);
|
1355 |
|
|
if (GET_CODE (t) == CLOBBER && STACK_REG_P (XEXP (t, 0)))
|
1356 |
|
|
SET_HARD_REG_BIT (clobbered, REGNO (XEXP (t, 0)));
|
1357 |
|
|
}
|
1358 |
|
|
|
1359 |
|
|
/* Get the operand values and constraints out of the insn. */
|
1360 |
|
|
decode_asm_operands (pat, recog_data.operand, recog_data.operand_loc,
|
1361 |
|
|
constraints, operand_mode);
|
1362 |
|
|
|
1363 |
|
|
/* For every operand, see what registers are allowed. */
|
1364 |
|
|
for (i = 0; i < noperands; i++)
|
1365 |
|
|
{
|
1366 |
|
|
const char *p = constraints[i];
|
1367 |
|
|
/* For every alternative, we compute the class of registers allowed
|
1368 |
|
|
for reloading in CLS, and merge its contents into the reg set
|
1369 |
|
|
ALLOWED. */
|
1370 |
|
|
int cls = (int) NO_REGS;
|
1371 |
|
|
|
1372 |
|
|
for (;;)
|
1373 |
|
|
{
|
1374 |
|
|
char c = *p;
|
1375 |
|
|
|
1376 |
|
|
if (c == '\0' || c == ',' || c == '#')
|
1377 |
|
|
{
|
1378 |
|
|
/* End of one alternative - mark the regs in the current
|
1379 |
|
|
class, and reset the class. */
|
1380 |
|
|
IOR_HARD_REG_SET (allowed, reg_class_contents[cls]);
|
1381 |
|
|
cls = NO_REGS;
|
1382 |
|
|
p++;
|
1383 |
|
|
if (c == '#')
|
1384 |
|
|
do {
|
1385 |
|
|
c = *p++;
|
1386 |
|
|
} while (c != '\0' && c != ',');
|
1387 |
|
|
if (c == '\0')
|
1388 |
|
|
break;
|
1389 |
|
|
continue;
|
1390 |
|
|
}
|
1391 |
|
|
|
1392 |
|
|
switch (c)
|
1393 |
|
|
{
|
1394 |
|
|
case '=': case '+': case '*': case '%': case '?': case '!':
|
1395 |
|
|
case '0': case '1': case '2': case '3': case '4': case 'm':
|
1396 |
|
|
case '<': case '>': case 'V': case 'o': case '&': case 'E':
|
1397 |
|
|
case 'F': case 's': case 'i': case 'n': case 'X': case 'I':
|
1398 |
|
|
case 'J': case 'K': case 'L': case 'M': case 'N': case 'O':
|
1399 |
|
|
case 'P':
|
1400 |
|
|
break;
|
1401 |
|
|
|
1402 |
|
|
case 'p':
|
1403 |
|
|
cls = (int) reg_class_subunion[cls]
|
1404 |
|
|
[(int) base_reg_class (VOIDmode, ADDRESS, SCRATCH)];
|
1405 |
|
|
break;
|
1406 |
|
|
|
1407 |
|
|
case 'g':
|
1408 |
|
|
case 'r':
|
1409 |
|
|
cls = (int) reg_class_subunion[cls][(int) GENERAL_REGS];
|
1410 |
|
|
break;
|
1411 |
|
|
|
1412 |
|
|
default:
|
1413 |
|
|
if (EXTRA_ADDRESS_CONSTRAINT (c, p))
|
1414 |
|
|
cls = (int) reg_class_subunion[cls]
|
1415 |
|
|
[(int) base_reg_class (VOIDmode, ADDRESS, SCRATCH)];
|
1416 |
|
|
else
|
1417 |
|
|
cls = (int) reg_class_subunion[cls]
|
1418 |
|
|
[(int) REG_CLASS_FROM_CONSTRAINT (c, p)];
|
1419 |
|
|
}
|
1420 |
|
|
p += CONSTRAINT_LEN (c, p);
|
1421 |
|
|
}
|
1422 |
|
|
}
|
1423 |
|
|
/* Those of the registers which are clobbered, but allowed by the
|
1424 |
|
|
constraints, must be usable as reload registers. So clear them
|
1425 |
|
|
out of the life information. */
|
1426 |
|
|
AND_HARD_REG_SET (allowed, clobbered);
|
1427 |
|
|
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
|
1428 |
|
|
if (TEST_HARD_REG_BIT (allowed, i))
|
1429 |
|
|
{
|
1430 |
|
|
CLEAR_REGNO_REG_SET (&chain->live_throughout, i);
|
1431 |
|
|
CLEAR_REGNO_REG_SET (&chain->dead_or_set, i);
|
1432 |
|
|
}
|
1433 |
|
|
}
|
1434 |
|
|
|
1435 |
|
|
#endif
|
1436 |
|
|
}
|
1437 |
|
|
|
1438 |
|
|
/* Copy the global variables n_reloads and rld into the corresponding elts
|
1439 |
|
|
of CHAIN. */
|
1440 |
|
|
static void
|
1441 |
|
|
copy_reloads (struct insn_chain *chain)
|
1442 |
|
|
{
|
1443 |
|
|
chain->n_reloads = n_reloads;
|
1444 |
|
|
chain->rld = obstack_alloc (&reload_obstack,
|
1445 |
|
|
n_reloads * sizeof (struct reload));
|
1446 |
|
|
memcpy (chain->rld, rld, n_reloads * sizeof (struct reload));
|
1447 |
|
|
reload_insn_firstobj = obstack_alloc (&reload_obstack, 0);
|
1448 |
|
|
}
|
1449 |
|
|
|
1450 |
|
|
/* Walk the chain of insns, and determine for each whether it needs reloads
|
1451 |
|
|
and/or eliminations. Build the corresponding insns_need_reload list, and
|
1452 |
|
|
set something_needs_elimination as appropriate. */
|
1453 |
|
|
static void
|
1454 |
|
|
calculate_needs_all_insns (int global)
|
1455 |
|
|
{
|
1456 |
|
|
struct insn_chain **pprev_reload = &insns_need_reload;
|
1457 |
|
|
struct insn_chain *chain, *next = 0;
|
1458 |
|
|
|
1459 |
|
|
something_needs_elimination = 0;
|
1460 |
|
|
|
1461 |
|
|
reload_insn_firstobj = obstack_alloc (&reload_obstack, 0);
|
1462 |
|
|
for (chain = reload_insn_chain; chain != 0; chain = next)
|
1463 |
|
|
{
|
1464 |
|
|
rtx insn = chain->insn;
|
1465 |
|
|
|
1466 |
|
|
next = chain->next;
|
1467 |
|
|
|
1468 |
|
|
/* Clear out the shortcuts. */
|
1469 |
|
|
chain->n_reloads = 0;
|
1470 |
|
|
chain->need_elim = 0;
|
1471 |
|
|
chain->need_reload = 0;
|
1472 |
|
|
chain->need_operand_change = 0;
|
1473 |
|
|
|
1474 |
|
|
/* If this is a label, a JUMP_INSN, or has REG_NOTES (which might
|
1475 |
|
|
include REG_LABEL), we need to see what effects this has on the
|
1476 |
|
|
known offsets at labels. */
|
1477 |
|
|
|
1478 |
|
|
if (LABEL_P (insn) || JUMP_P (insn)
|
1479 |
|
|
|| (INSN_P (insn) && REG_NOTES (insn) != 0))
|
1480 |
|
|
set_label_offsets (insn, insn, 0);
|
1481 |
|
|
|
1482 |
|
|
if (INSN_P (insn))
|
1483 |
|
|
{
|
1484 |
|
|
rtx old_body = PATTERN (insn);
|
1485 |
|
|
int old_code = INSN_CODE (insn);
|
1486 |
|
|
rtx old_notes = REG_NOTES (insn);
|
1487 |
|
|
int did_elimination = 0;
|
1488 |
|
|
int operands_changed = 0;
|
1489 |
|
|
rtx set = single_set (insn);
|
1490 |
|
|
|
1491 |
|
|
/* Skip insns that only set an equivalence. */
|
1492 |
|
|
if (set && REG_P (SET_DEST (set))
|
1493 |
|
|
&& reg_renumber[REGNO (SET_DEST (set))] < 0
|
1494 |
|
|
&& (reg_equiv_constant[REGNO (SET_DEST (set))]
|
1495 |
|
|
|| (reg_equiv_invariant[REGNO (SET_DEST (set))]))
|
1496 |
|
|
&& reg_equiv_init[REGNO (SET_DEST (set))])
|
1497 |
|
|
continue;
|
1498 |
|
|
|
1499 |
|
|
/* If needed, eliminate any eliminable registers. */
|
1500 |
|
|
if (num_eliminable || num_eliminable_invariants)
|
1501 |
|
|
did_elimination = eliminate_regs_in_insn (insn, 0);
|
1502 |
|
|
|
1503 |
|
|
/* Analyze the instruction. */
|
1504 |
|
|
operands_changed = find_reloads (insn, 0, spill_indirect_levels,
|
1505 |
|
|
global, spill_reg_order);
|
1506 |
|
|
|
1507 |
|
|
/* If a no-op set needs more than one reload, this is likely
|
1508 |
|
|
to be something that needs input address reloads. We
|
1509 |
|
|
can't get rid of this cleanly later, and it is of no use
|
1510 |
|
|
anyway, so discard it now.
|
1511 |
|
|
We only do this when expensive_optimizations is enabled,
|
1512 |
|
|
since this complements reload inheritance / output
|
1513 |
|
|
reload deletion, and it can make debugging harder. */
|
1514 |
|
|
if (flag_expensive_optimizations && n_reloads > 1)
|
1515 |
|
|
{
|
1516 |
|
|
rtx set = single_set (insn);
|
1517 |
|
|
if (set
|
1518 |
|
|
&& SET_SRC (set) == SET_DEST (set)
|
1519 |
|
|
&& REG_P (SET_SRC (set))
|
1520 |
|
|
&& REGNO (SET_SRC (set)) >= FIRST_PSEUDO_REGISTER)
|
1521 |
|
|
{
|
1522 |
|
|
delete_insn (insn);
|
1523 |
|
|
/* Delete it from the reload chain. */
|
1524 |
|
|
if (chain->prev)
|
1525 |
|
|
chain->prev->next = next;
|
1526 |
|
|
else
|
1527 |
|
|
reload_insn_chain = next;
|
1528 |
|
|
if (next)
|
1529 |
|
|
next->prev = chain->prev;
|
1530 |
|
|
chain->next = unused_insn_chains;
|
1531 |
|
|
unused_insn_chains = chain;
|
1532 |
|
|
continue;
|
1533 |
|
|
}
|
1534 |
|
|
}
|
1535 |
|
|
if (num_eliminable)
|
1536 |
|
|
update_eliminable_offsets ();
|
1537 |
|
|
|
1538 |
|
|
/* Remember for later shortcuts which insns had any reloads or
|
1539 |
|
|
register eliminations. */
|
1540 |
|
|
chain->need_elim = did_elimination;
|
1541 |
|
|
chain->need_reload = n_reloads > 0;
|
1542 |
|
|
chain->need_operand_change = operands_changed;
|
1543 |
|
|
|
1544 |
|
|
/* Discard any register replacements done. */
|
1545 |
|
|
if (did_elimination)
|
1546 |
|
|
{
|
1547 |
|
|
obstack_free (&reload_obstack, reload_insn_firstobj);
|
1548 |
|
|
PATTERN (insn) = old_body;
|
1549 |
|
|
INSN_CODE (insn) = old_code;
|
1550 |
|
|
REG_NOTES (insn) = old_notes;
|
1551 |
|
|
something_needs_elimination = 1;
|
1552 |
|
|
}
|
1553 |
|
|
|
1554 |
|
|
something_needs_operands_changed |= operands_changed;
|
1555 |
|
|
|
1556 |
|
|
if (n_reloads != 0)
|
1557 |
|
|
{
|
1558 |
|
|
copy_reloads (chain);
|
1559 |
|
|
*pprev_reload = chain;
|
1560 |
|
|
pprev_reload = &chain->next_need_reload;
|
1561 |
|
|
}
|
1562 |
|
|
}
|
1563 |
|
|
}
|
1564 |
|
|
*pprev_reload = 0;
|
1565 |
|
|
}
|
1566 |
|
|
|
1567 |
|
|
/* Comparison function for qsort to decide which of two reloads
|
1568 |
|
|
should be handled first. *P1 and *P2 are the reload numbers. */
|
1569 |
|
|
|
1570 |
|
|
static int
|
1571 |
|
|
reload_reg_class_lower (const void *r1p, const void *r2p)
|
1572 |
|
|
{
|
1573 |
|
|
int r1 = *(const short *) r1p, r2 = *(const short *) r2p;
|
1574 |
|
|
int t;
|
1575 |
|
|
|
1576 |
|
|
/* Consider required reloads before optional ones. */
|
1577 |
|
|
t = rld[r1].optional - rld[r2].optional;
|
1578 |
|
|
if (t != 0)
|
1579 |
|
|
return t;
|
1580 |
|
|
|
1581 |
|
|
/* Count all solitary classes before non-solitary ones. */
|
1582 |
|
|
t = ((reg_class_size[(int) rld[r2].class] == 1)
|
1583 |
|
|
- (reg_class_size[(int) rld[r1].class] == 1));
|
1584 |
|
|
if (t != 0)
|
1585 |
|
|
return t;
|
1586 |
|
|
|
1587 |
|
|
/* Aside from solitaires, consider all multi-reg groups first. */
|
1588 |
|
|
t = rld[r2].nregs - rld[r1].nregs;
|
1589 |
|
|
if (t != 0)
|
1590 |
|
|
return t;
|
1591 |
|
|
|
1592 |
|
|
/* Consider reloads in order of increasing reg-class number. */
|
1593 |
|
|
t = (int) rld[r1].class - (int) rld[r2].class;
|
1594 |
|
|
if (t != 0)
|
1595 |
|
|
return t;
|
1596 |
|
|
|
1597 |
|
|
/* If reloads are equally urgent, sort by reload number,
|
1598 |
|
|
so that the results of qsort leave nothing to chance. */
|
1599 |
|
|
return r1 - r2;
|
1600 |
|
|
}
|
1601 |
|
|
|
1602 |
|
|
/* The cost of spilling each hard reg. */
|
1603 |
|
|
static int spill_cost[FIRST_PSEUDO_REGISTER];
|
1604 |
|
|
|
1605 |
|
|
/* When spilling multiple hard registers, we use SPILL_COST for the first
|
1606 |
|
|
spilled hard reg and SPILL_ADD_COST for subsequent regs. SPILL_ADD_COST
|
1607 |
|
|
only the first hard reg for a multi-reg pseudo. */
|
1608 |
|
|
static int spill_add_cost[FIRST_PSEUDO_REGISTER];
|
1609 |
|
|
|
1610 |
|
|
/* Update the spill cost arrays, considering that pseudo REG is live. */
|
1611 |
|
|
|
1612 |
|
|
static void
|
1613 |
|
|
count_pseudo (int reg)
|
1614 |
|
|
{
|
1615 |
|
|
int freq = REG_FREQ (reg);
|
1616 |
|
|
int r = reg_renumber[reg];
|
1617 |
|
|
int nregs;
|
1618 |
|
|
|
1619 |
|
|
if (REGNO_REG_SET_P (&pseudos_counted, reg)
|
1620 |
|
|
|| REGNO_REG_SET_P (&spilled_pseudos, reg))
|
1621 |
|
|
return;
|
1622 |
|
|
|
1623 |
|
|
SET_REGNO_REG_SET (&pseudos_counted, reg);
|
1624 |
|
|
|
1625 |
|
|
gcc_assert (r >= 0);
|
1626 |
|
|
|
1627 |
|
|
spill_add_cost[r] += freq;
|
1628 |
|
|
|
1629 |
|
|
nregs = hard_regno_nregs[r][PSEUDO_REGNO_MODE (reg)];
|
1630 |
|
|
while (nregs-- > 0)
|
1631 |
|
|
spill_cost[r + nregs] += freq;
|
1632 |
|
|
}
|
1633 |
|
|
|
1634 |
|
|
/* Calculate the SPILL_COST and SPILL_ADD_COST arrays and determine the
|
1635 |
|
|
contents of BAD_SPILL_REGS for the insn described by CHAIN. */
|
1636 |
|
|
|
1637 |
|
|
static void
|
1638 |
|
|
order_regs_for_reload (struct insn_chain *chain)
|
1639 |
|
|
{
|
1640 |
|
|
unsigned i;
|
1641 |
|
|
HARD_REG_SET used_by_pseudos;
|
1642 |
|
|
HARD_REG_SET used_by_pseudos2;
|
1643 |
|
|
reg_set_iterator rsi;
|
1644 |
|
|
|
1645 |
|
|
COPY_HARD_REG_SET (bad_spill_regs, fixed_reg_set);
|
1646 |
|
|
|
1647 |
|
|
memset (spill_cost, 0, sizeof spill_cost);
|
1648 |
|
|
memset (spill_add_cost, 0, sizeof spill_add_cost);
|
1649 |
|
|
|
1650 |
|
|
/* Count number of uses of each hard reg by pseudo regs allocated to it
|
1651 |
|
|
and then order them by decreasing use. First exclude hard registers
|
1652 |
|
|
that are live in or across this insn. */
|
1653 |
|
|
|
1654 |
|
|
REG_SET_TO_HARD_REG_SET (used_by_pseudos, &chain->live_throughout);
|
1655 |
|
|
REG_SET_TO_HARD_REG_SET (used_by_pseudos2, &chain->dead_or_set);
|
1656 |
|
|
IOR_HARD_REG_SET (bad_spill_regs, used_by_pseudos);
|
1657 |
|
|
IOR_HARD_REG_SET (bad_spill_regs, used_by_pseudos2);
|
1658 |
|
|
|
1659 |
|
|
/* Now find out which pseudos are allocated to it, and update
|
1660 |
|
|
hard_reg_n_uses. */
|
1661 |
|
|
CLEAR_REG_SET (&pseudos_counted);
|
1662 |
|
|
|
1663 |
|
|
EXECUTE_IF_SET_IN_REG_SET
|
1664 |
|
|
(&chain->live_throughout, FIRST_PSEUDO_REGISTER, i, rsi)
|
1665 |
|
|
{
|
1666 |
|
|
count_pseudo (i);
|
1667 |
|
|
}
|
1668 |
|
|
EXECUTE_IF_SET_IN_REG_SET
|
1669 |
|
|
(&chain->dead_or_set, FIRST_PSEUDO_REGISTER, i, rsi)
|
1670 |
|
|
{
|
1671 |
|
|
count_pseudo (i);
|
1672 |
|
|
}
|
1673 |
|
|
CLEAR_REG_SET (&pseudos_counted);
|
1674 |
|
|
}
|
1675 |
|
|
|
1676 |
|
|
/* Vector of reload-numbers showing the order in which the reloads should
|
1677 |
|
|
be processed. */
|
1678 |
|
|
static short reload_order[MAX_RELOADS];
|
1679 |
|
|
|
1680 |
|
|
/* This is used to keep track of the spill regs used in one insn. */
|
1681 |
|
|
static HARD_REG_SET used_spill_regs_local;
|
1682 |
|
|
|
1683 |
|
|
/* We decided to spill hard register SPILLED, which has a size of
|
1684 |
|
|
SPILLED_NREGS. Determine how pseudo REG, which is live during the insn,
|
1685 |
|
|
is affected. We will add it to SPILLED_PSEUDOS if necessary, and we will
|
1686 |
|
|
update SPILL_COST/SPILL_ADD_COST. */
|
1687 |
|
|
|
1688 |
|
|
static void
|
1689 |
|
|
count_spilled_pseudo (int spilled, int spilled_nregs, int reg)
|
1690 |
|
|
{
|
1691 |
|
|
int r = reg_renumber[reg];
|
1692 |
|
|
int nregs = hard_regno_nregs[r][PSEUDO_REGNO_MODE (reg)];
|
1693 |
|
|
|
1694 |
|
|
if (REGNO_REG_SET_P (&spilled_pseudos, reg)
|
1695 |
|
|
|| spilled + spilled_nregs <= r || r + nregs <= spilled)
|
1696 |
|
|
return;
|
1697 |
|
|
|
1698 |
|
|
SET_REGNO_REG_SET (&spilled_pseudos, reg);
|
1699 |
|
|
|
1700 |
|
|
spill_add_cost[r] -= REG_FREQ (reg);
|
1701 |
|
|
while (nregs-- > 0)
|
1702 |
|
|
spill_cost[r + nregs] -= REG_FREQ (reg);
|
1703 |
|
|
}
|
1704 |
|
|
|
1705 |
|
|
/* Find reload register to use for reload number ORDER. */
|
1706 |
|
|
|
1707 |
|
|
static int
|
1708 |
|
|
find_reg (struct insn_chain *chain, int order)
|
1709 |
|
|
{
|
1710 |
|
|
int rnum = reload_order[order];
|
1711 |
|
|
struct reload *rl = rld + rnum;
|
1712 |
|
|
int best_cost = INT_MAX;
|
1713 |
|
|
int best_reg = -1;
|
1714 |
|
|
unsigned int i, j;
|
1715 |
|
|
int k;
|
1716 |
|
|
HARD_REG_SET not_usable;
|
1717 |
|
|
HARD_REG_SET used_by_other_reload;
|
1718 |
|
|
reg_set_iterator rsi;
|
1719 |
|
|
|
1720 |
|
|
COPY_HARD_REG_SET (not_usable, bad_spill_regs);
|
1721 |
|
|
IOR_HARD_REG_SET (not_usable, bad_spill_regs_global);
|
1722 |
|
|
IOR_COMPL_HARD_REG_SET (not_usable, reg_class_contents[rl->class]);
|
1723 |
|
|
|
1724 |
|
|
CLEAR_HARD_REG_SET (used_by_other_reload);
|
1725 |
|
|
for (k = 0; k < order; k++)
|
1726 |
|
|
{
|
1727 |
|
|
int other = reload_order[k];
|
1728 |
|
|
|
1729 |
|
|
if (rld[other].regno >= 0 && reloads_conflict (other, rnum))
|
1730 |
|
|
for (j = 0; j < rld[other].nregs; j++)
|
1731 |
|
|
SET_HARD_REG_BIT (used_by_other_reload, rld[other].regno + j);
|
1732 |
|
|
}
|
1733 |
|
|
|
1734 |
|
|
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
|
1735 |
|
|
{
|
1736 |
|
|
unsigned int regno = i;
|
1737 |
|
|
|
1738 |
|
|
if (! TEST_HARD_REG_BIT (not_usable, regno)
|
1739 |
|
|
&& ! TEST_HARD_REG_BIT (used_by_other_reload, regno)
|
1740 |
|
|
&& HARD_REGNO_MODE_OK (regno, rl->mode))
|
1741 |
|
|
{
|
1742 |
|
|
int this_cost = spill_cost[regno];
|
1743 |
|
|
int ok = 1;
|
1744 |
|
|
unsigned int this_nregs = hard_regno_nregs[regno][rl->mode];
|
1745 |
|
|
|
1746 |
|
|
for (j = 1; j < this_nregs; j++)
|
1747 |
|
|
{
|
1748 |
|
|
this_cost += spill_add_cost[regno + j];
|
1749 |
|
|
if ((TEST_HARD_REG_BIT (not_usable, regno + j))
|
1750 |
|
|
|| TEST_HARD_REG_BIT (used_by_other_reload, regno + j))
|
1751 |
|
|
ok = 0;
|
1752 |
|
|
}
|
1753 |
|
|
if (! ok)
|
1754 |
|
|
continue;
|
1755 |
|
|
if (rl->in && REG_P (rl->in) && REGNO (rl->in) == regno)
|
1756 |
|
|
this_cost--;
|
1757 |
|
|
if (rl->out && REG_P (rl->out) && REGNO (rl->out) == regno)
|
1758 |
|
|
this_cost--;
|
1759 |
|
|
if (this_cost < best_cost
|
1760 |
|
|
/* Among registers with equal cost, prefer caller-saved ones, or
|
1761 |
|
|
use REG_ALLOC_ORDER if it is defined. */
|
1762 |
|
|
|| (this_cost == best_cost
|
1763 |
|
|
#ifdef REG_ALLOC_ORDER
|
1764 |
|
|
&& (inv_reg_alloc_order[regno]
|
1765 |
|
|
< inv_reg_alloc_order[best_reg])
|
1766 |
|
|
#else
|
1767 |
|
|
&& call_used_regs[regno]
|
1768 |
|
|
&& ! call_used_regs[best_reg]
|
1769 |
|
|
#endif
|
1770 |
|
|
))
|
1771 |
|
|
{
|
1772 |
|
|
best_reg = regno;
|
1773 |
|
|
best_cost = this_cost;
|
1774 |
|
|
}
|
1775 |
|
|
}
|
1776 |
|
|
}
|
1777 |
|
|
if (best_reg == -1)
|
1778 |
|
|
return 0;
|
1779 |
|
|
|
1780 |
|
|
if (dump_file)
|
1781 |
|
|
fprintf (dump_file, "Using reg %d for reload %d\n", best_reg, rnum);
|
1782 |
|
|
|
1783 |
|
|
rl->nregs = hard_regno_nregs[best_reg][rl->mode];
|
1784 |
|
|
rl->regno = best_reg;
|
1785 |
|
|
|
1786 |
|
|
EXECUTE_IF_SET_IN_REG_SET
|
1787 |
|
|
(&chain->live_throughout, FIRST_PSEUDO_REGISTER, j, rsi)
|
1788 |
|
|
{
|
1789 |
|
|
count_spilled_pseudo (best_reg, rl->nregs, j);
|
1790 |
|
|
}
|
1791 |
|
|
|
1792 |
|
|
EXECUTE_IF_SET_IN_REG_SET
|
1793 |
|
|
(&chain->dead_or_set, FIRST_PSEUDO_REGISTER, j, rsi)
|
1794 |
|
|
{
|
1795 |
|
|
count_spilled_pseudo (best_reg, rl->nregs, j);
|
1796 |
|
|
}
|
1797 |
|
|
|
1798 |
|
|
for (i = 0; i < rl->nregs; i++)
|
1799 |
|
|
{
|
1800 |
|
|
gcc_assert (spill_cost[best_reg + i] == 0);
|
1801 |
|
|
gcc_assert (spill_add_cost[best_reg + i] == 0);
|
1802 |
|
|
SET_HARD_REG_BIT (used_spill_regs_local, best_reg + i);
|
1803 |
|
|
}
|
1804 |
|
|
return 1;
|
1805 |
|
|
}
|
1806 |
|
|
|
1807 |
|
|
/* Find more reload regs to satisfy the remaining need of an insn, which
|
1808 |
|
|
is given by CHAIN.
|
1809 |
|
|
Do it by ascending class number, since otherwise a reg
|
1810 |
|
|
might be spilled for a big class and might fail to count
|
1811 |
|
|
for a smaller class even though it belongs to that class. */
|
1812 |
|
|
|
1813 |
|
|
static void
|
1814 |
|
|
find_reload_regs (struct insn_chain *chain)
|
1815 |
|
|
{
|
1816 |
|
|
int i;
|
1817 |
|
|
|
1818 |
|
|
/* In order to be certain of getting the registers we need,
|
1819 |
|
|
we must sort the reloads into order of increasing register class.
|
1820 |
|
|
Then our grabbing of reload registers will parallel the process
|
1821 |
|
|
that provided the reload registers. */
|
1822 |
|
|
for (i = 0; i < chain->n_reloads; i++)
|
1823 |
|
|
{
|
1824 |
|
|
/* Show whether this reload already has a hard reg. */
|
1825 |
|
|
if (chain->rld[i].reg_rtx)
|
1826 |
|
|
{
|
1827 |
|
|
int regno = REGNO (chain->rld[i].reg_rtx);
|
1828 |
|
|
chain->rld[i].regno = regno;
|
1829 |
|
|
chain->rld[i].nregs
|
1830 |
|
|
= hard_regno_nregs[regno][GET_MODE (chain->rld[i].reg_rtx)];
|
1831 |
|
|
}
|
1832 |
|
|
else
|
1833 |
|
|
chain->rld[i].regno = -1;
|
1834 |
|
|
reload_order[i] = i;
|
1835 |
|
|
}
|
1836 |
|
|
|
1837 |
|
|
n_reloads = chain->n_reloads;
|
1838 |
|
|
memcpy (rld, chain->rld, n_reloads * sizeof (struct reload));
|
1839 |
|
|
|
1840 |
|
|
CLEAR_HARD_REG_SET (used_spill_regs_local);
|
1841 |
|
|
|
1842 |
|
|
if (dump_file)
|
1843 |
|
|
fprintf (dump_file, "Spilling for insn %d.\n", INSN_UID (chain->insn));
|
1844 |
|
|
|
1845 |
|
|
qsort (reload_order, n_reloads, sizeof (short), reload_reg_class_lower);
|
1846 |
|
|
|
1847 |
|
|
/* Compute the order of preference for hard registers to spill. */
|
1848 |
|
|
|
1849 |
|
|
order_regs_for_reload (chain);
|
1850 |
|
|
|
1851 |
|
|
for (i = 0; i < n_reloads; i++)
|
1852 |
|
|
{
|
1853 |
|
|
int r = reload_order[i];
|
1854 |
|
|
|
1855 |
|
|
/* Ignore reloads that got marked inoperative. */
|
1856 |
|
|
if ((rld[r].out != 0 || rld[r].in != 0 || rld[r].secondary_p)
|
1857 |
|
|
&& ! rld[r].optional
|
1858 |
|
|
&& rld[r].regno == -1)
|
1859 |
|
|
if (! find_reg (chain, i))
|
1860 |
|
|
{
|
1861 |
|
|
if (dump_file)
|
1862 |
|
|
fprintf(dump_file, "reload failure for reload %d\n", r);
|
1863 |
|
|
spill_failure (chain->insn, rld[r].class);
|
1864 |
|
|
failure = 1;
|
1865 |
|
|
return;
|
1866 |
|
|
}
|
1867 |
|
|
}
|
1868 |
|
|
|
1869 |
|
|
COPY_HARD_REG_SET (chain->used_spill_regs, used_spill_regs_local);
|
1870 |
|
|
IOR_HARD_REG_SET (used_spill_regs, used_spill_regs_local);
|
1871 |
|
|
|
1872 |
|
|
memcpy (chain->rld, rld, n_reloads * sizeof (struct reload));
|
1873 |
|
|
}
|
1874 |
|
|
|
1875 |
|
|
static void
|
1876 |
|
|
select_reload_regs (void)
|
1877 |
|
|
{
|
1878 |
|
|
struct insn_chain *chain;
|
1879 |
|
|
|
1880 |
|
|
/* Try to satisfy the needs for each insn. */
|
1881 |
|
|
for (chain = insns_need_reload; chain != 0;
|
1882 |
|
|
chain = chain->next_need_reload)
|
1883 |
|
|
find_reload_regs (chain);
|
1884 |
|
|
}
|
1885 |
|
|
|
1886 |
|
|
/* Delete all insns that were inserted by emit_caller_save_insns during
|
1887 |
|
|
this iteration. */
|
1888 |
|
|
static void
|
1889 |
|
|
delete_caller_save_insns (void)
|
1890 |
|
|
{
|
1891 |
|
|
struct insn_chain *c = reload_insn_chain;
|
1892 |
|
|
|
1893 |
|
|
while (c != 0)
|
1894 |
|
|
{
|
1895 |
|
|
while (c != 0 && c->is_caller_save_insn)
|
1896 |
|
|
{
|
1897 |
|
|
struct insn_chain *next = c->next;
|
1898 |
|
|
rtx insn = c->insn;
|
1899 |
|
|
|
1900 |
|
|
if (c == reload_insn_chain)
|
1901 |
|
|
reload_insn_chain = next;
|
1902 |
|
|
delete_insn (insn);
|
1903 |
|
|
|
1904 |
|
|
if (next)
|
1905 |
|
|
next->prev = c->prev;
|
1906 |
|
|
if (c->prev)
|
1907 |
|
|
c->prev->next = next;
|
1908 |
|
|
c->next = unused_insn_chains;
|
1909 |
|
|
unused_insn_chains = c;
|
1910 |
|
|
c = next;
|
1911 |
|
|
}
|
1912 |
|
|
if (c != 0)
|
1913 |
|
|
c = c->next;
|
1914 |
|
|
}
|
1915 |
|
|
}
|
1916 |
|
|
|
1917 |
|
|
/* Handle the failure to find a register to spill.
|
1918 |
|
|
INSN should be one of the insns which needed this particular spill reg. */
|
1919 |
|
|
|
1920 |
|
|
static void
|
1921 |
|
|
spill_failure (rtx insn, enum reg_class class)
|
1922 |
|
|
{
|
1923 |
|
|
if (asm_noperands (PATTERN (insn)) >= 0)
|
1924 |
|
|
error_for_asm (insn, "can't find a register in class %qs while "
|
1925 |
|
|
"reloading %<asm%>",
|
1926 |
|
|
reg_class_names[class]);
|
1927 |
|
|
else
|
1928 |
|
|
{
|
1929 |
|
|
error ("unable to find a register to spill in class %qs",
|
1930 |
|
|
reg_class_names[class]);
|
1931 |
|
|
|
1932 |
|
|
if (dump_file)
|
1933 |
|
|
{
|
1934 |
|
|
fprintf (dump_file, "\nReloads for insn # %d\n", INSN_UID (insn));
|
1935 |
|
|
debug_reload_to_stream (dump_file);
|
1936 |
|
|
}
|
1937 |
|
|
fatal_insn ("this is the insn:", insn);
|
1938 |
|
|
}
|
1939 |
|
|
}
|
1940 |
|
|
|
1941 |
|
|
/* Delete an unneeded INSN and any previous insns who sole purpose is loading
|
1942 |
|
|
data that is dead in INSN. */
|
1943 |
|
|
|
1944 |
|
|
static void
|
1945 |
|
|
delete_dead_insn (rtx insn)
|
1946 |
|
|
{
|
1947 |
|
|
rtx prev = prev_real_insn (insn);
|
1948 |
|
|
rtx prev_dest;
|
1949 |
|
|
|
1950 |
|
|
/* If the previous insn sets a register that dies in our insn, delete it
|
1951 |
|
|
too. */
|
1952 |
|
|
if (prev && GET_CODE (PATTERN (prev)) == SET
|
1953 |
|
|
&& (prev_dest = SET_DEST (PATTERN (prev)), REG_P (prev_dest))
|
1954 |
|
|
&& reg_mentioned_p (prev_dest, PATTERN (insn))
|
1955 |
|
|
&& find_regno_note (insn, REG_DEAD, REGNO (prev_dest))
|
1956 |
|
|
&& ! side_effects_p (SET_SRC (PATTERN (prev))))
|
1957 |
|
|
delete_dead_insn (prev);
|
1958 |
|
|
|
1959 |
|
|
SET_INSN_DELETED (insn);
|
1960 |
|
|
}
|
1961 |
|
|
|
1962 |
|
|
/* Modify the home of pseudo-reg I.
|
1963 |
|
|
The new home is present in reg_renumber[I].
|
1964 |
|
|
|
1965 |
|
|
FROM_REG may be the hard reg that the pseudo-reg is being spilled from;
|
1966 |
|
|
or it may be -1, meaning there is none or it is not relevant.
|
1967 |
|
|
This is used so that all pseudos spilled from a given hard reg
|
1968 |
|
|
can share one stack slot. */
|
1969 |
|
|
|
1970 |
|
|
static void
|
1971 |
|
|
alter_reg (int i, int from_reg)
|
1972 |
|
|
{
|
1973 |
|
|
/* When outputting an inline function, this can happen
|
1974 |
|
|
for a reg that isn't actually used. */
|
1975 |
|
|
if (regno_reg_rtx[i] == 0)
|
1976 |
|
|
return;
|
1977 |
|
|
|
1978 |
|
|
/* If the reg got changed to a MEM at rtl-generation time,
|
1979 |
|
|
ignore it. */
|
1980 |
|
|
if (!REG_P (regno_reg_rtx[i]))
|
1981 |
|
|
return;
|
1982 |
|
|
|
1983 |
|
|
/* Modify the reg-rtx to contain the new hard reg
|
1984 |
|
|
number or else to contain its pseudo reg number. */
|
1985 |
|
|
REGNO (regno_reg_rtx[i])
|
1986 |
|
|
= reg_renumber[i] >= 0 ? reg_renumber[i] : i;
|
1987 |
|
|
|
1988 |
|
|
/* If we have a pseudo that is needed but has no hard reg or equivalent,
|
1989 |
|
|
allocate a stack slot for it. */
|
1990 |
|
|
|
1991 |
|
|
if (reg_renumber[i] < 0
|
1992 |
|
|
&& REG_N_REFS (i) > 0
|
1993 |
|
|
&& reg_equiv_constant[i] == 0
|
1994 |
|
|
&& (reg_equiv_invariant[i] == 0 || reg_equiv_init[i] == 0)
|
1995 |
|
|
&& reg_equiv_memory_loc[i] == 0)
|
1996 |
|
|
{
|
1997 |
|
|
rtx x;
|
1998 |
|
|
enum machine_mode mode = GET_MODE (regno_reg_rtx[i]);
|
1999 |
|
|
unsigned int inherent_size = PSEUDO_REGNO_BYTES (i);
|
2000 |
|
|
unsigned int inherent_align = GET_MODE_ALIGNMENT (mode);
|
2001 |
|
|
unsigned int total_size = MAX (inherent_size, reg_max_ref_width[i]);
|
2002 |
|
|
unsigned int min_align = reg_max_ref_width[i] * BITS_PER_UNIT;
|
2003 |
|
|
int adjust = 0;
|
2004 |
|
|
|
2005 |
|
|
/* Each pseudo reg has an inherent size which comes from its own mode,
|
2006 |
|
|
and a total size which provides room for paradoxical subregs
|
2007 |
|
|
which refer to the pseudo reg in wider modes.
|
2008 |
|
|
|
2009 |
|
|
We can use a slot already allocated if it provides both
|
2010 |
|
|
enough inherent space and enough total space.
|
2011 |
|
|
Otherwise, we allocate a new slot, making sure that it has no less
|
2012 |
|
|
inherent space, and no less total space, then the previous slot. */
|
2013 |
|
|
if (from_reg == -1)
|
2014 |
|
|
{
|
2015 |
|
|
/* No known place to spill from => no slot to reuse. */
|
2016 |
|
|
x = assign_stack_local (mode, total_size,
|
2017 |
|
|
min_align > inherent_align
|
2018 |
|
|
|| total_size > inherent_size ? -1 : 0);
|
2019 |
|
|
if (BYTES_BIG_ENDIAN)
|
2020 |
|
|
/* Cancel the big-endian correction done in assign_stack_local.
|
2021 |
|
|
Get the address of the beginning of the slot.
|
2022 |
|
|
This is so we can do a big-endian correction unconditionally
|
2023 |
|
|
below. */
|
2024 |
|
|
adjust = inherent_size - total_size;
|
2025 |
|
|
|
2026 |
|
|
/* Nothing can alias this slot except this pseudo. */
|
2027 |
|
|
set_mem_alias_set (x, new_alias_set ());
|
2028 |
|
|
}
|
2029 |
|
|
|
2030 |
|
|
/* Reuse a stack slot if possible. */
|
2031 |
|
|
else if (spill_stack_slot[from_reg] != 0
|
2032 |
|
|
&& spill_stack_slot_width[from_reg] >= total_size
|
2033 |
|
|
&& (GET_MODE_SIZE (GET_MODE (spill_stack_slot[from_reg]))
|
2034 |
|
|
>= inherent_size)
|
2035 |
|
|
&& MEM_ALIGN (spill_stack_slot[from_reg]) >= min_align)
|
2036 |
|
|
x = spill_stack_slot[from_reg];
|
2037 |
|
|
|
2038 |
|
|
/* Allocate a bigger slot. */
|
2039 |
|
|
else
|
2040 |
|
|
{
|
2041 |
|
|
/* Compute maximum size needed, both for inherent size
|
2042 |
|
|
and for total size. */
|
2043 |
|
|
rtx stack_slot;
|
2044 |
|
|
|
2045 |
|
|
if (spill_stack_slot[from_reg])
|
2046 |
|
|
{
|
2047 |
|
|
if (GET_MODE_SIZE (GET_MODE (spill_stack_slot[from_reg]))
|
2048 |
|
|
> inherent_size)
|
2049 |
|
|
mode = GET_MODE (spill_stack_slot[from_reg]);
|
2050 |
|
|
if (spill_stack_slot_width[from_reg] > total_size)
|
2051 |
|
|
total_size = spill_stack_slot_width[from_reg];
|
2052 |
|
|
if (MEM_ALIGN (spill_stack_slot[from_reg]) > min_align)
|
2053 |
|
|
min_align = MEM_ALIGN (spill_stack_slot[from_reg]);
|
2054 |
|
|
}
|
2055 |
|
|
|
2056 |
|
|
/* Make a slot with that size. */
|
2057 |
|
|
x = assign_stack_local (mode, total_size,
|
2058 |
|
|
min_align > inherent_align
|
2059 |
|
|
|| total_size > inherent_size ? -1 : 0);
|
2060 |
|
|
stack_slot = x;
|
2061 |
|
|
|
2062 |
|
|
/* All pseudos mapped to this slot can alias each other. */
|
2063 |
|
|
if (spill_stack_slot[from_reg])
|
2064 |
|
|
set_mem_alias_set (x, MEM_ALIAS_SET (spill_stack_slot[from_reg]));
|
2065 |
|
|
else
|
2066 |
|
|
set_mem_alias_set (x, new_alias_set ());
|
2067 |
|
|
|
2068 |
|
|
if (BYTES_BIG_ENDIAN)
|
2069 |
|
|
{
|
2070 |
|
|
/* Cancel the big-endian correction done in assign_stack_local.
|
2071 |
|
|
Get the address of the beginning of the slot.
|
2072 |
|
|
This is so we can do a big-endian correction unconditionally
|
2073 |
|
|
below. */
|
2074 |
|
|
adjust = GET_MODE_SIZE (mode) - total_size;
|
2075 |
|
|
if (adjust)
|
2076 |
|
|
stack_slot
|
2077 |
|
|
= adjust_address_nv (x, mode_for_size (total_size
|
2078 |
|
|
* BITS_PER_UNIT,
|
2079 |
|
|
MODE_INT, 1),
|
2080 |
|
|
adjust);
|
2081 |
|
|
}
|
2082 |
|
|
|
2083 |
|
|
spill_stack_slot[from_reg] = stack_slot;
|
2084 |
|
|
spill_stack_slot_width[from_reg] = total_size;
|
2085 |
|
|
}
|
2086 |
|
|
|
2087 |
|
|
/* On a big endian machine, the "address" of the slot
|
2088 |
|
|
is the address of the low part that fits its inherent mode. */
|
2089 |
|
|
if (BYTES_BIG_ENDIAN && inherent_size < total_size)
|
2090 |
|
|
adjust += (total_size - inherent_size);
|
2091 |
|
|
|
2092 |
|
|
/* If we have any adjustment to make, or if the stack slot is the
|
2093 |
|
|
wrong mode, make a new stack slot. */
|
2094 |
|
|
x = adjust_address_nv (x, GET_MODE (regno_reg_rtx[i]), adjust);
|
2095 |
|
|
|
2096 |
|
|
/* If we have a decl for the original register, set it for the
|
2097 |
|
|
memory. If this is a shared MEM, make a copy. */
|
2098 |
|
|
if (REG_EXPR (regno_reg_rtx[i])
|
2099 |
|
|
&& DECL_P (REG_EXPR (regno_reg_rtx[i])))
|
2100 |
|
|
{
|
2101 |
|
|
rtx decl = DECL_RTL_IF_SET (REG_EXPR (regno_reg_rtx[i]));
|
2102 |
|
|
|
2103 |
|
|
/* We can do this only for the DECLs home pseudo, not for
|
2104 |
|
|
any copies of it, since otherwise when the stack slot
|
2105 |
|
|
is reused, nonoverlapping_memrefs_p might think they
|
2106 |
|
|
cannot overlap. */
|
2107 |
|
|
if (decl && REG_P (decl) && REGNO (decl) == (unsigned) i)
|
2108 |
|
|
{
|
2109 |
|
|
if (from_reg != -1 && spill_stack_slot[from_reg] == x)
|
2110 |
|
|
x = copy_rtx (x);
|
2111 |
|
|
|
2112 |
|
|
set_mem_attrs_from_reg (x, regno_reg_rtx[i]);
|
2113 |
|
|
}
|
2114 |
|
|
}
|
2115 |
|
|
|
2116 |
|
|
/* Save the stack slot for later. */
|
2117 |
|
|
reg_equiv_memory_loc[i] = x;
|
2118 |
|
|
}
|
2119 |
|
|
}
|
2120 |
|
|
|
2121 |
|
|
/* Mark the slots in regs_ever_live for the hard regs
|
2122 |
|
|
used by pseudo-reg number REGNO. */
|
2123 |
|
|
|
2124 |
|
|
void
|
2125 |
|
|
mark_home_live (int regno)
|
2126 |
|
|
{
|
2127 |
|
|
int i, lim;
|
2128 |
|
|
|
2129 |
|
|
i = reg_renumber[regno];
|
2130 |
|
|
if (i < 0)
|
2131 |
|
|
return;
|
2132 |
|
|
lim = i + hard_regno_nregs[i][PSEUDO_REGNO_MODE (regno)];
|
2133 |
|
|
while (i < lim)
|
2134 |
|
|
regs_ever_live[i++] = 1;
|
2135 |
|
|
}
|
2136 |
|
|
|
2137 |
|
|
/* This function handles the tracking of elimination offsets around branches.
|
2138 |
|
|
|
2139 |
|
|
X is a piece of RTL being scanned.
|
2140 |
|
|
|
2141 |
|
|
INSN is the insn that it came from, if any.
|
2142 |
|
|
|
2143 |
|
|
INITIAL_P is nonzero if we are to set the offset to be the initial
|
2144 |
|
|
offset and zero if we are setting the offset of the label to be the
|
2145 |
|
|
current offset. */
|
2146 |
|
|
|
2147 |
|
|
static void
|
2148 |
|
|
set_label_offsets (rtx x, rtx insn, int initial_p)
|
2149 |
|
|
{
|
2150 |
|
|
enum rtx_code code = GET_CODE (x);
|
2151 |
|
|
rtx tem;
|
2152 |
|
|
unsigned int i;
|
2153 |
|
|
struct elim_table *p;
|
2154 |
|
|
|
2155 |
|
|
switch (code)
|
2156 |
|
|
{
|
2157 |
|
|
case LABEL_REF:
|
2158 |
|
|
if (LABEL_REF_NONLOCAL_P (x))
|
2159 |
|
|
return;
|
2160 |
|
|
|
2161 |
|
|
x = XEXP (x, 0);
|
2162 |
|
|
|
2163 |
|
|
/* ... fall through ... */
|
2164 |
|
|
|
2165 |
|
|
case CODE_LABEL:
|
2166 |
|
|
/* If we know nothing about this label, set the desired offsets. Note
|
2167 |
|
|
that this sets the offset at a label to be the offset before a label
|
2168 |
|
|
if we don't know anything about the label. This is not correct for
|
2169 |
|
|
the label after a BARRIER, but is the best guess we can make. If
|
2170 |
|
|
we guessed wrong, we will suppress an elimination that might have
|
2171 |
|
|
been possible had we been able to guess correctly. */
|
2172 |
|
|
|
2173 |
|
|
if (! offsets_known_at[CODE_LABEL_NUMBER (x) - first_label_num])
|
2174 |
|
|
{
|
2175 |
|
|
for (i = 0; i < NUM_ELIMINABLE_REGS; i++)
|
2176 |
|
|
offsets_at[CODE_LABEL_NUMBER (x) - first_label_num][i]
|
2177 |
|
|
= (initial_p ? reg_eliminate[i].initial_offset
|
2178 |
|
|
: reg_eliminate[i].offset);
|
2179 |
|
|
offsets_known_at[CODE_LABEL_NUMBER (x) - first_label_num] = 1;
|
2180 |
|
|
}
|
2181 |
|
|
|
2182 |
|
|
/* Otherwise, if this is the definition of a label and it is
|
2183 |
|
|
preceded by a BARRIER, set our offsets to the known offset of
|
2184 |
|
|
that label. */
|
2185 |
|
|
|
2186 |
|
|
else if (x == insn
|
2187 |
|
|
&& (tem = prev_nonnote_insn (insn)) != 0
|
2188 |
|
|
&& BARRIER_P (tem))
|
2189 |
|
|
set_offsets_for_label (insn);
|
2190 |
|
|
else
|
2191 |
|
|
/* If neither of the above cases is true, compare each offset
|
2192 |
|
|
with those previously recorded and suppress any eliminations
|
2193 |
|
|
where the offsets disagree. */
|
2194 |
|
|
|
2195 |
|
|
for (i = 0; i < NUM_ELIMINABLE_REGS; i++)
|
2196 |
|
|
if (offsets_at[CODE_LABEL_NUMBER (x) - first_label_num][i]
|
2197 |
|
|
!= (initial_p ? reg_eliminate[i].initial_offset
|
2198 |
|
|
: reg_eliminate[i].offset))
|
2199 |
|
|
reg_eliminate[i].can_eliminate = 0;
|
2200 |
|
|
|
2201 |
|
|
return;
|
2202 |
|
|
|
2203 |
|
|
case JUMP_INSN:
|
2204 |
|
|
set_label_offsets (PATTERN (insn), insn, initial_p);
|
2205 |
|
|
|
2206 |
|
|
/* ... fall through ... */
|
2207 |
|
|
|
2208 |
|
|
case INSN:
|
2209 |
|
|
case CALL_INSN:
|
2210 |
|
|
/* Any labels mentioned in REG_LABEL notes can be branched to indirectly
|
2211 |
|
|
and hence must have all eliminations at their initial offsets. */
|
2212 |
|
|
for (tem = REG_NOTES (x); tem; tem = XEXP (tem, 1))
|
2213 |
|
|
if (REG_NOTE_KIND (tem) == REG_LABEL)
|
2214 |
|
|
set_label_offsets (XEXP (tem, 0), insn, 1);
|
2215 |
|
|
return;
|
2216 |
|
|
|
2217 |
|
|
case PARALLEL:
|
2218 |
|
|
case ADDR_VEC:
|
2219 |
|
|
case ADDR_DIFF_VEC:
|
2220 |
|
|
/* Each of the labels in the parallel or address vector must be
|
2221 |
|
|
at their initial offsets. We want the first field for PARALLEL
|
2222 |
|
|
and ADDR_VEC and the second field for ADDR_DIFF_VEC. */
|
2223 |
|
|
|
2224 |
|
|
for (i = 0; i < (unsigned) XVECLEN (x, code == ADDR_DIFF_VEC); i++)
|
2225 |
|
|
set_label_offsets (XVECEXP (x, code == ADDR_DIFF_VEC, i),
|
2226 |
|
|
insn, initial_p);
|
2227 |
|
|
return;
|
2228 |
|
|
|
2229 |
|
|
case SET:
|
2230 |
|
|
/* We only care about setting PC. If the source is not RETURN,
|
2231 |
|
|
IF_THEN_ELSE, or a label, disable any eliminations not at
|
2232 |
|
|
their initial offsets. Similarly if any arm of the IF_THEN_ELSE
|
2233 |
|
|
isn't one of those possibilities. For branches to a label,
|
2234 |
|
|
call ourselves recursively.
|
2235 |
|
|
|
2236 |
|
|
Note that this can disable elimination unnecessarily when we have
|
2237 |
|
|
a non-local goto since it will look like a non-constant jump to
|
2238 |
|
|
someplace in the current function. This isn't a significant
|
2239 |
|
|
problem since such jumps will normally be when all elimination
|
2240 |
|
|
pairs are back to their initial offsets. */
|
2241 |
|
|
|
2242 |
|
|
if (SET_DEST (x) != pc_rtx)
|
2243 |
|
|
return;
|
2244 |
|
|
|
2245 |
|
|
switch (GET_CODE (SET_SRC (x)))
|
2246 |
|
|
{
|
2247 |
|
|
case PC:
|
2248 |
|
|
case RETURN:
|
2249 |
|
|
return;
|
2250 |
|
|
|
2251 |
|
|
case LABEL_REF:
|
2252 |
|
|
set_label_offsets (SET_SRC (x), insn, initial_p);
|
2253 |
|
|
return;
|
2254 |
|
|
|
2255 |
|
|
case IF_THEN_ELSE:
|
2256 |
|
|
tem = XEXP (SET_SRC (x), 1);
|
2257 |
|
|
if (GET_CODE (tem) == LABEL_REF)
|
2258 |
|
|
set_label_offsets (XEXP (tem, 0), insn, initial_p);
|
2259 |
|
|
else if (GET_CODE (tem) != PC && GET_CODE (tem) != RETURN)
|
2260 |
|
|
break;
|
2261 |
|
|
|
2262 |
|
|
tem = XEXP (SET_SRC (x), 2);
|
2263 |
|
|
if (GET_CODE (tem) == LABEL_REF)
|
2264 |
|
|
set_label_offsets (XEXP (tem, 0), insn, initial_p);
|
2265 |
|
|
else if (GET_CODE (tem) != PC && GET_CODE (tem) != RETURN)
|
2266 |
|
|
break;
|
2267 |
|
|
return;
|
2268 |
|
|
|
2269 |
|
|
default:
|
2270 |
|
|
break;
|
2271 |
|
|
}
|
2272 |
|
|
|
2273 |
|
|
/* If we reach here, all eliminations must be at their initial
|
2274 |
|
|
offset because we are doing a jump to a variable address. */
|
2275 |
|
|
for (p = reg_eliminate; p < ®_eliminate[NUM_ELIMINABLE_REGS]; p++)
|
2276 |
|
|
if (p->offset != p->initial_offset)
|
2277 |
|
|
p->can_eliminate = 0;
|
2278 |
|
|
break;
|
2279 |
|
|
|
2280 |
|
|
default:
|
2281 |
|
|
break;
|
2282 |
|
|
}
|
2283 |
|
|
}
|
2284 |
|
|
|
2285 |
|
|
/* Scan X and replace any eliminable registers (such as fp) with a
|
2286 |
|
|
replacement (such as sp), plus an offset.
