1 |
149 |
jeremybenn |
-- CXG2004.A
|
2 |
|
|
--
|
3 |
|
|
-- Grant of Unlimited Rights
|
4 |
|
|
--
|
5 |
|
|
-- Under contracts F33600-87-D-0337, F33600-84-D-0280, MDA903-79-C-0687,
|
6 |
|
|
-- F08630-91-C-0015, and DCA100-97-D-0025, the U.S. Government obtained
|
7 |
|
|
-- unlimited rights in the software and documentation contained herein.
|
8 |
|
|
-- Unlimited rights are defined in DFAR 252.227-7013(a)(19). By making
|
9 |
|
|
-- this public release, the Government intends to confer upon all
|
10 |
|
|
-- recipients unlimited rights equal to those held by the Government.
|
11 |
|
|
-- These rights include rights to use, duplicate, release or disclose the
|
12 |
|
|
-- released technical data and computer software in whole or in part, in
|
13 |
|
|
-- any manner and for any purpose whatsoever, and to have or permit others
|
14 |
|
|
-- to do so.
|
15 |
|
|
--
|
16 |
|
|
-- DISCLAIMER
|
17 |
|
|
--
|
18 |
|
|
-- ALL MATERIALS OR INFORMATION HEREIN RELEASED, MADE AVAILABLE OR
|
19 |
|
|
-- DISCLOSED ARE AS IS. THE GOVERNMENT MAKES NO EXPRESS OR IMPLIED
|
20 |
|
|
-- WARRANTY AS TO ANY MATTER WHATSOEVER, INCLUDING THE CONDITIONS OF THE
|
21 |
|
|
-- SOFTWARE, DOCUMENTATION OR OTHER INFORMATION RELEASED, MADE AVAILABLE
|
22 |
|
|
-- OR DISCLOSED, OR THE OWNERSHIP, MERCHANTABILITY, OR FITNESS FOR A
|
23 |
|
|
-- PARTICULAR PURPOSE OF SAID MATERIAL.
|
24 |
|
|
--*
|
25 |
|
|
--
|
26 |
|
|
-- OBJECTIVE:
|
27 |
|
|
-- Check that the sin and cos functions return
|
28 |
|
|
-- results that are within the error bound allowed.
|
29 |
|
|
--
|
30 |
|
|
-- TEST DESCRIPTION:
|
31 |
|
|
-- This test consists of a generic package that is
|
32 |
|
|
-- instantiated to check both float and a long float type.
|
33 |
|
|
-- The test for each floating point type is divided into
|
34 |
|
|
-- the following parts:
|
35 |
|
|
-- Special value checks where the result is a known constant.
|
36 |
|
|
-- Checks using an identity relationship.
|
37 |
|
|
--
|
38 |
|
|
-- SPECIAL REQUIREMENTS
|
39 |
|
|
-- The Strict Mode for the numerical accuracy must be
|
40 |
|
|
-- selected. The method by which this mode is selected
|
41 |
|
|
-- is implementation dependent.
|
42 |
|
|
--
|
43 |
|
|
-- APPLICABILITY CRITERIA:
|
44 |
|
|
-- This test applies only to implementations supporting the
|
45 |
|
|
-- Numerics Annex.
|
46 |
|
|
-- This test only applies to the Strict Mode for numerical
|
47 |
|
|
-- accuracy.
|
48 |
|
|
--
|
49 |
|
|
--
|
50 |
|
|
-- CHANGE HISTORY:
|
51 |
|
|
-- 13 FEB 96 SAIC Initial release for 2.1
|
52 |
|
|
-- 22 APR 96 SAIC Changed to generic implementation.
|
53 |
|
|
-- 18 AUG 96 SAIC Improvements to commentary.
|
54 |
|
|
-- 23 OCT 96 SAIC Exact results are not required unless the
|
55 |
|
|
-- cycle is specified.
|
56 |
|
|
-- 28 FEB 97 PWB.CTA Removed checks where cycle 2.0*Pi is specified
|
57 |
|
|
-- 02 JUN 98 EDS Revised calculations to ensure that X is exactly
|
58 |
|
|
-- three times Y per advice of numerics experts.
