1 |
38 |
julius |
/* Instruction scheduling pass.
|
2 |
|
|
Copyright (C) 1992, 1993, 1994, 1995, 1996, 1997, 1998,
|
3 |
|
|
1999, 2000, 2001, 2002, 2003, 2004, 2005, 2007
|
4 |
|
|
Free Software Foundation, Inc.
|
5 |
|
|
Contributed by Michael Tiemann (tiemann@cygnus.com) Enhanced by,
|
6 |
|
|
and currently maintained by, Jim Wilson (wilson@cygnus.com)
|
7 |
|
|
|
8 |
|
|
This file is part of GCC.
|
9 |
|
|
|
10 |
|
|
GCC is free software; you can redistribute it and/or modify it under
|
11 |
|
|
the terms of the GNU General Public License as published by the Free
|
12 |
|
|
Software Foundation; either version 3, or (at your option) any later
|
13 |
|
|
version.
|
14 |
|
|
|
15 |
|
|
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
|
16 |
|
|
WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
17 |
|
|
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
18 |
|
|
for more details.
|
19 |
|
|
|
20 |
|
|
You should have received a copy of the GNU General Public License
|
21 |
|
|
along with GCC; see the file COPYING3. If not see
|
22 |
|
|
<http://www.gnu.org/licenses/>. */
|
23 |
|
|
|
24 |
|
|
/* This pass implements list scheduling within basic blocks. It is
|
25 |
|
|
run twice: (1) after flow analysis, but before register allocation,
|
26 |
|
|
and (2) after register allocation.
|
27 |
|
|
|
28 |
|
|
The first run performs interblock scheduling, moving insns between
|
29 |
|
|
different blocks in the same "region", and the second runs only
|
30 |
|
|
basic block scheduling.
|
31 |
|
|
|
32 |
|
|
Interblock motions performed are useful motions and speculative
|
33 |
|
|
motions, including speculative loads. Motions requiring code
|
34 |
|
|
duplication are not supported. The identification of motion type
|
35 |
|
|
and the check for validity of speculative motions requires
|
36 |
|
|
construction and analysis of the function's control flow graph.
|
37 |
|
|
|
38 |
|
|
The main entry point for this pass is schedule_insns(), called for
|
39 |
|
|
each function. The work of the scheduler is organized in three
|
40 |
|
|
levels: (1) function level: insns are subject to splitting,
|
41 |
|
|
control-flow-graph is constructed, regions are computed (after
|
42 |
|
|
reload, each region is of one block), (2) region level: control
|
43 |
|
|
flow graph attributes required for interblock scheduling are
|
44 |
|
|
computed (dominators, reachability, etc.), data dependences and
|
45 |
|
|
priorities are computed, and (3) block level: insns in the block
|
46 |
|
|
are actually scheduled. */
|
47 |
|
|
|
48 |
|
|
#include "config.h"
|
49 |
|
|
#include "system.h"
|
50 |
|
|
#include "coretypes.h"
|
51 |
|
|
#include "tm.h"
|
52 |
|
|
#include "toplev.h"
|
53 |
|
|
#include "rtl.h"
|
54 |
|
|
#include "tm_p.h"
|
55 |
|
|
#include "hard-reg-set.h"
|
56 |
|
|
#include "regs.h"
|
57 |
|
|
#include "function.h"
|
58 |
|
|
#include "flags.h"
|
59 |
|
|
#include "insn-config.h"
|
60 |
|
|
#include "insn-attr.h"
|
61 |
|
|
#include "except.h"
|
62 |
|
|
#include "toplev.h"
|
63 |
|
|
#include "recog.h"
|
64 |
|
|
#include "cfglayout.h"
|
65 |
|
|
#include "params.h"
|
66 |
|
|
#include "sched-int.h"
|
67 |
|
|
#include "target.h"
|
68 |
|
|
#include "timevar.h"
|
69 |
|
|
#include "tree-pass.h"
|
70 |
|
|
|
71 |
|
|
/* Define when we want to do count REG_DEAD notes before and after scheduling
|
72 |
|
|
for sanity checking. We can't do that when conditional execution is used,
|
73 |
|
|
as REG_DEAD exist only for unconditional deaths. */
|
74 |
|
|
|
75 |
|
|
#if !defined (HAVE_conditional_execution) && defined (ENABLE_CHECKING)
|
76 |
|
|
#define CHECK_DEAD_NOTES 1
|
77 |
|
|
#else
|
78 |
|
|
#define CHECK_DEAD_NOTES 0
|
79 |
|
|
#endif
|
80 |
|
|
|
81 |
|
|
|
82 |
|
|
#ifdef INSN_SCHEDULING
|
83 |
|
|
/* Some accessor macros for h_i_d members only used within this file. */
|
84 |
|
|
#define INSN_REF_COUNT(INSN) (h_i_d[INSN_UID (INSN)].ref_count)
|
85 |
|
|
#define FED_BY_SPEC_LOAD(insn) (h_i_d[INSN_UID (insn)].fed_by_spec_load)
|
86 |
|
|
#define IS_LOAD_INSN(insn) (h_i_d[INSN_UID (insn)].is_load_insn)
|
87 |
|
|
|
88 |
|
|
/* nr_inter/spec counts interblock/speculative motion for the function. */
|
89 |
|
|
static int nr_inter, nr_spec;
|
90 |
|
|
|
91 |
|
|
static int is_cfg_nonregular (void);
|
92 |
|
|
static bool sched_is_disabled_for_current_region_p (void);
|
93 |
|
|
|
94 |
|
|
/* A region is the main entity for interblock scheduling: insns
|
95 |
|
|
are allowed to move between blocks in the same region, along
|
96 |
|
|
control flow graph edges, in the 'up' direction. */
|
97 |
|
|
typedef struct
|
98 |
|
|
{
|
99 |
|
|
/* Number of extended basic blocks in region. */
|
100 |
|
|
int rgn_nr_blocks;
|
101 |
|
|
/* cblocks in the region (actually index in rgn_bb_table). */
|
102 |
|
|
int rgn_blocks;
|
103 |
|
|
/* Dependencies for this region are already computed. Basically, indicates,
|
104 |
|
|
that this is a recovery block. */
|
105 |
|
|
unsigned int dont_calc_deps : 1;
|
106 |
|
|
/* This region has at least one non-trivial ebb. */
|
107 |
|
|
unsigned int has_real_ebb : 1;
|
108 |
|
|
}
|
109 |
|
|
region;
|
110 |
|
|
|
111 |
|
|
/* Number of regions in the procedure. */
|
112 |
|
|
static int nr_regions;
|
113 |
|
|
|
114 |
|
|
/* Table of region descriptions. */
|
115 |
|
|
static region *rgn_table;
|
116 |
|
|
|
117 |
|
|
/* Array of lists of regions' blocks. */
|
118 |
|
|
static int *rgn_bb_table;
|
119 |
|
|
|
120 |
|
|
/* Topological order of blocks in the region (if b2 is reachable from
|
121 |
|
|
b1, block_to_bb[b2] > block_to_bb[b1]). Note: A basic block is
|
122 |
|
|
always referred to by either block or b, while its topological
|
123 |
|
|
order name (in the region) is referred to by bb. */
|
124 |
|
|
static int *block_to_bb;
|
125 |
|
|
|
126 |
|
|
/* The number of the region containing a block. */
|
127 |
|
|
static int *containing_rgn;
|
128 |
|
|
|
129 |
|
|
/* The minimum probability of reaching a source block so that it will be
|
130 |
|
|
considered for speculative scheduling. */
|
131 |
|
|
static int min_spec_prob;
|
132 |
|
|
|
133 |
|
|
#define RGN_NR_BLOCKS(rgn) (rgn_table[rgn].rgn_nr_blocks)
|
134 |
|
|
#define RGN_BLOCKS(rgn) (rgn_table[rgn].rgn_blocks)
|
135 |
|
|
#define RGN_DONT_CALC_DEPS(rgn) (rgn_table[rgn].dont_calc_deps)
|
136 |
|
|
#define RGN_HAS_REAL_EBB(rgn) (rgn_table[rgn].has_real_ebb)
|
137 |
|
|
#define BLOCK_TO_BB(block) (block_to_bb[block])
|
138 |
|
|
#define CONTAINING_RGN(block) (containing_rgn[block])
|
139 |
|
|
|
140 |
|
|
void debug_regions (void);
|
141 |
|
|
static void find_single_block_region (void);
|
142 |
|
|
static void find_rgns (void);
|
143 |
|
|
static void extend_rgns (int *, int *, sbitmap, int *);
|
144 |
|
|
static bool too_large (int, int *, int *);
|
145 |
|
|
|
146 |
|
|
extern void debug_live (int, int);
|
147 |
|
|
|
148 |
|
|
/* Blocks of the current region being scheduled. */
|
149 |
|
|
static int current_nr_blocks;
|
150 |
|
|
static int current_blocks;
|
151 |
|
|
|
152 |
|
|
static int rgn_n_insns;
|
153 |
|
|
|
154 |
|
|
/* The mapping from ebb to block. */
|
155 |
|
|
/* ebb_head [i] - is index in rgn_bb_table, while
|
156 |
|
|
EBB_HEAD (i) - is basic block index.
|
157 |
|
|
BASIC_BLOCK (EBB_HEAD (i)) - head of ebb. */
|
158 |
|
|
#define BB_TO_BLOCK(ebb) (rgn_bb_table[ebb_head[ebb]])
|
159 |
|
|
#define EBB_FIRST_BB(ebb) BASIC_BLOCK (BB_TO_BLOCK (ebb))
|
160 |
|
|
#define EBB_LAST_BB(ebb) BASIC_BLOCK (rgn_bb_table[ebb_head[ebb + 1] - 1])
|
161 |
|
|
|
162 |
|
|
/* Target info declarations.
|
163 |
|
|
|
164 |
|
|
The block currently being scheduled is referred to as the "target" block,
|
165 |
|
|
while other blocks in the region from which insns can be moved to the
|
166 |
|
|
target are called "source" blocks. The candidate structure holds info
|
167 |
|
|
about such sources: are they valid? Speculative? Etc. */
|
168 |
|
|
typedef struct
|
169 |
|
|
{
|
170 |
|
|
basic_block *first_member;
|
171 |
|
|
int nr_members;
|
172 |
|
|
}
|
173 |
|
|
bblst;
|
174 |
|
|
|
175 |
|
|
typedef struct
|
176 |
|
|
{
|
177 |
|
|
char is_valid;
|
178 |
|
|
char is_speculative;
|
179 |
|
|
int src_prob;
|
180 |
|
|
bblst split_bbs;
|
181 |
|
|
bblst update_bbs;
|
182 |
|
|
}
|
183 |
|
|
candidate;
|
184 |
|
|
|
185 |
|
|
static candidate *candidate_table;
|
186 |
|
|
|
187 |
|
|
/* A speculative motion requires checking live information on the path
|
188 |
|
|
from 'source' to 'target'. The split blocks are those to be checked.
|
189 |
|
|
After a speculative motion, live information should be modified in
|
190 |
|
|
the 'update' blocks.
|
191 |
|
|
|
192 |
|
|
Lists of split and update blocks for each candidate of the current
|
193 |
|
|
target are in array bblst_table. */
|
194 |
|
|
static basic_block *bblst_table;
|
195 |
|
|
static int bblst_size, bblst_last;
|
196 |
|
|
|
197 |
|
|
#define IS_VALID(src) ( candidate_table[src].is_valid )
|
198 |
|
|
#define IS_SPECULATIVE(src) ( candidate_table[src].is_speculative )
|
199 |
|
|
#define SRC_PROB(src) ( candidate_table[src].src_prob )
|
200 |
|
|
|
201 |
|
|
/* The bb being currently scheduled. */
|
202 |
|
|
static int target_bb;
|
203 |
|
|
|
204 |
|
|
/* List of edges. */
|
205 |
|
|
typedef struct
|
206 |
|
|
{
|
207 |
|
|
edge *first_member;
|
208 |
|
|
int nr_members;
|
209 |
|
|
}
|
210 |
|
|
edgelst;
|
211 |
|
|
|
212 |
|
|
static edge *edgelst_table;
|
213 |
|
|
static int edgelst_last;
|
214 |
|
|
|
215 |
|
|
static void extract_edgelst (sbitmap, edgelst *);
|
216 |
|
|
|
217 |
|
|
|
218 |
|
|
/* Target info functions. */
|
219 |
|
|
static void split_edges (int, int, edgelst *);
|
220 |
|
|
static void compute_trg_info (int);
|
221 |
|
|
void debug_candidate (int);
|
222 |
|
|
void debug_candidates (int);
|
223 |
|
|
|
224 |
|
|
/* Dominators array: dom[i] contains the sbitmap of dominators of
|
225 |
|
|
bb i in the region. */
|
226 |
|
|
static sbitmap *dom;
|
227 |
|
|
|
228 |
|
|
/* bb 0 is the only region entry. */
|
229 |
|
|
#define IS_RGN_ENTRY(bb) (!bb)
|
230 |
|
|
|
231 |
|
|
/* Is bb_src dominated by bb_trg. */
|
232 |
|
|
#define IS_DOMINATED(bb_src, bb_trg) \
|
233 |
|
|
( TEST_BIT (dom[bb_src], bb_trg) )
|
234 |
|
|
|
235 |
|
|
/* Probability: Prob[i] is an int in [0, REG_BR_PROB_BASE] which is
|
236 |
|
|
the probability of bb i relative to the region entry. */
|
237 |
|
|
static int *prob;
|
238 |
|
|
|
239 |
|
|
/* Bit-set of edges, where bit i stands for edge i. */
|
240 |
|
|
typedef sbitmap edgeset;
|
241 |
|
|
|
242 |
|
|
/* Number of edges in the region. */
|
243 |
|
|
static int rgn_nr_edges;
|
244 |
|
|
|
245 |
|
|
/* Array of size rgn_nr_edges. */
|
246 |
|
|
static edge *rgn_edges;
|
247 |
|
|
|
248 |
|
|
/* Mapping from each edge in the graph to its number in the rgn. */
|
249 |
|
|
#define EDGE_TO_BIT(edge) ((int)(size_t)(edge)->aux)
|
250 |
|
|
#define SET_EDGE_TO_BIT(edge,nr) ((edge)->aux = (void *)(size_t)(nr))
|
251 |
|
|
|
252 |
|
|
/* The split edges of a source bb is different for each target
|
253 |
|
|
bb. In order to compute this efficiently, the 'potential-split edges'
|
254 |
|
|
are computed for each bb prior to scheduling a region. This is actually
|
255 |
|
|
the split edges of each bb relative to the region entry.
|
256 |
|
|
|
257 |
|
|
pot_split[bb] is the set of potential split edges of bb. */
|
258 |
|
|
static edgeset *pot_split;
|
259 |
|
|
|
260 |
|
|
/* For every bb, a set of its ancestor edges. */
|
261 |
|
|
static edgeset *ancestor_edges;
|
262 |
|
|
|
263 |
|
|
/* Array of EBBs sizes. Currently we can get a ebb only through
|
264 |
|
|
splitting of currently scheduling block, therefore, we don't need
|
265 |
|
|
ebb_head array for every region, its sufficient to hold it only
|
266 |
|
|
for current one. */
|
267 |
|
|
static int *ebb_head;
|
268 |
|
|
|
269 |
|
|
static void compute_dom_prob_ps (int);
|
270 |
|
|
|
271 |
|
|
#define INSN_PROBABILITY(INSN) (SRC_PROB (BLOCK_TO_BB (BLOCK_NUM (INSN))))
|
272 |
|
|
#define IS_SPECULATIVE_INSN(INSN) (IS_SPECULATIVE (BLOCK_TO_BB (BLOCK_NUM (INSN))))
|
273 |
|
|
#define INSN_BB(INSN) (BLOCK_TO_BB (BLOCK_NUM (INSN)))
|
274 |
|
|
|
275 |
|
|
/* Speculative scheduling functions. */
|
276 |
|
|
static int check_live_1 (int, rtx);
|
277 |
|
|
static void update_live_1 (int, rtx);
|
278 |
|
|
static int check_live (rtx, int);
|
279 |
|
|
static void update_live (rtx, int);
|
280 |
|
|
static void set_spec_fed (rtx);
|
281 |
|
|
static int is_pfree (rtx, int, int);
|
282 |
|
|
static int find_conditional_protection (rtx, int);
|
283 |
|
|
static int is_conditionally_protected (rtx, int, int);
|
284 |
|
|
static int is_prisky (rtx, int, int);
|
285 |
|
|
static int is_exception_free (rtx, int, int);
|
286 |
|
|
|
287 |
|
|
static bool sets_likely_spilled (rtx);
|
288 |
|
|
static void sets_likely_spilled_1 (rtx, rtx, void *);
|
289 |
|
|
static void add_branch_dependences (rtx, rtx);
|
290 |
|
|
static void compute_block_backward_dependences (int);
|
291 |
|
|
void debug_dependencies (void);
|
292 |
|
|
|
293 |
|
|
static void init_regions (void);
|
294 |
|
|
static void schedule_region (int);
|
295 |
|
|
static rtx concat_INSN_LIST (rtx, rtx);
|
296 |
|
|
static void concat_insn_mem_list (rtx, rtx, rtx *, rtx *);
|
297 |
|
|
static void propagate_deps (int, struct deps *);
|
298 |
|
|
static void free_pending_lists (void);
|
299 |
|
|
|
300 |
|
|
/* Functions for construction of the control flow graph. */
|
301 |
|
|
|
302 |
|
|
/* Return 1 if control flow graph should not be constructed, 0 otherwise.
|
303 |
|
|
|
304 |
|
|
We decide not to build the control flow graph if there is possibly more
|
305 |
|
|
than one entry to the function, if computed branches exist, if we
|
306 |
|
|
have nonlocal gotos, or if we have an unreachable loop. */
|
307 |
|
|
|
308 |
|
|
static int
|
309 |
|
|
is_cfg_nonregular (void)
|
310 |
|
|
{
|
311 |
|
|
basic_block b;
|
312 |
|
|
rtx insn;
|
313 |
|
|
|
314 |
|
|
/* If we have a label that could be the target of a nonlocal goto, then
|
315 |
|
|
the cfg is not well structured. */
|
316 |
|
|
if (nonlocal_goto_handler_labels)
|
317 |
|
|
return 1;
|
318 |
|
|
|
319 |
|
|
/* If we have any forced labels, then the cfg is not well structured. */
|
320 |
|
|
if (forced_labels)
|
321 |
|
|
return 1;
|
322 |
|
|
|
323 |
|
|
/* If we have exception handlers, then we consider the cfg not well
|
324 |
|
|
structured. ?!? We should be able to handle this now that flow.c
|
325 |
|
|
computes an accurate cfg for EH. */
|
326 |
|
|
if (current_function_has_exception_handlers ())
|
327 |
|
|
return 1;
|
328 |
|
|
|
329 |
|
|
/* If we have non-jumping insns which refer to labels, then we consider
|
330 |
|
|
the cfg not well structured. */
|
331 |
|
|
FOR_EACH_BB (b)
|
332 |
|
|
FOR_BB_INSNS (b, insn)
|
333 |
|
|
{
|
334 |
|
|
/* Check for labels referred by non-jump insns. */
|
335 |
|
|
if (NONJUMP_INSN_P (insn) || CALL_P (insn))
|
336 |
|
|
{
|
337 |
|
|
rtx note = find_reg_note (insn, REG_LABEL, NULL_RTX);
|
338 |
|
|
if (note
|
339 |
|
|
&& ! (JUMP_P (NEXT_INSN (insn))
|
340 |
|
|
&& find_reg_note (NEXT_INSN (insn), REG_LABEL,
|
341 |
|
|
XEXP (note, 0))))
|
342 |
|
|
return 1;
|
343 |
|
|
}
|
344 |
|
|
/* If this function has a computed jump, then we consider the cfg
|
345 |
|
|
not well structured. */
|
346 |
|
|
else if (JUMP_P (insn) && computed_jump_p (insn))
|
347 |
|
|
return 1;
|
348 |
|
|
}
|
349 |
|
|
|
350 |
|
|
/* Unreachable loops with more than one basic block are detected
|
351 |
|
|
during the DFS traversal in find_rgns.
|
352 |
|
|
|
353 |
|
|
Unreachable loops with a single block are detected here. This
|
354 |
|
|
test is redundant with the one in find_rgns, but it's much
|
355 |
|
|
cheaper to go ahead and catch the trivial case here. */
|
356 |
|
|
FOR_EACH_BB (b)
|
357 |
|
|
{
|
358 |
|
|
if (EDGE_COUNT (b->preds) == 0
|
359 |
|
|
|| (single_pred_p (b)
|
360 |
|
|
&& single_pred (b) == b))
|
361 |
|
|
return 1;
|
362 |
|
|
}
|
363 |
|
|
|
364 |
|
|
/* All the tests passed. Consider the cfg well structured. */
|
365 |
|
|
return 0;
|
366 |
|
|
}
|
367 |
|
|
|
368 |
|
|
/* Extract list of edges from a bitmap containing EDGE_TO_BIT bits. */
|
369 |
|
|
|
370 |
|
|
static void
|
371 |
|
|
extract_edgelst (sbitmap set, edgelst *el)
|
372 |
|
|
{
|
373 |
|
|
unsigned int i = 0;
|
374 |
|
|
sbitmap_iterator sbi;
|
375 |
|
|
|
376 |
|
|
/* edgelst table space is reused in each call to extract_edgelst. */
|
377 |
|
|
edgelst_last = 0;
|
378 |
|
|
|
379 |
|
|
el->first_member = &edgelst_table[edgelst_last];
|
380 |
|
|
el->nr_members = 0;
|
381 |
|
|
|
382 |
|
|
/* Iterate over each word in the bitset. */
|
383 |
|
|
EXECUTE_IF_SET_IN_SBITMAP (set, 0, i, sbi)
|
384 |
|
|
{
|
385 |
|
|
edgelst_table[edgelst_last++] = rgn_edges[i];
|
386 |
|
|
el->nr_members++;
|
387 |
|
|
}
|
388 |
|
|
}
|
389 |
|
|
|
390 |
|
|
/* Functions for the construction of regions. */
|
391 |
|
|
|
392 |
|
|
/* Print the regions, for debugging purposes. Callable from debugger. */
|
393 |
|
|
|
394 |
|
|
void
|
395 |
|
|
debug_regions (void)
|
396 |
|
|
{
|
397 |
|
|
int rgn, bb;
|
398 |
|
|
|
399 |
|
|
fprintf (sched_dump, "\n;; ------------ REGIONS ----------\n\n");
|
400 |
|
|
for (rgn = 0; rgn < nr_regions; rgn++)
|
401 |
|
|
{
|
402 |
|
|
fprintf (sched_dump, ";;\trgn %d nr_blocks %d:\n", rgn,
|
403 |
|
|
rgn_table[rgn].rgn_nr_blocks);
|
404 |
|
|
fprintf (sched_dump, ";;\tbb/block: ");
|
405 |
|
|
|
406 |
|
|
/* We don't have ebb_head initialized yet, so we can't use
|
407 |
|
|
BB_TO_BLOCK (). */
|
408 |
|
|
current_blocks = RGN_BLOCKS (rgn);
|
409 |
|
|
|
410 |
|
|
for (bb = 0; bb < rgn_table[rgn].rgn_nr_blocks; bb++)
|
411 |
|
|
fprintf (sched_dump, " %d/%d ", bb, rgn_bb_table[current_blocks + bb]);
|
412 |
|
|
|
413 |
|
|
fprintf (sched_dump, "\n\n");
|
414 |
|
|
}
|
415 |
|
|
}
|
416 |
|
|
|
417 |
|
|
/* Build a single block region for each basic block in the function.
