1 |
38 |
julius |
/* Definitions for computing resource usage of specific insns.
|
2 |
|
|
Copyright (C) 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2007
|
3 |
|
|
Free Software Foundation, Inc.
|
4 |
|
|
|
5 |
|
|
This file is part of GCC.
|
6 |
|
|
|
7 |
|
|
GCC is free software; you can redistribute it and/or modify it under
|
8 |
|
|
the terms of the GNU General Public License as published by the Free
|
9 |
|
|
Software Foundation; either version 3, or (at your option) any later
|
10 |
|
|
version.
|
11 |
|
|
|
12 |
|
|
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
|
13 |
|
|
WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
14 |
|
|
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
15 |
|
|
for more details.
|
16 |
|
|
|
17 |
|
|
You should have received a copy of the GNU General Public License
|
18 |
|
|
along with GCC; see the file COPYING3. If not see
|
19 |
|
|
<http://www.gnu.org/licenses/>. */
|
20 |
|
|
|
21 |
|
|
#include "config.h"
|
22 |
|
|
#include "system.h"
|
23 |
|
|
#include "coretypes.h"
|
24 |
|
|
#include "tm.h"
|
25 |
|
|
#include "toplev.h"
|
26 |
|
|
#include "rtl.h"
|
27 |
|
|
#include "tm_p.h"
|
28 |
|
|
#include "hard-reg-set.h"
|
29 |
|
|
#include "function.h"
|
30 |
|
|
#include "regs.h"
|
31 |
|
|
#include "flags.h"
|
32 |
|
|
#include "output.h"
|
33 |
|
|
#include "resource.h"
|
34 |
|
|
#include "except.h"
|
35 |
|
|
#include "insn-attr.h"
|
36 |
|
|
#include "params.h"
|
37 |
|
|
|
38 |
|
|
/* This structure is used to record liveness information at the targets or
|
39 |
|
|
fallthrough insns of branches. We will most likely need the information
|
40 |
|
|
at targets again, so save them in a hash table rather than recomputing them
|
41 |
|
|
each time. */
|
42 |
|
|
|
43 |
|
|
struct target_info
|
44 |
|
|
{
|
45 |
|
|
int uid; /* INSN_UID of target. */
|
46 |
|
|
struct target_info *next; /* Next info for same hash bucket. */
|
47 |
|
|
HARD_REG_SET live_regs; /* Registers live at target. */
|
48 |
|
|
int block; /* Basic block number containing target. */
|
49 |
|
|
int bb_tick; /* Generation count of basic block info. */
|
50 |
|
|
};
|
51 |
|
|
|
52 |
|
|
#define TARGET_HASH_PRIME 257
|
53 |
|
|
|
54 |
|
|
/* Indicates what resources are required at the beginning of the epilogue. */
|
55 |
|
|
static struct resources start_of_epilogue_needs;
|
56 |
|
|
|
57 |
|
|
/* Indicates what resources are required at function end. */
|
58 |
|
|
static struct resources end_of_function_needs;
|
59 |
|
|
|
60 |
|
|
/* Define the hash table itself. */
|
61 |
|
|
static struct target_info **target_hash_table = NULL;
|
62 |
|
|
|
63 |
|
|
/* For each basic block, we maintain a generation number of its basic
|
64 |
|
|
block info, which is updated each time we move an insn from the
|
65 |
|
|
target of a jump. This is the generation number indexed by block
|
66 |
|
|
number. */
|
67 |
|
|
|
68 |
|
|
static int *bb_ticks;
|
69 |
|
|
|
70 |
|
|
/* Marks registers possibly live at the current place being scanned by
|
71 |
|
|
mark_target_live_regs. Also used by update_live_status. */
|
72 |
|
|
|
73 |
|
|
static HARD_REG_SET current_live_regs;
|
74 |
|
|
|
75 |
|
|
/* Marks registers for which we have seen a REG_DEAD note but no assignment.
|
76 |
|
|
Also only used by the next two functions. */
|
77 |
|
|
|
78 |
|
|
static HARD_REG_SET pending_dead_regs;
|
79 |
|
|
|
80 |
|
|
static void update_live_status (rtx, rtx, void *);
|
81 |
|
|
static int find_basic_block (rtx, int);
|
82 |
|
|
static rtx next_insn_no_annul (rtx);
|
83 |
|
|
static rtx find_dead_or_set_registers (rtx, struct resources*,
|
84 |
|
|
rtx*, int, struct resources,
|
85 |
|
|
struct resources);
|
86 |
|
|
|
87 |
|
|
/* Utility function called from mark_target_live_regs via note_stores.
|
88 |
|
|
It deadens any CLOBBERed registers and livens any SET registers. */
|
89 |
|
|
|
90 |
|
|
static void
|
91 |
|
|
update_live_status (rtx dest, rtx x, void *data ATTRIBUTE_UNUSED)
|
92 |
|
|
{
|
93 |
|
|
int first_regno, last_regno;
|
94 |
|
|
int i;
|
95 |
|
|
|
96 |
|
|
if (!REG_P (dest)
|
97 |
|
|
&& (GET_CODE (dest) != SUBREG || !REG_P (SUBREG_REG (dest))))
|
98 |
|
|
return;
|
99 |
|
|
|
100 |
|
|
if (GET_CODE (dest) == SUBREG)
|
101 |
|
|
first_regno = subreg_regno (dest);
|
102 |
|
|
else
|
103 |
|
|
first_regno = REGNO (dest);
|
104 |
|
|
|
105 |
|
|
last_regno = first_regno + hard_regno_nregs[first_regno][GET_MODE (dest)];
|
106 |
|
|
|
107 |
|
|
if (GET_CODE (x) == CLOBBER)
|
108 |
|
|
for (i = first_regno; i < last_regno; i++)
|
109 |
|
|
CLEAR_HARD_REG_BIT (current_live_regs, i);
|
110 |
|
|
else
|
111 |
|
|
for (i = first_regno; i < last_regno; i++)
|
112 |
|
|
{
|
113 |
|
|
SET_HARD_REG_BIT (current_live_regs, i);
|
114 |
|
|
CLEAR_HARD_REG_BIT (pending_dead_regs, i);
|
115 |
|
|
}
|
116 |
|
|
}
|
117 |
|
|
|
118 |
|
|
/* Find the number of the basic block with correct live register
|
119 |
|
|
information that starts closest to INSN. Return -1 if we couldn't
|
120 |
|
|
find such a basic block or the beginning is more than
|
121 |
|
|
SEARCH_LIMIT instructions before INSN. Use SEARCH_LIMIT = -1 for
|
122 |
|
|
an unlimited search.