|
59 |
|
|
--
|
60 |
|
|
-- CHANGE NOTE:
|
61 |
|
|
-- According to Ken Dritz, author of the Numerics Annex of the RM,
|
62 |
|
|
-- one should never specify the cycle 2.0*Pi for the trigonometric
|
63 |
|
|
-- functions. In particular, if the machine number for the first
|
64 |
|
|
-- argument is not an exact multiple of the machine number for the
|
65 |
|
|
-- explicit cycle, then the specified exact results cannot be
|
66 |
|
|
-- reasonably expected. The affected checks in this test have been
|
67 |
|
|
-- marked as comments, with the additional notation "pwb-math".
|
68 |
|
|
-- Phil Brashear
|
69 |
|
|
--!
|
70 |
|
|
|
71 |
|
|
--
|
72 |
|
|
-- References:
|
73 |
|
|
--
|
74 |
|
|
-- Software Manual for the Elementary Functions
|
75 |
|
|
-- William J. Cody, Jr. and William Waite
|
76 |
|
|
-- Prentice-Hall, 1980
|
77 |
|
|
--
|
78 |
|
|
-- CRC Standard Mathematical Tables
|
79 |
|
|
-- 23rd Edition
|
80 |
|
|
--
|
81 |
|
|
-- Implementation and Testing of Function Software
|
82 |
|
|
-- W. J. Cody
|
83 |
|
|
-- Problems and Methodologies in Mathematical Software Production
|
84 |
|
|
-- editors P. C. Messina and A. Murli
|
85 |
|
|
-- Lecture Notes in Computer Science Volume 142
|
86 |
|
|
-- Springer Verlag, 1982
|
87 |
|
|
--
|
88 |
|
|
-- The sin and cos checks are translated directly from
|
89 |
|
|
-- the netlib FORTRAN code that was written by W. Cody.
|
90 |
|
|
--
|
91 |
|
|
|
92 |
|
|
with System;
|
93 |
|
|
with Report;
|
94 |
|
|
with Ada.Numerics.Generic_Elementary_Functions;
|
95 |
|
|
with Ada.Numerics.Elementary_Functions;
|
96 |
|
|
procedure CXG2004 is
|
97 |
|
|
Verbose : constant Boolean := False;
|
98 |
|
|
Number_Samples : constant := 1000;
|
99 |
|
|
|
100 |
|
|
-- CRC Standard Mathematical Tables; 23rd Edition; pg 738
|
101 |
|
|
Sqrt2 : constant :=
|
102 |
|
|
1.41421_35623_73095_04880_16887_24209_69807_85696_71875_37695;
|
103 |
|
|
Sqrt3 : constant :=
|
104 |
|
|
1.73205_08075_68877_29352_74463_41505_87236_69428_05253_81039;
|
105 |
|
|
|
106 |
|
|
Pi : constant := Ada.Numerics.Pi;
|
107 |
|
|
|
108 |
|
|
generic
|
109 |
|
|
type Real is digits <>;
|
110 |
|
|
package Generic_Check is
|
111 |
|
|
procedure Do_Test;
|
112 |
|
|
end Generic_Check;
|
113 |
|
|
|
114 |
|
|
package body Generic_Check is
|
115 |
|
|
package Elementary_Functions is new
|
116 |
|
|
Ada.Numerics.Generic_Elementary_Functions (Real);
|
117 |
|
|
|
118 |
|
|
function Sin (X : Real) return Real renames
|
119 |
|
|
Elementary_Functions.Sin;
|
120 |
|
|
function Cos (X : Real) return Real renames
|
121 |
|
|
Elementary_Functions.Cos;
|
122 |
|
|
function Sin (X, Cycle : Real) return Real renames
|
123 |
|
|
Elementary_Functions.Sin;
|
124 |
|
|
function Cos (X, Cycle : Real) return Real renames
|
125 |
|
|
Elementary_Functions.Cos;
|
126 |
|
|
|
127 |
|
|
Accuracy_Error_Reported : Boolean := False;
|
128 |
|
|
|
129 |
|
|
procedure Check (Actual, Expected : Real;
|
130 |
|
|
Test_Name : String;
|
131 |
|
|
MRE : Real) is
|
132 |
|
|
Rel_Error,
|
133 |
|
|
Abs_Error,
|
134 |
|
|
Max_Error : Real;
|
135 |
|
|
begin
|
136 |
|
|
|
137 |
|
|
-- In the case where the expected result is very small or 0
|
138 |
|
|
-- we compute the maximum error as a multiple of Model_Epsilon instead
|
139 |
|
|
-- of Model_Epsilon and Expected.
