1 |
149 |
jeremybenn |
-- CXG1005.A
|
2 |
|
|
--
|
3 |
|
|
-- Grant of Unlimited Rights
|
4 |
|
|
--
|
5 |
|
|
-- Under contracts F33600-87-D-0337, F33600-84-D-0280, MDA903-79-C-0687,
|
6 |
|
|
-- F08630-91-C-0015, and DCA100-97-D-0025, the U.S. Government obtained
|
7 |
|
|
-- unlimited rights in the software and documentation contained herein.
|
8 |
|
|
-- Unlimited rights are defined in DFAR 252.227-7013(a)(19). By making
|
9 |
|
|
-- this public release, the Government intends to confer upon all
|
10 |
|
|
-- recipients unlimited rights equal to those held by the Government.
|
11 |
|
|
-- These rights include rights to use, duplicate, release or disclose the
|
12 |
|
|
-- released technical data and computer software in whole or in part, in
|
13 |
|
|
-- any manner and for any purpose whatsoever, and to have or permit others
|
14 |
|
|
-- to do so.
|
15 |
|
|
--
|
16 |
|
|
-- DISCLAIMER
|
17 |
|
|
--
|
18 |
|
|
-- ALL MATERIALS OR INFORMATION HEREIN RELEASED, MADE AVAILABLE OR
|
19 |
|
|
-- DISCLOSED ARE AS IS. THE GOVERNMENT MAKES NO EXPRESS OR IMPLIED
|
20 |
|
|
-- WARRANTY AS TO ANY MATTER WHATSOEVER, INCLUDING THE CONDITIONS OF THE
|
21 |
|
|
-- SOFTWARE, DOCUMENTATION OR OTHER INFORMATION RELEASED, MADE AVAILABLE
|
22 |
|
|
-- OR DISCLOSED, OR THE OWNERSHIP, MERCHANTABILITY, OR FITNESS FOR A
|
23 |
|
|
-- PARTICULAR PURPOSE OF SAID MATERIAL.
|
24 |
|
|
--*
|
25 |
|
|
--
|
26 |
|
|
-- OBJECTIVE:
|
27 |
|
|
-- Check that the subprograms defined in the package
|
28 |
|
|
-- Ada.Numerics.Generic_Complex_Elementary_Functions provide correct
|
29 |
|
|
-- results.
|
30 |
|
|
--
|
31 |
|
|
-- TEST DESCRIPTION:
|
32 |
|
|
-- This test checks that specific subprograms defined in the generic
|
33 |
|
|
-- package Generic_Complex_Elementary_Functions are available, and that
|
34 |
|
|
-- they provide prescribed results given specific input values.
|
35 |
|
|
-- The generic package Ada.Numerics.Generic_Complex_Types is instantiated
|
36 |
|
|
-- with a real type (new Float). The resulting new package is used as
|
37 |
|
|
-- the generic actual to package Complex_IO.
|
38 |
|
|
--
|
39 |
|
|
-- SPECIAL REQUIREMENTS:
|
40 |
|
|
-- Implementations for which Float'Signed_Zeros is True must provide
|
41 |
|
|
-- a body for ImpDef.Annex_G.Negative_Zero which returns a negative
|
42 |
|
|
-- zero.
|
43 |
|
|
--
|
44 |
|
|
-- APPLICABILITY CRITERIA
|
45 |
|
|
-- This test only applies to implementations that support the
|
46 |
|
|
-- numerics annex.
|
47 |
|
|
--
|
48 |
|
|
--
|
49 |
|
|
--
|
50 |
|
|
-- CHANGE HISTORY:
|
51 |
|
|
-- 06 Dec 94 SAIC ACVC 2.0
|
52 |
|
|
-- 16 Nov 95 SAIC Corrected visibility problems for ACVC 2.0.1.
|
53 |
|
|
-- 21 Feb 96 SAIC Incorporated new structure for package Impdef.
|
54 |
|
|
-- 29 Sep 96 SAIC Incorporated reviewer comments.
|
55 |
|
|
--
|
56 |
|
|
--!