|
123 |
|
|
|
124 |
|
|
The delay slot filling code destroys the control-flow graph so,
|
125 |
|
|
instead of finding the basic block containing INSN, we search
|
126 |
|
|
backwards toward a BARRIER where the live register information is
|
127 |
|
|
correct. */
|
128 |
|
|
|
129 |
|
|
static int
|
130 |
|
|
find_basic_block (rtx insn, int search_limit)
|
131 |
|
|
{
|
132 |
|
|
basic_block bb;
|
133 |
|
|
|
134 |
|
|
/* Scan backwards to the previous BARRIER. Then see if we can find a
|
135 |
|
|
label that starts a basic block. Return the basic block number. */
|
136 |
|
|
for (insn = prev_nonnote_insn (insn);
|
137 |
|
|
insn && !BARRIER_P (insn) && search_limit != 0;
|
138 |
|
|
insn = prev_nonnote_insn (insn), --search_limit)
|
139 |
|
|
;
|
140 |
|
|
|
141 |
|
|
/* The closest BARRIER is too far away. */
|
142 |
|
|
if (search_limit == 0)
|
143 |
|
|
return -1;
|
144 |
|
|
|
145 |
|
|
/* The start of the function. */
|
146 |
|
|
else if (insn == 0)
|
147 |
|
|
return ENTRY_BLOCK_PTR->next_bb->index;
|
148 |
|
|
|
149 |
|
|
/* See if any of the upcoming CODE_LABELs start a basic block. If we reach
|
150 |
|
|
anything other than a CODE_LABEL or note, we can't find this code. */
|
151 |
|
|
for (insn = next_nonnote_insn (insn);
|
152 |
|
|
insn && LABEL_P (insn);
|
153 |
|
|
insn = next_nonnote_insn (insn))
|
154 |
|
|
{
|
155 |
|
|
FOR_EACH_BB (bb)
|
156 |
|
|
if (insn == BB_HEAD (bb))
|
157 |
|
|
return bb->index;
|
158 |
|
|
}
|
159 |
|
|
|
160 |
|
|
return -1;
|
161 |
|
|
}
|
162 |
|
|
|
163 |
|
|
/* Similar to next_insn, but ignores insns in the delay slots of
|
164 |
|
|
an annulled branch. */
|
165 |
|
|
|
166 |
|
|
static rtx
|
167 |
|
|
next_insn_no_annul (rtx insn)
|
168 |
|
|
{
|
169 |
|
|
if (insn)
|
170 |
|
|
{
|
171 |
|
|
/* If INSN is an annulled branch, skip any insns from the target
|
172 |
|
|
of the branch. */
|
173 |
|
|
if (INSN_P (insn)
|
174 |
|
|
&& INSN_ANNULLED_BRANCH_P (insn)
|
175 |
|
|
&& NEXT_INSN (PREV_INSN (insn)) != insn)
|
176 |
|
|
{
|
177 |
|
|
rtx next = NEXT_INSN (insn);
|
178 |
|
|
enum rtx_code code = GET_CODE (next);
|
179 |
|
|
|
180 |
|
|
while ((code == INSN || code == JUMP_INSN || code == CALL_INSN)
|
181 |
|
|
&& INSN_FROM_TARGET_P (next))
|
182 |
|
|
{
|
183 |
|
|
insn = next;
|
184 |
|
|
next = NEXT_INSN (insn);
|
185 |
|
|
code = GET_CODE (next);
|
186 |
|
|
}
|
187 |
|
|
}
|
188 |
|
|
|
189 |
|
|
insn = NEXT_INSN (insn);
|
190 |
|
|
if (insn && NONJUMP_INSN_P (insn)
|
191 |
|
|
&& GET_CODE (PATTERN (insn)) == SEQUENCE)
|
192 |
|
|
insn = XVECEXP (PATTERN (insn), 0, 0);
|
193 |
|
|
}
|
194 |
|
|
|
195 |
|
|
return insn;
|
196 |
|
|
}
|
197 |
|
|
|
198 |
|
|
/* Given X, some rtl, and RES, a pointer to a `struct resource', mark
|
199 |
|
|
which resources are referenced by the insn. If INCLUDE_DELAYED_EFFECTS
|
200 |
|
|
is TRUE, resources used by the called routine will be included for
|
201 |
|
|
CALL_INSNs. */
|
202 |
|
|
|
203 |
|
|
void
|
204 |
|
|
mark_referenced_resources (rtx x, struct resources *res,
|
205 |
|
|
int include_delayed_effects)
|
206 |
|
|
{
|
207 |
|
|
enum rtx_code code = GET_CODE (x);
|
208 |
|
|
int i, j;
|
209 |
|
|
unsigned int r;
|
210 |
|
|
const char *format_ptr;
|
211 |
|
|
|
212 |
|
|
/* Handle leaf items for which we set resource flags. Also, special-case
|
213 |
|
|
CALL, SET and CLOBBER operators. */
|
214 |
|
|
switch (code)
|
215 |
|
|
{
|
216 |
|
|
case CONST:
|
217 |
|
|
case CONST_INT:
|
218 |
|
|
case CONST_DOUBLE:
|
219 |
|
|
case CONST_VECTOR:
|
220 |
|
|
case PC:
|
221 |
|
|
case SYMBOL_REF:
|
222 |
|
|
case LABEL_REF:
|
223 |
|
|
return;
|
224 |
|
|
|
225 |
|
|
case SUBREG:
|
226 |
|
|
if (!REG_P (SUBREG_REG (x)))
|
227 |
|
|
mark_referenced_resources (SUBREG_REG (x), res, 0);
|
228 |
|
|
else
|
229 |
|
|
{
|
230 |
|
|
unsigned int regno = subreg_regno (x);
|
231 |
|
|
unsigned int last_regno
|
232 |
|
|
= regno + hard_regno_nregs[regno][GET_MODE (x)];
|
233 |
|
|
|
234 |
|
|
gcc_assert (last_regno <= FIRST_PSEUDO_REGISTER);
|
235 |
|
|
for (r = regno; r < last_regno; r++)
|
236 |
|
|
SET_HARD_REG_BIT (res->regs, r);
|
237 |
|
|
}
|
238 |
|
|
return;
|
239 |
|
|
|
240 |
|
|
case REG:
|
241 |
|
|
{
|
242 |
|
|
unsigned int regno = REGNO (x);
|
243 |
|
|
unsigned int last_regno
|
244 |
|
|
= regno + hard_regno_nregs[regno][GET_MODE (x)];
|
245 |
|
|
|
246 |
|
|
gcc_assert (last_regno <= FIRST_PSEUDO_REGISTER);
|
247 |
|
|
for (r = regno; r < last_regno; r++)
|
248 |
|
|
SET_HARD_REG_BIT (res->regs, r);
|
249 |
|
|
}
|
250 |
|
|
return;
|
251 |
|
|
|
252 |
|
|
case MEM:
|
253 |
|
|
/* If this memory shouldn't change, it really isn't referencing
|
254 |
|
|
memory. */
|
255 |
|
|
if (MEM_READONLY_P (x))
|
256 |
|
|
res->unch_memory = 1;
|
257 |
|
|
else
|
258 |
|
|
res->memory = 1;
|
259 |
|
|
res->volatil |= MEM_VOLATILE_P (x);
|
260 |
|
|
|
261 |
|
|
/* Mark registers used to access memory. */
|
262 |
|
|
mark_referenced_resources (XEXP (x, 0), res, 0);
|
263 |
|
|
return;
|
264 |
|
|
|
265 |
|
|
case CC0:
|
266 |
|
|
res->cc = 1;
|
267 |
|
|
return;
|
268 |
|
|
|
269 |
|
|
case UNSPEC_VOLATILE:
|
270 |
|
|
case ASM_INPUT:
|
271 |
|
|
/* Traditional asm's are always volatile. */
|
272 |
|
|
res->volatil = 1;
|
273 |
|
|
return;
|
274 |
|
|
|
275 |
|
|
case TRAP_IF:
|
276 |
|
|
res->volatil = 1;
|
277 |
|
|
break;
|
278 |
|
|
|
279 |
|
|
case ASM_OPERANDS:
|
280 |
|
|
res->volatil |= MEM_VOLATILE_P (x);
|
281 |
|
|
|
282 |
|
|
/* For all ASM_OPERANDS, we must traverse the vector of input operands.
|
283 |
|
|
We can not just fall through here since then we would be confused
|
284 |
|
|
by the ASM_INPUT rtx inside ASM_OPERANDS, which do not indicate
|
285 |
|
|
traditional asms unlike their normal usage. */
|
286 |
|
|
|
287 |
|
|
for (i = 0; i < ASM_OPERANDS_INPUT_LENGTH (x); i++)
|
288 |
|
|
mark_referenced_resources (ASM_OPERANDS_INPUT (x, i), res, 0);
|
289 |
|
|
return;
|
290 |
|
|
|
291 |
|
|
case CALL:
|
292 |
|
|
/* The first operand will be a (MEM (xxx)) but doesn't really reference
|
293 |
|
|
memory. The second operand may be referenced, though. */
|
294 |
|
|
mark_referenced_resources (XEXP (XEXP (x, 0), 0), res, 0);
|
295 |
|
|
mark_referenced_resources (XEXP (x, 1), res, 0);
|
296 |
|
|
return;
|
297 |
|
|
|
298 |
|
|
case SET:
|
299 |
|
|
/* Usually, the first operand of SET is set, not referenced. But
|
300 |
|
|
registers used to access memory are referenced. SET_DEST is
|
301 |
|
|
also referenced if it is a ZERO_EXTRACT. */
|
302 |
|
|
|
303 |
|
|
mark_referenced_resources (SET_SRC (x), res, 0);
|
304 |
|
|
|
305 |
|
|
x = SET_DEST (x);
|
306 |
|
|
if (GET_CODE (x) == ZERO_EXTRACT
|
307 |
|
|
|| GET_CODE (x) == STRICT_LOW_PART)
|
308 |
|
|
mark_referenced_resources (x, res, 0);
|
309 |
|
|
else if (GET_CODE (x) == SUBREG)
|
310 |
|
|
x = SUBREG_REG (x);
|
311 |
|
|
if (MEM_P (x))
|
312 |
|
|
mark_referenced_resources (XEXP (x, 0), res, 0);
|
313 |
|
|
return;
|
314 |
|
|
|
315 |
|
|
case CLOBBER:
|
316 |
|
|
return;
|
317 |
|
|
|
318 |
|
|
case CALL_INSN:
|
319 |
|
|
if (include_delayed_effects)
|
320 |
|
|
{
|
321 |
|
|
/* A CALL references memory, the frame pointer if it exists, the
|
322 |
|
|
stack pointer, any global registers and any registers given in
|
323 |
|
|
USE insns immediately in front of the CALL.