|
2287 |
|
|
|
2288 |
|
|
MEM_MODE is the mode of an enclosing MEM. We need this to know how
|
2289 |
|
|
much to adjust a register for, e.g., PRE_DEC. Also, if we are inside a
|
2290 |
|
|
MEM, we are allowed to replace a sum of a register and the constant zero
|
2291 |
|
|
with the register, which we cannot do outside a MEM. In addition, we need
|
2292 |
|
|
to record the fact that a register is referenced outside a MEM.
|
2293 |
|
|
|
2294 |
|
|
If INSN is an insn, it is the insn containing X. If we replace a REG
|
2295 |
|
|
in a SET_DEST with an equivalent MEM and INSN is nonzero, write a
|
2296 |
|
|
CLOBBER of the pseudo after INSN so find_equiv_regs will know that
|
2297 |
|
|
the REG is being modified.
|
2298 |
|
|
|
2299 |
|
|
Alternatively, INSN may be a note (an EXPR_LIST or INSN_LIST).
|
2300 |
|
|
That's used when we eliminate in expressions stored in notes.
|
2301 |
|
|
This means, do not set ref_outside_mem even if the reference
|
2302 |
|
|
is outside of MEMs.
|
2303 |
|
|
|
2304 |
|
|
REG_EQUIV_MEM and REG_EQUIV_ADDRESS contain address that have had
|
2305 |
|
|
replacements done assuming all offsets are at their initial values. If
|
2306 |
|
|
they are not, or if REG_EQUIV_ADDRESS is nonzero for a pseudo we
|
2307 |
|
|
encounter, return the actual location so that find_reloads will do
|
2308 |
|
|
the proper thing. */
|
2309 |
|
|
|
2310 |
|
|
static rtx
|
2311 |
|
|
eliminate_regs_1 (rtx x, enum machine_mode mem_mode, rtx insn,
|
2312 |
|
|
bool may_use_invariant)
|
2313 |
|
|
{
|
2314 |
|
|
enum rtx_code code = GET_CODE (x);
|
2315 |
|
|
struct elim_table *ep;
|
2316 |
|
|
int regno;
|
2317 |
|
|
rtx new;
|
2318 |
|
|
int i, j;
|
2319 |
|
|
const char *fmt;
|
2320 |
|
|
int copied = 0;
|
2321 |
|
|
|
2322 |
|
|
if (! current_function_decl)
|
2323 |
|
|
return x;
|
2324 |
|
|
|
2325 |
|
|
switch (code)
|
2326 |
|
|
{
|
2327 |
|
|
case CONST_INT:
|
2328 |
|
|
case CONST_DOUBLE:
|
2329 |
|
|
case CONST_VECTOR:
|
2330 |
|
|
case CONST:
|
2331 |
|
|
case SYMBOL_REF:
|
2332 |
|
|
case CODE_LABEL:
|
2333 |
|
|
case PC:
|
2334 |
|
|
case CC0:
|
2335 |
|
|
case ASM_INPUT:
|
2336 |
|
|
case ADDR_VEC:
|
2337 |
|
|
case ADDR_DIFF_VEC:
|
2338 |
|
|
case RETURN:
|
2339 |
|
|
return x;
|
2340 |
|
|
|
2341 |
|
|
case REG:
|
2342 |
|
|
regno = REGNO (x);
|
2343 |
|
|
|
2344 |
|
|
/* First handle the case where we encounter a bare register that
|
2345 |
|
|
is eliminable. Replace it with a PLUS. */
|
2346 |
|
|
if (regno < FIRST_PSEUDO_REGISTER)
|
2347 |
|
|
{
|
2348 |
|
|
for (ep = reg_eliminate; ep < ®_eliminate[NUM_ELIMINABLE_REGS];
|
2349 |
|
|
ep++)
|
2350 |
|
|
if (ep->from_rtx == x && ep->can_eliminate)
|
2351 |
|
|
return plus_constant (ep->to_rtx, ep->previous_offset);
|
2352 |
|
|
|
2353 |
|
|
}
|
2354 |
|
|
else if (reg_renumber && reg_renumber[regno] < 0
|
2355 |
|
|
&& reg_equiv_invariant && reg_equiv_invariant[regno])
|
2356 |
|
|
{
|
2357 |
|
|
if (may_use_invariant)
|
2358 |
|
|
return eliminate_regs_1 (copy_rtx (reg_equiv_invariant[regno]),
|
2359 |
|
|
mem_mode, insn, true);
|
2360 |
|
|
/* There exists at least one use of REGNO that cannot be
|
2361 |
|
|
eliminated. Prevent the defining insn from being deleted. */
|
2362 |
|
|
reg_equiv_init[regno] = NULL_RTX;
|
2363 |
|
|
alter_reg (regno, -1);
|
2364 |
|
|
}
|
2365 |
|
|
return x;
|
2366 |
|
|
|
2367 |
|
|
/* You might think handling MINUS in a manner similar to PLUS is a
|
2368 |
|
|
good idea. It is not. It has been tried multiple times and every
|
2369 |
|
|
time the change has had to have been reverted.
|
2370 |
|
|
|
2371 |
|
|
Other parts of reload know a PLUS is special (gen_reload for example)
|
2372 |
|
|
and require special code to handle code a reloaded PLUS operand.
|
2373 |
|
|
|
2374 |
|
|
Also consider backends where the flags register is clobbered by a
|
2375 |
|
|
MINUS, but we can emit a PLUS that does not clobber flags (IA-32,
|
2376 |
|
|
lea instruction comes to mind). If we try to reload a MINUS, we
|
2377 |
|
|
may kill the flags register that was holding a useful value.
|
2378 |
|
|
|
2379 |
|
|
So, please before trying to handle MINUS, consider reload as a
|
2380 |
|
|
whole instead of this little section as well as the backend issues. */
|
2381 |
|
|
case PLUS:
|
2382 |
|
|
/* If this is the sum of an eliminable register and a constant, rework
|
2383 |
|
|
the sum. */
|
2384 |
|
|
if (REG_P (XEXP (x, 0))
|
2385 |
|
|
&& REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER
|
2386 |
|
|
&& CONSTANT_P (XEXP (x, 1)))
|
2387 |
|
|
{
|
2388 |
|
|
for (ep = reg_eliminate; ep < ®_eliminate[NUM_ELIMINABLE_REGS];
|
2389 |
|
|
ep++)
|
2390 |
|
|
if (ep->from_rtx == XEXP (x, 0) && ep->can_eliminate)
|
2391 |
|
|
{
|
2392 |
|
|
/* The only time we want to replace a PLUS with a REG (this
|
2393 |
|
|
occurs when the constant operand of the PLUS is the negative
|
2394 |
|
|
of the offset) is when we are inside a MEM. We won't want
|
2395 |
|
|
to do so at other times because that would change the
|
2396 |
|
|
structure of the insn in a way that reload can't handle.
|
2397 |
|
|
We special-case the commonest situation in
|
2398 |
|
|
eliminate_regs_in_insn, so just replace a PLUS with a
|
2399 |
|
|
PLUS here, unless inside a MEM. */
|
2400 |
|
|
if (mem_mode != 0 && GET_CODE (XEXP (x, 1)) == CONST_INT
|
2401 |
|
|
&& INTVAL (XEXP (x, 1)) == - ep->previous_offset)
|
2402 |
|
|
return ep->to_rtx;
|
2403 |
|
|
else
|
2404 |
|
|
return gen_rtx_PLUS (Pmode, ep->to_rtx,
|
2405 |
|
|
plus_constant (XEXP (x, 1),
|
2406 |
|
|
ep->previous_offset));
|
2407 |
|
|
}
|
2408 |
|
|
|
2409 |
|
|
/* If the register is not eliminable, we are done since the other
|
2410 |
|
|
operand is a constant. */
|
2411 |
|
|
return x;
|
2412 |
|
|
}
|
2413 |
|
|
|
2414 |
|
|
/* If this is part of an address, we want to bring any constant to the
|
2415 |
|
|
outermost PLUS. We will do this by doing register replacement in
|
2416 |
|
|
our operands and seeing if a constant shows up in one of them.
|
2417 |
|
|
|
2418 |
|
|
Note that there is no risk of modifying the structure of the insn,
|
2419 |
|
|
since we only get called for its operands, thus we are either
|
2420 |
|
|
modifying the address inside a MEM, or something like an address
|
2421 |
|
|
operand of a load-address insn. */
|
2422 |
|
|
|
2423 |
|
|
{
|
2424 |
|
|
rtx new0 = eliminate_regs_1 (XEXP (x, 0), mem_mode, insn, true);
|
2425 |
|
|
rtx new1 = eliminate_regs_1 (XEXP (x, 1), mem_mode, insn, true);
|
2426 |
|
|
|
2427 |
|
|
if (reg_renumber && (new0 != XEXP (x, 0) || new1 != XEXP (x, 1)))
|
2428 |
|
|
{
|
2429 |
|
|
/* If one side is a PLUS and the other side is a pseudo that
|
2430 |
|
|
didn't get a hard register but has a reg_equiv_constant,
|
2431 |
|
|
we must replace the constant here since it may no longer
|
2432 |
|
|
be in the position of any operand. */
|
2433 |
|
|
if (GET_CODE (new0) == PLUS && REG_P (new1)
|
2434 |
|
|
&& REGNO (new1) >= FIRST_PSEUDO_REGISTER
|
2435 |
|
|
&& reg_renumber[REGNO (new1)] < 0
|
2436 |
|
|
&& reg_equiv_constant != 0
|
2437 |
|
|
&& reg_equiv_constant[REGNO (new1)] != 0)
|
2438 |
|
|
new1 = reg_equiv_constant[REGNO (new1)];
|
2439 |
|
|
else if (GET_CODE (new1) == PLUS && REG_P (new0)
|
2440 |
|
|
&& REGNO (new0) >= FIRST_PSEUDO_REGISTER
|
2441 |
|
|
&& reg_renumber[REGNO (new0)] < 0
|
2442 |
|
|
&& reg_equiv_constant[REGNO (new0)] != 0)
|
2443 |
|
|
new0 = reg_equiv_constant[REGNO (new0)];
|
2444 |
|
|
|
2445 |
|
|
new = form_sum (new0, new1);
|
2446 |
|
|
|
2447 |
|
|
/* As above, if we are not inside a MEM we do not want to
|
2448 |
|
|
turn a PLUS into something else. We might try to do so here
|
2449 |
|
|
for an addition of 0 if we aren't optimizing. */
|
2450 |
|
|
if (! mem_mode && GET_CODE (new) != PLUS)
|
2451 |
|
|
return gen_rtx_PLUS (GET_MODE (x), new, const0_rtx);
|
2452 |
|
|
else
|
2453 |
|
|
return new;
|
2454 |
|
|
}
|
2455 |
|
|
}
|
2456 |
|
|
return x;
|
2457 |
|
|
|
2458 |
|
|
case MULT:
|
2459 |
|
|
/* If this is the product of an eliminable register and a
|
2460 |
|
|
constant, apply the distribute law and move the constant out
|
2461 |
|
|
so that we have (plus (mult ..) ..). This is needed in order
|
2462 |
|
|
to keep load-address insns valid. This case is pathological.
|
2463 |
|
|
We ignore the possibility of overflow here. */
|
2464 |
|
|
if (REG_P (XEXP (x, 0))
|
2465 |
|
|
&& REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER
|
2466 |
|
|
&& GET_CODE (XEXP (x, 1)) == CONST_INT)
|
2467 |
|
|
for (ep = reg_eliminate; ep < ®_eliminate[NUM_ELIMINABLE_REGS];
|
2468 |
|
|
ep++)
|
2469 |
|
|
if (ep->from_rtx == XEXP (x, 0) && ep->can_eliminate)
|
2470 |
|
|
{
|
2471 |
|
|
if (! mem_mode
|
2472 |
|
|
/* Refs inside notes don't count for this purpose. */
|
2473 |
|
|
&& ! (insn != 0 && (GET_CODE (insn) == EXPR_LIST
|
2474 |
|
|
|| GET_CODE (insn) == INSN_LIST)))
|
2475 |
|
|
ep->ref_outside_mem = 1;
|
2476 |
|
|
|
2477 |
|
|
return
|
2478 |
|
|
plus_constant (gen_rtx_MULT (Pmode, ep->to_rtx, XEXP (x, 1)),
|
2479 |
|
|
ep->previous_offset * INTVAL (XEXP (x, 1)));
|
2480 |
|
|
}
|
2481 |
|
|
|
2482 |
|
|
/* ... fall through ... */
|
2483 |
|
|
|
2484 |
|
|
case CALL:
|
2485 |
|
|
case COMPARE:
|
2486 |
|
|
/* See comments before PLUS about handling MINUS. */
|
2487 |
|
|
case MINUS:
|
2488 |
|
|
case DIV: case UDIV:
|
2489 |
|
|
case MOD: case UMOD:
|
2490 |
|
|
case AND: case IOR: case XOR:
|
2491 |
|
|
case ROTATERT: case ROTATE:
|
2492 |
|
|
case ASHIFTRT: case LSHIFTRT: case ASHIFT:
|
2493 |
|
|
case NE: case EQ:
|
2494 |
|
|
case GE: case GT: case GEU: case GTU:
|
2495 |
|
|
case LE: case LT: case LEU: case LTU:
|
2496 |
|
|
{
|
2497 |
|
|
rtx new0 = eliminate_regs_1 (XEXP (x, 0), mem_mode, insn, false);
|
2498 |
|
|
rtx new1 = XEXP (x, 1)
|
2499 |
|
|
? eliminate_regs_1 (XEXP (x, 1), mem_mode, insn, false) : 0;
|
2500 |
|
|
|
2501 |
|
|
if (new0 != XEXP (x, 0) || new1 != XEXP (x, 1))
|
2502 |
|
|
return gen_rtx_fmt_ee (code, GET_MODE (x), new0, new1);
|
2503 |
|
|
}
|
2504 |
|
|
return x;
|
2505 |
|
|
|
2506 |
|
|
case EXPR_LIST:
|
2507 |
|
|
/* If we have something in XEXP (x, 0), the usual case, eliminate it. */
|
2508 |
|
|
if (XEXP (x, 0))
|
2509 |
|
|
{
|
2510 |
|
|
new = eliminate_regs_1 (XEXP (x, 0), mem_mode, insn, true);
|
2511 |
|
|
if (new != XEXP (x, 0))
|
2512 |
|
|
{
|
2513 |
|
|
/* If this is a REG_DEAD note, it is not valid anymore.
|
2514 |
|
|
Using the eliminated version could result in creating a
|
2515 |
|
|
REG_DEAD note for the stack or frame pointer. */
|
2516 |
|
|
if (GET_MODE (x) == REG_DEAD)
|
2517 |
|
|
return (XEXP (x, 1)
|
2518 |
|
|
? eliminate_regs_1 (XEXP (x, 1), mem_mode, insn, true)
|
2519 |
|
|
: NULL_RTX);
|
2520 |
|
|
|
2521 |
|
|
x = gen_rtx_EXPR_LIST (REG_NOTE_KIND (x), new, XEXP (x, 1));
|
2522 |
|
|
}
|
2523 |
|
|
}
|
2524 |
|
|
|
2525 |
|
|
/* ... fall through ... */
|
2526 |
|
|
|
2527 |
|
|
case INSN_LIST:
|
2528 |
|
|
/* Now do eliminations in the rest of the chain. If this was
|
2529 |
|
|
an EXPR_LIST, this might result in allocating more memory than is
|
2530 |
|
|
strictly needed, but it simplifies the code. */
|
2531 |
|
|
if (XEXP (x, 1))
|
2532 |
|
|
{
|
2533 |
|
|
new = eliminate_regs_1 (XEXP (x, 1), mem_mode, insn, true);
|
2534 |
|
|
if (new != XEXP (x, 1))
|
2535 |
|
|
return
|
2536 |
|
|
gen_rtx_fmt_ee (GET_CODE (x), GET_MODE (x), XEXP (x, 0), new);
|
2537 |
|
|
}
|
2538 |
|
|
return x;
|
2539 |
|
|
|
2540 |
|
|
case PRE_INC:
|
2541 |
|
|
case POST_INC:
|
2542 |
|
|
case PRE_DEC:
|
2543 |
|
|
case POST_DEC:
|
2544 |
|
|
case STRICT_LOW_PART:
|
2545 |
|
|
case NEG: case NOT:
|
2546 |
|
|
case SIGN_EXTEND: case ZERO_EXTEND:
|
2547 |
|
|
case TRUNCATE: case FLOAT_EXTEND: case FLOAT_TRUNCATE:
|
2548 |
|
|
case FLOAT: case FIX:
|
2549 |
|
|
case UNSIGNED_FIX: case UNSIGNED_FLOAT:
|
2550 |
|
|
case ABS:
|
2551 |
|
|
case SQRT:
|
2552 |
|
|
case FFS:
|
2553 |
|
|
case CLZ:
|
2554 |
|
|
case CTZ:
|
2555 |
|
|
case POPCOUNT:
|
2556 |
|
|
case PARITY:
|
2557 |
|
|
new = eliminate_regs_1 (XEXP (x, 0), mem_mode, insn, false);
|
2558 |
|
|
if (new != XEXP (x, 0))
|
2559 |
|
|
return gen_rtx_fmt_e (code, GET_MODE (x), new);
|
2560 |
|
|
return x;
|
2561 |
|
|
|
2562 |
|
|
case SUBREG:
|
2563 |
|
|
/* Similar to above processing, but preserve SUBREG_BYTE.
|
2564 |
|
|
Convert (subreg (mem)) to (mem) if not paradoxical.
|
2565 |
|
|
Also, if we have a non-paradoxical (subreg (pseudo)) and the
|
2566 |
|
|
pseudo didn't get a hard reg, we must replace this with the
|
2567 |
|
|
eliminated version of the memory location because push_reload
|
2568 |
|
|
may do the replacement in certain circumstances. */
|
2569 |
|
|
if (REG_P (SUBREG_REG (x))
|
2570 |
|
|
&& (GET_MODE_SIZE (GET_MODE (x))
|
2571 |
|
|
<= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
|
2572 |
|
|
&& reg_equiv_memory_loc != 0
|
2573 |
|
|
&& reg_equiv_memory_loc[REGNO (SUBREG_REG (x))] != 0)
|
2574 |
|
|
{
|
2575 |
|
|
new = SUBREG_REG (x);
|
2576 |
|
|
}
|
2577 |
|
|
else
|
2578 |
|
|
new = eliminate_regs_1 (SUBREG_REG (x), mem_mode, insn, false);
|
2579 |
|
|
|
2580 |
|
|
if (new != SUBREG_REG (x))
|
2581 |
|
|
{
|
2582 |
|
|
int x_size = GET_MODE_SIZE (GET_MODE (x));
|
2583 |
|
|
int new_size = GET_MODE_SIZE (GET_MODE (new));
|
2584 |
|
|
|
2585 |
|
|
if (MEM_P (new)
|
2586 |
|
|
&& ((x_size < new_size
|
2587 |
|
|
#ifdef WORD_REGISTER_OPERATIONS
|
2588 |
|
|
/* On these machines, combine can create rtl of the form
|
2589 |
|
|
(set (subreg:m1 (reg:m2 R) 0) ...)
|
2590 |
|
|
where m1 < m2, and expects something interesting to
|
2591 |
|
|
happen to the entire word. Moreover, it will use the
|
2592 |
|
|
(reg:m2 R) later, expecting all bits to be preserved.
|
2593 |
|
|
So if the number of words is the same, preserve the
|
2594 |
|
|
subreg so that push_reload can see it. */
|
2595 |
|
|
&& ! ((x_size - 1) / UNITS_PER_WORD
|
2596 |
|
|
== (new_size -1 ) / UNITS_PER_WORD)
|
2597 |
|
|
#endif
|
2598 |
|
|
)
|
2599 |
|
|
|| x_size == new_size)
|
2600 |
|
|
)
|
2601 |
|
|
return adjust_address_nv (new, GET_MODE (x), SUBREG_BYTE (x));
|
2602 |
|
|
else
|
2603 |
|
|
return gen_rtx_SUBREG (GET_MODE (x), new, SUBREG_BYTE (x));
|
2604 |
|
|
}
|
2605 |
|
|
|
2606 |
|
|
return x;
|
2607 |
|
|
|
2608 |
|
|
case MEM:
|
2609 |
|
|
/* Our only special processing is to pass the mode of the MEM to our
|
2610 |
|
|
recursive call and copy the flags. While we are here, handle this
|
2611 |
|
|
case more efficiently. */
|
2612 |
|
|
return
|
2613 |
|
|
replace_equiv_address_nv (x,
|
2614 |
|
|
eliminate_regs_1 (XEXP (x, 0), GET_MODE (x),
|
2615 |
|
|
insn, true));
|
2616 |
|
|
|
2617 |
|
|
case USE:
|
2618 |
|
|
/* Handle insn_list USE that a call to a pure function may generate. */
|
2619 |
|
|
new = eliminate_regs_1 (XEXP (x, 0), 0, insn, false);
|
2620 |
|
|
if (new != XEXP (x, 0))
|
2621 |
|
|
return gen_rtx_USE (GET_MODE (x), new);
|
2622 |
|
|
return x;
|
2623 |
|
|
|
2624 |
|
|
case CLOBBER:
|
2625 |
|
|
case ASM_OPERANDS:
|
2626 |
|
|
case SET:
|
2627 |
|
|
gcc_unreachable ();
|
2628 |
|
|
|
2629 |
|
|
default:
|
2630 |
|
|
break;
|
2631 |
|
|
}
|
2632 |
|
|
|
2633 |
|
|
/* Process each of our operands recursively. If any have changed, make a
|
2634 |
|
|
copy of the rtx. */
|
2635 |
|
|
fmt = GET_RTX_FORMAT (code);
|
2636 |
|
|
for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
|
2637 |
|
|
{
|
2638 |
|
|
if (*fmt == 'e')
|
2639 |
|
|
{
|
2640 |
|
|
new = eliminate_regs_1 (XEXP (x, i), mem_mode, insn, false);
|
2641 |
|
|
if (new != XEXP (x, i) && ! copied)
|
2642 |
|
|
{
|
2643 |
|
|
x = shallow_copy_rtx (x);
|
2644 |
|
|
copied = 1;
|
2645 |
|
|
}
|
2646 |
|
|
XEXP (x, i) = new;
|
2647 |
|
|
}
|
2648 |
|
|
else if (*fmt == 'E')
|
2649 |
|
|
{
|
2650 |
|
|
int copied_vec = 0;
|
2651 |
|
|
for (j = 0; j < XVECLEN (x, i); j++)
|
2652 |
|
|
{
|
2653 |
|
|
new = eliminate_regs_1 (XVECEXP (x, i, j), mem_mode, insn, false);
|
2654 |
|
|
if (new != XVECEXP (x, i, j) && ! copied_vec)
|
2655 |
|
|
{
|
2656 |
|
|
rtvec new_v = gen_rtvec_v (XVECLEN (x, i),
|
2657 |
|
|
XVEC (x, i)->elem);
|
2658 |
|
|
if (! copied)
|
2659 |
|
|
{
|
2660 |
|
|
x = shallow_copy_rtx (x);
|
2661 |
|
|
copied = 1;
|
2662 |
|
|
}
|
2663 |
|
|
XVEC (x, i) = new_v;
|
2664 |
|
|
copied_vec = 1;
|
2665 |
|
|
}
|
2666 |
|
|
XVECEXP (x, i, j) = new;
|
2667 |
|
|
}
|
2668 |
|
|
}
|
2669 |
|
|
}
|
2670 |
|
|
|
2671 |
|
|
return x;
|
2672 |
|
|
}
|
2673 |
|
|
|
2674 |
|
|
rtx
|
2675 |
|
|
eliminate_regs (rtx x, enum machine_mode mem_mode, rtx insn)
|
2676 |
|
|
{
|
2677 |
|
|
return eliminate_regs_1 (x, mem_mode, insn, false);
|
2678 |
|
|
}
|
2679 |
|
|
|
2680 |
|
|
/* Scan rtx X for modifications of elimination target registers. Update
|
2681 |
|
|
the table of eliminables to reflect the changed state. MEM_MODE is
|
2682 |
|
|
the mode of an enclosing MEM rtx, or VOIDmode if not within a MEM. */
|
2683 |
|
|
|
2684 |
|
|
static void
|
2685 |
|
|
elimination_effects (rtx x, enum machine_mode mem_mode)
|
2686 |
|
|
{
|
2687 |
|
|
enum rtx_code code = GET_CODE (x);
|
2688 |
|
|
struct elim_table *ep;
|
2689 |
|
|
int regno;
|
2690 |
|
|
int i, j;
|
2691 |
|
|
const char *fmt;
|
2692 |
|
|
|
2693 |
|
|
switch (code)
|
2694 |
|
|
{
|
2695 |
|
|
case CONST_INT:
|
2696 |
|
|
case CONST_DOUBLE:
|
2697 |
|
|
case CONST_VECTOR:
|
2698 |
|
|
case CONST:
|
2699 |
|
|
case SYMBOL_REF:
|
2700 |
|
|
case CODE_LABEL:
|
2701 |
|
|
case PC:
|
2702 |
|
|
case CC0:
|
2703 |
|
|
case ASM_INPUT:
|
2704 |
|
|
case ADDR_VEC:
|
2705 |
|
|
case ADDR_DIFF_VEC:
|
2706 |
|
|
case RETURN:
|
2707 |
|
|
return;
|
2708 |
|
|
|
2709 |
|
|
case REG:
|
2710 |
|
|
regno = REGNO (x);
|
2711 |
|
|
|
2712 |
|
|
/* First handle the case where we encounter a bare register that
|
2713 |
|
|
is eliminable. Replace it with a PLUS. */
|
2714 |
|
|
if (regno < FIRST_PSEUDO_REGISTER)
|
2715 |
|
|
{
|
2716 |
|
|
for (ep = reg_eliminate; ep < ®_eliminate[NUM_ELIMINABLE_REGS];
|
2717 |
|
|
ep++)
|
2718 |
|
|
if (ep->from_rtx == x && ep->can_eliminate)
|
2719 |
|
|
{
|
2720 |
|
|
if (! mem_mode)
|
2721 |
|
|
ep->ref_outside_mem = 1;
|
2722 |
|
|
return;
|
2723 |
|
|
}
|
2724 |
|
|
|
2725 |
|
|
}
|
2726 |
|
|
else if (reg_renumber[regno] < 0 && reg_equiv_constant
|
2727 |
|
|
&& reg_equiv_constant[regno]
|
2728 |
|
|
&& ! function_invariant_p (reg_equiv_constant[regno]))
|
2729 |
|
|
elimination_effects (reg_equiv_constant[regno], mem_mode);
|
2730 |
|
|
return;
|
2731 |
|
|
|
2732 |
|
|
case PRE_INC:
|
2733 |
|
|
case POST_INC:
|
2734 |
|
|
case PRE_DEC:
|
2735 |
|
|
case POST_DEC:
|
2736 |
|
|
case POST_MODIFY:
|
2737 |
|
|
case PRE_MODIFY:
|
2738 |
|
|
for (ep = reg_eliminate; ep < ®_eliminate[NUM_ELIMINABLE_REGS]; ep++)
|
2739 |
|
|
if (ep->to_rtx == XEXP (x, 0))
|
2740 |
|
|
{
|
2741 |
|
|
int size = GET_MODE_SIZE (mem_mode);
|
2742 |
|
|
|
2743 |
|
|
/* If more bytes than MEM_MODE are pushed, account for them. */
|
2744 |
|
|
#ifdef PUSH_ROUNDING
|
2745 |
|
|
if (ep->to_rtx == stack_pointer_rtx)
|
2746 |
|
|
size = PUSH_ROUNDING (size);
|
2747 |
|
|
#endif
|
2748 |
|
|
if (code == PRE_DEC || code == POST_DEC)
|
2749 |
|
|
ep->offset += size;
|
2750 |
|
|
else if (code == PRE_INC || code == POST_INC)
|
2751 |
|
|
ep->offset -= size;
|
2752 |
|
|
else if ((code == PRE_MODIFY || code == POST_MODIFY)
|
2753 |
|
|
&& GET_CODE (XEXP (x, 1)) == PLUS
|
2754 |
|
|
&& XEXP (x, 0) == XEXP (XEXP (x, 1), 0)
|
2755 |
|
|
&& CONSTANT_P (XEXP (XEXP (x, 1), 1)))
|
2756 |
|
|
ep->offset -= INTVAL (XEXP (XEXP (x, 1), 1));
|
2757 |
|
|
}
|
2758 |
|
|
|
2759 |
|
|
/* These two aren't unary operators. */
|
2760 |
|
|
if (code == POST_MODIFY || code == PRE_MODIFY)
|
2761 |
|
|
break;
|
2762 |
|
|
|
2763 |
|
|
/* Fall through to generic unary operation case. */
|
2764 |
|
|
case STRICT_LOW_PART:
|
2765 |
|
|
case NEG: case NOT:
|
2766 |
|
|
case SIGN_EXTEND: case ZERO_EXTEND:
|
2767 |
|
|
case TRUNCATE: case FLOAT_EXTEND: case FLOAT_TRUNCATE:
|
2768 |
|
|
case FLOAT: case FIX:
|
2769 |
|
|
case UNSIGNED_FIX: case UNSIGNED_FLOAT:
|
2770 |
|
|
case ABS:
|
2771 |
|
|
case SQRT:
|
2772 |
|
|
case FFS:
|
2773 |
|
|
case CLZ:
|
2774 |
|
|
case CTZ:
|
2775 |
|
|
case POPCOUNT:
|
2776 |
|
|
case PARITY:
|
2777 |
|
|
elimination_effects (XEXP (x, 0), mem_mode);
|
2778 |
|
|
return;
|
2779 |
|
|
|
2780 |
|
|
case SUBREG:
|
2781 |
|
|
if (REG_P (SUBREG_REG (x))
|
2782 |
|
|
&& (GET_MODE_SIZE (GET_MODE (x))
|
2783 |
|
|
<= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
|
2784 |
|
|
&& reg_equiv_memory_loc != 0
|
2785 |
|
|
&& reg_equiv_memory_loc[REGNO (SUBREG_REG (x))] != 0)
|
2786 |
|
|
return;
|
2787 |
|
|
|
2788 |
|
|
elimination_effects (SUBREG_REG (x), mem_mode);
|
2789 |
|
|
return;
|
2790 |
|
|
|
2791 |
|
|
case USE:
|
2792 |
|
|
/* If using a register that is the source of an eliminate we still
|
2793 |
|
|
think can be performed, note it cannot be performed since we don't
|
2794 |
|
|
know how this register is used. */
|
2795 |
|
|
for (ep = reg_eliminate; ep < ®_eliminate[NUM_ELIMINABLE_REGS]; ep++)
|
2796 |
|
|
if (ep->from_rtx == XEXP (x, 0))
|
2797 |
|
|
ep->can_eliminate = 0;
|
2798 |
|
|
|
2799 |
|
|
elimination_effects (XEXP (x, 0), mem_mode);
|
2800 |
|
|
return;
|
2801 |
|
|
|
2802 |
|
|
case CLOBBER:
|
2803 |
|
|
/* If clobbering a register that is the replacement register for an
|
2804 |
|
|
elimination we still think can be performed, note that it cannot
|
2805 |
|
|
be performed. Otherwise, we need not be concerned about it. */
|
2806 |
|
|
for (ep = reg_eliminate; ep < ®_eliminate[NUM_ELIMINABLE_REGS]; ep++)
|
2807 |
|
|
if (ep->to_rtx == XEXP (x, 0))
|
2808 |
|
|
ep->can_eliminate = 0;
|
2809 |
|
|
|
2810 |
|
|
elimination_effects (XEXP (x, 0), mem_mode);
|
2811 |
|
|
return;
|
2812 |
|
|
|
2813 |
|
|
case SET:
|
2814 |
|
|
/* Check for setting a register that we know about. */
|
2815 |
|
|
if (REG_P (SET_DEST (x)))
|
2816 |
|
|
{
|
2817 |
|
|
/* See if this is setting the replacement register for an
|
2818 |
|
|
elimination.
|
2819 |
|
|
|
2820 |
|
|
If DEST is the hard frame pointer, we do nothing because we
|
2821 |
|
|
assume that all assignments to the frame pointer are for
|
2822 |
|
|
non-local gotos and are being done at a time when they are valid
|
2823 |
|
|
and do not disturb anything else. Some machines want to
|
2824 |
|
|
eliminate a fake argument pointer (or even a fake frame pointer)
|
2825 |
|
|
with either the real frame or the stack pointer. Assignments to
|
2826 |
|
|
the hard frame pointer must not prevent this elimination. */
|
2827 |
|
|
|
2828 |
|
|
for (ep = reg_eliminate; ep < ®_eliminate[NUM_ELIMINABLE_REGS];
|
2829 |
|
|
ep++)
|
2830 |
|
|
if (ep->to_rtx == SET_DEST (x)
|
2831 |
|
|
&& SET_DEST (x) != hard_frame_pointer_rtx)
|
2832 |
|
|
{
|
2833 |
|
|
/* If it is being incremented, adjust the offset. Otherwise,
|
2834 |
|
|
this elimination can't be done. */
|
2835 |
|
|
rtx src = SET_SRC (x);
|
2836 |
|
|
|
2837 |
|
|
if (GET_CODE (src) == PLUS
|
2838 |
|
|
&& XEXP (src, 0) == SET_DEST (x)
|
2839 |
|
|
&& GET_CODE (XEXP (src, 1)) == CONST_INT)
|
2840 |
|
|
ep->offset -= INTVAL (XEXP (src, 1));
|
2841 |
|
|
else
|
2842 |
|
|
ep->can_eliminate = 0;
|
2843 |
|
|
}
|
2844 |
|
|
}
|
2845 |
|
|
|
2846 |
|
|
elimination_effects (SET_DEST (x), 0);
|
2847 |
|
|
elimination_effects (SET_SRC (x), 0);
|
2848 |
|
|
return;
|
2849 |
|
|
|
2850 |
|
|
case MEM:
|
2851 |
|
|
/* Our only special processing is to pass the mode of the MEM to our
|
2852 |
|
|
recursive call. */
|
2853 |
|
|
elimination_effects (XEXP (x, 0), GET_MODE (x));
|
2854 |
|
|
return;
|
2855 |
|
|
|
2856 |
|
|
default:
|
2857 |
|
|
break;
|
2858 |
|
|
}
|
2859 |
|
|
|
2860 |
|
|
fmt = GET_RTX_FORMAT (code);
|
2861 |
|
|
for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
|
2862 |
|
|
{
|
2863 |
|
|
if (*fmt == 'e')
|
2864 |
|
|
elimination_effects (XEXP (x, i), mem_mode);
|
2865 |
|
|
else if (*fmt == 'E')
|
2866 |
|
|
for (j = 0; j < XVECLEN (x, i); j++)
|
2867 |
|
|
elimination_effects (XVECEXP (x, i, j), mem_mode);
|
2868 |
|
|
}
|
2869 |
|
|
}
|
2870 |
|
|
|
2871 |
|
|
/* Descend through rtx X and verify that no references to eliminable registers
|
2872 |
|
|
remain. If any do remain, mark the involved register as not
|
2873 |
|
|
eliminable. */
|
2874 |
|
|
|
2875 |
|
|
static void
|
2876 |
|
|
check_eliminable_occurrences (rtx x)
|
2877 |
|
|
{
|
2878 |
|
|
const char *fmt;
|
2879 |
|
|
int i;
|
2880 |
|
|
enum rtx_code code;
|
2881 |
|
|
|
2882 |
|
|
if (x == 0)
|
2883 |
|
|
return;
|
2884 |
|
|
|
2885 |
|
|
code = GET_CODE (x);
|
2886 |
|
|
|
2887 |
|
|
if (code == REG && REGNO (x) < FIRST_PSEUDO_REGISTER)
|
2888 |
|
|
{
|
2889 |
|
|
struct elim_table *ep;
|
2890 |
|
|
|
2891 |
|
|
for (ep = reg_eliminate; ep < ®_eliminate[NUM_ELIMINABLE_REGS]; ep++)
|
2892 |
|
|
if (ep->from_rtx == x)
|
2893 |
|
|
ep->can_eliminate = 0;
|
2894 |
|
|
return;
|
2895 |
|
|
}
|
2896 |
|
|
|
2897 |
|
|
fmt = GET_RTX_FORMAT (code);
|
2898 |
|
|
for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
|
2899 |
|
|
{
|
2900 |
|
|
if (*fmt == 'e')
|
2901 |
|
|
check_eliminable_occurrences (XEXP (x, i));
|
2902 |
|
|
else if (*fmt == 'E')
|
2903 |
|
|
{
|
2904 |
|
|
int j;
|
2905 |
|
|
for (j = 0; j < XVECLEN (x, i); j++)
|
2906 |
|
|
check_eliminable_occurrences (XVECEXP (x, i, j));
|
2907 |
|
|
}
|
2908 |
|
|
}
|
2909 |
|
|
}
|
2910 |
|
|
|
2911 |
|
|
/* Scan INSN and eliminate all eliminable registers in it.
|
2912 |
|
|
|
2913 |
|
|
If REPLACE is nonzero, do the replacement destructively. Also
|
2914 |
|
|
delete the insn as dead it if it is setting an eliminable register.
|
2915 |
|
|
|
2916 |
|
|
If REPLACE is zero, do all our allocations in reload_obstack.
|
2917 |
|
|
|
2918 |
|
|
If no eliminations were done and this insn doesn't require any elimination
|
2919 |
|
|
processing (these are not identical conditions: it might be updating sp,
|
2920 |
|
|
but not referencing fp; this needs to be seen during reload_as_needed so
|
2921 |
|
|
that the offset between fp and sp can be taken into consideration), zero
|
2922 |
|
|
is returned. Otherwise, 1 is returned. */
|
2923 |
|
|
|
2924 |
|
|
static int
|
2925 |
|
|
eliminate_regs_in_insn (rtx insn, int replace)
|
2926 |
|
|
{
|
2927 |
|
|
int icode = recog_memoized (insn);
|
2928 |
|
|
rtx old_body = PATTERN (insn);
|
2929 |
|
|
int insn_is_asm = asm_noperands (old_body) >= 0;
|
2930 |
|
|
rtx old_set = single_set (insn);
|
2931 |
|
|
rtx new_body;
|
2932 |
|
|
int val = 0;
|
2933 |
|
|
int i;
|
2934 |
|
|
rtx substed_operand[MAX_RECOG_OPERANDS];
|
2935 |
|
|
rtx orig_operand[MAX_RECOG_OPERANDS];
|
2936 |
|
|
struct elim_table *ep;
|
2937 |
|
|
rtx plus_src, plus_cst_src;
|
2938 |
|
|
|
2939 |
|
|
if (! insn_is_asm && icode < 0)
|
2940 |
|
|
{
|
2941 |
|
|
gcc_assert (GET_CODE (PATTERN (insn)) == USE
|
2942 |
|
|
|| GET_CODE (PATTERN (insn)) == CLOBBER
|
2943 |
|
|
|| GET_CODE (PATTERN (insn)) == ADDR_VEC
|
2944 |
|
|
|| GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC
|
2945 |
|
|
|| GET_CODE (PATTERN (insn)) == ASM_INPUT);
|
2946 |
|
|
return 0;
|
2947 |
|
|
}
|
2948 |
|
|
|
2949 |
|
|
if (old_set != 0 && REG_P (SET_DEST (old_set))
|
2950 |
|
|
&& REGNO (SET_DEST (old_set)) < FIRST_PSEUDO_REGISTER)
|
2951 |
|
|
{
|
2952 |
|
|
/* Check for setting an eliminable register. */
|
2953 |
|
|
for (ep = reg_eliminate; ep < ®_eliminate[NUM_ELIMINABLE_REGS]; ep++)
|
2954 |
|
|
if (ep->from_rtx == SET_DEST (old_set) && ep->can_eliminate)
|
2955 |
|
|
{
|
2956 |
|
|
#if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
|
2957 |
|
|
/* If this is setting the frame pointer register to the
|
2958 |
|
|
hardware frame pointer register and this is an elimination
|
2959 |
|
|
that will be done (tested above), this insn is really
|
2960 |
|
|
adjusting the frame pointer downward to compensate for
|
2961 |
|
|
the adjustment done before a nonlocal goto. */
|
2962 |
|
|
if (ep->from == FRAME_POINTER_REGNUM
|
2963 |
|
|
&& ep->to == HARD_FRAME_POINTER_REGNUM)
|
2964 |
|
|
{
|
2965 |
|
|
rtx base = SET_SRC (old_set);
|
2966 |
|
|
rtx base_insn = insn;
|
2967 |
|
|
HOST_WIDE_INT offset = 0;
|
2968 |
|
|
|
2969 |
|
|
while (base != ep->to_rtx)
|
2970 |
|
|
{
|
2971 |
|
|
rtx prev_insn, prev_set;
|
2972 |
|
|
|
2973 |
|
|
if (GET_CODE (base) == PLUS
|
2974 |
|
|
&& GET_CODE (XEXP (base, 1)) == CONST_INT)
|
2975 |
|
|
{
|
2976 |
|
|
offset += INTVAL (XEXP (base, 1));
|
2977 |
|
|
base = XEXP (base, 0);
|
2978 |
|
|
}
|
2979 |
|
|
else if ((prev_insn = prev_nonnote_insn (base_insn)) != 0
|
2980 |
|
|
&& (prev_set = single_set (prev_insn)) != 0
|
2981 |
|
|
&& rtx_equal_p (SET_DEST (prev_set), base))
|
2982 |
|
|
{
|
2983 |
|
|
base = SET_SRC (prev_set);
|
2984 |
|
|
base_insn = prev_insn;
|
2985 |
|
|
}
|
2986 |
|
|
else
|
2987 |
|
|
break;
|
2988 |
|
|
}
|
2989 |
|
|
|
2990 |
|
|
if (base == ep->to_rtx)
|
2991 |
|
|
{
|
2992 |
|
|
rtx src
|
2993 |
|
|
= plus_constant (ep->to_rtx, offset - ep->offset);
|
2994 |
|
|
|
2995 |
|
|
new_body = old_body;
|
2996 |
|
|
if (! replace)
|
2997 |
|
|
{
|
2998 |
|
|
new_body = copy_insn (old_body);
|
2999 |
|
|
if (REG_NOTES (insn))
|
3000 |
|
|
REG_NOTES (insn) = copy_insn_1 (REG_NOTES (insn));
|
3001 |
|
|
}
|
3002 |
|
|
PATTERN (insn) = new_body;
|
3003 |
|
|
old_set = single_set (insn);
|
3004 |
|
|
|
3005 |
|
|
/* First see if this insn remains valid when we
|
3006 |
|
|
make the change. If not, keep the INSN_CODE
|
3007 |
|
|
the same and let reload fit it up. */
|
3008 |
|
|
validate_change (insn, &SET_SRC (old_set), src, 1);
|
3009 |
|
|
validate_change (insn, &SET_DEST (old_set),
|
3010 |
|
|
ep->to_rtx, 1);
|
3011 |
|
|
if (! apply_change_group ())
|
3012 |
|
|
{
|
3013 |
|
|
SET_SRC (old_set) = src;
|
3014 |
|
|
SET_DEST (old_set) = ep->to_rtx;
|
3015 |
|
|
}
|
3016 |
|
|
|
3017 |
|
|
val = 1;
|
3018 |
|
|
goto done;
|
3019 |
|
|
}
|
3020 |
|
|
}
|
3021 |
|
|
#endif
|
3022 |
|
|
|
3023 |
|
|
/* In this case this insn isn't serving a useful purpose. We
|
3024 |
|
|
will delete it in reload_as_needed once we know that this
|
3025 |
|
|
elimination is, in fact, being done.
|
3026 |
|
|
|
3027 |
|
|
If REPLACE isn't set, we can't delete this insn, but needn't
|
3028 |
|
|
process it since it won't be used unless something changes. */
|
3029 |
|
|
if (replace)
|
3030 |
|
|
{
|
3031 |
|
|
delete_dead_insn (insn);
|
3032 |
|
|
return 1;
|
3033 |
|
|
}
|
3034 |
|
|
val = 1;
|
3035 |
|
|
goto done;
|
3036 |
|
|
}
|
3037 |
|
|
}
|
3038 |
|
|
|
3039 |
|
|
/* We allow one special case which happens to work on all machines we
|
3040 |
|
|
currently support: a single set with the source or a REG_EQUAL
|
3041 |
|
|
note being a PLUS of an eliminable register and a constant. */
|
3042 |
|
|
plus_src = plus_cst_src = 0;
|
3043 |
|
|
if (old_set && REG_P (SET_DEST (old_set)))
|
3044 |
|
|
{
|
3045 |
|
|
if (GET_CODE (SET_SRC (old_set)) == PLUS)
|
3046 |
|
|
plus_src = SET_SRC (old_set);
|
3047 |
|
|
/* First see if the source is of the form (plus (...) CST). */
|
3048 |
|
|
if (plus_src
|
3049 |
|
|
&& GET_CODE (XEXP (plus_src, 1)) == CONST_INT)
|
3050 |
|
|
plus_cst_src = plus_src;
|
3051 |
|
|
else if (REG_P (SET_SRC (old_set))
|
3052 |
|
|
|| plus_src)
|
3053 |
|
|
{
|
3054 |
|
|
/* Otherwise, see if we have a REG_EQUAL note of the form
|
3055 |
|
|
(plus (...) CST). */
|
3056 |
|
|
rtx links;
|
3057 |
|
|
for (links = REG_NOTES (insn); links; links = XEXP (links, 1))
|
3058 |
|
|
{
|
3059 |
|
|
if (REG_NOTE_KIND (links) == REG_EQUAL
|
3060 |
|
|
&& GET_CODE (XEXP (links, 0)) == PLUS
|
3061 |
|
|
&& GET_CODE (XEXP (XEXP (links, 0), 1)) == CONST_INT)
|
3062 |
|
|
{
|
3063 |
|
|
plus_cst_src = XEXP (links, 0);
|
3064 |
|
|
break;
|
3065 |
|
|
}
|
3066 |
|
|
}
|
3067 |
|
|
}
|
3068 |
|
|
|
3069 |
|
|
/* Check that the first operand of the PLUS is a hard reg or
|
3070 |
|
|
the lowpart subreg of one. */
|
3071 |
|
|
if (plus_cst_src)
|
3072 |
|
|
{
|
3073 |
|
|
rtx reg = XEXP (plus_cst_src, 0);
|
3074 |
|
|
if (GET_CODE (reg) == SUBREG && subreg_lowpart_p (reg))
|
3075 |
|
|
reg = SUBREG_REG (reg);
|
3076 |
|
|
|
3077 |
|
|
if (!REG_P (reg) || REGNO (reg) >= FIRST_PSEUDO_REGISTER)
|
3078 |
|
|
plus_cst_src = 0;
|
3079 |
|
|
}
|
3080 |
|
|
}
|
3081 |
|
|
if (plus_cst_src)
|
3082 |
|
|
{
|
3083 |
|
|
rtx reg = XEXP (plus_cst_src, 0);
|
3084 |
|
|
HOST_WIDE_INT offset = INTVAL (XEXP (plus_cst_src, 1));
|
3085 |
|
|
|
3086 |
|
|
if (GET_CODE (reg) == SUBREG)
|
3087 |
|
|
reg = SUBREG_REG (reg);
|
3088 |
|
|
|
3089 |
|
|
for (ep = reg_eliminate; ep < ®_eliminate[NUM_ELIMINABLE_REGS]; ep++)
|
3090 |
|
|
if (ep->from_rtx == reg && ep->can_eliminate)
|
3091 |
|
|
{
|
3092 |
|
|
rtx to_rtx = ep->to_rtx;
|
3093 |
|
|
offset += ep->offset;
|
3094 |
|
|
offset = trunc_int_for_mode (offset, GET_MODE (reg));
|
3095 |
|
|
|
3096 |
|
|
if (GET_CODE (XEXP (plus_cst_src, 0)) == SUBREG)
|
3097 |
|
|
to_rtx = gen_lowpart (GET_MODE (XEXP (plus_cst_src, 0)),
|
3098 |
|
|
to_rtx);
|
3099 |
|
|
/* If we have a nonzero offset, and the source is already
|
3100 |
|
|
a simple REG, the following transformation would
|
3101 |
|
|
increase the cost of the insn by replacing a simple REG
|
3102 |
|
|
with (plus (reg sp) CST). So try only when we already
|
3103 |
|
|
had a PLUS before. */
|
3104 |
|
|
if (offset == 0 || plus_src)
|
3105 |
|
|
{
|
3106 |
|
|
rtx new_src = plus_constant (to_rtx, offset);
|
3107 |
|
|
|
3108 |
|
|
new_body = old_body;
|
3109 |
|
|
if (! replace)
|
3110 |
|
|
{
|
3111 |
|
|
new_body = copy_insn (old_body);
|
3112 |
|
|
if (REG_NOTES (insn))
|
3113 |
|
|
REG_NOTES (insn) = copy_insn_1 (REG_NOTES (insn));
|
3114 |
|
|
}
|
3115 |
|
|
PATTERN (insn) = new_body;
|
3116 |
|
|
old_set = single_set (insn);
|
3117 |
|
|
|
3118 |
|
|
/* First see if this insn remains valid when we make the
|
3119 |
|
|
change. If not, try to replace the whole pattern with
|
3120 |
|
|
a simple set (this may help if the original insn was a
|
3121 |
|
|
PARALLEL that was only recognized as single_set due to
|
3122 |
|
|
REG_UNUSED notes). If this isn't valid either, keep
|
3123 |
|
|
the INSN_CODE the same and let reload fix it up. */
|
3124 |
|
|
if (!validate_change (insn, &SET_SRC (old_set), new_src, 0))
|
3125 |
|
|
{
|
3126 |
|
|
rtx new_pat = gen_rtx_SET (VOIDmode,
|
3127 |
|
|
SET_DEST (old_set), new_src);
|
3128 |
|
|
|
3129 |
|
|
if (!validate_change (insn, &PATTERN (insn), new_pat, 0))
|
3130 |
|
|
SET_SRC (old_set) = new_src;
|
3131 |
|
|
}
|
3132 |
|
|
}
|
3133 |
|
|
else
|
3134 |
|
|
break;
|
3135 |
|
|
|
3136 |
|
|
val = 1;
|
3137 |
|
|
/* This can't have an effect on elimination offsets, so skip right
|
3138 |
|
|
to the end. */
|
3139 |
|
|
goto done;
|
3140 |
|
|
}
|
3141 |
|
|
}
|
3142 |
|
|
|
3143 |
|
|
/* Determine the effects of this insn on elimination offsets. */
|
3144 |
|
|
elimination_effects (old_body, 0);
|
3145 |
|
|
|
3146 |
|
|
/* Eliminate all eliminable registers occurring in operands that
|
3147 |
|
|
can be handled by reload. */
|
3148 |
|
|
extract_insn (insn);
|
3149 |
|
|
for (i = 0; i < recog_data.n_operands; i++)
|
3150 |
|
|
{
|
3151 |
|
|
orig_operand[i] = recog_data.operand[i];
|
3152 |
|
|
substed_operand[i] = recog_data.operand[i];
|
3153 |
|
|
|
3154 |
|
|
/* For an asm statement, every operand is eliminable. */
|
3155 |
|
|
if (insn_is_asm || insn_data[icode].operand[i].eliminable)
|
3156 |
|
|
{
|
3157 |
|
|
bool is_set_src, in_plus;
|
3158 |
|
|
|
3159 |
|
|
/* Check for setting a register that we know about. */
|
3160 |
|
|
if (recog_data.operand_type[i] != OP_IN
|
3161 |
|
|
&& REG_P (orig_operand[i]))
|
3162 |
|
|
{
|
3163 |
|
|
/* If we are assigning to a register that can be eliminated, it
|
3164 |
|
|
must be as part of a PARALLEL, since the code above handles
|
3165 |
|
|
single SETs. We must indicate that we can no longer
|
3166 |
|
|
eliminate this reg. */
|
3167 |
|
|
for (ep = reg_eliminate; ep < ®_eliminate[NUM_ELIMINABLE_REGS];
|
3168 |
|
|
ep++)
|
3169 |
|
|
if (ep->from_rtx == orig_operand[i])
|
3170 |
|
|
ep->can_eliminate = 0;
|
3171 |
|
|
}
|
3172 |
|
|
|
3173 |
|
|
/* Companion to the above plus substitution, we can allow
|
3174 |
|
|
invariants as the source of a plain move. */
|
3175 |
|
|
is_set_src = false;
|
3176 |
|
|
if (old_set && recog_data.operand_loc[i] == &SET_SRC (old_set))
|
3177 |
|
|
is_set_src = true;
|
3178 |
|
|
in_plus = false;
|
3179 |
|
|
if (plus_src
|
3180 |
|
|
&& (recog_data.operand_loc[i] == &XEXP (plus_src, 0)
|
3181 |
|
|
|| recog_data.operand_loc[i] == &XEXP (plus_src, 1)))
|
3182 |
|
|
in_plus = true;
|
3183 |
|
|
|
3184 |
|
|
substed_operand[i]
|
3185 |
|
|
= eliminate_regs_1 (recog_data.operand[i], 0,
|
3186 |
|
|
replace ? insn : NULL_RTX,
|
3187 |
|
|
is_set_src || in_plus);
|
3188 |
|
|
if (substed_operand[i] != orig_operand[i])
|
3189 |
|
|
val = 1;
|
3190 |
|
|
/* Terminate the search in check_eliminable_occurrences at
|
3191 |
|
|
this point. */
|
3192 |
|
|
*recog_data.operand_loc[i] = 0;
|
3193 |
|
|
|
3194 |
|
|
/* If an output operand changed from a REG to a MEM and INSN is an
|
3195 |
|
|
insn, write a CLOBBER insn. */
|
3196 |
|
|
if (recog_data.operand_type[i] != OP_IN
|
3197 |
|
|
&& REG_P (orig_operand[i])
|
3198 |
|
|
&& MEM_P (substed_operand[i])
|
3199 |
|
|
&& replace)
|
3200 |
|
|
emit_insn_after (gen_rtx_CLOBBER (VOIDmode, orig_operand[i]),
|
3201 |
|
|
insn);
|
3202 |
|
|
}
|
3203 |
|
|
}
|
3204 |
|
|
|
3205 |
|
|
for (i = 0; i < recog_data.n_dups; i++)
|
3206 |
|
|
*recog_data.dup_loc[i]
|
3207 |
|
|
= *recog_data.operand_loc[(int) recog_data.dup_num[i]];
|
3208 |
|
|
|
3209 |
|
|
/* If any eliminable remain, they aren't eliminable anymore. */
|
3210 |
|
|
check_eliminable_occurrences (old_body);
|
3211 |
|
|
|
3212 |
|
|
/* Substitute the operands; the new values are in the substed_operand
|
3213 |
|
|
array. */
|
3214 |
|
|
for (i = 0; i < recog_data.n_operands; i++)
|
3215 |
|
|
*recog_data.operand_loc[i] = substed_operand[i];
|
3216 |
|
|
for (i = 0; i < recog_data.n_dups; i++)
|
3217 |
|
|
*recog_data.dup_loc[i] = substed_operand[(int) recog_data.dup_num[i]];
|
3218 |
|
|
|
3219 |
|
|
/* If we are replacing a body that was a (set X (plus Y Z)), try to
|
3220 |
|
|
re-recognize the insn. We do this in case we had a simple addition
|
3221 |
|
|
but now can do this as a load-address. This saves an insn in this
|
3222 |
|
|
common case.