|
57 |
|
|
|
58 |
|
|
with Ada.Numerics.Generic_Complex_Types;
|
59 |
|
|
with Ada.Numerics.Generic_Complex_Elementary_Functions;
|
60 |
|
|
with ImpDef.Annex_G;
|
61 |
|
|
with Report;
|
62 |
|
|
|
63 |
|
|
procedure CXG1005 is
|
64 |
|
|
begin
|
65 |
|
|
|
66 |
|
|
Report.Test ("CXG1005", "Check that the subprograms defined in " &
|
67 |
|
|
"the package Generic_Complex_Elementary_" &
|
68 |
|
|
"Functions provide correct results");
|
69 |
|
|
|
70 |
|
|
Test_Block:
|
71 |
|
|
declare
|
72 |
|
|
|
73 |
|
|
type Real_Type is new Float;
|
74 |
|
|
|
75 |
|
|
TC_Signed_Zeros : Boolean := Real_Type'Signed_Zeros;
|
76 |
|
|
|
77 |
|
|
package Complex_Pack is new
|
78 |
|
|
Ada.Numerics.Generic_Complex_Types(Real_Type);
|
79 |
|
|
|
80 |
|
|
package CEF is
|
81 |
|
|
new Ada.Numerics.Generic_Complex_Elementary_Functions(Complex_Pack);
|
82 |
|
|
|
83 |
|
|
use Ada.Numerics, Complex_Pack, CEF;
|
84 |
|
|
|
85 |
|
|
Complex_Zero : constant Complex := Compose_From_Cartesian( 0.0, 0.0);
|
86 |
|
|
Plus_One : constant Complex := Compose_From_Cartesian( 1.0, 0.0);
|
87 |
|
|
Minus_One : constant Complex := Compose_From_Cartesian(-1.0, 0.0);
|
88 |
|
|
Plus_i : constant Complex := Compose_From_Cartesian(i);
|
89 |
|
|
Minus_i : constant Complex := Compose_From_Cartesian(-i);
|
90 |
|
|
|
91 |
|
|
Complex_Positive_Real : constant Complex :=
|
92 |
|
|
Compose_From_Cartesian(4.0, 2.0);
|
93 |
|
|
Complex_Positive_Imaginary : constant Complex :=
|
94 |
|
|
Compose_From_Cartesian(3.0, 5.0);
|
95 |
|
|
Complex_Negative_Real : constant Complex :=
|
96 |
|
|
Compose_From_Cartesian(-4.0, 2.0);
|
97 |
|
|
Complex_Negative_Imaginary : constant Complex :=
|
98 |
|
|
Compose_From_Cartesian(3.0, -5.0);
|
99 |
|
|
|
100 |
|
|
|
101 |
|
|
function A_Zero_Result (Z : Complex) return Boolean is
|
102 |
|
|
begin
|
103 |
|
|
return (Re(Z) = 0.0 and Im(Z) = 0.0);
|
104 |
|
|
end A_Zero_Result;
|
105 |
|
|
|
106 |
|
|
|
107 |
|
|
-- In order to evaluate complex elementary functions that are
|
108 |
|
|
-- prescribed to return a "real" result (meaning that the imaginary
|
109 |
|
|
-- component is zero), the Function A_Real_Result is defined.
|
110 |
|
|
|
111 |
|
|
function A_Real_Result (Z : Complex) return Boolean is
|
112 |
|
|
begin
|
113 |
|
|
return Im(Z) = 0.0;
|
114 |
|
|
end A_Real_Result;
|
115 |
|
|
|
116 |
|
|
|
117 |
|
|
-- In order to evaluate complex elementary functions that are
|
118 |
|
|
-- prescribed to return an "imaginary" result (meaning that the real
|
119 |
|
|
-- component of the complex number is zero, and the imaginary
|
120 |
|
|
-- component is non-zero), the Function An_Imaginary_Result is defined.
|
121 |
|
|
|
122 |
|
|
function An_Imaginary_Result (Z : Complex) return Boolean is
|
123 |
|
|
begin
|
124 |
|
|
return (Re(Z) = 0.0 and Im(Z) /= 0.0);
|
125 |
|
|
end An_Imaginary_Result;
|
126 |
|
|
|
127 |
|
|
|
128 |
|
|
begin
|
129 |
|
|
|
130 |
|
|
-- Check that when the input parameter value is zero, the following
|
131 |
|
|
-- functions yield a zero result.