|
324 |
|
|
|
325 |
|
|
However, we may have moved some of the parameter loading insns
|
326 |
|
|
into the delay slot of this CALL. If so, the USE's for them
|
327 |
|
|
don't count and should be skipped. */
|
328 |
|
|
rtx insn = PREV_INSN (x);
|
329 |
|
|
rtx sequence = 0;
|
330 |
|
|
int seq_size = 0;
|
331 |
|
|
int i;
|
332 |
|
|
|
333 |
|
|
/* If we are part of a delay slot sequence, point at the SEQUENCE. */
|
334 |
|
|
if (NEXT_INSN (insn) != x)
|
335 |
|
|
{
|
336 |
|
|
sequence = PATTERN (NEXT_INSN (insn));
|
337 |
|
|
seq_size = XVECLEN (sequence, 0);
|
338 |
|
|
gcc_assert (GET_CODE (sequence) == SEQUENCE);
|
339 |
|
|
}
|
340 |
|
|
|
341 |
|
|
res->memory = 1;
|
342 |
|
|
SET_HARD_REG_BIT (res->regs, STACK_POINTER_REGNUM);
|
343 |
|
|
if (frame_pointer_needed)
|
344 |
|
|
{
|
345 |
|
|
SET_HARD_REG_BIT (res->regs, FRAME_POINTER_REGNUM);
|
346 |
|
|
#if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
|
347 |
|
|
SET_HARD_REG_BIT (res->regs, HARD_FRAME_POINTER_REGNUM);
|
348 |
|
|
#endif
|
349 |
|
|
}
|
350 |
|
|
|
351 |
|
|
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
|
352 |
|
|
if (global_regs[i])
|
353 |
|
|
SET_HARD_REG_BIT (res->regs, i);
|
354 |
|
|
|
355 |
|
|
/* Check for a REG_SETJMP. If it exists, then we must
|
356 |
|
|
assume that this call can need any register.
|
357 |
|
|
|
358 |
|
|
This is done to be more conservative about how we handle setjmp.
|
359 |
|
|
We assume that they both use and set all registers. Using all
|
360 |
|
|
registers ensures that a register will not be considered dead
|
361 |
|
|
just because it crosses a setjmp call. A register should be
|
362 |
|
|
considered dead only if the setjmp call returns nonzero. */
|
363 |
|
|
if (find_reg_note (x, REG_SETJMP, NULL))
|
364 |
|
|
SET_HARD_REG_SET (res->regs);
|
365 |
|
|
|
366 |
|
|
{
|
367 |
|
|
rtx link;
|
368 |
|
|
|
369 |
|
|
for (link = CALL_INSN_FUNCTION_USAGE (x);
|
370 |
|
|
link;
|
371 |
|
|
link = XEXP (link, 1))
|
372 |
|
|
if (GET_CODE (XEXP (link, 0)) == USE)
|
373 |
|
|
{
|
374 |
|
|
for (i = 1; i < seq_size; i++)
|
375 |
|
|
{
|
376 |
|
|
rtx slot_pat = PATTERN (XVECEXP (sequence, 0, i));
|
377 |
|
|
if (GET_CODE (slot_pat) == SET
|
378 |
|
|
&& rtx_equal_p (SET_DEST (slot_pat),
|
379 |
|
|
XEXP (XEXP (link, 0), 0)))
|
380 |
|
|
break;
|
381 |
|
|
}
|
382 |
|
|
if (i >= seq_size)
|
383 |
|
|
mark_referenced_resources (XEXP (XEXP (link, 0), 0),
|
384 |
|
|
res, 0);
|
385 |
|
|
}
|
386 |
|
|
}
|
387 |
|
|
}
|
388 |
|
|
|
389 |
|
|
/* ... fall through to other INSN processing ... */
|
390 |
|
|
|
391 |
|
|
case INSN:
|
392 |
|
|
case JUMP_INSN:
|
393 |
|
|
|
394 |
|
|
#ifdef INSN_REFERENCES_ARE_DELAYED
|
395 |
|
|
if (! include_delayed_effects
|
396 |
|
|
&& INSN_REFERENCES_ARE_DELAYED (x))
|
397 |
|
|
return;
|
398 |
|
|
#endif
|
399 |
|
|
|
400 |
|
|
/* No special processing, just speed up. */
|
401 |
|
|
mark_referenced_resources (PATTERN (x), res, include_delayed_effects);
|
402 |
|
|
return;
|
403 |
|
|
|
404 |
|
|
default:
|
405 |
|
|
break;
|
406 |
|
|
}
|
407 |
|
|
|
408 |
|
|
/* Process each sub-expression and flag what it needs. */
|
409 |
|
|
format_ptr = GET_RTX_FORMAT (code);
|
410 |
|
|
for (i = 0; i < GET_RTX_LENGTH (code); i++)
|
411 |
|
|
switch (*format_ptr++)
|
412 |
|
|
{
|
413 |
|
|
case 'e':
|
414 |
|
|
mark_referenced_resources (XEXP (x, i), res, include_delayed_effects);
|
415 |
|
|
break;
|
416 |
|
|
|
417 |
|
|
case 'E':
|
418 |
|
|
for (j = 0; j < XVECLEN (x, i); j++)
|
419 |
|
|
mark_referenced_resources (XVECEXP (x, i, j), res,
|
420 |
|
|
include_delayed_effects);
|
421 |
|
|
break;
|
422 |
|
|
}
|
423 |
|
|
}
|
424 |
|
|
|
425 |
|
|
/* A subroutine of mark_target_live_regs. Search forward from TARGET
|
426 |
|
|
looking for registers that are set before they are used. These are dead.
|
427 |
|
|
Stop after passing a few conditional jumps, and/or a small
|
428 |
|
|
number of unconditional branches. */
|
429 |
|
|
|
430 |
|
|
static rtx
|
431 |
|
|
find_dead_or_set_registers (rtx target, struct resources *res,
|
432 |
|
|
rtx *jump_target, int jump_count,
|
433 |
|
|
struct resources set, struct resources needed)
|
434 |
|
|
{
|
435 |
|
|
HARD_REG_SET scratch;
|
436 |
|
|
rtx insn, next;
|
437 |
|
|
rtx jump_insn = 0;
|
438 |
|
|
int i;
|
439 |
|
|
|
440 |
|
|
for (insn = target; insn; insn = next)
|
441 |
|
|
{
|
442 |
|
|
rtx this_jump_insn = insn;
|
443 |
|
|
|
444 |
|
|
next = NEXT_INSN (insn);
|
445 |
|
|
|
446 |
|
|
/* If this instruction can throw an exception, then we don't
|
447 |
|
|
know where we might end up next. That means that we have to
|
448 |
|
|
assume that whatever we have already marked as live really is
|
449 |
|
|
live. */
|
450 |
|
|
if (can_throw_internal (insn))
|
451 |
|
|
break;
|
452 |
|
|
|
453 |
|
|
switch (GET_CODE (insn))
|
454 |
|
|
{
|
455 |
|
|
case CODE_LABEL:
|
456 |
|
|
/* After a label, any pending dead registers that weren't yet
|
457 |
|
|
used can be made dead. */
|
458 |
|
|
AND_COMPL_HARD_REG_SET (pending_dead_regs, needed.regs);
|
459 |
|
|
AND_COMPL_HARD_REG_SET (res->regs, pending_dead_regs);
|
460 |
|
|
CLEAR_HARD_REG_SET (pending_dead_regs);
|
461 |
|
|
|
462 |
|
|
continue;
|
463 |
|
|
|
464 |
|
|
case BARRIER:
|
465 |
|
|
case NOTE:
|
466 |
|
|
continue;
|
467 |
|
|
|
468 |
|
|
case INSN:
|
469 |
|
|
if (GET_CODE (PATTERN (insn)) == USE)
|
470 |
|
|
{
|
471 |
|
|
/* If INSN is a USE made by update_block, we care about the
|
472 |
|
|
underlying insn. Any registers set by the underlying insn
|
473 |
|
|
are live since the insn is being done somewhere else. */
|
474 |
|
|
if (INSN_P (XEXP (PATTERN (insn), 0)))
|
475 |
|
|
mark_set_resources (XEXP (PATTERN (insn), 0), res, 0,
|