|
418 |
|
|
This allows for using the same code for interblock and basic block
|
419 |
|
|
scheduling. */
|
420 |
|
|
|
421 |
|
|
static void
|
422 |
|
|
find_single_block_region (void)
|
423 |
|
|
{
|
424 |
|
|
basic_block bb;
|
425 |
|
|
|
426 |
|
|
nr_regions = 0;
|
427 |
|
|
|
428 |
|
|
FOR_EACH_BB (bb)
|
429 |
|
|
{
|
430 |
|
|
rgn_bb_table[nr_regions] = bb->index;
|
431 |
|
|
RGN_NR_BLOCKS (nr_regions) = 1;
|
432 |
|
|
RGN_BLOCKS (nr_regions) = nr_regions;
|
433 |
|
|
RGN_DONT_CALC_DEPS (nr_regions) = 0;
|
434 |
|
|
RGN_HAS_REAL_EBB (nr_regions) = 0;
|
435 |
|
|
CONTAINING_RGN (bb->index) = nr_regions;
|
436 |
|
|
BLOCK_TO_BB (bb->index) = 0;
|
437 |
|
|
nr_regions++;
|
438 |
|
|
}
|
439 |
|
|
}
|
440 |
|
|
|
441 |
|
|
/* Update number of blocks and the estimate for number of insns
|
442 |
|
|
in the region. Return true if the region is "too large" for interblock
|
443 |
|
|
scheduling (compile time considerations). */
|
444 |
|
|
|
445 |
|
|
static bool
|
446 |
|
|
too_large (int block, int *num_bbs, int *num_insns)
|
447 |
|
|
{
|
448 |
|
|
(*num_bbs)++;
|
449 |
|
|
(*num_insns) += (INSN_LUID (BB_END (BASIC_BLOCK (block)))
|
450 |
|
|
- INSN_LUID (BB_HEAD (BASIC_BLOCK (block))));
|
451 |
|
|
|
452 |
|
|
return ((*num_bbs > PARAM_VALUE (PARAM_MAX_SCHED_REGION_BLOCKS))
|
453 |
|
|
|| (*num_insns > PARAM_VALUE (PARAM_MAX_SCHED_REGION_INSNS)));
|
454 |
|
|
}
|
455 |
|
|
|
456 |
|
|
/* Update_loop_relations(blk, hdr): Check if the loop headed by max_hdr[blk]
|
457 |
|
|
is still an inner loop. Put in max_hdr[blk] the header of the most inner
|
458 |
|
|
loop containing blk. */
|
459 |
|
|
#define UPDATE_LOOP_RELATIONS(blk, hdr) \
|
460 |
|
|
{ \
|
461 |
|
|
if (max_hdr[blk] == -1) \
|
462 |
|
|
max_hdr[blk] = hdr; \
|
463 |
|
|
else if (dfs_nr[max_hdr[blk]] > dfs_nr[hdr]) \
|
464 |
|
|
RESET_BIT (inner, hdr); \
|
465 |
|
|
else if (dfs_nr[max_hdr[blk]] < dfs_nr[hdr]) \
|
466 |
|
|
{ \
|
467 |
|
|
RESET_BIT (inner,max_hdr[blk]); \
|
468 |
|
|
max_hdr[blk] = hdr; \
|
469 |
|
|
} \
|
470 |
|
|
}
|
471 |
|
|
|
472 |
|
|
/* Find regions for interblock scheduling.
|
473 |
|
|
|
474 |
|
|
A region for scheduling can be:
|
475 |
|
|
|
476 |
|
|
* A loop-free procedure, or
|
477 |
|
|
|
478 |
|
|
* A reducible inner loop, or
|
479 |
|
|
|
480 |
|
|
* A basic block not contained in any other region.
|
481 |
|
|
|
482 |
|
|
?!? In theory we could build other regions based on extended basic
|
483 |
|
|
blocks or reverse extended basic blocks. Is it worth the trouble?
|
484 |
|
|
|
485 |
|
|
Loop blocks that form a region are put into the region's block list
|
486 |
|
|
in topological order.
|
487 |
|
|
|
488 |
|
|
This procedure stores its results into the following global (ick) variables
|
489 |
|
|
|
490 |
|
|
* rgn_nr
|
491 |
|
|
* rgn_table
|
492 |
|
|
* rgn_bb_table
|
493 |
|
|
* block_to_bb
|
494 |
|
|
* containing region
|
495 |
|
|
|
496 |
|
|
We use dominator relationships to avoid making regions out of non-reducible
|
497 |
|
|
loops.
|
498 |
|
|
|
499 |
|
|
This procedure needs to be converted to work on pred/succ lists instead
|
500 |
|
|
of edge tables. That would simplify it somewhat. */
|
501 |
|
|
|
502 |
|
|
static void
|
503 |
|
|
find_rgns (void)
|
504 |
|
|
{
|
505 |
|
|
int *max_hdr, *dfs_nr, *degree;
|
506 |
|
|
char no_loops = 1;
|
507 |
|
|
int node, child, loop_head, i, head, tail;
|
508 |
|
|
int count = 0, sp, idx = 0;
|
509 |
|
|
edge_iterator current_edge;
|
510 |
|
|
edge_iterator *stack;
|
511 |
|
|
int num_bbs, num_insns, unreachable;
|
512 |
|
|
int too_large_failure;
|
513 |
|
|
basic_block bb;
|
514 |
|
|
|
515 |
|
|
/* Note if a block is a natural loop header. */
|
516 |
|
|
sbitmap header;
|
517 |
|
|
|
518 |
|
|
/* Note if a block is a natural inner loop header. */
|
519 |
|
|
sbitmap inner;
|
520 |
|
|
|
521 |
|
|
/* Note if a block is in the block queue. */
|
522 |
|
|
sbitmap in_queue;
|
523 |
|
|
|
524 |
|
|
/* Note if a block is in the block queue. */
|
525 |
|
|
sbitmap in_stack;
|
526 |
|
|
|
527 |
|
|
/* Perform a DFS traversal of the cfg. Identify loop headers, inner loops
|
528 |
|
|
and a mapping from block to its loop header (if the block is contained
|
529 |
|
|
in a loop, else -1).
|
530 |
|
|
|
531 |
|
|
Store results in HEADER, INNER, and MAX_HDR respectively, these will
|
532 |
|
|
be used as inputs to the second traversal.
|
533 |
|
|
|
534 |
|
|
STACK, SP and DFS_NR are only used during the first traversal. */
|
535 |
|
|
|
536 |
|
|
/* Allocate and initialize variables for the first traversal. */
|
537 |
|
|
max_hdr = XNEWVEC (int, last_basic_block);
|
538 |
|
|
dfs_nr = XCNEWVEC (int, last_basic_block);
|
539 |
|
|
stack = XNEWVEC (edge_iterator, n_edges);
|
540 |
|
|
|
541 |
|
|
inner = sbitmap_alloc (last_basic_block);
|
542 |
|
|
sbitmap_ones (inner);
|
543 |
|
|
|
544 |
|
|
header = sbitmap_alloc (last_basic_block);
|
545 |
|
|
sbitmap_zero (header);
|
546 |
|
|
|
547 |
|
|
in_queue = sbitmap_alloc (last_basic_block);
|
548 |
|
|
sbitmap_zero (in_queue);
|
549 |
|
|
|
550 |
|
|
in_stack = sbitmap_alloc (last_basic_block);
|
551 |
|
|
sbitmap_zero (in_stack);
|
552 |
|
|
|
553 |
|
|
for (i = 0; i < last_basic_block; i++)
|
554 |
|
|
max_hdr[i] = -1;
|
555 |
|
|
|
556 |
|
|
#define EDGE_PASSED(E) (ei_end_p ((E)) || ei_edge ((E))->aux)
|
557 |
|
|
#define SET_EDGE_PASSED(E) (ei_edge ((E))->aux = ei_edge ((E)))
|
558 |
|
|
|
559 |
|
|
/* DFS traversal to find inner loops in the cfg. */
|
560 |
|
|
|
561 |
|
|
current_edge = ei_start (single_succ (ENTRY_BLOCK_PTR)->succs);
|
562 |
|
|
sp = -1;
|
563 |
|
|
|
564 |
|
|
while (1)
|
565 |
|
|
{
|
566 |
|
|
if (EDGE_PASSED (current_edge))
|
567 |
|
|
{
|
568 |
|
|
/* We have reached a leaf node or a node that was already
|
569 |
|
|
processed. Pop edges off the stack until we find
|
570 |
|
|
an edge that has not yet been processed. */
|
571 |
|
|
while (sp >= 0 && EDGE_PASSED (current_edge))
|
572 |
|
|
{
|
573 |
|
|
/* Pop entry off the stack. */
|
574 |
|
|
current_edge = stack[sp--];
|
575 |
|
|
node = ei_edge (current_edge)->src->index;
|
576 |
|
|
gcc_assert (node != ENTRY_BLOCK);
|
577 |
|
|
child = ei_edge (current_edge)->dest->index;
|
578 |
|
|
gcc_assert (child != EXIT_BLOCK);
|
579 |
|
|
RESET_BIT (in_stack, child);
|
580 |
|
|
if (max_hdr[child] >= 0 && TEST_BIT (in_stack, max_hdr[child]))
|
581 |
|
|
UPDATE_LOOP_RELATIONS (node, max_hdr[child]);
|
582 |
|
|
ei_next (¤t_edge);
|
583 |
|
|
}
|
584 |
|
|
|
585 |
|
|
/* See if have finished the DFS tree traversal. */
|
586 |
|
|
if (sp < 0 && EDGE_PASSED (current_edge))
|
587 |
|
|
break;
|
588 |
|
|
|
589 |
|
|
/* Nope, continue the traversal with the popped node. */
|
590 |
|
|
continue;
|
591 |
|
|
}
|
592 |
|
|
|
593 |
|
|
/* Process a node. */
|
594 |
|
|
node = ei_edge (current_edge)->src->index;
|
595 |
|
|
gcc_assert (node != ENTRY_BLOCK);
|
596 |
|
|
SET_BIT (in_stack, node);
|
597 |
|
|
dfs_nr[node] = ++count;
|
598 |
|
|
|
599 |
|
|
/* We don't traverse to the exit block. */
|
600 |
|
|
child = ei_edge (current_edge)->dest->index;
|
601 |
|
|
if (child == EXIT_BLOCK)
|
602 |
|
|
{
|
603 |
|
|
SET_EDGE_PASSED (current_edge);
|
604 |
|
|
ei_next (¤t_edge);
|
605 |
|
|
continue;
|
606 |
|
|
}
|
607 |
|
|
|
608 |
|
|
/* If the successor is in the stack, then we've found a loop.
|
609 |
|
|
Mark the loop, if it is not a natural loop, then it will
|
610 |
|
|
be rejected during the second traversal. */
|
611 |
|
|
if (TEST_BIT (in_stack, child))
|
612 |
|
|
{
|
613 |
|
|
no_loops = 0;
|
614 |
|
|
SET_BIT (header, child);
|
615 |
|
|
UPDATE_LOOP_RELATIONS (node, child);
|
616 |
|
|
SET_EDGE_PASSED (current_edge);
|
617 |
|
|
ei_next (¤t_edge);
|
618 |
|
|
continue;
|
619 |
|
|
}
|
620 |
|
|
|
621 |
|
|
/* If the child was already visited, then there is no need to visit
|
622 |
|
|
it again. Just update the loop relationships and restart
|
623 |
|
|
with a new edge. */
|
624 |
|
|
if (dfs_nr[child])
|
625 |
|
|
{
|
626 |
|
|
if (max_hdr[child] >= 0 && TEST_BIT (in_stack, max_hdr[child]))
|
627 |
|
|
UPDATE_LOOP_RELATIONS (node, max_hdr[child]);
|
628 |
|
|
SET_EDGE_PASSED (current_edge);
|
629 |
|
|
ei_next (¤t_edge);
|
630 |
|
|
continue;
|
631 |
|
|
}
|
632 |
|
|
|
633 |
|
|
/* Push an entry on the stack and continue DFS traversal. */
|
634 |
|
|
stack[++sp] = current_edge;
|
635 |
|
|
SET_EDGE_PASSED (current_edge);
|
636 |
|
|
current_edge = ei_start (ei_edge (current_edge)->dest->succs);
|
637 |
|
|
}
|
638 |
|
|
|
639 |
|
|
/* Reset ->aux field used by EDGE_PASSED. */
|
640 |
|
|
FOR_ALL_BB (bb)
|
641 |
|
|
{
|
642 |
|
|
edge_iterator ei;
|
643 |
|
|
edge e;
|
644 |
|
|
FOR_EACH_EDGE (e, ei, bb->succs)
|
645 |
|
|
e->aux = NULL;
|
646 |
|
|
}
|
647 |
|
|
|
648 |
|
|
|
649 |
|
|
/* Another check for unreachable blocks. The earlier test in
|
650 |
|
|
is_cfg_nonregular only finds unreachable blocks that do not
|
651 |
|
|
form a loop.
|
652 |
|
|
|
653 |
|
|
The DFS traversal will mark every block that is reachable from
|
654 |
|
|
the entry node by placing a nonzero value in dfs_nr. Thus if
|
655 |
|
|
dfs_nr is zero for any block, then it must be unreachable. */
|
656 |
|
|
unreachable = 0;
|
657 |
|
|
FOR_EACH_BB (bb)
|
658 |
|
|
if (dfs_nr[bb->index] == 0)
|
659 |
|
|
{
|
660 |
|
|
unreachable = 1;
|
661 |
|
|
break;
|
662 |
|
|
}
|
663 |
|
|
|
664 |
|
|
/* Gross. To avoid wasting memory, the second pass uses the dfs_nr array
|
665 |
|
|
to hold degree counts. */
|
666 |
|
|
degree = dfs_nr;
|
667 |
|
|
|
668 |
|
|
FOR_EACH_BB (bb)
|
669 |
|
|
degree[bb->index] = EDGE_COUNT (bb->preds);
|
670 |
|
|
|
671 |
|
|
/* Do not perform region scheduling if there are any unreachable
|
672 |
|
|
blocks. */
|
673 |
|
|
if (!unreachable)
|
674 |
|
|
{
|
675 |
|
|
int *queue, *degree1 = NULL;
|
676 |
|
|
/* We use EXTENDED_RGN_HEADER as an addition to HEADER and put
|
677 |
|
|
there basic blocks, which are forced to be region heads.
|
678 |
|
|
This is done to try to assemble few smaller regions
|
679 |
|
|
from a too_large region. */
|
680 |
|
|
sbitmap extended_rgn_header = NULL;
|
681 |
|
|
bool extend_regions_p;
|
682 |
|
|
|
683 |
|
|
if (no_loops)
|
684 |
|
|
SET_BIT (header, 0);
|
685 |
|
|
|
686 |
|
|
/* Second traversal:find reducible inner loops and topologically sort
|
687 |
|
|
block of each region. */
|
688 |
|
|
|
689 |
|
|
queue = XNEWVEC (int, n_basic_blocks);
|
690 |
|
|
|
691 |
|
|
extend_regions_p = PARAM_VALUE (PARAM_MAX_SCHED_EXTEND_REGIONS_ITERS) > 0;
|
692 |
|
|
if (extend_regions_p)
|
693 |
|
|
{
|
694 |
|
|
degree1 = xmalloc (last_basic_block * sizeof (int));
|
695 |
|
|
extended_rgn_header = sbitmap_alloc (last_basic_block);
|
696 |
|
|
sbitmap_zero (extended_rgn_header);
|
697 |
|
|
}
|
698 |
|
|
|
699 |
|
|
/* Find blocks which are inner loop headers. We still have non-reducible
|
700 |
|
|
loops to consider at this point. */
|
701 |
|
|
FOR_EACH_BB (bb)
|
702 |
|
|
{
|
703 |
|
|
if (TEST_BIT (header, bb->index) && TEST_BIT (inner, bb->index))
|
704 |
|
|
{
|
705 |
|
|
edge e;
|
706 |
|
|
edge_iterator ei;
|
707 |
|
|
basic_block jbb;
|
708 |
|
|
|
709 |
|
|
/* Now check that the loop is reducible. We do this separate
|
710 |
|
|
from finding inner loops so that we do not find a reducible
|
711 |
|
|
loop which contains an inner non-reducible loop.
|
712 |
|
|
|
713 |
|
|
A simple way to find reducible/natural loops is to verify
|
714 |
|
|
that each block in the loop is dominated by the loop
|
715 |
|
|
header.
|
716 |
|
|
|
717 |
|
|
If there exists a block that is not dominated by the loop
|
718 |
|
|
header, then the block is reachable from outside the loop
|
719 |
|
|
and thus the loop is not a natural loop. */
|
720 |
|
|
FOR_EACH_BB (jbb)
|
721 |
|
|
{
|
722 |
|
|
/* First identify blocks in the loop, except for the loop
|
723 |
|
|
entry block. */
|
724 |
|
|
if (bb->index == max_hdr[jbb->index] && bb != jbb)
|
725 |
|
|
{
|
726 |
|
|
/* Now verify that the block is dominated by the loop
|
727 |
|
|
header. */
|
728 |
|
|
if (!dominated_by_p (CDI_DOMINATORS, jbb, bb))
|
729 |
|
|
break;
|
730 |
|
|
}
|
731 |
|
|
}
|
732 |
|
|
|
733 |
|
|
/* If we exited the loop early, then I is the header of
|
734 |
|
|
a non-reducible loop and we should quit processing it
|
735 |
|
|
now. */
|
736 |
|
|
if (jbb != EXIT_BLOCK_PTR)
|
737 |
|
|
continue;
|
738 |
|
|
|
739 |
|
|
/* I is a header of an inner loop, or block 0 in a subroutine
|
740 |
|
|
with no loops at all. */
|
741 |
|
|
head = tail = -1;
|
742 |
|
|
too_large_failure = 0;
|
743 |
|
|
loop_head = max_hdr[bb->index];
|
744 |
|
|
|
745 |
|
|
if (extend_regions_p)
|
746 |
|
|
/* We save degree in case when we meet a too_large region
|
747 |
|
|
and cancel it. We need a correct degree later when
|
748 |
|
|
calling extend_rgns. */
|
749 |
|
|
memcpy (degree1, degree, last_basic_block * sizeof (int));
|
750 |
|
|
|
751 |
|
|
/* Decrease degree of all I's successors for topological
|
752 |
|
|
ordering. */
|
753 |
|
|
FOR_EACH_EDGE (e, ei, bb->succs)
|
754 |
|
|
if (e->dest != EXIT_BLOCK_PTR)
|
755 |
|
|
--degree[e->dest->index];
|
756 |
|
|
|
757 |
|
|
/* Estimate # insns, and count # blocks in the region. */
|
758 |
|
|
num_bbs = 1;
|
759 |
|
|
num_insns = (INSN_LUID (BB_END (bb))
|
760 |
|
|
- INSN_LUID (BB_HEAD (bb)));
|
761 |
|
|
|
762 |
|
|
/* Find all loop latches (blocks with back edges to the loop
|
763 |
|
|
header) or all the leaf blocks in the cfg has no loops.
|
764 |
|
|
|
765 |
|
|
Place those blocks into the queue. */
|
766 |
|
|
if (no_loops)
|
767 |
|
|
{
|
768 |
|
|
FOR_EACH_BB (jbb)
|
769 |
|
|
/* Leaf nodes have only a single successor which must
|
770 |
|
|
be EXIT_BLOCK. */
|
771 |
|
|
if (single_succ_p (jbb)
|
772 |
|
|
&& single_succ (jbb) == EXIT_BLOCK_PTR)
|
773 |
|
|
{
|
774 |
|
|
queue[++tail] = jbb->index;
|
775 |
|
|
SET_BIT (in_queue, jbb->index);
|
776 |
|
|
|
777 |
|
|
if (too_large (jbb->index, &num_bbs, &num_insns))
|
778 |
|
|
{
|
779 |
|
|
too_large_failure = 1;
|
780 |
|
|
break;
|
781 |
|
|
}
|
782 |
|
|
}
|
783 |
|
|
}
|
784 |
|
|
else
|
785 |
|
|
{
|
786 |
|
|
edge e;
|
787 |
|
|
|
788 |
|
|
FOR_EACH_EDGE (e, ei, bb->preds)
|
789 |
|
|
{
|
790 |
|
|
if (e->src == ENTRY_BLOCK_PTR)
|
791 |
|
|
continue;
|
792 |
|
|
|
793 |
|
|
node = e->src->index;
|
794 |
|
|
|
795 |
|
|
if (max_hdr[node] == loop_head && node != bb->index)
|
796 |
|
|
{
|
797 |
|
|
/* This is a loop latch. */
|
798 |
|
|
queue[++tail] = node;
|
799 |
|
|
SET_BIT (in_queue, node);
|
800 |
|
|
|
801 |
|
|
if (too_large (node, &num_bbs, &num_insns))
|
802 |
|
|
{
|
803 |
|
|
too_large_failure = 1;
|
804 |
|
|
break;
|
805 |
|
|
}
|
806 |
|
|
}
|
807 |
|
|
}
|
808 |
|
|
}
|
809 |
|
|
|
810 |
|
|
/* Now add all the blocks in the loop to the queue.
|
811 |
|
|
|
812 |
|
|
We know the loop is a natural loop; however the algorithm
|
813 |
|
|
above will not always mark certain blocks as being in the
|
814 |
|
|
loop. Consider:
|
815 |
|
|
node children
|
816 |
|
|
a b,c
|
817 |
|
|
b c
|
818 |
|
|
c a,d
|
819 |
|
|
d b
|
820 |
|
|
|
821 |
|
|
The algorithm in the DFS traversal may not mark B & D as part
|
822 |
|
|
of the loop (i.e. they will not have max_hdr set to A).
|
823 |
|
|
|
824 |
|
|
We know they can not be loop latches (else they would have
|
825 |
|
|
had max_hdr set since they'd have a backedge to a dominator
|
826 |
|
|
block). So we don't need them on the initial queue.
|
827 |
|
|
|
828 |
|
|
We know they are part of the loop because they are dominated
|
829 |
|
|
by the loop header and can be reached by a backwards walk of
|
830 |
|
|
the edges starting with nodes on the initial queue.
|
831 |
|
|
|
832 |
|
|
It is safe and desirable to include those nodes in the
|
833 |
|
|
loop/scheduling region. To do so we would need to decrease
|
834 |
|
|
the degree of a node if it is the target of a backedge
|
835 |
|
|
within the loop itself as the node is placed in the queue.