|
3223 |
|
|
If re-recognition fails, the old insn code number will still be used,
|
3224 |
|
|
and some register operands may have changed into PLUS expressions.
|
3225 |
|
|
These will be handled by find_reloads by loading them into a register
|
3226 |
|
|
again. */
|
3227 |
|
|
|
3228 |
|
|
if (val)
|
3229 |
|
|
{
|
3230 |
|
|
/* If we aren't replacing things permanently and we changed something,
|
3231 |
|
|
make another copy to ensure that all the RTL is new. Otherwise
|
3232 |
|
|
things can go wrong if find_reload swaps commutative operands
|
3233 |
|
|
and one is inside RTL that has been copied while the other is not. */
|
3234 |
|
|
new_body = old_body;
|
3235 |
|
|
if (! replace)
|
3236 |
|
|
{
|
3237 |
|
|
new_body = copy_insn (old_body);
|
3238 |
|
|
if (REG_NOTES (insn))
|
3239 |
|
|
REG_NOTES (insn) = copy_insn_1 (REG_NOTES (insn));
|
3240 |
|
|
}
|
3241 |
|
|
PATTERN (insn) = new_body;
|
3242 |
|
|
|
3243 |
|
|
/* If we had a move insn but now we don't, rerecognize it. This will
|
3244 |
|
|
cause spurious re-recognition if the old move had a PARALLEL since
|
3245 |
|
|
the new one still will, but we can't call single_set without
|
3246 |
|
|
having put NEW_BODY into the insn and the re-recognition won't
|
3247 |
|
|
hurt in this rare case. */
|
3248 |
|
|
/* ??? Why this huge if statement - why don't we just rerecognize the
|
3249 |
|
|
thing always? */
|
3250 |
|
|
if (! insn_is_asm
|
3251 |
|
|
&& old_set != 0
|
3252 |
|
|
&& ((REG_P (SET_SRC (old_set))
|
3253 |
|
|
&& (GET_CODE (new_body) != SET
|
3254 |
|
|
|| !REG_P (SET_SRC (new_body))))
|
3255 |
|
|
/* If this was a load from or store to memory, compare
|
3256 |
|
|
the MEM in recog_data.operand to the one in the insn.
|
3257 |
|
|
If they are not equal, then rerecognize the insn. */
|
3258 |
|
|
|| (old_set != 0
|
3259 |
|
|
&& ((MEM_P (SET_SRC (old_set))
|
3260 |
|
|
&& SET_SRC (old_set) != recog_data.operand[1])
|
3261 |
|
|
|| (MEM_P (SET_DEST (old_set))
|
3262 |
|
|
&& SET_DEST (old_set) != recog_data.operand[0])))
|
3263 |
|
|
/* If this was an add insn before, rerecognize. */
|
3264 |
|
|
|| GET_CODE (SET_SRC (old_set)) == PLUS))
|
3265 |
|
|
{
|
3266 |
|
|
int new_icode = recog (PATTERN (insn), insn, 0);
|
3267 |
|
|
if (new_icode >= 0)
|
3268 |
|
|
INSN_CODE (insn) = new_icode;
|
3269 |
|
|
}
|
3270 |
|
|
}
|
3271 |
|
|
|
3272 |
|
|
/* Restore the old body. If there were any changes to it, we made a copy
|
3273 |
|
|
of it while the changes were still in place, so we'll correctly return
|
3274 |
|
|
a modified insn below. */
|
3275 |
|
|
if (! replace)
|
3276 |
|
|
{
|
3277 |
|
|
/* Restore the old body. */
|
3278 |
|
|
for (i = 0; i < recog_data.n_operands; i++)
|
3279 |
|
|
*recog_data.operand_loc[i] = orig_operand[i];
|
3280 |
|
|
for (i = 0; i < recog_data.n_dups; i++)
|
3281 |
|
|
*recog_data.dup_loc[i] = orig_operand[(int) recog_data.dup_num[i]];
|
3282 |
|
|
}
|
3283 |
|
|
|
3284 |
|
|
/* Update all elimination pairs to reflect the status after the current
|
3285 |
|
|
insn. The changes we make were determined by the earlier call to
|
3286 |
|
|
elimination_effects.
|
3287 |
|
|
|
3288 |
|
|
We also detect cases where register elimination cannot be done,
|
3289 |
|
|
namely, if a register would be both changed and referenced outside a MEM
|
3290 |
|
|
in the resulting insn since such an insn is often undefined and, even if
|
3291 |
|
|
not, we cannot know what meaning will be given to it. Note that it is
|
3292 |
|
|
valid to have a register used in an address in an insn that changes it
|
3293 |
|
|
(presumably with a pre- or post-increment or decrement).
|
3294 |
|
|
|
3295 |
|
|
If anything changes, return nonzero. */
|
3296 |
|
|
|
3297 |
|
|
for (ep = reg_eliminate; ep < ®_eliminate[NUM_ELIMINABLE_REGS]; ep++)
|
3298 |
|
|
{
|
3299 |
|
|
if (ep->previous_offset != ep->offset && ep->ref_outside_mem)
|
3300 |
|
|
ep->can_eliminate = 0;
|
3301 |
|
|
|
3302 |
|
|
ep->ref_outside_mem = 0;
|
3303 |
|
|
|
3304 |
|
|
if (ep->previous_offset != ep->offset)
|
3305 |
|
|
val = 1;
|
3306 |
|
|
}
|
3307 |
|
|
|
3308 |
|
|
done:
|
3309 |
|
|
/* If we changed something, perform elimination in REG_NOTES. This is
|
3310 |
|
|
needed even when REPLACE is zero because a REG_DEAD note might refer
|
3311 |
|
|
to a register that we eliminate and could cause a different number
|
3312 |
|
|
of spill registers to be needed in the final reload pass than in
|
3313 |
|
|
the pre-passes. */
|
3314 |
|
|
if (val && REG_NOTES (insn) != 0)
|
3315 |
|
|
REG_NOTES (insn)
|
3316 |
|
|
= eliminate_regs_1 (REG_NOTES (insn), 0, REG_NOTES (insn), true);
|
3317 |
|
|
|
3318 |
|
|
return val;
|
3319 |
|
|
}
|
3320 |
|
|
|
3321 |
|
|
/* Loop through all elimination pairs.
|
3322 |
|
|
Recalculate the number not at initial offset.
|
3323 |
|
|
|
3324 |
|
|
Compute the maximum offset (minimum offset if the stack does not
|
3325 |
|
|
grow downward) for each elimination pair. */
|
3326 |
|
|
|
3327 |
|
|
static void
|
3328 |
|
|
update_eliminable_offsets (void)
|
3329 |
|
|
{
|
3330 |
|
|
struct elim_table *ep;
|
3331 |
|
|
|
3332 |
|
|
num_not_at_initial_offset = 0;
|
3333 |
|
|
for (ep = reg_eliminate; ep < ®_eliminate[NUM_ELIMINABLE_REGS]; ep++)
|
3334 |
|
|
{
|
3335 |
|
|
ep->previous_offset = ep->offset;
|
3336 |
|
|
if (ep->can_eliminate && ep->offset != ep->initial_offset)
|
3337 |
|
|
num_not_at_initial_offset++;
|
3338 |
|
|
}
|
3339 |
|
|
}
|
3340 |
|
|
|
3341 |
|
|
/* Given X, a SET or CLOBBER of DEST, if DEST is the target of a register
|
3342 |
|
|
replacement we currently believe is valid, mark it as not eliminable if X
|
3343 |
|
|
modifies DEST in any way other than by adding a constant integer to it.
|
3344 |
|
|
|
3345 |
|
|
If DEST is the frame pointer, we do nothing because we assume that
|
3346 |
|
|
all assignments to the hard frame pointer are nonlocal gotos and are being
|
3347 |
|
|
done at a time when they are valid and do not disturb anything else.
|
3348 |
|
|
Some machines want to eliminate a fake argument pointer with either the
|
3349 |
|
|
frame or stack pointer. Assignments to the hard frame pointer must not
|
3350 |
|
|
prevent this elimination.
|
3351 |
|
|
|
3352 |
|
|
Called via note_stores from reload before starting its passes to scan
|
3353 |
|
|
the insns of the function. */
|
3354 |
|
|
|
3355 |
|
|
static void
|
3356 |
|
|
mark_not_eliminable (rtx dest, rtx x, void *data ATTRIBUTE_UNUSED)
|
3357 |
|
|
{
|
3358 |
|
|
unsigned int i;
|
3359 |
|
|
|
3360 |
|
|
/* A SUBREG of a hard register here is just changing its mode. We should
|
3361 |
|
|
not see a SUBREG of an eliminable hard register, but check just in
|
3362 |
|
|
case. */
|
3363 |
|
|
if (GET_CODE (dest) == SUBREG)
|
3364 |
|
|
dest = SUBREG_REG (dest);
|
3365 |
|
|
|
3366 |
|
|
if (dest == hard_frame_pointer_rtx)
|
3367 |
|
|
return;
|
3368 |
|
|
|
3369 |
|
|
for (i = 0; i < NUM_ELIMINABLE_REGS; i++)
|
3370 |
|
|
if (reg_eliminate[i].can_eliminate && dest == reg_eliminate[i].to_rtx
|
3371 |
|
|
&& (GET_CODE (x) != SET
|
3372 |
|
|
|| GET_CODE (SET_SRC (x)) != PLUS
|
3373 |
|
|
|| XEXP (SET_SRC (x), 0) != dest
|
3374 |
|
|
|| GET_CODE (XEXP (SET_SRC (x), 1)) != CONST_INT))
|
3375 |
|
|
{
|
3376 |
|
|
reg_eliminate[i].can_eliminate_previous
|
3377 |
|
|
= reg_eliminate[i].can_eliminate = 0;
|
3378 |
|
|
num_eliminable--;
|
3379 |
|
|
}
|
3380 |
|
|
}
|
3381 |
|
|
|
3382 |
|
|
/* Verify that the initial elimination offsets did not change since the
|
3383 |
|
|
last call to set_initial_elim_offsets. This is used to catch cases
|
3384 |
|
|
where something illegal happened during reload_as_needed that could
|
3385 |
|
|
cause incorrect code to be generated if we did not check for it. */
|
3386 |
|
|
|
3387 |
|
|
static bool
|
3388 |
|
|
verify_initial_elim_offsets (void)
|
3389 |
|
|
{
|
3390 |
|
|
HOST_WIDE_INT t;
|
3391 |
|
|
|
3392 |
|
|
if (!num_eliminable)
|
3393 |
|
|
return true;
|
3394 |
|
|
|
3395 |
|
|
#ifdef ELIMINABLE_REGS
|
3396 |
|
|
{
|
3397 |
|
|
struct elim_table *ep;
|
3398 |
|
|
|
3399 |
|
|
for (ep = reg_eliminate; ep < ®_eliminate[NUM_ELIMINABLE_REGS]; ep++)
|
3400 |
|
|
{
|
3401 |
|
|
INITIAL_ELIMINATION_OFFSET (ep->from, ep->to, t);
|
3402 |
|
|
if (t != ep->initial_offset)
|
3403 |
|
|
return false;
|
3404 |
|
|
}
|
3405 |
|
|
}
|
3406 |
|
|
#else
|
3407 |
|
|
INITIAL_FRAME_POINTER_OFFSET (t);
|
3408 |
|
|
if (t != reg_eliminate[0].initial_offset)
|
3409 |
|
|
return false;
|
3410 |
|
|
#endif
|
3411 |
|
|
|
3412 |
|
|
return true;
|
3413 |
|
|
}
|
3414 |
|
|
|
3415 |
|
|
/* Reset all offsets on eliminable registers to their initial values. */
|
3416 |
|
|
|
3417 |
|
|
static void
|
3418 |
|
|
set_initial_elim_offsets (void)
|
3419 |
|
|
{
|
3420 |
|
|
struct elim_table *ep = reg_eliminate;
|
3421 |
|
|
|
3422 |
|
|
#ifdef ELIMINABLE_REGS
|
3423 |
|
|
for (; ep < ®_eliminate[NUM_ELIMINABLE_REGS]; ep++)
|
3424 |
|
|
{
|
3425 |
|
|
INITIAL_ELIMINATION_OFFSET (ep->from, ep->to, ep->initial_offset);
|
3426 |
|
|
ep->previous_offset = ep->offset = ep->initial_offset;
|
3427 |
|
|
}
|
3428 |
|
|
#else
|
3429 |
|
|
INITIAL_FRAME_POINTER_OFFSET (ep->initial_offset);
|
3430 |
|
|
ep->previous_offset = ep->offset = ep->initial_offset;
|
3431 |
|
|
#endif
|
3432 |
|
|
|
3433 |
|
|
num_not_at_initial_offset = 0;
|
3434 |
|
|
}
|
3435 |
|
|
|
3436 |
|
|
/* Subroutine of set_initial_label_offsets called via for_each_eh_label. */
|
3437 |
|
|
|
3438 |
|
|
static void
|
3439 |
|
|
set_initial_eh_label_offset (rtx label)
|
3440 |
|
|
{
|
3441 |
|
|
set_label_offsets (label, NULL_RTX, 1);
|
3442 |
|
|
}
|
3443 |
|
|
|
3444 |
|
|
/* Initialize the known label offsets.
|
3445 |
|
|
Set a known offset for each forced label to be at the initial offset
|
3446 |
|
|
of each elimination. We do this because we assume that all
|
3447 |
|
|
computed jumps occur from a location where each elimination is
|
3448 |
|
|
at its initial offset.
|
3449 |
|
|
For all other labels, show that we don't know the offsets. */
|
3450 |
|
|
|
3451 |
|
|
static void
|
3452 |
|
|
set_initial_label_offsets (void)
|
3453 |
|
|
{
|
3454 |
|
|
rtx x;
|
3455 |
|
|
memset (offsets_known_at, 0, num_labels);
|
3456 |
|
|
|
3457 |
|
|
for (x = forced_labels; x; x = XEXP (x, 1))
|
3458 |
|
|
if (XEXP (x, 0))
|
3459 |
|
|
set_label_offsets (XEXP (x, 0), NULL_RTX, 1);
|
3460 |
|
|
|
3461 |
|
|
for_each_eh_label (set_initial_eh_label_offset);
|
3462 |
|
|
}
|
3463 |
|
|
|
3464 |
|
|
/* Set all elimination offsets to the known values for the code label given
|
3465 |
|
|
by INSN. */
|
3466 |
|
|
|
3467 |
|
|
static void
|
3468 |
|
|
set_offsets_for_label (rtx insn)
|
3469 |
|
|
{
|
3470 |
|
|
unsigned int i;
|
3471 |
|
|
int label_nr = CODE_LABEL_NUMBER (insn);
|
3472 |
|
|
struct elim_table *ep;
|
3473 |
|
|
|
3474 |
|
|
num_not_at_initial_offset = 0;
|
3475 |
|
|
for (i = 0, ep = reg_eliminate; i < NUM_ELIMINABLE_REGS; ep++, i++)
|
3476 |
|
|
{
|
3477 |
|
|
ep->offset = ep->previous_offset
|
3478 |
|
|
= offsets_at[label_nr - first_label_num][i];
|
3479 |
|
|
if (ep->can_eliminate && ep->offset != ep->initial_offset)
|
3480 |
|
|
num_not_at_initial_offset++;
|
3481 |
|
|
}
|
3482 |
|
|
}
|
3483 |
|
|
|
3484 |
|
|
/* See if anything that happened changes which eliminations are valid.
|
3485 |
|
|
For example, on the SPARC, whether or not the frame pointer can
|
3486 |
|
|
be eliminated can depend on what registers have been used. We need
|
3487 |
|
|
not check some conditions again (such as flag_omit_frame_pointer)
|
3488 |
|
|
since they can't have changed. */
|
3489 |
|
|
|
3490 |
|
|
static void
|
3491 |
|
|
update_eliminables (HARD_REG_SET *pset)
|
3492 |
|
|
{
|
3493 |
|
|
int previous_frame_pointer_needed = frame_pointer_needed;
|
3494 |
|
|
struct elim_table *ep;
|
3495 |
|
|
|
3496 |
|
|
for (ep = reg_eliminate; ep < ®_eliminate[NUM_ELIMINABLE_REGS]; ep++)
|
3497 |
|
|
if ((ep->from == HARD_FRAME_POINTER_REGNUM && FRAME_POINTER_REQUIRED)
|
3498 |
|
|
#ifdef ELIMINABLE_REGS
|
3499 |
|
|
|| ! CAN_ELIMINATE (ep->from, ep->to)
|
3500 |
|
|
#endif
|
3501 |
|
|
)
|
3502 |
|
|
ep->can_eliminate = 0;
|
3503 |
|
|
|
3504 |
|
|
/* Look for the case where we have discovered that we can't replace
|
3505 |
|
|
register A with register B and that means that we will now be
|
3506 |
|
|
trying to replace register A with register C. This means we can
|
3507 |
|
|
no longer replace register C with register B and we need to disable
|
3508 |
|
|
such an elimination, if it exists. This occurs often with A == ap,
|
3509 |
|
|
B == sp, and C == fp. */
|
3510 |
|
|
|
3511 |
|
|
for (ep = reg_eliminate; ep < ®_eliminate[NUM_ELIMINABLE_REGS]; ep++)
|
3512 |
|
|
{
|
3513 |
|
|
struct elim_table *op;
|
3514 |
|
|
int new_to = -1;
|
3515 |
|
|
|
3516 |
|
|
if (! ep->can_eliminate && ep->can_eliminate_previous)
|
3517 |
|
|
{
|
3518 |
|
|
/* Find the current elimination for ep->from, if there is a
|
3519 |
|
|
new one. */
|
3520 |
|
|
for (op = reg_eliminate;
|
3521 |
|
|
op < ®_eliminate[NUM_ELIMINABLE_REGS]; op++)
|
3522 |
|
|
if (op->from == ep->from && op->can_eliminate)
|
3523 |
|
|
{
|
3524 |
|
|
new_to = op->to;
|
3525 |
|
|
break;
|
3526 |
|
|
}
|
3527 |
|
|
|
3528 |
|
|
/* See if there is an elimination of NEW_TO -> EP->TO. If so,
|
3529 |
|
|
disable it. */
|
3530 |
|
|
for (op = reg_eliminate;
|
3531 |
|
|
op < ®_eliminate[NUM_ELIMINABLE_REGS]; op++)
|
3532 |
|
|
if (op->from == new_to && op->to == ep->to)
|
3533 |
|
|
op->can_eliminate = 0;
|
3534 |
|
|
}
|
3535 |
|
|
}
|
3536 |
|
|
|
3537 |
|
|
/* See if any registers that we thought we could eliminate the previous
|
3538 |
|
|
time are no longer eliminable. If so, something has changed and we
|
3539 |
|
|
must spill the register. Also, recompute the number of eliminable
|
3540 |
|
|
registers and see if the frame pointer is needed; it is if there is
|
3541 |
|
|
no elimination of the frame pointer that we can perform. */
|
3542 |
|
|
|
3543 |
|
|
frame_pointer_needed = 1;
|
3544 |
|
|
for (ep = reg_eliminate; ep < ®_eliminate[NUM_ELIMINABLE_REGS]; ep++)
|
3545 |
|
|
{
|
3546 |
|
|
if (ep->can_eliminate && ep->from == FRAME_POINTER_REGNUM
|
3547 |
|
|
&& ep->to != HARD_FRAME_POINTER_REGNUM)
|
3548 |
|
|
frame_pointer_needed = 0;
|
3549 |
|
|
|
3550 |
|
|
if (! ep->can_eliminate && ep->can_eliminate_previous)
|
3551 |
|
|
{
|
3552 |
|
|
ep->can_eliminate_previous = 0;
|
3553 |
|
|
SET_HARD_REG_BIT (*pset, ep->from);
|
3554 |
|
|
num_eliminable--;
|
3555 |
|
|
}
|
3556 |
|
|
}
|
3557 |
|
|
|
3558 |
|
|
/* If we didn't need a frame pointer last time, but we do now, spill
|
3559 |
|
|
the hard frame pointer. */
|
3560 |
|
|
if (frame_pointer_needed && ! previous_frame_pointer_needed)
|
3561 |
|
|
SET_HARD_REG_BIT (*pset, HARD_FRAME_POINTER_REGNUM);
|
3562 |
|
|
}
|
3563 |
|
|
|
3564 |
|
|
/* Initialize the table of registers to eliminate. */
|
3565 |
|
|
|
3566 |
|
|
static void
|
3567 |
|
|
init_elim_table (void)
|
3568 |
|
|
{
|
3569 |
|
|
struct elim_table *ep;
|
3570 |
|
|
#ifdef ELIMINABLE_REGS
|
3571 |
|
|
const struct elim_table_1 *ep1;
|
3572 |
|
|
#endif
|
3573 |
|
|
|
3574 |
|
|
if (!reg_eliminate)
|
3575 |
|
|
reg_eliminate = xcalloc (sizeof (struct elim_table), NUM_ELIMINABLE_REGS);
|
3576 |
|
|
|
3577 |
|
|
/* Does this function require a frame pointer? */
|
3578 |
|
|
|
3579 |
|
|
frame_pointer_needed = (! flag_omit_frame_pointer
|
3580 |
|
|
/* ?? If EXIT_IGNORE_STACK is set, we will not save
|
3581 |
|
|
and restore sp for alloca. So we can't eliminate
|
3582 |
|
|
the frame pointer in that case. At some point,
|
3583 |
|
|
we should improve this by emitting the
|
3584 |
|
|
sp-adjusting insns for this case. */
|
3585 |
|
|
|| (current_function_calls_alloca
|
3586 |
|
|
&& EXIT_IGNORE_STACK)
|
3587 |
|
|
|| current_function_accesses_prior_frames
|
3588 |
|
|
|| FRAME_POINTER_REQUIRED);
|
3589 |
|
|
|
3590 |
|
|
num_eliminable = 0;
|
3591 |
|
|
|
3592 |
|
|
#ifdef ELIMINABLE_REGS
|
3593 |
|
|
for (ep = reg_eliminate, ep1 = reg_eliminate_1;
|
3594 |
|
|
ep < ®_eliminate[NUM_ELIMINABLE_REGS]; ep++, ep1++)
|
3595 |
|
|
{
|
3596 |
|
|
ep->from = ep1->from;
|
3597 |
|
|
ep->to = ep1->to;
|
3598 |
|
|
ep->can_eliminate = ep->can_eliminate_previous
|
3599 |
|
|
= (CAN_ELIMINATE (ep->from, ep->to)
|
3600 |
|
|
&& ! (ep->to == STACK_POINTER_REGNUM && frame_pointer_needed));
|
3601 |
|
|
}
|
3602 |
|
|
#else
|
3603 |
|
|
reg_eliminate[0].from = reg_eliminate_1[0].from;
|
3604 |
|
|
reg_eliminate[0].to = reg_eliminate_1[0].to;
|
3605 |
|
|
reg_eliminate[0].can_eliminate = reg_eliminate[0].can_eliminate_previous
|
3606 |
|
|
= ! frame_pointer_needed;
|
3607 |
|
|
#endif
|
3608 |
|
|
|
3609 |
|
|
/* Count the number of eliminable registers and build the FROM and TO
|
3610 |
|
|
REG rtx's. Note that code in gen_rtx_REG will cause, e.g.,
|
3611 |
|
|
gen_rtx_REG (Pmode, STACK_POINTER_REGNUM) to equal stack_pointer_rtx.
|
3612 |
|
|
We depend on this. */
|
3613 |
|
|
for (ep = reg_eliminate; ep < ®_eliminate[NUM_ELIMINABLE_REGS]; ep++)
|
3614 |
|
|
{
|
3615 |
|
|
num_eliminable += ep->can_eliminate;
|
3616 |
|
|
ep->from_rtx = gen_rtx_REG (Pmode, ep->from);
|
3617 |
|
|
ep->to_rtx = gen_rtx_REG (Pmode, ep->to);
|
3618 |
|
|
}
|
3619 |
|
|
}
|
3620 |
|
|
|
3621 |
|
|
/* Kick all pseudos out of hard register REGNO.
|
3622 |
|
|
|
3623 |
|
|
If CANT_ELIMINATE is nonzero, it means that we are doing this spill
|
3624 |
|
|
because we found we can't eliminate some register. In the case, no pseudos
|
3625 |
|
|
are allowed to be in the register, even if they are only in a block that
|
3626 |
|
|
doesn't require spill registers, unlike the case when we are spilling this
|
3627 |
|
|
hard reg to produce another spill register.
|
3628 |
|
|
|
3629 |
|
|
Return nonzero if any pseudos needed to be kicked out. */
|
3630 |
|
|
|
3631 |
|
|
static void
|
3632 |
|
|
spill_hard_reg (unsigned int regno, int cant_eliminate)
|
3633 |
|
|
{
|
3634 |
|
|
int i;
|
3635 |
|
|
|
3636 |
|
|
if (cant_eliminate)
|
3637 |
|
|
{
|
3638 |
|
|
SET_HARD_REG_BIT (bad_spill_regs_global, regno);
|
3639 |
|
|
regs_ever_live[regno] = 1;
|
3640 |
|
|
}
|
3641 |
|
|
|
3642 |
|
|
/* Spill every pseudo reg that was allocated to this reg
|
3643 |
|
|
or to something that overlaps this reg. */
|
3644 |
|
|
|
3645 |
|
|
for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
|
3646 |
|
|
if (reg_renumber[i] >= 0
|
3647 |
|
|
&& (unsigned int) reg_renumber[i] <= regno
|
3648 |
|
|
&& ((unsigned int) reg_renumber[i]
|
3649 |
|
|
+ hard_regno_nregs[(unsigned int) reg_renumber[i]]
|
3650 |
|
|
[PSEUDO_REGNO_MODE (i)]
|
3651 |
|
|
> regno))
|
3652 |
|
|
SET_REGNO_REG_SET (&spilled_pseudos, i);
|
3653 |
|
|
}
|
3654 |
|
|
|
3655 |
|
|
/* After find_reload_regs has been run for all insn that need reloads,
|
3656 |
|
|
and/or spill_hard_regs was called, this function is used to actually
|
3657 |
|
|
spill pseudo registers and try to reallocate them. It also sets up the
|
3658 |
|
|
spill_regs array for use by choose_reload_regs. */
|
3659 |
|
|
|
3660 |
|
|
static int
|
3661 |
|
|
finish_spills (int global)
|
3662 |
|
|
{
|
3663 |
|
|
struct insn_chain *chain;
|
3664 |
|
|
int something_changed = 0;
|
3665 |
|
|
unsigned i;
|
3666 |
|
|
reg_set_iterator rsi;
|
3667 |
|
|
|
3668 |
|
|
/* Build the spill_regs array for the function. */
|
3669 |
|
|
/* If there are some registers still to eliminate and one of the spill regs
|
3670 |
|
|
wasn't ever used before, additional stack space may have to be
|
3671 |
|
|
allocated to store this register. Thus, we may have changed the offset
|
3672 |
|
|
between the stack and frame pointers, so mark that something has changed.
|
3673 |
|
|
|
3674 |
|
|
One might think that we need only set VAL to 1 if this is a call-used
|
3675 |
|
|
register. However, the set of registers that must be saved by the
|
3676 |
|
|
prologue is not identical to the call-used set. For example, the
|
3677 |
|
|
register used by the call insn for the return PC is a call-used register,
|
3678 |
|
|
but must be saved by the prologue. */
|
3679 |
|
|
|
3680 |
|
|
n_spills = 0;
|
3681 |
|
|
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
|
3682 |
|
|
if (TEST_HARD_REG_BIT (used_spill_regs, i))
|
3683 |
|
|
{
|
3684 |
|
|
spill_reg_order[i] = n_spills;
|
3685 |
|
|
spill_regs[n_spills++] = i;
|
3686 |
|
|
if (num_eliminable && ! regs_ever_live[i])
|
3687 |
|
|
something_changed = 1;
|
3688 |
|
|
regs_ever_live[i] = 1;
|
3689 |
|
|
}
|
3690 |
|
|
else
|
3691 |
|
|
spill_reg_order[i] = -1;
|
3692 |
|
|
|
3693 |
|
|
EXECUTE_IF_SET_IN_REG_SET (&spilled_pseudos, FIRST_PSEUDO_REGISTER, i, rsi)
|
3694 |
|
|
{
|
3695 |
|
|
/* Record the current hard register the pseudo is allocated to in
|
3696 |
|
|
pseudo_previous_regs so we avoid reallocating it to the same
|
3697 |
|
|
hard reg in a later pass. */
|
3698 |
|
|
gcc_assert (reg_renumber[i] >= 0);
|
3699 |
|
|
|
3700 |
|
|
SET_HARD_REG_BIT (pseudo_previous_regs[i], reg_renumber[i]);
|
3701 |
|
|
/* Mark it as no longer having a hard register home. */
|
3702 |
|
|
reg_renumber[i] = -1;
|
3703 |
|
|
/* We will need to scan everything again. */
|
3704 |
|
|
something_changed = 1;
|
3705 |
|
|
}
|
3706 |
|
|
|
3707 |
|
|
/* Retry global register allocation if possible. */
|
3708 |
|
|
if (global)
|
3709 |
|
|
{
|
3710 |
|
|
memset (pseudo_forbidden_regs, 0, max_regno * sizeof (HARD_REG_SET));
|
3711 |
|
|
/* For every insn that needs reloads, set the registers used as spill
|
3712 |
|
|
regs in pseudo_forbidden_regs for every pseudo live across the
|
3713 |
|
|
insn. */
|
3714 |
|
|
for (chain = insns_need_reload; chain; chain = chain->next_need_reload)
|
3715 |
|
|
{
|
3716 |
|
|
EXECUTE_IF_SET_IN_REG_SET
|
3717 |
|
|
(&chain->live_throughout, FIRST_PSEUDO_REGISTER, i, rsi)
|
3718 |
|
|
{
|
3719 |
|
|
IOR_HARD_REG_SET (pseudo_forbidden_regs[i],
|
3720 |
|
|
chain->used_spill_regs);
|
3721 |
|
|
}
|
3722 |
|
|
EXECUTE_IF_SET_IN_REG_SET
|
3723 |
|
|
(&chain->dead_or_set, FIRST_PSEUDO_REGISTER, i, rsi)
|
3724 |
|
|
{
|
3725 |
|
|
IOR_HARD_REG_SET (pseudo_forbidden_regs[i],
|
3726 |
|
|
chain->used_spill_regs);
|
3727 |
|
|
}
|
3728 |
|
|
}
|
3729 |
|
|
|
3730 |
|
|
/* Retry allocating the spilled pseudos. For each reg, merge the
|
3731 |
|
|
various reg sets that indicate which hard regs can't be used,
|
3732 |
|
|
and call retry_global_alloc.
|
3733 |
|
|
We change spill_pseudos here to only contain pseudos that did not
|
3734 |
|
|
get a new hard register. */
|
3735 |
|
|
for (i = FIRST_PSEUDO_REGISTER; i < (unsigned)max_regno; i++)
|
3736 |
|
|
if (reg_old_renumber[i] != reg_renumber[i])
|
3737 |
|
|
{
|
3738 |
|
|
HARD_REG_SET forbidden;
|
3739 |
|
|
COPY_HARD_REG_SET (forbidden, bad_spill_regs_global);
|
3740 |
|
|
IOR_HARD_REG_SET (forbidden, pseudo_forbidden_regs[i]);
|
3741 |
|
|
IOR_HARD_REG_SET (forbidden, pseudo_previous_regs[i]);
|
3742 |
|
|
retry_global_alloc (i, forbidden);
|
3743 |
|
|
if (reg_renumber[i] >= 0)
|
3744 |
|
|
CLEAR_REGNO_REG_SET (&spilled_pseudos, i);
|
3745 |
|
|
}
|
3746 |
|
|
}
|
3747 |
|
|
|
3748 |
|
|
/* Fix up the register information in the insn chain.
|
3749 |
|
|
This involves deleting those of the spilled pseudos which did not get
|
3750 |
|
|
a new hard register home from the live_{before,after} sets. */
|
3751 |
|
|
for (chain = reload_insn_chain; chain; chain = chain->next)
|
3752 |
|
|
{
|
3753 |
|
|
HARD_REG_SET used_by_pseudos;
|
3754 |
|
|
HARD_REG_SET used_by_pseudos2;
|
3755 |
|
|
|
3756 |
|
|
AND_COMPL_REG_SET (&chain->live_throughout, &spilled_pseudos);
|
3757 |
|
|
AND_COMPL_REG_SET (&chain->dead_or_set, &spilled_pseudos);
|
3758 |
|
|
|
3759 |
|
|
/* Mark any unallocated hard regs as available for spills. That
|
3760 |
|
|
makes inheritance work somewhat better. */
|
3761 |
|
|
if (chain->need_reload)
|
3762 |
|
|
{
|
3763 |
|
|
REG_SET_TO_HARD_REG_SET (used_by_pseudos, &chain->live_throughout);
|
3764 |
|
|
REG_SET_TO_HARD_REG_SET (used_by_pseudos2, &chain->dead_or_set);
|
3765 |
|
|
IOR_HARD_REG_SET (used_by_pseudos, used_by_pseudos2);
|
3766 |
|
|
|
3767 |
|
|
/* Save the old value for the sanity test below. */
|
3768 |
|
|
COPY_HARD_REG_SET (used_by_pseudos2, chain->used_spill_regs);
|
3769 |
|
|
|
3770 |
|
|
compute_use_by_pseudos (&used_by_pseudos, &chain->live_throughout);
|
3771 |
|
|
compute_use_by_pseudos (&used_by_pseudos, &chain->dead_or_set);
|
3772 |
|
|
COMPL_HARD_REG_SET (chain->used_spill_regs, used_by_pseudos);
|
3773 |
|
|
AND_HARD_REG_SET (chain->used_spill_regs, used_spill_regs);
|
3774 |
|
|
|
3775 |
|
|
/* Make sure we only enlarge the set. */
|
3776 |
|
|
GO_IF_HARD_REG_SUBSET (used_by_pseudos2, chain->used_spill_regs, ok);
|
3777 |
|
|
gcc_unreachable ();
|
3778 |
|
|
ok:;
|
3779 |
|
|
}
|
3780 |
|
|
}
|
3781 |
|
|
|
3782 |
|
|
/* Let alter_reg modify the reg rtx's for the modified pseudos. */
|
3783 |
|
|
for (i = FIRST_PSEUDO_REGISTER; i < (unsigned)max_regno; i++)
|
3784 |
|
|
{
|
3785 |
|
|
int regno = reg_renumber[i];
|
3786 |
|
|
if (reg_old_renumber[i] == regno)
|
3787 |
|
|
continue;
|
3788 |
|
|
|
3789 |
|
|
alter_reg (i, reg_old_renumber[i]);
|
3790 |
|
|
reg_old_renumber[i] = regno;
|
3791 |
|
|
if (dump_file)
|
3792 |
|
|
{
|
3793 |
|
|
if (regno == -1)
|
3794 |
|
|
fprintf (dump_file, " Register %d now on stack.\n\n", i);
|
3795 |
|
|
else
|
3796 |
|
|
fprintf (dump_file, " Register %d now in %d.\n\n",
|
3797 |
|
|
i, reg_renumber[i]);
|
3798 |
|
|
}
|
3799 |
|
|
}
|
3800 |
|
|
|
3801 |
|
|
return something_changed;
|
3802 |
|
|
}
|
3803 |
|
|
|
3804 |
|
|
/* Find all paradoxical subregs within X and update reg_max_ref_width. */
|
3805 |
|
|
|
3806 |
|
|
static void
|
3807 |
|
|
scan_paradoxical_subregs (rtx x)
|
3808 |
|
|
{
|
3809 |
|
|
int i;
|
3810 |
|
|
const char *fmt;
|
3811 |
|
|
enum rtx_code code = GET_CODE (x);
|
3812 |
|
|
|
3813 |
|
|
switch (code)
|
3814 |
|
|
{
|
3815 |
|
|
case REG:
|
3816 |
|
|
case CONST_INT:
|
3817 |
|
|
case CONST:
|
3818 |
|
|
case SYMBOL_REF:
|
3819 |
|
|
case LABEL_REF:
|
3820 |
|
|
case CONST_DOUBLE:
|
3821 |
|
|
case CONST_VECTOR: /* shouldn't happen, but just in case. */
|
3822 |
|
|
case CC0:
|
3823 |
|
|
case PC:
|
3824 |
|
|
case USE:
|
3825 |
|
|
case CLOBBER:
|
3826 |
|
|
return;
|
3827 |
|
|
|
3828 |
|
|
case SUBREG:
|
3829 |
|
|
if (REG_P (SUBREG_REG (x))
|
3830 |
|
|
&& (GET_MODE_SIZE (GET_MODE (x))
|
3831 |
|
|
> reg_max_ref_width[REGNO (SUBREG_REG (x))]))
|
3832 |
|
|
reg_max_ref_width[REGNO (SUBREG_REG (x))]
|
3833 |
|
|
= GET_MODE_SIZE (GET_MODE (x));
|
3834 |
|
|
return;
|
3835 |
|
|
|
3836 |
|
|
default:
|
3837 |
|
|
break;
|
3838 |
|
|
}
|
3839 |
|
|
|
3840 |
|
|
fmt = GET_RTX_FORMAT (code);
|
3841 |
|
|
for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
|
3842 |
|
|
{
|
3843 |
|
|
if (fmt[i] == 'e')
|
3844 |
|
|
scan_paradoxical_subregs (XEXP (x, i));
|
3845 |
|
|
else if (fmt[i] == 'E')
|
3846 |
|
|
{
|
3847 |
|
|
int j;
|
3848 |
|
|
for (j = XVECLEN (x, i) - 1; j >= 0; j--)
|
3849 |
|
|
scan_paradoxical_subregs (XVECEXP (x, i, j));
|
3850 |
|
|
}
|
3851 |
|
|
}
|
3852 |
|
|
}
|
3853 |
|
|
|
3854 |
|
|
/* A subroutine of reload_as_needed. If INSN has a REG_EH_REGION note,
|
3855 |
|
|
examine all of the reload insns between PREV and NEXT exclusive, and
|
3856 |
|
|
annotate all that may trap. */
|
3857 |
|
|
|
3858 |
|
|
static void
|
3859 |
|
|
fixup_eh_region_note (rtx insn, rtx prev, rtx next)
|
3860 |
|
|
{
|
3861 |
|
|
rtx note = find_reg_note (insn, REG_EH_REGION, NULL_RTX);
|
3862 |
|
|
unsigned int trap_count;
|
3863 |
|
|
rtx i;
|
3864 |
|
|
|
3865 |
|
|
if (note == NULL)
|
3866 |
|
|
return;
|
3867 |
|
|
|
3868 |
|
|
if (may_trap_p (PATTERN (insn)))
|
3869 |
|
|
trap_count = 1;
|
3870 |
|
|
else
|
3871 |
|
|
{
|
3872 |
|
|
remove_note (insn, note);
|
3873 |
|
|
trap_count = 0;
|
3874 |
|
|
}
|
3875 |
|
|
|
3876 |
|
|
for (i = NEXT_INSN (prev); i != next; i = NEXT_INSN (i))
|
3877 |
|
|
if (INSN_P (i) && i != insn && may_trap_p (PATTERN (i)))
|
3878 |
|
|
{
|
3879 |
|
|
trap_count++;
|
3880 |
|
|
REG_NOTES (i)
|
3881 |
|
|
= gen_rtx_EXPR_LIST (REG_EH_REGION, XEXP (note, 0), REG_NOTES (i));
|
3882 |
|
|
}
|
3883 |
|
|
}
|
3884 |
|
|
|
3885 |
|
|
/* Reload pseudo-registers into hard regs around each insn as needed.
|
3886 |
|
|
Additional register load insns are output before the insn that needs it
|
3887 |
|
|
and perhaps store insns after insns that modify the reloaded pseudo reg.
|
3888 |
|
|
|
3889 |
|
|
reg_last_reload_reg and reg_reloaded_contents keep track of
|
3890 |
|
|
which registers are already available in reload registers.
|
3891 |
|
|
We update these for the reloads that we perform,
|
3892 |
|
|
as the insns are scanned. */
|
3893 |
|
|
|
3894 |
|
|
static void
|
3895 |
|
|
reload_as_needed (int live_known)
|
3896 |
|
|
{
|
3897 |
|
|
struct insn_chain *chain;
|
3898 |
|
|
#if defined (AUTO_INC_DEC)
|
3899 |
|
|
int i;
|
3900 |
|
|
#endif
|
3901 |
|
|
rtx x;
|
3902 |
|
|
|
3903 |
|
|
memset (spill_reg_rtx, 0, sizeof spill_reg_rtx);
|
3904 |
|
|
memset (spill_reg_store, 0, sizeof spill_reg_store);
|
3905 |
|
|
reg_last_reload_reg = XCNEWVEC (rtx, max_regno);
|
3906 |
|
|
INIT_REG_SET (®_has_output_reload);
|
3907 |
|
|
CLEAR_HARD_REG_SET (reg_reloaded_valid);
|
3908 |
|
|
CLEAR_HARD_REG_SET (reg_reloaded_call_part_clobbered);
|
3909 |
|
|
|
3910 |
|
|
set_initial_elim_offsets ();
|
3911 |
|
|
|
3912 |
|
|
for (chain = reload_insn_chain; chain; chain = chain->next)
|
3913 |
|
|
{
|
3914 |
|
|
rtx prev = 0;
|
3915 |
|
|
rtx insn = chain->insn;
|
3916 |
|
|
rtx old_next = NEXT_INSN (insn);
|
3917 |
|
|
|
3918 |
|
|
/* If we pass a label, copy the offsets from the label information
|
3919 |
|
|
into the current offsets of each elimination. */
|
3920 |
|
|
if (LABEL_P (insn))
|
3921 |
|
|
set_offsets_for_label (insn);
|
3922 |
|
|
|
3923 |
|
|
else if (INSN_P (insn))
|
3924 |
|
|
{
|
3925 |
|
|
regset_head regs_to_forget;
|
3926 |
|
|
INIT_REG_SET (®s_to_forget);
|
3927 |
|
|
note_stores (PATTERN (insn), forget_old_reloads_1, ®s_to_forget);
|
3928 |
|
|
|
3929 |
|
|
/* If this is a USE and CLOBBER of a MEM, ensure that any
|
3930 |
|
|
references to eliminable registers have been removed. */
|
3931 |
|
|
|
3932 |
|
|
if ((GET_CODE (PATTERN (insn)) == USE
|
3933 |
|
|
|| GET_CODE (PATTERN (insn)) == CLOBBER)
|
3934 |
|
|
&& MEM_P (XEXP (PATTERN (insn), 0)))
|
3935 |
|
|
XEXP (XEXP (PATTERN (insn), 0), 0)
|
3936 |
|
|
= eliminate_regs (XEXP (XEXP (PATTERN (insn), 0), 0),
|
3937 |
|
|
GET_MODE (XEXP (PATTERN (insn), 0)),
|
3938 |
|
|
NULL_RTX);
|
3939 |
|
|
|
3940 |
|
|
/* If we need to do register elimination processing, do so.
|
3941 |
|
|
This might delete the insn, in which case we are done. */
|
3942 |
|
|
if ((num_eliminable || num_eliminable_invariants) && chain->need_elim)
|
3943 |
|
|
{
|
3944 |
|
|
eliminate_regs_in_insn (insn, 1);
|
3945 |
|
|
if (NOTE_P (insn))
|
3946 |
|
|
{
|
3947 |
|
|
update_eliminable_offsets ();
|
3948 |
|
|
CLEAR_REG_SET (®s_to_forget);
|
3949 |
|
|
continue;
|
3950 |
|
|
}
|
3951 |
|
|
}
|
3952 |
|
|
|
3953 |
|
|
/* If need_elim is nonzero but need_reload is zero, one might think
|
3954 |
|
|
that we could simply set n_reloads to 0. However, find_reloads
|
3955 |
|
|
could have done some manipulation of the insn (such as swapping
|
3956 |
|
|
commutative operands), and these manipulations are lost during
|
3957 |
|
|
the first pass for every insn that needs register elimination.
|
3958 |
|
|
So the actions of find_reloads must be redone here. */
|
3959 |
|
|
|
3960 |
|
|
if (! chain->need_elim && ! chain->need_reload
|
3961 |
|
|
&& ! chain->need_operand_change)
|
3962 |
|
|
n_reloads = 0;
|
3963 |
|
|
/* First find the pseudo regs that must be reloaded for this insn.
|
3964 |
|
|
This info is returned in the tables reload_... (see reload.h).
|
3965 |
|
|
Also modify the body of INSN by substituting RELOAD
|
3966 |
|
|
rtx's for those pseudo regs. */
|
3967 |
|
|
else
|
3968 |
|
|
{
|
3969 |
|
|
CLEAR_REG_SET (®_has_output_reload);
|
3970 |
|
|
CLEAR_HARD_REG_SET (reg_is_output_reload);
|
3971 |
|
|
|
3972 |
|
|
find_reloads (insn, 1, spill_indirect_levels, live_known,
|
3973 |
|
|
spill_reg_order);
|
3974 |
|
|
}
|
3975 |
|
|
|
3976 |
|
|
if (n_reloads > 0)
|
3977 |
|
|
{
|
3978 |
|
|
rtx next = NEXT_INSN (insn);
|
3979 |
|
|
rtx p;
|
3980 |
|
|
|
3981 |
|
|
prev = PREV_INSN (insn);
|
3982 |
|
|
|
3983 |
|
|
/* Now compute which reload regs to reload them into. Perhaps
|
3984 |
|
|
reusing reload regs from previous insns, or else output
|
3985 |
|
|
load insns to reload them. Maybe output store insns too.
|
3986 |
|
|
Record the choices of reload reg in reload_reg_rtx. */
|
3987 |
|
|
choose_reload_regs (chain);
|
3988 |
|
|
|
3989 |
|
|
/* Merge any reloads that we didn't combine for fear of
|
3990 |
|
|
increasing the number of spill registers needed but now
|
3991 |
|
|
discover can be safely merged. */
|
3992 |
|
|
if (SMALL_REGISTER_CLASSES)
|
3993 |
|
|
merge_assigned_reloads (insn);
|
3994 |
|
|
|
3995 |
|
|
/* Generate the insns to reload operands into or out of
|
3996 |
|
|
their reload regs. */
|
3997 |
|
|
emit_reload_insns (chain);
|
3998 |
|
|
|
3999 |
|
|
/* Substitute the chosen reload regs from reload_reg_rtx
|
4000 |
|
|
into the insn's body (or perhaps into the bodies of other
|
4001 |
|
|
load and store insn that we just made for reloading
|
4002 |
|
|
and that we moved the structure into). */
|
4003 |
|
|
subst_reloads (insn);
|
4004 |
|
|
|
4005 |
|
|
/* Adjust the exception region notes for loads and stores. */
|
4006 |
|
|
if (flag_non_call_exceptions && !CALL_P (insn))
|
4007 |
|
|
fixup_eh_region_note (insn, prev, next);
|
4008 |
|
|
|
4009 |
|
|
/* If this was an ASM, make sure that all the reload insns
|
4010 |
|
|
we have generated are valid. If not, give an error
|
4011 |
|
|
and delete them. */
|
4012 |
|
|
if (asm_noperands (PATTERN (insn)) >= 0)
|
4013 |
|
|
for (p = NEXT_INSN (prev); p != next; p = NEXT_INSN (p))
|
4014 |
|
|
if (p != insn && INSN_P (p)
|
4015 |
|
|
&& GET_CODE (PATTERN (p)) != USE
|
4016 |
|
|
&& (recog_memoized (p) < 0
|
4017 |
|
|
|| (extract_insn (p), ! constrain_operands (1))))
|
4018 |
|
|
{
|
4019 |
|
|
error_for_asm (insn,
|
4020 |
|
|
"%<asm%> operand requires "
|
4021 |
|
|
"impossible reload");
|
4022 |
|
|
delete_insn (p);
|
4023 |
|
|
}
|
4024 |
|
|
}
|
4025 |
|
|
|
4026 |
|
|
if (num_eliminable && chain->need_elim)
|
4027 |
|
|
update_eliminable_offsets ();
|
4028 |
|
|
|
4029 |
|
|
/* Any previously reloaded spilled pseudo reg, stored in this insn,
|
4030 |
|
|
is no longer validly lying around to save a future reload.
|
4031 |
|
|
Note that this does not detect pseudos that were reloaded
|
4032 |
|
|
for this insn in order to be stored in
|
4033 |
|
|
(obeying register constraints). That is correct; such reload
|
4034 |
|
|
registers ARE still valid. */
|
4035 |
|
|
forget_marked_reloads (®s_to_forget);
|
4036 |
|
|
CLEAR_REG_SET (®s_to_forget);
|
4037 |
|
|
|
4038 |
|
|
/* There may have been CLOBBER insns placed after INSN. So scan
|
4039 |
|
|
between INSN and NEXT and use them to forget old reloads. */
|
4040 |
|
|
for (x = NEXT_INSN (insn); x != old_next; x = NEXT_INSN (x))
|
4041 |
|
|
if (NONJUMP_INSN_P (x) && GET_CODE (PATTERN (x)) == CLOBBER)
|
4042 |
|
|
note_stores (PATTERN (x), forget_old_reloads_1, NULL);
|
4043 |
|
|
|
4044 |
|
|
#ifdef AUTO_INC_DEC
|
4045 |
|
|
/* Likewise for regs altered by auto-increment in this insn.