476 |
|
|
MARK_SRC_DEST_CALL);
|
477 |
|
|
|
478 |
|
|
/* All other USE insns are to be ignored. */
|
479 |
|
|
continue;
|
480 |
|
|
}
|
481 |
|
|
else if (GET_CODE (PATTERN (insn)) == CLOBBER)
|
482 |
|
|
continue;
|
483 |
|
|
else if (GET_CODE (PATTERN (insn)) == SEQUENCE)
|
484 |
|
|
{
|
485 |
|
|
/* An unconditional jump can be used to fill the delay slot
|
486 |
|
|
of a call, so search for a JUMP_INSN in any position. */
|
487 |
|
|
for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
|
488 |
|
|
{
|
489 |
|
|
this_jump_insn = XVECEXP (PATTERN (insn), 0, i);
|
490 |
|
|
if (JUMP_P (this_jump_insn))
|
491 |
|
|
break;
|
492 |
|
|
}
|
493 |
|
|
}
|
494 |
|
|
|
495 |
|
|
default:
|
496 |
|
|
break;
|
497 |
|
|
}
|
498 |
|
|
|
499 |
|
|
if (JUMP_P (this_jump_insn))
|
500 |
|
|
{
|
501 |
|
|
if (jump_count++ < 10)
|
502 |
|
|
{
|
503 |
|
|
if (any_uncondjump_p (this_jump_insn)
|
504 |
|
|
|| GET_CODE (PATTERN (this_jump_insn)) == RETURN)
|
505 |
|
|
{
|
506 |
|
|
next = JUMP_LABEL (this_jump_insn);
|
507 |
|
|
if (jump_insn == 0)
|
508 |
|
|
{
|
509 |
|
|
jump_insn = insn;
|
510 |
|
|
if (jump_target)
|
511 |
|
|
*jump_target = JUMP_LABEL (this_jump_insn);
|
512 |
|
|
}
|
513 |
|
|
}
|
514 |
|
|
else if (any_condjump_p (this_jump_insn))
|
515 |
|
|
{
|
516 |
|
|
struct resources target_set, target_res;
|
517 |
|
|
struct resources fallthrough_res;
|
518 |
|
|
|
519 |
|
|
/* We can handle conditional branches here by following
|
520 |
|
|
both paths, and then IOR the results of the two paths
|
521 |
|
|
together, which will give us registers that are dead
|
522 |
|
|
on both paths. Since this is expensive, we give it
|
523 |
|
|
a much higher cost than unconditional branches. The
|
524 |
|
|
cost was chosen so that we will follow at most 1
|
525 |
|
|
conditional branch. */
|
526 |
|
|
|
527 |
|
|
jump_count += 4;
|
528 |
|
|
if (jump_count >= 10)
|
529 |
|
|
break;
|
530 |
|
|
|
531 |
|
|
mark_referenced_resources (insn, &needed, 1);
|
532 |
|
|
|
533 |
|
|
/* For an annulled branch, mark_set_resources ignores slots
|
534 |
|
|
filled by instructions from the target. This is correct
|
535 |
|
|
if the branch is not taken. Since we are following both
|
536 |
|
|
paths from the branch, we must also compute correct info
|
537 |
|
|
if the branch is taken. We do this by inverting all of
|
538 |
|
|
the INSN_FROM_TARGET_P bits, calling mark_set_resources,
|
539 |
|
|
and then inverting the INSN_FROM_TARGET_P bits again. */
|
540 |
|
|
|
541 |
|
|
if (GET_CODE (PATTERN (insn)) == SEQUENCE
|
542 |
|
|
&& INSN_ANNULLED_BRANCH_P (this_jump_insn))
|
543 |
|
|
{
|
544 |
|
|
for (i = 1; i < XVECLEN (PATTERN (insn), 0); i++)
|
545 |
|
|
INSN_FROM_TARGET_P (XVECEXP (PATTERN (insn), 0, i))
|
546 |
|
|
= ! INSN_FROM_TARGET_P (XVECEXP (PATTERN (insn), 0, i));
|
547 |
|
|
|
548 |
|
|
target_set = set;
|
549 |
|
|
mark_set_resources (insn, &target_set, 0,
|
550 |
|
|
MARK_SRC_DEST_CALL);
|
551 |
|
|
|
552 |
|
|
for (i = 1; i < XVECLEN (PATTERN (insn), 0); i++)
|
553 |
|
|
INSN_FROM_TARGET_P (XVECEXP (PATTERN (insn), 0, i))
|
554 |
|
|
= ! INSN_FROM_TARGET_P (XVECEXP (PATTERN (insn), 0, i));
|
555 |
|
|
|
556 |
|
|
mark_set_resources (insn, &set, 0, MARK_SRC_DEST_CALL);
|
557 |
|
|
}
|
558 |
|
|
else
|
559 |
|
|
{
|
560 |
|
|
mark_set_resources (insn, &set, 0, MARK_SRC_DEST_CALL);
|
561 |
|
|
target_set = set;
|
562 |
|
|
}
|
563 |
|
|
|
564 |
|
|
target_res = *res;
|
565 |
|
|
COPY_HARD_REG_SET (scratch, target_set.regs);
|
566 |
|
|
AND_COMPL_HARD_REG_SET (scratch, needed.regs);
|
567 |
|
|
AND_COMPL_HARD_REG_SET (target_res.regs, scratch);
|
568 |
|
|
|
569 |
|
|
fallthrough_res = *res;
|
570 |
|
|
COPY_HARD_REG_SET (scratch, set.regs);
|
571 |
|
|
AND_COMPL_HARD_REG_SET (scratch, needed.regs);
|
572 |
|
|
AND_COMPL_HARD_REG_SET (fallthrough_res.regs, scratch);
|
573 |
|
|
|
574 |
|
|
find_dead_or_set_registers (JUMP_LABEL (this_jump_insn),
|
575 |
|
|
&target_res, 0, jump_count,
|
576 |
|
|
target_set, needed);
|
577 |
|
|
find_dead_or_set_registers (next,
|
578 |
|
|
&fallthrough_res, 0, jump_count,
|
579 |
|
|
set, needed);
|
580 |
|
|
IOR_HARD_REG_SET (fallthrough_res.regs, target_res.regs);
|
581 |
|
|
AND_HARD_REG_SET (res->regs, fallthrough_res.regs);
|
582 |
|
|
break;
|
583 |
|
|
}
|
584 |
|
|
else
|
585 |
|
|
break;
|
586 |
|
|
}
|
587 |
|
|
else
|
588 |
|
|
{
|
589 |
|
|
/* Don't try this optimization if we expired our jump count
|
590 |
|
|
above, since that would mean there may be an infinite loop
|
591 |
|
|
in the function being compiled. */
|
592 |
|
|
jump_insn = 0;
|
593 |
|
|
break;
|
594 |
|
|
}
|
595 |
|
|
}
|
596 |
|
|
|
597 |
|
|
mark_referenced_resources (insn, &needed, 1);
|
598 |
|
|
mark_set_resources (insn, &set, 0, MARK_SRC_DEST_CALL);
|
599 |
|
|
|
600 |
|
|
COPY_HARD_REG_SET (scratch, set.regs);
|
601 |
|
|
AND_COMPL_HARD_REG_SET (scratch, needed.regs);
|
602 |
|
|
AND_COMPL_HARD_REG_SET (res->regs, scratch);
|
603 |
|
|
}
|
604 |
|
|
|
605 |
|
|
return jump_insn;
|
606 |
|
|
}
|
607 |
|
|
|
608 |
|
|
/* Given X, a part of an insn, and a pointer to a `struct resource',
|
609 |
|
|
RES, indicate which resources are modified by the insn. If
|
610 |
|
|
MARK_TYPE is MARK_SRC_DEST_CALL, also mark resources potentially
|
611 |
|
|
set by the called routine.
|
612 |
|
|
|
613 |
|
|
If IN_DEST is nonzero, it means we are inside a SET. Otherwise,
|
614 |
|
|
objects are being referenced instead of set.
|
615 |
|
|
|
616 |
|
|
We never mark the insn as modifying the condition code unless it explicitly
|
617 |
|
|
SETs CC0 even though this is not totally correct. The reason for this is
|
618 |
|
|
that we require a SET of CC0 to immediately precede the reference to CC0.