|
140 |
|
|
Rel_Error := MRE * abs Expected * Real'Model_Epsilon;
|
141 |
|
|
Abs_Error := MRE * Real'Model_Epsilon;
|
142 |
|
|
if Rel_Error > Abs_Error then
|
143 |
|
|
Max_Error := Rel_Error;
|
144 |
|
|
else
|
145 |
|
|
Max_Error := Abs_Error;
|
146 |
|
|
end if;
|
147 |
|
|
|
148 |
|
|
|
149 |
|
|
-- in addition to the relative error checks we apply the
|
150 |
|
|
-- criteria of G.2.4(16)
|
151 |
|
|
if abs (Actual) > 1.0 then
|
152 |
|
|
Accuracy_Error_Reported := True;
|
153 |
|
|
Report.Failed (Test_Name & " result > 1.0");
|
154 |
|
|
elsif abs (Actual - Expected) > Max_Error then
|
155 |
|
|
Accuracy_Error_Reported := True;
|
156 |
|
|
Report.Failed (Test_Name &
|
157 |
|
|
" actual: " & Real'Image (Actual) &
|
158 |
|
|
" expected: " & Real'Image (Expected) &
|
159 |
|
|
" difference: " &
|
160 |
|
|
Real'Image (Actual - Expected) &
|
161 |
|
|
" mre:" &
|
162 |
|
|
Real'Image (Max_Error) );
|
163 |
|
|
elsif Verbose then
|
164 |
|
|
if Actual = Expected then
|
165 |
|
|
Report.Comment (Test_Name & " exact result");
|
166 |
|
|
else
|
167 |
|
|
Report.Comment (Test_Name & " passed");
|
168 |
|
|
end if;
|
169 |
|
|
end if;
|
170 |
|
|
end Check;
|
171 |
|
|
|
172 |
|
|
|
173 |
|
|
procedure Sin_Check (A, B : Real;
|
174 |
|
|
Arg_Range : String) is
|
175 |
|
|
-- test a selection of
|
176 |
|
|
-- arguments selected from the range A to B.
|
177 |
|
|
--
|
178 |
|
|
-- This test uses the identity
|
179 |
|
|
-- sin(x) = sin(x/3)*(3 - 4 * sin(x/3)**2)
|
180 |
|
|
--
|
181 |
|
|
-- Note that in this test we must take into account the
|
182 |
|
|
-- error in the calculation of the expected result so
|
183 |
|
|
-- the maximum relative error is larger than the
|
184 |
|
|
-- accuracy required by the ARM.
|
185 |
|
|
|
186 |
|
|
X, Y, ZZ : Real;
|
187 |
|
|
Actual, Expected : Real;
|
188 |
|
|
MRE : Real;
|
189 |
|
|
Ran : Real;
|
190 |
|
|
begin
|
191 |
|
|
Accuracy_Error_Reported := False; -- reset
|
192 |
|
|
for I in 1 .. Number_Samples loop
|
193 |
|
|
-- Evenly distributed selection of arguments
|
194 |
|
|
Ran := Real (I) / Real (Number_Samples);
|
195 |
|
|
|
196 |
|
|
-- make sure x and x/3 are both exactly representable
|
197 |
|
|
-- on the machine. See "Implementation and Testing of
|
198 |
|
|
-- Function Software" page 44.