|
4046 |
|
|
REG_INC notes have been changed by reloading:
|
4047 |
|
|
find_reloads_address_1 records substitutions for them,
|
4048 |
|
|
which have been performed by subst_reloads above. */
|
4049 |
|
|
for (i = n_reloads - 1; i >= 0; i--)
|
4050 |
|
|
{
|
4051 |
|
|
rtx in_reg = rld[i].in_reg;
|
4052 |
|
|
if (in_reg)
|
4053 |
|
|
{
|
4054 |
|
|
enum rtx_code code = GET_CODE (in_reg);
|
4055 |
|
|
/* PRE_INC / PRE_DEC will have the reload register ending up
|
4056 |
|
|
with the same value as the stack slot, but that doesn't
|
4057 |
|
|
hold true for POST_INC / POST_DEC. Either we have to
|
4058 |
|
|
convert the memory access to a true POST_INC / POST_DEC,
|
4059 |
|
|
or we can't use the reload register for inheritance. */
|
4060 |
|
|
if ((code == POST_INC || code == POST_DEC)
|
4061 |
|
|
&& TEST_HARD_REG_BIT (reg_reloaded_valid,
|
4062 |
|
|
REGNO (rld[i].reg_rtx))
|
4063 |
|
|
/* Make sure it is the inc/dec pseudo, and not
|
4064 |
|
|
some other (e.g. output operand) pseudo. */
|
4065 |
|
|
&& ((unsigned) reg_reloaded_contents[REGNO (rld[i].reg_rtx)]
|
4066 |
|
|
== REGNO (XEXP (in_reg, 0))))
|
4067 |
|
|
|
4068 |
|
|
{
|
4069 |
|
|
rtx reload_reg = rld[i].reg_rtx;
|
4070 |
|
|
enum machine_mode mode = GET_MODE (reload_reg);
|
4071 |
|
|
int n = 0;
|
4072 |
|
|
rtx p;
|
4073 |
|
|
|
4074 |
|
|
for (p = PREV_INSN (old_next); p != prev; p = PREV_INSN (p))
|
4075 |
|
|
{
|
4076 |
|
|
/* We really want to ignore REG_INC notes here, so
|
4077 |
|
|
use PATTERN (p) as argument to reg_set_p . */
|
4078 |
|
|
if (reg_set_p (reload_reg, PATTERN (p)))
|
4079 |
|
|
break;
|
4080 |
|
|
n = count_occurrences (PATTERN (p), reload_reg, 0);
|
4081 |
|
|
if (! n)
|
4082 |
|
|
continue;
|
4083 |
|
|
if (n == 1)
|
4084 |
|
|
{
|
4085 |
|
|
n = validate_replace_rtx (reload_reg,
|
4086 |
|
|
gen_rtx_fmt_e (code,
|
4087 |
|
|
mode,
|
4088 |
|
|
reload_reg),
|
4089 |
|
|
p);
|
4090 |
|
|
|
4091 |
|
|
/* We must also verify that the constraints
|
4092 |
|
|
are met after the replacement. */
|
4093 |
|
|
extract_insn (p);
|
4094 |
|
|
if (n)
|
4095 |
|
|
n = constrain_operands (1);
|
4096 |
|
|
else
|
4097 |
|
|
break;
|
4098 |
|
|
|
4099 |
|
|
/* If the constraints were not met, then
|
4100 |
|
|
undo the replacement. */
|
4101 |
|
|
if (!n)
|
4102 |
|
|
{
|
4103 |
|
|
validate_replace_rtx (gen_rtx_fmt_e (code,
|
4104 |
|
|
mode,
|
4105 |
|
|
reload_reg),
|
4106 |
|
|
reload_reg, p);
|
4107 |
|
|
break;
|
4108 |
|
|
}
|
4109 |
|
|
|
4110 |
|
|
}
|
4111 |
|
|
break;
|
4112 |
|
|
}
|
4113 |
|
|
if (n == 1)
|
4114 |
|
|
{
|
4115 |
|
|
REG_NOTES (p)
|
4116 |
|
|
= gen_rtx_EXPR_LIST (REG_INC, reload_reg,
|
4117 |
|
|
REG_NOTES (p));
|
4118 |
|
|
/* Mark this as having an output reload so that the
|
4119 |
|
|
REG_INC processing code below won't invalidate
|
4120 |
|
|
the reload for inheritance. */
|
4121 |
|
|
SET_HARD_REG_BIT (reg_is_output_reload,
|
4122 |
|
|
REGNO (reload_reg));
|
4123 |
|
|
SET_REGNO_REG_SET (®_has_output_reload,
|
4124 |
|
|
REGNO (XEXP (in_reg, 0)));
|
4125 |
|
|
}
|
4126 |
|
|
else
|
4127 |
|
|
forget_old_reloads_1 (XEXP (in_reg, 0), NULL_RTX,
|
4128 |
|
|
NULL);
|
4129 |
|
|
}
|
4130 |
|
|
else if ((code == PRE_INC || code == PRE_DEC)
|
4131 |
|
|
&& TEST_HARD_REG_BIT (reg_reloaded_valid,
|
4132 |
|
|
REGNO (rld[i].reg_rtx))
|
4133 |
|
|
/* Make sure it is the inc/dec pseudo, and not
|
4134 |
|
|
some other (e.g. output operand) pseudo. */
|
4135 |
|
|
&& ((unsigned) reg_reloaded_contents[REGNO (rld[i].reg_rtx)]
|
4136 |
|
|
== REGNO (XEXP (in_reg, 0))))
|
4137 |
|
|
{
|
4138 |
|
|
SET_HARD_REG_BIT (reg_is_output_reload,
|
4139 |
|
|
REGNO (rld[i].reg_rtx));
|
4140 |
|
|
SET_REGNO_REG_SET (®_has_output_reload,
|
4141 |
|
|
REGNO (XEXP (in_reg, 0)));
|
4142 |
|
|
}
|
4143 |
|
|
}
|
4144 |
|
|
}
|
4145 |
|
|
/* If a pseudo that got a hard register is auto-incremented,
|
4146 |
|
|
we must purge records of copying it into pseudos without
|
4147 |
|
|
hard registers. */
|
4148 |
|
|
for (x = REG_NOTES (insn); x; x = XEXP (x, 1))
|
4149 |
|
|
if (REG_NOTE_KIND (x) == REG_INC)
|
4150 |
|
|
{
|
4151 |
|
|
/* See if this pseudo reg was reloaded in this insn.
|
4152 |
|
|
If so, its last-reload info is still valid
|
4153 |
|
|
because it is based on this insn's reload. */
|
4154 |
|
|
for (i = 0; i < n_reloads; i++)
|
4155 |
|
|
if (rld[i].out == XEXP (x, 0))
|
4156 |
|
|
break;
|
4157 |
|
|
|
4158 |
|
|
if (i == n_reloads)
|
4159 |
|
|
forget_old_reloads_1 (XEXP (x, 0), NULL_RTX, NULL);
|
4160 |
|
|
}
|
4161 |
|
|
#endif
|
4162 |
|
|
}
|
4163 |
|
|
/* A reload reg's contents are unknown after a label. */
|
4164 |
|
|
if (LABEL_P (insn))
|
4165 |
|
|
CLEAR_HARD_REG_SET (reg_reloaded_valid);
|
4166 |
|
|
|
4167 |
|
|
/* Don't assume a reload reg is still good after a call insn
|
4168 |
|
|
if it is a call-used reg, or if it contains a value that will
|
4169 |
|
|
be partially clobbered by the call. */
|
4170 |
|
|
else if (CALL_P (insn))
|
4171 |
|
|
{
|
4172 |
|
|
AND_COMPL_HARD_REG_SET (reg_reloaded_valid, call_used_reg_set);
|
4173 |
|
|
AND_COMPL_HARD_REG_SET (reg_reloaded_valid, reg_reloaded_call_part_clobbered);
|
4174 |
|
|
}
|
4175 |
|
|
}
|
4176 |
|
|
|
4177 |
|
|
/* Clean up. */
|
4178 |
|
|
free (reg_last_reload_reg);
|
4179 |
|
|
CLEAR_REG_SET (®_has_output_reload);
|
4180 |
|
|
}
|
4181 |
|
|
|
4182 |
|
|
/* Discard all record of any value reloaded from X,
|
4183 |
|
|
or reloaded in X from someplace else;
|
4184 |
|
|
unless X is an output reload reg of the current insn.
|
4185 |
|
|
|
4186 |
|
|
X may be a hard reg (the reload reg)
|
4187 |
|
|
or it may be a pseudo reg that was reloaded from.
|
4188 |
|
|
|
4189 |
|
|
When DATA is non-NULL just mark the registers in regset
|
4190 |
|
|
to be forgotten later. */
|
4191 |
|
|
|
4192 |
|
|
static void
|
4193 |
|
|
forget_old_reloads_1 (rtx x, rtx ignored ATTRIBUTE_UNUSED,
|
4194 |
|
|
void *data)
|
4195 |
|
|
{
|
4196 |
|
|
unsigned int regno;
|
4197 |
|
|
unsigned int nr;
|
4198 |
|
|
regset regs = (regset) data;
|
4199 |
|
|
|
4200 |
|
|
/* note_stores does give us subregs of hard regs,
|
4201 |
|
|
subreg_regno_offset requires a hard reg. */
|
4202 |
|
|
while (GET_CODE (x) == SUBREG)
|
4203 |
|
|
{
|
4204 |
|
|
/* We ignore the subreg offset when calculating the regno,
|
4205 |
|
|
because we are using the entire underlying hard register
|
4206 |
|
|
below. */
|
4207 |
|
|
x = SUBREG_REG (x);
|
4208 |
|
|
}
|
4209 |
|
|
|
4210 |
|
|
if (!REG_P (x))
|
4211 |
|
|
return;
|
4212 |
|
|
|
4213 |
|
|
regno = REGNO (x);
|
4214 |
|
|
|
4215 |
|
|
if (regno >= FIRST_PSEUDO_REGISTER)
|
4216 |
|
|
nr = 1;
|
4217 |
|
|
else
|
4218 |
|
|
{
|
4219 |
|
|
unsigned int i;
|
4220 |
|
|
|
4221 |
|
|
nr = hard_regno_nregs[regno][GET_MODE (x)];
|
4222 |
|
|
/* Storing into a spilled-reg invalidates its contents.
|
4223 |
|
|
This can happen if a block-local pseudo is allocated to that reg
|
4224 |
|
|
and it wasn't spilled because this block's total need is 0.
|
4225 |
|
|
Then some insn might have an optional reload and use this reg. */
|
4226 |
|
|
if (!regs)
|
4227 |
|
|
for (i = 0; i < nr; i++)
|
4228 |
|
|
/* But don't do this if the reg actually serves as an output
|
4229 |
|
|
reload reg in the current instruction. */
|
4230 |
|
|
if (n_reloads == 0
|
4231 |
|
|
|| ! TEST_HARD_REG_BIT (reg_is_output_reload, regno + i))
|
4232 |
|
|
{
|
4233 |
|
|
CLEAR_HARD_REG_BIT (reg_reloaded_valid, regno + i);
|
4234 |
|
|
CLEAR_HARD_REG_BIT (reg_reloaded_call_part_clobbered, regno + i);
|
4235 |
|
|
spill_reg_store[regno + i] = 0;
|
4236 |
|
|
}
|
4237 |
|
|
}
|
4238 |
|
|
|
4239 |
|
|
if (regs)
|
4240 |
|
|
while (nr-- > 0)
|
4241 |
|
|
SET_REGNO_REG_SET (regs, regno + nr);
|
4242 |
|
|
else
|
4243 |
|
|
{
|
4244 |
|
|
/* Since value of X has changed,
|
4245 |
|
|
forget any value previously copied from it. */
|
4246 |
|
|
|
4247 |
|
|
while (nr-- > 0)
|
4248 |
|
|
/* But don't forget a copy if this is the output reload
|
4249 |
|
|
that establishes the copy's validity. */
|
4250 |
|
|
if (n_reloads == 0
|
4251 |
|
|
|| !REGNO_REG_SET_P (®_has_output_reload, regno + nr))
|
4252 |
|
|
reg_last_reload_reg[regno + nr] = 0;
|
4253 |
|
|
}
|
4254 |
|
|
}
|
4255 |
|
|
|
4256 |
|
|
/* Forget the reloads marked in regset by previous function. */
|
4257 |
|
|
static void
|
4258 |
|
|
forget_marked_reloads (regset regs)
|
4259 |
|
|
{
|
4260 |
|
|
unsigned int reg;
|
4261 |
|
|
reg_set_iterator rsi;
|
4262 |
|
|
EXECUTE_IF_SET_IN_REG_SET (regs, 0, reg, rsi)
|
4263 |
|
|
{
|
4264 |
|
|
if (reg < FIRST_PSEUDO_REGISTER
|
4265 |
|
|
/* But don't do this if the reg actually serves as an output
|
4266 |
|
|
reload reg in the current instruction. */
|
4267 |
|
|
&& (n_reloads == 0
|
4268 |
|
|
|| ! TEST_HARD_REG_BIT (reg_is_output_reload, reg)))
|
4269 |
|
|
{
|
4270 |
|
|
CLEAR_HARD_REG_BIT (reg_reloaded_valid, reg);
|
4271 |
|
|
CLEAR_HARD_REG_BIT (reg_reloaded_call_part_clobbered, reg);
|
4272 |
|
|
spill_reg_store[reg] = 0;
|
4273 |
|
|
}
|
4274 |
|
|
if (n_reloads == 0
|
4275 |
|
|
|| !REGNO_REG_SET_P (®_has_output_reload, reg))
|
4276 |
|
|
reg_last_reload_reg[reg] = 0;
|
4277 |
|
|
}
|
4278 |
|
|
}
|
4279 |
|
|
|
4280 |
|
|
/* The following HARD_REG_SETs indicate when each hard register is
|
4281 |
|
|
used for a reload of various parts of the current insn. */
|
4282 |
|
|
|
4283 |
|
|
/* If reg is unavailable for all reloads. */
|
4284 |
|
|
static HARD_REG_SET reload_reg_unavailable;
|
4285 |
|
|
/* If reg is in use as a reload reg for a RELOAD_OTHER reload. */
|
4286 |
|
|
static HARD_REG_SET reload_reg_used;
|
4287 |
|
|
/* If reg is in use for a RELOAD_FOR_INPUT_ADDRESS reload for operand I. */
|
4288 |
|
|
static HARD_REG_SET reload_reg_used_in_input_addr[MAX_RECOG_OPERANDS];
|
4289 |
|
|
/* If reg is in use for a RELOAD_FOR_INPADDR_ADDRESS reload for operand I. */
|
4290 |
|
|
static HARD_REG_SET reload_reg_used_in_inpaddr_addr[MAX_RECOG_OPERANDS];
|
4291 |
|
|
/* If reg is in use for a RELOAD_FOR_OUTPUT_ADDRESS reload for operand I. */
|
4292 |
|
|
static HARD_REG_SET reload_reg_used_in_output_addr[MAX_RECOG_OPERANDS];
|
4293 |
|
|
/* If reg is in use for a RELOAD_FOR_OUTADDR_ADDRESS reload for operand I. */
|
4294 |
|
|
static HARD_REG_SET reload_reg_used_in_outaddr_addr[MAX_RECOG_OPERANDS];
|
4295 |
|
|
/* If reg is in use for a RELOAD_FOR_INPUT reload for operand I. */
|
4296 |
|
|
static HARD_REG_SET reload_reg_used_in_input[MAX_RECOG_OPERANDS];
|
4297 |
|
|
/* If reg is in use for a RELOAD_FOR_OUTPUT reload for operand I. */
|
4298 |
|
|
static HARD_REG_SET reload_reg_used_in_output[MAX_RECOG_OPERANDS];
|
4299 |
|
|
/* If reg is in use for a RELOAD_FOR_OPERAND_ADDRESS reload. */
|
4300 |
|
|
static HARD_REG_SET reload_reg_used_in_op_addr;
|
4301 |
|
|
/* If reg is in use for a RELOAD_FOR_OPADDR_ADDR reload. */
|
4302 |
|
|
static HARD_REG_SET reload_reg_used_in_op_addr_reload;
|
4303 |
|
|
/* If reg is in use for a RELOAD_FOR_INSN reload. */
|
4304 |
|
|
static HARD_REG_SET reload_reg_used_in_insn;
|
4305 |
|
|
/* If reg is in use for a RELOAD_FOR_OTHER_ADDRESS reload. */
|
4306 |
|
|
static HARD_REG_SET reload_reg_used_in_other_addr;
|
4307 |
|
|
|
4308 |
|
|
/* If reg is in use as a reload reg for any sort of reload. */
|
4309 |
|
|
static HARD_REG_SET reload_reg_used_at_all;
|
4310 |
|
|
|
4311 |
|
|
/* If reg is use as an inherited reload. We just mark the first register
|
4312 |
|
|
in the group. */
|
4313 |
|
|
static HARD_REG_SET reload_reg_used_for_inherit;
|
4314 |
|
|
|
4315 |
|
|
/* Records which hard regs are used in any way, either as explicit use or
|
4316 |
|
|
by being allocated to a pseudo during any point of the current insn. */
|
4317 |
|
|
static HARD_REG_SET reg_used_in_insn;
|
4318 |
|
|
|
4319 |
|
|
/* Mark reg REGNO as in use for a reload of the sort spec'd by OPNUM and
|
4320 |
|
|
TYPE. MODE is used to indicate how many consecutive regs are
|
4321 |
|
|
actually used. */
|
4322 |
|
|
|
4323 |
|
|
static void
|
4324 |
|
|
mark_reload_reg_in_use (unsigned int regno, int opnum, enum reload_type type,
|
4325 |
|
|
enum machine_mode mode)
|
4326 |
|
|
{
|
4327 |
|
|
unsigned int nregs = hard_regno_nregs[regno][mode];
|
4328 |
|
|
unsigned int i;
|
4329 |
|
|
|
4330 |
|
|
for (i = regno; i < nregs + regno; i++)
|
4331 |
|
|
{
|
4332 |
|
|
switch (type)
|
4333 |
|
|
{
|
4334 |
|
|
case RELOAD_OTHER:
|
4335 |
|
|
SET_HARD_REG_BIT (reload_reg_used, i);
|
4336 |
|
|
break;
|
4337 |
|
|
|
4338 |
|
|
case RELOAD_FOR_INPUT_ADDRESS:
|
4339 |
|
|
SET_HARD_REG_BIT (reload_reg_used_in_input_addr[opnum], i);
|
4340 |
|
|
break;
|
4341 |
|
|
|
4342 |
|
|
case RELOAD_FOR_INPADDR_ADDRESS:
|
4343 |
|
|
SET_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[opnum], i);
|
4344 |
|
|
break;
|
4345 |
|
|
|
4346 |
|
|
case RELOAD_FOR_OUTPUT_ADDRESS:
|
4347 |
|
|
SET_HARD_REG_BIT (reload_reg_used_in_output_addr[opnum], i);
|
4348 |
|
|
break;
|
4349 |
|
|
|
4350 |
|
|
case RELOAD_FOR_OUTADDR_ADDRESS:
|
4351 |
|
|
SET_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[opnum], i);
|
4352 |
|
|
break;
|
4353 |
|
|
|
4354 |
|
|
case RELOAD_FOR_OPERAND_ADDRESS:
|
4355 |
|
|
SET_HARD_REG_BIT (reload_reg_used_in_op_addr, i);
|
4356 |
|
|
break;
|
4357 |
|
|
|
4358 |
|
|
case RELOAD_FOR_OPADDR_ADDR:
|
4359 |
|
|
SET_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, i);
|
4360 |
|
|
break;
|
4361 |
|
|
|
4362 |
|
|
case RELOAD_FOR_OTHER_ADDRESS:
|
4363 |
|
|
SET_HARD_REG_BIT (reload_reg_used_in_other_addr, i);
|
4364 |
|
|
break;
|
4365 |
|
|
|
4366 |
|
|
case RELOAD_FOR_INPUT:
|
4367 |
|
|
SET_HARD_REG_BIT (reload_reg_used_in_input[opnum], i);
|
4368 |
|
|
break;
|
4369 |
|
|
|
4370 |
|
|
case RELOAD_FOR_OUTPUT:
|
4371 |
|
|
SET_HARD_REG_BIT (reload_reg_used_in_output[opnum], i);
|
4372 |
|
|
break;
|
4373 |
|
|
|
4374 |
|
|
case RELOAD_FOR_INSN:
|
4375 |
|
|
SET_HARD_REG_BIT (reload_reg_used_in_insn, i);
|
4376 |
|
|
break;
|
4377 |
|
|
}
|
4378 |
|
|
|
4379 |
|
|
SET_HARD_REG_BIT (reload_reg_used_at_all, i);
|
4380 |
|
|
}
|
4381 |
|
|
}
|
4382 |
|
|
|
4383 |
|
|
/* Similarly, but show REGNO is no longer in use for a reload. */
|
4384 |
|
|
|
4385 |
|
|
static void
|
4386 |
|
|
clear_reload_reg_in_use (unsigned int regno, int opnum,
|
4387 |
|
|
enum reload_type type, enum machine_mode mode)
|
4388 |
|
|
{
|
4389 |
|
|
unsigned int nregs = hard_regno_nregs[regno][mode];
|
4390 |
|
|
unsigned int start_regno, end_regno, r;
|
4391 |
|
|
int i;
|
4392 |
|
|
/* A complication is that for some reload types, inheritance might
|
4393 |
|
|
allow multiple reloads of the same types to share a reload register.
|
4394 |
|
|
We set check_opnum if we have to check only reloads with the same
|
4395 |
|
|
operand number, and check_any if we have to check all reloads. */
|
4396 |
|
|
int check_opnum = 0;
|
4397 |
|
|
int check_any = 0;
|
4398 |
|
|
HARD_REG_SET *used_in_set;
|
4399 |
|
|
|
4400 |
|
|
switch (type)
|
4401 |
|
|
{
|
4402 |
|
|
case RELOAD_OTHER:
|
4403 |
|
|
used_in_set = &reload_reg_used;
|
4404 |
|
|
break;
|
4405 |
|
|
|
4406 |
|
|
case RELOAD_FOR_INPUT_ADDRESS:
|
4407 |
|
|
used_in_set = &reload_reg_used_in_input_addr[opnum];
|
4408 |
|
|
break;
|
4409 |
|
|
|
4410 |
|
|
case RELOAD_FOR_INPADDR_ADDRESS:
|
4411 |
|
|
check_opnum = 1;
|
4412 |
|
|
used_in_set = &reload_reg_used_in_inpaddr_addr[opnum];
|
4413 |
|
|
break;
|
4414 |
|
|
|
4415 |
|
|
case RELOAD_FOR_OUTPUT_ADDRESS:
|
4416 |
|
|
used_in_set = &reload_reg_used_in_output_addr[opnum];
|
4417 |
|
|
break;
|
4418 |
|
|
|
4419 |
|
|
case RELOAD_FOR_OUTADDR_ADDRESS:
|
4420 |
|
|
check_opnum = 1;
|
4421 |
|
|
used_in_set = &reload_reg_used_in_outaddr_addr[opnum];
|
4422 |
|
|
break;
|
4423 |
|
|
|
4424 |
|
|
case RELOAD_FOR_OPERAND_ADDRESS:
|
4425 |
|
|
used_in_set = &reload_reg_used_in_op_addr;
|
4426 |
|
|
break;
|
4427 |
|
|
|
4428 |
|
|
case RELOAD_FOR_OPADDR_ADDR:
|
4429 |
|
|
check_any = 1;
|
4430 |
|
|
used_in_set = &reload_reg_used_in_op_addr_reload;
|
4431 |
|
|
break;
|
4432 |
|
|
|
4433 |
|
|
case RELOAD_FOR_OTHER_ADDRESS:
|
4434 |
|
|
used_in_set = &reload_reg_used_in_other_addr;
|
4435 |
|
|
check_any = 1;
|
4436 |
|
|
break;
|
4437 |
|
|
|
4438 |
|
|
case RELOAD_FOR_INPUT:
|
4439 |
|
|
used_in_set = &reload_reg_used_in_input[opnum];
|
4440 |
|
|
break;
|
4441 |
|
|
|
4442 |
|
|
case RELOAD_FOR_OUTPUT:
|
4443 |
|
|
used_in_set = &reload_reg_used_in_output[opnum];
|
4444 |
|
|
break;
|
4445 |
|
|
|
4446 |
|
|
case RELOAD_FOR_INSN:
|
4447 |
|
|
used_in_set = &reload_reg_used_in_insn;
|
4448 |
|
|
break;
|
4449 |
|
|
default:
|
4450 |
|
|
gcc_unreachable ();
|
4451 |
|
|
}
|
4452 |
|
|
/* We resolve conflicts with remaining reloads of the same type by
|
4453 |
|
|
excluding the intervals of reload registers by them from the
|
4454 |
|
|
interval of freed reload registers. Since we only keep track of
|
4455 |
|
|
one set of interval bounds, we might have to exclude somewhat
|
4456 |
|
|
more than what would be necessary if we used a HARD_REG_SET here.
|
4457 |
|
|
But this should only happen very infrequently, so there should
|
4458 |
|
|
be no reason to worry about it. */
|
4459 |
|
|
|
4460 |
|
|
start_regno = regno;
|
4461 |
|
|
end_regno = regno + nregs;
|
4462 |
|
|
if (check_opnum || check_any)
|
4463 |
|
|
{
|
4464 |
|
|
for (i = n_reloads - 1; i >= 0; i--)
|
4465 |
|
|
{
|
4466 |
|
|
if (rld[i].when_needed == type
|
4467 |
|
|
&& (check_any || rld[i].opnum == opnum)
|
4468 |
|
|
&& rld[i].reg_rtx)
|
4469 |
|
|
{
|
4470 |
|
|
unsigned int conflict_start = true_regnum (rld[i].reg_rtx);
|
4471 |
|
|
unsigned int conflict_end
|
4472 |
|
|
= (conflict_start
|
4473 |
|
|
+ hard_regno_nregs[conflict_start][rld[i].mode]);
|
4474 |
|
|
|
4475 |
|
|
/* If there is an overlap with the first to-be-freed register,
|
4476 |
|
|
adjust the interval start. */
|
4477 |
|
|
if (conflict_start <= start_regno && conflict_end > start_regno)
|
4478 |
|
|
start_regno = conflict_end;
|
4479 |
|
|
/* Otherwise, if there is a conflict with one of the other
|
4480 |
|
|
to-be-freed registers, adjust the interval end. */
|
4481 |
|
|
if (conflict_start > start_regno && conflict_start < end_regno)
|
4482 |
|
|
end_regno = conflict_start;
|
4483 |
|
|
}
|
4484 |
|
|
}
|
4485 |
|
|
}
|
4486 |
|
|
|
4487 |
|
|
for (r = start_regno; r < end_regno; r++)
|
4488 |
|
|
CLEAR_HARD_REG_BIT (*used_in_set, r);
|
4489 |
|
|
}
|
4490 |
|
|
|
4491 |
|
|
/* 1 if reg REGNO is free as a reload reg for a reload of the sort
|
4492 |
|
|
specified by OPNUM and TYPE. */
|
4493 |
|
|
|
4494 |
|
|
static int
|
4495 |
|
|
reload_reg_free_p (unsigned int regno, int opnum, enum reload_type type)
|
4496 |
|
|
{
|
4497 |
|
|
int i;
|
4498 |
|
|
|
4499 |
|
|
/* In use for a RELOAD_OTHER means it's not available for anything. */
|
4500 |
|
|
if (TEST_HARD_REG_BIT (reload_reg_used, regno)
|
4501 |
|
|
|| TEST_HARD_REG_BIT (reload_reg_unavailable, regno))
|
4502 |
|
|
return 0;
|
4503 |
|
|
|
4504 |
|
|
switch (type)
|
4505 |
|
|
{
|
4506 |
|
|
case RELOAD_OTHER:
|
4507 |
|
|
/* In use for anything means we can't use it for RELOAD_OTHER. */
|
4508 |
|
|
if (TEST_HARD_REG_BIT (reload_reg_used_in_other_addr, regno)
|
4509 |
|
|
|| TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
|
4510 |
|
|
|| TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno)
|
4511 |
|
|
|| TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno))
|
4512 |
|
|
return 0;
|
4513 |
|
|
|
4514 |
|
|
for (i = 0; i < reload_n_operands; i++)
|
4515 |
|
|
if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
|
4516 |
|
|
|| TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno)
|
4517 |
|
|
|| TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
|
4518 |
|
|
|| TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
|
4519 |
|
|
|| TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno)
|
4520 |
|
|
|| TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
|
4521 |
|
|
return 0;
|
4522 |
|
|
|
4523 |
|
|
return 1;
|
4524 |
|
|
|
4525 |
|
|
case RELOAD_FOR_INPUT:
|
4526 |
|
|
if (TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
|
4527 |
|
|
|| TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno))
|
4528 |
|
|
return 0;
|
4529 |
|
|
|
4530 |
|
|
if (TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno))
|
4531 |
|
|
return 0;
|
4532 |
|
|
|
4533 |
|
|
/* If it is used for some other input, can't use it. */
|
4534 |
|
|
for (i = 0; i < reload_n_operands; i++)
|
4535 |
|
|
if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
|
4536 |
|
|
return 0;
|
4537 |
|
|
|
4538 |
|
|
/* If it is used in a later operand's address, can't use it. */
|
4539 |
|
|
for (i = opnum + 1; i < reload_n_operands; i++)
|
4540 |
|
|
if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
|
4541 |
|
|
|| TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno))
|
4542 |
|
|
return 0;
|
4543 |
|
|
|
4544 |
|
|
return 1;
|
4545 |
|
|
|
4546 |
|
|
case RELOAD_FOR_INPUT_ADDRESS:
|
4547 |
|
|
/* Can't use a register if it is used for an input address for this
|
4548 |
|
|
operand or used as an input in an earlier one. */
|
4549 |
|
|
if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[opnum], regno)
|
4550 |
|
|
|| TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[opnum], regno))
|
4551 |
|
|
return 0;
|
4552 |
|
|
|
4553 |
|
|
for (i = 0; i < opnum; i++)
|
4554 |
|
|
if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
|
4555 |
|
|
return 0;
|
4556 |
|
|
|
4557 |
|
|
return 1;
|
4558 |
|
|
|
4559 |
|
|
case RELOAD_FOR_INPADDR_ADDRESS:
|
4560 |
|
|
/* Can't use a register if it is used for an input address
|
4561 |
|
|
for this operand or used as an input in an earlier
|
4562 |
|
|
one. */
|
4563 |
|
|
if (TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[opnum], regno))
|
4564 |
|
|
return 0;
|
4565 |
|
|
|
4566 |
|
|
for (i = 0; i < opnum; i++)
|
4567 |
|
|
if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
|
4568 |
|
|
return 0;
|
4569 |
|
|
|
4570 |
|
|
return 1;
|
4571 |
|
|
|
4572 |
|
|
case RELOAD_FOR_OUTPUT_ADDRESS:
|
4573 |
|
|
/* Can't use a register if it is used for an output address for this
|
4574 |
|
|
operand or used as an output in this or a later operand. Note
|
4575 |
|
|
that multiple output operands are emitted in reverse order, so
|
4576 |
|
|
the conflicting ones are those with lower indices. */
|
4577 |
|
|
if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[opnum], regno))
|
4578 |
|
|
return 0;
|
4579 |
|
|
|
4580 |
|
|
for (i = 0; i <= opnum; i++)
|
4581 |
|
|
if (TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
|
4582 |
|
|
return 0;
|
4583 |
|
|
|
4584 |
|
|
return 1;
|
4585 |
|
|
|
4586 |
|
|
case RELOAD_FOR_OUTADDR_ADDRESS:
|
4587 |
|
|
/* Can't use a register if it is used for an output address
|
4588 |
|
|
for this operand or used as an output in this or a
|
4589 |
|
|
later operand. Note that multiple output operands are
|
4590 |
|
|
emitted in reverse order, so the conflicting ones are
|
4591 |
|
|
those with lower indices. */
|
4592 |
|
|
if (TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[opnum], regno))
|
4593 |
|
|
return 0;
|
4594 |
|
|
|
4595 |
|
|
for (i = 0; i <= opnum; i++)
|
4596 |
|
|
if (TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
|
4597 |
|
|
return 0;
|
4598 |
|
|
|
4599 |
|
|
return 1;
|
4600 |
|
|
|
4601 |
|
|
case RELOAD_FOR_OPERAND_ADDRESS:
|
4602 |
|
|
for (i = 0; i < reload_n_operands; i++)
|
4603 |
|
|
if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
|
4604 |
|
|
return 0;
|
4605 |
|
|
|
4606 |
|
|
return (! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
|
4607 |
|
|
&& ! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno));
|
4608 |
|
|
|
4609 |
|
|
case RELOAD_FOR_OPADDR_ADDR:
|
4610 |
|
|
for (i = 0; i < reload_n_operands; i++)
|
4611 |
|
|
if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
|
4612 |
|
|
return 0;
|
4613 |
|
|
|
4614 |
|
|
return (!TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno));
|
4615 |
|
|
|
4616 |
|
|
case RELOAD_FOR_OUTPUT:
|
4617 |
|
|
/* This cannot share a register with RELOAD_FOR_INSN reloads, other
|
4618 |
|
|
outputs, or an operand address for this or an earlier output.
|
4619 |
|
|
Note that multiple output operands are emitted in reverse order,
|
4620 |
|
|
so the conflicting ones are those with higher indices. */
|
4621 |
|
|
if (TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno))
|
4622 |
|
|
return 0;
|
4623 |
|
|
|
4624 |
|
|
for (i = 0; i < reload_n_operands; i++)
|
4625 |
|
|
if (TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
|
4626 |
|
|
return 0;
|
4627 |
|
|
|
4628 |
|
|
for (i = opnum; i < reload_n_operands; i++)
|
4629 |
|
|
if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
|
4630 |
|
|
|| TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno))
|
4631 |
|
|
return 0;
|
4632 |
|
|
|
4633 |
|
|
return 1;
|
4634 |
|
|
|
4635 |
|
|
case RELOAD_FOR_INSN:
|
4636 |
|
|
for (i = 0; i < reload_n_operands; i++)
|
4637 |
|
|
if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno)
|
4638 |
|
|
|| TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
|
4639 |
|
|
return 0;
|
4640 |
|
|
|
4641 |
|
|
return (! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
|
4642 |
|
|
&& ! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno));
|
4643 |
|
|
|
4644 |
|
|
case RELOAD_FOR_OTHER_ADDRESS:
|
4645 |
|
|
return ! TEST_HARD_REG_BIT (reload_reg_used_in_other_addr, regno);
|
4646 |
|
|
|
4647 |
|
|
default:
|
4648 |
|
|
gcc_unreachable ();
|
4649 |
|
|
}
|
4650 |
|
|
}
|
4651 |
|
|
|
4652 |
|
|
/* Return 1 if the value in reload reg REGNO, as used by a reload
|
4653 |
|
|
needed for the part of the insn specified by OPNUM and TYPE,
|
4654 |
|
|
is still available in REGNO at the end of the insn.
|
4655 |
|
|
|
4656 |
|
|
We can assume that the reload reg was already tested for availability
|
4657 |
|
|
at the time it is needed, and we should not check this again,
|
4658 |
|
|
in case the reg has already been marked in use. */
|
4659 |
|
|
|
4660 |
|
|
static int
|
4661 |
|
|
reload_reg_reaches_end_p (unsigned int regno, int opnum, enum reload_type type)
|
4662 |
|
|
{
|
4663 |
|
|
int i;
|
4664 |
|
|
|
4665 |
|
|
switch (type)
|
4666 |
|
|
{
|
4667 |
|
|
case RELOAD_OTHER:
|
4668 |
|
|
/* Since a RELOAD_OTHER reload claims the reg for the entire insn,
|
4669 |
|
|
its value must reach the end. */
|
4670 |
|
|
return 1;
|
4671 |
|
|
|
4672 |
|
|
/* If this use is for part of the insn,
|
4673 |
|
|
its value reaches if no subsequent part uses the same register.
|
4674 |
|
|
Just like the above function, don't try to do this with lots
|
4675 |
|
|
of fallthroughs. */
|
4676 |
|
|
|
4677 |
|
|
case RELOAD_FOR_OTHER_ADDRESS:
|
4678 |
|
|
/* Here we check for everything else, since these don't conflict
|
4679 |
|
|
with anything else and everything comes later. */
|
4680 |
|
|
|
4681 |
|
|
for (i = 0; i < reload_n_operands; i++)
|
4682 |
|
|
if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
|
4683 |
|
|
|| TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
|
4684 |
|
|
|| TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno)
|
4685 |
|
|
|| TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
|
4686 |
|
|
|| TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno)
|
4687 |
|
|
|| TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
|
4688 |
|
|
return 0;
|
4689 |
|
|
|
4690 |
|
|
return (! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
|
4691 |
|
|
&& ! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno)
|
4692 |
|
|
&& ! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
|
4693 |
|
|
&& ! TEST_HARD_REG_BIT (reload_reg_used, regno));
|
4694 |
|
|
|
4695 |
|
|
case RELOAD_FOR_INPUT_ADDRESS:
|
4696 |
|
|
case RELOAD_FOR_INPADDR_ADDRESS:
|
4697 |
|
|
/* Similar, except that we check only for this and subsequent inputs
|
4698 |
|
|
and the address of only subsequent inputs and we do not need
|
4699 |
|
|
to check for RELOAD_OTHER objects since they are known not to
|
4700 |
|
|
conflict. */
|
4701 |
|
|
|
4702 |
|
|
for (i = opnum; i < reload_n_operands; i++)
|
4703 |
|
|
if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
|
4704 |
|
|
return 0;
|
4705 |
|
|
|
4706 |
|
|
for (i = opnum + 1; i < reload_n_operands; i++)
|
4707 |
|
|
if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
|
4708 |
|
|
|| TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno))
|
4709 |
|
|
return 0;
|
4710 |
|
|
|
4711 |
|
|
for (i = 0; i < reload_n_operands; i++)
|
4712 |
|
|
if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
|
4713 |
|
|
|| TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
|
4714 |
|
|
|| TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
|
4715 |
|
|
return 0;
|
4716 |
|
|
|
4717 |
|
|
if (TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno))
|
4718 |
|
|
return 0;
|
4719 |
|
|
|
4720 |
|
|
return (!TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
|
4721 |
|
|
&& !TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
|
4722 |
|
|
&& !TEST_HARD_REG_BIT (reload_reg_used, regno));
|
4723 |
|
|
|
4724 |
|
|
case RELOAD_FOR_INPUT:
|
4725 |
|
|
/* Similar to input address, except we start at the next operand for
|
4726 |
|
|
both input and input address and we do not check for
|
4727 |
|
|
RELOAD_FOR_OPERAND_ADDRESS and RELOAD_FOR_INSN since these
|
4728 |
|
|
would conflict. */
|
4729 |
|
|
|
4730 |
|
|
for (i = opnum + 1; i < reload_n_operands; i++)
|
4731 |
|
|
if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
|
4732 |
|
|
|| TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno)
|
4733 |
|
|
|| TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
|
4734 |
|
|
return 0;
|
4735 |
|
|
|
4736 |
|
|
/* ... fall through ... */
|
4737 |
|
|
|
4738 |
|
|
case RELOAD_FOR_OPERAND_ADDRESS:
|
4739 |
|
|
/* Check outputs and their addresses. */
|
4740 |
|
|
|
4741 |
|
|
for (i = 0; i < reload_n_operands; i++)
|
4742 |
|
|
if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
|
4743 |
|
|
|| TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
|
4744 |
|
|
|| TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
|
4745 |
|
|
return 0;
|
4746 |
|
|
|
4747 |
|
|
return (!TEST_HARD_REG_BIT (reload_reg_used, regno));
|
4748 |
|
|
|
4749 |
|
|
case RELOAD_FOR_OPADDR_ADDR:
|
4750 |
|
|
for (i = 0; i < reload_n_operands; i++)
|
4751 |
|
|
if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
|
4752 |
|
|
|| TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
|
4753 |
|
|
|| TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
|
4754 |
|
|
return 0;
|
4755 |
|
|
|
4756 |
|
|
return (!TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
|
4757 |
|
|
&& !TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
|
4758 |
|
|
&& !TEST_HARD_REG_BIT (reload_reg_used, regno));
|
4759 |
|
|
|
4760 |
|
|
case RELOAD_FOR_INSN:
|
4761 |
|
|
/* These conflict with other outputs with RELOAD_OTHER. So
|
4762 |
|
|
we need only check for output addresses. */
|
4763 |
|
|
|
4764 |
|
|
opnum = reload_n_operands;
|
4765 |
|
|
|
4766 |
|
|
/* ... fall through ... */
|
4767 |
|
|
|
4768 |
|
|
case RELOAD_FOR_OUTPUT:
|
4769 |
|
|
case RELOAD_FOR_OUTPUT_ADDRESS:
|
4770 |
|
|
case RELOAD_FOR_OUTADDR_ADDRESS:
|
4771 |
|
|
/* We already know these can't conflict with a later output. So the
|
4772 |
|
|
only thing to check are later output addresses.
|
4773 |
|
|
Note that multiple output operands are emitted in reverse order,
|
4774 |
|
|
so the conflicting ones are those with lower indices. */
|
4775 |
|
|
for (i = 0; i < opnum; i++)
|
4776 |
|
|
if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
|
4777 |
|
|
|| TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno))
|
4778 |
|
|
return 0;
|
4779 |
|
|
|
4780 |
|
|
return 1;
|
4781 |
|
|
|
4782 |
|
|
default:
|
4783 |
|
|
gcc_unreachable ();
|
4784 |
|
|
}
|
4785 |
|
|
}
|
4786 |
|
|
|
4787 |
|
|
/* Return 1 if the reloads denoted by R1 and R2 cannot share a register.
|
4788 |
|
|
Return 0 otherwise.
|
4789 |
|
|
|
4790 |
|
|
This function uses the same algorithm as reload_reg_free_p above. */
|
4791 |
|
|
|
4792 |
|
|
static int
|
4793 |
|
|
reloads_conflict (int r1, int r2)
|
4794 |
|
|
{
|
4795 |
|
|
enum reload_type r1_type = rld[r1].when_needed;
|
4796 |
|
|
enum reload_type r2_type = rld[r2].when_needed;
|
4797 |
|
|
int r1_opnum = rld[r1].opnum;
|
4798 |
|
|
int r2_opnum = rld[r2].opnum;
|
4799 |
|
|
|
4800 |
|
|
/* RELOAD_OTHER conflicts with everything. */
|
4801 |
|
|
if (r2_type == RELOAD_OTHER)
|
4802 |
|
|
return 1;
|
4803 |
|
|
|
4804 |
|
|
/* Otherwise, check conflicts differently for each type. */
|
4805 |
|
|
|
4806 |
|
|
switch (r1_type)
|
4807 |
|
|
{
|
4808 |
|
|
case RELOAD_FOR_INPUT:
|
4809 |
|
|
return (r2_type == RELOAD_FOR_INSN
|
4810 |
|
|
|| r2_type == RELOAD_FOR_OPERAND_ADDRESS
|
4811 |
|
|
|| r2_type == RELOAD_FOR_OPADDR_ADDR
|
4812 |
|
|
|| r2_type == RELOAD_FOR_INPUT
|
4813 |
|
|
|| ((r2_type == RELOAD_FOR_INPUT_ADDRESS
|
4814 |
|
|
|| r2_type == RELOAD_FOR_INPADDR_ADDRESS)
|
4815 |
|
|
&& r2_opnum > r1_opnum));
|
4816 |
|
|
|
4817 |
|
|
case RELOAD_FOR_INPUT_ADDRESS:
|
4818 |
|
|
return ((r2_type == RELOAD_FOR_INPUT_ADDRESS && r1_opnum == r2_opnum)
|
4819 |
|
|
|| (r2_type == RELOAD_FOR_INPUT && r2_opnum < r1_opnum));
|
4820 |
|
|
|
4821 |
|
|
case RELOAD_FOR_INPADDR_ADDRESS:
|
4822 |
|
|
return ((r2_type == RELOAD_FOR_INPADDR_ADDRESS && r1_opnum == r2_opnum)
|
4823 |
|
|
|| (r2_type == RELOAD_FOR_INPUT && r2_opnum < r1_opnum));
|
4824 |
|
|
|
4825 |
|
|
case RELOAD_FOR_OUTPUT_ADDRESS:
|
4826 |
|
|
return ((r2_type == RELOAD_FOR_OUTPUT_ADDRESS && r2_opnum == r1_opnum)
|
4827 |
|
|
|| (r2_type == RELOAD_FOR_OUTPUT && r2_opnum <= r1_opnum));
|
4828 |
|
|
|
4829 |
|
|
case RELOAD_FOR_OUTADDR_ADDRESS:
|
4830 |
|
|
return ((r2_type == RELOAD_FOR_OUTADDR_ADDRESS && r2_opnum == r1_opnum)
|
4831 |
|
|
|| (r2_type == RELOAD_FOR_OUTPUT && r2_opnum <= r1_opnum));
|
4832 |
|
|
|
4833 |
|
|
case RELOAD_FOR_OPERAND_ADDRESS:
|
4834 |
|
|
return (r2_type == RELOAD_FOR_INPUT || r2_type == RELOAD_FOR_INSN
|
4835 |
|
|
|| r2_type == RELOAD_FOR_OPERAND_ADDRESS);
|
4836 |
|
|
|
4837 |
|
|
case RELOAD_FOR_OPADDR_ADDR:
|
4838 |
|
|
return (r2_type == RELOAD_FOR_INPUT
|
4839 |
|
|
|| r2_type == RELOAD_FOR_OPADDR_ADDR);
|
4840 |
|
|
|
4841 |
|
|
case RELOAD_FOR_OUTPUT:
|
4842 |
|
|
return (r2_type == RELOAD_FOR_INSN || r2_type == RELOAD_FOR_OUTPUT
|
4843 |
|
|
|| ((r2_type == RELOAD_FOR_OUTPUT_ADDRESS
|
4844 |
|
|
|| r2_type == RELOAD_FOR_OUTADDR_ADDRESS)
|
4845 |
|
|
&& r2_opnum >= r1_opnum));
|
4846 |
|
|
|
4847 |
|
|
case RELOAD_FOR_INSN:
|
4848 |
|
|
return (r2_type == RELOAD_FOR_INPUT || r2_type == RELOAD_FOR_OUTPUT
|
4849 |
|
|
|| r2_type == RELOAD_FOR_INSN
|
4850 |
|
|
|| r2_type == RELOAD_FOR_OPERAND_ADDRESS);
|
4851 |
|
|
|
4852 |
|
|
case RELOAD_FOR_OTHER_ADDRESS:
|
4853 |
|
|
return r2_type == RELOAD_FOR_OTHER_ADDRESS;
|
4854 |
|
|
|
4855 |
|
|
case RELOAD_OTHER:
|
4856 |
|
|
return 1;
|
4857 |
|
|
|
4858 |
|
|
default:
|
4859 |
|
|
gcc_unreachable ();
|
4860 |
|
|
}
|
4861 |
|
|
}
|
4862 |
|
|
|
4863 |
|
|
/* Indexed by reload number, 1 if incoming value
|
4864 |
|
|
inherited from previous insns. */
|
4865 |
|
|
static char reload_inherited[MAX_RELOADS];
|
4866 |
|
|
|
4867 |
|
|
/* For an inherited reload, this is the insn the reload was inherited from,
|
4868 |
|
|
if we know it. Otherwise, this is 0. */
|
4869 |
|
|
static rtx reload_inheritance_insn[MAX_RELOADS];
|
4870 |
|
|
|
4871 |
|
|
/* If nonzero, this is a place to get the value of the reload,
|
4872 |
|
|
rather than using reload_in. */
|
4873 |
|
|
static rtx reload_override_in[MAX_RELOADS];
|
4874 |
|
|
|
4875 |
|
|
/* For each reload, the hard register number of the register used,
|
4876 |
|
|
or -1 if we did not need a register for this reload. */
|
4877 |
|
|
static int reload_spill_index[MAX_RELOADS];
|
4878 |
|
|
|
4879 |
|
|
/* Subroutine of free_for_value_p, used to check a single register.
|
4880 |
|
|
START_REGNO is the starting regno of the full reload register
|
4881 |
|
|
(possibly comprising multiple hard registers) that we are considering. */
|
4882 |
|
|
|
4883 |
|
|
static int
|
4884 |
|
|
reload_reg_free_for_value_p (int start_regno, int regno, int opnum,
|
4885 |
|
|
enum reload_type type, rtx value, rtx out,
|
4886 |
|
|
int reloadnum, int ignore_address_reloads)
|
4887 |
|
|
{
|
4888 |
|
|
int time1;
|
4889 |
|
|
/* Set if we see an input reload that must not share its reload register
|
4890 |
|
|
with any new earlyclobber, but might otherwise share the reload
|
4891 |
|
|
register with an output or input-output reload. */
|
4892 |
|
|
int check_earlyclobber = 0;
|
4893 |
|
|
int i;
|
4894 |
|
|
int copy = 0;
|
4895 |
|
|
|
4896 |
|
|
if (TEST_HARD_REG_BIT (reload_reg_unavailable, regno))
|
4897 |
|
|
return 0;
|
4898 |
|
|
|
4899 |
|
|
if (out == const0_rtx)
|
4900 |
|
|
{
|
4901 |
|
|
copy = 1;
|
4902 |
|
|
out = NULL_RTX;
|
4903 |
|
|
}
|
4904 |
|
|
|
4905 |
|
|
/* We use some pseudo 'time' value to check if the lifetimes of the
|
4906 |
|
|
new register use would overlap with the one of a previous reload
|
4907 |
|
|
that is not read-only or uses a different value.
|
4908 |
|
|
The 'time' used doesn't have to be linear in any shape or form, just
|
4909 |
|
|
monotonic.
|
4910 |
|
|
Some reload types use different 'buckets' for each operand.
|
4911 |
|
|
So there are MAX_RECOG_OPERANDS different time values for each
|
4912 |
|
|
such reload type.
|
4913 |
|
|
We compute TIME1 as the time when the register for the prospective
|
4914 |
|
|
new reload ceases to be live, and TIME2 for each existing
|
4915 |
|
|
reload as the time when that the reload register of that reload
|
4916 |
|
|
becomes live.
|
4917 |
|
|
Where there is little to be gained by exact lifetime calculations,
|
4918 |
|
|
we just make conservative assumptions, i.e. a longer lifetime;
|
4919 |
|
|
this is done in the 'default:' cases. */
|
4920 |
|
|
switch (type)
|
4921 |
|
|
{
|
4922 |
|
|
case RELOAD_FOR_OTHER_ADDRESS:
|
4923 |
|
|
/* RELOAD_FOR_OTHER_ADDRESS conflicts with RELOAD_OTHER reloads. */
|
4924 |
|
|
time1 = copy ? 0 : 1;
|
4925 |
|
|
break;
|
4926 |
|
|
case RELOAD_OTHER:
|
4927 |
|
|
time1 = copy ? 1 : MAX_RECOG_OPERANDS * 5 + 5;
|
4928 |
|
|
break;
|
4929 |
|
|
/* For each input, we may have a sequence of RELOAD_FOR_INPADDR_ADDRESS,
|
4930 |
|
|
RELOAD_FOR_INPUT_ADDRESS and RELOAD_FOR_INPUT. By adding 0 / 1 / 2 ,
|
4931 |
|
|
respectively, to the time values for these, we get distinct time
|
4932 |
|
|
values. To get distinct time values for each operand, we have to
|
4933 |
|
|
multiply opnum by at least three. We round that up to four because
|
4934 |
|
|
multiply by four is often cheaper. */
|
4935 |
|
|
case RELOAD_FOR_INPADDR_ADDRESS:
|
4936 |
|
|
time1 = opnum * 4 + 2;
|
4937 |
|
|
break;
|
4938 |
|
|
case RELOAD_FOR_INPUT_ADDRESS:
|
4939 |
|
|
time1 = opnum * 4 + 3;
|
4940 |
|
|
break;
|
4941 |
|
|
case RELOAD_FOR_INPUT:
|
4942 |
|
|
/* All RELOAD_FOR_INPUT reloads remain live till the instruction
|
4943 |
|
|
executes (inclusive). */
|
4944 |
|
|
time1 = copy ? opnum * 4 + 4 : MAX_RECOG_OPERANDS * 4 + 3;
|
4945 |
|
|
break;
|
4946 |
|
|
case RELOAD_FOR_OPADDR_ADDR:
|
4947 |
|
|
/* opnum * 4 + 4
|
4948 |
|
|
<= (MAX_RECOG_OPERANDS - 1) * 4 + 4 == MAX_RECOG_OPERANDS * 4 */
|
4949 |
|
|
time1 = MAX_RECOG_OPERANDS * 4 + 1;
|
4950 |
|
|
break;
|
4951 |
|
|
case RELOAD_FOR_OPERAND_ADDRESS:
|
4952 |
|
|
/* RELOAD_FOR_OPERAND_ADDRESS reloads are live even while the insn
|
4953 |
|
|
is executed. */
|
4954 |
|
|
time1 = copy ? MAX_RECOG_OPERANDS * 4 + 2 : MAX_RECOG_OPERANDS * 4 + 3;
|
4955 |
|
|
break;
|
4956 |
|
|
case RELOAD_FOR_OUTADDR_ADDRESS:
|
4957 |
|
|
time1 = MAX_RECOG_OPERANDS * 4 + 4 + opnum;
|
4958 |
|
|
break;
|
4959 |
|
|
case RELOAD_FOR_OUTPUT_ADDRESS:
|
4960 |
|
|
time1 = MAX_RECOG_OPERANDS * 4 + 5 + opnum;
|
4961 |
|
|
break;
|
4962 |
|
|
default:
|
4963 |
|
|
time1 = MAX_RECOG_OPERANDS * 5 + 5;
|
4964 |
|
|
}
|
4965 |
|
|
|
4966 |
|
|
for (i = 0; i < n_reloads; i++)
|
4967 |
|
|
{
|
4968 |
|
|
rtx reg = rld[i].reg_rtx;
|
4969 |
|
|
if (reg && REG_P (reg)
|
4970 |
|
|
&& ((unsigned) regno - true_regnum (reg)
|
4971 |
|
|
<= hard_regno_nregs[REGNO (reg)][GET_MODE (reg)] - (unsigned) 1)
|
4972 |
|
|
&& i != reloadnum)
|
4973 |
|
|
{
|
4974 |
|
|
rtx other_input = rld[i].in;
|
4975 |
|
|
|
4976 |
|
|
/* If the other reload loads the same input value, that
|
4977 |
|
|
will not cause a conflict only if it's loading it into
|
4978 |
|
|
the same register. */
|
4979 |
|
|
if (true_regnum (reg) != start_regno)
|
4980 |
|
|
other_input = NULL_RTX;
|
4981 |
|
|
if (! other_input || ! rtx_equal_p (other_input, value)
|
4982 |
|
|
|| rld[i].out || out)
|
4983 |
|
|
{
|
4984 |
|
|
int time2;
|
4985 |
|
|
switch (rld[i].when_needed)
|
4986 |
|
|
{
|
4987 |
|
|
case RELOAD_FOR_OTHER_ADDRESS:
|
4988 |
|
|
time2 = 0;
|
4989 |
|
|
break;
|
4990 |
|
|
case RELOAD_FOR_INPADDR_ADDRESS:
|
4991 |
|
|
/* find_reloads makes sure that a
|
4992 |
|
|
RELOAD_FOR_{INP,OP,OUT}ADDR_ADDRESS reload is only used
|
4993 |
|
|
by at most one - the first -
|
4994 |
|
|
RELOAD_FOR_{INPUT,OPERAND,OUTPUT}_ADDRESS . If the
|
4995 |
|
|
address reload is inherited, the address address reload
|
4996 |
|
|
goes away, so we can ignore this conflict. */
|
4997 |
|
|
if (type == RELOAD_FOR_INPUT_ADDRESS && reloadnum == i + 1
|
4998 |
|
|
&& ignore_address_reloads
|
4999 |
|
|
/* Unless the RELOAD_FOR_INPUT is an auto_inc expression.