|
619 |
|
|
So if some other insn sets CC0 as a side-effect, we know it cannot affect
|
620 |
|
|
our computation and thus may be placed in a delay slot. */
|
621 |
|
|
|
622 |
|
|
void
|
623 |
|
|
mark_set_resources (rtx x, struct resources *res, int in_dest,
|
624 |
|
|
enum mark_resource_type mark_type)
|
625 |
|
|
{
|
626 |
|
|
enum rtx_code code;
|
627 |
|
|
int i, j;
|
628 |
|
|
unsigned int r;
|
629 |
|
|
const char *format_ptr;
|
630 |
|
|
|
631 |
|
|
restart:
|
632 |
|
|
|
633 |
|
|
code = GET_CODE (x);
|
634 |
|
|
|
635 |
|
|
switch (code)
|
636 |
|
|
{
|
637 |
|
|
case NOTE:
|
638 |
|
|
case BARRIER:
|
639 |
|
|
case CODE_LABEL:
|
640 |
|
|
case USE:
|
641 |
|
|
case CONST_INT:
|
642 |
|
|
case CONST_DOUBLE:
|
643 |
|
|
case CONST_VECTOR:
|
644 |
|
|
case LABEL_REF:
|
645 |
|
|
case SYMBOL_REF:
|
646 |
|
|
case CONST:
|
647 |
|
|
case PC:
|
648 |
|
|
/* These don't set any resources. */
|
649 |
|
|
return;
|
650 |
|
|
|
651 |
|
|
case CC0:
|
652 |
|
|
if (in_dest)
|
653 |
|
|
res->cc = 1;
|
654 |
|
|
return;
|
655 |
|
|
|
656 |
|
|
case CALL_INSN:
|
657 |
|
|
/* Called routine modifies the condition code, memory, any registers
|
658 |
|
|
that aren't saved across calls, global registers and anything
|
659 |
|
|
explicitly CLOBBERed immediately after the CALL_INSN. */
|
660 |
|
|
|
661 |
|
|
if (mark_type == MARK_SRC_DEST_CALL)
|
662 |
|
|
{
|
663 |
|
|
rtx link;
|
664 |
|
|
|
665 |
|
|
res->cc = res->memory = 1;
|
666 |
|
|
for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
|
667 |
|
|
if (call_used_regs[r] || global_regs[r])
|
668 |
|
|
SET_HARD_REG_BIT (res->regs, r);
|
669 |
|
|
|
670 |
|
|
for (link = CALL_INSN_FUNCTION_USAGE (x);
|
671 |
|
|
link; link = XEXP (link, 1))
|
672 |
|
|
if (GET_CODE (XEXP (link, 0)) == CLOBBER)
|
673 |
|
|
mark_set_resources (SET_DEST (XEXP (link, 0)), res, 1,
|
674 |
|
|
MARK_SRC_DEST);
|
675 |
|
|
|
676 |
|
|
/* Check for a REG_SETJMP. If it exists, then we must
|
677 |
|
|
assume that this call can clobber any register. */
|
678 |
|
|
if (find_reg_note (x, REG_SETJMP, NULL))
|
679 |
|
|
SET_HARD_REG_SET (res->regs);
|
680 |
|
|
}
|
681 |
|
|
|
682 |
|
|
/* ... and also what its RTL says it modifies, if anything. */
|
683 |
|
|
|
684 |
|
|
case JUMP_INSN:
|
685 |
|
|
case INSN:
|
686 |
|
|
|
687 |
|
|
/* An insn consisting of just a CLOBBER (or USE) is just for flow
|
688 |
|
|
and doesn't actually do anything, so we ignore it. */
|
689 |
|
|
|
690 |
|
|
#ifdef INSN_SETS_ARE_DELAYED
|
691 |
|
|
if (mark_type != MARK_SRC_DEST_CALL
|
692 |
|
|
&& INSN_SETS_ARE_DELAYED (x))
|
693 |
|
|
return;
|
694 |
|
|
#endif
|
695 |
|
|
|
696 |
|
|
x = PATTERN (x);
|
697 |
|
|
if (GET_CODE (x) != USE && GET_CODE (x) != CLOBBER)
|
698 |
|
|
goto restart;
|
699 |
|
|
return;
|
700 |
|
|
|
701 |
|
|
case SET:
|
702 |
|
|
/* If the source of a SET is a CALL, this is actually done by
|
703 |
|
|
the called routine. So only include it if we are to include the
|
704 |
|
|
effects of the calling routine. */
|
705 |
|
|
|
706 |
|
|
mark_set_resources (SET_DEST (x), res,
|
707 |
|
|
(mark_type == MARK_SRC_DEST_CALL
|
708 |
|
|
|| GET_CODE (SET_SRC (x)) != CALL),
|
709 |
|
|
mark_type);
|
710 |
|
|
|
711 |
|
|
mark_set_resources (SET_SRC (x), res, 0, MARK_SRC_DEST);
|
712 |
|
|
return;
|
713 |
|
|
|
714 |
|
|
case CLOBBER:
|
715 |
|
|
mark_set_resources (XEXP (x, 0), res, 1, MARK_SRC_DEST);
|
716 |
|
|
return;
|
717 |
|
|
|
718 |
|
|
case SEQUENCE:
|
719 |
|
|
for (i = 0; i < XVECLEN (x, 0); i++)
|
720 |
|
|
if (! (INSN_ANNULLED_BRANCH_P (XVECEXP (x, 0, 0))
|
721 |
|
|
&& INSN_FROM_TARGET_P (XVECEXP (x, 0, i))))
|
722 |
|
|
mark_set_resources (XVECEXP (x, 0, i), res, 0, mark_type);
|
723 |
|
|
return;
|
724 |
|
|
|
725 |
|
|
case POST_INC:
|
726 |
|
|
case PRE_INC:
|
727 |
|
|
case POST_DEC:
|
728 |
|
|
case PRE_DEC:
|
729 |
|
|
mark_set_resources (XEXP (x, 0), res, 1, MARK_SRC_DEST);
|
730 |
|
|
return;
|
731 |
|
|
|
732 |
|
|
case PRE_MODIFY:
|
733 |
|
|
case POST_MODIFY:
|
734 |
|
|
mark_set_resources (XEXP (x, 0), res, 1, MARK_SRC_DEST);
|
735 |
|
|
mark_set_resources (XEXP (XEXP (x, 1), 0), res, 0, MARK_SRC_DEST);
|
736 |
|
|
mark_set_resources (XEXP (XEXP (x, 1), 1), res, 0, MARK_SRC_DEST);
|
737 |
|
|
return;
|
738 |
|
|
|
739 |
|
|
case SIGN_EXTRACT:
|
740 |
|
|
case ZERO_EXTRACT:
|
741 |
|
|
mark_set_resources (XEXP (x, 0), res, in_dest, MARK_SRC_DEST);
|
742 |
|
|
mark_set_resources (XEXP (x, 1), res, 0, MARK_SRC_DEST);
|
743 |
|
|
mark_set_resources (XEXP (x, 2), res, 0, MARK_SRC_DEST);
|
744 |
|
|
return;
|
745 |
|
|
|
746 |
|
|
case MEM:
|
747 |
|
|
if (in_dest)
|
748 |
|
|
{
|
749 |
|
|
res->memory = 1;
|
750 |
|
|
res->unch_memory |= MEM_READONLY_P (x);
|
751 |
|
|
res->volatil |= MEM_VOLATILE_P (x);
|
752 |
|
|
}
|
753 |
|
|
|
754 |
|
|
mark_set_resources (XEXP (x, 0), res, 0, MARK_SRC_DEST);
|
755 |
|
|
return;
|
756 |
|
|
|
757 |
|
|
case SUBREG:
|
758 |
|
|
if (in_dest)
|
759 |
|
|
{
|
760 |
|
|
if (!REG_P (SUBREG_REG (x)))
|
761 |
|
|
mark_set_resources (SUBREG_REG (x), res, in_dest, mark_type);
|
762 |
|
|
else
|
763 |
|
|
{
|
764 |
|
|
unsigned int regno = subreg_regno (x);
|
765 |
|
|
unsigned int last_regno
|
766 |
|
|
= regno + hard_regno_nregs[regno][GET_MODE (x)];
|
767 |
|
|
|
768 |
|
|
gcc_assert (last_regno <= FIRST_PSEUDO_REGISTER);
|
769 |
|
|
for (r = regno; r < last_regno; r++)
|
770 |
|
|
SET_HARD_REG_BIT (res->regs, r);
|
771 |
|
|
}
|
772 |
|
|
}
|
773 |
|
|
return;
|
774 |
|
|
|
775 |
|
|
case REG:
|
776 |
|
|
if (in_dest)
|
777 |
|
|
{
|
778 |
|
|
unsigned int regno = REGNO (x);
|
779 |
|
|
unsigned int last_regno
|
780 |
|
|
= regno + hard_regno_nregs[regno][GET_MODE (x)];
|
781 |
|
|
|
782 |
|
|
gcc_assert (last_regno <= FIRST_PSEUDO_REGISTER);
|
783 |
|
|
for (r = regno; r < last_regno; r++)
|
784 |
|
|
SET_HARD_REG_BIT (res->regs, r);
|
785 |
|
|
}
|
786 |
|
|
return;
|
787 |
|
|
|
788 |
|
|
case UNSPEC_VOLATILE:
|
789 |
|
|
case ASM_INPUT:
|
790 |
|
|
/* Traditional asm's are always volatile. */
|
791 |
|
|
res->volatil = 1;
|
792 |
|
|
return;
|
793 |
|
|
|
794 |
|
|
case TRAP_IF:
|
795 |
|
|
res->volatil = 1;
|
796 |
|
|
break;
|
797 |
|
|
|
798 |
|
|
case ASM_OPERANDS:
|
799 |
|
|
res->volatil |= MEM_VOLATILE_P (x);
|
800 |
|
|
|
801 |
|
|
/* For all ASM_OPERANDS, we must traverse the vector of input operands.
|
802 |
|
|
We can not just fall through here since then we would be confused
|
803 |
|
|
by the ASM_INPUT rtx inside ASM_OPERANDS, which do not indicate
|
804 |
|
|
traditional asms unlike their normal usage. */
|
805 |
|
|
|
806 |
|
|
for (i = 0; i < ASM_OPERANDS_INPUT_LENGTH (x); i++)
|
807 |
|
|
mark_set_resources (ASM_OPERANDS_INPUT (x, i), res, in_dest,
|
808 |
|
|
MARK_SRC_DEST);
|
809 |
|
|
return;
|
810 |
|
|
|
811 |
|
|
default:
|
812 |
|
|
break;
|
813 |
|
|
}
|
814 |
|
|
|
815 |
|
|
/* Process each sub-expression and flag what it needs. */
|
816 |
|
|
format_ptr = GET_RTX_FORMAT (code);
|
817 |
|
|
for (i = 0; i < GET_RTX_LENGTH (code); i++)
|
818 |
|
|
switch (*format_ptr++)
|
819 |
|
|
{
|
820 |
|
|
case 'e':
|
821 |
|
|
mark_set_resources (XEXP (x, i), res, in_dest, mark_type);
|
822 |
|
|
break;
|
823 |
|
|
|
824 |
|
|
case 'E':
|
825 |
|
|
for (j = 0; j < XVECLEN (x, i); j++)
|
826 |
|
|
mark_set_resources (XVECEXP (x, i, j), res, in_dest, mark_type);
|
827 |
|
|
break;
|
828 |
|
|
}
|
829 |
|
|
}
|
830 |
|
|
|
831 |
|
|
/* Return TRUE if INSN is a return, possibly with a filled delay slot. */
|
832 |
|
|
|
833 |
|
|
static bool
|
834 |
|
|
return_insn_p (rtx insn)
|
835 |
|
|
{
|
836 |
|
|
if (JUMP_P (insn) && GET_CODE (PATTERN (insn)) == RETURN)
|
837 |
|
|
return true;
|
838 |
|
|
|
839 |
|
|
if (NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
|
840 |
|
|
return return_insn_p (XVECEXP (PATTERN (insn), 0, 0));
|
841 |
|
|
|
842 |
|
|
return false;
|
843 |
|
|
}
|
844 |
|
|
|
845 |
|
|
/* Set the resources that are live at TARGET.