|
199 |
|
|
X := (B - A) * Ran + A;
|
200 |
|
|
Y := Real'Leading_Part
|
201 |
|
|
( X/3.0,
|
202 |
|
|
Real'Machine_Mantissa - Real'Exponent (3.0) );
|
203 |
|
|
X := Y * 3.0;
|
204 |
|
|
|
205 |
|
|
Actual := Sin (X);
|
206 |
|
|
|
207 |
|
|
ZZ := Sin(Y);
|
208 |
|
|
Expected := ZZ * (3.0 - 4.0 * ZZ * ZZ);
|
209 |
|
|
|
210 |
|
|
-- note that since the expected value is computed, we
|
211 |
|
|
-- must take the error in that computation into account.
|
212 |
|
|
-- See Cody pp 139-141.
|
213 |
|
|
MRE := 4.0;
|
214 |
|
|
|
215 |
|
|
Check (Actual, Expected,
|
216 |
|
|
"sin test of range" & Arg_Range &
|
217 |
|
|
Integer'Image (I),
|
218 |
|
|
MRE);
|
219 |
|
|
exit when Accuracy_Error_Reported;
|
220 |
|
|
end loop;
|
221 |
|
|
exception
|
222 |
|
|
when Constraint_Error =>
|
223 |
|
|
Report.Failed
|
224 |
|
|
("Constraint_Error raised in sin check");
|
225 |
|
|
when others =>
|
226 |
|
|
Report.Failed ("exception in sin check");
|
227 |
|
|
end Sin_Check;
|
228 |
|
|
|
229 |
|
|
|
230 |
|
|
|
231 |
|
|
procedure Cos_Check (A, B : Real;
|
232 |
|
|
Arg_Range : String) is
|
233 |
|
|
-- test a selection of
|
234 |
|
|
-- arguments selected from the range A to B.
|
235 |
|
|
--
|
236 |
|
|
-- This test uses the identity
|
237 |
|
|
-- cos(x) = cos(x/3)*(4 * cos(x/3)**2 - 3)
|
238 |
|
|
--
|
239 |
|
|
-- Note that in this test we must take into account the
|
240 |
|
|
-- error in the calculation of the expected result so
|
241 |
|
|
-- the maximum relative error is larger than the
|
242 |
|
|
-- accuracy required by the ARM.
|
243 |
|
|
|
244 |
|
|
X, Y, ZZ : Real;
|
245 |
|
|
Actual, Expected : Real;
|
246 |
|
|
MRE : Real;
|
247 |
|
|
Ran : Real;
|
248 |
|
|
begin
|
249 |
|
|
Accuracy_Error_Reported := False; -- reset
|
250 |
|
|
for I in 1 .. Number_Samples loop
|
251 |
|
|
-- Evenly distributed selection of arguments
|
252 |
|
|
Ran := Real (I) / Real (Number_Samples);
|
253 |
|
|
|
254 |
|
|
-- make sure x and x/3 are both exactly representable
|
255 |
|
|
-- on the machine. See "Implementation and Testing of
|
256 |
|
|
-- Function Software" page 44.
|
257 |
|
|
X := (B - A) * Ran + A;
|
258 |
|
|
Y := Real'Leading_Part
|
259 |
|
|
( X/3.0,
|
260 |
|
|
Real'Machine_Mantissa - Real'Exponent (3.0) );
|
261 |
|
|
X := Y * 3.0;
|
262 |
|
|
|
263 |
|
|
Actual := Cos (X);
|
264 |
|
|
|
265 |
|
|
ZZ := Cos(Y);
|
266 |
|
|
Expected := ZZ * (4.0 * ZZ * ZZ - 3.0);
|
267 |
|
|
|
268 |
|
|
-- note that since the expected value is computed, we
|
269 |
|
|
-- must take the error in that computation into account.
|
270 |
|
|
-- See Cody pp 141-143.