|
5000 |
|
|
Then the address address is still needed to store
|
5001 |
|
|
back the new address. */
|
5002 |
|
|
&& ! rld[reloadnum].out)
|
5003 |
|
|
continue;
|
5004 |
|
|
/* Likewise, if a RELOAD_FOR_INPUT can inherit a value, its
|
5005 |
|
|
RELOAD_FOR_INPUT_ADDRESS / RELOAD_FOR_INPADDR_ADDRESS
|
5006 |
|
|
reloads go away. */
|
5007 |
|
|
if (type == RELOAD_FOR_INPUT && opnum == rld[i].opnum
|
5008 |
|
|
&& ignore_address_reloads
|
5009 |
|
|
/* Unless we are reloading an auto_inc expression. */
|
5010 |
|
|
&& ! rld[reloadnum].out)
|
5011 |
|
|
continue;
|
5012 |
|
|
time2 = rld[i].opnum * 4 + 2;
|
5013 |
|
|
break;
|
5014 |
|
|
case RELOAD_FOR_INPUT_ADDRESS:
|
5015 |
|
|
if (type == RELOAD_FOR_INPUT && opnum == rld[i].opnum
|
5016 |
|
|
&& ignore_address_reloads
|
5017 |
|
|
&& ! rld[reloadnum].out)
|
5018 |
|
|
continue;
|
5019 |
|
|
time2 = rld[i].opnum * 4 + 3;
|
5020 |
|
|
break;
|
5021 |
|
|
case RELOAD_FOR_INPUT:
|
5022 |
|
|
time2 = rld[i].opnum * 4 + 4;
|
5023 |
|
|
check_earlyclobber = 1;
|
5024 |
|
|
break;
|
5025 |
|
|
/* rld[i].opnum * 4 + 4 <= (MAX_RECOG_OPERAND - 1) * 4 + 4
|
5026 |
|
|
== MAX_RECOG_OPERAND * 4 */
|
5027 |
|
|
case RELOAD_FOR_OPADDR_ADDR:
|
5028 |
|
|
if (type == RELOAD_FOR_OPERAND_ADDRESS && reloadnum == i + 1
|
5029 |
|
|
&& ignore_address_reloads
|
5030 |
|
|
&& ! rld[reloadnum].out)
|
5031 |
|
|
continue;
|
5032 |
|
|
time2 = MAX_RECOG_OPERANDS * 4 + 1;
|
5033 |
|
|
break;
|
5034 |
|
|
case RELOAD_FOR_OPERAND_ADDRESS:
|
5035 |
|
|
time2 = MAX_RECOG_OPERANDS * 4 + 2;
|
5036 |
|
|
check_earlyclobber = 1;
|
5037 |
|
|
break;
|
5038 |
|
|
case RELOAD_FOR_INSN:
|
5039 |
|
|
time2 = MAX_RECOG_OPERANDS * 4 + 3;
|
5040 |
|
|
break;
|
5041 |
|
|
case RELOAD_FOR_OUTPUT:
|
5042 |
|
|
/* All RELOAD_FOR_OUTPUT reloads become live just after the
|
5043 |
|
|
instruction is executed. */
|
5044 |
|
|
time2 = MAX_RECOG_OPERANDS * 4 + 4;
|
5045 |
|
|
break;
|
5046 |
|
|
/* The first RELOAD_FOR_OUTADDR_ADDRESS reload conflicts with
|
5047 |
|
|
the RELOAD_FOR_OUTPUT reloads, so assign it the same time
|
5048 |
|
|
value. */
|
5049 |
|
|
case RELOAD_FOR_OUTADDR_ADDRESS:
|
5050 |
|
|
if (type == RELOAD_FOR_OUTPUT_ADDRESS && reloadnum == i + 1
|
5051 |
|
|
&& ignore_address_reloads
|
5052 |
|
|
&& ! rld[reloadnum].out)
|
5053 |
|
|
continue;
|
5054 |
|
|
time2 = MAX_RECOG_OPERANDS * 4 + 4 + rld[i].opnum;
|
5055 |
|
|
break;
|
5056 |
|
|
case RELOAD_FOR_OUTPUT_ADDRESS:
|
5057 |
|
|
time2 = MAX_RECOG_OPERANDS * 4 + 5 + rld[i].opnum;
|
5058 |
|
|
break;
|
5059 |
|
|
case RELOAD_OTHER:
|
5060 |
|
|
/* If there is no conflict in the input part, handle this
|
5061 |
|
|
like an output reload. */
|
5062 |
|
|
if (! rld[i].in || rtx_equal_p (other_input, value))
|
5063 |
|
|
{
|
5064 |
|
|
time2 = MAX_RECOG_OPERANDS * 4 + 4;
|
5065 |
|
|
/* Earlyclobbered outputs must conflict with inputs. */
|
5066 |
|
|
if (earlyclobber_operand_p (rld[i].out))
|
5067 |
|
|
time2 = MAX_RECOG_OPERANDS * 4 + 3;
|
5068 |
|
|
|
5069 |
|
|
break;
|
5070 |
|
|
}
|
5071 |
|
|
time2 = 1;
|
5072 |
|
|
/* RELOAD_OTHER might be live beyond instruction execution,
|
5073 |
|
|
but this is not obvious when we set time2 = 1. So check
|
5074 |
|
|
here if there might be a problem with the new reload
|
5075 |
|
|
clobbering the register used by the RELOAD_OTHER. */
|
5076 |
|
|
if (out)
|
5077 |
|
|
return 0;
|
5078 |
|
|
break;
|
5079 |
|
|
default:
|
5080 |
|
|
return 0;
|
5081 |
|
|
}
|
5082 |
|
|
if ((time1 >= time2
|
5083 |
|
|
&& (! rld[i].in || rld[i].out
|
5084 |
|
|
|| ! rtx_equal_p (other_input, value)))
|
5085 |
|
|
|| (out && rld[reloadnum].out_reg
|
5086 |
|
|
&& time2 >= MAX_RECOG_OPERANDS * 4 + 3))
|
5087 |
|
|
return 0;
|
5088 |
|
|
}
|
5089 |
|
|
}
|
5090 |
|
|
}
|
5091 |
|
|
|
5092 |
|
|
/* Earlyclobbered outputs must conflict with inputs. */
|
5093 |
|
|
if (check_earlyclobber && out && earlyclobber_operand_p (out))
|
5094 |
|
|
return 0;
|
5095 |
|
|
|
5096 |
|
|
return 1;
|
5097 |
|
|
}
|
5098 |
|
|
|
5099 |
|
|
/* Return 1 if the value in reload reg REGNO, as used by a reload
|
5100 |
|
|
needed for the part of the insn specified by OPNUM and TYPE,
|
5101 |
|
|
may be used to load VALUE into it.
|
5102 |
|
|
|
5103 |
|
|
MODE is the mode in which the register is used, this is needed to
|
5104 |
|
|
determine how many hard regs to test.
|
5105 |
|
|
|
5106 |
|
|
Other read-only reloads with the same value do not conflict
|
5107 |
|
|
unless OUT is nonzero and these other reloads have to live while
|
5108 |
|
|
output reloads live.
|
5109 |
|
|
If OUT is CONST0_RTX, this is a special case: it means that the
|
5110 |
|
|
test should not be for using register REGNO as reload register, but
|
5111 |
|
|
for copying from register REGNO into the reload register.
|
5112 |
|
|
|
5113 |
|
|
RELOADNUM is the number of the reload we want to load this value for;
|
5114 |
|
|
a reload does not conflict with itself.
|
5115 |
|
|
|
5116 |
|
|
When IGNORE_ADDRESS_RELOADS is set, we can not have conflicts with
|
5117 |
|
|
reloads that load an address for the very reload we are considering.
|
5118 |
|
|
|
5119 |
|
|
The caller has to make sure that there is no conflict with the return
|
5120 |
|
|
register. */
|
5121 |
|
|
|
5122 |
|
|
static int
|
5123 |
|
|
free_for_value_p (int regno, enum machine_mode mode, int opnum,
|
5124 |
|
|
enum reload_type type, rtx value, rtx out, int reloadnum,
|
5125 |
|
|
int ignore_address_reloads)
|
5126 |
|
|
{
|
5127 |
|
|
int nregs = hard_regno_nregs[regno][mode];
|
5128 |
|
|
while (nregs-- > 0)
|
5129 |
|
|
if (! reload_reg_free_for_value_p (regno, regno + nregs, opnum, type,
|
5130 |
|
|
value, out, reloadnum,
|
5131 |
|
|
ignore_address_reloads))
|
5132 |
|
|
return 0;
|
5133 |
|
|
return 1;
|
5134 |
|
|
}
|
5135 |
|
|
|
5136 |
|
|
/* Return nonzero if the rtx X is invariant over the current function. */
|
5137 |
|
|
/* ??? Actually, the places where we use this expect exactly what is
|
5138 |
|
|
tested here, and not everything that is function invariant. In
|
5139 |
|
|
particular, the frame pointer and arg pointer are special cased;
|
5140 |
|
|
pic_offset_table_rtx is not, and we must not spill these things to
|
5141 |
|
|
memory. */
|
5142 |
|
|
|
5143 |
|
|
int
|
5144 |
|
|
function_invariant_p (rtx x)
|
5145 |
|
|
{
|
5146 |
|
|
if (CONSTANT_P (x))
|
5147 |
|
|
return 1;
|
5148 |
|
|
if (x == frame_pointer_rtx || x == arg_pointer_rtx)
|
5149 |
|
|
return 1;
|
5150 |
|
|
if (GET_CODE (x) == PLUS
|
5151 |
|
|
&& (XEXP (x, 0) == frame_pointer_rtx || XEXP (x, 0) == arg_pointer_rtx)
|
5152 |
|
|
&& CONSTANT_P (XEXP (x, 1)))
|
5153 |
|
|
return 1;
|
5154 |
|
|
return 0;
|
5155 |
|
|
}
|
5156 |
|
|
|
5157 |
|
|
/* Determine whether the reload reg X overlaps any rtx'es used for
|
5158 |
|
|
overriding inheritance. Return nonzero if so. */
|
5159 |
|
|
|
5160 |
|
|
static int
|
5161 |
|
|
conflicts_with_override (rtx x)
|
5162 |
|
|
{
|
5163 |
|
|
int i;
|
5164 |
|
|
for (i = 0; i < n_reloads; i++)
|
5165 |
|
|
if (reload_override_in[i]
|
5166 |
|
|
&& reg_overlap_mentioned_p (x, reload_override_in[i]))
|
5167 |
|
|
return 1;
|
5168 |
|
|
return 0;
|
5169 |
|
|
}
|
5170 |
|
|
|
5171 |
|
|
/* Give an error message saying we failed to find a reload for INSN,
|
5172 |
|
|
and clear out reload R. */
|
5173 |
|
|
static void
|
5174 |
|
|
failed_reload (rtx insn, int r)
|
5175 |
|
|
{
|
5176 |
|
|
if (asm_noperands (PATTERN (insn)) < 0)
|
5177 |
|
|
/* It's the compiler's fault. */
|
5178 |
|
|
fatal_insn ("could not find a spill register", insn);
|
5179 |
|
|
|
5180 |
|
|
/* It's the user's fault; the operand's mode and constraint
|
5181 |
|
|
don't match. Disable this reload so we don't crash in final. */
|
5182 |
|
|
error_for_asm (insn,
|
5183 |
|
|
"%<asm%> operand constraint incompatible with operand size");
|
5184 |
|
|
rld[r].in = 0;
|
5185 |
|
|
rld[r].out = 0;
|
5186 |
|
|
rld[r].reg_rtx = 0;
|
5187 |
|
|
rld[r].optional = 1;
|
5188 |
|
|
rld[r].secondary_p = 1;
|
5189 |
|
|
}
|
5190 |
|
|
|
5191 |
|
|
/* I is the index in SPILL_REG_RTX of the reload register we are to allocate
|
5192 |
|
|
for reload R. If it's valid, get an rtx for it. Return nonzero if
|
5193 |
|
|
successful. */
|
5194 |
|
|
static int
|
5195 |
|
|
set_reload_reg (int i, int r)
|
5196 |
|
|
{
|
5197 |
|
|
int regno;
|
5198 |
|
|
rtx reg = spill_reg_rtx[i];
|
5199 |
|
|
|
5200 |
|
|
if (reg == 0 || GET_MODE (reg) != rld[r].mode)
|
5201 |
|
|
spill_reg_rtx[i] = reg
|
5202 |
|
|
= gen_rtx_REG (rld[r].mode, spill_regs[i]);
|
5203 |
|
|
|
5204 |
|
|
regno = true_regnum (reg);
|
5205 |
|
|
|
5206 |
|
|
/* Detect when the reload reg can't hold the reload mode.
|
5207 |
|
|
This used to be one `if', but Sequent compiler can't handle that. */
|
5208 |
|
|
if (HARD_REGNO_MODE_OK (regno, rld[r].mode))
|
5209 |
|
|
{
|
5210 |
|
|
enum machine_mode test_mode = VOIDmode;
|
5211 |
|
|
if (rld[r].in)
|
5212 |
|
|
test_mode = GET_MODE (rld[r].in);
|
5213 |
|
|
/* If rld[r].in has VOIDmode, it means we will load it
|
5214 |
|
|
in whatever mode the reload reg has: to wit, rld[r].mode.
|
5215 |
|
|
We have already tested that for validity. */
|
5216 |
|
|
/* Aside from that, we need to test that the expressions
|
5217 |
|
|
to reload from or into have modes which are valid for this
|
5218 |
|
|
reload register. Otherwise the reload insns would be invalid. */
|
5219 |
|
|
if (! (rld[r].in != 0 && test_mode != VOIDmode
|
5220 |
|
|
&& ! HARD_REGNO_MODE_OK (regno, test_mode)))
|
5221 |
|
|
if (! (rld[r].out != 0
|
5222 |
|
|
&& ! HARD_REGNO_MODE_OK (regno, GET_MODE (rld[r].out))))
|
5223 |
|
|
{
|
5224 |
|
|
/* The reg is OK. */
|
5225 |
|
|
last_spill_reg = i;
|
5226 |
|
|
|
5227 |
|
|
/* Mark as in use for this insn the reload regs we use
|
5228 |
|
|
for this. */
|
5229 |
|
|
mark_reload_reg_in_use (spill_regs[i], rld[r].opnum,
|
5230 |
|
|
rld[r].when_needed, rld[r].mode);
|
5231 |
|
|
|
5232 |
|
|
rld[r].reg_rtx = reg;
|
5233 |
|
|
reload_spill_index[r] = spill_regs[i];
|
5234 |
|
|
return 1;
|
5235 |
|
|
}
|
5236 |
|
|
}
|
5237 |
|
|
return 0;
|
5238 |
|
|
}
|
5239 |
|
|
|
5240 |
|
|
/* Find a spill register to use as a reload register for reload R.
|
5241 |
|
|
LAST_RELOAD is nonzero if this is the last reload for the insn being
|
5242 |
|
|
processed.
|
5243 |
|
|
|
5244 |
|
|
Set rld[R].reg_rtx to the register allocated.
|
5245 |
|
|
|
5246 |
|
|
We return 1 if successful, or 0 if we couldn't find a spill reg and
|
5247 |
|
|
we didn't change anything. */
|
5248 |
|
|
|
5249 |
|
|
static int
|
5250 |
|
|
allocate_reload_reg (struct insn_chain *chain ATTRIBUTE_UNUSED, int r,
|
5251 |
|
|
int last_reload)
|
5252 |
|
|
{
|
5253 |
|
|
int i, pass, count;
|
5254 |
|
|
|
5255 |
|
|
/* If we put this reload ahead, thinking it is a group,
|
5256 |
|
|
then insist on finding a group. Otherwise we can grab a
|
5257 |
|
|
reg that some other reload needs.
|
5258 |
|
|
(That can happen when we have a 68000 DATA_OR_FP_REG
|
5259 |
|
|
which is a group of data regs or one fp reg.)
|
5260 |
|
|
We need not be so restrictive if there are no more reloads
|
5261 |
|
|
for this insn.
|
5262 |
|
|
|
5263 |
|
|
??? Really it would be nicer to have smarter handling
|
5264 |
|
|
for that kind of reg class, where a problem like this is normal.
|
5265 |
|
|
Perhaps those classes should be avoided for reloading
|
5266 |
|
|
by use of more alternatives. */
|
5267 |
|
|
|
5268 |
|
|
int force_group = rld[r].nregs > 1 && ! last_reload;
|
5269 |
|
|
|
5270 |
|
|
/* If we want a single register and haven't yet found one,
|
5271 |
|
|
take any reg in the right class and not in use.
|
5272 |
|
|
If we want a consecutive group, here is where we look for it.
|
5273 |
|
|
|
5274 |
|
|
We use two passes so we can first look for reload regs to
|
5275 |
|
|
reuse, which are already in use for other reloads in this insn,
|
5276 |
|
|
and only then use additional registers.
|
5277 |
|
|
I think that maximizing reuse is needed to make sure we don't
|
5278 |
|
|
run out of reload regs. Suppose we have three reloads, and
|
5279 |
|
|
reloads A and B can share regs. These need two regs.
|
5280 |
|
|
Suppose A and B are given different regs.
|
5281 |
|
|
That leaves none for C. */
|
5282 |
|
|
for (pass = 0; pass < 2; pass++)
|
5283 |
|
|
{
|
5284 |
|
|
/* I is the index in spill_regs.
|
5285 |
|
|
We advance it round-robin between insns to use all spill regs
|
5286 |
|
|
equally, so that inherited reloads have a chance
|
5287 |
|
|
of leapfrogging each other. */
|
5288 |
|
|
|
5289 |
|
|
i = last_spill_reg;
|
5290 |
|
|
|
5291 |
|
|
for (count = 0; count < n_spills; count++)
|
5292 |
|
|
{
|
5293 |
|
|
int class = (int) rld[r].class;
|
5294 |
|
|
int regnum;
|
5295 |
|
|
|
5296 |
|
|
i++;
|
5297 |
|
|
if (i >= n_spills)
|
5298 |
|
|
i -= n_spills;
|
5299 |
|
|
regnum = spill_regs[i];
|
5300 |
|
|
|
5301 |
|
|
if ((reload_reg_free_p (regnum, rld[r].opnum,
|
5302 |
|
|
rld[r].when_needed)
|
5303 |
|
|
|| (rld[r].in
|
5304 |
|
|
/* We check reload_reg_used to make sure we
|
5305 |
|
|
don't clobber the return register. */
|
5306 |
|
|
&& ! TEST_HARD_REG_BIT (reload_reg_used, regnum)
|
5307 |
|
|
&& free_for_value_p (regnum, rld[r].mode, rld[r].opnum,
|
5308 |
|
|
rld[r].when_needed, rld[r].in,
|
5309 |
|
|
rld[r].out, r, 1)))
|
5310 |
|
|
&& TEST_HARD_REG_BIT (reg_class_contents[class], regnum)
|
5311 |
|
|
&& HARD_REGNO_MODE_OK (regnum, rld[r].mode)
|
5312 |
|
|
/* Look first for regs to share, then for unshared. But
|
5313 |
|
|
don't share regs used for inherited reloads; they are
|
5314 |
|
|
the ones we want to preserve. */
|
5315 |
|
|
&& (pass
|
5316 |
|
|
|| (TEST_HARD_REG_BIT (reload_reg_used_at_all,
|
5317 |
|
|
regnum)
|
5318 |
|
|
&& ! TEST_HARD_REG_BIT (reload_reg_used_for_inherit,
|
5319 |
|
|
regnum))))
|
5320 |
|
|
{
|
5321 |
|
|
int nr = hard_regno_nregs[regnum][rld[r].mode];
|
5322 |
|
|
/* Avoid the problem where spilling a GENERAL_OR_FP_REG
|
5323 |
|
|
(on 68000) got us two FP regs. If NR is 1,
|
5324 |
|
|
we would reject both of them. */
|
5325 |
|
|
if (force_group)
|
5326 |
|
|
nr = rld[r].nregs;
|
5327 |
|
|
/* If we need only one reg, we have already won. */
|
5328 |
|
|
if (nr == 1)
|
5329 |
|
|
{
|
5330 |
|
|
/* But reject a single reg if we demand a group. */
|
5331 |
|
|
if (force_group)
|
5332 |
|
|
continue;
|
5333 |
|
|
break;
|
5334 |
|
|
}
|
5335 |
|
|
/* Otherwise check that as many consecutive regs as we need
|
5336 |
|
|
are available here. */
|
5337 |
|
|
while (nr > 1)
|
5338 |
|
|
{
|
5339 |
|
|
int regno = regnum + nr - 1;
|
5340 |
|
|
if (!(TEST_HARD_REG_BIT (reg_class_contents[class], regno)
|
5341 |
|
|
&& spill_reg_order[regno] >= 0
|
5342 |
|
|
&& reload_reg_free_p (regno, rld[r].opnum,
|
5343 |
|
|
rld[r].when_needed)))
|
5344 |
|
|
break;
|
5345 |
|
|
nr--;
|
5346 |
|
|
}
|
5347 |
|
|
if (nr == 1)
|
5348 |
|
|
break;
|
5349 |
|
|
}
|
5350 |
|
|
}
|
5351 |
|
|
|
5352 |
|
|
/* If we found something on pass 1, omit pass 2. */
|
5353 |
|
|
if (count < n_spills)
|
5354 |
|
|
break;
|
5355 |
|
|
}
|
5356 |
|
|
|
5357 |
|
|
/* We should have found a spill register by now. */
|
5358 |
|
|
if (count >= n_spills)
|
5359 |
|
|
return 0;
|
5360 |
|
|
|
5361 |
|
|
/* I is the index in SPILL_REG_RTX of the reload register we are to
|
5362 |
|
|
allocate. Get an rtx for it and find its register number. */
|
5363 |
|
|
|
5364 |
|
|
return set_reload_reg (i, r);
|
5365 |
|
|
}
|
5366 |
|
|
|
5367 |
|
|
/* Initialize all the tables needed to allocate reload registers.
|
5368 |
|
|
CHAIN is the insn currently being processed; SAVE_RELOAD_REG_RTX
|
5369 |
|
|
is the array we use to restore the reg_rtx field for every reload. */
|
5370 |
|
|
|
5371 |
|
|
static void
|
5372 |
|
|
choose_reload_regs_init (struct insn_chain *chain, rtx *save_reload_reg_rtx)
|
5373 |
|
|
{
|
5374 |
|
|
int i;
|
5375 |
|
|
|
5376 |
|
|
for (i = 0; i < n_reloads; i++)
|
5377 |
|
|
rld[i].reg_rtx = save_reload_reg_rtx[i];
|
5378 |
|
|
|
5379 |
|
|
memset (reload_inherited, 0, MAX_RELOADS);
|
5380 |
|
|
memset (reload_inheritance_insn, 0, MAX_RELOADS * sizeof (rtx));
|
5381 |
|
|
memset (reload_override_in, 0, MAX_RELOADS * sizeof (rtx));
|
5382 |
|
|
|
5383 |
|
|
CLEAR_HARD_REG_SET (reload_reg_used);
|
5384 |
|
|
CLEAR_HARD_REG_SET (reload_reg_used_at_all);
|
5385 |
|
|
CLEAR_HARD_REG_SET (reload_reg_used_in_op_addr);
|
5386 |
|
|
CLEAR_HARD_REG_SET (reload_reg_used_in_op_addr_reload);
|
5387 |
|
|
CLEAR_HARD_REG_SET (reload_reg_used_in_insn);
|
5388 |
|
|
CLEAR_HARD_REG_SET (reload_reg_used_in_other_addr);
|
5389 |
|
|
|
5390 |
|
|
CLEAR_HARD_REG_SET (reg_used_in_insn);
|
5391 |
|
|
{
|
5392 |
|
|
HARD_REG_SET tmp;
|
5393 |
|
|
REG_SET_TO_HARD_REG_SET (tmp, &chain->live_throughout);
|
5394 |
|
|
IOR_HARD_REG_SET (reg_used_in_insn, tmp);
|
5395 |
|
|
REG_SET_TO_HARD_REG_SET (tmp, &chain->dead_or_set);
|
5396 |
|
|
IOR_HARD_REG_SET (reg_used_in_insn, tmp);
|
5397 |
|
|
compute_use_by_pseudos (®_used_in_insn, &chain->live_throughout);
|
5398 |
|
|
compute_use_by_pseudos (®_used_in_insn, &chain->dead_or_set);
|
5399 |
|
|
}
|
5400 |
|
|
|
5401 |
|
|
for (i = 0; i < reload_n_operands; i++)
|
5402 |
|
|
{
|
5403 |
|
|
CLEAR_HARD_REG_SET (reload_reg_used_in_output[i]);
|
5404 |
|
|
CLEAR_HARD_REG_SET (reload_reg_used_in_input[i]);
|
5405 |
|
|
CLEAR_HARD_REG_SET (reload_reg_used_in_input_addr[i]);
|
5406 |
|
|
CLEAR_HARD_REG_SET (reload_reg_used_in_inpaddr_addr[i]);
|
5407 |
|
|
CLEAR_HARD_REG_SET (reload_reg_used_in_output_addr[i]);
|
5408 |
|
|
CLEAR_HARD_REG_SET (reload_reg_used_in_outaddr_addr[i]);
|
5409 |
|
|
}
|
5410 |
|
|
|
5411 |
|
|
COMPL_HARD_REG_SET (reload_reg_unavailable, chain->used_spill_regs);
|
5412 |
|
|
|
5413 |
|
|
CLEAR_HARD_REG_SET (reload_reg_used_for_inherit);
|
5414 |
|
|
|
5415 |
|
|
for (i = 0; i < n_reloads; i++)
|
5416 |
|
|
/* If we have already decided to use a certain register,
|
5417 |
|
|
don't use it in another way. */
|
5418 |
|
|
if (rld[i].reg_rtx)
|
5419 |
|
|
mark_reload_reg_in_use (REGNO (rld[i].reg_rtx), rld[i].opnum,
|
5420 |
|
|
rld[i].when_needed, rld[i].mode);
|
5421 |
|
|
}
|
5422 |
|
|
|
5423 |
|
|
/* Assign hard reg targets for the pseudo-registers we must reload
|
5424 |
|
|
into hard regs for this insn.
|
5425 |
|
|
Also output the instructions to copy them in and out of the hard regs.
|
5426 |
|
|
|
5427 |
|
|
For machines with register classes, we are responsible for
|
5428 |
|
|
finding a reload reg in the proper class. */
|
5429 |
|
|
|
5430 |
|
|
static void
|
5431 |
|
|
choose_reload_regs (struct insn_chain *chain)
|
5432 |
|
|
{
|
5433 |
|
|
rtx insn = chain->insn;
|
5434 |
|
|
int i, j;
|
5435 |
|
|
unsigned int max_group_size = 1;
|
5436 |
|
|
enum reg_class group_class = NO_REGS;
|
5437 |
|
|
int pass, win, inheritance;
|
5438 |
|
|
|
5439 |
|
|
rtx save_reload_reg_rtx[MAX_RELOADS];
|
5440 |
|
|
|
5441 |
|
|
/* In order to be certain of getting the registers we need,
|
5442 |
|
|
we must sort the reloads into order of increasing register class.
|
5443 |
|
|
Then our grabbing of reload registers will parallel the process
|
5444 |
|
|
that provided the reload registers.
|
5445 |
|
|
|
5446 |
|
|
Also note whether any of the reloads wants a consecutive group of regs.
|
5447 |
|
|
If so, record the maximum size of the group desired and what
|
5448 |
|
|
register class contains all the groups needed by this insn. */
|
5449 |
|
|
|
5450 |
|
|
for (j = 0; j < n_reloads; j++)
|
5451 |
|
|
{
|
5452 |
|
|
reload_order[j] = j;
|
5453 |
|
|
if (rld[j].reg_rtx != NULL_RTX)
|
5454 |
|
|
{
|
5455 |
|
|
gcc_assert (REG_P (rld[j].reg_rtx)
|
5456 |
|
|
&& HARD_REGISTER_P (rld[j].reg_rtx));
|
5457 |
|
|
reload_spill_index[j] = REGNO (rld[j].reg_rtx);
|
5458 |
|
|
}
|
5459 |
|
|
else
|
5460 |
|
|
reload_spill_index[j] = -1;
|
5461 |
|
|
|
5462 |
|
|
if (rld[j].nregs > 1)
|
5463 |
|
|
{
|
5464 |
|
|
max_group_size = MAX (rld[j].nregs, max_group_size);
|
5465 |
|
|
group_class
|
5466 |
|
|
= reg_class_superunion[(int) rld[j].class][(int) group_class];
|
5467 |
|
|
}
|
5468 |
|
|
|
5469 |
|
|
save_reload_reg_rtx[j] = rld[j].reg_rtx;
|
5470 |
|
|
}
|
5471 |
|
|
|
5472 |
|
|
if (n_reloads > 1)
|
5473 |
|
|
qsort (reload_order, n_reloads, sizeof (short), reload_reg_class_lower);
|
5474 |
|
|
|
5475 |
|
|
/* If -O, try first with inheritance, then turning it off.
|
5476 |
|
|
If not -O, don't do inheritance.
|
5477 |
|
|
Using inheritance when not optimizing leads to paradoxes
|
5478 |
|
|
with fp on the 68k: fp numbers (not NaNs) fail to be equal to themselves
|
5479 |
|
|
because one side of the comparison might be inherited. */
|
5480 |
|
|
win = 0;
|
5481 |
|
|
for (inheritance = optimize > 0; inheritance >= 0; inheritance--)
|
5482 |
|
|
{
|
5483 |
|
|
choose_reload_regs_init (chain, save_reload_reg_rtx);
|
5484 |
|
|
|
5485 |
|
|
/* Process the reloads in order of preference just found.
|
5486 |
|
|
Beyond this point, subregs can be found in reload_reg_rtx.
|
5487 |
|
|
|
5488 |
|
|
This used to look for an existing reloaded home for all of the
|
5489 |
|
|
reloads, and only then perform any new reloads. But that could lose
|
5490 |
|
|
if the reloads were done out of reg-class order because a later
|
5491 |
|
|
reload with a looser constraint might have an old home in a register
|
5492 |
|
|
needed by an earlier reload with a tighter constraint.
|
5493 |
|
|
|
5494 |
|
|
To solve this, we make two passes over the reloads, in the order
|
5495 |
|
|
described above. In the first pass we try to inherit a reload
|
5496 |
|
|
from a previous insn. If there is a later reload that needs a
|
5497 |
|
|
class that is a proper subset of the class being processed, we must
|
5498 |
|
|
also allocate a spill register during the first pass.
|
5499 |
|
|
|
5500 |
|
|
Then make a second pass over the reloads to allocate any reloads
|
5501 |
|
|
that haven't been given registers yet. */
|
5502 |
|
|
|
5503 |
|
|
for (j = 0; j < n_reloads; j++)
|
5504 |
|
|
{
|
5505 |
|
|
int r = reload_order[j];
|
5506 |
|
|
rtx search_equiv = NULL_RTX;
|
5507 |
|
|
|
5508 |
|
|
/* Ignore reloads that got marked inoperative. */
|
5509 |
|
|
if (rld[r].out == 0 && rld[r].in == 0
|
5510 |
|
|
&& ! rld[r].secondary_p)
|
5511 |
|
|
continue;
|
5512 |
|
|
|
5513 |
|
|
/* If find_reloads chose to use reload_in or reload_out as a reload
|
5514 |
|
|
register, we don't need to chose one. Otherwise, try even if it
|
5515 |
|
|
found one since we might save an insn if we find the value lying
|
5516 |
|
|
around.
|
5517 |
|
|
Try also when reload_in is a pseudo without a hard reg. */
|
5518 |
|
|
if (rld[r].in != 0 && rld[r].reg_rtx != 0
|
5519 |
|
|
&& (rtx_equal_p (rld[r].in, rld[r].reg_rtx)
|
5520 |
|
|
|| (rtx_equal_p (rld[r].out, rld[r].reg_rtx)
|
5521 |
|
|
&& !MEM_P (rld[r].in)
|
5522 |
|
|
&& true_regnum (rld[r].in) < FIRST_PSEUDO_REGISTER)))
|
5523 |
|
|
continue;
|
5524 |
|
|
|
5525 |
|
|
#if 0 /* No longer needed for correct operation.
|
5526 |
|
|
It might give better code, or might not; worth an experiment? */
|
5527 |
|
|
/* If this is an optional reload, we can't inherit from earlier insns
|
5528 |
|
|
until we are sure that any non-optional reloads have been allocated.
|
5529 |
|
|
The following code takes advantage of the fact that optional reloads
|
5530 |
|
|
are at the end of reload_order. */
|
5531 |
|
|
if (rld[r].optional != 0)
|
5532 |
|
|
for (i = 0; i < j; i++)
|
5533 |
|
|
if ((rld[reload_order[i]].out != 0
|
5534 |
|
|
|| rld[reload_order[i]].in != 0
|
5535 |
|
|
|| rld[reload_order[i]].secondary_p)
|
5536 |
|
|
&& ! rld[reload_order[i]].optional
|
5537 |
|
|
&& rld[reload_order[i]].reg_rtx == 0)
|
5538 |
|
|
allocate_reload_reg (chain, reload_order[i], 0);
|
5539 |
|
|
#endif
|
5540 |
|
|
|
5541 |
|
|
/* First see if this pseudo is already available as reloaded
|
5542 |
|
|
for a previous insn. We cannot try to inherit for reloads
|
5543 |
|
|
that are smaller than the maximum number of registers needed
|
5544 |
|
|
for groups unless the register we would allocate cannot be used
|
5545 |
|
|
for the groups.
|
5546 |
|
|
|
5547 |
|
|
We could check here to see if this is a secondary reload for
|
5548 |
|
|
an object that is already in a register of the desired class.
|
5549 |
|
|
This would avoid the need for the secondary reload register.
|
5550 |
|
|
But this is complex because we can't easily determine what
|
5551 |
|
|
objects might want to be loaded via this reload. So let a
|
5552 |
|
|
register be allocated here. In `emit_reload_insns' we suppress
|
5553 |
|
|
one of the loads in the case described above. */
|
5554 |
|
|
|
5555 |
|
|
if (inheritance)
|
5556 |
|
|
{
|
5557 |
|
|
int byte = 0;
|
5558 |
|
|
int regno = -1;
|
5559 |
|
|
enum machine_mode mode = VOIDmode;
|
5560 |
|
|
|
5561 |
|
|
if (rld[r].in == 0)
|
5562 |
|
|
;
|
5563 |
|
|
else if (REG_P (rld[r].in))
|
5564 |
|
|
{
|
5565 |
|
|
regno = REGNO (rld[r].in);
|
5566 |
|
|
mode = GET_MODE (rld[r].in);
|
5567 |
|
|
}
|
5568 |
|
|
else if (REG_P (rld[r].in_reg))
|
5569 |
|
|
{
|
5570 |
|
|
regno = REGNO (rld[r].in_reg);
|
5571 |
|
|
mode = GET_MODE (rld[r].in_reg);
|
5572 |
|
|
}
|
5573 |
|
|
else if (GET_CODE (rld[r].in_reg) == SUBREG
|
5574 |
|
|
&& REG_P (SUBREG_REG (rld[r].in_reg)))
|
5575 |
|
|
{
|
5576 |
|
|
byte = SUBREG_BYTE (rld[r].in_reg);
|
5577 |
|
|
regno = REGNO (SUBREG_REG (rld[r].in_reg));
|
5578 |
|
|
if (regno < FIRST_PSEUDO_REGISTER)
|
5579 |
|
|
regno = subreg_regno (rld[r].in_reg);
|
5580 |
|
|
mode = GET_MODE (rld[r].in_reg);
|
5581 |
|
|
}
|
5582 |
|
|
#ifdef AUTO_INC_DEC
|
5583 |
|
|
else if (GET_RTX_CLASS (GET_CODE (rld[r].in_reg)) == RTX_AUTOINC
|
5584 |
|
|
&& REG_P (XEXP (rld[r].in_reg, 0)))
|
5585 |
|
|
{
|
5586 |
|
|
regno = REGNO (XEXP (rld[r].in_reg, 0));
|
5587 |
|
|
mode = GET_MODE (XEXP (rld[r].in_reg, 0));
|
5588 |
|
|
rld[r].out = rld[r].in;
|
5589 |
|
|
}
|
5590 |
|
|
#endif
|
5591 |
|
|
#if 0
|
5592 |
|
|
/* This won't work, since REGNO can be a pseudo reg number.
|
5593 |
|
|
Also, it takes much more hair to keep track of all the things
|
5594 |
|
|
that can invalidate an inherited reload of part of a pseudoreg. */
|
5595 |
|
|
else if (GET_CODE (rld[r].in) == SUBREG
|
5596 |
|
|
&& REG_P (SUBREG_REG (rld[r].in)))
|
5597 |
|
|
regno = subreg_regno (rld[r].in);
|
5598 |
|
|
#endif
|
5599 |
|
|
|
5600 |
|
|
if (regno >= 0 && reg_last_reload_reg[regno] != 0)
|
5601 |
|
|
{
|
5602 |
|
|
enum reg_class class = rld[r].class, last_class;
|
5603 |
|
|
rtx last_reg = reg_last_reload_reg[regno];
|
5604 |
|
|
enum machine_mode need_mode;
|
5605 |
|
|
|
5606 |
|
|
i = REGNO (last_reg);
|
5607 |
|
|
i += subreg_regno_offset (i, GET_MODE (last_reg), byte, mode);
|
5608 |
|
|
last_class = REGNO_REG_CLASS (i);
|
5609 |
|
|
|
5610 |
|
|
if (byte == 0)
|
5611 |
|
|
need_mode = mode;
|
5612 |
|
|
else
|
5613 |
|
|
need_mode
|
5614 |
|
|
= smallest_mode_for_size (GET_MODE_BITSIZE (mode)
|
5615 |
|
|
+ byte * BITS_PER_UNIT,
|
5616 |
|
|
GET_MODE_CLASS (mode));
|
5617 |
|
|
|
5618 |
|
|
if ((GET_MODE_SIZE (GET_MODE (last_reg))
|
5619 |
|
|
>= GET_MODE_SIZE (need_mode))
|
5620 |
|
|
#ifdef CANNOT_CHANGE_MODE_CLASS
|
5621 |
|
|
/* Verify that the register in "i" can be obtained
|
5622 |
|
|
from LAST_REG. */
|
5623 |
|
|
&& !REG_CANNOT_CHANGE_MODE_P (REGNO (last_reg),
|
5624 |
|
|
GET_MODE (last_reg),
|
5625 |
|
|
mode)
|
5626 |
|
|
#endif
|
5627 |
|
|
&& reg_reloaded_contents[i] == regno
|
5628 |
|
|
&& TEST_HARD_REG_BIT (reg_reloaded_valid, i)
|
5629 |
|
|
&& HARD_REGNO_MODE_OK (i, rld[r].mode)
|
5630 |
|
|
&& (TEST_HARD_REG_BIT (reg_class_contents[(int) class], i)
|
5631 |
|
|
/* Even if we can't use this register as a reload
|
5632 |
|
|
register, we might use it for reload_override_in,
|
5633 |
|
|
if copying it to the desired class is cheap
|
5634 |
|
|
enough. */
|
5635 |
|
|
|| ((REGISTER_MOVE_COST (mode, last_class, class)
|
5636 |
|
|
< MEMORY_MOVE_COST (mode, class, 1))
|
5637 |
|
|
&& (secondary_reload_class (1, class, mode,
|
5638 |
|
|
last_reg)
|
5639 |
|
|
== NO_REGS)
|
5640 |
|
|
#ifdef SECONDARY_MEMORY_NEEDED
|
5641 |
|
|
&& ! SECONDARY_MEMORY_NEEDED (last_class, class,
|
5642 |
|
|
mode)
|
5643 |
|
|
#endif
|
5644 |
|
|
))
|
5645 |
|
|
|
5646 |
|
|
&& (rld[r].nregs == max_group_size
|
5647 |
|
|
|| ! TEST_HARD_REG_BIT (reg_class_contents[(int) group_class],
|
5648 |
|
|
i))
|
5649 |
|
|
&& free_for_value_p (i, rld[r].mode, rld[r].opnum,
|
5650 |
|
|
rld[r].when_needed, rld[r].in,
|
5651 |
|
|
const0_rtx, r, 1))
|
5652 |
|
|
{
|
5653 |
|
|
/* If a group is needed, verify that all the subsequent
|
5654 |
|
|
registers still have their values intact. */
|
5655 |
|
|
int nr = hard_regno_nregs[i][rld[r].mode];
|
5656 |
|
|
int k;
|
5657 |
|
|
|
5658 |
|
|
for (k = 1; k < nr; k++)
|
5659 |
|
|
if (reg_reloaded_contents[i + k] != regno
|
5660 |
|
|
|| ! TEST_HARD_REG_BIT (reg_reloaded_valid, i + k))
|
5661 |
|
|
break;
|
5662 |
|
|
|
5663 |
|
|
if (k == nr)
|
5664 |
|
|
{
|
5665 |
|
|
int i1;
|
5666 |
|
|
int bad_for_class;
|
5667 |
|
|
|
5668 |
|
|
last_reg = (GET_MODE (last_reg) == mode
|
5669 |
|
|
? last_reg : gen_rtx_REG (mode, i));
|
5670 |
|
|
|
5671 |
|
|
bad_for_class = 0;
|
5672 |
|
|
for (k = 0; k < nr; k++)
|
5673 |
|
|
bad_for_class |= ! TEST_HARD_REG_BIT (reg_class_contents[(int) rld[r].class],
|
5674 |
|
|
i+k);
|
5675 |
|
|
|
5676 |
|
|
/* We found a register that contains the
|
5677 |
|
|
value we need. If this register is the
|
5678 |
|
|
same as an `earlyclobber' operand of the
|
5679 |
|
|
current insn, just mark it as a place to
|
5680 |
|
|
reload from since we can't use it as the
|
5681 |
|
|
reload register itself. */
|
5682 |
|
|
|
5683 |
|
|
for (i1 = 0; i1 < n_earlyclobbers; i1++)
|
5684 |
|
|
if (reg_overlap_mentioned_for_reload_p
|
5685 |
|
|
(reg_last_reload_reg[regno],
|
5686 |
|
|
reload_earlyclobbers[i1]))
|
5687 |
|
|
break;
|
5688 |
|
|
|
5689 |
|
|
if (i1 != n_earlyclobbers
|
5690 |
|
|
|| ! (free_for_value_p (i, rld[r].mode,
|
5691 |
|
|
rld[r].opnum,
|
5692 |
|
|
rld[r].when_needed, rld[r].in,
|
5693 |
|
|
rld[r].out, r, 1))
|
5694 |
|
|
/* Don't use it if we'd clobber a pseudo reg. */
|
5695 |
|
|
|| (TEST_HARD_REG_BIT (reg_used_in_insn, i)
|
5696 |
|
|
&& rld[r].out
|
5697 |
|
|
&& ! TEST_HARD_REG_BIT (reg_reloaded_dead, i))
|
5698 |
|
|
/* Don't clobber the frame pointer. */
|
5699 |
|
|
|| (i == HARD_FRAME_POINTER_REGNUM
|
5700 |
|
|
&& frame_pointer_needed
|
5701 |
|
|
&& rld[r].out)
|
5702 |
|
|
/* Don't really use the inherited spill reg
|
5703 |
|
|
if we need it wider than we've got it. */
|
5704 |
|
|
|| (GET_MODE_SIZE (rld[r].mode)
|
5705 |
|
|
> GET_MODE_SIZE (mode))
|
5706 |
|
|
|| bad_for_class
|
5707 |
|
|
|
5708 |
|
|
/* If find_reloads chose reload_out as reload
|
5709 |
|
|
register, stay with it - that leaves the
|
5710 |
|
|
inherited register for subsequent reloads. */
|
5711 |
|
|
|| (rld[r].out && rld[r].reg_rtx
|
5712 |
|
|
&& rtx_equal_p (rld[r].out, rld[r].reg_rtx)))
|
5713 |
|
|
{
|
5714 |
|
|
if (! rld[r].optional)
|
5715 |
|
|
{
|
5716 |
|
|
reload_override_in[r] = last_reg;
|
5717 |
|
|
reload_inheritance_insn[r]
|
5718 |
|
|
= reg_reloaded_insn[i];
|
5719 |
|
|
}
|
5720 |
|
|
}
|
5721 |
|
|
else
|
5722 |
|
|
{
|
5723 |
|
|
int k;
|
5724 |
|
|
/* We can use this as a reload reg. */
|
5725 |
|
|
/* Mark the register as in use for this part of
|
5726 |
|
|
the insn. */
|
5727 |
|
|
mark_reload_reg_in_use (i,
|
5728 |
|
|
rld[r].opnum,
|
5729 |
|
|
rld[r].when_needed,
|
5730 |
|
|
rld[r].mode);
|
5731 |
|
|
rld[r].reg_rtx = last_reg;
|
5732 |
|
|
reload_inherited[r] = 1;
|
5733 |
|
|
reload_inheritance_insn[r]
|
5734 |
|
|
= reg_reloaded_insn[i];
|
5735 |
|
|
reload_spill_index[r] = i;
|
5736 |
|
|
for (k = 0; k < nr; k++)
|
5737 |
|
|
SET_HARD_REG_BIT (reload_reg_used_for_inherit,
|
5738 |
|
|
i + k);
|
5739 |
|
|
}
|
5740 |
|
|
}
|
5741 |
|
|
}
|
5742 |
|
|
}
|
5743 |
|
|
}
|
5744 |
|
|
|
5745 |
|
|
/* Here's another way to see if the value is already lying around. */
|
5746 |
|
|
if (inheritance
|
5747 |
|
|
&& rld[r].in != 0
|
5748 |
|
|
&& ! reload_inherited[r]
|
5749 |
|
|
&& rld[r].out == 0
|
5750 |
|
|
&& (CONSTANT_P (rld[r].in)
|
5751 |
|
|
|| GET_CODE (rld[r].in) == PLUS
|
5752 |
|
|
|| REG_P (rld[r].in)
|
5753 |
|
|
|| MEM_P (rld[r].in))
|
5754 |
|
|
&& (rld[r].nregs == max_group_size
|
5755 |
|
|
|| ! reg_classes_intersect_p (rld[r].class, group_class)))
|
5756 |
|
|
search_equiv = rld[r].in;
|
5757 |
|
|
/* If this is an output reload from a simple move insn, look
|
5758 |
|
|
if an equivalence for the input is available. */
|
5759 |
|
|
else if (inheritance && rld[r].in == 0 && rld[r].out != 0)
|
5760 |
|
|
{
|
5761 |
|
|
rtx set = single_set (insn);
|
5762 |
|
|
|
5763 |
|
|
if (set
|
5764 |
|
|
&& rtx_equal_p (rld[r].out, SET_DEST (set))
|
5765 |
|
|
&& CONSTANT_P (SET_SRC (set)))
|
5766 |
|
|
search_equiv = SET_SRC (set);
|
5767 |
|
|
}
|
5768 |
|
|
|
5769 |
|
|
if (search_equiv)
|
5770 |
|
|
{
|
5771 |
|
|
rtx equiv
|
5772 |
|
|
= find_equiv_reg (search_equiv, insn, rld[r].class,
|
5773 |
|
|
-1, NULL, 0, rld[r].mode);
|
5774 |
|
|
int regno = 0;
|
5775 |
|
|
|
5776 |
|
|
if (equiv != 0)
|
5777 |
|
|
{
|
5778 |
|
|
if (REG_P (equiv))
|
5779 |
|
|
regno = REGNO (equiv);
|
5780 |
|
|
else
|
5781 |
|
|
{
|
5782 |
|
|
/* This must be a SUBREG of a hard register.
|
5783 |
|
|
Make a new REG since this might be used in an
|
5784 |
|
|
address and not all machines support SUBREGs
|
5785 |
|
|
there. */
|
5786 |
|
|
gcc_assert (GET_CODE (equiv) == SUBREG);
|
5787 |
|
|
regno = subreg_regno (equiv);
|
5788 |
|
|
equiv = gen_rtx_REG (rld[r].mode, regno);
|
5789 |
|
|
/* If we choose EQUIV as the reload register, but the
|
5790 |
|
|
loop below decides to cancel the inheritance, we'll
|
5791 |
|
|
end up reloading EQUIV in rld[r].mode, not the mode
|
5792 |
|
|
it had originally. That isn't safe when EQUIV isn't
|
5793 |
|
|
available as a spill register since its value might
|
5794 |
|
|
still be live at this point. */
|
5795 |
|
|
for (i = regno; i < regno + (int) rld[r].nregs; i++)
|
5796 |
|
|
if (TEST_HARD_REG_BIT (reload_reg_unavailable, i))
|
5797 |
|
|
equiv = 0;
|
5798 |
|
|
}
|
5799 |
|
|
}
|
5800 |
|
|
|
5801 |
|
|
/* If we found a spill reg, reject it unless it is free
|
5802 |
|
|
and of the desired class. */
|
5803 |
|
|
if (equiv != 0)
|
5804 |
|
|
{
|
5805 |
|
|
int regs_used = 0;
|
5806 |
|
|
int bad_for_class = 0;
|
5807 |
|
|
int max_regno = regno + rld[r].nregs;
|
5808 |
|
|
|
5809 |
|
|
for (i = regno; i < max_regno; i++)
|
5810 |
|
|
{
|
5811 |
|
|
regs_used |= TEST_HARD_REG_BIT (reload_reg_used_at_all,
|
5812 |
|
|
i);
|
5813 |
|
|
bad_for_class |= ! TEST_HARD_REG_BIT (reg_class_contents[(int) rld[r].class],
|
5814 |
|
|
i);
|
5815 |
|
|
}
|
5816 |
|
|
|
5817 |
|
|
if ((regs_used
|
5818 |
|
|
&& ! free_for_value_p (regno, rld[r].mode,
|
5819 |
|
|
rld[r].opnum, rld[r].when_needed,
|
5820 |
|
|
rld[r].in, rld[r].out, r, 1))
|
5821 |
|
|
|| bad_for_class)
|
5822 |
|
|
equiv = 0;
|
5823 |
|
|
}
|
5824 |
|
|
|
5825 |
|
|
if (equiv != 0 && ! HARD_REGNO_MODE_OK (regno, rld[r].mode))
|
5826 |
|
|
equiv = 0;
|
5827 |
|
|
|
5828 |
|
|
/* We found a register that contains the value we need.
