OpenCores
URL https://opencores.org/ocsvn/openrisc/openrisc/trunk

Subversion Repositories openrisc

[/] [openrisc/] [trunk/] [gnu-old/] [gcc-4.2.2/] [gcc/] [testsuite/] [ada/] [acats/] [tests/] [c4/] [c490001.a] - Blame information for rev 149

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 149 jeremybenn
-- C490001.A
2
--
3
--                             Grant of Unlimited Rights
4
--
5
--     Under contracts F33600-87-D-0337, F33600-84-D-0280, MDA903-79-C-0687,
6
--     F08630-91-C-0015, and DCA100-97-D-0025, the U.S. Government obtained
7
--     unlimited rights in the software and documentation contained herein.
8
--     Unlimited rights are defined in DFAR 252.227-7013(a)(19).  By making
9
--     this public release, the Government intends to confer upon all
10
--     recipients unlimited rights  equal to those held by the Government.
11
--     These rights include rights to use, duplicate, release or disclose the
12
--     released technical data and computer software in whole or in part, in
13
--     any manner and for any purpose whatsoever, and to have or permit others
14
--     to do so.
15
--
16
--                                    DISCLAIMER
17
--
18
--     ALL MATERIALS OR INFORMATION HEREIN RELEASED, MADE AVAILABLE OR
19
--     DISCLOSED ARE AS IS.  THE GOVERNMENT MAKES NO EXPRESS OR IMPLIED
20
--     WARRANTY AS TO ANY MATTER WHATSOEVER, INCLUDING THE CONDITIONS OF THE
21
--     SOFTWARE, DOCUMENTATION OR OTHER INFORMATION RELEASED, MADE AVAILABLE
22
--     OR DISCLOSED, OR THE OWNERSHIP, MERCHANTABILITY, OR FITNESS FOR A
23
--     PARTICULAR PURPOSE OF SAID MATERIAL.
24
--*
25
--
26
-- OBJECTIVE:
27
--      Check that, for a real static expression that is not part of a larger
28
--      static expression, and whose expected type T is a floating point type
29
--      that is not a descendant of a formal scalar type, the value is rounded
30
--      to the nearest machine number of T if T'Machine_Rounds is true, and is
31
--      truncated otherwise. Check that if rounding is performed, and the value
32
--      is exactly halfway between two machine numbers, one of the two machine
33
--      numbers is used.
34
--
35
-- TEST DESCRIPTION:
36
--      The test obtains a machine number M1 for a floating point subtype S by
37
--      passing a real literal to S'Machine. It then obtains an adjacent
38
--      machine number M2 by using S'Succ (or S'Pred). It then constructs
39
--      values which lie between these two machine numbers: one (A) which is
40
--      closer to M1, one (B) which is exactly halfway between M1 and M2, and
41
--      one (C) which is closer to M2. This is done for both positive and
42
--      negative machine numbers.
43
--
44
--      Let M1 be closer to zero than M2. Then if S'Machine_Rounds is true,
45
--      C must be rounded to M2, A must be rounded to M1, and B must be rounded
46
--      to either M1 or M2. If S'Machine_Rounds is false, all the values must
47
--      be truncated to M1.
48
--
49
--      A, B, and C are constructed using the following static expressions:
50
--
51
--         A: constant S := M1 + (M2 - M1)*Z; -- Z slightly less than 0.5.
52
--         B: constant S := M1 + (M2 - M1)*Z; -- Z equals 0.5.
53
--         C: constant S := M1 + (M2 - M1)*Z; -- Z slightly more than 0.5.
54
--
55
--      Since these are static expressions, they must be evaluated exactly,
56
--      and no rounding may occur until the final result is calculated.
57
--
58
--      The checks for equality between the members of (A, B, C) and (M1, M2)
59
--      are performed at run-time within the body of a subprogram.
60
--
61
--      The test performs additional checks that the rounding performed on
62
--      real literals is consistent for a floating point subtype. A literal is
63
--      assigned to a constant of a floating point subtype S. The same literal
64
--      is then passed to a subprogram, along with the constant, and an
65
--      equality check is performed within the body of the subprogram.
66
--
67
--
68
-- CHANGE HISTORY:
69
--      25 Sep 95   SAIC    Initial prerelease version.
70
--      25 May 01   RLB     Repaired to work with the repeal of the round away
71
--                          rule by AI-268.
72
--
73
--!
74
 
75
with System;
76
package C490001_0 is
77
 
78
   type My_Flt is digits System.Max_Digits;
79
 
80
   procedure Float_Subtest (A, B: in My_Flt; Msg: in String);
81
 
82
   procedure Float_Subtest (A, B, C: in My_Flt; Msg: in String);
83
 
84
 
85
--
86
-- Positive cases:
87
--
88
 
89
   --  |----|-------------|-----------------|-------------------|-----------|
90
   --  |    |             |                 |                   |           |
91
   --  0   P_M1  Less_Pos_Than_Half  Pos_Exactly_Half  More_Pos_Than_Half  P_M2
92
 
93
 
94
   Positive_Float : constant My_Flt := 12.440193950021943;
95
 
96
   -- The literal value 12.440193950021943 is rounded up or down to the
97
   -- nearest machine number of My_Flt when Positive_Float is initialized.
98
   -- The value of Positive_Float should therefore be a machine number, and
99
   -- the use of 'Machine in the initialization of P_M1 will be redundant for
100
   -- a correct implementation. It's done anyway to make certain that P_M1 is
101
   -- a machine number, independent of whether an implementation correctly
102
   -- performs rounding.
103
 