|
271 |
|
|
MRE := 6.0;
|
272 |
|
|
|
273 |
|
|
Check (Actual, Expected,
|
274 |
|
|
"cos test of range" & Arg_Range &
|
275 |
|
|
Integer'Image (I),
|
276 |
|
|
MRE);
|
277 |
|
|
exit when Accuracy_Error_Reported;
|
278 |
|
|
end loop;
|
279 |
|
|
exception
|
280 |
|
|
when Constraint_Error =>
|
281 |
|
|
Report.Failed
|
282 |
|
|
("Constraint_Error raised in cos check");
|
283 |
|
|
when others =>
|
284 |
|
|
Report.Failed ("exception in cos check");
|
285 |
|
|
end Cos_Check;
|
286 |
|
|
|
287 |
|
|
|
288 |
|
|
procedure Special_Angle_Checks is
|
289 |
|
|
type Data_Point is
|
290 |
|
|
record
|
291 |
|
|
Degrees,
|
292 |
|
|
Radians,
|
293 |
|
|
Sine,
|
294 |
|
|
Cosine : Real;
|
295 |
|
|
Sin_Result_Error,
|
296 |
|
|
Cos_Result_Error : Boolean;
|
297 |
|
|
end record;
|
298 |
|
|
|
299 |
|
|
type Test_Data_Type is array (Positive range <>) of Data_Point;
|
300 |
|
|
|
301 |
|
|
-- the values in the following table only involve static
|
302 |
|
|
-- expressions to minimize any loss of precision. However,
|
303 |
|
|
-- there are two sources of error that must be accounted for
|
304 |
|
|
-- in the following tests.
|
305 |
|
|
-- First, when a cycle is not specified there can be a roundoff
|
306 |
|
|
-- error in the value of Pi used. This error does not apply
|
307 |
|
|
-- when a cycle of 2.0 * Pi is explicitly provided.
|
308 |
|
|
-- Second, the expected results that involve sqrt values also
|
309 |
|
|
-- have a potential roundoff error.
|
310 |
|
|
-- The amount of error due to error in the argument is computed
|
311 |
|
|
-- as follows:
|
312 |
|
|
-- sin(x+err) = sin(x)*cos(err) + cos(x)*sin(err)
|
313 |
|
|
-- ~= sin(x) + err * cos(x)
|
314 |
|
|
-- similarly for cos the error due to error in the argument is
|
315 |
|
|
-- computed as follows:
|
316 |
|
|
-- cos(x+err) = cos(x)*cos(err) - sin(x)*sin(err)
|
317 |
|
|
-- ~= cos(x) - err * sin(x)
|
318 |
|
|
-- In both cases the term "err" is bounded by 0.5 * argument.
|
319 |
|
|
|
320 |
|
|
Test_Data : constant Test_Data_Type := (
|
321 |
|
|
-- degrees radians sine cosine sin_er cos_er test #
|
322 |
|
|
( 0.0, 0.0, 0.0, 1.0, False, False ), -- 1
|
323 |
|
|
( 30.0, Pi/6.0, 0.5, Sqrt3/2.0, False, True ), -- 2
|
324 |
|
|
( 60.0, Pi/3.0, Sqrt3/2.0, 0.5, True, False ), -- 3
|
325 |
|
|
( 90.0, Pi/2.0, 1.0, 0.0, False, False ), -- 4
|
326 |
|
|
(120.0, 2.0*Pi/3.0, Sqrt3/2.0, -0.5, True, False ), -- 5
|
327 |
|
|
(150.0, 5.0*Pi/6.0, 0.5, -Sqrt3/2.0, False, True ), -- 6
|
328 |
|
|
(180.0, Pi, 0.0, -1.0, False, False ), -- 7
|
329 |
|
|
(210.0, 7.0*Pi/6.0, -0.5, -Sqrt3/2.0, False, True ), -- 8