|
836 |
|
|
|
837 |
|
|
We do not do this because I'm not sure that the actual
|
838 |
|
|
scheduling code will properly handle this case. ?!? */
|
839 |
|
|
|
840 |
|
|
while (head < tail && !too_large_failure)
|
841 |
|
|
{
|
842 |
|
|
edge e;
|
843 |
|
|
child = queue[++head];
|
844 |
|
|
|
845 |
|
|
FOR_EACH_EDGE (e, ei, BASIC_BLOCK (child)->preds)
|
846 |
|
|
{
|
847 |
|
|
node = e->src->index;
|
848 |
|
|
|
849 |
|
|
/* See discussion above about nodes not marked as in
|
850 |
|
|
this loop during the initial DFS traversal. */
|
851 |
|
|
if (e->src == ENTRY_BLOCK_PTR
|
852 |
|
|
|| max_hdr[node] != loop_head)
|
853 |
|
|
{
|
854 |
|
|
tail = -1;
|
855 |
|
|
break;
|
856 |
|
|
}
|
857 |
|
|
else if (!TEST_BIT (in_queue, node) && node != bb->index)
|
858 |
|
|
{
|
859 |
|
|
queue[++tail] = node;
|
860 |
|
|
SET_BIT (in_queue, node);
|
861 |
|
|
|
862 |
|
|
if (too_large (node, &num_bbs, &num_insns))
|
863 |
|
|
{
|
864 |
|
|
too_large_failure = 1;
|
865 |
|
|
break;
|
866 |
|
|
}
|
867 |
|
|
}
|
868 |
|
|
}
|
869 |
|
|
}
|
870 |
|
|
|
871 |
|
|
if (tail >= 0 && !too_large_failure)
|
872 |
|
|
{
|
873 |
|
|
/* Place the loop header into list of region blocks. */
|
874 |
|
|
degree[bb->index] = -1;
|
875 |
|
|
rgn_bb_table[idx] = bb->index;
|
876 |
|
|
RGN_NR_BLOCKS (nr_regions) = num_bbs;
|
877 |
|
|
RGN_BLOCKS (nr_regions) = idx++;
|
878 |
|
|
RGN_DONT_CALC_DEPS (nr_regions) = 0;
|
879 |
|
|
RGN_HAS_REAL_EBB (nr_regions) = 0;
|
880 |
|
|
CONTAINING_RGN (bb->index) = nr_regions;
|
881 |
|
|
BLOCK_TO_BB (bb->index) = count = 0;
|
882 |
|
|
|
883 |
|
|
/* Remove blocks from queue[] when their in degree
|
884 |
|
|
becomes zero. Repeat until no blocks are left on the
|
885 |
|
|
list. This produces a topological list of blocks in
|
886 |
|
|
the region. */
|
887 |
|
|
while (tail >= 0)
|
888 |
|
|
{
|
889 |
|
|
if (head < 0)
|
890 |
|
|
head = tail;
|
891 |
|
|
child = queue[head];
|
892 |
|
|
if (degree[child] == 0)
|
893 |
|
|
{
|
894 |
|
|
edge e;
|
895 |
|
|
|
896 |
|
|
degree[child] = -1;
|
897 |
|
|
rgn_bb_table[idx++] = child;
|
898 |
|
|
BLOCK_TO_BB (child) = ++count;
|
899 |
|
|
CONTAINING_RGN (child) = nr_regions;
|
900 |
|
|
queue[head] = queue[tail--];
|
901 |
|
|
|
902 |
|
|
FOR_EACH_EDGE (e, ei, BASIC_BLOCK (child)->succs)
|
903 |
|
|
if (e->dest != EXIT_BLOCK_PTR)
|
904 |
|
|
--degree[e->dest->index];
|
905 |
|
|
}
|
906 |
|
|
else
|
907 |
|
|
--head;
|
908 |
|
|
}
|
909 |
|
|
++nr_regions;
|
910 |
|
|
}
|
911 |
|
|
else if (extend_regions_p)
|
912 |
|
|
{
|
913 |
|
|
/* Restore DEGREE. */
|
914 |
|
|
int *t = degree;
|
915 |
|
|
|
916 |
|
|
degree = degree1;
|
917 |
|
|
degree1 = t;
|
918 |
|
|
|
919 |
|
|
/* And force successors of BB to be region heads.
|
920 |
|
|
This may provide several smaller regions instead
|
921 |
|
|
of one too_large region. */
|
922 |
|
|
FOR_EACH_EDGE (e, ei, bb->succs)
|
923 |
|
|
if (e->dest != EXIT_BLOCK_PTR)
|
924 |
|
|
SET_BIT (extended_rgn_header, e->dest->index);
|
925 |
|
|
}
|
926 |
|
|
}
|
927 |
|
|
}
|
928 |
|
|
free (queue);
|
929 |
|
|
|
930 |
|
|
if (extend_regions_p)
|
931 |
|
|
{
|
932 |
|
|
free (degree1);
|
933 |
|
|
|
934 |
|
|
sbitmap_a_or_b (header, header, extended_rgn_header);
|
935 |
|
|
sbitmap_free (extended_rgn_header);
|
936 |
|
|
|
937 |
|
|
extend_rgns (degree, &idx, header, max_hdr);
|
938 |
|
|
}
|
939 |
|
|
}
|
940 |
|
|
|
941 |
|
|
/* Any block that did not end up in a region is placed into a region
|
942 |
|
|
by itself. */
|
943 |
|
|
FOR_EACH_BB (bb)
|
944 |
|
|
if (degree[bb->index] >= 0)
|
945 |
|
|
{
|
946 |
|
|
rgn_bb_table[idx] = bb->index;
|
947 |
|
|
RGN_NR_BLOCKS (nr_regions) = 1;
|
948 |
|
|
RGN_BLOCKS (nr_regions) = idx++;
|
949 |
|
|
RGN_DONT_CALC_DEPS (nr_regions) = 0;
|
950 |
|
|
RGN_HAS_REAL_EBB (nr_regions) = 0;
|
951 |
|
|
CONTAINING_RGN (bb->index) = nr_regions++;
|
952 |
|
|
BLOCK_TO_BB (bb->index) = 0;
|
953 |
|
|
}
|
954 |
|
|
|
955 |
|
|
free (max_hdr);
|
956 |
|
|
free (degree);
|
957 |
|
|
free (stack);
|
958 |
|
|
sbitmap_free (header);
|
959 |
|
|
sbitmap_free (inner);
|
960 |
|
|
sbitmap_free (in_queue);
|
961 |
|
|
sbitmap_free (in_stack);
|
962 |
|
|
}
|
963 |
|
|
|
964 |
|
|
static int gather_region_statistics (int **);
|
965 |
|
|
static void print_region_statistics (int *, int, int *, int);
|
966 |
|
|
|
967 |
|
|
/* Calculate the histogram that shows the number of regions having the
|
968 |
|
|
given number of basic blocks, and store it in the RSP array. Return
|
969 |
|
|
the size of this array. */
|
970 |
|
|
static int
|
971 |
|
|
gather_region_statistics (int **rsp)
|
972 |
|
|
{
|
973 |
|
|
int i, *a = 0, a_sz = 0;
|
974 |
|
|
|
975 |
|
|
/* a[i] is the number of regions that have (i + 1) basic blocks. */
|
976 |
|
|
for (i = 0; i < nr_regions; i++)
|
977 |
|
|
{
|
978 |
|
|
int nr_blocks = RGN_NR_BLOCKS (i);
|
979 |
|
|
|
980 |
|
|
gcc_assert (nr_blocks >= 1);
|
981 |
|
|
|
982 |
|
|
if (nr_blocks > a_sz)
|
983 |
|
|
{
|
984 |
|
|
a = xrealloc (a, nr_blocks * sizeof (*a));
|
985 |
|
|
do
|
986 |
|
|
a[a_sz++] = 0;
|
987 |
|
|
while (a_sz != nr_blocks);
|
988 |
|
|
}
|
989 |
|
|
|
990 |
|
|
a[nr_blocks - 1]++;
|
991 |
|
|
}
|
992 |
|
|
|
993 |
|
|
*rsp = a;
|
994 |
|
|
return a_sz;
|
995 |
|
|
}
|
996 |
|
|
|
997 |
|
|
/* Print regions statistics. S1 and S2 denote the data before and after
|
998 |
|
|
calling extend_rgns, respectively. */
|
999 |
|
|
static void
|
1000 |
|
|
print_region_statistics (int *s1, int s1_sz, int *s2, int s2_sz)
|
1001 |
|
|
{
|
1002 |
|
|
int i;
|
1003 |
|
|
|
1004 |
|
|
/* We iterate until s2_sz because extend_rgns does not decrease
|
1005 |
|
|
the maximal region size. */
|
1006 |
|
|
for (i = 1; i < s2_sz; i++)
|
1007 |
|
|
{
|
1008 |
|
|
int n1, n2;
|
1009 |
|
|
|
1010 |
|
|
n2 = s2[i];
|
1011 |
|
|
|
1012 |
|
|
if (n2 == 0)
|
1013 |
|
|
continue;
|
1014 |
|
|
|
1015 |
|
|
if (i >= s1_sz)
|
1016 |
|
|
n1 = 0;
|
1017 |
|
|
else
|
1018 |
|
|
n1 = s1[i];
|
1019 |
|
|
|
1020 |
|
|
fprintf (sched_dump, ";; Region extension statistics: size %d: " \
|
1021 |
|
|
"was %d + %d more\n", i + 1, n1, n2 - n1);
|
1022 |
|
|
}
|
1023 |
|
|
}
|
1024 |
|
|
|
1025 |
|
|
/* Extend regions.
|
1026 |
|
|
DEGREE - Array of incoming edge count, considering only
|
1027 |
|
|
the edges, that don't have their sources in formed regions yet.
|
1028 |
|
|
IDXP - pointer to the next available index in rgn_bb_table.
|
1029 |
|
|
HEADER - set of all region heads.
|
1030 |
|
|
LOOP_HDR - mapping from block to the containing loop
|
1031 |
|
|
(two blocks can reside within one region if they have
|
1032 |
|
|
the same loop header). */
|
1033 |
|
|
static void
|
1034 |
|
|
extend_rgns (int *degree, int *idxp, sbitmap header, int *loop_hdr)
|
1035 |
|
|
{
|
1036 |
|
|
int *order, i, rescan = 0, idx = *idxp, iter = 0, max_iter, *max_hdr;
|
1037 |
|
|
int nblocks = n_basic_blocks - NUM_FIXED_BLOCKS;
|
1038 |
|
|
|
1039 |
|
|
max_iter = PARAM_VALUE (PARAM_MAX_SCHED_EXTEND_REGIONS_ITERS);
|
1040 |
|
|
|
1041 |
|
|
max_hdr = xmalloc (last_basic_block * sizeof (*max_hdr));
|
1042 |
|
|
|
1043 |
|
|
order = xmalloc (last_basic_block * sizeof (*order));
|
1044 |
|
|
post_order_compute (order, false);
|
1045 |
|
|
|
1046 |
|
|
for (i = nblocks - 1; i >= 0; i--)
|
1047 |
|
|
{
|
1048 |
|
|
int bbn = order[i];
|
1049 |
|
|
if (degree[bbn] >= 0)
|
1050 |
|
|
{
|
1051 |
|
|
max_hdr[bbn] = bbn;
|
1052 |
|
|
rescan = 1;
|
1053 |
|
|
}
|
1054 |
|
|
else
|
1055 |
|
|
/* This block already was processed in find_rgns. */
|
1056 |
|
|
max_hdr[bbn] = -1;
|
1057 |
|
|
}
|
1058 |
|
|
|
1059 |
|
|
/* The idea is to topologically walk through CFG in top-down order.
|
1060 |
|
|
During the traversal, if all the predecessors of a node are
|
1061 |
|
|
marked to be in the same region (they all have the same max_hdr),
|
1062 |
|
|
then current node is also marked to be a part of that region.
|
1063 |
|
|
Otherwise the node starts its own region.
|
1064 |
|
|
CFG should be traversed until no further changes are made. On each
|
1065 |
|
|
iteration the set of the region heads is extended (the set of those
|
1066 |
|
|
blocks that have max_hdr[bbi] == bbi). This set is upper bounded by the
|
1067 |
|
|
set of all basic blocks, thus the algorithm is guaranteed to terminate. */
|
1068 |
|
|
|
1069 |
|
|
while (rescan && iter < max_iter)
|
1070 |
|
|
{
|
1071 |
|
|
rescan = 0;
|
1072 |
|
|
|
1073 |
|
|
for (i = nblocks - 1; i >= 0; i--)
|
1074 |
|
|
{
|
1075 |
|
|
edge e;
|
1076 |
|
|
edge_iterator ei;
|
1077 |
|
|
int bbn = order[i];
|
1078 |
|
|
|
1079 |
|
|
if (max_hdr[bbn] != -1 && !TEST_BIT (header, bbn))
|
1080 |
|
|
{
|
1081 |
|
|
int hdr = -1;
|
1082 |
|
|
|
1083 |
|
|
FOR_EACH_EDGE (e, ei, BASIC_BLOCK (bbn)->preds)
|
1084 |
|
|
{
|
1085 |
|
|
int predn = e->src->index;
|
1086 |
|
|
|
1087 |
|
|
if (predn != ENTRY_BLOCK
|
1088 |
|
|
/* If pred wasn't processed in find_rgns. */
|
1089 |
|
|
&& max_hdr[predn] != -1
|
1090 |
|
|
/* And pred and bb reside in the same loop.
|
1091 |
|
|
(Or out of any loop). */
|
1092 |
|
|
&& loop_hdr[bbn] == loop_hdr[predn])
|
1093 |
|
|
{
|
1094 |
|
|
if (hdr == -1)
|
1095 |
|
|
/* Then bb extends the containing region of pred. */
|
1096 |
|
|
hdr = max_hdr[predn];
|
1097 |
|
|
else if (hdr != max_hdr[predn])
|
1098 |
|
|
/* Too bad, there are at least two predecessors
|
1099 |
|
|
that reside in different regions. Thus, BB should
|
1100 |
|
|
begin its own region. */
|
1101 |
|
|
{
|
1102 |
|
|
hdr = bbn;
|
1103 |
|
|
break;
|
1104 |
|
|
}
|
1105 |
|
|
}
|
1106 |
|
|
else
|
1107 |
|
|
/* BB starts its own region. */
|
1108 |
|
|
{
|
1109 |
|
|
hdr = bbn;
|
1110 |
|
|
break;
|
1111 |
|
|
}
|
1112 |
|
|
}
|
1113 |
|
|
|
1114 |
|
|
if (hdr == bbn)
|
1115 |
|
|
{
|
1116 |
|
|
/* If BB start its own region,
|
1117 |
|
|
update set of headers with BB. */
|
1118 |
|
|
SET_BIT (header, bbn);
|
1119 |
|
|
rescan = 1;
|
1120 |
|
|
}
|
1121 |
|
|
else
|
1122 |
|
|
gcc_assert (hdr != -1);
|
1123 |
|
|
|
1124 |
|
|
max_hdr[bbn] = hdr;
|
1125 |
|
|
}
|
1126 |
|
|
}
|
1127 |
|
|
|
1128 |
|
|
iter++;
|
1129 |
|
|
}
|
1130 |
|
|
|
1131 |
|
|
/* Statistics were gathered on the SPEC2000 package of tests with
|
1132 |
|
|
mainline weekly snapshot gcc-4.1-20051015 on ia64.
|
1133 |
|
|
|
1134 |
|
|
Statistics for SPECint:
|
1135 |
|
|
1 iteration : 1751 cases (38.7%)
|
1136 |
|
|
2 iterations: 2770 cases (61.3%)
|
1137 |
|
|
Blocks wrapped in regions by find_rgns without extension: 18295 blocks
|
1138 |
|
|
Blocks wrapped in regions by 2 iterations in extend_rgns: 23821 blocks
|
1139 |
|
|
(We don't count single block regions here).
|
1140 |
|
|
|
1141 |
|
|
Statistics for SPECfp:
|
1142 |
|
|
1 iteration : 621 cases (35.9%)
|
1143 |
|
|
2 iterations: 1110 cases (64.1%)
|
1144 |
|
|
Blocks wrapped in regions by find_rgns without extension: 6476 blocks
|
1145 |
|
|
Blocks wrapped in regions by 2 iterations in extend_rgns: 11155 blocks
|
1146 |
|
|
(We don't count single block regions here).
|
1147 |
|
|
|
1148 |
|
|
By default we do at most 2 iterations.
|
1149 |
|
|
This can be overridden with max-sched-extend-regions-iters parameter:
|
1150 |
|
|
|
1151 |
|
|
N > 0 - do at most N iterations. */
|
1152 |
|
|
|
1153 |
|
|
if (sched_verbose && iter != 0)
|
1154 |
|
|
fprintf (sched_dump, ";; Region extension iterations: %d%s\n", iter,
|
1155 |
|
|
rescan ? "... failed" : "");
|
1156 |
|
|
|
1157 |
|
|
if (!rescan && iter != 0)
|
1158 |
|
|
{
|
1159 |
|
|
int *s1 = NULL, s1_sz = 0;
|
1160 |
|
|
|
1161 |
|
|
/* Save the old statistics for later printout. */
|
1162 |
|
|
if (sched_verbose >= 6)
|
1163 |
|
|
s1_sz = gather_region_statistics (&s1);
|
1164 |
|
|
|
1165 |
|
|
/* We have succeeded. Now assemble the regions. */
|
1166 |
|
|
for (i = nblocks - 1; i >= 0; i--)
|
1167 |
|
|
{
|
1168 |
|
|
int bbn = order[i];
|
1169 |
|
|
|
1170 |
|
|
if (max_hdr[bbn] == bbn)
|
1171 |
|
|
/* BBN is a region head. */
|
1172 |
|
|
{
|
1173 |
|
|
edge e;
|
1174 |
|
|
edge_iterator ei;
|
1175 |
|
|
int num_bbs = 0, j, num_insns = 0, large;
|
1176 |
|
|
|
1177 |
|
|
large = too_large (bbn, &num_bbs, &num_insns);
|
1178 |
|
|
|
1179 |
|
|
degree[bbn] = -1;
|
1180 |
|
|
rgn_bb_table[idx] = bbn;
|
1181 |
|
|
RGN_BLOCKS (nr_regions) = idx++;
|
1182 |
|
|
RGN_DONT_CALC_DEPS (nr_regions) = 0;
|
1183 |
|
|
RGN_HAS_REAL_EBB (nr_regions) = 0;
|
1184 |
|
|
CONTAINING_RGN (bbn) = nr_regions;
|
1185 |
|
|
BLOCK_TO_BB (bbn) = 0;
|
1186 |
|
|
|
1187 |
|
|
FOR_EACH_EDGE (e, ei, BASIC_BLOCK (bbn)->succs)
|
1188 |
|
|
if (e->dest != EXIT_BLOCK_PTR)
|
1189 |
|
|
degree[e->dest->index]--;
|
1190 |
|
|
|
1191 |
|
|
if (!large)
|
1192 |
|
|
/* Here we check whether the region is too_large. */
|
1193 |
|
|
for (j = i - 1; j >= 0; j--)
|
1194 |
|
|
{
|
1195 |
|
|
int succn = order[j];
|
1196 |
|
|
if (max_hdr[succn] == bbn)
|
1197 |
|
|
{
|
1198 |
|
|
if ((large = too_large (succn, &num_bbs, &num_insns)))
|
1199 |
|
|
break;
|
1200 |
|
|
}
|
1201 |
|
|
}
|
1202 |
|
|
|
1203 |
|
|
if (large)
|
1204 |
|
|
/* If the region is too_large, then wrap every block of
|
1205 |
|
|
the region into single block region.
|
1206 |
|
|
Here we wrap region head only. Other blocks are
|
1207 |
|
|
processed in the below cycle. */
|
1208 |
|
|
{
|
1209 |
|
|
RGN_NR_BLOCKS (nr_regions) = 1;
|
1210 |
|
|
nr_regions++;
|
1211 |
|
|
}
|
1212 |
|
|
|
1213 |
|
|
num_bbs = 1;
|
1214 |
|
|
|
1215 |
|
|
for (j = i - 1; j >= 0; j--)
|
1216 |
|
|
{
|
1217 |
|
|
int succn = order[j];
|
1218 |
|
|
|
1219 |
|
|
if (max_hdr[succn] == bbn)
|
1220 |
|
|
/* This cycle iterates over all basic blocks, that
|
1221 |
|
|
are supposed to be in the region with head BBN,
|
1222 |
|
|
and wraps them into that region (or in single
|
1223 |
|
|
block region). */
|
1224 |
|
|
{
|
1225 |
|
|
gcc_assert (degree[succn] == 0);
|
1226 |
|
|
|
1227 |
|
|
degree[succn] = -1;
|
1228 |
|
|
rgn_bb_table[idx] = succn;
|
1229 |
|
|
BLOCK_TO_BB (succn) = large ? 0 : num_bbs++;
|
1230 |
|
|
CONTAINING_RGN (succn) = nr_regions;
|
1231 |
|
|
|
1232 |
|
|
if (large)
|
1233 |
|
|
/* Wrap SUCCN into single block region. */
|
1234 |
|
|
{
|
1235 |
|
|
RGN_BLOCKS (nr_regions) = idx;
|
1236 |
|
|
RGN_NR_BLOCKS (nr_regions) = 1;
|
1237 |
|
|
RGN_DONT_CALC_DEPS (nr_regions) = 0;
|
1238 |
|
|
RGN_HAS_REAL_EBB (nr_regions) = 0;
|
1239 |
|
|
nr_regions++;
|
1240 |
|
|
}
|
1241 |
|
|
|
1242 |
|
|
idx++;
|
1243 |
|
|
|
1244 |
|
|
FOR_EACH_EDGE (e, ei, BASIC_BLOCK (succn)->succs)
|
1245 |
|
|
if (e->dest != EXIT_BLOCK_PTR)
|
1246 |
|
|
degree[e->dest->index]--;
|
1247 |
|
|
}
|
1248 |
|
|
}
|
1249 |
|
|
|
1250 |
|
|
if (!large)
|
1251 |
|
|
{
|
1252 |
|
|
RGN_NR_BLOCKS (nr_regions) = num_bbs;
|
1253 |
|
|
nr_regions++;
|
1254 |
|
|
}
|
1255 |
|
|
}
|
1256 |
|
|
}
|
1257 |
|
|
|
1258 |
|
|
if (sched_verbose >= 6)
|
1259 |
|
|
{
|
1260 |
|
|
int *s2, s2_sz;
|
1261 |
|
|
|
1262 |
|
|
/* Get the new statistics and print the comparison with the
|
1263 |
|
|
one before calling this function. */
|
1264 |
|
|
s2_sz = gather_region_statistics (&s2);
|
1265 |
|
|
print_region_statistics (s1, s1_sz, s2, s2_sz);
|
1266 |
|
|
free (s1);
|
1267 |
|
|
free (s2);
|
1268 |
|
|
}
|
1269 |
|
|
}
|
1270 |
|
|
|
1271 |
|
|
free (order);
|
1272 |
|
|
free (max_hdr);
|
1273 |
|
|
|
1274 |
|
|
*idxp = idx;
|
1275 |
|
|
}
|
1276 |
|
|
|
1277 |
|
|
/* Functions for regions scheduling information. */
|
1278 |
|
|
|
1279 |
|
|
/* Compute dominators, probability, and potential-split-edges of bb.