|
132 |
|
|
|
133 |
|
|
if not A_Zero_Result( Sqrt(Complex_Zero) ) then
|
134 |
|
|
Report.Failed("Non-zero result from Function Sqrt with zero input");
|
135 |
|
|
end if;
|
136 |
|
|
|
137 |
|
|
if not A_Zero_Result( Sin(Complex_Zero) ) then
|
138 |
|
|
Report.Failed("Non-zero result from Function Sin with zero input");
|
139 |
|
|
end if;
|
140 |
|
|
|
141 |
|
|
if not A_Zero_Result( Arcsin(Complex_Zero) ) then
|
142 |
|
|
Report.Failed("Non-zero result from Function Arcsin with zero " &
|
143 |
|
|
"input");
|
144 |
|
|
end if;
|
145 |
|
|
|
146 |
|
|
if not A_Zero_Result( Tan(Complex_Zero) ) then
|
147 |
|
|
Report.Failed("Non-zero result from Function Tan with zero input");
|
148 |
|
|
end if;
|
149 |
|
|
|
150 |
|
|
if not A_Zero_Result( Arctan(Complex_Zero) ) then
|
151 |
|
|
Report.Failed("Non-zero result from Function Arctan with zero " &
|
152 |
|
|
"input");
|
153 |
|
|
end if;
|
154 |
|
|
|
155 |
|
|
if not A_Zero_Result( Sinh(Complex_Zero) ) then
|
156 |
|
|
Report.Failed("Non-zero result from Function Sinh with zero input");
|
157 |
|
|
end if;
|
158 |
|
|
|
159 |
|
|
if not A_Zero_Result( Arcsinh(Complex_Zero) ) then
|
160 |
|
|
Report.Failed("Non-zero result from Function Arcsinh with zero " &
|
161 |
|
|
"input");
|
162 |
|
|
end if;
|
163 |
|
|
|
164 |
|
|
if not A_Zero_Result( Tanh(Complex_Zero) ) then
|
165 |
|
|
Report.Failed("Non-zero result from Function Tanh with zero input");
|
166 |
|
|
end if;
|
167 |
|
|
|
168 |
|
|
if not A_Zero_Result( Arctanh(Complex_Zero) ) then
|
169 |
|
|
Report.Failed("Non-zero result from Function Arctanh with zero " &
|
170 |
|
|
"input");
|
171 |
|
|
end if;
|
172 |
|
|
|
173 |
|
|
|
174 |
|
|
-- Check that when the input parameter value is zero, the following
|
175 |
|
|
-- functions yield a result of one.
|
176 |
|
|
|
177 |
|
|
if Exp(Complex_Zero) /= Plus_One
|
178 |
|
|
then
|
179 |
|
|
Report.Failed("Non-zero result from Function Exp with zero input");
|
180 |
|
|
end if;
|
181 |
|
|
|
182 |
|
|
if Cos(Complex_Zero) /= Plus_One
|
183 |
|
|
then
|
184 |
|
|
Report.Failed("Non-zero result from Function Cos with zero input");
|
185 |
|
|
end if;
|
186 |
|
|
|
187 |
|
|
if Cosh(Complex_Zero) /= Plus_One
|
188 |
|
|
then
|
189 |
|
|
Report.Failed("Non-zero result from Function Cosh with zero input");
|
190 |
|
|
end if;
|
191 |
|
|
|
192 |
|
|
|
193 |
|
|
-- Check that when the input parameter value is zero, the following
|
194 |
|
|
-- functions yield a real result.
|
195 |
|
|
|
196 |
|
|
if not A_Real_Result( Arccos(Complex_Zero) ) then
|
197 |
|
|
Report.Failed("Non-real result from Function Arccos with zero input");
|
198 |
|
|
end if;
|
199 |
|
|
|
200 |
|
|
if not A_Real_Result( Arccot(Complex_Zero) ) then
|
201 |
|
|
Report.Failed("Non-real result from Function Arccot with zero input");
|
202 |
|
|
end if;
|
203 |
|
|
|
204 |
|
|
|
205 |
|
|
-- Check that when the input parameter value is zero, the following
|
206 |
|
|
-- functions yield an imaginary result.
|
207 |
|
|
|
208 |
|
|
if not An_Imaginary_Result( Arccoth(Complex_Zero) ) then
|
209 |
|
|
Report.Failed("Non-imaginary result from Function Arccoth with " &
|
210 |
|
|
"zero input");
|
211 |
|
|
end if;
|
212 |
|
|
|
213 |
|
|
|
214 |
|
|
-- Check that when the input parameter value is one, the Sqrt function
|
215 |
|
|
-- yields a result of one.
|
216 |
|
|
|
217 |
|
|
if Sqrt(Plus_One) /= Plus_One then
|
218 |
|
|
Report.Failed("Incorrect result from Function Sqrt with input " &
|
219 |
|
|
"value of one");
|
220 |
|
|
end if;
|
221 |
|
|
|
222 |
|
|
|
223 |
|
|
-- Check that when the input parameter value is one, the following
|
224 |
|
|
-- functions yield a result of zero.