|
846 |
|
|
|
847 |
|
|
If TARGET is zero, we refer to the end of the current function and can
|
848 |
|
|
return our precomputed value.
|
849 |
|
|
|
850 |
|
|
Otherwise, we try to find out what is live by consulting the basic block
|
851 |
|
|
information. This is tricky, because we must consider the actions of
|
852 |
|
|
reload and jump optimization, which occur after the basic block information
|
853 |
|
|
has been computed.
|
854 |
|
|
|
855 |
|
|
Accordingly, we proceed as follows::
|
856 |
|
|
|
857 |
|
|
We find the previous BARRIER and look at all immediately following labels
|
858 |
|
|
(with no intervening active insns) to see if any of them start a basic
|
859 |
|
|
block. If we hit the start of the function first, we use block 0.
|
860 |
|
|
|
861 |
|
|
Once we have found a basic block and a corresponding first insns, we can
|
862 |
|
|
accurately compute the live status from basic_block_live_regs and
|
863 |
|
|
reg_renumber. (By starting at a label following a BARRIER, we are immune
|
864 |
|
|
to actions taken by reload and jump.) Then we scan all insns between
|
865 |
|
|
that point and our target. For each CLOBBER (or for call-clobbered regs
|
866 |
|
|
when we pass a CALL_INSN), mark the appropriate registers are dead. For
|
867 |
|
|
a SET, mark them as live.
|
868 |
|
|
|
869 |
|
|
We have to be careful when using REG_DEAD notes because they are not
|
870 |
|
|
updated by such things as find_equiv_reg. So keep track of registers
|
871 |
|
|
marked as dead that haven't been assigned to, and mark them dead at the
|
872 |
|
|
next CODE_LABEL since reload and jump won't propagate values across labels.
|
873 |
|
|
|
874 |
|
|
If we cannot find the start of a basic block (should be a very rare
|
875 |
|
|
case, if it can happen at all), mark everything as potentially live.
|
876 |
|
|
|
877 |
|
|
Next, scan forward from TARGET looking for things set or clobbered
|
878 |
|
|
before they are used. These are not live.
|
879 |
|
|
|
880 |
|
|
Because we can be called many times on the same target, save our results
|
881 |
|
|
in a hash table indexed by INSN_UID. This is only done if the function
|
882 |
|
|
init_resource_info () was invoked before we are called. */
|
883 |
|
|
|
884 |
|
|
void
|
885 |
|
|
mark_target_live_regs (rtx insns, rtx target, struct resources *res)
|
886 |
|
|
{
|
887 |
|
|
int b = -1;
|
888 |
|
|
unsigned int i;
|
889 |
|
|
struct target_info *tinfo = NULL;
|
890 |
|
|
rtx insn;
|
891 |
|
|
rtx jump_insn = 0;
|
892 |
|
|
rtx jump_target;
|
893 |
|
|
HARD_REG_SET scratch;
|
894 |
|
|
struct resources set, needed;
|
895 |
|
|
|
896 |
|
|
/* Handle end of function. */
|
897 |
|
|
if (target == 0)
|
898 |
|
|
{
|
899 |
|
|
*res = end_of_function_needs;
|
900 |
|
|
return;
|
901 |
|
|
}
|
902 |
|
|
|
903 |
|
|
/* Handle return insn. */
|
904 |
|
|
else if (return_insn_p (target))
|
905 |
|
|
{
|
906 |
|
|
*res = end_of_function_needs;
|
907 |
|
|
mark_referenced_resources (target, res, 0);
|
908 |
|
|
return;
|
909 |
|
|
}
|
910 |
|
|
|
911 |
|
|
/* We have to assume memory is needed, but the CC isn't. */
|
912 |
|
|
res->memory = 1;
|
913 |
|
|
res->volatil = res->unch_memory = 0;
|
914 |
|
|
res->cc = 0;
|
915 |
|
|
|
916 |
|
|
/* See if we have computed this value already. */
|
917 |
|
|
if (target_hash_table != NULL)
|
918 |
|
|
{
|
919 |
|
|
for (tinfo = target_hash_table[INSN_UID (target) % TARGET_HASH_PRIME];
|
920 |
|
|
tinfo; tinfo = tinfo->next)
|
921 |
|
|
if (tinfo->uid == INSN_UID (target))
|
922 |
|
|
break;
|
923 |
|
|
|
924 |
|
|
/* Start by getting the basic block number. If we have saved
|
925 |
|
|
information, we can get it from there unless the insn at the
|
926 |
|
|
start of the basic block has been deleted. */
|
927 |
|
|
if (tinfo && tinfo->block != -1
|
928 |
|
|
&& ! INSN_DELETED_P (BB_HEAD (BASIC_BLOCK (tinfo->block))))
|
929 |
|
|
b = tinfo->block;
|
930 |
|
|
}
|
931 |
|
|
|
932 |
|
|
if (b == -1)
|
933 |
|
|
b = find_basic_block (target, MAX_DELAY_SLOT_LIVE_SEARCH);
|
934 |
|
|
|
935 |
|
|
if (target_hash_table != NULL)
|
936 |
|
|
{
|
937 |
|
|
if (tinfo)
|
938 |
|
|
{
|
939 |
|
|
/* If the information is up-to-date, use it. Otherwise, we will
|
940 |
|
|
update it below. */
|
941 |
|
|
if (b == tinfo->block && b != -1 && tinfo->bb_tick == bb_ticks[b])
|
942 |
|
|
{
|
943 |
|
|
COPY_HARD_REG_SET (res->regs, tinfo->live_regs);
|
944 |
|
|
return;
|
945 |
|
|
}
|
946 |
|
|
}
|
947 |
|
|
else
|
948 |
|
|
{
|
949 |
|
|
/* Allocate a place to put our results and chain it into the
|
950 |
|
|
hash table. */
|
951 |
|
|
tinfo = XNEW (struct target_info);
|
952 |
|
|
tinfo->uid = INSN_UID (target);
|
953 |
|
|
tinfo->block = b;
|
954 |
|
|
tinfo->next
|
955 |
|
|
= target_hash_table[INSN_UID (target) % TARGET_HASH_PRIME];
|
956 |
|
|
target_hash_table[INSN_UID (target) % TARGET_HASH_PRIME] = tinfo;
|
957 |
|
|
}
|
958 |
|
|
}
|
959 |
|
|
|
960 |
|
|
CLEAR_HARD_REG_SET (pending_dead_regs);
|
961 |
|
|
|
962 |
|
|
/* If we found a basic block, get the live registers from it and update
|
963 |
|
|
them with anything set or killed between its start and the insn before
|
964 |
|
|
TARGET. Otherwise, we must assume everything is live. */
|
965 |
|
|
if (b != -1)
|
966 |
|
|
{
|
967 |
|
|
regset regs_live = BASIC_BLOCK (b)->il.rtl->global_live_at_start;
|
968 |
|
|
unsigned int j;
|
969 |
|
|
unsigned int regno;
|
970 |
|
|
rtx start_insn, stop_insn;
|
971 |
|
|
reg_set_iterator rsi;
|
972 |
|
|
|
973 |
|
|
/* Compute hard regs live at start of block -- this is the real hard regs
|
974 |
|
|
marked live, plus live pseudo regs that have been renumbered to
|
975 |
|
|
hard regs. */
|
976 |
|
|
|
977 |
|
|
REG_SET_TO_HARD_REG_SET (current_live_regs, regs_live);
|
978 |
|
|
|
979 |
|
|
EXECUTE_IF_SET_IN_REG_SET (regs_live, FIRST_PSEUDO_REGISTER, i, rsi)
|
980 |
|
|
{
|
981 |
|
|
if (reg_renumber[i] >= 0)
|
982 |
|
|
{
|
983 |
|
|
regno = reg_renumber[i];
|
984 |
|
|
for (j = regno;
|
985 |
|
|
j < regno + hard_regno_nregs[regno][PSEUDO_REGNO_MODE (i)];
|
986 |
|
|
j++)
|
987 |
|
|
SET_HARD_REG_BIT (current_live_regs, j);
|
988 |
|
|
}
|
989 |
|
|
}
|
990 |
|
|
|
991 |
|
|
/* Get starting and ending insn, handling the case where each might
|
992 |
|
|
be a SEQUENCE. */
|
993 |
|
|
start_insn = (b == 0 ? insns : BB_HEAD (BASIC_BLOCK (b)));
|
994 |
|
|
stop_insn = target;
|
995 |
|
|
|
996 |
|
|
if (NONJUMP_INSN_P (start_insn)
|
997 |
|
|
&& GET_CODE (PATTERN (start_insn)) == SEQUENCE)
|
998 |
|
|
start_insn = XVECEXP (PATTERN (start_insn), 0, 0);
|
999 |
|
|
|
1000 |
|
|
if (NONJUMP_INSN_P (stop_insn)
|
1001 |
|
|
&& GET_CODE (PATTERN (stop_insn)) == SEQUENCE)