|
5829 |
|
|
If this register is the same as an `earlyclobber' operand
|
5830 |
|
|
of the current insn, just mark it as a place to reload from
|
5831 |
|
|
since we can't use it as the reload register itself. */
|
5832 |
|
|
|
5833 |
|
|
if (equiv != 0)
|
5834 |
|
|
for (i = 0; i < n_earlyclobbers; i++)
|
5835 |
|
|
if (reg_overlap_mentioned_for_reload_p (equiv,
|
5836 |
|
|
reload_earlyclobbers[i]))
|
5837 |
|
|
{
|
5838 |
|
|
if (! rld[r].optional)
|
5839 |
|
|
reload_override_in[r] = equiv;
|
5840 |
|
|
equiv = 0;
|
5841 |
|
|
break;
|
5842 |
|
|
}
|
5843 |
|
|
|
5844 |
|
|
/* If the equiv register we have found is explicitly clobbered
|
5845 |
|
|
in the current insn, it depends on the reload type if we
|
5846 |
|
|
can use it, use it for reload_override_in, or not at all.
|
5847 |
|
|
In particular, we then can't use EQUIV for a
|
5848 |
|
|
RELOAD_FOR_OUTPUT_ADDRESS reload. */
|
5849 |
|
|
|
5850 |
|
|
if (equiv != 0)
|
5851 |
|
|
{
|
5852 |
|
|
if (regno_clobbered_p (regno, insn, rld[r].mode, 2))
|
5853 |
|
|
switch (rld[r].when_needed)
|
5854 |
|
|
{
|
5855 |
|
|
case RELOAD_FOR_OTHER_ADDRESS:
|
5856 |
|
|
case RELOAD_FOR_INPADDR_ADDRESS:
|
5857 |
|
|
case RELOAD_FOR_INPUT_ADDRESS:
|
5858 |
|
|
case RELOAD_FOR_OPADDR_ADDR:
|
5859 |
|
|
break;
|
5860 |
|
|
case RELOAD_OTHER:
|
5861 |
|
|
case RELOAD_FOR_INPUT:
|
5862 |
|
|
case RELOAD_FOR_OPERAND_ADDRESS:
|
5863 |
|
|
if (! rld[r].optional)
|
5864 |
|
|
reload_override_in[r] = equiv;
|
5865 |
|
|
/* Fall through. */
|
5866 |
|
|
default:
|
5867 |
|
|
equiv = 0;
|
5868 |
|
|
break;
|
5869 |
|
|
}
|
5870 |
|
|
else if (regno_clobbered_p (regno, insn, rld[r].mode, 1))
|
5871 |
|
|
switch (rld[r].when_needed)
|
5872 |
|
|
{
|
5873 |
|
|
case RELOAD_FOR_OTHER_ADDRESS:
|
5874 |
|
|
case RELOAD_FOR_INPADDR_ADDRESS:
|
5875 |
|
|
case RELOAD_FOR_INPUT_ADDRESS:
|
5876 |
|
|
case RELOAD_FOR_OPADDR_ADDR:
|
5877 |
|
|
case RELOAD_FOR_OPERAND_ADDRESS:
|
5878 |
|
|
case RELOAD_FOR_INPUT:
|
5879 |
|
|
break;
|
5880 |
|
|
case RELOAD_OTHER:
|
5881 |
|
|
if (! rld[r].optional)
|
5882 |
|
|
reload_override_in[r] = equiv;
|
5883 |
|
|
/* Fall through. */
|
5884 |
|
|
default:
|
5885 |
|
|
equiv = 0;
|
5886 |
|
|
break;
|
5887 |
|
|
}
|
5888 |
|
|
}
|
5889 |
|
|
|
5890 |
|
|
/* If we found an equivalent reg, say no code need be generated
|
5891 |
|
|
to load it, and use it as our reload reg. */
|
5892 |
|
|
if (equiv != 0
|
5893 |
|
|
&& (regno != HARD_FRAME_POINTER_REGNUM
|
5894 |
|
|
|| !frame_pointer_needed))
|
5895 |
|
|
{
|
5896 |
|
|
int nr = hard_regno_nregs[regno][rld[r].mode];
|
5897 |
|
|
int k;
|
5898 |
|
|
rld[r].reg_rtx = equiv;
|
5899 |
|
|
reload_inherited[r] = 1;
|
5900 |
|
|
|
5901 |
|
|
/* If reg_reloaded_valid is not set for this register,
|
5902 |
|
|
there might be a stale spill_reg_store lying around.
|
5903 |
|
|
We must clear it, since otherwise emit_reload_insns
|
5904 |
|
|
might delete the store. */
|
5905 |
|
|
if (! TEST_HARD_REG_BIT (reg_reloaded_valid, regno))
|
5906 |
|
|
spill_reg_store[regno] = NULL_RTX;
|
5907 |
|
|
/* If any of the hard registers in EQUIV are spill
|
5908 |
|
|
registers, mark them as in use for this insn. */
|
5909 |
|
|
for (k = 0; k < nr; k++)
|
5910 |
|
|
{
|
5911 |
|
|
i = spill_reg_order[regno + k];
|
5912 |
|
|
if (i >= 0)
|
5913 |
|
|
{
|
5914 |
|
|
mark_reload_reg_in_use (regno, rld[r].opnum,
|
5915 |
|
|
rld[r].when_needed,
|
5916 |
|
|
rld[r].mode);
|
5917 |
|
|
SET_HARD_REG_BIT (reload_reg_used_for_inherit,
|
5918 |
|
|
regno + k);
|
5919 |
|
|
}
|
5920 |
|
|
}
|
5921 |
|
|
}
|
5922 |
|
|
}
|
5923 |
|
|
|
5924 |
|
|
/* If we found a register to use already, or if this is an optional
|
5925 |
|
|
reload, we are done. */
|
5926 |
|
|
if (rld[r].reg_rtx != 0 || rld[r].optional != 0)
|
5927 |
|
|
continue;
|
5928 |
|
|
|
5929 |
|
|
#if 0
|
5930 |
|
|
/* No longer needed for correct operation. Might or might
|
5931 |
|
|
not give better code on the average. Want to experiment? */
|
5932 |
|
|
|
5933 |
|
|
/* See if there is a later reload that has a class different from our
|
5934 |
|
|
class that intersects our class or that requires less register
|
5935 |
|
|
than our reload. If so, we must allocate a register to this
|
5936 |
|
|
reload now, since that reload might inherit a previous reload
|
5937 |
|
|
and take the only available register in our class. Don't do this
|
5938 |
|
|
for optional reloads since they will force all previous reloads
|
5939 |
|
|
to be allocated. Also don't do this for reloads that have been
|
5940 |
|
|
turned off. */
|
5941 |
|
|
|
5942 |
|
|
for (i = j + 1; i < n_reloads; i++)
|
5943 |
|
|
{
|
5944 |
|
|
int s = reload_order[i];
|
5945 |
|
|
|
5946 |
|
|
if ((rld[s].in == 0 && rld[s].out == 0
|
5947 |
|
|
&& ! rld[s].secondary_p)
|
5948 |
|
|
|| rld[s].optional)
|
5949 |
|
|
continue;
|
5950 |
|
|
|
5951 |
|
|
if ((rld[s].class != rld[r].class
|
5952 |
|
|
&& reg_classes_intersect_p (rld[r].class,
|
5953 |
|
|
rld[s].class))
|
5954 |
|
|
|| rld[s].nregs < rld[r].nregs)
|
5955 |
|
|
break;
|
5956 |
|
|
}
|
5957 |
|
|
|
5958 |
|
|
if (i == n_reloads)
|
5959 |
|
|
continue;
|
5960 |
|
|
|
5961 |
|
|
allocate_reload_reg (chain, r, j == n_reloads - 1);
|
5962 |
|
|
#endif
|
5963 |
|
|
}
|
5964 |
|
|
|
5965 |
|
|
/* Now allocate reload registers for anything non-optional that
|
5966 |
|
|
didn't get one yet. */
|
5967 |
|
|
for (j = 0; j < n_reloads; j++)
|
5968 |
|
|
{
|
5969 |
|
|
int r = reload_order[j];
|
5970 |
|
|
|
5971 |
|
|
/* Ignore reloads that got marked inoperative. */
|
5972 |
|
|
if (rld[r].out == 0 && rld[r].in == 0 && ! rld[r].secondary_p)
|
5973 |
|
|
continue;
|
5974 |
|
|
|
5975 |
|
|
/* Skip reloads that already have a register allocated or are
|
5976 |
|
|
optional. */
|
5977 |
|
|
if (rld[r].reg_rtx != 0 || rld[r].optional)
|
5978 |
|
|
continue;
|
5979 |
|
|
|
5980 |
|
|
if (! allocate_reload_reg (chain, r, j == n_reloads - 1))
|
5981 |
|
|
break;
|
5982 |
|
|
}
|
5983 |
|
|
|
5984 |
|
|
/* If that loop got all the way, we have won. */
|
5985 |
|
|
if (j == n_reloads)
|
5986 |
|
|
{
|
5987 |
|
|
win = 1;
|
5988 |
|
|
break;
|
5989 |
|
|
}
|
5990 |
|
|
|
5991 |
|
|
/* Loop around and try without any inheritance. */
|
5992 |
|
|
}
|
5993 |
|
|
|
5994 |
|
|
if (! win)
|
5995 |
|
|
{
|
5996 |
|
|
/* First undo everything done by the failed attempt
|
5997 |
|
|
to allocate with inheritance. */
|
5998 |
|
|
choose_reload_regs_init (chain, save_reload_reg_rtx);
|
5999 |
|
|
|
6000 |
|
|
/* Some sanity tests to verify that the reloads found in the first
|
6001 |
|
|
pass are identical to the ones we have now. */
|
6002 |
|
|
gcc_assert (chain->n_reloads == n_reloads);
|
6003 |
|
|
|
6004 |
|
|
for (i = 0; i < n_reloads; i++)
|
6005 |
|
|
{
|
6006 |
|
|
if (chain->rld[i].regno < 0 || chain->rld[i].reg_rtx != 0)
|
6007 |
|
|
continue;
|
6008 |
|
|
gcc_assert (chain->rld[i].when_needed == rld[i].when_needed);
|
6009 |
|
|
for (j = 0; j < n_spills; j++)
|
6010 |
|
|
if (spill_regs[j] == chain->rld[i].regno)
|
6011 |
|
|
if (! set_reload_reg (j, i))
|
6012 |
|
|
failed_reload (chain->insn, i);
|
6013 |
|
|
}
|
6014 |
|
|
}
|
6015 |
|
|
|
6016 |
|
|
/* If we thought we could inherit a reload, because it seemed that
|
6017 |
|
|
nothing else wanted the same reload register earlier in the insn,
|
6018 |
|
|
verify that assumption, now that all reloads have been assigned.
|
6019 |
|
|
Likewise for reloads where reload_override_in has been set. */
|
6020 |
|
|
|
6021 |
|
|
/* If doing expensive optimizations, do one preliminary pass that doesn't
|
6022 |
|
|
cancel any inheritance, but removes reloads that have been needed only
|
6023 |
|
|
for reloads that we know can be inherited. */
|
6024 |
|
|
for (pass = flag_expensive_optimizations; pass >= 0; pass--)
|
6025 |
|
|
{
|
6026 |
|
|
for (j = 0; j < n_reloads; j++)
|
6027 |
|
|
{
|
6028 |
|
|
int r = reload_order[j];
|
6029 |
|
|
rtx check_reg;
|
6030 |
|
|
if (reload_inherited[r] && rld[r].reg_rtx)
|
6031 |
|
|
check_reg = rld[r].reg_rtx;
|
6032 |
|
|
else if (reload_override_in[r]
|
6033 |
|
|
&& (REG_P (reload_override_in[r])
|
6034 |
|
|
|| GET_CODE (reload_override_in[r]) == SUBREG))
|
6035 |
|
|
check_reg = reload_override_in[r];
|
6036 |
|
|
else
|
6037 |
|
|
continue;
|
6038 |
|
|
if (! free_for_value_p (true_regnum (check_reg), rld[r].mode,
|
6039 |
|
|
rld[r].opnum, rld[r].when_needed, rld[r].in,
|
6040 |
|
|
(reload_inherited[r]
|
6041 |
|
|
? rld[r].out : const0_rtx),
|
6042 |
|
|
r, 1))
|
6043 |
|
|
{
|
6044 |
|
|
if (pass)
|
6045 |
|
|
continue;
|
6046 |
|
|
reload_inherited[r] = 0;
|
6047 |
|
|
reload_override_in[r] = 0;
|
6048 |
|
|
}
|
6049 |
|
|
/* If we can inherit a RELOAD_FOR_INPUT, or can use a
|
6050 |
|
|
reload_override_in, then we do not need its related
|
6051 |
|
|
RELOAD_FOR_INPUT_ADDRESS / RELOAD_FOR_INPADDR_ADDRESS reloads;
|
6052 |
|
|
likewise for other reload types.
|
6053 |
|
|
We handle this by removing a reload when its only replacement
|
6054 |
|
|
is mentioned in reload_in of the reload we are going to inherit.
|
6055 |
|
|
A special case are auto_inc expressions; even if the input is
|
6056 |
|
|
inherited, we still need the address for the output. We can
|
6057 |
|
|
recognize them because they have RELOAD_OUT set to RELOAD_IN.
|
6058 |
|
|
If we succeeded removing some reload and we are doing a preliminary
|
6059 |
|
|
pass just to remove such reloads, make another pass, since the
|
6060 |
|
|
removal of one reload might allow us to inherit another one. */
|
6061 |
|
|
else if (rld[r].in
|
6062 |
|
|
&& rld[r].out != rld[r].in
|
6063 |
|
|
&& remove_address_replacements (rld[r].in) && pass)
|
6064 |
|
|
pass = 2;
|
6065 |
|
|
}
|
6066 |
|
|
}
|
6067 |
|
|
|
6068 |
|
|
/* Now that reload_override_in is known valid,
|
6069 |
|
|
actually override reload_in. */
|
6070 |
|
|
for (j = 0; j < n_reloads; j++)
|
6071 |
|
|
if (reload_override_in[j])
|
6072 |
|
|
rld[j].in = reload_override_in[j];
|
6073 |
|
|
|
6074 |
|
|
/* If this reload won't be done because it has been canceled or is
|
6075 |
|
|
optional and not inherited, clear reload_reg_rtx so other
|
6076 |
|
|
routines (such as subst_reloads) don't get confused. */
|
6077 |
|
|
for (j = 0; j < n_reloads; j++)
|
6078 |
|
|
if (rld[j].reg_rtx != 0
|
6079 |
|
|
&& ((rld[j].optional && ! reload_inherited[j])
|
6080 |
|
|
|| (rld[j].in == 0 && rld[j].out == 0
|
6081 |
|
|
&& ! rld[j].secondary_p)))
|
6082 |
|
|
{
|
6083 |
|
|
int regno = true_regnum (rld[j].reg_rtx);
|
6084 |
|
|
|
6085 |
|
|
if (spill_reg_order[regno] >= 0)
|
6086 |
|
|
clear_reload_reg_in_use (regno, rld[j].opnum,
|
6087 |
|
|
rld[j].when_needed, rld[j].mode);
|
6088 |
|
|
rld[j].reg_rtx = 0;
|
6089 |
|
|
reload_spill_index[j] = -1;
|
6090 |
|
|
}
|
6091 |
|
|
|
6092 |
|
|
/* Record which pseudos and which spill regs have output reloads. */
|
6093 |
|
|
for (j = 0; j < n_reloads; j++)
|
6094 |
|
|
{
|
6095 |
|
|
int r = reload_order[j];
|
6096 |
|
|
|
6097 |
|
|
i = reload_spill_index[r];
|
6098 |
|
|
|
6099 |
|
|
/* I is nonneg if this reload uses a register.
|
6100 |
|
|
If rld[r].reg_rtx is 0, this is an optional reload
|
6101 |
|
|
that we opted to ignore. */
|
6102 |
|
|
if (rld[r].out_reg != 0 && REG_P (rld[r].out_reg)
|
6103 |
|
|
&& rld[r].reg_rtx != 0)
|
6104 |
|
|
{
|
6105 |
|
|
int nregno = REGNO (rld[r].out_reg);
|
6106 |
|
|
int nr = 1;
|
6107 |
|
|
|
6108 |
|
|
if (nregno < FIRST_PSEUDO_REGISTER)
|
6109 |
|
|
nr = hard_regno_nregs[nregno][rld[r].mode];
|
6110 |
|
|
|
6111 |
|
|
while (--nr >= 0)
|
6112 |
|
|
SET_REGNO_REG_SET (®_has_output_reload,
|
6113 |
|
|
nregno + nr);
|
6114 |
|
|
|
6115 |
|
|
if (i >= 0)
|
6116 |
|
|
{
|
6117 |
|
|
nr = hard_regno_nregs[i][rld[r].mode];
|
6118 |
|
|
while (--nr >= 0)
|
6119 |
|
|
SET_HARD_REG_BIT (reg_is_output_reload, i + nr);
|
6120 |
|
|
}
|
6121 |
|
|
|
6122 |
|
|
gcc_assert (rld[r].when_needed == RELOAD_OTHER
|
6123 |
|
|
|| rld[r].when_needed == RELOAD_FOR_OUTPUT
|
6124 |
|
|
|| rld[r].when_needed == RELOAD_FOR_INSN);
|
6125 |
|
|
}
|
6126 |
|
|
}
|
6127 |
|
|
}
|
6128 |
|
|
|
6129 |
|
|
/* Deallocate the reload register for reload R. This is called from
|
6130 |
|
|
remove_address_replacements. */
|
6131 |
|
|
|
6132 |
|
|
void
|
6133 |
|
|
deallocate_reload_reg (int r)
|
6134 |
|
|
{
|
6135 |
|
|
int regno;
|
6136 |
|
|
|
6137 |
|
|
if (! rld[r].reg_rtx)
|
6138 |
|
|
return;
|
6139 |
|
|
regno = true_regnum (rld[r].reg_rtx);
|
6140 |
|
|
rld[r].reg_rtx = 0;
|
6141 |
|
|
if (spill_reg_order[regno] >= 0)
|
6142 |
|
|
clear_reload_reg_in_use (regno, rld[r].opnum, rld[r].when_needed,
|
6143 |
|
|
rld[r].mode);
|
6144 |
|
|
reload_spill_index[r] = -1;
|
6145 |
|
|
}
|
6146 |
|
|
|
6147 |
|
|
/* If SMALL_REGISTER_CLASSES is nonzero, we may not have merged two
|
6148 |
|
|
reloads of the same item for fear that we might not have enough reload
|
6149 |
|
|
registers. However, normally they will get the same reload register
|
6150 |
|
|
and hence actually need not be loaded twice.
|
6151 |
|
|
|
6152 |
|
|
Here we check for the most common case of this phenomenon: when we have
|
6153 |
|
|
a number of reloads for the same object, each of which were allocated
|
6154 |
|
|
the same reload_reg_rtx, that reload_reg_rtx is not used for any other
|
6155 |
|
|
reload, and is not modified in the insn itself. If we find such,
|
6156 |
|
|
merge all the reloads and set the resulting reload to RELOAD_OTHER.
|
6157 |
|
|
This will not increase the number of spill registers needed and will
|
6158 |
|
|
prevent redundant code. */
|
6159 |
|
|
|
6160 |
|
|
static void
|
6161 |
|
|
merge_assigned_reloads (rtx insn)
|
6162 |
|
|
{
|
6163 |
|
|
int i, j;
|
6164 |
|
|
|
6165 |
|
|
/* Scan all the reloads looking for ones that only load values and
|
6166 |
|
|
are not already RELOAD_OTHER and ones whose reload_reg_rtx are
|
6167 |
|
|
assigned and not modified by INSN. */
|
6168 |
|
|
|
6169 |
|
|
for (i = 0; i < n_reloads; i++)
|
6170 |
|
|
{
|
6171 |
|
|
int conflicting_input = 0;
|
6172 |
|
|
int max_input_address_opnum = -1;
|
6173 |
|
|
int min_conflicting_input_opnum = MAX_RECOG_OPERANDS;
|
6174 |
|
|
|
6175 |
|
|
if (rld[i].in == 0 || rld[i].when_needed == RELOAD_OTHER
|
6176 |
|
|
|| rld[i].out != 0 || rld[i].reg_rtx == 0
|
6177 |
|
|
|| reg_set_p (rld[i].reg_rtx, insn))
|
6178 |
|
|
continue;
|
6179 |
|
|
|
6180 |
|
|
/* Look at all other reloads. Ensure that the only use of this
|
6181 |
|
|
reload_reg_rtx is in a reload that just loads the same value
|
6182 |
|
|
as we do. Note that any secondary reloads must be of the identical
|
6183 |
|
|
class since the values, modes, and result registers are the
|
6184 |
|
|
same, so we need not do anything with any secondary reloads. */
|
6185 |
|
|
|
6186 |
|
|
for (j = 0; j < n_reloads; j++)
|
6187 |
|
|
{
|
6188 |
|
|
if (i == j || rld[j].reg_rtx == 0
|
6189 |
|
|
|| ! reg_overlap_mentioned_p (rld[j].reg_rtx,
|
6190 |
|
|
rld[i].reg_rtx))
|
6191 |
|
|
continue;
|
6192 |
|
|
|
6193 |
|
|
if (rld[j].when_needed == RELOAD_FOR_INPUT_ADDRESS
|
6194 |
|
|
&& rld[j].opnum > max_input_address_opnum)
|
6195 |
|
|
max_input_address_opnum = rld[j].opnum;
|
6196 |
|
|
|
6197 |
|
|
/* If the reload regs aren't exactly the same (e.g, different modes)
|
6198 |
|
|
or if the values are different, we can't merge this reload.
|
6199 |
|
|
But if it is an input reload, we might still merge
|
6200 |
|
|
RELOAD_FOR_INPUT_ADDRESS and RELOAD_FOR_OTHER_ADDRESS reloads. */
|
6201 |
|
|
|
6202 |
|
|
if (! rtx_equal_p (rld[i].reg_rtx, rld[j].reg_rtx)
|
6203 |
|
|
|| rld[j].out != 0 || rld[j].in == 0
|
6204 |
|
|
|| ! rtx_equal_p (rld[i].in, rld[j].in))
|
6205 |
|
|
{
|
6206 |
|
|
if (rld[j].when_needed != RELOAD_FOR_INPUT
|
6207 |
|
|
|| ((rld[i].when_needed != RELOAD_FOR_INPUT_ADDRESS
|
6208 |
|
|
|| rld[i].opnum > rld[j].opnum)
|
6209 |
|
|
&& rld[i].when_needed != RELOAD_FOR_OTHER_ADDRESS))
|
6210 |
|
|
break;
|
6211 |
|
|
conflicting_input = 1;
|
6212 |
|
|
if (min_conflicting_input_opnum > rld[j].opnum)
|
6213 |
|
|
min_conflicting_input_opnum = rld[j].opnum;
|
6214 |
|
|
}
|
6215 |
|
|
}
|
6216 |
|
|
|
6217 |
|
|
/* If all is OK, merge the reloads. Only set this to RELOAD_OTHER if
|
6218 |
|
|
we, in fact, found any matching reloads. */
|
6219 |
|
|
|
6220 |
|
|
if (j == n_reloads
|
6221 |
|
|
&& max_input_address_opnum <= min_conflicting_input_opnum)
|
6222 |
|
|
{
|
6223 |
|
|
gcc_assert (rld[i].when_needed != RELOAD_FOR_OUTPUT);
|
6224 |
|
|
|
6225 |
|
|
for (j = 0; j < n_reloads; j++)
|
6226 |
|
|
if (i != j && rld[j].reg_rtx != 0
|
6227 |
|
|
&& rtx_equal_p (rld[i].reg_rtx, rld[j].reg_rtx)
|
6228 |
|
|
&& (! conflicting_input
|
6229 |
|
|
|| rld[j].when_needed == RELOAD_FOR_INPUT_ADDRESS
|
6230 |
|
|
|| rld[j].when_needed == RELOAD_FOR_OTHER_ADDRESS))
|
6231 |
|
|
{
|
6232 |
|
|
rld[i].when_needed = RELOAD_OTHER;
|
6233 |
|
|
rld[j].in = 0;
|
6234 |
|
|
reload_spill_index[j] = -1;
|
6235 |
|
|
transfer_replacements (i, j);
|
6236 |
|
|
}
|
6237 |
|
|
|
6238 |
|
|
/* If this is now RELOAD_OTHER, look for any reloads that load
|
6239 |
|
|
parts of this operand and set them to RELOAD_FOR_OTHER_ADDRESS
|
6240 |
|
|
if they were for inputs, RELOAD_OTHER for outputs. Note that
|
6241 |
|
|
this test is equivalent to looking for reloads for this operand
|
6242 |
|
|
number. */
|
6243 |
|
|
/* We must take special care with RELOAD_FOR_OUTPUT_ADDRESS; it may
|
6244 |
|
|
share registers with a RELOAD_FOR_INPUT, so we can not change it
|
6245 |
|
|
to RELOAD_FOR_OTHER_ADDRESS. We should never need to, since we
|
6246 |
|
|
do not modify RELOAD_FOR_OUTPUT. */
|
6247 |
|
|
|
6248 |
|
|
if (rld[i].when_needed == RELOAD_OTHER)
|
6249 |
|
|
for (j = 0; j < n_reloads; j++)
|
6250 |
|
|
if (rld[j].in != 0
|
6251 |
|
|
&& rld[j].when_needed != RELOAD_OTHER
|
6252 |
|
|
&& rld[j].when_needed != RELOAD_FOR_OTHER_ADDRESS
|
6253 |
|
|
&& rld[j].when_needed != RELOAD_FOR_OUTPUT_ADDRESS
|
6254 |
|
|
&& (! conflicting_input
|
6255 |
|
|
|| rld[j].when_needed == RELOAD_FOR_INPUT_ADDRESS
|
6256 |
|
|
|| rld[j].when_needed == RELOAD_FOR_INPADDR_ADDRESS)
|
6257 |
|
|
&& reg_overlap_mentioned_for_reload_p (rld[j].in,
|
6258 |
|
|
rld[i].in))
|
6259 |
|
|
{
|
6260 |
|
|
int k;
|
6261 |
|
|
|
6262 |
|
|
rld[j].when_needed
|
6263 |
|
|
= ((rld[j].when_needed == RELOAD_FOR_INPUT_ADDRESS
|
6264 |
|
|
|| rld[j].when_needed == RELOAD_FOR_INPADDR_ADDRESS)
|
6265 |
|
|
? RELOAD_FOR_OTHER_ADDRESS : RELOAD_OTHER);
|
6266 |
|
|
|
6267 |
|
|
/* Check to see if we accidentally converted two
|
6268 |
|
|
reloads that use the same reload register with
|
6269 |
|
|
different inputs to the same type. If so, the
|
6270 |
|
|
resulting code won't work. */
|
6271 |
|
|
if (rld[j].reg_rtx)
|
6272 |
|
|
for (k = 0; k < j; k++)
|
6273 |
|
|
gcc_assert (rld[k].in == 0 || rld[k].reg_rtx == 0
|
6274 |
|
|
|| rld[k].when_needed != rld[j].when_needed
|
6275 |
|
|
|| !rtx_equal_p (rld[k].reg_rtx,
|
6276 |
|
|
rld[j].reg_rtx)
|
6277 |
|
|
|| rtx_equal_p (rld[k].in,
|
6278 |
|
|
rld[j].in));
|
6279 |
|
|
}
|
6280 |
|
|
}
|
6281 |
|
|
}
|
6282 |
|
|
}
|
6283 |
|
|
|
6284 |
|
|
/* These arrays are filled by emit_reload_insns and its subroutines. */
|
6285 |
|
|
static rtx input_reload_insns[MAX_RECOG_OPERANDS];
|
6286 |
|
|
static rtx other_input_address_reload_insns = 0;
|
6287 |
|
|
static rtx other_input_reload_insns = 0;
|
6288 |
|
|
static rtx input_address_reload_insns[MAX_RECOG_OPERANDS];
|
6289 |
|
|
static rtx inpaddr_address_reload_insns[MAX_RECOG_OPERANDS];
|
6290 |
|
|
static rtx output_reload_insns[MAX_RECOG_OPERANDS];
|
6291 |
|
|
static rtx output_address_reload_insns[MAX_RECOG_OPERANDS];
|
6292 |
|
|
static rtx outaddr_address_reload_insns[MAX_RECOG_OPERANDS];
|
6293 |
|
|
static rtx operand_reload_insns = 0;
|
6294 |
|
|
static rtx other_operand_reload_insns = 0;
|
6295 |
|
|
static rtx other_output_reload_insns[MAX_RECOG_OPERANDS];
|
6296 |
|
|
|
6297 |
|
|
/* Values to be put in spill_reg_store are put here first. */
|
6298 |
|
|
static rtx new_spill_reg_store[FIRST_PSEUDO_REGISTER];
|
6299 |
|
|
static HARD_REG_SET reg_reloaded_died;
|
6300 |
|
|
|
6301 |
|
|
/* Check if *RELOAD_REG is suitable as an intermediate or scratch register
|
6302 |
|
|
of class NEW_CLASS with mode NEW_MODE. Or alternatively, if alt_reload_reg
|
6303 |
|
|
is nonzero, if that is suitable. On success, change *RELOAD_REG to the
|
6304 |
|
|
adjusted register, and return true. Otherwise, return false. */
|
6305 |
|
|
static bool
|
6306 |
|
|
reload_adjust_reg_for_temp (rtx *reload_reg, rtx alt_reload_reg,
|
6307 |
|
|
enum reg_class new_class,
|
6308 |
|
|
enum machine_mode new_mode)
|
6309 |
|
|
|
6310 |
|
|
{
|
6311 |
|
|
rtx reg;
|
6312 |
|
|
|
6313 |
|
|
for (reg = *reload_reg; reg; reg = alt_reload_reg, alt_reload_reg = 0)
|
6314 |
|
|
{
|
6315 |
|
|
unsigned regno = REGNO (reg);
|
6316 |
|
|
|
6317 |
|
|
if (!TEST_HARD_REG_BIT (reg_class_contents[(int) new_class], regno))
|
6318 |
|
|
continue;
|
6319 |
|
|
if (GET_MODE (reg) != new_mode)
|
6320 |
|
|
{
|
6321 |
|
|
if (!HARD_REGNO_MODE_OK (regno, new_mode))
|
6322 |
|
|
continue;
|
6323 |
|
|
if (hard_regno_nregs[regno][new_mode]
|
6324 |
|
|
> hard_regno_nregs[regno][GET_MODE (reg)])
|
6325 |
|
|
continue;
|
6326 |
|
|
reg = reload_adjust_reg_for_mode (reg, new_mode);
|
6327 |
|
|
}
|
6328 |
|
|
*reload_reg = reg;
|
6329 |
|
|
return true;
|
6330 |
|
|
}
|
6331 |
|
|
return false;
|
6332 |
|
|
}
|
6333 |
|
|
|
6334 |
|
|
/* Check if *RELOAD_REG is suitable as a scratch register for the reload
|
6335 |
|
|
pattern with insn_code ICODE, or alternatively, if alt_reload_reg is
|
6336 |
|
|
nonzero, if that is suitable. On success, change *RELOAD_REG to the
|
6337 |
|
|
adjusted register, and return true. Otherwise, return false. */
|
6338 |
|
|
static bool
|
6339 |
|
|
reload_adjust_reg_for_icode (rtx *reload_reg, rtx alt_reload_reg,
|
6340 |
|
|
enum insn_code icode)
|
6341 |
|
|
|
6342 |
|
|
{
|
6343 |
|
|
enum reg_class new_class = scratch_reload_class (icode);
|
6344 |
|
|
enum machine_mode new_mode = insn_data[(int) icode].operand[2].mode;
|
6345 |
|
|
|
6346 |
|
|
return reload_adjust_reg_for_temp (reload_reg, alt_reload_reg,
|
6347 |
|
|
new_class, new_mode);
|
6348 |
|
|
}
|
6349 |
|
|
|
6350 |
|
|
/* Generate insns to perform reload RL, which is for the insn in CHAIN and
|
6351 |
|
|
has the number J. OLD contains the value to be used as input. */
|
6352 |
|
|
|
6353 |
|
|
static void
|
6354 |
|
|
emit_input_reload_insns (struct insn_chain *chain, struct reload *rl,
|
6355 |
|
|
rtx old, int j)
|
6356 |
|
|
{
|
6357 |
|
|
rtx insn = chain->insn;
|
6358 |
|
|
rtx reloadreg = rl->reg_rtx;
|
6359 |
|
|
rtx oldequiv_reg = 0;
|
6360 |
|
|
rtx oldequiv = 0;
|
6361 |
|
|
int special = 0;
|
6362 |
|
|
enum machine_mode mode;
|
6363 |
|
|
rtx *where;
|
6364 |
|
|
|
6365 |
|
|
/* Determine the mode to reload in.
|
6366 |
|
|
This is very tricky because we have three to choose from.
|
6367 |
|
|
There is the mode the insn operand wants (rl->inmode).
|
6368 |
|
|
There is the mode of the reload register RELOADREG.
|
6369 |
|
|
There is the intrinsic mode of the operand, which we could find
|
6370 |
|
|
by stripping some SUBREGs.
|
6371 |
|
|
It turns out that RELOADREG's mode is irrelevant:
|
6372 |
|
|
we can change that arbitrarily.
|
6373 |
|
|
|
6374 |
|
|
Consider (SUBREG:SI foo:QI) as an operand that must be SImode;
|
6375 |
|
|
then the reload reg may not support QImode moves, so use SImode.
|
6376 |
|
|
If foo is in memory due to spilling a pseudo reg, this is safe,
|
6377 |
|
|
because the QImode value is in the least significant part of a
|
6378 |
|
|
slot big enough for a SImode. If foo is some other sort of
|
6379 |
|
|
memory reference, then it is impossible to reload this case,
|
6380 |
|
|
so previous passes had better make sure this never happens.
|
6381 |
|
|
|
6382 |
|
|
Then consider a one-word union which has SImode and one of its
|
6383 |
|
|
members is a float, being fetched as (SUBREG:SF union:SI).
|
6384 |
|
|
We must fetch that as SFmode because we could be loading into
|
6385 |
|
|
a float-only register. In this case OLD's mode is correct.
|
6386 |
|
|
|
6387 |
|
|
Consider an immediate integer: it has VOIDmode. Here we need
|
6388 |
|
|
to get a mode from something else.
|
6389 |
|
|
|
6390 |
|
|
In some cases, there is a fourth mode, the operand's
|
6391 |
|
|
containing mode. If the insn specifies a containing mode for
|
6392 |
|
|
this operand, it overrides all others.
|
6393 |
|
|
|
6394 |
|
|
I am not sure whether the algorithm here is always right,
|
6395 |
|
|
but it does the right things in those cases. */
|
6396 |
|
|
|
6397 |
|
|
mode = GET_MODE (old);
|
6398 |
|
|
if (mode == VOIDmode)
|
6399 |
|
|
mode = rl->inmode;
|
6400 |
|
|
|
6401 |
|
|
/* delete_output_reload is only invoked properly if old contains
|
6402 |
|
|
the original pseudo register. Since this is replaced with a
|
6403 |
|
|
hard reg when RELOAD_OVERRIDE_IN is set, see if we can
|
6404 |
|
|
find the pseudo in RELOAD_IN_REG. */
|
6405 |
|
|
if (reload_override_in[j]
|
6406 |
|
|
&& REG_P (rl->in_reg))
|
6407 |
|
|
{
|
6408 |
|
|
oldequiv = old;
|
6409 |
|
|
old = rl->in_reg;
|
6410 |
|
|
}
|
6411 |
|
|
if (oldequiv == 0)
|
6412 |
|
|
oldequiv = old;
|
6413 |
|
|
else if (REG_P (oldequiv))
|
6414 |
|
|
oldequiv_reg = oldequiv;
|
6415 |
|
|
else if (GET_CODE (oldequiv) == SUBREG)
|
6416 |
|
|
oldequiv_reg = SUBREG_REG (oldequiv);
|
6417 |
|
|
|
6418 |
|
|
/* If we are reloading from a register that was recently stored in
|
6419 |
|
|
with an output-reload, see if we can prove there was
|
6420 |
|
|
actually no need to store the old value in it. */
|
6421 |
|
|
|
6422 |
|
|
if (optimize && REG_P (oldequiv)
|
6423 |
|
|
&& REGNO (oldequiv) < FIRST_PSEUDO_REGISTER
|
6424 |
|
|
&& spill_reg_store[REGNO (oldequiv)]
|
6425 |
|
|
&& REG_P (old)
|
6426 |
|
|
&& (dead_or_set_p (insn, spill_reg_stored_to[REGNO (oldequiv)])
|
6427 |
|
|
|| rtx_equal_p (spill_reg_stored_to[REGNO (oldequiv)],
|
6428 |
|
|
rl->out_reg)))
|
6429 |
|
|
delete_output_reload (insn, j, REGNO (oldequiv));
|
6430 |
|
|
|
6431 |
|
|
/* Encapsulate both RELOADREG and OLDEQUIV into that mode,
|
6432 |
|
|
then load RELOADREG from OLDEQUIV. Note that we cannot use
|
6433 |
|
|
gen_lowpart_common since it can do the wrong thing when
|
6434 |
|
|
RELOADREG has a multi-word mode. Note that RELOADREG
|
6435 |
|
|
must always be a REG here. */
|
6436 |
|
|
|
6437 |
|
|
if (GET_MODE (reloadreg) != mode)
|
6438 |
|
|
reloadreg = reload_adjust_reg_for_mode (reloadreg, mode);
|
6439 |
|
|
while (GET_CODE (oldequiv) == SUBREG && GET_MODE (oldequiv) != mode)
|
6440 |
|
|
oldequiv = SUBREG_REG (oldequiv);
|
6441 |
|
|
if (GET_MODE (oldequiv) != VOIDmode
|
6442 |
|
|
&& mode != GET_MODE (oldequiv))
|
6443 |
|
|
oldequiv = gen_lowpart_SUBREG (mode, oldequiv);
|
6444 |
|
|
|
6445 |
|
|
/* Switch to the right place to emit the reload insns. */
|
6446 |
|
|
switch (rl->when_needed)
|
6447 |
|
|
{
|
6448 |
|
|
case RELOAD_OTHER:
|
6449 |
|
|
where = &other_input_reload_insns;
|
6450 |
|
|
break;
|
6451 |
|
|
case RELOAD_FOR_INPUT:
|
6452 |
|
|
where = &input_reload_insns[rl->opnum];
|
6453 |
|
|
break;
|
6454 |
|
|
case RELOAD_FOR_INPUT_ADDRESS:
|
6455 |
|
|
where = &input_address_reload_insns[rl->opnum];
|
6456 |
|
|
break;
|
6457 |
|
|
case RELOAD_FOR_INPADDR_ADDRESS:
|
6458 |
|
|
where = &inpaddr_address_reload_insns[rl->opnum];
|
6459 |
|
|
break;
|
6460 |
|
|
case RELOAD_FOR_OUTPUT_ADDRESS:
|
6461 |
|
|
where = &output_address_reload_insns[rl->opnum];
|
6462 |
|
|
break;
|
6463 |
|
|
case RELOAD_FOR_OUTADDR_ADDRESS:
|
6464 |
|
|
where = &outaddr_address_reload_insns[rl->opnum];
|
6465 |
|
|
break;
|
6466 |
|
|
case RELOAD_FOR_OPERAND_ADDRESS:
|
6467 |
|
|
where = &operand_reload_insns;
|
6468 |
|
|
break;
|
6469 |
|
|
case RELOAD_FOR_OPADDR_ADDR:
|
6470 |
|
|
where = &other_operand_reload_insns;
|
6471 |
|
|
break;
|
6472 |
|
|
case RELOAD_FOR_OTHER_ADDRESS:
|
6473 |
|
|
where = &other_input_address_reload_insns;
|
6474 |
|
|
break;
|
6475 |
|
|
default:
|
6476 |
|
|
gcc_unreachable ();
|
6477 |
|
|
}
|
6478 |
|
|
|
6479 |
|
|
push_to_sequence (*where);
|
6480 |
|
|
|
6481 |
|
|
/* Auto-increment addresses must be reloaded in a special way. */
|
6482 |
|
|
if (rl->out && ! rl->out_reg)
|
6483 |
|
|
{
|
6484 |
|
|
/* We are not going to bother supporting the case where a
|
6485 |
|
|
incremented register can't be copied directly from
|
6486 |
|
|
OLDEQUIV since this seems highly unlikely. */
|
6487 |
|
|
gcc_assert (rl->secondary_in_reload < 0);
|
6488 |
|
|
|
6489 |
|
|
if (reload_inherited[j])
|
6490 |
|
|
oldequiv = reloadreg;
|
6491 |
|
|
|
6492 |
|
|
old = XEXP (rl->in_reg, 0);
|
6493 |
|
|
|
6494 |
|
|
if (optimize && REG_P (oldequiv)
|
6495 |
|
|
&& REGNO (oldequiv) < FIRST_PSEUDO_REGISTER
|
6496 |
|
|
&& spill_reg_store[REGNO (oldequiv)]
|
6497 |
|
|
&& REG_P (old)
|
6498 |
|
|
&& (dead_or_set_p (insn,
|
6499 |
|
|
spill_reg_stored_to[REGNO (oldequiv)])
|
6500 |
|
|
|| rtx_equal_p (spill_reg_stored_to[REGNO (oldequiv)],
|
6501 |
|
|
old)))
|
6502 |
|
|
delete_output_reload (insn, j, REGNO (oldequiv));
|
6503 |
|
|
|
6504 |
|
|
/* Prevent normal processing of this reload. */
|
6505 |
|
|
special = 1;
|
6506 |
|
|
/* Output a special code sequence for this case. */
|
6507 |
|
|
new_spill_reg_store[REGNO (reloadreg)]
|
6508 |
|
|
= inc_for_reload (reloadreg, oldequiv, rl->out,
|
6509 |
|
|
rl->inc);
|
6510 |
|
|
}
|
6511 |
|
|
|
6512 |
|
|
/* If we are reloading a pseudo-register that was set by the previous
|
6513 |
|
|
insn, see if we can get rid of that pseudo-register entirely
|
6514 |
|
|
by redirecting the previous insn into our reload register. */
|
6515 |
|
|
|
6516 |
|
|
else if (optimize && REG_P (old)
|
6517 |
|
|
&& REGNO (old) >= FIRST_PSEUDO_REGISTER
|
6518 |
|
|
&& dead_or_set_p (insn, old)
|
6519 |
|
|
/* This is unsafe if some other reload
|
6520 |
|
|
uses the same reg first. */
|
6521 |
|
|
&& ! conflicts_with_override (reloadreg)
|
6522 |
|
|
&& free_for_value_p (REGNO (reloadreg), rl->mode, rl->opnum,
|
6523 |
|
|
rl->when_needed, old, rl->out, j, 0))
|
6524 |
|
|
{
|
6525 |
|
|
rtx temp = PREV_INSN (insn);
|
6526 |
|
|
while (temp && NOTE_P (temp))
|
6527 |
|
|
temp = PREV_INSN (temp);
|
6528 |
|
|
if (temp
|
6529 |
|
|
&& NONJUMP_INSN_P (temp)
|
6530 |
|
|
&& GET_CODE (PATTERN (temp)) == SET
|
6531 |
|
|
&& SET_DEST (PATTERN (temp)) == old
|
6532 |
|
|
/* Make sure we can access insn_operand_constraint. */
|
6533 |
|
|
&& asm_noperands (PATTERN (temp)) < 0
|
6534 |
|
|
/* This is unsafe if operand occurs more than once in current
|
6535 |
|
|
insn. Perhaps some occurrences aren't reloaded. */
|
6536 |
|
|
&& count_occurrences (PATTERN (insn), old, 0) == 1)
|
6537 |
|
|
{
|
6538 |
|
|
rtx old = SET_DEST (PATTERN (temp));
|
6539 |
|
|
/* Store into the reload register instead of the pseudo. */
|
6540 |
|
|
SET_DEST (PATTERN (temp)) = reloadreg;
|
6541 |
|
|
|
6542 |
|
|
/* Verify that resulting insn is valid. */
|
6543 |
|
|
extract_insn (temp);
|
6544 |
|
|
if (constrain_operands (1))
|
6545 |
|
|
{
|
6546 |
|
|
/* If the previous insn is an output reload, the source is
|
6547 |
|
|
a reload register, and its spill_reg_store entry will
|
6548 |
|
|
contain the previous destination. This is now
|
6549 |
|
|
invalid. */
|
6550 |
|
|
if (REG_P (SET_SRC (PATTERN (temp)))
|
6551 |
|
|
&& REGNO (SET_SRC (PATTERN (temp))) < FIRST_PSEUDO_REGISTER)
|
6552 |
|
|
{
|
6553 |
|
|
spill_reg_store[REGNO (SET_SRC (PATTERN (temp)))] = 0;
|
6554 |
|
|
spill_reg_stored_to[REGNO (SET_SRC (PATTERN (temp)))] = 0;
|
6555 |
|
|
}
|
6556 |
|
|
|
6557 |
|
|
/* If these are the only uses of the pseudo reg,
|
6558 |
|
|
pretend for GDB it lives in the reload reg we used. */
|
6559 |
|
|
if (REG_N_DEATHS (REGNO (old)) == 1
|
6560 |
|
|
&& REG_N_SETS (REGNO (old)) == 1)
|
6561 |
|
|
{
|
6562 |
|
|
reg_renumber[REGNO (old)] = REGNO (rl->reg_rtx);
|
6563 |
|
|
alter_reg (REGNO (old), -1);
|
6564 |
|
|
}
|
6565 |
|
|
special = 1;
|
6566 |
|
|
}
|
6567 |
|
|
else
|
6568 |
|
|
{
|
6569 |
|
|
SET_DEST (PATTERN (temp)) = old;
|
6570 |
|
|
}
|
6571 |
|
|
}
|
6572 |
|
|
}
|
6573 |
|
|
|
6574 |
|
|
/* We can't do that, so output an insn to load RELOADREG. */
|
6575 |
|
|
|
6576 |
|
|
/* If we have a secondary reload, pick up the secondary register
|
6577 |
|
|
and icode, if any. If OLDEQUIV and OLD are different or
|
6578 |
|
|
if this is an in-out reload, recompute whether or not we
|
6579 |
|
|
still need a secondary register and what the icode should
|
6580 |
|
|
be. If we still need a secondary register and the class or
|
6581 |
|
|
icode is different, go back to reloading from OLD if using
|
6582 |
|
|
OLDEQUIV means that we got the wrong type of register. We
|
6583 |
|
|
cannot have different class or icode due to an in-out reload
|
6584 |
|
|
because we don't make such reloads when both the input and
|
6585 |
|
|
output need secondary reload registers. */
|
6586 |
|
|
|
6587 |
|
|
if (! special && rl->secondary_in_reload >= 0)
|
6588 |
|
|
{
|
6589 |
|
|
rtx second_reload_reg = 0;
|
6590 |
|
|
rtx third_reload_reg = 0;
|
6591 |
|
|
int secondary_reload = rl->secondary_in_reload;
|
6592 |
|
|
rtx real_oldequiv = oldequiv;
|
6593 |
|
|
rtx real_old = old;
|
6594 |
|
|
rtx tmp;
|
6595 |
|
|
enum insn_code icode;
|
6596 |
|
|
enum insn_code tertiary_icode = CODE_FOR_nothing;
|
6597 |
|
|
|
6598 |
|
|
/* If OLDEQUIV is a pseudo with a MEM, get the real MEM
|
6599 |
|
|
and similarly for OLD.
|
6600 |
|
|
See comments in get_secondary_reload in reload.c. */
|
6601 |
|
|
/* If it is a pseudo that cannot be replaced with its
|
6602 |
|
|
equivalent MEM, we must fall back to reload_in, which
|
6603 |
|
|
will have all the necessary substitutions registered.
|
6604 |
|
|
Likewise for a pseudo that can't be replaced with its
|
6605 |
|
|
equivalent constant.