|
1280 |
|
|
Assume that these values were already computed for bb's predecessors. */
|
1281 |
|
|
|
1282 |
|
|
static void
|
1283 |
|
|
compute_dom_prob_ps (int bb)
|
1284 |
|
|
{
|
1285 |
|
|
edge_iterator in_ei;
|
1286 |
|
|
edge in_edge;
|
1287 |
|
|
|
1288 |
|
|
/* We shouldn't have any real ebbs yet. */
|
1289 |
|
|
gcc_assert (ebb_head [bb] == bb + current_blocks);
|
1290 |
|
|
|
1291 |
|
|
if (IS_RGN_ENTRY (bb))
|
1292 |
|
|
{
|
1293 |
|
|
SET_BIT (dom[bb], 0);
|
1294 |
|
|
prob[bb] = REG_BR_PROB_BASE;
|
1295 |
|
|
return;
|
1296 |
|
|
}
|
1297 |
|
|
|
1298 |
|
|
prob[bb] = 0;
|
1299 |
|
|
|
1300 |
|
|
/* Initialize dom[bb] to '111..1'. */
|
1301 |
|
|
sbitmap_ones (dom[bb]);
|
1302 |
|
|
|
1303 |
|
|
FOR_EACH_EDGE (in_edge, in_ei, BASIC_BLOCK (BB_TO_BLOCK (bb))->preds)
|
1304 |
|
|
{
|
1305 |
|
|
int pred_bb;
|
1306 |
|
|
edge out_edge;
|
1307 |
|
|
edge_iterator out_ei;
|
1308 |
|
|
|
1309 |
|
|
if (in_edge->src == ENTRY_BLOCK_PTR)
|
1310 |
|
|
continue;
|
1311 |
|
|
|
1312 |
|
|
pred_bb = BLOCK_TO_BB (in_edge->src->index);
|
1313 |
|
|
sbitmap_a_and_b (dom[bb], dom[bb], dom[pred_bb]);
|
1314 |
|
|
sbitmap_a_or_b (ancestor_edges[bb],
|
1315 |
|
|
ancestor_edges[bb], ancestor_edges[pred_bb]);
|
1316 |
|
|
|
1317 |
|
|
SET_BIT (ancestor_edges[bb], EDGE_TO_BIT (in_edge));
|
1318 |
|
|
|
1319 |
|
|
sbitmap_a_or_b (pot_split[bb], pot_split[bb], pot_split[pred_bb]);
|
1320 |
|
|
|
1321 |
|
|
FOR_EACH_EDGE (out_edge, out_ei, in_edge->src->succs)
|
1322 |
|
|
SET_BIT (pot_split[bb], EDGE_TO_BIT (out_edge));
|
1323 |
|
|
|
1324 |
|
|
prob[bb] += ((prob[pred_bb] * in_edge->probability) / REG_BR_PROB_BASE);
|
1325 |
|
|
}
|
1326 |
|
|
|
1327 |
|
|
SET_BIT (dom[bb], bb);
|
1328 |
|
|
sbitmap_difference (pot_split[bb], pot_split[bb], ancestor_edges[bb]);
|
1329 |
|
|
|
1330 |
|
|
if (sched_verbose >= 2)
|
1331 |
|
|
fprintf (sched_dump, ";; bb_prob(%d, %d) = %3d\n", bb, BB_TO_BLOCK (bb),
|
1332 |
|
|
(100 * prob[bb]) / REG_BR_PROB_BASE);
|
1333 |
|
|
}
|
1334 |
|
|
|
1335 |
|
|
/* Functions for target info. */
|
1336 |
|
|
|
1337 |
|
|
/* Compute in BL the list of split-edges of bb_src relatively to bb_trg.
|
1338 |
|
|
Note that bb_trg dominates bb_src. */
|
1339 |
|
|
|
1340 |
|
|
static void
|
1341 |
|
|
split_edges (int bb_src, int bb_trg, edgelst *bl)
|
1342 |
|
|
{
|
1343 |
|
|
sbitmap src = sbitmap_alloc (pot_split[bb_src]->n_bits);
|
1344 |
|
|
sbitmap_copy (src, pot_split[bb_src]);
|
1345 |
|
|
|
1346 |
|
|
sbitmap_difference (src, src, pot_split[bb_trg]);
|
1347 |
|
|
extract_edgelst (src, bl);
|
1348 |
|
|
sbitmap_free (src);
|
1349 |
|
|
}
|
1350 |
|
|
|
1351 |
|
|
/* Find the valid candidate-source-blocks for the target block TRG, compute
|
1352 |
|
|
their probability, and check if they are speculative or not.
|
1353 |
|
|
For speculative sources, compute their update-blocks and split-blocks. */
|
1354 |
|
|
|
1355 |
|
|
static void
|
1356 |
|
|
compute_trg_info (int trg)
|
1357 |
|
|
{
|
1358 |
|
|
candidate *sp;
|
1359 |
|
|
edgelst el;
|
1360 |
|
|
int i, j, k, update_idx;
|
1361 |
|
|
basic_block block;
|
1362 |
|
|
sbitmap visited;
|
1363 |
|
|
edge_iterator ei;
|
1364 |
|
|
edge e;
|
1365 |
|
|
|
1366 |
|
|
/* Define some of the fields for the target bb as well. */
|
1367 |
|
|
sp = candidate_table + trg;
|
1368 |
|
|
sp->is_valid = 1;
|
1369 |
|
|
sp->is_speculative = 0;
|
1370 |
|
|
sp->src_prob = REG_BR_PROB_BASE;
|
1371 |
|
|
|
1372 |
|
|
visited = sbitmap_alloc (last_basic_block);
|
1373 |
|
|
|
1374 |
|
|
for (i = trg + 1; i < current_nr_blocks; i++)
|
1375 |
|
|
{
|
1376 |
|
|
sp = candidate_table + i;
|
1377 |
|
|
|
1378 |
|
|
sp->is_valid = IS_DOMINATED (i, trg);
|
1379 |
|
|
if (sp->is_valid)
|
1380 |
|
|
{
|
1381 |
|
|
int tf = prob[trg], cf = prob[i];
|
1382 |
|
|
|
1383 |
|
|
/* In CFGs with low probability edges TF can possibly be zero. */
|
1384 |
|
|
sp->src_prob = (tf ? ((cf * REG_BR_PROB_BASE) / tf) : 0);
|
1385 |
|
|
sp->is_valid = (sp->src_prob >= min_spec_prob);
|
1386 |
|
|
}
|
1387 |
|
|
|
1388 |
|
|
if (sp->is_valid)
|
1389 |
|
|
{
|
1390 |
|
|
split_edges (i, trg, &el);
|
1391 |
|
|
sp->is_speculative = (el.nr_members) ? 1 : 0;
|
1392 |
|
|
if (sp->is_speculative && !flag_schedule_speculative)
|
1393 |
|
|
sp->is_valid = 0;
|
1394 |
|
|
}
|
1395 |
|
|
|
1396 |
|
|
if (sp->is_valid)
|
1397 |
|
|
{
|
1398 |
|
|
/* Compute split blocks and store them in bblst_table.
|
1399 |
|
|
The TO block of every split edge is a split block. */
|
1400 |
|
|
sp->split_bbs.first_member = &bblst_table[bblst_last];
|
1401 |
|
|
sp->split_bbs.nr_members = el.nr_members;
|
1402 |
|
|
for (j = 0; j < el.nr_members; bblst_last++, j++)
|
1403 |
|
|
bblst_table[bblst_last] = el.first_member[j]->dest;
|
1404 |
|
|
sp->update_bbs.first_member = &bblst_table[bblst_last];
|
1405 |
|
|
|
1406 |
|
|
/* Compute update blocks and store them in bblst_table.
|
1407 |
|
|
For every split edge, look at the FROM block, and check
|
1408 |
|
|
all out edges. For each out edge that is not a split edge,
|
1409 |
|
|
add the TO block to the update block list. This list can end
|
1410 |
|
|
up with a lot of duplicates. We need to weed them out to avoid
|
1411 |
|
|
overrunning the end of the bblst_table. */
|
1412 |
|
|
|
1413 |
|
|
update_idx = 0;
|
1414 |
|
|
sbitmap_zero (visited);
|
1415 |
|
|
for (j = 0; j < el.nr_members; j++)
|
1416 |
|
|
{
|
1417 |
|
|
block = el.first_member[j]->src;
|
1418 |
|
|
FOR_EACH_EDGE (e, ei, block->succs)
|
1419 |
|
|
{
|
1420 |
|
|
if (!TEST_BIT (visited, e->dest->index))
|
1421 |
|
|
{
|
1422 |
|
|
for (k = 0; k < el.nr_members; k++)
|
1423 |
|
|
if (e == el.first_member[k])
|
1424 |
|
|
break;
|
1425 |
|
|
|
1426 |
|
|
if (k >= el.nr_members)
|
1427 |
|
|
{
|
1428 |
|
|
bblst_table[bblst_last++] = e->dest;
|
1429 |
|
|
SET_BIT (visited, e->dest->index);
|
1430 |
|
|
update_idx++;
|
1431 |
|
|
}
|
1432 |
|
|
}
|
1433 |
|
|
}
|
1434 |
|
|
}
|
1435 |
|
|
sp->update_bbs.nr_members = update_idx;
|
1436 |
|
|
|
1437 |
|
|
/* Make sure we didn't overrun the end of bblst_table. */
|
1438 |
|
|
gcc_assert (bblst_last <= bblst_size);
|
1439 |
|
|
}
|
1440 |
|
|
else
|
1441 |
|
|
{
|
1442 |
|
|
sp->split_bbs.nr_members = sp->update_bbs.nr_members = 0;
|
1443 |
|
|
|
1444 |
|
|
sp->is_speculative = 0;
|
1445 |
|
|
sp->src_prob = 0;
|
1446 |
|
|
}
|
1447 |
|
|
}
|
1448 |
|
|
|
1449 |
|
|
sbitmap_free (visited);
|
1450 |
|
|
}
|
1451 |
|
|
|
1452 |
|
|
/* Print candidates info, for debugging purposes. Callable from debugger. */
|
1453 |
|
|
|
1454 |
|
|
void
|
1455 |
|
|
debug_candidate (int i)
|
1456 |
|
|
{
|
1457 |
|
|
if (!candidate_table[i].is_valid)
|
1458 |
|
|
return;
|
1459 |
|
|
|
1460 |
|
|
if (candidate_table[i].is_speculative)
|
1461 |
|
|
{
|
1462 |
|
|
int j;
|
1463 |
|
|
fprintf (sched_dump, "src b %d bb %d speculative \n", BB_TO_BLOCK (i), i);
|
1464 |
|
|
|
1465 |
|
|
fprintf (sched_dump, "split path: ");
|
1466 |
|
|
for (j = 0; j < candidate_table[i].split_bbs.nr_members; j++)
|
1467 |
|
|
{
|
1468 |
|
|
int b = candidate_table[i].split_bbs.first_member[j]->index;
|
1469 |
|
|
|
1470 |
|
|
fprintf (sched_dump, " %d ", b);
|
1471 |
|
|
}
|
1472 |
|
|
fprintf (sched_dump, "\n");
|
1473 |
|
|
|
1474 |
|
|
fprintf (sched_dump, "update path: ");
|
1475 |
|
|
for (j = 0; j < candidate_table[i].update_bbs.nr_members; j++)
|
1476 |
|
|
{
|
1477 |
|
|
int b = candidate_table[i].update_bbs.first_member[j]->index;
|
1478 |
|
|
|
1479 |
|
|
fprintf (sched_dump, " %d ", b);
|
1480 |
|
|
}
|
1481 |
|
|
fprintf (sched_dump, "\n");
|
1482 |
|
|
}
|
1483 |
|
|
else
|
1484 |
|
|
{
|
1485 |
|
|
fprintf (sched_dump, " src %d equivalent\n", BB_TO_BLOCK (i));
|
1486 |
|
|
}
|
1487 |
|
|
}
|
1488 |
|
|
|
1489 |
|
|
/* Print candidates info, for debugging purposes. Callable from debugger. */
|
1490 |
|
|
|
1491 |
|
|
void
|
1492 |
|
|
debug_candidates (int trg)
|
1493 |
|
|
{
|
1494 |
|
|
int i;
|
1495 |
|
|
|
1496 |
|
|
fprintf (sched_dump, "----------- candidate table: target: b=%d bb=%d ---\n",
|
1497 |
|
|
BB_TO_BLOCK (trg), trg);
|
1498 |
|
|
for (i = trg + 1; i < current_nr_blocks; i++)
|
1499 |
|
|
debug_candidate (i);
|
1500 |
|
|
}
|
1501 |
|
|
|
1502 |
|
|
/* Functions for speculative scheduling. */
|
1503 |
|
|
|
1504 |
|
|
/* Return 0 if x is a set of a register alive in the beginning of one
|
1505 |
|
|
of the split-blocks of src, otherwise return 1. */
|
1506 |
|
|
|
1507 |
|
|
static int
|
1508 |
|
|
check_live_1 (int src, rtx x)
|
1509 |
|
|
{
|
1510 |
|
|
int i;
|
1511 |
|
|
int regno;
|
1512 |
|
|
rtx reg = SET_DEST (x);
|
1513 |
|
|
|
1514 |
|
|
if (reg == 0)
|
1515 |
|
|
return 1;
|
1516 |
|
|
|
1517 |
|
|
while (GET_CODE (reg) == SUBREG
|
1518 |
|
|
|| GET_CODE (reg) == ZERO_EXTRACT
|
1519 |
|
|
|| GET_CODE (reg) == STRICT_LOW_PART)
|
1520 |
|
|
reg = XEXP (reg, 0);
|
1521 |
|
|
|
1522 |
|
|
if (GET_CODE (reg) == PARALLEL)
|
1523 |
|
|
{
|
1524 |
|
|
int i;
|
1525 |
|
|
|
1526 |
|
|
for (i = XVECLEN (reg, 0) - 1; i >= 0; i--)
|
1527 |
|
|
if (XEXP (XVECEXP (reg, 0, i), 0) != 0)
|
1528 |
|
|
if (check_live_1 (src, XEXP (XVECEXP (reg, 0, i), 0)))
|
1529 |
|
|
return 1;
|
1530 |
|
|
|
1531 |
|
|
return 0;
|
1532 |
|
|
}
|
1533 |
|
|
|
1534 |
|
|
if (!REG_P (reg))
|
1535 |
|
|
return 1;
|
1536 |
|
|
|
1537 |
|
|
regno = REGNO (reg);
|
1538 |
|
|
|
1539 |
|
|
if (regno < FIRST_PSEUDO_REGISTER && global_regs[regno])
|
1540 |
|
|
{
|
1541 |
|
|
/* Global registers are assumed live. */
|
1542 |
|
|
return 0;
|
1543 |
|
|
}
|
1544 |
|
|
else
|
1545 |
|
|
{
|
1546 |
|
|
if (regno < FIRST_PSEUDO_REGISTER)
|
1547 |
|
|
{
|
1548 |
|
|
/* Check for hard registers. */
|
1549 |
|
|
int j = hard_regno_nregs[regno][GET_MODE (reg)];
|
1550 |
|
|
while (--j >= 0)
|
1551 |
|
|
{
|
1552 |
|
|
for (i = 0; i < candidate_table[src].split_bbs.nr_members; i++)
|
1553 |
|
|
{
|
1554 |
|
|
basic_block b = candidate_table[src].split_bbs.first_member[i];
|
1555 |
|
|
|
1556 |
|
|
/* We can have split blocks, that were recently generated.
|
1557 |
|
|
such blocks are always outside current region. */
|
1558 |
|
|
gcc_assert (glat_start[b->index]
|
1559 |
|
|
|| CONTAINING_RGN (b->index)
|
1560 |
|
|
!= CONTAINING_RGN (BB_TO_BLOCK (src)));
|
1561 |
|
|
if (!glat_start[b->index]
|
1562 |
|
|
|| REGNO_REG_SET_P (glat_start[b->index],
|
1563 |
|
|
regno + j))
|
1564 |
|
|
{
|
1565 |
|
|
return 0;
|
1566 |
|
|
}
|
1567 |
|
|
}
|
1568 |
|
|
}
|
1569 |
|
|
}
|
1570 |
|
|
else
|
1571 |
|
|
{
|
1572 |
|
|
/* Check for pseudo registers. */
|
1573 |
|
|
for (i = 0; i < candidate_table[src].split_bbs.nr_members; i++)
|
1574 |
|
|
{
|
1575 |
|
|
basic_block b = candidate_table[src].split_bbs.first_member[i];
|
1576 |
|
|
|
1577 |
|
|
gcc_assert (glat_start[b->index]
|
1578 |
|
|
|| CONTAINING_RGN (b->index)
|
1579 |
|
|
!= CONTAINING_RGN (BB_TO_BLOCK (src)));
|
1580 |
|
|
if (!glat_start[b->index]
|
1581 |
|
|
|| REGNO_REG_SET_P (glat_start[b->index], regno))
|
1582 |
|
|
{
|
1583 |
|
|
return 0;
|
1584 |
|
|
}
|
1585 |
|
|
}
|
1586 |
|
|
}
|
1587 |
|
|
}
|
1588 |
|
|
|
1589 |
|
|
return 1;
|
1590 |
|
|
}
|
1591 |
|
|
|
1592 |
|
|
/* If x is a set of a register R, mark that R is alive in the beginning
|
1593 |
|
|
of every update-block of src. */
|
1594 |
|
|
|
1595 |
|
|
static void
|
1596 |
|
|
update_live_1 (int src, rtx x)
|
1597 |
|
|
{
|
1598 |
|
|
int i;
|
1599 |
|
|
int regno;
|
1600 |
|
|
rtx reg = SET_DEST (x);
|
1601 |
|
|
|
1602 |
|
|
if (reg == 0)
|
1603 |
|
|
return;
|
1604 |
|
|
|
1605 |
|
|
while (GET_CODE (reg) == SUBREG
|
1606 |
|
|
|| GET_CODE (reg) == ZERO_EXTRACT
|
1607 |
|
|
|| GET_CODE (reg) == STRICT_LOW_PART)
|
1608 |
|
|
reg = XEXP (reg, 0);
|
1609 |
|
|
|
1610 |
|
|
if (GET_CODE (reg) == PARALLEL)
|
1611 |
|
|
{
|
1612 |
|
|
int i;
|
1613 |
|
|
|
1614 |
|
|
for (i = XVECLEN (reg, 0) - 1; i >= 0; i--)
|
1615 |
|
|
if (XEXP (XVECEXP (reg, 0, i), 0) != 0)
|
1616 |
|
|
update_live_1 (src, XEXP (XVECEXP (reg, 0, i), 0));
|
1617 |
|
|
|
1618 |
|
|
return;
|
1619 |
|
|
}
|
1620 |
|
|
|
1621 |
|
|
if (!REG_P (reg))
|
1622 |
|
|
return;
|
1623 |
|
|
|
1624 |
|
|
/* Global registers are always live, so the code below does not apply
|
1625 |
|
|
to them. */
|
1626 |
|
|
|
1627 |
|
|
regno = REGNO (reg);
|
1628 |
|
|
|
1629 |
|
|
if (regno >= FIRST_PSEUDO_REGISTER || !global_regs[regno])
|
1630 |
|
|
{
|
1631 |
|
|
if (regno < FIRST_PSEUDO_REGISTER)
|
1632 |
|
|
{
|
1633 |
|
|
int j = hard_regno_nregs[regno][GET_MODE (reg)];
|
1634 |
|
|
while (--j >= 0)
|
1635 |
|
|
{
|
1636 |
|
|
for (i = 0; i < candidate_table[src].update_bbs.nr_members; i++)
|
1637 |
|
|
{
|
1638 |
|
|
basic_block b = candidate_table[src].update_bbs.first_member[i];
|
1639 |
|
|
|
1640 |
|
|
SET_REGNO_REG_SET (glat_start[b->index], regno + j);
|
1641 |
|
|
}
|
1642 |
|
|
}
|
1643 |
|
|
}
|
1644 |
|
|
else
|
1645 |
|
|
{
|
1646 |
|
|
for (i = 0; i < candidate_table[src].update_bbs.nr_members; i++)
|
1647 |
|
|
{
|
1648 |
|
|
basic_block b = candidate_table[src].update_bbs.first_member[i];
|
1649 |
|
|
|
1650 |
|
|
SET_REGNO_REG_SET (glat_start[b->index], regno);
|
1651 |
|
|
}
|
1652 |
|
|
}
|
1653 |
|
|
}
|
1654 |
|
|
}
|
1655 |
|
|
|
1656 |
|
|
/* Return 1 if insn can be speculatively moved from block src to trg,
|
1657 |
|
|
otherwise return 0. Called before first insertion of insn to
|
1658 |
|
|
ready-list or before the scheduling. */
|
1659 |
|
|
|
1660 |
|
|
static int
|
1661 |
|
|
check_live (rtx insn, int src)
|
1662 |
|
|
{
|
1663 |
|
|
/* Find the registers set by instruction. */
|
1664 |
|
|
if (GET_CODE (PATTERN (insn)) == SET
|
1665 |
|
|
|| GET_CODE (PATTERN (insn)) == CLOBBER)
|
1666 |
|
|
return check_live_1 (src, PATTERN (insn));
|
1667 |
|
|
else if (GET_CODE (PATTERN (insn)) == PARALLEL)
|
1668 |
|
|
{
|
1669 |
|
|
int j;
|
1670 |
|
|
for (j = XVECLEN (PATTERN (insn), 0) - 1; j >= 0; j--)
|
1671 |
|
|
if ((GET_CODE (XVECEXP (PATTERN (insn), 0, j)) == SET
|
1672 |
|
|
|| GET_CODE (XVECEXP (PATTERN (insn), 0, j)) == CLOBBER)
|
1673 |
|
|
&& !check_live_1 (src, XVECEXP (PATTERN (insn), 0, j)))
|
1674 |
|
|
return 0;
|
1675 |
|
|
|
1676 |
|
|
return 1;
|
1677 |
|
|
}
|
1678 |
|
|
|
1679 |
|
|
return 1;
|
1680 |
|
|
}
|
1681 |
|
|
|
1682 |
|
|
/* Update the live registers info after insn was moved speculatively from
|
1683 |
|
|
block src to trg. */
|
1684 |
|
|
|
1685 |
|
|
static void
|
1686 |
|
|
update_live (rtx insn, int src)
|
1687 |
|
|
{
|
1688 |
|
|
/* Find the registers set by instruction. */
|
1689 |
|
|
if (GET_CODE (PATTERN (insn)) == SET
|
1690 |
|
|
|| GET_CODE (PATTERN (insn)) == CLOBBER)
|
1691 |
|
|
update_live_1 (src, PATTERN (insn));
|
1692 |
|
|
else if (GET_CODE (PATTERN (insn)) == PARALLEL)
|
1693 |
|
|
{
|
1694 |
|
|
int j;
|
1695 |
|
|
for (j = XVECLEN (PATTERN (insn), 0) - 1; j >= 0; j--)
|
1696 |
|
|
if (GET_CODE (XVECEXP (PATTERN (insn), 0, j)) == SET
|
1697 |
|
|
|| GET_CODE (XVECEXP (PATTERN (insn), 0, j)) == CLOBBER)
|
1698 |
|
|
update_live_1 (src, XVECEXP (PATTERN (insn), 0, j));
|
1699 |
|
|
}
|
1700 |
|
|
}
|
1701 |
|
|
|
1702 |
|
|
/* Nonzero if block bb_to is equal to, or reachable from block bb_from. */
|
1703 |
|
|
#define IS_REACHABLE(bb_from, bb_to) \
|
1704 |
|
|
(bb_from == bb_to \
|
1705 |
|
|
|| IS_RGN_ENTRY (bb_from) \
|
1706 |
|
|
|| (TEST_BIT (ancestor_edges[bb_to], \
|
1707 |
|
|
EDGE_TO_BIT (single_pred_edge (BASIC_BLOCK (BB_TO_BLOCK (bb_from)))))))
|
1708 |
|
|
|
1709 |
|
|
/* Turns on the fed_by_spec_load flag for insns fed by load_insn. */
|
1710 |
|
|
|
1711 |
|
|
static void
|
1712 |
|
|
set_spec_fed (rtx load_insn)
|
1713 |
|
|
{
|
1714 |
|
|
rtx link;
|
1715 |
|
|
|
1716 |
|
|
for (link = INSN_DEPEND (load_insn); link; link = XEXP (link, 1))
|
1717 |
|
|
if (GET_MODE (link) == VOIDmode)
|
1718 |
|
|
FED_BY_SPEC_LOAD (XEXP (link, 0)) = 1;
|
1719 |
|
|
} /* set_spec_fed */
|
1720 |
|
|
|
1721 |
|
|
/* On the path from the insn to load_insn_bb, find a conditional
|
1722 |
|
|
branch depending on insn, that guards the speculative load. */
|
1723 |
|
|
|
1724 |
|
|
static int
|
1725 |
|
|
find_conditional_protection (rtx insn, int load_insn_bb)
|
1726 |
|
|
{
|
1727 |
|
|
rtx link;
|
1728 |
|
|
|
1729 |
|
|
/* Iterate through DEF-USE forward dependences. */
|
1730 |
|
|
for (link = INSN_DEPEND (insn); link; link = XEXP (link, 1))
|
1731 |
|
|
{
|
1732 |
|
|
rtx next = XEXP (link, 0);
|
1733 |
|
|
if ((CONTAINING_RGN (BLOCK_NUM (next)) ==
|
1734 |
|
|
CONTAINING_RGN (BB_TO_BLOCK (load_insn_bb)))
|
1735 |
|
|
&& IS_REACHABLE (INSN_BB (next), load_insn_bb)
|
1736 |
|
|
&& load_insn_bb != INSN_BB (next)
|
1737 |
|
|
&& GET_MODE (link) == VOIDmode
|
1738 |
|
|
&& (JUMP_P (next)
|
1739 |
|
|
|| find_conditional_protection (next, load_insn_bb)))
|
1740 |
|
|
return 1;
|
1741 |
|
|
}
|
1742 |
|
|
return 0;
|
1743 |
|
|
} /* find_conditional_protection */
|
1744 |
|
|
|
1745 |
|
|
/* Returns 1 if the same insn1 that participates in the computation
|
1746 |
|
|
of load_insn's address is feeding a conditional branch that is
|
1747 |
|
|
guarding on load_insn. This is true if we find a the two DEF-USE
|
1748 |
|
|
chains:
|
1749 |
|
|
insn1 -> ... -> conditional-branch
|
1750 |
|
|
insn1 -> ... -> load_insn,
|
1751 |
|
|
and if a flow path exist:
|
1752 |
|
|
insn1 -> ... -> conditional-branch -> ... -> load_insn,
|
1753 |
|
|
and if insn1 is on the path
|
1754 |
|
|
region-entry -> ... -> bb_trg -> ... load_insn.