|
1002 |
|
|
stop_insn = next_insn (PREV_INSN (stop_insn));
|
1003 |
|
|
|
1004 |
|
|
for (insn = start_insn; insn != stop_insn;
|
1005 |
|
|
insn = next_insn_no_annul (insn))
|
1006 |
|
|
{
|
1007 |
|
|
rtx link;
|
1008 |
|
|
rtx real_insn = insn;
|
1009 |
|
|
enum rtx_code code = GET_CODE (insn);
|
1010 |
|
|
|
1011 |
|
|
/* If this insn is from the target of a branch, it isn't going to
|
1012 |
|
|
be used in the sequel. If it is used in both cases, this
|
1013 |
|
|
test will not be true. */
|
1014 |
|
|
if ((code == INSN || code == JUMP_INSN || code == CALL_INSN)
|
1015 |
|
|
&& INSN_FROM_TARGET_P (insn))
|
1016 |
|
|
continue;
|
1017 |
|
|
|
1018 |
|
|
/* If this insn is a USE made by update_block, we care about the
|
1019 |
|
|
underlying insn. */
|
1020 |
|
|
if (code == INSN && GET_CODE (PATTERN (insn)) == USE
|
1021 |
|
|
&& INSN_P (XEXP (PATTERN (insn), 0)))
|
1022 |
|
|
real_insn = XEXP (PATTERN (insn), 0);
|
1023 |
|
|
|
1024 |
|
|
if (CALL_P (real_insn))
|
1025 |
|
|
{
|
1026 |
|
|
/* CALL clobbers all call-used regs that aren't fixed except
|
1027 |
|
|
sp, ap, and fp. Do this before setting the result of the
|
1028 |
|
|
call live. */
|
1029 |
|
|
AND_COMPL_HARD_REG_SET (current_live_regs,
|
1030 |
|
|
regs_invalidated_by_call);
|
1031 |
|
|
|
1032 |
|
|
/* A CALL_INSN sets any global register live, since it may
|
1033 |
|
|
have been modified by the call. */
|
1034 |
|
|
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
|
1035 |
|
|
if (global_regs[i])
|
1036 |
|
|
SET_HARD_REG_BIT (current_live_regs, i);
|
1037 |
|
|
}
|
1038 |
|
|
|
1039 |
|
|
/* Mark anything killed in an insn to be deadened at the next
|
1040 |
|
|
label. Ignore USE insns; the only REG_DEAD notes will be for
|
1041 |
|
|
parameters. But they might be early. A CALL_INSN will usually
|
1042 |
|
|
clobber registers used for parameters. It isn't worth bothering
|
1043 |
|
|
with the unlikely case when it won't. */
|
1044 |
|
|
if ((NONJUMP_INSN_P (real_insn)
|
1045 |
|
|
&& GET_CODE (PATTERN (real_insn)) != USE
|
1046 |
|
|
&& GET_CODE (PATTERN (real_insn)) != CLOBBER)
|
1047 |
|
|
|| JUMP_P (real_insn)
|
1048 |
|
|
|| CALL_P (real_insn))
|
1049 |
|
|
{
|
1050 |
|
|
for (link = REG_NOTES (real_insn); link; link = XEXP (link, 1))
|
1051 |
|
|
if (REG_NOTE_KIND (link) == REG_DEAD
|
1052 |
|
|
&& REG_P (XEXP (link, 0))
|
1053 |
|
|
&& REGNO (XEXP (link, 0)) < FIRST_PSEUDO_REGISTER)
|
1054 |
|
|
{
|
1055 |
|
|
unsigned int first_regno = REGNO (XEXP (link, 0));
|
1056 |
|
|
unsigned int last_regno
|
1057 |
|
|
= (first_regno
|
1058 |
|
|
+ hard_regno_nregs[first_regno]
|
1059 |
|
|
[GET_MODE (XEXP (link, 0))]);
|
1060 |
|
|
|
1061 |
|
|
for (i = first_regno; i < last_regno; i++)
|
1062 |
|
|
SET_HARD_REG_BIT (pending_dead_regs, i);
|
1063 |
|
|
}
|
1064 |
|
|
|
1065 |
|
|
note_stores (PATTERN (real_insn), update_live_status, NULL);
|
1066 |
|
|
|
1067 |
|
|
/* If any registers were unused after this insn, kill them.
|
1068 |
|
|
These notes will always be accurate. */
|
1069 |
|
|
for (link = REG_NOTES (real_insn); link; link = XEXP (link, 1))
|
1070 |
|
|
if (REG_NOTE_KIND (link) == REG_UNUSED
|
1071 |
|
|
&& REG_P (XEXP (link, 0))
|
1072 |
|
|
&& REGNO (XEXP (link, 0)) < FIRST_PSEUDO_REGISTER)
|
1073 |
|
|
{
|
1074 |
|
|
unsigned int first_regno = REGNO (XEXP (link, 0));
|
1075 |
|
|
unsigned int last_regno
|
1076 |
|
|
= (first_regno
|
1077 |
|
|
+ hard_regno_nregs[first_regno]
|
1078 |
|
|
[GET_MODE (XEXP (link, 0))]);
|
1079 |
|
|
|
1080 |
|
|
for (i = first_regno; i < last_regno; i++)
|
1081 |
|
|
CLEAR_HARD_REG_BIT (current_live_regs, i);
|
1082 |
|
|
}
|
1083 |
|
|
}
|
1084 |
|
|
|
1085 |
|
|
else if (LABEL_P (real_insn))
|
1086 |
|
|
{
|
1087 |
|
|
/* A label clobbers the pending dead registers since neither
|
1088 |
|
|
reload nor jump will propagate a value across a label. */
|
1089 |
|
|
AND_COMPL_HARD_REG_SET (current_live_regs, pending_dead_regs);
|
1090 |
|
|
CLEAR_HARD_REG_SET (pending_dead_regs);
|
1091 |
|
|
}
|
1092 |
|
|
|
1093 |
|
|
/* The beginning of the epilogue corresponds to the end of the
|
1094 |
|
|
RTL chain when there are no epilogue insns. Certain resources
|
1095 |
|
|
are implicitly required at that point. */
|
1096 |
|
|
else if (NOTE_P (real_insn)
|
1097 |
|
|
&& NOTE_LINE_NUMBER (real_insn) == NOTE_INSN_EPILOGUE_BEG)
|
1098 |
|
|
IOR_HARD_REG_SET (current_live_regs, start_of_epilogue_needs.regs);
|
1099 |
|
|
}
|
1100 |
|
|
|
1101 |
|
|
COPY_HARD_REG_SET (res->regs, current_live_regs);
|
1102 |
|
|
if (tinfo != NULL)
|
1103 |
|
|
{
|
1104 |
|
|
tinfo->block = b;
|
1105 |
|
|
tinfo->bb_tick = bb_ticks[b];
|
1106 |
|
|
}
|
1107 |
|
|
}
|
1108 |
|
|
else
|
1109 |
|
|
/* We didn't find the start of a basic block. Assume everything
|
1110 |
|
|
in use. This should happen only extremely rarely. */
|
1111 |
|
|
SET_HARD_REG_SET (res->regs);
|
1112 |
|
|
|
1113 |
|
|
CLEAR_RESOURCE (&set);
|
1114 |
|
|
CLEAR_RESOURCE (&needed);
|
1115 |
|
|
|
1116 |
|
|
jump_insn = find_dead_or_set_registers (target, res, &jump_target, 0,
|
1117 |
|
|
set, needed);
|
1118 |
|
|
|
1119 |
|
|
/* If we hit an unconditional branch, we have another way of finding out
|
1120 |
|
|
what is live: we can see what is live at the branch target and include
|
1121 |
|
|
anything used but not set before the branch. We add the live
|
1122 |
|
|
resources found using the test below to those found until now. */
|
1123 |
|
|
|
1124 |
|
|
if (jump_insn)
|
1125 |
|
|
{
|
1126 |
|
|
struct resources new_resources;
|
1127 |
|
|
rtx stop_insn = next_active_insn (jump_insn);
|
1128 |
|
|
|
1129 |
|
|
mark_target_live_regs (insns, next_active_insn (jump_target),
|
1130 |
|
|
&new_resources);
|
1131 |
|
|
CLEAR_RESOURCE (&set);
|
1132 |
|
|
CLEAR_RESOURCE (&needed);
|
1133 |
|
|
|
1134 |
|
|
/* Include JUMP_INSN in the needed registers. */
|
1135 |
|
|
for (insn = target; insn != stop_insn; insn = next_active_insn (insn))
|
1136 |
|
|
{
|
1137 |
|
|
mark_referenced_resources (insn, &needed, 1);
|
1138 |
|
|
|
1139 |
|
|
COPY_HARD_REG_SET (scratch, needed.regs);
|
1140 |
|
|
AND_COMPL_HARD_REG_SET (scratch, set.regs);
|
1141 |
|
|
IOR_HARD_REG_SET (new_resources.regs, scratch);
|
1142 |
|
|
|
1143 |
|
|
mark_set_resources (insn, &set, 0, MARK_SRC_DEST_CALL);
|
1144 |
|
|
}
|
1145 |
|
|
|
1146 |
|
|
IOR_HARD_REG_SET (res->regs, new_resources.regs);
|
1147 |
|
|
}
|
1148 |
|
|
|
1149 |
|
|
if (tinfo != NULL)
|
1150 |
|
|
{
|
1151 |
|
|
COPY_HARD_REG_SET (tinfo->live_regs, res->regs);
|
1152 |
|
|
}
|
1153 |
|
|
}
|
1154 |
|
|
|
1155 |
|
|
/* Initialize the resources required by mark_target_live_regs ().