|
225 |
|
|
|
226 |
|
|
if not A_Zero_Result( Log(Plus_One) ) then
|
227 |
|
|
Report.Failed("Non-zero result from Function Log with input " &
|
228 |
|
|
"value of one");
|
229 |
|
|
end if;
|
230 |
|
|
|
231 |
|
|
if not A_Zero_Result( Arccos(Plus_One) ) then
|
232 |
|
|
Report.Failed("Non-zero result from Function Arccos with input " &
|
233 |
|
|
"value of one");
|
234 |
|
|
end if;
|
235 |
|
|
|
236 |
|
|
if not A_Zero_Result( Arccosh(Plus_One) ) then
|
237 |
|
|
Report.Failed("Non-zero result from Function Arccosh with input " &
|
238 |
|
|
"value of one");
|
239 |
|
|
end if;
|
240 |
|
|
|
241 |
|
|
|
242 |
|
|
-- Check that when the input parameter value is one, the Arcsin
|
243 |
|
|
-- function yields a real result.
|
244 |
|
|
|
245 |
|
|
if not A_Real_Result( Arcsin(Plus_One) ) then
|
246 |
|
|
Report.Failed("Non-real result from Function Arcsin with input " &
|
247 |
|
|
"value of one");
|
248 |
|
|
end if;
|
249 |
|
|
|
250 |
|
|
|
251 |
|
|
-- Check that when the input parameter value is minus one, the Sqrt
|
252 |
|
|
-- function yields a result of "i", when the sign of the imaginary
|
253 |
|
|
-- component of the input parameter is positive (and yields "-i", if
|
254 |
|
|
-- the sign on the imaginary component is negative), and the
|
255 |
|
|
-- Complex_Types.Real'Signed_Zeros attribute is True.
|
256 |
|
|
|
257 |
|
|
if TC_Signed_Zeros then
|
258 |
|
|
|
259 |
|
|
declare
|
260 |
|
|
Minus_One_With_Pos_Zero_Im_Component : Complex :=
|
261 |
|
|
Compose_From_Cartesian(-1.0, +0.0);
|
262 |
|
|
Minus_One_With_Neg_Zero_Im_Component : Complex :=
|
263 |
|
|
Compose_From_Cartesian
|
264 |
|
|
(-1.0, Real_Type(ImpDef.Annex_G.Negative_Zero));
|
265 |
|
|
begin
|
266 |
|
|
|
267 |
|
|
if Sqrt(Minus_One_With_Pos_Zero_Im_Component) /= Plus_i then
|
268 |
|
|
Report.Failed("Incorrect result from Function Sqrt, when " &
|
269 |
|
|
"input value is minus one with a positive " &
|
270 |
|
|
"imaginary component, Signed_Zeros being True");
|
271 |
|
|
end if;
|
272 |
|
|
|
273 |
|
|
if Sqrt(Minus_One_With_Neg_Zero_Im_Component) /= Minus_i then
|
274 |
|
|
Report.Failed("Incorrect result from Function Sqrt, when " &
|
275 |
|
|
"input value is minus one with a negative " &
|
276 |
|
|
"imaginary component, Signed_Zeros being True");
|
277 |
|
|
end if;
|
278 |
|
|
end;
|
279 |
|
|
|
280 |
|
|
else -- Signed_Zeros is False.
|
281 |
|
|
|
282 |
|
|
-- Check that when the input parameter value is minus one, the Sqrt
|
283 |
|
|
-- function yields a result of "i", when the
|
284 |
|
|
-- Complex_Types.Real'Signed_Zeros attribute is False.
|
285 |
|
|
|
286 |
|
|
if Sqrt(Minus_One) /= Plus_i then
|
287 |
|
|
Report.Failed("Incorrect result from Function Sqrt, when " &
|
288 |
|
|
"input value is minus one, Signed_Zeros being " &
|
289 |
|
|
"False");
|
290 |
|
|
end if;
|
291 |
|
|
|
292 |
|
|
end if;
|
293 |
|
|
|
294 |
|
|
|
295 |
|
|
-- Check that when the input parameter value is minus one, the Log
|
296 |
|
|
-- function yields an imaginary result.
|
297 |
|
|
|
298 |
|
|
if not An_Imaginary_Result( Log(Minus_One) ) then
|
299 |
|
|
Report.Failed("Non-imaginary result from Function Log with a " &
|
300 |
|
|
"minus one input value");
|
301 |
|
|
end if;
|
302 |
|
|
|
303 |
|
|
-- Check that when the input parameter is minus one, the following
|
304 |
|
|
-- functions yield a real result.