|
1755 |
|
|
|
1756 |
|
|
Locate insn1 by climbing on LOG_LINKS from load_insn.
|
1757 |
|
|
Locate the branch by following INSN_DEPEND from insn1. */
|
1758 |
|
|
|
1759 |
|
|
static int
|
1760 |
|
|
is_conditionally_protected (rtx load_insn, int bb_src, int bb_trg)
|
1761 |
|
|
{
|
1762 |
|
|
rtx link;
|
1763 |
|
|
|
1764 |
|
|
for (link = LOG_LINKS (load_insn); link; link = XEXP (link, 1))
|
1765 |
|
|
{
|
1766 |
|
|
rtx insn1 = XEXP (link, 0);
|
1767 |
|
|
|
1768 |
|
|
/* Must be a DEF-USE dependence upon non-branch. */
|
1769 |
|
|
if (GET_MODE (link) != VOIDmode
|
1770 |
|
|
|| JUMP_P (insn1))
|
1771 |
|
|
continue;
|
1772 |
|
|
|
1773 |
|
|
/* Must exist a path: region-entry -> ... -> bb_trg -> ... load_insn. */
|
1774 |
|
|
if (INSN_BB (insn1) == bb_src
|
1775 |
|
|
|| (CONTAINING_RGN (BLOCK_NUM (insn1))
|
1776 |
|
|
!= CONTAINING_RGN (BB_TO_BLOCK (bb_src)))
|
1777 |
|
|
|| (!IS_REACHABLE (bb_trg, INSN_BB (insn1))
|
1778 |
|
|
&& !IS_REACHABLE (INSN_BB (insn1), bb_trg)))
|
1779 |
|
|
continue;
|
1780 |
|
|
|
1781 |
|
|
/* Now search for the conditional-branch. */
|
1782 |
|
|
if (find_conditional_protection (insn1, bb_src))
|
1783 |
|
|
return 1;
|
1784 |
|
|
|
1785 |
|
|
/* Recursive step: search another insn1, "above" current insn1. */
|
1786 |
|
|
return is_conditionally_protected (insn1, bb_src, bb_trg);
|
1787 |
|
|
}
|
1788 |
|
|
|
1789 |
|
|
/* The chain does not exist. */
|
1790 |
|
|
return 0;
|
1791 |
|
|
} /* is_conditionally_protected */
|
1792 |
|
|
|
1793 |
|
|
/* Returns 1 if a clue for "similar load" 'insn2' is found, and hence
|
1794 |
|
|
load_insn can move speculatively from bb_src to bb_trg. All the
|
1795 |
|
|
following must hold:
|
1796 |
|
|
|
1797 |
|
|
(1) both loads have 1 base register (PFREE_CANDIDATEs).
|
1798 |
|
|
(2) load_insn and load1 have a def-use dependence upon
|
1799 |
|
|
the same insn 'insn1'.
|
1800 |
|
|
(3) either load2 is in bb_trg, or:
|
1801 |
|
|
- there's only one split-block, and
|
1802 |
|
|
- load1 is on the escape path, and
|
1803 |
|
|
|
1804 |
|
|
From all these we can conclude that the two loads access memory
|
1805 |
|
|
addresses that differ at most by a constant, and hence if moving
|
1806 |
|
|
load_insn would cause an exception, it would have been caused by
|
1807 |
|
|
load2 anyhow. */
|
1808 |
|
|
|
1809 |
|
|
static int
|
1810 |
|
|
is_pfree (rtx load_insn, int bb_src, int bb_trg)
|
1811 |
|
|
{
|
1812 |
|
|
rtx back_link;
|
1813 |
|
|
candidate *candp = candidate_table + bb_src;
|
1814 |
|
|
|
1815 |
|
|
if (candp->split_bbs.nr_members != 1)
|
1816 |
|
|
/* Must have exactly one escape block. */
|
1817 |
|
|
return 0;
|
1818 |
|
|
|
1819 |
|
|
for (back_link = LOG_LINKS (load_insn);
|
1820 |
|
|
back_link; back_link = XEXP (back_link, 1))
|
1821 |
|
|
{
|
1822 |
|
|
rtx insn1 = XEXP (back_link, 0);
|
1823 |
|
|
|
1824 |
|
|
if (GET_MODE (back_link) == VOIDmode)
|
1825 |
|
|
{
|
1826 |
|
|
/* Found a DEF-USE dependence (insn1, load_insn). */
|
1827 |
|
|
rtx fore_link;
|
1828 |
|
|
|
1829 |
|
|
for (fore_link = INSN_DEPEND (insn1);
|
1830 |
|
|
fore_link; fore_link = XEXP (fore_link, 1))
|
1831 |
|
|
{
|
1832 |
|
|
rtx insn2 = XEXP (fore_link, 0);
|
1833 |
|
|
if (GET_MODE (fore_link) == VOIDmode)
|
1834 |
|
|
{
|
1835 |
|
|
/* Found a DEF-USE dependence (insn1, insn2). */
|
1836 |
|
|
if (haifa_classify_insn (insn2) != PFREE_CANDIDATE)
|
1837 |
|
|
/* insn2 not guaranteed to be a 1 base reg load. */
|
1838 |
|
|
continue;
|
1839 |
|
|
|
1840 |
|
|
if (INSN_BB (insn2) == bb_trg)
|
1841 |
|
|
/* insn2 is the similar load, in the target block. */
|
1842 |
|
|
return 1;
|
1843 |
|
|
|
1844 |
|
|
if (*(candp->split_bbs.first_member) == BLOCK_FOR_INSN (insn2))
|
1845 |
|
|
/* insn2 is a similar load, in a split-block. */
|
1846 |
|
|
return 1;
|
1847 |
|
|
}
|
1848 |
|
|
}
|
1849 |
|
|
}
|
1850 |
|
|
}
|
1851 |
|
|
|
1852 |
|
|
/* Couldn't find a similar load. */
|
1853 |
|
|
return 0;
|
1854 |
|
|
} /* is_pfree */
|
1855 |
|
|
|
1856 |
|
|
/* Return 1 if load_insn is prisky (i.e. if load_insn is fed by
|
1857 |
|
|
a load moved speculatively, or if load_insn is protected by
|
1858 |
|
|
a compare on load_insn's address). */
|
1859 |
|
|
|
1860 |
|
|
static int
|
1861 |
|
|
is_prisky (rtx load_insn, int bb_src, int bb_trg)
|
1862 |
|
|
{
|
1863 |
|
|
if (FED_BY_SPEC_LOAD (load_insn))
|
1864 |
|
|
return 1;
|
1865 |
|
|
|
1866 |
|
|
if (LOG_LINKS (load_insn) == NULL)
|
1867 |
|
|
/* Dependence may 'hide' out of the region. */
|
1868 |
|
|
return 1;
|
1869 |
|
|
|
1870 |
|
|
if (is_conditionally_protected (load_insn, bb_src, bb_trg))
|
1871 |
|
|
return 1;
|
1872 |
|
|
|
1873 |
|
|
return 0;
|
1874 |
|
|
}
|
1875 |
|
|
|
1876 |
|
|
/* Insn is a candidate to be moved speculatively from bb_src to bb_trg.
|
1877 |
|
|
Return 1 if insn is exception-free (and the motion is valid)
|
1878 |
|
|
and 0 otherwise. */
|
1879 |
|
|
|
1880 |
|
|
static int
|
1881 |
|
|
is_exception_free (rtx insn, int bb_src, int bb_trg)
|
1882 |
|
|
{
|
1883 |
|
|
int insn_class = haifa_classify_insn (insn);
|
1884 |
|
|
|
1885 |
|
|
/* Handle non-load insns. */
|
1886 |
|
|
switch (insn_class)
|
1887 |
|
|
{
|
1888 |
|
|
case TRAP_FREE:
|
1889 |
|
|
return 1;
|
1890 |
|
|
case TRAP_RISKY:
|
1891 |
|
|
return 0;
|
1892 |
|
|
default:;
|
1893 |
|
|
}
|
1894 |
|
|
|
1895 |
|
|
/* Handle loads. */
|
1896 |
|
|
if (!flag_schedule_speculative_load)
|
1897 |
|
|
return 0;
|
1898 |
|
|
IS_LOAD_INSN (insn) = 1;
|
1899 |
|
|
switch (insn_class)
|
1900 |
|
|
{
|
1901 |
|
|
case IFREE:
|
1902 |
|
|
return (1);
|
1903 |
|
|
case IRISKY:
|
1904 |
|
|
return 0;
|
1905 |
|
|
case PFREE_CANDIDATE:
|
1906 |
|
|
if (is_pfree (insn, bb_src, bb_trg))
|
1907 |
|
|
return 1;
|
1908 |
|
|
/* Don't 'break' here: PFREE-candidate is also PRISKY-candidate. */
|
1909 |
|
|
case PRISKY_CANDIDATE:
|
1910 |
|
|
if (!flag_schedule_speculative_load_dangerous
|
1911 |
|
|
|| is_prisky (insn, bb_src, bb_trg))
|
1912 |
|
|
return 0;
|
1913 |
|
|
break;
|
1914 |
|
|
default:;
|
1915 |
|
|
}
|
1916 |
|
|
|
1917 |
|
|
return flag_schedule_speculative_load_dangerous;
|
1918 |
|
|
}
|
1919 |
|
|
|
1920 |
|
|
/* The number of insns from the current block scheduled so far. */
|
1921 |
|
|
static int sched_target_n_insns;
|
1922 |
|
|
/* The number of insns from the current block to be scheduled in total. */
|
1923 |
|
|
static int target_n_insns;
|
1924 |
|
|
/* The number of insns from the entire region scheduled so far. */
|
1925 |
|
|
static int sched_n_insns;
|
1926 |
|
|
|
1927 |
|
|
/* Implementations of the sched_info functions for region scheduling. */
|
1928 |
|
|
static void init_ready_list (void);
|
1929 |
|
|
static int can_schedule_ready_p (rtx);
|
1930 |
|
|
static void begin_schedule_ready (rtx, rtx);
|
1931 |
|
|
static ds_t new_ready (rtx, ds_t);
|
1932 |
|
|
static int schedule_more_p (void);
|
1933 |
|
|
static const char *rgn_print_insn (rtx, int);
|
1934 |
|
|
static int rgn_rank (rtx, rtx);
|
1935 |
|
|
static int contributes_to_priority (rtx, rtx);
|
1936 |
|
|
static void compute_jump_reg_dependencies (rtx, regset, regset, regset);
|
1937 |
|
|
|
1938 |
|
|
/* Functions for speculative scheduling. */
|
1939 |
|
|
static void add_remove_insn (rtx, int);
|
1940 |
|
|
static void extend_regions (void);
|
1941 |
|
|
static void add_block1 (basic_block, basic_block);
|
1942 |
|
|
static void fix_recovery_cfg (int, int, int);
|
1943 |
|
|
static basic_block advance_target_bb (basic_block, rtx);
|
1944 |
|
|
static void check_dead_notes1 (int, sbitmap);
|
1945 |
|
|
#ifdef ENABLE_CHECKING
|
1946 |
|
|
static int region_head_or_leaf_p (basic_block, int);
|
1947 |
|
|
#endif
|
1948 |
|
|
|
1949 |
|
|
/* Return nonzero if there are more insns that should be scheduled. */
|
1950 |
|
|
|
1951 |
|
|
static int
|
1952 |
|
|
schedule_more_p (void)
|
1953 |
|
|
{
|
1954 |
|
|
return sched_target_n_insns < target_n_insns;
|
1955 |
|
|
}
|
1956 |
|
|
|
1957 |
|
|
/* Add all insns that are initially ready to the ready list READY. Called
|
1958 |
|
|
once before scheduling a set of insns. */
|
1959 |
|
|
|
1960 |
|
|
static void
|
1961 |
|
|
init_ready_list (void)
|
1962 |
|
|
{
|
1963 |
|
|
rtx prev_head = current_sched_info->prev_head;
|
1964 |
|
|
rtx next_tail = current_sched_info->next_tail;
|
1965 |
|
|
int bb_src;
|
1966 |
|
|
rtx insn;
|
1967 |
|
|
|
1968 |
|
|
target_n_insns = 0;
|
1969 |
|
|
sched_target_n_insns = 0;
|
1970 |
|
|
sched_n_insns = 0;
|
1971 |
|
|
|
1972 |
|
|
/* Print debugging information. */
|
1973 |
|
|
if (sched_verbose >= 5)
|
1974 |
|
|
debug_dependencies ();
|
1975 |
|
|
|
1976 |
|
|
/* Prepare current target block info. */
|
1977 |
|
|
if (current_nr_blocks > 1)
|
1978 |
|
|
{
|
1979 |
|
|
candidate_table = XNEWVEC (candidate, current_nr_blocks);
|
1980 |
|
|
|
1981 |
|
|
bblst_last = 0;
|
1982 |
|
|
/* bblst_table holds split blocks and update blocks for each block after
|
1983 |
|
|
the current one in the region. split blocks and update blocks are
|
1984 |
|
|
the TO blocks of region edges, so there can be at most rgn_nr_edges
|
1985 |
|
|
of them. */
|
1986 |
|
|
bblst_size = (current_nr_blocks - target_bb) * rgn_nr_edges;
|
1987 |
|
|
bblst_table = XNEWVEC (basic_block, bblst_size);
|
1988 |
|
|
|
1989 |
|
|
edgelst_last = 0;
|
1990 |
|
|
edgelst_table = XNEWVEC (edge, rgn_nr_edges);
|
1991 |
|
|
|
1992 |
|
|
compute_trg_info (target_bb);
|
1993 |
|
|
}
|
1994 |
|
|
|
1995 |
|
|
/* Initialize ready list with all 'ready' insns in target block.
|
1996 |
|
|
Count number of insns in the target block being scheduled. */
|
1997 |
|
|
for (insn = NEXT_INSN (prev_head); insn != next_tail; insn = NEXT_INSN (insn))
|
1998 |
|
|
{
|
1999 |
|
|
try_ready (insn);
|
2000 |
|
|
target_n_insns++;
|
2001 |
|
|
|
2002 |
|
|
gcc_assert (!(TODO_SPEC (insn) & BEGIN_CONTROL));
|
2003 |
|
|
}
|
2004 |
|
|
|
2005 |
|
|
/* Add to ready list all 'ready' insns in valid source blocks.
|
2006 |
|
|
For speculative insns, check-live, exception-free, and
|
2007 |
|
|
issue-delay. */
|
2008 |
|
|
for (bb_src = target_bb + 1; bb_src < current_nr_blocks; bb_src++)
|
2009 |
|
|
if (IS_VALID (bb_src))
|
2010 |
|
|
{
|
2011 |
|
|
rtx src_head;
|
2012 |
|
|
rtx src_next_tail;
|
2013 |
|
|
rtx tail, head;
|
2014 |
|
|
|
2015 |
|
|
get_ebb_head_tail (EBB_FIRST_BB (bb_src), EBB_LAST_BB (bb_src),
|
2016 |
|
|
&head, &tail);
|
2017 |
|
|
src_next_tail = NEXT_INSN (tail);
|
2018 |
|
|
src_head = head;
|
2019 |
|
|
|
2020 |
|
|
for (insn = src_head; insn != src_next_tail; insn = NEXT_INSN (insn))
|
2021 |
|
|
if (INSN_P (insn))
|
2022 |
|
|
try_ready (insn);
|
2023 |
|
|
}
|
2024 |
|
|
}
|
2025 |
|
|
|
2026 |
|
|
/* Called after taking INSN from the ready list. Returns nonzero if this
|
2027 |
|
|
insn can be scheduled, nonzero if we should silently discard it. */
|
2028 |
|
|
|
2029 |
|
|
static int
|
2030 |
|
|
can_schedule_ready_p (rtx insn)
|
2031 |
|
|
{
|
2032 |
|
|
/* An interblock motion? */
|
2033 |
|
|
if (INSN_BB (insn) != target_bb
|
2034 |
|
|
&& IS_SPECULATIVE_INSN (insn)
|
2035 |
|
|
&& !check_live (insn, INSN_BB (insn)))
|
2036 |
|
|
return 0;
|
2037 |
|
|
else
|
2038 |
|
|
return 1;
|
2039 |
|
|
}
|
2040 |
|
|
|
2041 |
|
|
/* Updates counter and other information. Split from can_schedule_ready_p ()
|
2042 |
|
|
because when we schedule insn speculatively then insn passed to
|
2043 |
|
|
can_schedule_ready_p () differs from the one passed to
|
2044 |
|
|
begin_schedule_ready (). */
|
2045 |
|
|
static void
|
2046 |
|
|
begin_schedule_ready (rtx insn, rtx last ATTRIBUTE_UNUSED)
|
2047 |
|
|
{
|
2048 |
|
|
/* An interblock motion? */
|
2049 |
|
|
if (INSN_BB (insn) != target_bb)
|
2050 |
|
|
{
|
2051 |
|
|
if (IS_SPECULATIVE_INSN (insn))
|
2052 |
|
|
{
|
2053 |
|
|
gcc_assert (check_live (insn, INSN_BB (insn)));
|
2054 |
|
|
|
2055 |
|
|
update_live (insn, INSN_BB (insn));
|
2056 |
|
|
|
2057 |
|
|
/* For speculative load, mark insns fed by it. */
|
2058 |
|
|
if (IS_LOAD_INSN (insn) || FED_BY_SPEC_LOAD (insn))
|
2059 |
|
|
set_spec_fed (insn);
|
2060 |
|
|
|
2061 |
|
|
nr_spec++;
|
2062 |
|
|
}
|
2063 |
|
|
nr_inter++;
|
2064 |
|
|
}
|
2065 |
|
|
else
|
2066 |
|
|
{
|
2067 |
|
|
/* In block motion. */
|
2068 |
|
|
sched_target_n_insns++;
|
2069 |
|
|
}
|
2070 |
|
|
sched_n_insns++;
|
2071 |
|
|
}
|
2072 |
|
|
|
2073 |
|
|
/* Called after INSN has all its hard dependencies resolved and the speculation
|
2074 |
|
|
of type TS is enough to overcome them all.
|
2075 |
|
|
Return nonzero if it should be moved to the ready list or the queue, or zero
|
2076 |
|
|
if we should silently discard it. */
|
2077 |
|
|
static ds_t
|
2078 |
|
|
new_ready (rtx next, ds_t ts)
|
2079 |
|
|
{
|
2080 |
|
|
if (INSN_BB (next) != target_bb)
|
2081 |
|
|
{
|
2082 |
|
|
int not_ex_free = 0;
|
2083 |
|
|
|
2084 |
|
|
/* For speculative insns, before inserting to ready/queue,
|
2085 |
|
|
check live, exception-free, and issue-delay. */
|
2086 |
|
|
if (!IS_VALID (INSN_BB (next))
|
2087 |
|
|
|| CANT_MOVE (next)
|
2088 |
|
|
|| (IS_SPECULATIVE_INSN (next)
|
2089 |
|
|
&& ((recog_memoized (next) >= 0
|
2090 |
|
|
&& min_insn_conflict_delay (curr_state, next, next)
|
2091 |
|
|
> PARAM_VALUE (PARAM_MAX_SCHED_INSN_CONFLICT_DELAY))
|
2092 |
|
|
|| IS_SPECULATION_CHECK_P (next)
|
2093 |
|
|
|| !check_live (next, INSN_BB (next))
|
2094 |
|
|
|| (not_ex_free = !is_exception_free (next, INSN_BB (next),
|
2095 |
|
|
target_bb)))))
|
2096 |
|
|
{
|
2097 |
|
|
if (not_ex_free
|
2098 |
|
|
/* We are here because is_exception_free () == false.