104
   P_M1 : constant My_Flt := My_Flt'Machine(Positive_Float);
105
   P_M2 : constant My_Flt := My_Flt'Succ(P_M1);
106
 
107
   -- P_M1 and P_M2 are adjacent machine numbers. Note that because it is not
108
   -- certain whether 12.440193950021943 is a machine number, nor whether
109
   -- 'Machine rounds it up or down, 12.440193950021943 may not lie between
110
   -- P_M1 and P_M2. The test does not depend on this information, however;
111
   -- the literal is only used as a "seed" to obtain the machine numbers.
112
 
113
 
114
   -- The following entities are used to verify that rounding is performed
115
   -- according to the value of 'Machine_Rounds. If language rules are
116
   -- obeyed, the intermediate expressions in the following static
117
   -- initialization expressions will not be rounded; all calculations will
118
   -- be performed exactly. The final result, however, will be rounded to
119
   -- a machine number (either P_M1 or P_M2, depending on the value of
120
   -- My_Flt'Machine_Rounds). Thus, the value of each constant below will
121
   -- equal that of P_M1 or P_M2.
122
 
123
   Less_Pos_Than_Half : constant My_Flt := P_M1 + ((P_M2 - P_M1)*2.9/6.0);
124
   Pos_Exactly_Half   : constant My_Flt := P_M1 + ((P_M2 - P_M1)/2.0);
125
   More_Pos_Than_Half : constant My_Flt := P_M1 + ((P_M2 - P_M1)*4.6/9.0);
126
 
127
 
128
--
129
-- Negative cases:
130
--
131
 
132
   --  -|-------------|-----------------|-------------------|-----------|----|
133
   --   |             |                 |                   |           |    |
134
   --  N_M2  More_Neg_Than_Half  Neg_Exactly_Half  Less_Neg_Than_Half  N_M1  0
135
 
136
 
137
   -- The descriptions for the positive cases above apply to the negative
138
   -- cases below as well. Note that, for N_M2, 'Pred is used rather than
139
   -- 'Succ. Thus, N_M2 is further from 0.0 (i.e. more negative) than N_M1.
140
 
141
   Negative_Float : constant My_Flt := -0.692074550952117;
142
 
143
 
144
   N_M1 : constant My_Flt := My_Flt'Machine(Negative_Float);
145
   N_M2 : constant My_Flt := My_Flt'Pred(N_M1);
146
 
147
   More_Neg_Than_Half : constant My_Flt := N_M1 + ((N_M2 - N_M1)*4.1/8.0);
148
   Neg_Exactly_Half   : constant My_Flt := N_M1 + ((N_M2 - N_M1)/2.0);
149
   Less_Neg_Than_Half : constant My_Flt := N_M1 + ((N_M2 - N_M1)*2.4/5.0);
150
 
151
end C490001_0;
152
 
153
 
154
     --==================================================================--
155
 
156
 
157
with TCTouch;
158
package body C490001_0 is
159
 
160
   procedure Float_Subtest (A, B: in My_Flt; Msg: in String) is
161
   begin
162
       TCTouch.Assert (A = B, Msg);
163
   end Float_Subtest;
164
 
165
   procedure Float_Subtest (A, B, C: in My_Flt; Msg: in String) is
166
   begin
167
       TCTouch.Assert (A = B or A = C, Msg);
168
   end Float_Subtest;
169
 
170
end C490001_0;
171
 
172
 
173
     --==================================================================--
174
 
175
 
176
with C490001_0;  -- Floating point support.
177
use  C490001_0;
178
 
179
with Report;
180
procedure C490001 is
181
begin
182
   Report.Test ("C490001", "Rounding of real static expressions: " &
183
                "floating point subtypes");
184
 
185
 
186
   -- Check that rounding direction is consistent for literals:
187
 
188
   Float_Subtest (12.440193950021943, P_M1, "Positive Float: literal");
189
   Float_Subtest (-0.692074550952117, N_M1, "Negative Float: literal");
190
 
191
 
192
   -- Now check that rounding is performed correctly for values between
193
   -- machine numbers, according to the value of 'Machine_Rounds:
194
 
195
   if My_Flt'Machine_Rounds then
196
      Float_Subtest (Pos_Exactly_Half,   P_M1, P_M2, "Positive Float: = half");
197
      Float_Subtest (More_Pos_Than_Half, P_M2, "Positive Float: > half");
198
      Float_Subtest (Less_Pos_Than_Half, P_M1, "Positive Float: < half");
199
 
200
      Float_Subtest (Neg_Exactly_Half,   N_M1, N_M2, "Negative Float: = half");
201
      Float_Subtest (More_Neg_Than_Half, N_M2, "Negative Float: > half");
202
      Float_Subtest (Less_Neg_Than_Half, N_M1, "Negative Float: < half");
203
   else
204
      Float_Subtest (Pos_Exactly_Half,   P_M1, "Positive Float: = half");
205
      Float_Subtest (More_Pos_Than_Half, P_M1, "Positive Float: > half");
206
      Float_Subtest (Less_Pos_Than_Half, P_M1, "Positive Float: < half");
207
 
208
      Float_Subtest (Neg_Exactly_Half,   N_M1, "Negative Float: = half");
209
      Float_Subtest (More_Neg_Than_Half, N_M1, "Negative Float: > half");
210
      Float_Subtest (Less_Neg_Than_Half, N_M1, "Negative Float: < half");
211
   end if;
212
 
213
 
214
   Report.Result;
215
end C490001;

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.