|
305 |
|
|
|
306 |
|
|
if not A_Real_Result( Arcsin(Minus_One) ) then
|
307 |
|
|
Report.Failed("Non-real result from Function Arcsin with a " &
|
308 |
|
|
"minus one input value");
|
309 |
|
|
end if;
|
310 |
|
|
|
311 |
|
|
if not A_Real_Result( Arccos(Minus_One) ) then
|
312 |
|
|
Report.Failed("Non-real result from Function Arccos with a " &
|
313 |
|
|
"minus one input value");
|
314 |
|
|
end if;
|
315 |
|
|
|
316 |
|
|
|
317 |
|
|
-- Check that when the input parameter has a value of +i or -i, the
|
318 |
|
|
-- Log function yields an imaginary result.
|
319 |
|
|
|
320 |
|
|
if not An_Imaginary_Result( Log(Plus_i) ) then
|
321 |
|
|
Report.Failed("Non-imaginary result from Function Log with an " &
|
322 |
|
|
"input value of ""+i""");
|
323 |
|
|
end if;
|
324 |
|
|
|
325 |
|
|
if not An_Imaginary_Result( Log(Minus_i) ) then
|
326 |
|
|
Report.Failed("Non-imaginary result from Function Log with an " &
|
327 |
|
|
"input value of ""-i""");
|
328 |
|
|
end if;
|
329 |
|
|
|
330 |
|
|
|
331 |
|
|
-- Check that exponentiation by a zero exponent yields the value one.
|
332 |
|
|
|
333 |
|
|
if "**"(Left => Compose_From_Cartesian(5.0, 3.0),
|
334 |
|
|
Right => Complex_Zero) /= Plus_One or
|
335 |
|
|
Complex_Negative_Real**0.0 /= Plus_One or
|
336 |
|
|
15.0**Complex_Zero /= Plus_One
|
337 |
|
|
then
|
338 |
|
|
Report.Failed("Incorrect result from exponentiation with a zero " &
|
339 |
|
|
"exponent");
|
340 |
|
|
end if;
|
341 |
|
|
|
342 |
|
|
|
343 |
|
|
-- Check that exponentiation by a unit exponent yields the value of
|
344 |
|
|
-- the left operand (as a complex value).
|
345 |
|
|
-- Note: a "unit exponent" is considered the complex number (1.0, 0.0)
|
346 |
|
|
|
347 |
|
|
if "**"(Complex_Negative_Real, Plus_One) /=
|
348 |
|
|
Complex_Negative_Real or
|
349 |
|
|
Complex_Negative_Imaginary**Plus_One /=
|
350 |
|
|
Complex_Negative_Imaginary or
|
351 |
|
|
4.0**Plus_One /=
|
352 |
|
|
Compose_From_Cartesian(4.0, 0.0)
|
353 |
|
|
then
|
354 |
|
|
Report.Failed("Incorrect result from exponentiation with a unit " &
|
355 |
|
|
"exponent");
|
356 |
|
|
end if;
|
357 |
|
|
|
358 |
|
|
|
359 |
|
|
-- Check that exponentiation of the value one yields the value one.
|
360 |
|
|
|
361 |
|
|
if "**"(Plus_One, Complex_Negative_Imaginary) /= Plus_One or
|
362 |
|
|
Plus_One**9.0 /= Plus_One or
|
363 |
|
|
1.0**Complex_Negative_Real /= Plus_One
|
364 |
|
|
then
|
365 |
|
|
Report.Failed("Incorrect result from exponentiation of the value " &
|
366 |
|
|
"One");
|
367 |
|
|
end if;
|
368 |
|
|
|
369 |
|
|
|
370 |
|
|
-- Check that exponentiation of the value zero yields the value zero.
|
371 |
|
|
begin
|
372 |
|
|
if not A_Zero_Result("**"(Complex_Zero,
|
373 |
|
|
Complex_Positive_Imaginary)) or
|
374 |
|
|
not A_Zero_Result(Complex_Zero**4.0) or
|
375 |
|
|
not A_Zero_Result(0.0**Complex_Positive_Real)
|
376 |
|
|
then
|
377 |
|
|
Report.Failed("Incorrect result from exponentiation of the " &
|
378 |
|
|
"value zero");
|
379 |
|
|
end if;
|
380 |
|
|
exception
|
381 |
|
|
when others =>
|
382 |
|
|
Report.Failed("Exception raised during the exponentiation of " &
|
383 |
|
|
"the complex value zero");
|
384 |
|
|
end;
|
385 |
|
|
|
386 |
|
|
|
387 |
|
|
exception
|
388 |
|
|
when others => Report.Failed ("Exception raised in Test_Block");
|
389 |
|
|
end Test_Block;
|
390 |
|
|
|
391 |
|
|
Report.Result;
|
392 |
|
|
|
393 |
|
|
end CXG1005;
|