|
2099 |
|
|
But we possibly can handle that with control speculation. */
|
2100 |
|
|
&& current_sched_info->flags & DO_SPECULATION)
|
2101 |
|
|
/* Here we got new control-speculative instruction. */
|
2102 |
|
|
ts = set_dep_weak (ts, BEGIN_CONTROL, MAX_DEP_WEAK);
|
2103 |
|
|
else
|
2104 |
|
|
ts = (ts & ~SPECULATIVE) | HARD_DEP;
|
2105 |
|
|
}
|
2106 |
|
|
}
|
2107 |
|
|
|
2108 |
|
|
return ts;
|
2109 |
|
|
}
|
2110 |
|
|
|
2111 |
|
|
/* Return a string that contains the insn uid and optionally anything else
|
2112 |
|
|
necessary to identify this insn in an output. It's valid to use a
|
2113 |
|
|
static buffer for this. The ALIGNED parameter should cause the string
|
2114 |
|
|
to be formatted so that multiple output lines will line up nicely. */
|
2115 |
|
|
|
2116 |
|
|
static const char *
|
2117 |
|
|
rgn_print_insn (rtx insn, int aligned)
|
2118 |
|
|
{
|
2119 |
|
|
static char tmp[80];
|
2120 |
|
|
|
2121 |
|
|
if (aligned)
|
2122 |
|
|
sprintf (tmp, "b%3d: i%4d", INSN_BB (insn), INSN_UID (insn));
|
2123 |
|
|
else
|
2124 |
|
|
{
|
2125 |
|
|
if (current_nr_blocks > 1 && INSN_BB (insn) != target_bb)
|
2126 |
|
|
sprintf (tmp, "%d/b%d", INSN_UID (insn), INSN_BB (insn));
|
2127 |
|
|
else
|
2128 |
|
|
sprintf (tmp, "%d", INSN_UID (insn));
|
2129 |
|
|
}
|
2130 |
|
|
return tmp;
|
2131 |
|
|
}
|
2132 |
|
|
|
2133 |
|
|
/* Compare priority of two insns. Return a positive number if the second
|
2134 |
|
|
insn is to be preferred for scheduling, and a negative one if the first
|
2135 |
|
|
is to be preferred. Zero if they are equally good. */
|
2136 |
|
|
|
2137 |
|
|
static int
|
2138 |
|
|
rgn_rank (rtx insn1, rtx insn2)
|
2139 |
|
|
{
|
2140 |
|
|
/* Some comparison make sense in interblock scheduling only. */
|
2141 |
|
|
if (INSN_BB (insn1) != INSN_BB (insn2))
|
2142 |
|
|
{
|
2143 |
|
|
int spec_val, prob_val;
|
2144 |
|
|
|
2145 |
|
|
/* Prefer an inblock motion on an interblock motion. */
|
2146 |
|
|
if ((INSN_BB (insn2) == target_bb) && (INSN_BB (insn1) != target_bb))
|
2147 |
|
|
return 1;
|
2148 |
|
|
if ((INSN_BB (insn1) == target_bb) && (INSN_BB (insn2) != target_bb))
|
2149 |
|
|
return -1;
|
2150 |
|
|
|
2151 |
|
|
/* Prefer a useful motion on a speculative one. */
|
2152 |
|
|
spec_val = IS_SPECULATIVE_INSN (insn1) - IS_SPECULATIVE_INSN (insn2);
|
2153 |
|
|
if (spec_val)
|
2154 |
|
|
return spec_val;
|
2155 |
|
|
|
2156 |
|
|
/* Prefer a more probable (speculative) insn. */
|
2157 |
|
|
prob_val = INSN_PROBABILITY (insn2) - INSN_PROBABILITY (insn1);
|
2158 |
|
|
if (prob_val)
|
2159 |
|
|
return prob_val;
|
2160 |
|
|
}
|
2161 |
|
|
return 0;
|
2162 |
|
|
}
|
2163 |
|
|
|
2164 |
|
|
/* NEXT is an instruction that depends on INSN (a backward dependence);
|
2165 |
|
|
return nonzero if we should include this dependence in priority
|
2166 |
|
|
calculations. */
|
2167 |
|
|
|
2168 |
|
|
static int
|
2169 |
|
|
contributes_to_priority (rtx next, rtx insn)
|
2170 |
|
|
{
|
2171 |
|
|
/* NEXT and INSN reside in one ebb. */
|
2172 |
|
|
return BLOCK_TO_BB (BLOCK_NUM (next)) == BLOCK_TO_BB (BLOCK_NUM (insn));
|
2173 |
|
|
}
|
2174 |
|
|
|
2175 |
|
|
/* INSN is a JUMP_INSN, COND_SET is the set of registers that are
|
2176 |
|
|
conditionally set before INSN. Store the set of registers that
|
2177 |
|
|
must be considered as used by this jump in USED and that of
|
2178 |
|
|
registers that must be considered as set in SET. */
|
2179 |
|
|
|
2180 |
|
|
static void
|
2181 |
|
|
compute_jump_reg_dependencies (rtx insn ATTRIBUTE_UNUSED,
|
2182 |
|
|
regset cond_exec ATTRIBUTE_UNUSED,
|
2183 |
|
|
regset used ATTRIBUTE_UNUSED,
|
2184 |
|
|
regset set ATTRIBUTE_UNUSED)
|
2185 |
|
|
{
|
2186 |
|
|
/* Nothing to do here, since we postprocess jumps in
|
2187 |
|
|
add_branch_dependences. */
|
2188 |
|
|
}
|
2189 |
|
|
|
2190 |
|
|
/* Used in schedule_insns to initialize current_sched_info for scheduling
|
2191 |
|
|
regions (or single basic blocks). */
|
2192 |
|
|
|
2193 |
|
|
static struct sched_info region_sched_info =
|
2194 |
|
|
{
|
2195 |
|
|
init_ready_list,
|
2196 |
|
|
can_schedule_ready_p,
|
2197 |
|
|
schedule_more_p,
|
2198 |
|
|
new_ready,
|
2199 |
|
|
rgn_rank,
|
2200 |
|
|
rgn_print_insn,
|
2201 |
|
|
contributes_to_priority,
|
2202 |
|
|
compute_jump_reg_dependencies,
|
2203 |
|
|
|
2204 |
|
|
NULL, NULL,
|
2205 |
|
|
NULL, NULL,
|
2206 |
|
|
0, 0, 0,
|
2207 |
|
|
|
2208 |
|
|
add_remove_insn,
|
2209 |
|
|
begin_schedule_ready,
|
2210 |
|
|
add_block1,
|
2211 |
|
|
advance_target_bb,
|
2212 |
|
|
fix_recovery_cfg,
|
2213 |
|
|
#ifdef ENABLE_CHECKING
|
2214 |
|
|
region_head_or_leaf_p,
|
2215 |
|
|
#endif
|
2216 |
|
|
SCHED_RGN | USE_GLAT
|
2217 |
|
|
#ifdef ENABLE_CHECKING
|
2218 |
|
|
| DETACH_LIFE_INFO
|
2219 |
|
|
#endif
|
2220 |
|
|
};
|
2221 |
|
|
|
2222 |
|
|
/* Determine if PAT sets a CLASS_LIKELY_SPILLED_P register. */
|
2223 |
|
|
|
2224 |
|
|
static bool
|
2225 |
|
|
sets_likely_spilled (rtx pat)
|
2226 |
|
|
{
|
2227 |
|
|
bool ret = false;
|
2228 |
|
|
note_stores (pat, sets_likely_spilled_1, &ret);
|
2229 |
|
|
return ret;
|
2230 |
|
|
}
|
2231 |
|
|
|
2232 |
|
|
static void
|
2233 |
|
|
sets_likely_spilled_1 (rtx x, rtx pat, void *data)
|
2234 |
|
|
{
|
2235 |
|
|
bool *ret = (bool *) data;
|
2236 |
|
|
|
2237 |
|
|
if (GET_CODE (pat) == SET
|
2238 |
|
|
&& REG_P (x)
|
2239 |
|
|
&& REGNO (x) < FIRST_PSEUDO_REGISTER
|
2240 |
|
|
&& CLASS_LIKELY_SPILLED_P (REGNO_REG_CLASS (REGNO (x))))
|
2241 |
|
|
*ret = true;
|
2242 |
|
|
}
|
2243 |
|
|
|
2244 |
|
|
/* Add dependences so that branches are scheduled to run last in their
|
2245 |
|
|
block. */
|
2246 |
|
|
|
2247 |
|
|
static void
|
2248 |
|
|
add_branch_dependences (rtx head, rtx tail)
|
2249 |
|
|
{
|
2250 |
|
|
rtx insn, last;
|
2251 |
|
|
|
2252 |
|
|
/* For all branches, calls, uses, clobbers, cc0 setters, and instructions
|
2253 |
|
|
that can throw exceptions, force them to remain in order at the end of
|
2254 |
|
|
the block by adding dependencies and giving the last a high priority.
|
2255 |
|
|
There may be notes present, and prev_head may also be a note.
|
2256 |
|
|
|
2257 |
|
|
Branches must obviously remain at the end. Calls should remain at the
|
2258 |
|
|
end since moving them results in worse register allocation. Uses remain
|
2259 |
|
|
at the end to ensure proper register allocation.
|
2260 |
|
|
|
2261 |
|
|
cc0 setters remain at the end because they can't be moved away from
|
2262 |
|
|
their cc0 user.
|
2263 |
|
|
|
2264 |
|
|
COND_EXEC insns cannot be moved past a branch (see e.g. PR17808).
|
2265 |
|
|
|
2266 |
|
|
Insns setting CLASS_LIKELY_SPILLED_P registers (usually return values)
|
2267 |
|
|
are not moved before reload because we can wind up with register
|
2268 |
|
|
allocation failures. */
|
2269 |
|
|
|
2270 |
|
|
insn = tail;
|
2271 |
|
|
last = 0;
|
2272 |
|
|
while (CALL_P (insn)
|
2273 |
|
|
|| JUMP_P (insn)
|
2274 |
|
|
|| (NONJUMP_INSN_P (insn)
|
2275 |
|
|
&& (GET_CODE (PATTERN (insn)) == USE
|
2276 |
|
|
|| GET_CODE (PATTERN (insn)) == CLOBBER
|
2277 |
|
|
|| can_throw_internal (insn)
|
2278 |
|
|
#ifdef HAVE_cc0
|
2279 |
|
|
|| sets_cc0_p (PATTERN (insn))
|
2280 |
|
|
#endif
|
2281 |
|
|
|| (!reload_completed
|
2282 |
|
|
&& sets_likely_spilled (PATTERN (insn)))))
|
2283 |
|
|
|| NOTE_P (insn))
|
2284 |
|
|
{
|
2285 |
|
|
if (!NOTE_P (insn))
|
2286 |
|
|
{
|
2287 |
|
|
if (last != 0 && !find_insn_list (insn, LOG_LINKS (last)))
|
2288 |
|
|
{
|
2289 |
|
|
if (! sched_insns_conditions_mutex_p (last, insn))
|
2290 |
|
|
add_dependence (last, insn, REG_DEP_ANTI);
|
2291 |
|
|
INSN_REF_COUNT (insn)++;
|
2292 |
|
|
}
|
2293 |
|
|
|
2294 |
|
|
CANT_MOVE (insn) = 1;
|
2295 |
|
|
|
2296 |
|
|
last = insn;
|
2297 |
|
|
}
|
2298 |
|
|
|
2299 |
|
|
/* Don't overrun the bounds of the basic block. */
|
2300 |
|
|
if (insn == head)
|
2301 |
|
|
break;
|
2302 |
|
|
|
2303 |
|
|
insn = PREV_INSN (insn);
|
2304 |
|
|
}
|
2305 |
|
|
|
2306 |
|
|
/* Make sure these insns are scheduled last in their block. */
|
2307 |
|
|
insn = last;
|
2308 |
|
|
if (insn != 0)
|
2309 |
|
|
while (insn != head)
|
2310 |
|
|
{
|
2311 |
|
|
insn = prev_nonnote_insn (insn);
|
2312 |
|
|
|
2313 |
|
|
if (INSN_REF_COUNT (insn) != 0)
|
2314 |
|
|
continue;
|
2315 |
|
|
|
2316 |
|
|
if (! sched_insns_conditions_mutex_p (last, insn))
|
2317 |
|
|
add_dependence (last, insn, REG_DEP_ANTI);
|
2318 |
|
|
INSN_REF_COUNT (insn) = 1;
|
2319 |
|
|
}
|
2320 |
|
|
|
2321 |
|
|
#ifdef HAVE_conditional_execution
|
2322 |
|
|
/* Finally, if the block ends in a jump, and we are doing intra-block
|
2323 |
|
|
scheduling, make sure that the branch depends on any COND_EXEC insns
|
2324 |
|
|
inside the block to avoid moving the COND_EXECs past the branch insn.
|
2325 |
|
|
|
2326 |
|
|
We only have to do this after reload, because (1) before reload there
|
2327 |
|
|
are no COND_EXEC insns, and (2) the region scheduler is an intra-block
|
2328 |
|
|
scheduler after reload.
|
2329 |
|
|
|
2330 |
|
|
FIXME: We could in some cases move COND_EXEC insns past the branch if
|
2331 |
|
|
this scheduler would be a little smarter. Consider this code:
|
2332 |
|
|
|
2333 |
|
|
T = [addr]
|
2334 |
|
|
C ? addr += 4
|
2335 |
|
|
!C ? X += 12
|
2336 |
|
|
C ? T += 1
|
2337 |
|
|
C ? jump foo
|
2338 |
|
|
|
2339 |
|
|
On a target with a one cycle stall on a memory access the optimal
|
2340 |
|
|
sequence would be:
|
2341 |
|
|
|
2342 |
|
|
T = [addr]
|
2343 |
|
|
C ? addr += 4
|
2344 |
|
|
C ? T += 1
|
2345 |
|
|
C ? jump foo
|
2346 |
|
|
!C ? X += 12
|
2347 |
|
|
|
2348 |
|
|
We don't want to put the 'X += 12' before the branch because it just
|
2349 |
|
|
wastes a cycle of execution time when the branch is taken.
|
2350 |
|
|
|
2351 |
|
|
Note that in the example "!C" will always be true. That is another
|
2352 |
|
|
possible improvement for handling COND_EXECs in this scheduler: it
|
2353 |
|
|
could remove always-true predicates. */
|
2354 |
|
|
|
2355 |
|
|
if (!reload_completed || ! JUMP_P (tail))
|
2356 |
|
|
return;
|
2357 |
|
|
|
2358 |
|
|
insn = tail;
|
2359 |
|
|
while (insn != head)
|
2360 |
|
|
{
|
2361 |
|
|
insn = PREV_INSN (insn);
|
2362 |
|
|
|
2363 |
|
|
/* Note that we want to add this dependency even when
|
2364 |
|
|
sched_insns_conditions_mutex_p returns true. The whole point
|
2365 |
|
|
is that we _want_ this dependency, even if these insns really
|
2366 |
|
|
are independent. */
|
2367 |
|
|
if (INSN_P (insn) && GET_CODE (PATTERN (insn)) == COND_EXEC)
|
2368 |
|
|
add_dependence (tail, insn, REG_DEP_ANTI);
|
2369 |
|
|
}
|
2370 |
|
|
#endif
|
2371 |
|
|
}
|
2372 |
|
|
|
2373 |
|
|
/* Data structures for the computation of data dependences in a regions. We
|
2374 |
|
|
keep one `deps' structure for every basic block. Before analyzing the
|
2375 |
|
|
data dependences for a bb, its variables are initialized as a function of
|
2376 |
|
|
the variables of its predecessors. When the analysis for a bb completes,
|
2377 |
|
|
we save the contents to the corresponding bb_deps[bb] variable. */
|
2378 |
|
|
|
2379 |
|
|
static struct deps *bb_deps;
|
2380 |
|
|
|
2381 |
|
|
/* Duplicate the INSN_LIST elements of COPY and prepend them to OLD. */
|
2382 |
|
|
|
2383 |
|
|
static rtx
|
2384 |
|
|
concat_INSN_LIST (rtx copy, rtx old)
|
2385 |
|
|
{
|
2386 |
|
|
rtx new = old;
|
2387 |
|
|
for (; copy ; copy = XEXP (copy, 1))
|
2388 |
|
|
new = alloc_INSN_LIST (XEXP (copy, 0), new);
|
2389 |
|
|
return new;
|
2390 |
|
|
}
|
2391 |
|
|
|
2392 |
|
|
static void
|
2393 |
|
|
concat_insn_mem_list (rtx copy_insns, rtx copy_mems, rtx *old_insns_p,
|
2394 |
|
|
rtx *old_mems_p)
|
2395 |
|
|
{
|
2396 |
|
|
rtx new_insns = *old_insns_p;
|
2397 |
|
|
rtx new_mems = *old_mems_p;
|
2398 |
|
|
|
2399 |
|
|
while (copy_insns)
|
2400 |
|
|
{
|
2401 |
|
|
new_insns = alloc_INSN_LIST (XEXP (copy_insns, 0), new_insns);
|
2402 |
|
|
new_mems = alloc_EXPR_LIST (VOIDmode, XEXP (copy_mems, 0), new_mems);
|
2403 |
|
|
copy_insns = XEXP (copy_insns, 1);
|
2404 |
|
|
copy_mems = XEXP (copy_mems, 1);
|
2405 |
|
|
}
|
2406 |
|
|
|
2407 |
|
|
*old_insns_p = new_insns;
|
2408 |
|
|
*old_mems_p = new_mems;
|
2409 |
|
|
}
|
2410 |
|
|
|
2411 |
|
|
/* After computing the dependencies for block BB, propagate the dependencies
|
2412 |
|
|
found in TMP_DEPS to the successors of the block. */
|
2413 |
|
|
static void
|
2414 |
|
|
propagate_deps (int bb, struct deps *pred_deps)
|
2415 |
|
|
{
|
2416 |
|
|
basic_block block = BASIC_BLOCK (BB_TO_BLOCK (bb));
|
2417 |
|
|
edge_iterator ei;
|
2418 |
|
|
edge e;
|
2419 |
|
|
|
2420 |
|
|
/* bb's structures are inherited by its successors. */
|
2421 |
|
|
FOR_EACH_EDGE (e, ei, block->succs)
|
2422 |
|
|
{
|
2423 |
|
|
struct deps *succ_deps;
|
2424 |
|
|
unsigned reg;
|
2425 |
|
|
reg_set_iterator rsi;
|
2426 |
|
|
|
2427 |
|
|
/* Only bbs "below" bb, in the same region, are interesting. */
|
2428 |
|
|
if (e->dest == EXIT_BLOCK_PTR
|
2429 |
|
|
|| CONTAINING_RGN (block->index) != CONTAINING_RGN (e->dest->index)
|
2430 |
|
|
|| BLOCK_TO_BB (e->dest->index) <= bb)
|
2431 |
|
|
continue;
|
2432 |
|
|
|
2433 |
|
|
succ_deps = bb_deps + BLOCK_TO_BB (e->dest->index);
|
2434 |
|
|
|
2435 |
|
|
/* The reg_last lists are inherited by successor. */
|
2436 |
|
|
EXECUTE_IF_SET_IN_REG_SET (&pred_deps->reg_last_in_use, 0, reg, rsi)
|
2437 |
|
|
{
|
2438 |
|
|
struct deps_reg *pred_rl = &pred_deps->reg_last[reg];
|
2439 |
|
|
struct deps_reg *succ_rl = &succ_deps->reg_last[reg];
|
2440 |
|
|
|
2441 |
|
|
succ_rl->uses = concat_INSN_LIST (pred_rl->uses, succ_rl->uses);
|
2442 |
|
|
succ_rl->sets = concat_INSN_LIST (pred_rl->sets, succ_rl->sets);
|
2443 |
|
|
succ_rl->clobbers = concat_INSN_LIST (pred_rl->clobbers,
|
2444 |
|
|
succ_rl->clobbers);
|
2445 |
|
|
succ_rl->uses_length += pred_rl->uses_length;
|
2446 |
|
|
succ_rl->clobbers_length += pred_rl->clobbers_length;
|
2447 |
|
|
}
|
2448 |
|
|
IOR_REG_SET (&succ_deps->reg_last_in_use, &pred_deps->reg_last_in_use);
|
2449 |
|
|
|
2450 |
|
|
/* Mem read/write lists are inherited by successor. */
|
2451 |
|
|
concat_insn_mem_list (pred_deps->pending_read_insns,
|
2452 |
|
|
pred_deps->pending_read_mems,
|
2453 |
|
|
&succ_deps->pending_read_insns,
|
2454 |
|
|
&succ_deps->pending_read_mems);
|
2455 |
|
|
concat_insn_mem_list (pred_deps->pending_write_insns,
|
2456 |
|
|
pred_deps->pending_write_mems,
|
2457 |
|
|
&succ_deps->pending_write_insns,
|
2458 |
|
|
&succ_deps->pending_write_mems);
|
2459 |
|
|
|
2460 |
|
|
succ_deps->last_pending_memory_flush
|
2461 |
|
|
= concat_INSN_LIST (pred_deps->last_pending_memory_flush,
|
2462 |
|
|
succ_deps->last_pending_memory_flush);
|
2463 |
|
|
|
2464 |
|
|
succ_deps->pending_lists_length += pred_deps->pending_lists_length;
|
2465 |
|
|
succ_deps->pending_flush_length += pred_deps->pending_flush_length;
|
2466 |
|
|
|
2467 |
|
|
/* last_function_call is inherited by successor. */
|
2468 |
|
|
succ_deps->last_function_call
|
2469 |
|
|
= concat_INSN_LIST (pred_deps->last_function_call,
|
2470 |
|
|
succ_deps->last_function_call);
|
2471 |
|
|
|
2472 |
|
|
/* sched_before_next_call is inherited by successor. */
|
2473 |
|
|
succ_deps->sched_before_next_call
|
2474 |
|
|
= concat_INSN_LIST (pred_deps->sched_before_next_call,
|
2475 |
|
|
succ_deps->sched_before_next_call);
|
2476 |
|
|
}
|
2477 |
|
|
|
2478 |
|
|
/* These lists should point to the right place, for correct
|
2479 |
|
|
freeing later. */
|
2480 |
|
|
bb_deps[bb].pending_read_insns = pred_deps->pending_read_insns;
|
2481 |
|
|
bb_deps[bb].pending_read_mems = pred_deps->pending_read_mems;
|
2482 |
|
|
bb_deps[bb].pending_write_insns = pred_deps->pending_write_insns;
|
2483 |
|
|
bb_deps[bb].pending_write_mems = pred_deps->pending_write_mems;
|
2484 |
|
|
|
2485 |
|
|
/* Can't allow these to be freed twice. */
|
2486 |
|
|
pred_deps->pending_read_insns = 0;
|
2487 |
|
|
pred_deps->pending_read_mems = 0;
|
2488 |
|
|
pred_deps->pending_write_insns = 0;
|
2489 |
|
|
pred_deps->pending_write_mems = 0;
|
2490 |
|
|
}
|
2491 |
|
|
|
2492 |
|
|
/* Compute backward dependences inside bb. In a multiple blocks region:
|
2493 |
|
|
(1) a bb is analyzed after its predecessors, and (2) the lists in
|
2494 |
|
|
effect at the end of bb (after analyzing for bb) are inherited by
|
2495 |
|
|
bb's successors.
|
2496 |
|
|
|
2497 |
|
|
Specifically for reg-reg data dependences, the block insns are
|
2498 |
|
|
scanned by sched_analyze () top-to-bottom. Two lists are
|
2499 |
|
|
maintained by sched_analyze (): reg_last[].sets for register DEFs,
|
2500 |
|
|
and reg_last[].uses for register USEs.