|
1156 |
|
|
This should be invoked before the first call to mark_target_live_regs. */
|
1157 |
|
|
|
1158 |
|
|
void
|
1159 |
|
|
init_resource_info (rtx epilogue_insn)
|
1160 |
|
|
{
|
1161 |
|
|
int i;
|
1162 |
|
|
|
1163 |
|
|
/* Indicate what resources are required to be valid at the end of the current
|
1164 |
|
|
function. The condition code never is and memory always is. If the
|
1165 |
|
|
frame pointer is needed, it is and so is the stack pointer unless
|
1166 |
|
|
EXIT_IGNORE_STACK is nonzero. If the frame pointer is not needed, the
|
1167 |
|
|
stack pointer is. Registers used to return the function value are
|
1168 |
|
|
needed. Registers holding global variables are needed. */
|
1169 |
|
|
|
1170 |
|
|
end_of_function_needs.cc = 0;
|
1171 |
|
|
end_of_function_needs.memory = 1;
|
1172 |
|
|
end_of_function_needs.unch_memory = 0;
|
1173 |
|
|
CLEAR_HARD_REG_SET (end_of_function_needs.regs);
|
1174 |
|
|
|
1175 |
|
|
if (frame_pointer_needed)
|
1176 |
|
|
{
|
1177 |
|
|
SET_HARD_REG_BIT (end_of_function_needs.regs, FRAME_POINTER_REGNUM);
|
1178 |
|
|
#if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
|
1179 |
|
|
SET_HARD_REG_BIT (end_of_function_needs.regs, HARD_FRAME_POINTER_REGNUM);
|
1180 |
|
|
#endif
|
1181 |
|
|
if (! EXIT_IGNORE_STACK
|
1182 |
|
|
|| current_function_sp_is_unchanging)
|
1183 |
|
|
SET_HARD_REG_BIT (end_of_function_needs.regs, STACK_POINTER_REGNUM);
|
1184 |
|
|
}
|
1185 |
|
|
else
|
1186 |
|
|
SET_HARD_REG_BIT (end_of_function_needs.regs, STACK_POINTER_REGNUM);
|
1187 |
|
|
|
1188 |
|
|
if (current_function_return_rtx != 0)
|
1189 |
|
|
mark_referenced_resources (current_function_return_rtx,
|
1190 |
|
|
&end_of_function_needs, 1);
|
1191 |
|
|
|
1192 |
|
|
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
|
1193 |
|
|
if (global_regs[i]
|
1194 |
|
|
#ifdef EPILOGUE_USES
|
1195 |
|
|
|| EPILOGUE_USES (i)
|
1196 |
|
|
#endif
|
1197 |
|
|
)
|
1198 |
|
|
SET_HARD_REG_BIT (end_of_function_needs.regs, i);
|
1199 |
|
|
|
1200 |
|
|
/* The registers required to be live at the end of the function are
|
1201 |
|
|
represented in the flow information as being dead just prior to
|
1202 |
|
|
reaching the end of the function. For example, the return of a value
|
1203 |
|
|
might be represented by a USE of the return register immediately
|
1204 |
|
|
followed by an unconditional jump to the return label where the
|
1205 |
|
|
return label is the end of the RTL chain. The end of the RTL chain
|
1206 |
|
|
is then taken to mean that the return register is live.
|
1207 |
|
|
|
1208 |
|
|
This sequence is no longer maintained when epilogue instructions are
|
1209 |
|
|
added to the RTL chain. To reconstruct the original meaning, the
|
1210 |
|
|
start of the epilogue (NOTE_INSN_EPILOGUE_BEG) is regarded as the
|
1211 |
|
|
point where these registers become live (start_of_epilogue_needs).
|
1212 |
|
|
If epilogue instructions are present, the registers set by those
|
1213 |
|
|
instructions won't have been processed by flow. Thus, those
|
1214 |
|
|
registers are additionally required at the end of the RTL chain
|
1215 |
|
|
(end_of_function_needs). */
|
1216 |
|
|
|
1217 |
|
|
start_of_epilogue_needs = end_of_function_needs;
|
1218 |
|
|
|
1219 |
|
|
while ((epilogue_insn = next_nonnote_insn (epilogue_insn)))
|
1220 |
|
|
{
|
1221 |
|
|
mark_set_resources (epilogue_insn, &end_of_function_needs, 0,
|
1222 |
|
|
MARK_SRC_DEST_CALL);
|
1223 |
|
|
if (return_insn_p (epilogue_insn))
|
1224 |
|
|
break;
|
1225 |
|
|
}
|
1226 |
|
|
|
1227 |
|
|
/* Allocate and initialize the tables used by mark_target_live_regs. */
|
1228 |
|
|
target_hash_table = XCNEWVEC (struct target_info *, TARGET_HASH_PRIME);
|
1229 |
|
|
bb_ticks = XCNEWVEC (int, last_basic_block);
|
1230 |
|
|
}
|
1231 |
|
|
|
1232 |
|
|
/* Free up the resources allocated to mark_target_live_regs (). This
|
1233 |
|
|
should be invoked after the last call to mark_target_live_regs (). */
|
1234 |
|
|
|
1235 |
|
|
void
|
1236 |
|
|
free_resource_info (void)
|
1237 |
|
|
{
|
1238 |
|
|
if (target_hash_table != NULL)
|
1239 |
|
|
{
|
1240 |
|
|
int i;
|
1241 |
|
|
|
1242 |
|
|
for (i = 0; i < TARGET_HASH_PRIME; ++i)
|
1243 |
|
|
{
|
1244 |
|
|
struct target_info *ti = target_hash_table[i];
|
1245 |
|
|
|
1246 |
|
|
while (ti)
|
1247 |
|
|
{
|
1248 |
|
|
struct target_info *next = ti->next;
|
1249 |
|
|
free (ti);
|
1250 |
|
|
ti = next;
|
1251 |
|
|
}
|
1252 |
|
|
}
|
1253 |
|
|
|
1254 |
|
|
free (target_hash_table);
|
1255 |
|
|
target_hash_table = NULL;
|
1256 |
|
|
}
|
1257 |
|
|
|
1258 |
|
|
if (bb_ticks != NULL)
|
1259 |
|
|
{
|
1260 |
|
|
free (bb_ticks);
|
1261 |
|
|
bb_ticks = NULL;
|
1262 |
|
|
}
|
1263 |
|
|
}
|
1264 |
|
|
|
1265 |
|
|
/* Clear any hashed information that we have stored for INSN. */
|
1266 |
|
|
|
1267 |
|
|
void
|
1268 |
|
|
clear_hashed_info_for_insn (rtx insn)
|
1269 |
|
|
{
|
1270 |
|
|
struct target_info *tinfo;
|
1271 |
|
|
|
1272 |
|
|
if (target_hash_table != NULL)
|
1273 |
|
|
{
|
1274 |
|
|
for (tinfo = target_hash_table[INSN_UID (insn) % TARGET_HASH_PRIME];
|
1275 |
|
|
tinfo; tinfo = tinfo->next)
|
1276 |
|
|
if (tinfo->uid == INSN_UID (insn))
|
1277 |
|
|
break;
|
1278 |
|
|
|
1279 |
|
|
if (tinfo)
|
1280 |
|
|
tinfo->block = -1;
|
1281 |
|
|
}
|
1282 |
|
|
}
|
1283 |
|
|
|
1284 |
|
|
/* Increment the tick count for the basic block that contains INSN. */
|
1285 |
|
|
|
1286 |
|
|
void
|
1287 |
|
|
incr_ticks_for_insn (rtx insn)
|
1288 |
|
|
{
|
1289 |
|
|
int b = find_basic_block (insn, MAX_DELAY_SLOT_LIVE_SEARCH);
|
1290 |
|
|
|
1291 |
|
|
if (b != -1)
|
1292 |
|
|
bb_ticks[b]++;
|
1293 |
|
|
}
|
1294 |
|
|
|
1295 |
|
|
/* Add TRIAL to the set of resources used at the end of the current
|
1296 |
|
|
function. */
|
1297 |
|
|
void
|
1298 |
|
|
mark_end_of_function_resources (rtx trial, int include_delayed_effects)
|
1299 |
|
|
{
|
1300 |
|
|
mark_referenced_resources (trial, &end_of_function_needs,
|
1301 |
|
|
include_delayed_effects);
|
1302 |
|
|
}
|