|
6606 |
|
|
|
6607 |
|
|
Take extra care for subregs of such pseudos. Note that
|
6608 |
|
|
we cannot use reg_equiv_mem in this case because it is
|
6609 |
|
|
not in the right mode. */
|
6610 |
|
|
|
6611 |
|
|
tmp = oldequiv;
|
6612 |
|
|
if (GET_CODE (tmp) == SUBREG)
|
6613 |
|
|
tmp = SUBREG_REG (tmp);
|
6614 |
|
|
if (REG_P (tmp)
|
6615 |
|
|
&& REGNO (tmp) >= FIRST_PSEUDO_REGISTER
|
6616 |
|
|
&& (reg_equiv_memory_loc[REGNO (tmp)] != 0
|
6617 |
|
|
|| reg_equiv_constant[REGNO (tmp)] != 0))
|
6618 |
|
|
{
|
6619 |
|
|
if (! reg_equiv_mem[REGNO (tmp)]
|
6620 |
|
|
|| num_not_at_initial_offset
|
6621 |
|
|
|| GET_CODE (oldequiv) == SUBREG)
|
6622 |
|
|
real_oldequiv = rl->in;
|
6623 |
|
|
else
|
6624 |
|
|
real_oldequiv = reg_equiv_mem[REGNO (tmp)];
|
6625 |
|
|
}
|
6626 |
|
|
|
6627 |
|
|
tmp = old;
|
6628 |
|
|
if (GET_CODE (tmp) == SUBREG)
|
6629 |
|
|
tmp = SUBREG_REG (tmp);
|
6630 |
|
|
if (REG_P (tmp)
|
6631 |
|
|
&& REGNO (tmp) >= FIRST_PSEUDO_REGISTER
|
6632 |
|
|
&& (reg_equiv_memory_loc[REGNO (tmp)] != 0
|
6633 |
|
|
|| reg_equiv_constant[REGNO (tmp)] != 0))
|
6634 |
|
|
{
|
6635 |
|
|
if (! reg_equiv_mem[REGNO (tmp)]
|
6636 |
|
|
|| num_not_at_initial_offset
|
6637 |
|
|
|| GET_CODE (old) == SUBREG)
|
6638 |
|
|
real_old = rl->in;
|
6639 |
|
|
else
|
6640 |
|
|
real_old = reg_equiv_mem[REGNO (tmp)];
|
6641 |
|
|
}
|
6642 |
|
|
|
6643 |
|
|
second_reload_reg = rld[secondary_reload].reg_rtx;
|
6644 |
|
|
if (rld[secondary_reload].secondary_in_reload >= 0)
|
6645 |
|
|
{
|
6646 |
|
|
int tertiary_reload = rld[secondary_reload].secondary_in_reload;
|
6647 |
|
|
|
6648 |
|
|
third_reload_reg = rld[tertiary_reload].reg_rtx;
|
6649 |
|
|
tertiary_icode = rld[secondary_reload].secondary_in_icode;
|
6650 |
|
|
/* We'd have to add more code for quartary reloads. */
|
6651 |
|
|
gcc_assert (rld[tertiary_reload].secondary_in_reload < 0);
|
6652 |
|
|
}
|
6653 |
|
|
icode = rl->secondary_in_icode;
|
6654 |
|
|
|
6655 |
|
|
if ((old != oldequiv && ! rtx_equal_p (old, oldequiv))
|
6656 |
|
|
|| (rl->in != 0 && rl->out != 0))
|
6657 |
|
|
{
|
6658 |
|
|
secondary_reload_info sri, sri2;
|
6659 |
|
|
enum reg_class new_class, new_t_class;
|
6660 |
|
|
|
6661 |
|
|
sri.icode = CODE_FOR_nothing;
|
6662 |
|
|
sri.prev_sri = NULL;
|
6663 |
|
|
new_class = targetm.secondary_reload (1, real_oldequiv, rl->class,
|
6664 |
|
|
mode, &sri);
|
6665 |
|
|
|
6666 |
|
|
if (new_class == NO_REGS && sri.icode == CODE_FOR_nothing)
|
6667 |
|
|
second_reload_reg = 0;
|
6668 |
|
|
else if (new_class == NO_REGS)
|
6669 |
|
|
{
|
6670 |
|
|
if (reload_adjust_reg_for_icode (&second_reload_reg,
|
6671 |
|
|
third_reload_reg, sri.icode))
|
6672 |
|
|
icode = sri.icode, third_reload_reg = 0;
|
6673 |
|
|
else
|
6674 |
|
|
oldequiv = old, real_oldequiv = real_old;
|
6675 |
|
|
}
|
6676 |
|
|
else if (sri.icode != CODE_FOR_nothing)
|
6677 |
|
|
/* We currently lack a way to express this in reloads. */
|
6678 |
|
|
gcc_unreachable ();
|
6679 |
|
|
else
|
6680 |
|
|
{
|
6681 |
|
|
sri2.icode = CODE_FOR_nothing;
|
6682 |
|
|
sri2.prev_sri = &sri;
|
6683 |
|
|
new_t_class = targetm.secondary_reload (1, real_oldequiv,
|
6684 |
|
|
new_class, mode, &sri);
|
6685 |
|
|
if (new_t_class == NO_REGS && sri2.icode == CODE_FOR_nothing)
|
6686 |
|
|
{
|
6687 |
|
|
if (reload_adjust_reg_for_temp (&second_reload_reg,
|
6688 |
|
|
third_reload_reg,
|
6689 |
|
|
new_class, mode))
|
6690 |
|
|
third_reload_reg = 0, tertiary_icode = sri2.icode;
|
6691 |
|
|
else
|
6692 |
|
|
oldequiv = old, real_oldequiv = real_old;
|
6693 |
|
|
}
|
6694 |
|
|
else if (new_t_class == NO_REGS && sri2.icode != CODE_FOR_nothing)
|
6695 |
|
|
{
|
6696 |
|
|
rtx intermediate = second_reload_reg;
|
6697 |
|
|
|
6698 |
|
|
if (reload_adjust_reg_for_temp (&intermediate, NULL,
|
6699 |
|
|
new_class, mode)
|
6700 |
|
|
&& reload_adjust_reg_for_icode (&third_reload_reg, NULL,
|
6701 |
|
|
sri2.icode))
|
6702 |
|
|
{
|
6703 |
|
|
second_reload_reg = intermediate;
|
6704 |
|
|
tertiary_icode = sri2.icode;
|
6705 |
|
|
}
|
6706 |
|
|
else
|
6707 |
|
|
oldequiv = old, real_oldequiv = real_old;
|
6708 |
|
|
}
|
6709 |
|
|
else if (new_t_class != NO_REGS && sri2.icode == CODE_FOR_nothing)
|
6710 |
|
|
{
|
6711 |
|
|
rtx intermediate = second_reload_reg;
|
6712 |
|
|
|
6713 |
|
|
if (reload_adjust_reg_for_temp (&intermediate, NULL,
|
6714 |
|
|
new_class, mode)
|
6715 |
|
|
&& reload_adjust_reg_for_temp (&third_reload_reg, NULL,
|
6716 |
|
|
new_t_class, mode))
|
6717 |
|
|
{
|
6718 |
|
|
second_reload_reg = intermediate;
|
6719 |
|
|
tertiary_icode = sri2.icode;
|
6720 |
|
|
}
|
6721 |
|
|
else
|
6722 |
|
|
oldequiv = old, real_oldequiv = real_old;
|
6723 |
|
|
}
|
6724 |
|
|
else
|
6725 |
|
|
/* This could be handled more intelligently too. */
|
6726 |
|
|
oldequiv = old, real_oldequiv = real_old;
|
6727 |
|
|
}
|
6728 |
|
|
}
|
6729 |
|
|
|
6730 |
|
|
/* If we still need a secondary reload register, check
|
6731 |
|
|
to see if it is being used as a scratch or intermediate
|
6732 |
|
|
register and generate code appropriately. If we need
|
6733 |
|
|
a scratch register, use REAL_OLDEQUIV since the form of
|
6734 |
|
|
the insn may depend on the actual address if it is
|
6735 |
|
|
a MEM. */
|
6736 |
|
|
|
6737 |
|
|
if (second_reload_reg)
|
6738 |
|
|
{
|
6739 |
|
|
if (icode != CODE_FOR_nothing)
|
6740 |
|
|
{
|
6741 |
|
|
/* We'd have to add extra code to handle this case. */
|
6742 |
|
|
gcc_assert (!third_reload_reg);
|
6743 |
|
|
|
6744 |
|
|
emit_insn (GEN_FCN (icode) (reloadreg, real_oldequiv,
|
6745 |
|
|
second_reload_reg));
|
6746 |
|
|
special = 1;
|
6747 |
|
|
}
|
6748 |
|
|
else
|
6749 |
|
|
{
|
6750 |
|
|
/* See if we need a scratch register to load the
|
6751 |
|
|
intermediate register (a tertiary reload). */
|
6752 |
|
|
if (tertiary_icode != CODE_FOR_nothing)
|
6753 |
|
|
{
|
6754 |
|
|
emit_insn ((GEN_FCN (tertiary_icode)
|
6755 |
|
|
(second_reload_reg, real_oldequiv,
|
6756 |
|
|
third_reload_reg)));
|
6757 |
|
|
}
|
6758 |
|
|
else if (third_reload_reg)
|
6759 |
|
|
{
|
6760 |
|
|
gen_reload (third_reload_reg, real_oldequiv,
|
6761 |
|
|
rl->opnum,
|
6762 |
|
|
rl->when_needed);
|
6763 |
|
|
gen_reload (second_reload_reg, third_reload_reg,
|
6764 |
|
|
rl->opnum,
|
6765 |
|
|
rl->when_needed);
|
6766 |
|
|
}
|
6767 |
|
|
else
|
6768 |
|
|
gen_reload (second_reload_reg, real_oldequiv,
|
6769 |
|
|
rl->opnum,
|
6770 |
|
|
rl->when_needed);
|
6771 |
|
|
|
6772 |
|
|
oldequiv = second_reload_reg;
|
6773 |
|
|
}
|
6774 |
|
|
}
|
6775 |
|
|
}
|
6776 |
|
|
|
6777 |
|
|
if (! special && ! rtx_equal_p (reloadreg, oldequiv))
|
6778 |
|
|
{
|
6779 |
|
|
rtx real_oldequiv = oldequiv;
|
6780 |
|
|
|
6781 |
|
|
if ((REG_P (oldequiv)
|
6782 |
|
|
&& REGNO (oldequiv) >= FIRST_PSEUDO_REGISTER
|
6783 |
|
|
&& (reg_equiv_memory_loc[REGNO (oldequiv)] != 0
|
6784 |
|
|
|| reg_equiv_constant[REGNO (oldequiv)] != 0))
|
6785 |
|
|
|| (GET_CODE (oldequiv) == SUBREG
|
6786 |
|
|
&& REG_P (SUBREG_REG (oldequiv))
|
6787 |
|
|
&& (REGNO (SUBREG_REG (oldequiv))
|
6788 |
|
|
>= FIRST_PSEUDO_REGISTER)
|
6789 |
|
|
&& ((reg_equiv_memory_loc
|
6790 |
|
|
[REGNO (SUBREG_REG (oldequiv))] != 0)
|
6791 |
|
|
|| (reg_equiv_constant
|
6792 |
|
|
[REGNO (SUBREG_REG (oldequiv))] != 0)))
|
6793 |
|
|
|| (CONSTANT_P (oldequiv)
|
6794 |
|
|
&& (PREFERRED_RELOAD_CLASS (oldequiv,
|
6795 |
|
|
REGNO_REG_CLASS (REGNO (reloadreg)))
|
6796 |
|
|
== NO_REGS)))
|
6797 |
|
|
real_oldequiv = rl->in;
|
6798 |
|
|
gen_reload (reloadreg, real_oldequiv, rl->opnum,
|
6799 |
|
|
rl->when_needed);
|
6800 |
|
|
}
|
6801 |
|
|
|
6802 |
|
|
if (flag_non_call_exceptions)
|
6803 |
|
|
copy_eh_notes (insn, get_insns ());
|
6804 |
|
|
|
6805 |
|
|
/* End this sequence. */
|
6806 |
|
|
*where = get_insns ();
|
6807 |
|
|
end_sequence ();
|
6808 |
|
|
|
6809 |
|
|
/* Update reload_override_in so that delete_address_reloads_1
|
6810 |
|
|
can see the actual register usage. */
|
6811 |
|
|
if (oldequiv_reg)
|
6812 |
|
|
reload_override_in[j] = oldequiv;
|
6813 |
|
|
}
|
6814 |
|
|
|
6815 |
|
|
/* Generate insns to for the output reload RL, which is for the insn described
|
6816 |
|
|
by CHAIN and has the number J. */
|
6817 |
|
|
static void
|
6818 |
|
|
emit_output_reload_insns (struct insn_chain *chain, struct reload *rl,
|
6819 |
|
|
int j)
|
6820 |
|
|
{
|
6821 |
|
|
rtx reloadreg = rl->reg_rtx;
|
6822 |
|
|
rtx insn = chain->insn;
|
6823 |
|
|
int special = 0;
|
6824 |
|
|
rtx old = rl->out;
|
6825 |
|
|
enum machine_mode mode = GET_MODE (old);
|
6826 |
|
|
rtx p;
|
6827 |
|
|
|
6828 |
|
|
if (rl->when_needed == RELOAD_OTHER)
|
6829 |
|
|
start_sequence ();
|
6830 |
|
|
else
|
6831 |
|
|
push_to_sequence (output_reload_insns[rl->opnum]);
|
6832 |
|
|
|
6833 |
|
|
/* Determine the mode to reload in.
|
6834 |
|
|
See comments above (for input reloading). */
|
6835 |
|
|
|
6836 |
|
|
if (mode == VOIDmode)
|
6837 |
|
|
{
|
6838 |
|
|
/* VOIDmode should never happen for an output. */
|
6839 |
|
|
if (asm_noperands (PATTERN (insn)) < 0)
|
6840 |
|
|
/* It's the compiler's fault. */
|
6841 |
|
|
fatal_insn ("VOIDmode on an output", insn);
|
6842 |
|
|
error_for_asm (insn, "output operand is constant in %<asm%>");
|
6843 |
|
|
/* Prevent crash--use something we know is valid. */
|
6844 |
|
|
mode = word_mode;
|
6845 |
|
|
old = gen_rtx_REG (mode, REGNO (reloadreg));
|
6846 |
|
|
}
|
6847 |
|
|
|
6848 |
|
|
if (GET_MODE (reloadreg) != mode)
|
6849 |
|
|
reloadreg = reload_adjust_reg_for_mode (reloadreg, mode);
|
6850 |
|
|
|
6851 |
|
|
/* If we need two reload regs, set RELOADREG to the intermediate
|
6852 |
|
|
one, since it will be stored into OLD. We might need a secondary
|
6853 |
|
|
register only for an input reload, so check again here. */
|
6854 |
|
|
|
6855 |
|
|
if (rl->secondary_out_reload >= 0)
|
6856 |
|
|
{
|
6857 |
|
|
rtx real_old = old;
|
6858 |
|
|
int secondary_reload = rl->secondary_out_reload;
|
6859 |
|
|
int tertiary_reload = rld[secondary_reload].secondary_out_reload;
|
6860 |
|
|
|
6861 |
|
|
if (REG_P (old) && REGNO (old) >= FIRST_PSEUDO_REGISTER
|
6862 |
|
|
&& reg_equiv_mem[REGNO (old)] != 0)
|
6863 |
|
|
real_old = reg_equiv_mem[REGNO (old)];
|
6864 |
|
|
|
6865 |
|
|
if (secondary_reload_class (0, rl->class, mode, real_old) != NO_REGS)
|
6866 |
|
|
{
|
6867 |
|
|
rtx second_reloadreg = reloadreg;
|
6868 |
|
|
reloadreg = rld[secondary_reload].reg_rtx;
|
6869 |
|
|
|
6870 |
|
|
/* See if RELOADREG is to be used as a scratch register
|
6871 |
|
|
or as an intermediate register. */
|
6872 |
|
|
if (rl->secondary_out_icode != CODE_FOR_nothing)
|
6873 |
|
|
{
|
6874 |
|
|
/* We'd have to add extra code to handle this case. */
|
6875 |
|
|
gcc_assert (tertiary_reload < 0);
|
6876 |
|
|
|
6877 |
|
|
emit_insn ((GEN_FCN (rl->secondary_out_icode)
|
6878 |
|
|
(real_old, second_reloadreg, reloadreg)));
|
6879 |
|
|
special = 1;
|
6880 |
|
|
}
|
6881 |
|
|
else
|
6882 |
|
|
{
|
6883 |
|
|
/* See if we need both a scratch and intermediate reload
|
6884 |
|
|
register. */
|
6885 |
|
|
|
6886 |
|
|
enum insn_code tertiary_icode
|
6887 |
|
|
= rld[secondary_reload].secondary_out_icode;
|
6888 |
|
|
|
6889 |
|
|
/* We'd have to add more code for quartary reloads. */
|
6890 |
|
|
gcc_assert (tertiary_reload < 0
|
6891 |
|
|
|| rld[tertiary_reload].secondary_out_reload < 0);
|
6892 |
|
|
|
6893 |
|
|
if (GET_MODE (reloadreg) != mode)
|
6894 |
|
|
reloadreg = reload_adjust_reg_for_mode (reloadreg, mode);
|
6895 |
|
|
|
6896 |
|
|
if (tertiary_icode != CODE_FOR_nothing)
|
6897 |
|
|
{
|
6898 |
|
|
rtx third_reloadreg = rld[tertiary_reload].reg_rtx;
|
6899 |
|
|
rtx tem;
|
6900 |
|
|
|
6901 |
|
|
/* Copy primary reload reg to secondary reload reg.
|
6902 |
|
|
(Note that these have been swapped above, then
|
6903 |
|
|
secondary reload reg to OLD using our insn.) */
|
6904 |
|
|
|
6905 |
|
|
/* If REAL_OLD is a paradoxical SUBREG, remove it
|
6906 |
|
|
and try to put the opposite SUBREG on
|
6907 |
|
|
RELOADREG. */
|
6908 |
|
|
if (GET_CODE (real_old) == SUBREG
|
6909 |
|
|
&& (GET_MODE_SIZE (GET_MODE (real_old))
|
6910 |
|
|
> GET_MODE_SIZE (GET_MODE (SUBREG_REG (real_old))))
|
6911 |
|
|
&& 0 != (tem = gen_lowpart_common
|
6912 |
|
|
(GET_MODE (SUBREG_REG (real_old)),
|
6913 |
|
|
reloadreg)))
|
6914 |
|
|
real_old = SUBREG_REG (real_old), reloadreg = tem;
|
6915 |
|
|
|
6916 |
|
|
gen_reload (reloadreg, second_reloadreg,
|
6917 |
|
|
rl->opnum, rl->when_needed);
|
6918 |
|
|
emit_insn ((GEN_FCN (tertiary_icode)
|
6919 |
|
|
(real_old, reloadreg, third_reloadreg)));
|
6920 |
|
|
special = 1;
|
6921 |
|
|
}
|
6922 |
|
|
|
6923 |
|
|
else
|
6924 |
|
|
{
|
6925 |
|
|
/* Copy between the reload regs here and then to
|
6926 |
|
|
OUT later. */
|
6927 |
|
|
|
6928 |
|
|
gen_reload (reloadreg, second_reloadreg,
|
6929 |
|
|
rl->opnum, rl->when_needed);
|
6930 |
|
|
if (tertiary_reload >= 0)
|
6931 |
|
|
{
|
6932 |
|
|
rtx third_reloadreg = rld[tertiary_reload].reg_rtx;
|
6933 |
|
|
|
6934 |
|
|
gen_reload (third_reloadreg, reloadreg,
|
6935 |
|
|
rl->opnum, rl->when_needed);
|
6936 |
|
|
reloadreg = third_reloadreg;
|
6937 |
|
|
}
|
6938 |
|
|
}
|
6939 |
|
|
}
|
6940 |
|
|
}
|
6941 |
|
|
}
|
6942 |
|
|
|
6943 |
|
|
/* Output the last reload insn. */
|
6944 |
|
|
if (! special)
|
6945 |
|
|
{
|
6946 |
|
|
rtx set;
|
6947 |
|
|
|
6948 |
|
|
/* Don't output the last reload if OLD is not the dest of
|
6949 |
|
|
INSN and is in the src and is clobbered by INSN. */
|
6950 |
|
|
if (! flag_expensive_optimizations
|
6951 |
|
|
|| !REG_P (old)
|
6952 |
|
|
|| !(set = single_set (insn))
|
6953 |
|
|
|| rtx_equal_p (old, SET_DEST (set))
|
6954 |
|
|
|| !reg_mentioned_p (old, SET_SRC (set))
|
6955 |
|
|
|| !((REGNO (old) < FIRST_PSEUDO_REGISTER)
|
6956 |
|
|
&& regno_clobbered_p (REGNO (old), insn, rl->mode, 0)))
|
6957 |
|
|
gen_reload (old, reloadreg, rl->opnum,
|
6958 |
|
|
rl->when_needed);
|
6959 |
|
|
}
|
6960 |
|
|
|
6961 |
|
|
/* Look at all insns we emitted, just to be safe. */
|
6962 |
|
|
for (p = get_insns (); p; p = NEXT_INSN (p))
|
6963 |
|
|
if (INSN_P (p))
|
6964 |
|
|
{
|
6965 |
|
|
rtx pat = PATTERN (p);
|
6966 |
|
|
|
6967 |
|
|
/* If this output reload doesn't come from a spill reg,
|
6968 |
|
|
clear any memory of reloaded copies of the pseudo reg.
|
6969 |
|
|
If this output reload comes from a spill reg,
|
6970 |
|
|
reg_has_output_reload will make this do nothing. */
|
6971 |
|
|
note_stores (pat, forget_old_reloads_1, NULL);
|
6972 |
|
|
|
6973 |
|
|
if (reg_mentioned_p (rl->reg_rtx, pat))
|
6974 |
|
|
{
|
6975 |
|
|
rtx set = single_set (insn);
|
6976 |
|
|
if (reload_spill_index[j] < 0
|
6977 |
|
|
&& set
|
6978 |
|
|
&& SET_SRC (set) == rl->reg_rtx)
|
6979 |
|
|
{
|
6980 |
|
|
int src = REGNO (SET_SRC (set));
|
6981 |
|
|
|
6982 |
|
|
reload_spill_index[j] = src;
|
6983 |
|
|
SET_HARD_REG_BIT (reg_is_output_reload, src);
|
6984 |
|
|
if (find_regno_note (insn, REG_DEAD, src))
|
6985 |
|
|
SET_HARD_REG_BIT (reg_reloaded_died, src);
|
6986 |
|
|
}
|
6987 |
|
|
if (REGNO (rl->reg_rtx) < FIRST_PSEUDO_REGISTER)
|
6988 |
|
|
{
|
6989 |
|
|
int s = rl->secondary_out_reload;
|
6990 |
|
|
set = single_set (p);
|
6991 |
|
|
/* If this reload copies only to the secondary reload
|
6992 |
|
|
register, the secondary reload does the actual
|
6993 |
|
|
store. */
|
6994 |
|
|
if (s >= 0 && set == NULL_RTX)
|
6995 |
|
|
/* We can't tell what function the secondary reload
|
6996 |
|
|
has and where the actual store to the pseudo is
|
6997 |
|
|
made; leave new_spill_reg_store alone. */
|
6998 |
|
|
;
|
6999 |
|
|
else if (s >= 0
|
7000 |
|
|
&& SET_SRC (set) == rl->reg_rtx
|
7001 |
|
|
&& SET_DEST (set) == rld[s].reg_rtx)
|
7002 |
|
|
{
|
7003 |
|
|
/* Usually the next instruction will be the
|
7004 |
|
|
secondary reload insn; if we can confirm
|
7005 |
|
|
that it is, setting new_spill_reg_store to
|
7006 |
|
|
that insn will allow an extra optimization. */
|
7007 |
|
|
rtx s_reg = rld[s].reg_rtx;
|
7008 |
|
|
rtx next = NEXT_INSN (p);
|
7009 |
|
|
rld[s].out = rl->out;
|
7010 |
|
|
rld[s].out_reg = rl->out_reg;
|
7011 |
|
|
set = single_set (next);
|
7012 |
|
|
if (set && SET_SRC (set) == s_reg
|
7013 |
|
|
&& ! new_spill_reg_store[REGNO (s_reg)])
|
7014 |
|
|
{
|
7015 |
|
|
SET_HARD_REG_BIT (reg_is_output_reload,
|
7016 |
|
|
REGNO (s_reg));
|
7017 |
|
|
new_spill_reg_store[REGNO (s_reg)] = next;
|
7018 |
|
|
}
|
7019 |
|
|
}
|
7020 |
|
|
else
|
7021 |
|
|
new_spill_reg_store[REGNO (rl->reg_rtx)] = p;
|
7022 |
|
|
}
|
7023 |
|
|
}
|
7024 |
|
|
}
|
7025 |
|
|
|
7026 |
|
|
if (rl->when_needed == RELOAD_OTHER)
|
7027 |
|
|
{
|
7028 |
|
|
emit_insn (other_output_reload_insns[rl->opnum]);
|
7029 |
|
|
other_output_reload_insns[rl->opnum] = get_insns ();
|
7030 |
|
|
}
|
7031 |
|
|
else
|
7032 |
|
|
output_reload_insns[rl->opnum] = get_insns ();
|
7033 |
|
|
|
7034 |
|
|
if (flag_non_call_exceptions)
|
7035 |
|
|
copy_eh_notes (insn, get_insns ());
|
7036 |
|
|
|
7037 |
|
|
end_sequence ();
|
7038 |
|
|
}
|
7039 |
|
|
|
7040 |
|
|
/* Do input reloading for reload RL, which is for the insn described by CHAIN
|
7041 |
|
|
and has the number J. */
|
7042 |
|
|
static void
|
7043 |
|
|
do_input_reload (struct insn_chain *chain, struct reload *rl, int j)
|
7044 |
|
|
{
|
7045 |
|
|
rtx insn = chain->insn;
|
7046 |
|
|
rtx old = (rl->in && MEM_P (rl->in)
|
7047 |
|
|
? rl->in_reg : rl->in);
|
7048 |
|
|
|
7049 |
|
|
if (old != 0
|
7050 |
|
|
/* AUTO_INC reloads need to be handled even if inherited. We got an
|
7051 |
|
|
AUTO_INC reload if reload_out is set but reload_out_reg isn't. */
|
7052 |
|
|
&& (! reload_inherited[j] || (rl->out && ! rl->out_reg))
|
7053 |
|
|
&& ! rtx_equal_p (rl->reg_rtx, old)
|
7054 |
|
|
&& rl->reg_rtx != 0)
|
7055 |
|
|
emit_input_reload_insns (chain, rld + j, old, j);
|
7056 |
|
|
|
7057 |
|
|
/* When inheriting a wider reload, we have a MEM in rl->in,
|
7058 |
|
|
e.g. inheriting a SImode output reload for
|
7059 |
|
|
(mem:HI (plus:SI (reg:SI 14 fp) (const_int 10))) */
|
7060 |
|
|
if (optimize && reload_inherited[j] && rl->in
|
7061 |
|
|
&& MEM_P (rl->in)
|
7062 |
|
|
&& MEM_P (rl->in_reg)
|
7063 |
|
|
&& reload_spill_index[j] >= 0
|
7064 |
|
|
&& TEST_HARD_REG_BIT (reg_reloaded_valid, reload_spill_index[j]))
|
7065 |
|
|
rl->in = regno_reg_rtx[reg_reloaded_contents[reload_spill_index[j]]];
|
7066 |
|
|
|
7067 |
|
|
/* If we are reloading a register that was recently stored in with an
|
7068 |
|
|
output-reload, see if we can prove there was
|
7069 |
|
|
actually no need to store the old value in it. */
|
7070 |
|
|
|
7071 |
|
|
if (optimize
|
7072 |
|
|
/* Only attempt this for input reloads; for RELOAD_OTHER we miss
|
7073 |
|
|
that there may be multiple uses of the previous output reload.
|
7074 |
|
|
Restricting to RELOAD_FOR_INPUT is mostly paranoia. */
|
7075 |
|
|
&& rl->when_needed == RELOAD_FOR_INPUT
|
7076 |
|
|
&& (reload_inherited[j] || reload_override_in[j])
|
7077 |
|
|
&& rl->reg_rtx
|
7078 |
|
|
&& REG_P (rl->reg_rtx)
|
7079 |
|
|
&& spill_reg_store[REGNO (rl->reg_rtx)] != 0
|
7080 |
|
|
#if 0
|
7081 |
|
|
/* There doesn't seem to be any reason to restrict this to pseudos
|
7082 |
|
|
and doing so loses in the case where we are copying from a
|
7083 |
|
|
register of the wrong class. */
|
7084 |
|
|
&& (REGNO (spill_reg_stored_to[REGNO (rl->reg_rtx)])
|
7085 |
|
|
>= FIRST_PSEUDO_REGISTER)
|
7086 |
|
|
#endif
|
7087 |
|
|
/* The insn might have already some references to stackslots
|
7088 |
|
|
replaced by MEMs, while reload_out_reg still names the
|
7089 |
|
|
original pseudo. */
|
7090 |
|
|
&& (dead_or_set_p (insn,
|
7091 |
|
|
spill_reg_stored_to[REGNO (rl->reg_rtx)])
|
7092 |
|
|
|| rtx_equal_p (spill_reg_stored_to[REGNO (rl->reg_rtx)],
|
7093 |
|
|
rl->out_reg)))
|
7094 |
|
|
delete_output_reload (insn, j, REGNO (rl->reg_rtx));
|
7095 |
|
|
}
|
7096 |
|
|
|
7097 |
|
|
/* Do output reloading for reload RL, which is for the insn described by
|
7098 |
|
|
CHAIN and has the number J.
|
7099 |
|
|
??? At some point we need to support handling output reloads of
|
7100 |
|
|
JUMP_INSNs or insns that set cc0. */
|
7101 |
|
|
static void
|
7102 |
|
|
do_output_reload (struct insn_chain *chain, struct reload *rl, int j)
|
7103 |
|
|
{
|
7104 |
|
|
rtx note, old;
|
7105 |
|
|
rtx insn = chain->insn;
|
7106 |
|
|
/* If this is an output reload that stores something that is
|
7107 |
|
|
not loaded in this same reload, see if we can eliminate a previous
|
7108 |
|
|
store. */
|
7109 |
|
|
rtx pseudo = rl->out_reg;
|
7110 |
|
|
|
7111 |
|
|
if (pseudo
|
7112 |
|
|
&& optimize
|
7113 |
|
|
&& REG_P (pseudo)
|
7114 |
|
|
&& ! rtx_equal_p (rl->in_reg, pseudo)
|
7115 |
|
|
&& REGNO (pseudo) >= FIRST_PSEUDO_REGISTER
|
7116 |
|
|
&& reg_last_reload_reg[REGNO (pseudo)])
|
7117 |
|
|
{
|
7118 |
|
|
int pseudo_no = REGNO (pseudo);
|
7119 |
|
|
int last_regno = REGNO (reg_last_reload_reg[pseudo_no]);
|
7120 |
|
|
|
7121 |
|
|
/* We don't need to test full validity of last_regno for
|
7122 |
|
|
inherit here; we only want to know if the store actually
|
7123 |
|
|
matches the pseudo. */
|
7124 |
|
|
if (TEST_HARD_REG_BIT (reg_reloaded_valid, last_regno)
|
7125 |
|
|
&& reg_reloaded_contents[last_regno] == pseudo_no
|
7126 |
|
|
&& spill_reg_store[last_regno]
|
7127 |
|
|
&& rtx_equal_p (pseudo, spill_reg_stored_to[last_regno]))
|
7128 |
|
|
delete_output_reload (insn, j, last_regno);
|
7129 |
|
|
}
|
7130 |
|
|
|
7131 |
|
|
old = rl->out_reg;
|
7132 |
|
|
if (old == 0
|
7133 |
|
|
|| rl->reg_rtx == old
|
7134 |
|
|
|| rl->reg_rtx == 0)
|
7135 |
|
|
return;
|
7136 |
|
|
|
7137 |
|
|
/* An output operand that dies right away does need a reload,
|
7138 |
|
|
but need not be copied from it. Show the new location in the
|
7139 |
|
|
REG_UNUSED note. */
|
7140 |
|
|
if ((REG_P (old) || GET_CODE (old) == SCRATCH)
|
7141 |
|
|
&& (note = find_reg_note (insn, REG_UNUSED, old)) != 0)
|
7142 |
|
|
{
|
7143 |
|
|
XEXP (note, 0) = rl->reg_rtx;
|
7144 |
|
|
return;
|
7145 |
|
|
}
|
7146 |
|
|
/* Likewise for a SUBREG of an operand that dies. */
|
7147 |
|
|
else if (GET_CODE (old) == SUBREG
|
7148 |
|
|
&& REG_P (SUBREG_REG (old))
|
7149 |
|
|
&& 0 != (note = find_reg_note (insn, REG_UNUSED,
|
7150 |
|
|
SUBREG_REG (old))))
|
7151 |
|
|
{
|
7152 |
|
|
XEXP (note, 0) = gen_lowpart_common (GET_MODE (old),
|
7153 |
|
|
rl->reg_rtx);
|
7154 |
|
|
return;
|
7155 |
|
|
}
|
7156 |
|
|
else if (GET_CODE (old) == SCRATCH)
|
7157 |
|
|
/* If we aren't optimizing, there won't be a REG_UNUSED note,
|
7158 |
|
|
but we don't want to make an output reload. */
|
7159 |
|
|
return;
|
7160 |
|
|
|
7161 |
|
|
/* If is a JUMP_INSN, we can't support output reloads yet. */
|
7162 |
|
|
gcc_assert (NONJUMP_INSN_P (insn));
|
7163 |
|
|
|
7164 |
|
|
emit_output_reload_insns (chain, rld + j, j);
|
7165 |
|
|
}
|
7166 |
|
|
|
7167 |
|
|
/* Reload number R reloads from or to a group of hard registers starting at
|
7168 |
|
|
register REGNO. Return true if it can be treated for inheritance purposes
|
7169 |
|
|
like a group of reloads, each one reloading a single hard register.
|
7170 |
|
|
The caller has already checked that the spill register and REGNO use
|
7171 |
|
|
the same number of registers to store the reload value. */
|
7172 |
|
|
|
7173 |
|
|
static bool
|
7174 |
|
|
inherit_piecemeal_p (int r ATTRIBUTE_UNUSED, int regno ATTRIBUTE_UNUSED)
|
7175 |
|
|
{
|
7176 |
|
|
#ifdef CANNOT_CHANGE_MODE_CLASS
|
7177 |
|
|
return (!REG_CANNOT_CHANGE_MODE_P (reload_spill_index[r],
|
7178 |
|
|
GET_MODE (rld[r].reg_rtx),
|
7179 |
|
|
reg_raw_mode[reload_spill_index[r]])
|
7180 |
|
|
&& !REG_CANNOT_CHANGE_MODE_P (regno,
|
7181 |
|
|
GET_MODE (rld[r].reg_rtx),
|
7182 |
|
|
reg_raw_mode[regno]));
|
7183 |
|
|
#else
|
7184 |
|
|
return true;
|
7185 |
|
|
#endif
|
7186 |
|
|
}
|
7187 |
|
|
|
7188 |
|
|
/* Output insns to reload values in and out of the chosen reload regs. */
|
7189 |
|
|
|
7190 |
|
|
static void
|
7191 |
|
|
emit_reload_insns (struct insn_chain *chain)
|
7192 |
|
|
{
|
7193 |
|
|
rtx insn = chain->insn;
|
7194 |
|
|
|
7195 |
|
|
int j;
|
7196 |
|
|
|
7197 |
|
|
CLEAR_HARD_REG_SET (reg_reloaded_died);
|
7198 |
|
|
|
7199 |
|
|
for (j = 0; j < reload_n_operands; j++)
|
7200 |
|
|
input_reload_insns[j] = input_address_reload_insns[j]
|
7201 |
|
|
= inpaddr_address_reload_insns[j]
|
7202 |
|
|
= output_reload_insns[j] = output_address_reload_insns[j]
|
7203 |
|
|
= outaddr_address_reload_insns[j]
|
7204 |
|
|
= other_output_reload_insns[j] = 0;
|
7205 |
|
|
other_input_address_reload_insns = 0;
|
7206 |
|
|
other_input_reload_insns = 0;
|
7207 |
|
|
operand_reload_insns = 0;
|
7208 |
|
|
other_operand_reload_insns = 0;
|
7209 |
|
|
|
7210 |
|
|
/* Dump reloads into the dump file. */
|
7211 |
|
|
if (dump_file)
|
7212 |
|
|
{
|
7213 |
|
|
fprintf (dump_file, "\nReloads for insn # %d\n", INSN_UID (insn));
|
7214 |
|
|
debug_reload_to_stream (dump_file);
|
7215 |
|
|
}
|
7216 |
|
|
|
7217 |
|
|
/* Now output the instructions to copy the data into and out of the
|
7218 |
|
|
reload registers. Do these in the order that the reloads were reported,
|
7219 |
|
|
since reloads of base and index registers precede reloads of operands
|
7220 |
|
|
and the operands may need the base and index registers reloaded. */
|
7221 |
|
|
|
7222 |
|
|
for (j = 0; j < n_reloads; j++)
|
7223 |
|
|
{
|
7224 |
|
|
if (rld[j].reg_rtx
|
7225 |
|
|
&& REGNO (rld[j].reg_rtx) < FIRST_PSEUDO_REGISTER)
|
7226 |
|
|
new_spill_reg_store[REGNO (rld[j].reg_rtx)] = 0;
|
7227 |
|
|
|
7228 |
|
|
do_input_reload (chain, rld + j, j);
|
7229 |
|
|
do_output_reload (chain, rld + j, j);
|
7230 |
|
|
}
|
7231 |
|
|
|
7232 |
|
|
/* Now write all the insns we made for reloads in the order expected by
|
7233 |
|
|
the allocation functions. Prior to the insn being reloaded, we write
|
7234 |
|
|
the following reloads:
|
7235 |
|
|
|
7236 |
|
|
RELOAD_FOR_OTHER_ADDRESS reloads for input addresses.
|
7237 |
|
|
|
7238 |
|
|
RELOAD_OTHER reloads.
|
7239 |
|
|
|
7240 |
|
|
For each operand, any RELOAD_FOR_INPADDR_ADDRESS reloads followed
|
7241 |
|
|
by any RELOAD_FOR_INPUT_ADDRESS reloads followed by the
|
7242 |
|
|
RELOAD_FOR_INPUT reload for the operand.
|
7243 |
|
|
|
7244 |
|
|
RELOAD_FOR_OPADDR_ADDRS reloads.
|
7245 |
|
|
|
7246 |
|
|
RELOAD_FOR_OPERAND_ADDRESS reloads.
|
7247 |
|
|
|
7248 |
|
|
After the insn being reloaded, we write the following:
|
7249 |
|
|
|
7250 |
|
|
For each operand, any RELOAD_FOR_OUTADDR_ADDRESS reloads followed
|
7251 |
|
|
by any RELOAD_FOR_OUTPUT_ADDRESS reload followed by the
|
7252 |
|
|
RELOAD_FOR_OUTPUT reload, followed by any RELOAD_OTHER output
|
7253 |
|
|
reloads for the operand. The RELOAD_OTHER output reloads are
|
7254 |
|
|
output in descending order by reload number. */
|
7255 |
|
|
|
7256 |
|
|
emit_insn_before (other_input_address_reload_insns, insn);
|
7257 |
|
|
emit_insn_before (other_input_reload_insns, insn);
|
7258 |
|
|
|
7259 |
|
|
for (j = 0; j < reload_n_operands; j++)
|
7260 |
|
|
{
|
7261 |
|
|
emit_insn_before (inpaddr_address_reload_insns[j], insn);
|
7262 |
|
|
emit_insn_before (input_address_reload_insns[j], insn);
|
7263 |
|
|
emit_insn_before (input_reload_insns[j], insn);
|
7264 |
|
|
}
|
7265 |
|
|
|
7266 |
|
|
emit_insn_before (other_operand_reload_insns, insn);
|
7267 |
|
|
emit_insn_before (operand_reload_insns, insn);
|
7268 |
|
|
|
7269 |
|
|
for (j = 0; j < reload_n_operands; j++)
|
7270 |
|
|
{
|
7271 |
|
|
rtx x = emit_insn_after (outaddr_address_reload_insns[j], insn);
|
7272 |
|
|
x = emit_insn_after (output_address_reload_insns[j], x);
|
7273 |
|
|
x = emit_insn_after (output_reload_insns[j], x);
|
7274 |
|
|
emit_insn_after (other_output_reload_insns[j], x);
|
7275 |
|
|
}
|
7276 |
|
|
|
7277 |
|
|
/* For all the spill regs newly reloaded in this instruction,
|
7278 |
|
|
record what they were reloaded from, so subsequent instructions
|
7279 |
|
|
can inherit the reloads.
|
7280 |
|
|
|
7281 |
|
|
Update spill_reg_store for the reloads of this insn.
|
7282 |
|
|
Copy the elements that were updated in the loop above. */
|
7283 |
|
|
|
7284 |
|
|
for (j = 0; j < n_reloads; j++)
|
7285 |
|
|
{
|
7286 |
|
|
int r = reload_order[j];
|
7287 |
|
|
int i = reload_spill_index[r];
|
7288 |
|
|
|
7289 |
|
|
/* If this is a non-inherited input reload from a pseudo, we must
|
7290 |
|
|
clear any memory of a previous store to the same pseudo. Only do
|
7291 |
|
|
something if there will not be an output reload for the pseudo
|
7292 |
|
|
being reloaded. */
|
7293 |
|
|
if (rld[r].in_reg != 0
|
7294 |
|
|
&& ! (reload_inherited[r] || reload_override_in[r]))
|
7295 |
|
|
{
|
7296 |
|
|
rtx reg = rld[r].in_reg;
|
7297 |
|
|
|
7298 |
|
|
if (GET_CODE (reg) == SUBREG)
|
7299 |
|
|
reg = SUBREG_REG (reg);
|
7300 |
|
|
|
7301 |
|
|
if (REG_P (reg)
|
7302 |
|
|
&& REGNO (reg) >= FIRST_PSEUDO_REGISTER
|
7303 |
|
|
&& !REGNO_REG_SET_P (®_has_output_reload, REGNO (reg)))
|
7304 |
|
|
{
|
7305 |
|
|
int nregno = REGNO (reg);
|
7306 |
|
|
|
7307 |
|
|
if (reg_last_reload_reg[nregno])
|
7308 |
|
|
{
|
7309 |
|
|
int last_regno = REGNO (reg_last_reload_reg[nregno]);
|
7310 |
|
|
|
7311 |
|
|
if (reg_reloaded_contents[last_regno] == nregno)
|
7312 |
|
|
spill_reg_store[last_regno] = 0;
|
7313 |
|
|
}
|
7314 |
|
|
}
|
7315 |
|
|
}
|
7316 |
|
|
|
7317 |
|
|
/* I is nonneg if this reload used a register.
|
7318 |
|
|
If rld[r].reg_rtx is 0, this is an optional reload
|
7319 |
|
|
that we opted to ignore. */
|
7320 |
|
|
|
7321 |
|
|
if (i >= 0 && rld[r].reg_rtx != 0)
|
7322 |
|
|
{
|
7323 |
|
|
int nr = hard_regno_nregs[i][GET_MODE (rld[r].reg_rtx)];
|
7324 |
|
|
int k;
|
7325 |
|
|
int part_reaches_end = 0;
|
7326 |
|
|
int all_reaches_end = 1;
|
7327 |
|
|
|
7328 |
|
|
/* For a multi register reload, we need to check if all or part
|
7329 |
|
|
of the value lives to the end. */
|
7330 |
|
|
for (k = 0; k < nr; k++)
|
7331 |
|
|
{
|
7332 |
|
|
if (reload_reg_reaches_end_p (i + k, rld[r].opnum,
|
7333 |
|
|
rld[r].when_needed))
|
7334 |
|
|
part_reaches_end = 1;
|
7335 |
|
|
else
|
7336 |
|
|
all_reaches_end = 0;
|
7337 |
|
|
}
|
7338 |
|
|
|
7339 |
|
|
/* Ignore reloads that don't reach the end of the insn in
|
7340 |
|
|
entirety. */
|
7341 |
|
|
if (all_reaches_end)
|
7342 |
|
|
{
|
7343 |
|
|
/* First, clear out memory of what used to be in this spill reg.
|
7344 |
|
|
If consecutive registers are used, clear them all. */
|
7345 |
|
|
|
7346 |
|
|
for (k = 0; k < nr; k++)
|
7347 |
|
|
{
|
7348 |
|
|
CLEAR_HARD_REG_BIT (reg_reloaded_valid, i + k);
|
7349 |
|
|
CLEAR_HARD_REG_BIT (reg_reloaded_call_part_clobbered, i + k);
|
7350 |
|
|
}
|
7351 |
|
|
|
7352 |
|
|
/* Maybe the spill reg contains a copy of reload_out. */
|
7353 |
|
|
if (rld[r].out != 0
|
7354 |
|
|
&& (REG_P (rld[r].out)
|
7355 |
|
|
#ifdef AUTO_INC_DEC
|
7356 |
|
|
|| ! rld[r].out_reg
|
7357 |
|
|
#endif
|
7358 |
|
|
|| REG_P (rld[r].out_reg)))
|
7359 |
|
|
{
|
7360 |
|
|
rtx out = (REG_P (rld[r].out)
|
7361 |
|
|
? rld[r].out
|
7362 |
|
|
: rld[r].out_reg
|
7363 |
|
|
? rld[r].out_reg
|
7364 |
|
|
/* AUTO_INC */ : XEXP (rld[r].in_reg, 0));
|
7365 |
|
|
int nregno = REGNO (out);
|
7366 |
|
|
int nnr = (nregno >= FIRST_PSEUDO_REGISTER ? 1
|
7367 |
|
|
: hard_regno_nregs[nregno]
|
7368 |
|
|
[GET_MODE (rld[r].reg_rtx)]);
|
7369 |
|
|
bool piecemeal;
|
7370 |
|
|
|
7371 |
|
|
spill_reg_store[i] = new_spill_reg_store[i];
|
7372 |
|
|
spill_reg_stored_to[i] = out;
|
7373 |
|
|
reg_last_reload_reg[nregno] = rld[r].reg_rtx;
|
7374 |
|
|
|
7375 |
|
|
piecemeal = (nregno < FIRST_PSEUDO_REGISTER
|
7376 |
|
|
&& nr == nnr
|
7377 |
|
|
&& inherit_piecemeal_p (r, nregno));
|
7378 |
|
|
|
7379 |
|
|
/* If NREGNO is a hard register, it may occupy more than
|
7380 |
|
|
one register. If it does, say what is in the
|
7381 |
|
|
rest of the registers assuming that both registers
|
7382 |
|
|
agree on how many words the object takes. If not,
|
7383 |
|
|
invalidate the subsequent registers. */
|
7384 |
|
|
|
7385 |
|
|
if (nregno < FIRST_PSEUDO_REGISTER)
|
7386 |
|
|
for (k = 1; k < nnr; k++)
|
7387 |
|
|
reg_last_reload_reg[nregno + k]
|
7388 |
|
|
= (piecemeal
|
7389 |
|
|
? regno_reg_rtx[REGNO (rld[r].reg_rtx) + k]
|
7390 |
|
|
: 0);
|
7391 |
|
|
|
7392 |
|
|
/* Now do the inverse operation. */
|
7393 |
|
|
for (k = 0; k < nr; k++)
|
7394 |
|
|
{
|
7395 |
|
|
CLEAR_HARD_REG_BIT (reg_reloaded_dead, i + k);
|
7396 |
|
|
reg_reloaded_contents[i + k]
|
7397 |
|
|
= (nregno >= FIRST_PSEUDO_REGISTER || !piecemeal
|
7398 |
|
|
? nregno
|
7399 |
|
|
: nregno + k);
|
7400 |
|
|
reg_reloaded_insn[i + k] = insn;
|
7401 |
|
|
SET_HARD_REG_BIT (reg_reloaded_valid, i + k);
|
7402 |
|
|
if (HARD_REGNO_CALL_PART_CLOBBERED (i + k, GET_MODE (out)))
|
7403 |
|
|
SET_HARD_REG_BIT (reg_reloaded_call_part_clobbered, i + k);
|
7404 |
|
|
}
|
7405 |
|
|
}
|
7406 |
|
|
|
7407 |
|
|
/* Maybe the spill reg contains a copy of reload_in. Only do
|
7408 |
|
|
something if there will not be an output reload for
|
7409 |
|
|
the register being reloaded. */
|
7410 |
|
|
else if (rld[r].out_reg == 0
|
7411 |
|
|
&& rld[r].in != 0
|
7412 |
|
|
&& ((REG_P (rld[r].in)
|
7413 |
|
|
&& REGNO (rld[r].in) >= FIRST_PSEUDO_REGISTER
|
7414 |
|
|
&& !REGNO_REG_SET_P (®_has_output_reload,
|
7415 |
|
|
REGNO (rld[r].in)))
|
7416 |
|
|
|| (REG_P (rld[r].in_reg)
|
7417 |
|
|
&& !REGNO_REG_SET_P (®_has_output_reload,
|
7418 |
|
|
REGNO (rld[r].in_reg))))
|
7419 |
|
|
&& ! reg_set_p (rld[r].reg_rtx, PATTERN (insn)))
|
7420 |
|
|
{
|
7421 |
|
|
int nregno;
|
7422 |
|
|
int nnr;
|
7423 |
|
|
rtx in;
|
7424 |
|
|
bool piecemeal;
|
7425 |
|
|
|
7426 |
|
|
if (REG_P (rld[r].in)
|
7427 |
|
|
&& REGNO (rld[r].in) >= FIRST_PSEUDO_REGISTER)
|
7428 |
|
|
in = rld[r].in;
|
7429 |
|
|
else if (REG_P (rld[r].in_reg))
|
7430 |
|
|
in = rld[r].in_reg;
|
7431 |
|
|
else
|
7432 |
|
|
in = XEXP (rld[r].in_reg, 0);
|
7433 |
|
|
nregno = REGNO (in);
|
7434 |
|
|
|
7435 |
|
|
nnr = (nregno >= FIRST_PSEUDO_REGISTER ? 1
|
7436 |
|
|
: hard_regno_nregs[nregno]
|
7437 |
|
|
[GET_MODE (rld[r].reg_rtx)]);
|
7438 |
|
|
|
7439 |
|
|
reg_last_reload_reg[nregno] = rld[r].reg_rtx;
|
7440 |
|
|
|
7441 |
|
|
piecemeal = (nregno < FIRST_PSEUDO_REGISTER
|
7442 |
|
|
&& nr == nnr
|
7443 |
|
|
&& inherit_piecemeal_p (r, nregno));
|
7444 |
|
|
|
7445 |
|
|
if (nregno < FIRST_PSEUDO_REGISTER)
|
7446 |
|
|
for (k = 1; k < nnr; k++)
|
7447 |
|
|
reg_last_reload_reg[nregno + k]
|
7448 |
|
|
= (piecemeal
|
7449 |
|
|
? regno_reg_rtx[REGNO (rld[r].reg_rtx) + k]
|
7450 |
|
|
: 0);
|
7451 |
|
|
|
7452 |
|
|
/* Unless we inherited this reload, show we haven't
|
7453 |
|
|
recently done a store.
|
7454 |
|
|
Previous stores of inherited auto_inc expressions
|
7455 |
|
|
also have to be discarded. */
|
7456 |
|
|
if (! reload_inherited[r]
|
7457 |
|
|
|| (rld[r].out && ! rld[r].out_reg))
|
7458 |
|
|
spill_reg_store[i] = 0;
|
7459 |
|
|
|
7460 |
|
|
for (k = 0; k < nr; k++)
|
7461 |
|
|
{
|
7462 |
|
|
CLEAR_HARD_REG_BIT (reg_reloaded_dead, i + k);
|
7463 |
|
|
reg_reloaded_contents[i + k]
|
7464 |
|
|
= (nregno >= FIRST_PSEUDO_REGISTER || !piecemeal
|
7465 |
|
|
? nregno
|
7466 |
|
|
: nregno + k);
|
7467 |
|
|
reg_reloaded_insn[i + k] = insn;
|
7468 |
|
|
SET_HARD_REG_BIT (reg_reloaded_valid, i + k);
|
7469 |
|
|
if (HARD_REGNO_CALL_PART_CLOBBERED (i + k, GET_MODE (in)))
|
7470 |
|
|
SET_HARD_REG_BIT (reg_reloaded_call_part_clobbered, i + k);
|
7471 |
|
|
}
|
7472 |
|
|
}
|
7473 |
|
|
}
|
7474 |
|
|
|
7475 |
|
|
/* However, if part of the reload reaches the end, then we must
|
7476 |
|
|
invalidate the old info for the part that survives to the end. */
|
7477 |
|
|
else if (part_reaches_end)
|
7478 |
|
|
{
|
7479 |
|
|
for (k = 0; k < nr; k++)
|
7480 |
|
|
if (reload_reg_reaches_end_p (i + k,
|
7481 |
|
|
rld[r].opnum,
|
7482 |
|
|
rld[r].when_needed))
|
7483 |
|
|
CLEAR_HARD_REG_BIT (reg_reloaded_valid, i + k);
|
7484 |
|
|
}
|
7485 |
|
|
}
|
7486 |
|
|
|
7487 |
|
|
/* The following if-statement was #if 0'd in 1.34 (or before...).
|
7488 |
|
|
It's reenabled in 1.35 because supposedly nothing else
|
7489 |
|
|
deals with this problem. */
|
7490 |
|
|
|
7491 |
|
|
/* If a register gets output-reloaded from a non-spill register,
|
7492 |
|
|
that invalidates any previous reloaded copy of it.
|
7493 |
|
|
But forget_old_reloads_1 won't get to see it, because
|
7494 |
|
|
it thinks only about the original insn. So invalidate it here.
|
7495 |
|
|
Also do the same thing for RELOAD_OTHER constraints where the
|
7496 |
|
|
output is discarded. */
|
7497 |
|
|
if (i < 0
|
7498 |
|
|
&& ((rld[r].out != 0
|
7499 |
|
|
&& (REG_P (rld[r].out)
|
7500 |
|
|
|| (MEM_P (rld[r].out)
|
7501 |
|
|
&& REG_P (rld[r].out_reg))))
|
7502 |
|
|
|| (rld[r].out == 0 && rld[r].out_reg
|
7503 |
|
|
&& REG_P (rld[r].out_reg))))
|
7504 |
|
|
{
|
7505 |
|
|
rtx out = ((rld[r].out && REG_P (rld[r].out))
|
7506 |
|
|
? rld[r].out : rld[r].out_reg);
|
7507 |
|
|
int nregno = REGNO (out);
|
7508 |
|
|
if (nregno >= FIRST_PSEUDO_REGISTER)
|
7509 |
|
|
{
|
7510 |
|
|
rtx src_reg, store_insn = NULL_RTX;
|
7511 |
|
|
|
7512 |
|
|
reg_last_reload_reg[nregno] = 0;
|
7513 |
|
|
|
7514 |
|
|
/* If we can find a hard register that is stored, record
|
7515 |
|
|
the storing insn so that we may delete this insn with
|
7516 |
|
|
delete_output_reload. */
|
7517 |
|
|
src_reg = rld[r].reg_rtx;
|
7518 |
|
|
|
7519 |
|
|
/* If this is an optional reload, try to find the source reg
|
7520 |
|
|
from an input reload. */
|
7521 |
|
|
if (! src_reg)
|
7522 |
|
|
{
|
7523 |
|
|
rtx set = single_set (insn);
|
7524 |
|
|
if (set && SET_DEST (set) == rld[r].out)
|
7525 |
|
|
{
|
7526 |
|
|
int k;
|
7527 |
|
|
|
7528 |
|
|
src_reg = SET_SRC (set);
|
7529 |
|
|
store_insn = insn;
|
7530 |
|
|
for (k = 0; k < n_reloads; k++)
|
7531 |
|
|
{
|
7532 |
|
|
if (rld[k].in == src_reg)
|
7533 |
|
|
{
|
7534 |
|
|
src_reg = rld[k].reg_rtx;
|
7535 |
|
|
break;
|
7536 |
|
|
}
|
7537 |
|
|
}
|
7538 |
|
|
}
|
7539 |
|
|
}
|
7540 |
|
|
else
|
7541 |
|
|
store_insn = new_spill_reg_store[REGNO (src_reg)];
|
7542 |
|
|
if (src_reg && REG_P (src_reg)
|
7543 |
|
|
&& REGNO (src_reg) < FIRST_PSEUDO_REGISTER)
|
7544 |
|
|
{
|
7545 |
|
|
int src_regno = REGNO (src_reg);
|
7546 |
|
|
int nr = hard_regno_nregs[src_regno][rld[r].mode];
|
7547 |
|
|
/* The place where to find a death note varies with
|
7548 |
|
|
PRESERVE_DEATH_INFO_REGNO_P . The condition is not
|
7549 |
|
|
necessarily checked exactly in the code that moves
|
7550 |
|
|
notes, so just check both locations. */
|
7551 |
|
|
rtx note = find_regno_note (insn, REG_DEAD, src_regno);
|
7552 |
|
|
if (! note && store_insn)
|
7553 |
|
|
note = find_regno_note (store_insn, REG_DEAD, src_regno);
|
7554 |
|
|
while (nr-- > 0)
|
7555 |
|
|
{
|
7556 |
|
|
spill_reg_store[src_regno + nr] = store_insn;
|
7557 |
|
|
spill_reg_stored_to[src_regno + nr] = out;
|
7558 |
|
|
reg_reloaded_contents[src_regno + nr] = nregno;
|
7559 |
|
|
reg_reloaded_insn[src_regno + nr] = store_insn;
|
7560 |
|
|
CLEAR_HARD_REG_BIT (reg_reloaded_dead, src_regno + nr);
|
7561 |
|
|
SET_HARD_REG_BIT (reg_reloaded_valid, src_regno + nr);
|
7562 |
|
|
if (HARD_REGNO_CALL_PART_CLOBBERED (src_regno + nr,
|
7563 |
|
|
GET_MODE (src_reg)))
|
7564 |
|
|
SET_HARD_REG_BIT (reg_reloaded_call_part_clobbered,
|
7565 |
|
|
src_regno + nr);
|
7566 |
|
|
SET_HARD_REG_BIT (reg_is_output_reload, src_regno + nr);
|
7567 |
|
|
if (note)
|
7568 |
|
|
SET_HARD_REG_BIT (reg_reloaded_died, src_regno);
|
7569 |
|
|
else
|
7570 |
|
|
CLEAR_HARD_REG_BIT (reg_reloaded_died, src_regno);
|
7571 |
|
|
}
|
7572 |
|
|
reg_last_reload_reg[nregno] = src_reg;
|
7573 |
|
|
/* We have to set reg_has_output_reload here, or else
|
7574 |
|
|
forget_old_reloads_1 will clear reg_last_reload_reg
|
7575 |
|
|
right away. */
|
7576 |
|
|
SET_REGNO_REG_SET (®_has_output_reload,
|
7577 |
|
|
nregno);
|
7578 |
|
|
}
|
7579 |
|
|
}
|
7580 |
|
|
else
|
7581 |
|
|
{
|
7582 |
|
|
int num_regs = hard_regno_nregs[nregno][GET_MODE (out)];
|
7583 |
|
|
|
7584 |
|
|
while (num_regs-- > 0)
|
7585 |
|
|
reg_last_reload_reg[nregno + num_regs] = 0;
|
7586 |
|
|
}
|
7587 |
|
|
}
|
7588 |
|
|
}
|
7589 |
|
|
IOR_HARD_REG_SET (reg_reloaded_dead, reg_reloaded_died);
|
7590 |
|
|
}
|
7591 |
|
|
|
7592 |
|
|
/* Go through the motions to emit INSN and test if it is strictly valid.