|
2501 |
|
|
|
2502 |
|
|
When analysis is completed for bb, we update for its successors:
|
2503 |
|
|
; - DEFS[succ] = Union (DEFS [succ], DEFS [bb])
|
2504 |
|
|
; - USES[succ] = Union (USES [succ], DEFS [bb])
|
2505 |
|
|
|
2506 |
|
|
The mechanism for computing mem-mem data dependence is very
|
2507 |
|
|
similar, and the result is interblock dependences in the region. */
|
2508 |
|
|
|
2509 |
|
|
static void
|
2510 |
|
|
compute_block_backward_dependences (int bb)
|
2511 |
|
|
{
|
2512 |
|
|
rtx head, tail;
|
2513 |
|
|
struct deps tmp_deps;
|
2514 |
|
|
|
2515 |
|
|
tmp_deps = bb_deps[bb];
|
2516 |
|
|
|
2517 |
|
|
/* Do the analysis for this block. */
|
2518 |
|
|
gcc_assert (EBB_FIRST_BB (bb) == EBB_LAST_BB (bb));
|
2519 |
|
|
get_ebb_head_tail (EBB_FIRST_BB (bb), EBB_LAST_BB (bb), &head, &tail);
|
2520 |
|
|
sched_analyze (&tmp_deps, head, tail);
|
2521 |
|
|
add_branch_dependences (head, tail);
|
2522 |
|
|
|
2523 |
|
|
if (current_nr_blocks > 1)
|
2524 |
|
|
propagate_deps (bb, &tmp_deps);
|
2525 |
|
|
|
2526 |
|
|
/* Free up the INSN_LISTs. */
|
2527 |
|
|
free_deps (&tmp_deps);
|
2528 |
|
|
}
|
2529 |
|
|
|
2530 |
|
|
/* Remove all INSN_LISTs and EXPR_LISTs from the pending lists and add
|
2531 |
|
|
them to the unused_*_list variables, so that they can be reused. */
|
2532 |
|
|
|
2533 |
|
|
static void
|
2534 |
|
|
free_pending_lists (void)
|
2535 |
|
|
{
|
2536 |
|
|
int bb;
|
2537 |
|
|
|
2538 |
|
|
for (bb = 0; bb < current_nr_blocks; bb++)
|
2539 |
|
|
{
|
2540 |
|
|
free_INSN_LIST_list (&bb_deps[bb].pending_read_insns);
|
2541 |
|
|
free_INSN_LIST_list (&bb_deps[bb].pending_write_insns);
|
2542 |
|
|
free_EXPR_LIST_list (&bb_deps[bb].pending_read_mems);
|
2543 |
|
|
free_EXPR_LIST_list (&bb_deps[bb].pending_write_mems);
|
2544 |
|
|
}
|
2545 |
|
|
}
|
2546 |
|
|
|
2547 |
|
|
/* Print dependences for debugging, callable from debugger. */
|
2548 |
|
|
|
2549 |
|
|
void
|
2550 |
|
|
debug_dependencies (void)
|
2551 |
|
|
{
|
2552 |
|
|
int bb;
|
2553 |
|
|
|
2554 |
|
|
fprintf (sched_dump, ";; --------------- forward dependences: ------------ \n");
|
2555 |
|
|
for (bb = 0; bb < current_nr_blocks; bb++)
|
2556 |
|
|
{
|
2557 |
|
|
rtx head, tail;
|
2558 |
|
|
rtx next_tail;
|
2559 |
|
|
rtx insn;
|
2560 |
|
|
|
2561 |
|
|
gcc_assert (EBB_FIRST_BB (bb) == EBB_LAST_BB (bb));
|
2562 |
|
|
get_ebb_head_tail (EBB_FIRST_BB (bb), EBB_LAST_BB (bb), &head, &tail);
|
2563 |
|
|
next_tail = NEXT_INSN (tail);
|
2564 |
|
|
fprintf (sched_dump, "\n;; --- Region Dependences --- b %d bb %d \n",
|
2565 |
|
|
BB_TO_BLOCK (bb), bb);
|
2566 |
|
|
|
2567 |
|
|
fprintf (sched_dump, ";; %7s%6s%6s%6s%6s%6s%14s\n",
|
2568 |
|
|
"insn", "code", "bb", "dep", "prio", "cost",
|
2569 |
|
|
"reservation");
|
2570 |
|
|
fprintf (sched_dump, ";; %7s%6s%6s%6s%6s%6s%14s\n",
|
2571 |
|
|
"----", "----", "--", "---", "----", "----",
|
2572 |
|
|
"-----------");
|
2573 |
|
|
|
2574 |
|
|
for (insn = head; insn != next_tail; insn = NEXT_INSN (insn))
|
2575 |
|
|
{
|
2576 |
|
|
rtx link;
|
2577 |
|
|
|
2578 |
|
|
if (! INSN_P (insn))
|
2579 |
|
|
{
|
2580 |
|
|
int n;
|
2581 |
|
|
fprintf (sched_dump, ";; %6d ", INSN_UID (insn));
|
2582 |
|
|
if (NOTE_P (insn))
|
2583 |
|
|
{
|
2584 |
|
|
n = NOTE_LINE_NUMBER (insn);
|
2585 |
|
|
if (n < 0)
|
2586 |
|
|
fprintf (sched_dump, "%s\n", GET_NOTE_INSN_NAME (n));
|
2587 |
|
|
else
|
2588 |
|
|
{
|
2589 |
|
|
expanded_location xloc;
|
2590 |
|
|
NOTE_EXPANDED_LOCATION (xloc, insn);
|
2591 |
|
|
fprintf (sched_dump, "line %d, file %s\n",
|
2592 |
|
|
xloc.line, xloc.file);
|
2593 |
|
|
}
|
2594 |
|
|
}
|
2595 |
|
|
else
|
2596 |
|
|
fprintf (sched_dump, " {%s}\n", GET_RTX_NAME (GET_CODE (insn)));
|
2597 |
|
|
continue;
|
2598 |
|
|
}
|
2599 |
|
|
|
2600 |
|
|
fprintf (sched_dump,
|
2601 |
|
|
";; %s%5d%6d%6d%6d%6d%6d ",
|
2602 |
|
|
(SCHED_GROUP_P (insn) ? "+" : " "),
|
2603 |
|
|
INSN_UID (insn),
|
2604 |
|
|
INSN_CODE (insn),
|
2605 |
|
|
INSN_BB (insn),
|
2606 |
|
|
INSN_DEP_COUNT (insn),
|
2607 |
|
|
INSN_PRIORITY (insn),
|
2608 |
|
|
insn_cost (insn, 0, 0));
|
2609 |
|
|
|
2610 |
|
|
if (recog_memoized (insn) < 0)
|
2611 |
|
|
fprintf (sched_dump, "nothing");
|
2612 |
|
|
else
|
2613 |
|
|
print_reservation (sched_dump, insn);
|
2614 |
|
|
|
2615 |
|
|
fprintf (sched_dump, "\t: ");
|
2616 |
|
|
for (link = INSN_DEPEND (insn); link; link = XEXP (link, 1))
|
2617 |
|
|
fprintf (sched_dump, "%d ", INSN_UID (XEXP (link, 0)));
|
2618 |
|
|
fprintf (sched_dump, "\n");
|
2619 |
|
|
}
|
2620 |
|
|
}
|
2621 |
|
|
fprintf (sched_dump, "\n");
|
2622 |
|
|
}
|
2623 |
|
|
|
2624 |
|
|
/* Returns true if all the basic blocks of the current region have
|
2625 |
|
|
NOTE_DISABLE_SCHED_OF_BLOCK which means not to schedule that region. */
|
2626 |
|
|
static bool
|
2627 |
|
|
sched_is_disabled_for_current_region_p (void)
|
2628 |
|
|
{
|
2629 |
|
|
int bb;
|
2630 |
|
|
|
2631 |
|
|
for (bb = 0; bb < current_nr_blocks; bb++)
|
2632 |
|
|
if (!(BASIC_BLOCK (BB_TO_BLOCK (bb))->flags & BB_DISABLE_SCHEDULE))
|
2633 |
|
|
return false;
|
2634 |
|
|
|
2635 |
|
|
return true;
|
2636 |
|
|
}
|
2637 |
|
|
|
2638 |
|
|
/* Schedule a region. A region is either an inner loop, a loop-free
|
2639 |
|
|
subroutine, or a single basic block. Each bb in the region is
|
2640 |
|
|
scheduled after its flow predecessors. */
|
2641 |
|
|
|
2642 |
|
|
static void
|
2643 |
|
|
schedule_region (int rgn)
|
2644 |
|
|
{
|
2645 |
|
|
basic_block block;
|
2646 |
|
|
edge_iterator ei;
|
2647 |
|
|
edge e;
|
2648 |
|
|
int bb;
|
2649 |
|
|
int sched_rgn_n_insns = 0;
|
2650 |
|
|
|
2651 |
|
|
rgn_n_insns = 0;
|
2652 |
|
|
/* Set variables for the current region. */
|
2653 |
|
|
current_nr_blocks = RGN_NR_BLOCKS (rgn);
|
2654 |
|
|
current_blocks = RGN_BLOCKS (rgn);
|
2655 |
|
|
|
2656 |
|
|
/* See comments in add_block1, for what reasons we allocate +1 element. */
|
2657 |
|
|
ebb_head = xrealloc (ebb_head, (current_nr_blocks + 1) * sizeof (*ebb_head));
|
2658 |
|
|
for (bb = 0; bb <= current_nr_blocks; bb++)
|
2659 |
|
|
ebb_head[bb] = current_blocks + bb;
|
2660 |
|
|
|
2661 |
|
|
/* Don't schedule region that is marked by
|
2662 |
|
|
NOTE_DISABLE_SCHED_OF_BLOCK. */
|
2663 |
|
|
if (sched_is_disabled_for_current_region_p ())
|
2664 |
|
|
return;
|
2665 |
|
|
|
2666 |
|
|
if (!RGN_DONT_CALC_DEPS (rgn))
|
2667 |
|
|
{
|
2668 |
|
|
init_deps_global ();
|
2669 |
|
|
|
2670 |
|
|
/* Initializations for region data dependence analysis. */
|
2671 |
|
|
bb_deps = XNEWVEC (struct deps, current_nr_blocks);
|
2672 |
|
|
for (bb = 0; bb < current_nr_blocks; bb++)
|
2673 |
|
|
init_deps (bb_deps + bb);
|
2674 |
|
|
|
2675 |
|
|
/* Compute LOG_LINKS. */
|
2676 |
|
|
for (bb = 0; bb < current_nr_blocks; bb++)
|
2677 |
|
|
compute_block_backward_dependences (bb);
|
2678 |
|
|
|
2679 |
|
|
/* Compute INSN_DEPEND. */
|
2680 |
|
|
for (bb = current_nr_blocks - 1; bb >= 0; bb--)
|
2681 |
|
|
{
|
2682 |
|
|
rtx head, tail;
|
2683 |
|
|
|
2684 |
|
|
gcc_assert (EBB_FIRST_BB (bb) == EBB_LAST_BB (bb));
|
2685 |
|
|
get_ebb_head_tail (EBB_FIRST_BB (bb), EBB_LAST_BB (bb), &head, &tail);
|
2686 |
|
|
|
2687 |
|
|
compute_forward_dependences (head, tail);
|
2688 |
|
|
|
2689 |
|
|
if (targetm.sched.dependencies_evaluation_hook)
|
2690 |
|
|
targetm.sched.dependencies_evaluation_hook (head, tail);
|
2691 |
|
|
}
|
2692 |
|
|
|
2693 |
|
|
free_pending_lists ();
|
2694 |
|
|
|
2695 |
|
|
finish_deps_global ();
|
2696 |
|
|
|
2697 |
|
|
free (bb_deps);
|
2698 |
|
|
}
|
2699 |
|
|
else
|
2700 |
|
|
/* This is a recovery block. It is always a single block region. */
|
2701 |
|
|
gcc_assert (current_nr_blocks == 1);
|
2702 |
|
|
|
2703 |
|
|
/* Set priorities. */
|
2704 |
|
|
current_sched_info->sched_max_insns_priority = 0;
|
2705 |
|
|
for (bb = 0; bb < current_nr_blocks; bb++)
|
2706 |
|
|
{
|
2707 |
|
|
rtx head, tail;
|
2708 |
|
|
|
2709 |
|
|
gcc_assert (EBB_FIRST_BB (bb) == EBB_LAST_BB (bb));
|
2710 |
|
|
get_ebb_head_tail (EBB_FIRST_BB (bb), EBB_LAST_BB (bb), &head, &tail);
|
2711 |
|
|
|
2712 |
|
|
rgn_n_insns += set_priorities (head, tail);
|
2713 |
|
|
}
|
2714 |
|
|
current_sched_info->sched_max_insns_priority++;
|
2715 |
|
|
|
2716 |
|
|
/* Compute interblock info: probabilities, split-edges, dominators, etc. */
|
2717 |
|
|
if (current_nr_blocks > 1)
|
2718 |
|
|
{
|
2719 |
|
|
prob = XNEWVEC (int, current_nr_blocks);
|
2720 |
|
|
|
2721 |
|
|
dom = sbitmap_vector_alloc (current_nr_blocks, current_nr_blocks);
|
2722 |
|
|
sbitmap_vector_zero (dom, current_nr_blocks);
|
2723 |
|
|
|
2724 |
|
|
/* Use ->aux to implement EDGE_TO_BIT mapping. */
|
2725 |
|
|
rgn_nr_edges = 0;
|
2726 |
|
|
FOR_EACH_BB (block)
|
2727 |
|
|
{
|
2728 |
|
|
if (CONTAINING_RGN (block->index) != rgn)
|
2729 |
|
|
continue;
|
2730 |
|
|
FOR_EACH_EDGE (e, ei, block->succs)
|
2731 |
|
|
SET_EDGE_TO_BIT (e, rgn_nr_edges++);
|
2732 |
|
|
}
|
2733 |
|
|
|
2734 |
|
|
rgn_edges = XNEWVEC (edge, rgn_nr_edges);
|
2735 |
|
|
rgn_nr_edges = 0;
|
2736 |
|
|
FOR_EACH_BB (block)
|
2737 |
|
|
{
|
2738 |
|
|
if (CONTAINING_RGN (block->index) != rgn)
|
2739 |
|
|
continue;
|
2740 |
|
|
FOR_EACH_EDGE (e, ei, block->succs)
|
2741 |
|
|
rgn_edges[rgn_nr_edges++] = e;
|
2742 |
|
|
}
|
2743 |
|
|
|
2744 |
|
|
/* Split edges. */
|
2745 |
|
|
pot_split = sbitmap_vector_alloc (current_nr_blocks, rgn_nr_edges);
|
2746 |
|
|
sbitmap_vector_zero (pot_split, current_nr_blocks);
|
2747 |
|
|
ancestor_edges = sbitmap_vector_alloc (current_nr_blocks, rgn_nr_edges);
|
2748 |
|
|
sbitmap_vector_zero (ancestor_edges, current_nr_blocks);
|
2749 |
|
|
|
2750 |
|
|
/* Compute probabilities, dominators, split_edges. */
|
2751 |
|
|
for (bb = 0; bb < current_nr_blocks; bb++)
|
2752 |
|
|
compute_dom_prob_ps (bb);
|
2753 |
|
|
|
2754 |
|
|
/* Cleanup ->aux used for EDGE_TO_BIT mapping. */
|
2755 |
|
|
/* We don't need them anymore. But we want to avoid duplication of
|
2756 |
|
|
aux fields in the newly created edges. */
|
2757 |
|
|
FOR_EACH_BB (block)
|
2758 |
|
|
{
|
2759 |
|
|
if (CONTAINING_RGN (block->index) != rgn)
|
2760 |
|
|
continue;
|
2761 |
|
|
FOR_EACH_EDGE (e, ei, block->succs)
|
2762 |
|
|
e->aux = NULL;
|
2763 |
|
|
}
|
2764 |
|
|
}
|
2765 |
|
|
|
2766 |
|
|
/* Now we can schedule all blocks. */
|
2767 |
|
|
for (bb = 0; bb < current_nr_blocks; bb++)
|
2768 |
|
|
{
|
2769 |
|
|
basic_block first_bb, last_bb, curr_bb;
|
2770 |
|
|
rtx head, tail;
|
2771 |
|
|
int b = BB_TO_BLOCK (bb);
|
2772 |
|
|
|
2773 |
|
|
first_bb = EBB_FIRST_BB (bb);
|
2774 |
|
|
last_bb = EBB_LAST_BB (bb);
|
2775 |
|
|
|
2776 |
|
|
get_ebb_head_tail (first_bb, last_bb, &head, &tail);
|
2777 |
|
|
|
2778 |
|
|
if (no_real_insns_p (head, tail))
|
2779 |
|
|
{
|
2780 |
|
|
gcc_assert (first_bb == last_bb);
|
2781 |
|
|
continue;
|
2782 |
|
|
}
|
2783 |
|
|
|
2784 |
|
|
current_sched_info->prev_head = PREV_INSN (head);
|
2785 |
|
|
current_sched_info->next_tail = NEXT_INSN (tail);
|
2786 |
|
|
|
2787 |
|
|
if (write_symbols != NO_DEBUG)
|
2788 |
|
|
{
|
2789 |
|
|
save_line_notes (b, head, tail);
|
2790 |
|
|
rm_line_notes (head, tail);
|
2791 |
|
|
}
|
2792 |
|
|
|
2793 |
|
|
/* rm_other_notes only removes notes which are _inside_ the
|
2794 |
|
|
block---that is, it won't remove notes before the first real insn
|
2795 |
|
|
or after the last real insn of the block. So if the first insn
|
2796 |
|
|
has a REG_SAVE_NOTE which would otherwise be emitted before the
|
2797 |
|
|
insn, it is redundant with the note before the start of the
|
2798 |
|
|
block, and so we have to take it out. */
|
2799 |
|
|
if (INSN_P (head))
|
2800 |
|
|
{
|
2801 |
|
|
rtx note;
|
2802 |
|
|
|
2803 |
|
|
for (note = REG_NOTES (head); note; note = XEXP (note, 1))
|
2804 |
|
|
if (REG_NOTE_KIND (note) == REG_SAVE_NOTE)
|
2805 |
|
|
remove_note (head, note);
|
2806 |
|
|
}
|
2807 |
|
|
else
|
2808 |
|
|
/* This means that first block in ebb is empty.
|
2809 |
|
|
It looks to me as an impossible thing. There at least should be
|
2810 |
|
|
a recovery check, that caused the splitting. */
|
2811 |
|
|
gcc_unreachable ();
|
2812 |
|
|
|
2813 |
|
|
/* Remove remaining note insns from the block, save them in
|
2814 |
|
|
note_list. These notes are restored at the end of
|
2815 |
|
|
schedule_block (). */
|
2816 |
|
|
rm_other_notes (head, tail);
|
2817 |
|
|
|
2818 |
|
|
unlink_bb_notes (first_bb, last_bb);
|
2819 |
|
|
|
2820 |
|
|
target_bb = bb;
|
2821 |
|
|
|
2822 |
|
|
gcc_assert (flag_schedule_interblock || current_nr_blocks == 1);
|
2823 |
|
|
current_sched_info->queue_must_finish_empty = current_nr_blocks == 1;
|
2824 |
|
|
|
2825 |
|
|
curr_bb = first_bb;
|
2826 |
|
|
schedule_block (&curr_bb, rgn_n_insns);
|
2827 |
|
|
gcc_assert (EBB_FIRST_BB (bb) == first_bb);
|
2828 |
|
|
sched_rgn_n_insns += sched_n_insns;
|
2829 |
|
|
|
2830 |
|
|
/* Clean up. */
|
2831 |
|
|
if (current_nr_blocks > 1)
|
2832 |
|
|
{
|
2833 |
|
|
free (candidate_table);
|
2834 |
|
|
free (bblst_table);
|
2835 |
|
|
free (edgelst_table);
|
2836 |
|
|
}
|
2837 |
|
|
}
|
2838 |
|
|
|
2839 |
|
|
/* Sanity check: verify that all region insns were scheduled. */
|
2840 |
|
|
gcc_assert (sched_rgn_n_insns == rgn_n_insns);
|
2841 |
|
|
|
2842 |
|
|
/* Restore line notes. */
|
2843 |
|
|
if (write_symbols != NO_DEBUG)
|
2844 |
|
|
{
|
2845 |
|
|
for (bb = 0; bb < current_nr_blocks; bb++)
|
2846 |
|
|
{
|
2847 |
|
|
rtx head, tail;
|
2848 |
|
|
|
2849 |
|
|
get_ebb_head_tail (EBB_FIRST_BB (bb), EBB_LAST_BB (bb), &head, &tail);
|
2850 |
|
|
restore_line_notes (head, tail);
|
2851 |
|
|
}
|
2852 |
|
|
}
|
2853 |
|
|
|
2854 |
|
|
/* Done with this region. */
|
2855 |
|
|
|
2856 |
|
|
if (current_nr_blocks > 1)
|
2857 |
|
|
{
|
2858 |
|
|
free (prob);
|
2859 |
|
|
sbitmap_vector_free (dom);
|
2860 |
|
|
sbitmap_vector_free (pot_split);
|
2861 |
|
|
sbitmap_vector_free (ancestor_edges);
|
2862 |
|
|
free (rgn_edges);
|
2863 |
|
|
}
|
2864 |
|
|
}
|
2865 |
|
|
|
2866 |
|
|
/* Indexed by region, holds the number of death notes found in that region.
|
2867 |
|
|
Used for consistency checks. */
|
2868 |
|
|
static int *deaths_in_region;
|
2869 |
|
|
|
2870 |
|
|
/* Initialize data structures for region scheduling. */
|
2871 |
|
|
|
2872 |
|
|
static void
|
2873 |
|
|
init_regions (void)
|
2874 |
|
|
{
|
2875 |
|
|
sbitmap blocks;
|
2876 |
|
|
int rgn;
|
2877 |
|
|
|
2878 |
|
|
nr_regions = 0;
|
2879 |
|
|
rgn_table = 0;
|
2880 |
|
|
rgn_bb_table = 0;
|
2881 |
|
|
block_to_bb = 0;
|
2882 |
|
|
containing_rgn = 0;
|
2883 |
|
|
extend_regions ();
|
2884 |
|
|
|
2885 |
|
|
/* Compute regions for scheduling. */
|
2886 |
|
|
if (reload_completed
|
2887 |
|
|
|| n_basic_blocks == NUM_FIXED_BLOCKS + 1
|
2888 |
|
|
|| !flag_schedule_interblock
|
2889 |
|
|
|| is_cfg_nonregular ())
|
2890 |
|
|
{
|
2891 |
|
|
find_single_block_region ();
|
2892 |
|
|
}
|
2893 |
|
|
else
|
2894 |
|
|
{
|
2895 |
|
|
/* Compute the dominators and post dominators. */
|
2896 |
|
|
calculate_dominance_info (CDI_DOMINATORS);
|
2897 |
|
|
|
2898 |
|
|
/* Find regions. */
|
2899 |
|
|
find_rgns ();
|
2900 |
|
|
|
2901 |
|
|
if (sched_verbose >= 3)
|
2902 |
|
|
debug_regions ();
|
2903 |
|
|
|
2904 |
|
|
/* For now. This will move as more and more of haifa is converted
|
2905 |
|
|
to using the cfg code in flow.c. */
|
2906 |
|
|
free_dominance_info (CDI_DOMINATORS);
|
2907 |
|
|
}
|
2908 |
|
|
RGN_BLOCKS (nr_regions) = RGN_BLOCKS (nr_regions - 1) +
|
2909 |
|
|
RGN_NR_BLOCKS (nr_regions - 1);
|
2910 |
|
|
|
2911 |
|
|
|
2912 |
|
|
if (CHECK_DEAD_NOTES)
|
2913 |
|
|
{
|
2914 |
|
|
blocks = sbitmap_alloc (last_basic_block);
|
2915 |
|
|
deaths_in_region = XNEWVEC (int, nr_regions);
|
2916 |
|
|
/* Remove all death notes from the subroutine. */
|
2917 |
|
|
for (rgn = 0; rgn < nr_regions; rgn++)
|
2918 |
|
|
check_dead_notes1 (rgn, blocks);
|
2919 |
|
|
|
2920 |
|
|
sbitmap_free (blocks);
|
2921 |
|
|
}
|
2922 |
|
|
else
|
2923 |
|
|
count_or_remove_death_notes (NULL, 1);
|
2924 |
|
|
}
|
2925 |
|
|
|
2926 |
|
|
/* The one entry point in this file. */
|
2927 |
|
|
|
2928 |
|
|
void
|
2929 |
|
|
schedule_insns (void)
|
2930 |
|
|
{
|
2931 |
|
|
sbitmap large_region_blocks, blocks;
|
2932 |
|
|
int rgn;
|
2933 |
|
|
int any_large_regions;
|
2934 |
|
|
basic_block bb;
|
2935 |
|
|
|
2936 |
|
|
/* Taking care of this degenerate case makes the rest of
|
2937 |
|
|
this code simpler. */
|
2938 |
|
|
if (n_basic_blocks == NUM_FIXED_BLOCKS)
|
2939 |
|
|
return;
|
2940 |
|
|
|
2941 |
|
|
nr_inter = 0;
|
2942 |
|
|
nr_spec = 0;
|
2943 |
|
|
|
2944 |
|
|
/* We need current_sched_info in init_dependency_caches, which is
|
2945 |
|
|
invoked via sched_init. */
|
2946 |
|
|
current_sched_info = ®ion_sched_info;
|
2947 |
|
|
|
2948 |
|
|
sched_init ();
|
2949 |
|
|
|
2950 |
|
|
min_spec_prob = ((PARAM_VALUE (PARAM_MIN_SPEC_PROB) * REG_BR_PROB_BASE)
|
2951 |
|
|
/ 100);
|
2952 |
|
|
|
2953 |
|
|
init_regions ();
|
2954 |
|
|
|
2955 |
|
|
/* EBB_HEAD is a region-scope structure. But we realloc it for
|
2956 |
|
|
each region to save time/memory/something else. */
|
2957 |
|
|
ebb_head = 0;
|
2958 |
|
|
|
2959 |
|
|
/* Schedule every region in the subroutine. */
|
2960 |
|
|
for (rgn = 0; rgn < nr_regions; rgn++)
|
2961 |
|
|
schedule_region (rgn);
|
2962 |
|
|
|
2963 |
|
|
free(ebb_head);
|
2964 |
|
|
|
2965 |
|
|
/* Update life analysis for the subroutine. Do single block regions
|
2966 |
|
|
first so that we can verify that live_at_start didn't change. Then
|
2967 |
|
|
do all other blocks. */
|
2968 |
|
|
/* ??? There is an outside possibility that update_life_info, or more
|
2969 |
|
|
to the point propagate_block, could get called with nonzero flags
|
2970 |
|
|
more than once for one basic block. This would be kinda bad if it
|
2971 |
|
|
were to happen, since REG_INFO would be accumulated twice for the
|
2972 |
|
|
block, and we'd have twice the REG_DEAD notes.
|
2973 |
|
|
|
2974 |
|
|
I'm fairly certain that this _shouldn't_ happen, since I don't think
|
2975 |
|
|
that live_at_start should change at region heads. Not sure what the
|
2976 |
|
|
best way to test for this kind of thing... */
|
2977 |
|
|
|
2978 |
|
|
if (current_sched_info->flags & DETACH_LIFE_INFO)
|
2979 |
|
|
/* this flag can be set either by the target or by ENABLE_CHECKING. */
|
2980 |
|
|
attach_life_info ();
|
2981 |
|
|
|
2982 |
|
|
allocate_reg_life_data ();
|
2983 |
|
|
|
2984 |
|
|
any_large_regions = 0;
|
2985 |
|
|
large_region_blocks = sbitmap_alloc (last_basic_block);
|
2986 |
|
|
sbitmap_zero (large_region_blocks);
|
2987 |
|
|
FOR_EACH_BB (bb)
|
2988 |
|
|
SET_BIT (large_region_blocks, bb->index);
|
2989 |
|
|
|
2990 |
|
|
blocks = sbitmap_alloc (last_basic_block);
|
2991 |
|
|
sbitmap_zero (blocks);
|
2992 |
|
|
|
2993 |
|
|
/* Update life information. For regions consisting of multiple blocks
|
2994 |
|
|
we've possibly done interblock scheduling that affects global liveness.
|
2995 |
|
|
For regions consisting of single blocks we need to do only local
|
2996 |
|
|
liveness. */
|
2997 |
|
|
for (rgn = 0; rgn < nr_regions; rgn++)
|
2998 |
|
|
if (RGN_NR_BLOCKS (rgn) > 1
|
2999 |
|
|
/* Or the only block of this region has been split. */
|
3000 |
|
|
|| RGN_HAS_REAL_EBB (rgn)
|
3001 |
|
|
/* New blocks (e.g. recovery blocks) should be processed
|
3002 |
|
|
as parts of large regions. */
|
3003 |
|
|
|| !glat_start[rgn_bb_table[RGN_BLOCKS (rgn)]])
|
3004 |
|
|
any_large_regions = 1;
|
3005 |
|
|
else
|
3006 |
|
|
{
|
3007 |
|
|
SET_BIT (blocks, rgn_bb_table[RGN_BLOCKS (rgn)]);
|
3008 |
|
|
RESET_BIT (large_region_blocks, rgn_bb_table[RGN_BLOCKS (rgn)]);
|
3009 |
|
|
}
|
3010 |
|
|
|
3011 |
|
|
/* Don't update reg info after reload, since that affects
|
3012 |
|
|
regs_ever_live, which should not change after reload. */
|
3013 |
|
|
update_life_info (blocks, UPDATE_LIFE_LOCAL,
|
3014 |
|
|
(reload_completed ? PROP_DEATH_NOTES
|
3015 |
|
|
: (PROP_DEATH_NOTES | PROP_REG_INFO)));
|
3016 |
|
|
if (any_large_regions)
|
3017 |
|
|
{
|
3018 |
|
|
update_life_info (large_region_blocks, UPDATE_LIFE_GLOBAL,
|
3019 |
|
|
(reload_completed ? PROP_DEATH_NOTES
|
3020 |
|
|
: (PROP_DEATH_NOTES | PROP_REG_INFO)));
|
3021 |
|
|
|
3022 |
|
|
#ifdef ENABLE_CHECKING
|
3023 |
|
|
check_reg_live (true);
|
3024 |
|
|
#endif
|
3025 |
|
|
}
|
3026 |
|
|
|
3027 |
|
|
if (CHECK_DEAD_NOTES)
|
3028 |
|
|
{
|
3029 |
|
|
/* Verify the counts of basic block notes in single basic block
|
3030 |
|
|
regions. */
|
3031 |
|
|
for (rgn = 0; rgn < nr_regions; rgn++)
|
3032 |
|
|
if (RGN_NR_BLOCKS (rgn) == 1)
|
3033 |
|
|
{
|
3034 |
|
|
sbitmap_zero (blocks);
|
3035 |
|
|
SET_BIT (blocks, rgn_bb_table[RGN_BLOCKS (rgn)]);
|
3036 |
|
|
|
3037 |
|
|
gcc_assert (deaths_in_region[rgn]
|
3038 |
|
|
== count_or_remove_death_notes (blocks, 0));
|
3039 |
|
|
}
|
3040 |
|
|
free (deaths_in_region);
|
3041 |
|
|
}
|
3042 |
|
|
|
3043 |
|
|
/* Reposition the prologue and epilogue notes in case we moved the
|
3044 |
|
|
prologue/epilogue insns. */
|
3045 |
|
|
if (reload_completed)
|
3046 |
|
|
reposition_prologue_and_epilogue_notes (get_insns ());
|
3047 |
|
|
|
3048 |
|
|
/* Delete redundant line notes. */
|
3049 |
|
|
if (write_symbols != NO_DEBUG)
|
3050 |
|
|
rm_redundant_line_notes ();
|
3051 |
|
|
|
3052 |
|
|
if (sched_verbose)
|
3053 |
|
|
{
|
3054 |
|
|
if (reload_completed == 0 && flag_schedule_interblock)
|
3055 |
|
|
{
|
3056 |
|
|
fprintf (sched_dump,
|
3057 |
|
|
"\n;; Procedure interblock/speculative motions == %d/%d \n",
|
3058 |
|
|
nr_inter, nr_spec);
|
3059 |
|
|
}
|
3060 |
|
|
else
|
3061 |
|
|
gcc_assert (nr_inter <= 0);
|
3062 |
|
|
fprintf (sched_dump, "\n\n");
|
3063 |
|
|
}
|
3064 |
|
|
|
3065 |
|
|
/* Clean up. */
|
3066 |
|
|
free (rgn_table);
|
3067 |
|
|
free (rgn_bb_table);
|
3068 |
|
|
free (block_to_bb);
|
3069 |
|
|
free (containing_rgn);
|
3070 |
|
|
|
3071 |
|
|
sched_finish ();
|
3072 |
|
|
|
3073 |
|
|
sbitmap_free (blocks);
|
3074 |
|
|
sbitmap_free (large_region_blocks);
|
3075 |
|
|
}
|
3076 |
|
|
|
3077 |
|
|
/* INSN has been added to/removed from current region. */
|
3078 |
|
|
static void
|
3079 |
|
|
add_remove_insn (rtx insn, int remove_p)
|
3080 |
|
|
{
|
3081 |
|
|
if (!remove_p)
|
3082 |
|
|
rgn_n_insns++;
|
3083 |
|
|
else
|
3084 |
|
|
rgn_n_insns--;
|
3085 |
|
|
|
3086 |
|
|
if (INSN_BB (insn) == target_bb)
|
3087 |
|
|
{
|
3088 |
|
|
if (!remove_p)
|
3089 |
|
|
target_n_insns++;
|
3090 |
|
|
else
|
3091 |
|
|
target_n_insns--;
|
3092 |
|
|
}
|
3093 |
|
|
}
|
3094 |
|
|
|
3095 |
|
|
/* Extend internal data structures. */
|
3096 |
|
|
static void
|
3097 |
|
|
extend_regions (void)
|
3098 |
|
|
{
|
3099 |
|
|
rgn_table = XRESIZEVEC (region, rgn_table, n_basic_blocks);
|
3100 |
|
|
rgn_bb_table = XRESIZEVEC (int, rgn_bb_table, n_basic_blocks);
|
3101 |
|
|
block_to_bb = XRESIZEVEC (int, block_to_bb, last_basic_block);
|
3102 |
|
|
containing_rgn = XRESIZEVEC (int, containing_rgn, last_basic_block);
|
3103 |
|
|
}
|
3104 |
|
|
|
3105 |
|
|
/* BB was added to ebb after AFTER. */
|
3106 |
|
|
static void
|
3107 |
|
|
add_block1 (basic_block bb, basic_block after)
|
3108 |
|
|
{
|
3109 |
|
|
extend_regions ();
|
3110 |
|
|
|
3111 |
|
|
if (after == 0 || after == EXIT_BLOCK_PTR)
|
3112 |
|
|
{
|
3113 |
|
|
int i;
|
3114 |
|
|
|
3115 |
|
|
i = RGN_BLOCKS (nr_regions);
|
3116 |
|
|
/* I - first free position in rgn_bb_table. */
|
3117 |
|
|
|
3118 |
|
|
rgn_bb_table[i] = bb->index;
|
3119 |
|
|
RGN_NR_BLOCKS (nr_regions) = 1;
|
3120 |
|
|
RGN_DONT_CALC_DEPS (nr_regions) = after == EXIT_BLOCK_PTR;
|
3121 |
|
|
RGN_HAS_REAL_EBB (nr_regions) = 0;
|
3122 |
|
|
CONTAINING_RGN (bb->index) = nr_regions;
|
3123 |
|
|
BLOCK_TO_BB (bb->index) = 0;
|
3124 |
|
|
|
3125 |
|
|
nr_regions++;
|
3126 |
|
|
|
3127 |
|
|
RGN_BLOCKS (nr_regions) = i + 1;
|
3128 |
|
|
|
3129 |
|
|
if (CHECK_DEAD_NOTES)
|
3130 |
|
|
{
|
3131 |
|
|
sbitmap blocks = sbitmap_alloc (last_basic_block);
|
3132 |
|
|
deaths_in_region = xrealloc (deaths_in_region, nr_regions *
|
3133 |
|
|
sizeof (*deaths_in_region));
|
3134 |
|
|
|
3135 |
|
|
check_dead_notes1 (nr_regions - 1, blocks);
|
3136 |
|
|
|
3137 |
|
|
sbitmap_free (blocks);
|
3138 |
|
|
}
|
3139 |
|
|
}
|
3140 |
|
|
else
|
3141 |
|
|
{
|
3142 |
|
|
int i, pos;
|
3143 |
|
|
|
3144 |
|
|
/* We need to fix rgn_table, block_to_bb, containing_rgn
|
3145 |
|
|
and ebb_head. */
|
3146 |
|
|
|
3147 |
|
|
BLOCK_TO_BB (bb->index) = BLOCK_TO_BB (after->index);
|
3148 |
|
|
|
3149 |
|
|
/* We extend ebb_head to one more position to
|
3150 |
|
|
easily find the last position of the last ebb in
|
3151 |
|
|
the current region. Thus, ebb_head[BLOCK_TO_BB (after) + 1]
|
3152 |
|
|
is _always_ valid for access. */
|
3153 |
|
|
|
3154 |
|
|
i = BLOCK_TO_BB (after->index) + 1;
|
3155 |
|
|
pos = ebb_head[i] - 1;
|
3156 |
|
|
/* Now POS is the index of the last block in the region. */
|
3157 |
|
|
|
3158 |
|
|
/* Find index of basic block AFTER. */
|
3159 |
|
|
for (; rgn_bb_table[pos] != after->index; pos--);
|
3160 |
|
|
|
3161 |
|
|
pos++;
|
3162 |
|
|
gcc_assert (pos > ebb_head[i - 1]);
|
3163 |
|
|
|
3164 |
|
|
/* i - ebb right after "AFTER". */
|
3165 |
|
|
/* ebb_head[i] - VALID. */
|
3166 |
|
|
|
3167 |
|
|
/* Source position: ebb_head[i]
|
3168 |
|
|
Destination position: ebb_head[i] + 1
|
3169 |
|
|
Last position:
|
3170 |
|
|
RGN_BLOCKS (nr_regions) - 1
|
3171 |
|
|
Number of elements to copy: (last_position) - (source_position) + 1
|
3172 |
|
|
*/
|
3173 |
|
|
|
3174 |
|
|
memmove (rgn_bb_table + pos + 1,
|
3175 |
|
|
rgn_bb_table + pos,
|
3176 |
|
|
((RGN_BLOCKS (nr_regions) - 1) - (pos) + 1)
|
3177 |
|
|
* sizeof (*rgn_bb_table));
|
3178 |
|
|
|
3179 |
|
|
rgn_bb_table[pos] = bb->index;
|
3180 |
|
|
|
3181 |
|
|
for (; i <= current_nr_blocks; i++)
|
3182 |
|
|
ebb_head [i]++;
|
3183 |
|
|
|
3184 |
|
|
i = CONTAINING_RGN (after->index);
|
3185 |
|
|
CONTAINING_RGN (bb->index) = i;
|
3186 |
|
|
|
3187 |
|
|
RGN_HAS_REAL_EBB (i) = 1;
|
3188 |
|
|
|
3189 |
|
|
for (++i; i <= nr_regions; i++)
|
3190 |
|
|
RGN_BLOCKS (i)++;
|
3191 |
|
|
|
3192 |
|
|
/* We don't need to call check_dead_notes1 () because this new block
|
3193 |
|
|
is just a split of the old. We don't want to count anything twice. */
|
3194 |
|
|
}
|
3195 |
|
|
}
|
3196 |
|
|
|
3197 |
|
|
/* Fix internal data after interblock movement of jump instruction.
|
3198 |
|
|
For parameter meaning please refer to
|
3199 |
|
|
sched-int.h: struct sched_info: fix_recovery_cfg. */
|
3200 |
|
|
static void
|
3201 |
|
|
fix_recovery_cfg (int bbi, int check_bbi, int check_bb_nexti)
|
3202 |
|
|
{
|
3203 |
|
|
int old_pos, new_pos, i;
|
3204 |
|
|
|
3205 |
|
|
BLOCK_TO_BB (check_bb_nexti) = BLOCK_TO_BB (bbi);
|
3206 |
|
|
|
3207 |
|
|
for (old_pos = ebb_head[BLOCK_TO_BB (check_bbi) + 1] - 1;
|
3208 |
|
|
rgn_bb_table[old_pos] != check_bb_nexti;
|
3209 |
|
|
old_pos--);
|
3210 |
|
|
gcc_assert (old_pos > ebb_head[BLOCK_TO_BB (check_bbi)]);
|
3211 |
|
|
|
3212 |
|
|
for (new_pos = ebb_head[BLOCK_TO_BB (bbi) + 1] - 1;
|
3213 |
|
|
rgn_bb_table[new_pos] != bbi;
|
3214 |
|
|
new_pos--);
|
3215 |
|
|
new_pos++;
|
3216 |
|
|
gcc_assert (new_pos > ebb_head[BLOCK_TO_BB (bbi)]);
|
3217 |
|
|
|
3218 |
|
|
gcc_assert (new_pos < old_pos);
|
3219 |
|
|
|
3220 |
|
|
memmove (rgn_bb_table + new_pos + 1,
|
3221 |
|
|
rgn_bb_table + new_pos,
|
3222 |
|
|
(old_pos - new_pos) * sizeof (*rgn_bb_table));
|
3223 |
|
|
|
3224 |
|
|
rgn_bb_table[new_pos] = check_bb_nexti;
|
3225 |
|
|
|
3226 |
|
|
for (i = BLOCK_TO_BB (bbi) + 1; i <= BLOCK_TO_BB (check_bbi); i++)
|
3227 |
|
|
ebb_head[i]++;
|
3228 |
|
|
}
|
3229 |
|
|
|
3230 |
|
|
/* Return next block in ebb chain. For parameter meaning please refer to
|
3231 |
|
|
sched-int.h: struct sched_info: advance_target_bb. */
|
3232 |
|
|
static basic_block
|
3233 |
|
|
advance_target_bb (basic_block bb, rtx insn)
|
3234 |
|
|
{
|
3235 |
|
|
if (insn)
|
3236 |
|
|
return 0;
|
3237 |
|
|
|
3238 |
|
|
gcc_assert (BLOCK_TO_BB (bb->index) == target_bb
|
3239 |
|
|
&& BLOCK_TO_BB (bb->next_bb->index) == target_bb);
|
3240 |
|
|
return bb->next_bb;
|
3241 |
|
|
}
|
3242 |
|
|
|
3243 |
|
|
/* Count and remove death notes in region RGN, which consists of blocks
|
3244 |
|
|
with indecies in BLOCKS. */
|
3245 |
|
|
static void
|
3246 |
|
|
check_dead_notes1 (int rgn, sbitmap blocks)
|
3247 |
|
|
{
|
3248 |
|
|
int b;
|
3249 |
|
|
|
3250 |
|
|
sbitmap_zero (blocks);
|
3251 |
|
|
for (b = RGN_NR_BLOCKS (rgn) - 1; b >= 0; --b)
|
3252 |
|
|
SET_BIT (blocks, rgn_bb_table[RGN_BLOCKS (rgn) + b]);
|
3253 |
|
|
|
3254 |
|
|
deaths_in_region[rgn] = count_or_remove_death_notes (blocks, 1);
|
3255 |
|
|
}
|
3256 |
|
|
|
3257 |
|
|
#ifdef ENABLE_CHECKING
|
3258 |
|
|
/* Return non zero, if BB is head or leaf (depending of LEAF_P) block in
|
3259 |
|
|
current region. For more information please refer to
|
3260 |
|
|
sched-int.h: struct sched_info: region_head_or_leaf_p. */
|
3261 |
|
|
static int
|
3262 |
|
|
region_head_or_leaf_p (basic_block bb, int leaf_p)
|
3263 |
|
|
{
|
3264 |
|
|
if (!leaf_p)
|
3265 |
|
|
return bb->index == rgn_bb_table[RGN_BLOCKS (CONTAINING_RGN (bb->index))];
|
3266 |
|
|
else
|
3267 |
|
|
{
|
3268 |
|
|
int i;
|
3269 |
|
|
edge e;
|
3270 |
|
|
edge_iterator ei;
|
3271 |
|
|
|
3272 |
|
|
i = CONTAINING_RGN (bb->index);
|
3273 |
|
|
|
3274 |
|
|
FOR_EACH_EDGE (e, ei, bb->succs)
|
3275 |
|
|
if (e->dest != EXIT_BLOCK_PTR
|
3276 |
|
|
&& CONTAINING_RGN (e->dest->index) == i
|
3277 |
|
|
/* except self-loop. */
|
3278 |
|
|
&& e->dest != bb)
|
3279 |
|
|
return 0;
|
3280 |
|
|
|
3281 |
|
|
return 1;
|
3282 |
|
|
}
|
3283 |
|
|
}
|
3284 |
|
|
#endif /* ENABLE_CHECKING */
|
3285 |
|
|
|
3286 |
|
|
#endif
|
3287 |
|
|
|
3288 |
|
|
static bool
|
3289 |
|
|
gate_handle_sched (void)
|
3290 |
|
|
{
|
3291 |
|
|
#ifdef INSN_SCHEDULING
|
3292 |
|
|
return flag_schedule_insns;
|
3293 |
|
|
#else
|
3294 |
|
|
return 0;
|
3295 |
|
|
#endif
|
3296 |
|
|
}
|
3297 |
|
|
|
3298 |
|
|
/* Run instruction scheduler. */
|
3299 |
|
|
static unsigned int
|
3300 |
|
|
rest_of_handle_sched (void)
|
3301 |
|
|
{
|
3302 |
|
|
#ifdef INSN_SCHEDULING
|
3303 |
|
|
/* Do control and data sched analysis,
|
3304 |
|
|
and write some of the results to dump file. */
|
3305 |
|
|
|
3306 |
|
|
schedule_insns ();
|
3307 |
|
|
#endif
|
3308 |
|
|
return 0;
|
3309 |
|
|
}
|
3310 |
|
|
|
3311 |
|
|
static bool
|
3312 |
|
|
gate_handle_sched2 (void)
|
3313 |
|
|
{
|
3314 |
|
|
#ifdef INSN_SCHEDULING
|
3315 |
|
|
return optimize > 0 && flag_schedule_insns_after_reload;
|
3316 |
|
|
#else
|
3317 |
|
|
return 0;
|
3318 |
|
|
#endif
|
3319 |
|
|
}
|
3320 |
|
|
|
3321 |
|
|
/* Run second scheduling pass after reload. */
|
3322 |
|
|
static unsigned int
|
3323 |
|
|
rest_of_handle_sched2 (void)
|
3324 |
|
|
{
|
3325 |
|
|
#ifdef INSN_SCHEDULING
|
3326 |
|
|
/* Do control and data sched analysis again,
|
3327 |
|
|
and write some more of the results to dump file. */
|
3328 |
|
|
|
3329 |
|
|
split_all_insns (1);
|
3330 |
|
|
|
3331 |
|
|
if (flag_sched2_use_superblocks || flag_sched2_use_traces)
|
3332 |
|
|
{
|
3333 |
|
|
schedule_ebbs ();
|
3334 |
|
|
/* No liveness updating code yet, but it should be easy to do.
|
3335 |
|
|
reg-stack recomputes the liveness when needed for now. */
|
3336 |
|
|
count_or_remove_death_notes (NULL, 1);
|
3337 |
|
|
cleanup_cfg (CLEANUP_EXPENSIVE);
|
3338 |
|
|
}
|
3339 |
|
|
else
|
3340 |
|
|
schedule_insns ();
|
3341 |
|
|
#endif
|
3342 |
|
|
return 0;
|
3343 |
|
|
}
|
3344 |
|
|
|
3345 |
|
|
struct tree_opt_pass pass_sched =
|
3346 |
|
|
{
|
3347 |
|
|
"sched1", /* name */
|
3348 |
|
|
gate_handle_sched, /* gate */
|
3349 |
|
|
rest_of_handle_sched, /* execute */
|
3350 |
|
|
NULL, /* sub */
|
3351 |
|
|
NULL, /* next */
|
3352 |
|
|
0, /* static_pass_number */
|
3353 |
|
|
TV_SCHED, /* tv_id */
|
3354 |
|
|
0, /* properties_required */
|
3355 |
|
|
0, /* properties_provided */
|
3356 |
|
|
0, /* properties_destroyed */
|
3357 |
|
|
0, /* todo_flags_start */
|
3358 |
|
|
TODO_dump_func |
|
3359 |
|
|
TODO_ggc_collect, /* todo_flags_finish */
|
3360 |
|
|
'S' /* letter */
|
3361 |
|
|
};
|
3362 |
|
|
|
3363 |
|
|
struct tree_opt_pass pass_sched2 =
|
3364 |
|
|
{
|
3365 |
|
|
"sched2", /* name */
|
3366 |
|
|
gate_handle_sched2, /* gate */
|
3367 |
|
|
rest_of_handle_sched2, /* execute */
|
3368 |
|
|
NULL, /* sub */
|
3369 |
|
|
NULL, /* next */
|
3370 |
|
|
0, /* static_pass_number */
|
3371 |
|
|
TV_SCHED2, /* tv_id */
|
3372 |
|
|
0, /* properties_required */
|
3373 |
|
|
0, /* properties_provided */
|
3374 |
|
|
0, /* properties_destroyed */
|
3375 |
|
|
0, /* todo_flags_start */
|
3376 |
|
|
TODO_dump_func |
|
3377 |
|
|
TODO_ggc_collect, /* todo_flags_finish */
|
3378 |
|
|
'R' /* letter */
|
3379 |
|
|
};
|
3380 |
|
|
|