|
7593 |
|
|
Return the emitted insn if valid, else return NULL. */
|
7594 |
|
|
|
7595 |
|
|
static rtx
|
7596 |
|
|
emit_insn_if_valid_for_reload (rtx insn)
|
7597 |
|
|
{
|
7598 |
|
|
rtx last = get_last_insn ();
|
7599 |
|
|
int code;
|
7600 |
|
|
|
7601 |
|
|
insn = emit_insn (insn);
|
7602 |
|
|
code = recog_memoized (insn);
|
7603 |
|
|
|
7604 |
|
|
if (code >= 0)
|
7605 |
|
|
{
|
7606 |
|
|
extract_insn (insn);
|
7607 |
|
|
/* We want constrain operands to treat this insn strictly in its
|
7608 |
|
|
validity determination, i.e., the way it would after reload has
|
7609 |
|
|
completed. */
|
7610 |
|
|
if (constrain_operands (1))
|
7611 |
|
|
return insn;
|
7612 |
|
|
}
|
7613 |
|
|
|
7614 |
|
|
delete_insns_since (last);
|
7615 |
|
|
return NULL;
|
7616 |
|
|
}
|
7617 |
|
|
|
7618 |
|
|
/* Emit code to perform a reload from IN (which may be a reload register) to
|
7619 |
|
|
OUT (which may also be a reload register). IN or OUT is from operand
|
7620 |
|
|
OPNUM with reload type TYPE.
|
7621 |
|
|
|
7622 |
|
|
Returns first insn emitted. */
|
7623 |
|
|
|
7624 |
|
|
static rtx
|
7625 |
|
|
gen_reload (rtx out, rtx in, int opnum, enum reload_type type)
|
7626 |
|
|
{
|
7627 |
|
|
rtx last = get_last_insn ();
|
7628 |
|
|
rtx tem;
|
7629 |
|
|
|
7630 |
|
|
/* If IN is a paradoxical SUBREG, remove it and try to put the
|
7631 |
|
|
opposite SUBREG on OUT. Likewise for a paradoxical SUBREG on OUT. */
|
7632 |
|
|
if (GET_CODE (in) == SUBREG
|
7633 |
|
|
&& (GET_MODE_SIZE (GET_MODE (in))
|
7634 |
|
|
> GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))))
|
7635 |
|
|
&& (tem = gen_lowpart_common (GET_MODE (SUBREG_REG (in)), out)) != 0)
|
7636 |
|
|
in = SUBREG_REG (in), out = tem;
|
7637 |
|
|
else if (GET_CODE (out) == SUBREG
|
7638 |
|
|
&& (GET_MODE_SIZE (GET_MODE (out))
|
7639 |
|
|
> GET_MODE_SIZE (GET_MODE (SUBREG_REG (out))))
|
7640 |
|
|
&& (tem = gen_lowpart_common (GET_MODE (SUBREG_REG (out)), in)) != 0)
|
7641 |
|
|
out = SUBREG_REG (out), in = tem;
|
7642 |
|
|
|
7643 |
|
|
/* How to do this reload can get quite tricky. Normally, we are being
|
7644 |
|
|
asked to reload a simple operand, such as a MEM, a constant, or a pseudo
|
7645 |
|
|
register that didn't get a hard register. In that case we can just
|
7646 |
|
|
call emit_move_insn.
|
7647 |
|
|
|
7648 |
|
|
We can also be asked to reload a PLUS that adds a register or a MEM to
|
7649 |
|
|
another register, constant or MEM. This can occur during frame pointer
|
7650 |
|
|
elimination and while reloading addresses. This case is handled by
|
7651 |
|
|
trying to emit a single insn to perform the add. If it is not valid,
|
7652 |
|
|
we use a two insn sequence.
|
7653 |
|
|
|
7654 |
|
|
Or we can be asked to reload an unary operand that was a fragment of
|
7655 |
|
|
an addressing mode, into a register. If it isn't recognized as-is,
|
7656 |
|
|
we try making the unop operand and the reload-register the same:
|
7657 |
|
|
(set reg:X (unop:X expr:Y))
|
7658 |
|
|
-> (set reg:Y expr:Y) (set reg:X (unop:X reg:Y)).
|
7659 |
|
|
|
7660 |
|
|
Finally, we could be called to handle an 'o' constraint by putting
|
7661 |
|
|
an address into a register. In that case, we first try to do this
|
7662 |
|
|
with a named pattern of "reload_load_address". If no such pattern
|
7663 |
|
|
exists, we just emit a SET insn and hope for the best (it will normally
|
7664 |
|
|
be valid on machines that use 'o').
|
7665 |
|
|
|
7666 |
|
|
This entire process is made complex because reload will never
|
7667 |
|
|
process the insns we generate here and so we must ensure that
|
7668 |
|
|
they will fit their constraints and also by the fact that parts of
|
7669 |
|
|
IN might be being reloaded separately and replaced with spill registers.
|
7670 |
|
|
Because of this, we are, in some sense, just guessing the right approach
|
7671 |
|
|
here. The one listed above seems to work.
|
7672 |
|
|
|
7673 |
|
|
??? At some point, this whole thing needs to be rethought. */
|
7674 |
|
|
|
7675 |
|
|
if (GET_CODE (in) == PLUS
|
7676 |
|
|
&& (REG_P (XEXP (in, 0))
|
7677 |
|
|
|| GET_CODE (XEXP (in, 0)) == SUBREG
|
7678 |
|
|
|| MEM_P (XEXP (in, 0)))
|
7679 |
|
|
&& (REG_P (XEXP (in, 1))
|
7680 |
|
|
|| GET_CODE (XEXP (in, 1)) == SUBREG
|
7681 |
|
|
|| CONSTANT_P (XEXP (in, 1))
|
7682 |
|
|
|| MEM_P (XEXP (in, 1))))
|
7683 |
|
|
{
|
7684 |
|
|
/* We need to compute the sum of a register or a MEM and another
|
7685 |
|
|
register, constant, or MEM, and put it into the reload
|
7686 |
|
|
register. The best possible way of doing this is if the machine
|
7687 |
|
|
has a three-operand ADD insn that accepts the required operands.
|
7688 |
|
|
|
7689 |
|
|
The simplest approach is to try to generate such an insn and see if it
|
7690 |
|
|
is recognized and matches its constraints. If so, it can be used.
|
7691 |
|
|
|
7692 |
|
|
It might be better not to actually emit the insn unless it is valid,
|
7693 |
|
|
but we need to pass the insn as an operand to `recog' and
|
7694 |
|
|
`extract_insn' and it is simpler to emit and then delete the insn if
|
7695 |
|
|
not valid than to dummy things up. */
|
7696 |
|
|
|
7697 |
|
|
rtx op0, op1, tem, insn;
|
7698 |
|
|
int code;
|
7699 |
|
|
|
7700 |
|
|
op0 = find_replacement (&XEXP (in, 0));
|
7701 |
|
|
op1 = find_replacement (&XEXP (in, 1));
|
7702 |
|
|
|
7703 |
|
|
/* Since constraint checking is strict, commutativity won't be
|
7704 |
|
|
checked, so we need to do that here to avoid spurious failure
|
7705 |
|
|
if the add instruction is two-address and the second operand
|
7706 |
|
|
of the add is the same as the reload reg, which is frequently
|
7707 |
|
|
the case. If the insn would be A = B + A, rearrange it so
|
7708 |
|
|
it will be A = A + B as constrain_operands expects. */
|
7709 |
|
|
|
7710 |
|
|
if (REG_P (XEXP (in, 1))
|
7711 |
|
|
&& REGNO (out) == REGNO (XEXP (in, 1)))
|
7712 |
|
|
tem = op0, op0 = op1, op1 = tem;
|
7713 |
|
|
|
7714 |
|
|
if (op0 != XEXP (in, 0) || op1 != XEXP (in, 1))
|
7715 |
|
|
in = gen_rtx_PLUS (GET_MODE (in), op0, op1);
|
7716 |
|
|
|
7717 |
|
|
insn = emit_insn_if_valid_for_reload (gen_rtx_SET (VOIDmode, out, in));
|
7718 |
|
|
if (insn)
|
7719 |
|
|
return insn;
|
7720 |
|
|
|
7721 |
|
|
/* If that failed, we must use a conservative two-insn sequence.
|
7722 |
|
|
|
7723 |
|
|
Use a move to copy one operand into the reload register. Prefer
|
7724 |
|
|
to reload a constant, MEM or pseudo since the move patterns can
|
7725 |
|
|
handle an arbitrary operand. If OP1 is not a constant, MEM or
|
7726 |
|
|
pseudo and OP1 is not a valid operand for an add instruction, then
|
7727 |
|
|
reload OP1.
|
7728 |
|
|
|
7729 |
|
|
After reloading one of the operands into the reload register, add
|
7730 |
|
|
the reload register to the output register.
|
7731 |
|
|
|
7732 |
|
|
If there is another way to do this for a specific machine, a
|
7733 |
|
|
DEFINE_PEEPHOLE should be specified that recognizes the sequence
|
7734 |
|
|
we emit below. */
|
7735 |
|
|
|
7736 |
|
|
code = (int) add_optab->handlers[(int) GET_MODE (out)].insn_code;
|
7737 |
|
|
|
7738 |
|
|
if (CONSTANT_P (op1) || MEM_P (op1) || GET_CODE (op1) == SUBREG
|
7739 |
|
|
|| (REG_P (op1)
|
7740 |
|
|
&& REGNO (op1) >= FIRST_PSEUDO_REGISTER)
|
7741 |
|
|
|| (code != CODE_FOR_nothing
|
7742 |
|
|
&& ! ((*insn_data[code].operand[2].predicate)
|
7743 |
|
|
(op1, insn_data[code].operand[2].mode))))
|
7744 |
|
|
tem = op0, op0 = op1, op1 = tem;
|
7745 |
|
|
|
7746 |
|
|
gen_reload (out, op0, opnum, type);
|
7747 |
|
|
|
7748 |
|
|
/* If OP0 and OP1 are the same, we can use OUT for OP1.
|
7749 |
|
|
This fixes a problem on the 32K where the stack pointer cannot
|
7750 |
|
|
be used as an operand of an add insn. */
|
7751 |
|
|
|
7752 |
|
|
if (rtx_equal_p (op0, op1))
|
7753 |
|
|
op1 = out;
|
7754 |
|
|
|
7755 |
|
|
insn = emit_insn_if_valid_for_reload (gen_add2_insn (out, op1));
|
7756 |
|
|
if (insn)
|
7757 |
|
|
{
|
7758 |
|
|
/* Add a REG_EQUIV note so that find_equiv_reg can find it. */
|
7759 |
|
|
REG_NOTES (insn)
|
7760 |
|
|
= gen_rtx_EXPR_LIST (REG_EQUIV, in, REG_NOTES (insn));
|
7761 |
|
|
return insn;
|
7762 |
|
|
}
|
7763 |
|
|
|
7764 |
|
|
/* If that failed, copy the address register to the reload register.
|
7765 |
|
|
Then add the constant to the reload register. */
|
7766 |
|
|
|
7767 |
|
|
gen_reload (out, op1, opnum, type);
|
7768 |
|
|
insn = emit_insn (gen_add2_insn (out, op0));
|
7769 |
|
|
REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_EQUIV, in, REG_NOTES (insn));
|
7770 |
|
|
}
|
7771 |
|
|
|
7772 |
|
|
#ifdef SECONDARY_MEMORY_NEEDED
|
7773 |
|
|
/* If we need a memory location to do the move, do it that way. */
|
7774 |
|
|
else if ((REG_P (in) || GET_CODE (in) == SUBREG)
|
7775 |
|
|
&& reg_or_subregno (in) < FIRST_PSEUDO_REGISTER
|
7776 |
|
|
&& (REG_P (out) || GET_CODE (out) == SUBREG)
|
7777 |
|
|
&& reg_or_subregno (out) < FIRST_PSEUDO_REGISTER
|
7778 |
|
|
&& SECONDARY_MEMORY_NEEDED (REGNO_REG_CLASS (reg_or_subregno (in)),
|
7779 |
|
|
REGNO_REG_CLASS (reg_or_subregno (out)),
|
7780 |
|
|
GET_MODE (out)))
|
7781 |
|
|
{
|
7782 |
|
|
/* Get the memory to use and rewrite both registers to its mode. */
|
7783 |
|
|
rtx loc = get_secondary_mem (in, GET_MODE (out), opnum, type);
|
7784 |
|
|
|
7785 |
|
|
if (GET_MODE (loc) != GET_MODE (out))
|
7786 |
|
|
out = gen_rtx_REG (GET_MODE (loc), REGNO (out));
|
7787 |
|
|
|
7788 |
|
|
if (GET_MODE (loc) != GET_MODE (in))
|
7789 |
|
|
in = gen_rtx_REG (GET_MODE (loc), REGNO (in));
|
7790 |
|
|
|
7791 |
|
|
gen_reload (loc, in, opnum, type);
|
7792 |
|
|
gen_reload (out, loc, opnum, type);
|
7793 |
|
|
}
|
7794 |
|
|
#endif
|
7795 |
|
|
else if (REG_P (out) && UNARY_P (in))
|
7796 |
|
|
{
|
7797 |
|
|
rtx insn;
|
7798 |
|
|
rtx op1;
|
7799 |
|
|
rtx out_moded;
|
7800 |
|
|
rtx set;
|
7801 |
|
|
|
7802 |
|
|
op1 = find_replacement (&XEXP (in, 0));
|
7803 |
|
|
if (op1 != XEXP (in, 0))
|
7804 |
|
|
in = gen_rtx_fmt_e (GET_CODE (in), GET_MODE (in), op1);
|
7805 |
|
|
|
7806 |
|
|
/* First, try a plain SET. */
|
7807 |
|
|
set = emit_insn_if_valid_for_reload (gen_rtx_SET (VOIDmode, out, in));
|
7808 |
|
|
if (set)
|
7809 |
|
|
return set;
|
7810 |
|
|
|
7811 |
|
|
/* If that failed, move the inner operand to the reload
|
7812 |
|
|
register, and try the same unop with the inner expression
|
7813 |
|
|
replaced with the reload register. */
|
7814 |
|
|
|
7815 |
|
|
if (GET_MODE (op1) != GET_MODE (out))
|
7816 |
|
|
out_moded = gen_rtx_REG (GET_MODE (op1), REGNO (out));
|
7817 |
|
|
else
|
7818 |
|
|
out_moded = out;
|
7819 |
|
|
|
7820 |
|
|
gen_reload (out_moded, op1, opnum, type);
|
7821 |
|
|
|
7822 |
|
|
insn
|
7823 |
|
|
= gen_rtx_SET (VOIDmode, out,
|
7824 |
|
|
gen_rtx_fmt_e (GET_CODE (in), GET_MODE (in),
|
7825 |
|
|
out_moded));
|
7826 |
|
|
insn = emit_insn_if_valid_for_reload (insn);
|
7827 |
|
|
if (insn)
|
7828 |
|
|
{
|
7829 |
|
|
REG_NOTES (insn)
|
7830 |
|
|
= gen_rtx_EXPR_LIST (REG_EQUIV, in, REG_NOTES (insn));
|
7831 |
|
|
return insn;
|
7832 |
|
|
}
|
7833 |
|
|
|
7834 |
|
|
fatal_insn ("Failure trying to reload:", set);
|
7835 |
|
|
}
|
7836 |
|
|
/* If IN is a simple operand, use gen_move_insn. */
|
7837 |
|
|
else if (OBJECT_P (in) || GET_CODE (in) == SUBREG)
|
7838 |
|
|
{
|
7839 |
|
|
tem = emit_insn (gen_move_insn (out, in));
|
7840 |
|
|
/* IN may contain a LABEL_REF, if so add a REG_LABEL note. */
|
7841 |
|
|
mark_jump_label (in, tem, 0);
|
7842 |
|
|
}
|
7843 |
|
|
|
7844 |
|
|
#ifdef HAVE_reload_load_address
|
7845 |
|
|
else if (HAVE_reload_load_address)
|
7846 |
|
|
emit_insn (gen_reload_load_address (out, in));
|
7847 |
|
|
#endif
|
7848 |
|
|
|
7849 |
|
|
/* Otherwise, just write (set OUT IN) and hope for the best. */
|
7850 |
|
|
else
|
7851 |
|
|
emit_insn (gen_rtx_SET (VOIDmode, out, in));
|
7852 |
|
|
|
7853 |
|
|
/* Return the first insn emitted.
|
7854 |
|
|
We can not just return get_last_insn, because there may have
|
7855 |
|
|
been multiple instructions emitted. Also note that gen_move_insn may
|
7856 |
|
|
emit more than one insn itself, so we can not assume that there is one
|
7857 |
|
|
insn emitted per emit_insn_before call. */
|
7858 |
|
|
|
7859 |
|
|
return last ? NEXT_INSN (last) : get_insns ();
|
7860 |
|
|
}
|
7861 |
|
|
|
7862 |
|
|
/* Delete a previously made output-reload whose result we now believe
|
7863 |
|
|
is not needed. First we double-check.
|
7864 |
|
|
|
7865 |
|
|
INSN is the insn now being processed.
|
7866 |
|
|
LAST_RELOAD_REG is the hard register number for which we want to delete
|
7867 |
|
|
the last output reload.
|
7868 |
|
|
J is the reload-number that originally used REG. The caller has made
|
7869 |
|
|
certain that reload J doesn't use REG any longer for input. */
|
7870 |
|
|
|
7871 |
|
|
static void
|
7872 |
|
|
delete_output_reload (rtx insn, int j, int last_reload_reg)
|
7873 |
|
|
{
|
7874 |
|
|
rtx output_reload_insn = spill_reg_store[last_reload_reg];
|
7875 |
|
|
rtx reg = spill_reg_stored_to[last_reload_reg];
|
7876 |
|
|
int k;
|
7877 |
|
|
int n_occurrences;
|
7878 |
|
|
int n_inherited = 0;
|
7879 |
|
|
rtx i1;
|
7880 |
|
|
rtx substed;
|
7881 |
|
|
|
7882 |
|
|
/* It is possible that this reload has been only used to set another reload
|
7883 |
|
|
we eliminated earlier and thus deleted this instruction too. */
|
7884 |
|
|
if (INSN_DELETED_P (output_reload_insn))
|
7885 |
|
|
return;
|
7886 |
|
|
|
7887 |
|
|
/* Get the raw pseudo-register referred to. */
|
7888 |
|
|
|
7889 |
|
|
while (GET_CODE (reg) == SUBREG)
|
7890 |
|
|
reg = SUBREG_REG (reg);
|
7891 |
|
|
substed = reg_equiv_memory_loc[REGNO (reg)];
|
7892 |
|
|
|
7893 |
|
|
/* This is unsafe if the operand occurs more often in the current
|
7894 |
|
|
insn than it is inherited. */
|
7895 |
|
|
for (k = n_reloads - 1; k >= 0; k--)
|
7896 |
|
|
{
|
7897 |
|
|
rtx reg2 = rld[k].in;
|
7898 |
|
|
if (! reg2)
|
7899 |
|
|
continue;
|
7900 |
|
|
if (MEM_P (reg2) || reload_override_in[k])
|
7901 |
|
|
reg2 = rld[k].in_reg;
|
7902 |
|
|
#ifdef AUTO_INC_DEC
|
7903 |
|
|
if (rld[k].out && ! rld[k].out_reg)
|
7904 |
|
|
reg2 = XEXP (rld[k].in_reg, 0);
|
7905 |
|
|
#endif
|
7906 |
|
|
while (GET_CODE (reg2) == SUBREG)
|
7907 |
|
|
reg2 = SUBREG_REG (reg2);
|
7908 |
|
|
if (rtx_equal_p (reg2, reg))
|
7909 |
|
|
{
|
7910 |
|
|
if (reload_inherited[k] || reload_override_in[k] || k == j)
|
7911 |
|
|
{
|
7912 |
|
|
n_inherited++;
|
7913 |
|
|
reg2 = rld[k].out_reg;
|
7914 |
|
|
if (! reg2)
|
7915 |
|
|
continue;
|
7916 |
|
|
while (GET_CODE (reg2) == SUBREG)
|
7917 |
|
|
reg2 = XEXP (reg2, 0);
|
7918 |
|
|
if (rtx_equal_p (reg2, reg))
|
7919 |
|
|
n_inherited++;
|
7920 |
|
|
}
|
7921 |
|
|
else
|
7922 |
|
|
return;
|
7923 |
|
|
}
|
7924 |
|
|
}
|
7925 |
|
|
n_occurrences = count_occurrences (PATTERN (insn), reg, 0);
|
7926 |
|
|
if (substed)
|
7927 |
|
|
n_occurrences += count_occurrences (PATTERN (insn),
|
7928 |
|
|
eliminate_regs (substed, 0,
|
7929 |
|
|
NULL_RTX), 0);
|
7930 |
|
|
for (i1 = reg_equiv_alt_mem_list [REGNO (reg)]; i1; i1 = XEXP (i1, 1))
|
7931 |
|
|
{
|
7932 |
|
|
gcc_assert (!rtx_equal_p (XEXP (i1, 0), substed));
|
7933 |
|
|
n_occurrences += count_occurrences (PATTERN (insn), XEXP (i1, 0), 0);
|
7934 |
|
|
}
|
7935 |
|
|
if (n_occurrences > n_inherited)
|
7936 |
|
|
return;
|
7937 |
|
|
|
7938 |
|
|
/* If the pseudo-reg we are reloading is no longer referenced
|
7939 |
|
|
anywhere between the store into it and here,
|
7940 |
|
|
and we're within the same basic block, then the value can only
|
7941 |
|
|
pass through the reload reg and end up here.
|
7942 |
|
|
Otherwise, give up--return. */
|
7943 |
|
|
for (i1 = NEXT_INSN (output_reload_insn);
|
7944 |
|
|
i1 != insn; i1 = NEXT_INSN (i1))
|
7945 |
|
|
{
|
7946 |
|
|
if (NOTE_INSN_BASIC_BLOCK_P (i1))
|
7947 |
|
|
return;
|
7948 |
|
|
if ((NONJUMP_INSN_P (i1) || CALL_P (i1))
|
7949 |
|
|
&& reg_mentioned_p (reg, PATTERN (i1)))
|
7950 |
|
|
{
|
7951 |
|
|
/* If this is USE in front of INSN, we only have to check that
|
7952 |
|
|
there are no more references than accounted for by inheritance. */
|
7953 |
|
|
while (NONJUMP_INSN_P (i1) && GET_CODE (PATTERN (i1)) == USE)
|
7954 |
|
|
{
|
7955 |
|
|
n_occurrences += rtx_equal_p (reg, XEXP (PATTERN (i1), 0)) != 0;
|
7956 |
|
|
i1 = NEXT_INSN (i1);
|
7957 |
|
|
}
|
7958 |
|
|
if (n_occurrences <= n_inherited && i1 == insn)
|
7959 |
|
|
break;
|
7960 |
|
|
return;
|
7961 |
|
|
}
|
7962 |
|
|
}
|
7963 |
|
|
|
7964 |
|
|
/* We will be deleting the insn. Remove the spill reg information. */
|
7965 |
|
|
for (k = hard_regno_nregs[last_reload_reg][GET_MODE (reg)]; k-- > 0; )
|
7966 |
|
|
{
|
7967 |
|
|
spill_reg_store[last_reload_reg + k] = 0;
|
7968 |
|
|
spill_reg_stored_to[last_reload_reg + k] = 0;
|
7969 |
|
|
}
|
7970 |
|
|
|
7971 |
|
|
/* The caller has already checked that REG dies or is set in INSN.
|
7972 |
|
|
It has also checked that we are optimizing, and thus some
|
7973 |
|
|
inaccuracies in the debugging information are acceptable.
|
7974 |
|
|
So we could just delete output_reload_insn. But in some cases
|
7975 |
|
|
we can improve the debugging information without sacrificing
|
7976 |
|
|
optimization - maybe even improving the code: See if the pseudo
|
7977 |
|
|
reg has been completely replaced with reload regs. If so, delete
|
7978 |
|
|
the store insn and forget we had a stack slot for the pseudo. */
|
7979 |
|
|
if (rld[j].out != rld[j].in
|
7980 |
|
|
&& REG_N_DEATHS (REGNO (reg)) == 1
|
7981 |
|
|
&& REG_N_SETS (REGNO (reg)) == 1
|
7982 |
|
|
&& REG_BASIC_BLOCK (REGNO (reg)) >= 0
|
7983 |
|
|
&& find_regno_note (insn, REG_DEAD, REGNO (reg)))
|
7984 |
|
|
{
|
7985 |
|
|
rtx i2;
|
7986 |
|
|
|
7987 |
|
|
/* We know that it was used only between here and the beginning of
|
7988 |
|
|
the current basic block. (We also know that the last use before
|
7989 |
|
|
INSN was the output reload we are thinking of deleting, but never
|
7990 |
|
|
mind that.) Search that range; see if any ref remains. */
|
7991 |
|
|
for (i2 = PREV_INSN (insn); i2; i2 = PREV_INSN (i2))
|
7992 |
|
|
{
|
7993 |
|
|
rtx set = single_set (i2);
|
7994 |
|
|
|
7995 |
|
|
/* Uses which just store in the pseudo don't count,
|
7996 |
|
|
since if they are the only uses, they are dead. */
|
7997 |
|
|
if (set != 0 && SET_DEST (set) == reg)
|
7998 |
|
|
continue;
|
7999 |
|
|
if (LABEL_P (i2)
|
8000 |
|
|
|| JUMP_P (i2))
|
8001 |
|
|
break;
|
8002 |
|
|
if ((NONJUMP_INSN_P (i2) || CALL_P (i2))
|
8003 |
|
|
&& reg_mentioned_p (reg, PATTERN (i2)))
|
8004 |
|
|
{
|
8005 |
|
|
/* Some other ref remains; just delete the output reload we
|
8006 |
|
|
know to be dead. */
|
8007 |
|
|
delete_address_reloads (output_reload_insn, insn);
|
8008 |
|
|
delete_insn (output_reload_insn);
|
8009 |
|
|
return;
|
8010 |
|
|
}
|
8011 |
|
|
}
|
8012 |
|
|
|
8013 |
|
|
/* Delete the now-dead stores into this pseudo. Note that this
|
8014 |
|
|
loop also takes care of deleting output_reload_insn. */
|
8015 |
|
|
for (i2 = PREV_INSN (insn); i2; i2 = PREV_INSN (i2))
|
8016 |
|
|
{
|
8017 |
|
|
rtx set = single_set (i2);
|
8018 |
|
|
|
8019 |
|
|
if (set != 0 && SET_DEST (set) == reg)
|
8020 |
|
|
{
|
8021 |
|
|
delete_address_reloads (i2, insn);
|
8022 |
|
|
delete_insn (i2);
|
8023 |
|
|
}
|
8024 |
|
|
if (LABEL_P (i2)
|
8025 |
|
|
|| JUMP_P (i2))
|
8026 |
|
|
break;
|
8027 |
|
|
}
|
8028 |
|
|
|
8029 |
|
|
/* For the debugging info, say the pseudo lives in this reload reg. */
|
8030 |
|
|
reg_renumber[REGNO (reg)] = REGNO (rld[j].reg_rtx);
|
8031 |
|
|
alter_reg (REGNO (reg), -1);
|
8032 |
|
|
}
|
8033 |
|
|
else
|
8034 |
|
|
{
|
8035 |
|
|
delete_address_reloads (output_reload_insn, insn);
|
8036 |
|
|
delete_insn (output_reload_insn);
|
8037 |
|
|
}
|
8038 |
|
|
}
|
8039 |
|
|
|
8040 |
|
|
/* We are going to delete DEAD_INSN. Recursively delete loads of
|
8041 |
|
|
reload registers used in DEAD_INSN that are not used till CURRENT_INSN.
|
8042 |
|
|
CURRENT_INSN is being reloaded, so we have to check its reloads too. */
|
8043 |
|
|
static void
|
8044 |
|
|
delete_address_reloads (rtx dead_insn, rtx current_insn)
|
8045 |
|
|
{
|
8046 |
|
|
rtx set = single_set (dead_insn);
|
8047 |
|
|
rtx set2, dst, prev, next;
|
8048 |
|
|
if (set)
|
8049 |
|
|
{
|
8050 |
|
|
rtx dst = SET_DEST (set);
|
8051 |
|
|
if (MEM_P (dst))
|
8052 |
|
|
delete_address_reloads_1 (dead_insn, XEXP (dst, 0), current_insn);
|
8053 |
|
|
}
|
8054 |
|
|
/* If we deleted the store from a reloaded post_{in,de}c expression,
|
8055 |
|
|
we can delete the matching adds. */
|
8056 |
|
|
prev = PREV_INSN (dead_insn);
|
8057 |
|
|
next = NEXT_INSN (dead_insn);
|
8058 |
|
|
if (! prev || ! next)
|
8059 |
|
|
return;
|
8060 |
|
|
set = single_set (next);
|
8061 |
|
|
set2 = single_set (prev);
|
8062 |
|
|
if (! set || ! set2
|
8063 |
|
|
|| GET_CODE (SET_SRC (set)) != PLUS || GET_CODE (SET_SRC (set2)) != PLUS
|
8064 |
|
|
|| GET_CODE (XEXP (SET_SRC (set), 1)) != CONST_INT
|
8065 |
|
|
|| GET_CODE (XEXP (SET_SRC (set2), 1)) != CONST_INT)
|
8066 |
|
|
return;
|
8067 |
|
|
dst = SET_DEST (set);
|
8068 |
|
|
if (! rtx_equal_p (dst, SET_DEST (set2))
|
8069 |
|
|
|| ! rtx_equal_p (dst, XEXP (SET_SRC (set), 0))
|
8070 |
|
|
|| ! rtx_equal_p (dst, XEXP (SET_SRC (set2), 0))
|
8071 |
|
|
|| (INTVAL (XEXP (SET_SRC (set), 1))
|
8072 |
|
|
!= -INTVAL (XEXP (SET_SRC (set2), 1))))
|
8073 |
|
|
return;
|
8074 |
|
|
delete_related_insns (prev);
|
8075 |
|
|
delete_related_insns (next);
|
8076 |
|
|
}
|
8077 |
|
|
|
8078 |
|
|
/* Subfunction of delete_address_reloads: process registers found in X. */
|
8079 |
|
|
static void
|
8080 |
|
|
delete_address_reloads_1 (rtx dead_insn, rtx x, rtx current_insn)
|
8081 |
|
|
{
|
8082 |
|
|
rtx prev, set, dst, i2;
|
8083 |
|
|
int i, j;
|
8084 |
|
|
enum rtx_code code = GET_CODE (x);
|
8085 |
|
|
|
8086 |
|
|
if (code != REG)
|
8087 |
|
|
{
|
8088 |
|
|
const char *fmt = GET_RTX_FORMAT (code);
|
8089 |
|
|
for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
|
8090 |
|
|
{
|
8091 |
|
|
if (fmt[i] == 'e')
|
8092 |
|
|
delete_address_reloads_1 (dead_insn, XEXP (x, i), current_insn);
|
8093 |
|
|
else if (fmt[i] == 'E')
|
8094 |
|
|
{
|
8095 |
|
|
for (j = XVECLEN (x, i) - 1; j >= 0; j--)
|
8096 |
|
|
delete_address_reloads_1 (dead_insn, XVECEXP (x, i, j),
|
8097 |
|
|
current_insn);
|
8098 |
|
|
}
|
8099 |
|
|
}
|
8100 |
|
|
return;
|
8101 |
|
|
}
|
8102 |
|
|
|
8103 |
|
|
if (spill_reg_order[REGNO (x)] < 0)
|
8104 |
|
|
return;
|
8105 |
|
|
|
8106 |
|
|
/* Scan backwards for the insn that sets x. This might be a way back due
|
8107 |
|
|
to inheritance. */
|
8108 |
|
|
for (prev = PREV_INSN (dead_insn); prev; prev = PREV_INSN (prev))
|
8109 |
|
|
{
|
8110 |
|
|
code = GET_CODE (prev);
|
8111 |
|
|
if (code == CODE_LABEL || code == JUMP_INSN)
|
8112 |
|
|
return;
|
8113 |
|
|
if (!INSN_P (prev))
|
8114 |
|
|
continue;
|
8115 |
|
|
if (reg_set_p (x, PATTERN (prev)))
|
8116 |
|
|
break;
|
8117 |
|
|
if (reg_referenced_p (x, PATTERN (prev)))
|
8118 |
|
|
return;
|
8119 |
|
|
}
|
8120 |
|
|
if (! prev || INSN_UID (prev) < reload_first_uid)
|
8121 |
|
|
return;
|
8122 |
|
|
/* Check that PREV only sets the reload register. */
|
8123 |
|
|
set = single_set (prev);
|
8124 |
|
|
if (! set)
|
8125 |
|
|
return;
|
8126 |
|
|
dst = SET_DEST (set);
|
8127 |
|
|
if (!REG_P (dst)
|
8128 |
|
|
|| ! rtx_equal_p (dst, x))
|
8129 |
|
|
return;
|
8130 |
|
|
if (! reg_set_p (dst, PATTERN (dead_insn)))
|
8131 |
|
|
{
|
8132 |
|
|
/* Check if DST was used in a later insn -
|
8133 |
|
|
it might have been inherited. */
|
8134 |
|
|
for (i2 = NEXT_INSN (dead_insn); i2; i2 = NEXT_INSN (i2))
|
8135 |
|
|
{
|
8136 |
|
|
if (LABEL_P (i2))
|
8137 |
|
|
break;
|
8138 |
|
|
if (! INSN_P (i2))
|
8139 |
|
|
continue;
|
8140 |
|
|
if (reg_referenced_p (dst, PATTERN (i2)))
|
8141 |
|
|
{
|
8142 |
|
|
/* If there is a reference to the register in the current insn,
|
8143 |
|
|
it might be loaded in a non-inherited reload. If no other
|
8144 |
|
|
reload uses it, that means the register is set before
|
8145 |
|
|
referenced. */
|
8146 |
|
|
if (i2 == current_insn)
|
8147 |
|
|
{
|
8148 |
|
|
for (j = n_reloads - 1; j >= 0; j--)
|
8149 |
|
|
if ((rld[j].reg_rtx == dst && reload_inherited[j])
|
8150 |
|
|
|| reload_override_in[j] == dst)
|
8151 |
|
|
return;
|
8152 |
|
|
for (j = n_reloads - 1; j >= 0; j--)
|
8153 |
|
|
if (rld[j].in && rld[j].reg_rtx == dst)
|
8154 |
|
|
break;
|
8155 |
|
|
if (j >= 0)
|
8156 |
|
|
break;
|
8157 |
|
|
}
|
8158 |
|
|
return;
|
8159 |
|
|
}
|
8160 |
|
|
if (JUMP_P (i2))
|
8161 |
|
|
break;
|
8162 |
|
|
/* If DST is still live at CURRENT_INSN, check if it is used for
|
8163 |
|
|
any reload. Note that even if CURRENT_INSN sets DST, we still
|
8164 |
|
|
have to check the reloads. */
|
8165 |
|
|
if (i2 == current_insn)
|
8166 |
|
|
{
|
8167 |
|
|
for (j = n_reloads - 1; j >= 0; j--)
|
8168 |
|
|
if ((rld[j].reg_rtx == dst && reload_inherited[j])
|
8169 |
|
|
|| reload_override_in[j] == dst)
|
8170 |
|
|
return;
|
8171 |
|
|
/* ??? We can't finish the loop here, because dst might be
|
8172 |
|
|
allocated to a pseudo in this block if no reload in this
|
8173 |
|
|
block needs any of the classes containing DST - see
|
8174 |
|
|
spill_hard_reg. There is no easy way to tell this, so we
|
8175 |
|
|
have to scan till the end of the basic block. */
|
8176 |
|
|
}
|
8177 |
|
|
if (reg_set_p (dst, PATTERN (i2)))
|
8178 |
|
|
break;
|
8179 |
|
|
}
|
8180 |
|
|
}
|
8181 |
|
|
delete_address_reloads_1 (prev, SET_SRC (set), current_insn);
|
8182 |
|
|
reg_reloaded_contents[REGNO (dst)] = -1;
|
8183 |
|
|
delete_insn (prev);
|
8184 |
|
|
}
|
8185 |
|
|
|
8186 |
|
|
/* Output reload-insns to reload VALUE into RELOADREG.
|
8187 |
|
|
VALUE is an autoincrement or autodecrement RTX whose operand
|
8188 |
|
|
is a register or memory location;
|
8189 |
|
|
so reloading involves incrementing that location.
|
8190 |
|
|
IN is either identical to VALUE, or some cheaper place to reload from.
|
8191 |
|
|
|
8192 |
|
|
INC_AMOUNT is the number to increment or decrement by (always positive).
|
8193 |
|
|
This cannot be deduced from VALUE.
|
8194 |
|
|
|
8195 |
|
|
Return the instruction that stores into RELOADREG. */
|
8196 |
|
|
|
8197 |
|
|
static rtx
|
8198 |
|
|
inc_for_reload (rtx reloadreg, rtx in, rtx value, int inc_amount)
|
8199 |
|
|
{
|
8200 |
|
|
/* REG or MEM to be copied and incremented. */
|
8201 |
|
|
rtx incloc = find_replacement (&XEXP (value, 0));
|
8202 |
|
|
/* Nonzero if increment after copying. */
|
8203 |
|
|
int post = (GET_CODE (value) == POST_DEC || GET_CODE (value) == POST_INC
|
8204 |
|
|
|| GET_CODE (value) == POST_MODIFY);
|
8205 |
|
|
rtx last;
|
8206 |
|
|
rtx inc;
|
8207 |
|
|
rtx add_insn;
|
8208 |
|
|
int code;
|
8209 |
|
|
rtx store;
|
8210 |
|
|
rtx real_in = in == value ? incloc : in;
|
8211 |
|
|
|
8212 |
|
|
/* No hard register is equivalent to this register after
|
8213 |
|
|
inc/dec operation. If REG_LAST_RELOAD_REG were nonzero,
|
8214 |
|
|
we could inc/dec that register as well (maybe even using it for
|
8215 |
|
|
the source), but I'm not sure it's worth worrying about. */
|
8216 |
|
|
if (REG_P (incloc))
|
8217 |
|
|
reg_last_reload_reg[REGNO (incloc)] = 0;
|
8218 |
|
|
|
8219 |
|
|
if (GET_CODE (value) == PRE_MODIFY || GET_CODE (value) == POST_MODIFY)
|
8220 |
|
|
{
|
8221 |
|
|
gcc_assert (GET_CODE (XEXP (value, 1)) == PLUS);
|
8222 |
|
|
inc = find_replacement (&XEXP (XEXP (value, 1), 1));
|
8223 |
|
|
}
|
8224 |
|
|
else
|
8225 |
|
|
{
|
8226 |
|
|
if (GET_CODE (value) == PRE_DEC || GET_CODE (value) == POST_DEC)
|
8227 |
|
|
inc_amount = -inc_amount;
|
8228 |
|
|
|
8229 |
|
|
inc = GEN_INT (inc_amount);
|
8230 |
|
|
}
|
8231 |
|
|
|
8232 |
|
|
/* If this is post-increment, first copy the location to the reload reg. */
|
8233 |
|
|
if (post && real_in != reloadreg)
|
8234 |
|
|
emit_insn (gen_move_insn (reloadreg, real_in));
|
8235 |
|
|
|
8236 |
|
|
if (in == value)
|
8237 |
|
|
{
|
8238 |
|
|
/* See if we can directly increment INCLOC. Use a method similar to
|
8239 |
|
|
that in gen_reload. */
|
8240 |
|
|
|
8241 |
|
|
last = get_last_insn ();
|
8242 |
|
|
add_insn = emit_insn (gen_rtx_SET (VOIDmode, incloc,
|
8243 |
|
|
gen_rtx_PLUS (GET_MODE (incloc),
|
8244 |
|
|
incloc, inc)));
|
8245 |
|
|
|
8246 |
|
|
code = recog_memoized (add_insn);
|
8247 |
|
|
if (code >= 0)
|
8248 |
|
|
{
|
8249 |
|
|
extract_insn (add_insn);
|
8250 |
|
|
if (constrain_operands (1))
|
8251 |
|
|
{
|
8252 |
|
|
/* If this is a pre-increment and we have incremented the value
|
8253 |
|
|
where it lives, copy the incremented value to RELOADREG to
|
8254 |
|
|
be used as an address. */
|
8255 |
|
|
|
8256 |
|
|
if (! post)
|
8257 |
|
|
emit_insn (gen_move_insn (reloadreg, incloc));
|
8258 |
|
|
|
8259 |
|
|
return add_insn;
|
8260 |
|
|
}
|
8261 |
|
|
}
|
8262 |
|
|
delete_insns_since (last);
|
8263 |
|
|
}
|
8264 |
|
|
|
8265 |
|
|
/* If couldn't do the increment directly, must increment in RELOADREG.
|
8266 |
|
|
The way we do this depends on whether this is pre- or post-increment.
|
8267 |
|
|
For pre-increment, copy INCLOC to the reload register, increment it
|
8268 |
|
|
there, then save back. */
|
8269 |
|
|
|
8270 |
|
|
if (! post)
|
8271 |
|
|
{
|
8272 |
|
|
if (in != reloadreg)
|
8273 |
|
|
emit_insn (gen_move_insn (reloadreg, real_in));
|
8274 |
|
|
emit_insn (gen_add2_insn (reloadreg, inc));
|
8275 |
|
|
store = emit_insn (gen_move_insn (incloc, reloadreg));
|
8276 |
|
|
}
|
8277 |
|
|
else
|
8278 |
|
|
{
|
8279 |
|
|
/* Postincrement.
|
8280 |
|
|
Because this might be a jump insn or a compare, and because RELOADREG
|
8281 |
|
|
may not be available after the insn in an input reload, we must do
|
8282 |
|
|
the incrementation before the insn being reloaded for.
|
8283 |
|
|
|
8284 |
|
|
We have already copied IN to RELOADREG. Increment the copy in
|
8285 |
|
|
RELOADREG, save that back, then decrement RELOADREG so it has
|
8286 |
|
|
the original value. */
|
8287 |
|
|
|
8288 |
|
|
emit_insn (gen_add2_insn (reloadreg, inc));
|
8289 |
|
|
store = emit_insn (gen_move_insn (incloc, reloadreg));
|
8290 |
|
|
if (GET_CODE (inc) == CONST_INT)
|
8291 |
|
|
emit_insn (gen_add2_insn (reloadreg, GEN_INT (-INTVAL(inc))));
|
8292 |
|
|
else
|
8293 |
|
|
emit_insn (gen_sub2_insn (reloadreg, inc));
|
8294 |
|
|
}
|
8295 |
|
|
|
8296 |
|
|
return store;
|
8297 |
|
|
}
|
8298 |
|
|
|
8299 |
|
|
#ifdef AUTO_INC_DEC
|
8300 |
|
|
static void
|
8301 |
|
|
add_auto_inc_notes (rtx insn, rtx x)
|
8302 |
|
|
{
|
8303 |
|
|
enum rtx_code code = GET_CODE (x);
|
8304 |
|
|
const char *fmt;
|
8305 |
|
|
int i, j;
|
8306 |
|
|
|
8307 |
|
|
if (code == MEM && auto_inc_p (XEXP (x, 0)))
|
8308 |
|
|
{
|
8309 |
|
|
REG_NOTES (insn)
|
8310 |
|
|
= gen_rtx_EXPR_LIST (REG_INC, XEXP (XEXP (x, 0), 0), REG_NOTES (insn));
|
8311 |
|
|
return;
|
8312 |
|
|
}
|
8313 |
|
|
|
8314 |
|
|
/* Scan all the operand sub-expressions. */
|
8315 |
|
|
fmt = GET_RTX_FORMAT (code);
|
8316 |
|
|
for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
|
8317 |
|
|
{
|
8318 |
|
|
if (fmt[i] == 'e')
|
8319 |
|
|
add_auto_inc_notes (insn, XEXP (x, i));
|
8320 |
|
|
else if (fmt[i] == 'E')
|
8321 |
|
|
for (j = XVECLEN (x, i) - 1; j >= 0; j--)
|
8322 |
|
|
add_auto_inc_notes (insn, XVECEXP (x, i, j));
|
8323 |
|
|
}
|
8324 |
|
|
}
|
8325 |
|
|
#endif
|
8326 |
|
|
|
8327 |
|
|
/* Copy EH notes from an insn to its reloads. */
|
8328 |
|
|
static void
|
8329 |
|
|
copy_eh_notes (rtx insn, rtx x)
|
8330 |
|
|
{
|
8331 |
|
|
rtx eh_note = find_reg_note (insn, REG_EH_REGION, NULL_RTX);
|
8332 |
|
|
if (eh_note)
|
8333 |
|
|
{
|
8334 |
|
|
for (; x != 0; x = NEXT_INSN (x))
|
8335 |
|
|
{
|
8336 |
|
|
if (may_trap_p (PATTERN (x)))
|
8337 |
|
|
REG_NOTES (x)
|
8338 |
|
|
= gen_rtx_EXPR_LIST (REG_EH_REGION, XEXP (eh_note, 0),
|
8339 |
|
|
REG_NOTES (x));
|
8340 |
|
|
}
|
8341 |
|
|
}
|
8342 |
|
|
}
|
8343 |
|
|
|
8344 |
|
|
/* This is used by reload pass, that does emit some instructions after
|
8345 |
|
|
abnormal calls moving basic block end, but in fact it wants to emit
|
8346 |
|
|
them on the edge. Looks for abnormal call edges, find backward the
|
8347 |
|
|
proper call and fix the damage.
|
8348 |
|
|
|
8349 |
|
|
Similar handle instructions throwing exceptions internally. */
|
8350 |
|
|
void
|
8351 |
|
|
fixup_abnormal_edges (void)
|
8352 |
|
|
{
|
8353 |
|
|
bool inserted = false;
|
8354 |
|
|
basic_block bb;
|
8355 |
|
|
|
8356 |
|
|
FOR_EACH_BB (bb)
|
8357 |
|
|
{
|
8358 |
|
|
edge e;
|
8359 |
|
|
edge_iterator ei;
|
8360 |
|
|
|
8361 |
|
|
/* Look for cases we are interested in - calls or instructions causing
|
8362 |
|
|
exceptions. */
|
8363 |
|
|
FOR_EACH_EDGE (e, ei, bb->succs)
|
8364 |
|
|
{
|
8365 |
|
|
if (e->flags & EDGE_ABNORMAL_CALL)
|
8366 |
|
|
break;
|
8367 |
|
|
if ((e->flags & (EDGE_ABNORMAL | EDGE_EH))
|
8368 |
|
|
== (EDGE_ABNORMAL | EDGE_EH))
|
8369 |
|
|
break;
|
8370 |
|
|
}
|
8371 |
|
|
if (e && !CALL_P (BB_END (bb))
|
8372 |
|
|
&& !can_throw_internal (BB_END (bb)))
|
8373 |
|
|
{
|
8374 |
|
|
rtx insn;
|
8375 |
|
|
|
8376 |
|
|
/* Get past the new insns generated. Allow notes, as the insns
|
8377 |
|
|
may be already deleted. */
|
8378 |
|
|
insn = BB_END (bb);
|
8379 |
|
|
while ((NONJUMP_INSN_P (insn) || NOTE_P (insn))
|
8380 |
|
|
&& !can_throw_internal (insn)
|
8381 |
|
|
&& insn != BB_HEAD (bb))
|
8382 |
|
|
insn = PREV_INSN (insn);
|
8383 |
|
|
|
8384 |
|
|
if (CALL_P (insn) || can_throw_internal (insn))
|
8385 |
|
|
{
|
8386 |
|
|
rtx stop, next;
|
8387 |
|
|
|
8388 |
|
|
stop = NEXT_INSN (BB_END (bb));
|
8389 |
|
|
BB_END (bb) = insn;
|
8390 |
|
|
insn = NEXT_INSN (insn);
|
8391 |
|
|
|
8392 |
|
|
FOR_EACH_EDGE (e, ei, bb->succs)
|
8393 |
|
|
if (e->flags & EDGE_FALLTHRU)
|
8394 |
|
|
break;
|
8395 |
|
|
|
8396 |
|
|
while (insn && insn != stop)
|
8397 |
|
|
{
|
8398 |
|
|
next = NEXT_INSN (insn);
|
8399 |
|
|
if (INSN_P (insn))
|
8400 |
|
|
{
|
8401 |
|
|
delete_insn (insn);
|
8402 |
|
|
|
8403 |
|
|
/* Sometimes there's still the return value USE.
|
8404 |
|
|
If it's placed after a trapping call (i.e. that
|
8405 |
|
|
call is the last insn anyway), we have no fallthru
|
8406 |
|
|
edge. Simply delete this use and don't try to insert
|
8407 |
|
|
on the non-existent edge. */
|
8408 |
|
|
if (GET_CODE (PATTERN (insn)) != USE)
|
8409 |
|
|
{
|
8410 |
|
|
/* We're not deleting it, we're moving it. */
|
8411 |
|
|
INSN_DELETED_P (insn) = 0;
|
8412 |
|
|
PREV_INSN (insn) = NULL_RTX;
|
8413 |
|
|
NEXT_INSN (insn) = NULL_RTX;
|
8414 |
|
|
|
8415 |
|
|
insert_insn_on_edge (insn, e);
|
8416 |
|
|
inserted = true;
|
8417 |
|
|
}
|
8418 |
|
|
}
|
8419 |
|
|
insn = next;
|
8420 |
|
|
}
|
8421 |
|
|
}
|
8422 |
|
|
|
8423 |
|
|
/* It may be that we don't find any such trapping insn. In this
|
8424 |
|
|
case we discovered quite late that the insn that had been
|
8425 |
|
|
marked as can_throw_internal in fact couldn't trap at all.
|
8426 |
|
|
So we should in fact delete the EH edges out of the block. */
|
8427 |
|
|
else
|
8428 |
|
|
purge_dead_edges (bb);
|
8429 |
|
|
}
|
8430 |
|
|
}
|
8431 |
|
|
|
8432 |
|
|
/* We've possibly turned single trapping insn into multiple ones. */
|
8433 |
|
|
if (flag_non_call_exceptions)
|
8434 |
|
|
{
|
8435 |
|
|
sbitmap blocks;
|
8436 |
|
|
blocks = sbitmap_alloc (last_basic_block);
|
8437 |
|
|
sbitmap_ones (blocks);
|
8438 |
|
|
find_many_sub_basic_blocks (blocks);
|
8439 |
|
|
}
|
8440 |
|
|
|
8441 |
|
|
if (inserted)
|
8442 |
|
|
commit_edge_insertions ();
|
8443 |
|
|
|
8444 |
|
|
#ifdef ENABLE_CHECKING
|
8445 |
|
|
/* Verify that we didn't turn one trapping insn into many, and that
|
8446 |
|
|
we found and corrected all of the problems wrt fixups on the
|
8447 |
|
|
fallthru edge. */
|
8448 |
|
|
verify_flow_info ();
|
8449 |
|
|
#endif
|
8450 |
|
|
}
|