|
330 |
|
|
(240.0, 8.0*Pi/6.0, -Sqrt3/2.0, -0.5, True, False ), -- 9
|
331 |
|
|
(270.0, 9.0*Pi/6.0, -1.0, 0.0, False, False ), -- 10
|
332 |
|
|
(300.0, 10.0*Pi/6.0, -Sqrt3/2.0, 0.5, True, False ), -- 11
|
333 |
|
|
(330.0, 11.0*Pi/6.0, -0.5, Sqrt3/2.0, False, True ), -- 12
|
334 |
|
|
(360.0, 2.0*Pi, 0.0, 1.0, False, False ), -- 13
|
335 |
|
|
( 45.0, Pi/4.0, Sqrt2/2.0, Sqrt2/2.0, True, True ), -- 14
|
336 |
|
|
(135.0, 3.0*Pi/4.0, Sqrt2/2.0, -Sqrt2/2.0, True, True ), -- 15
|
337 |
|
|
(225.0, 5.0*Pi/4.0, -Sqrt2/2.0, -Sqrt2/2.0, True, True ), -- 16
|
338 |
|
|
(315.0, 7.0*Pi/4.0, -Sqrt2/2.0, Sqrt2/2.0, True, True ), -- 17
|
339 |
|
|
(405.0, 9.0*Pi/4.0, Sqrt2/2.0, Sqrt2/2.0, True, True ) ); -- 18
|
340 |
|
|
|
341 |
|
|
|
342 |
|
|
Y : Real;
|
343 |
|
|
Sin_Arg_Err,
|
344 |
|
|
Cos_Arg_Err,
|
345 |
|
|
Sin_Result_Err,
|
346 |
|
|
Cos_Result_Err : Real;
|
347 |
|
|
begin
|
348 |
|
|
for I in Test_Data'Range loop
|
349 |
|
|
-- compute error components
|
350 |
|
|
Sin_Arg_Err := abs Test_Data (I).Cosine *
|
351 |
|
|
abs Test_Data (I).Radians / 2.0;
|
352 |
|
|
Cos_Arg_Err := abs Test_Data (I).Sine *
|
353 |
|
|
abs Test_Data (I).Radians / 2.0;
|
354 |
|
|
|
355 |
|
|
if Test_Data (I).Sin_Result_Error then
|
356 |
|
|
Sin_Result_Err := 0.5;
|
357 |
|
|
else
|
358 |
|
|
Sin_Result_Err := 0.0;
|
359 |
|
|
end if;
|
360 |
|
|
|
361 |
|
|
if Test_Data (I).Cos_Result_Error then
|
362 |
|
|
Cos_Result_Err := 1.0;
|
363 |
|
|
else
|
364 |
|
|
Cos_Result_Err := 0.0;
|
365 |
|
|
end if;
|
366 |
|
|
|
367 |
|
|
|
368 |
|
|
|
369 |
|
|
Y := Sin (Test_Data (I).Radians);
|
370 |
|
|
Check (Y, Test_Data (I).Sine,
|
371 |
|
|
"test" & Integer'Image (I) & " sin(r)",
|
372 |
|
|
2.0 + Sin_Arg_Err + Sin_Result_Err);
|
373 |
|
|
Y := Cos (Test_Data (I).Radians);
|
374 |
|
|
Check (Y, Test_Data (I).Cosine,
|
375 |
|
|
"test" & Integer'Image (I) & " cos(r)",
|
376 |
|
|
2.0 + Cos_Arg_Err + Cos_Result_Err);
|
377 |
|
|
Y := Sin (Test_Data (I).Degrees, 360.0);
|
378 |
|
|
Check (Y, Test_Data (I).Sine,
|
379 |
|
|
"test" & Integer'Image (I) & " sin(d,360)",
|
380 |
|
|
2.0 + Sin_Result_Err);
|
381 |
|
|
Y := Cos (Test_Data (I).Degrees, 360.0);
|
382 |
|
|
Check (Y, Test_Data (I).Cosine,
|
383 |
|
|
"test" & Integer'Image (I) & " cos(d,360)",
|
384 |
|
|
2.0 + Cos_Result_Err);
|
385 |
|
|
--pwb-math Y := Sin (Test_Data (I).Radians, 2.0*Pi);
|
386 |
|
|
--pwb-math Check (Y, Test_Data (I).Sine,
|
387 |
|
|
--pwb-math "test" & Integer'Image (I) & " sin(r,2pi)",
|
388 |
|
|
--pwb-math 2.0 + Sin_Result_Err);
|
389 |
|
|
--pwb-math Y := Cos (Test_Data (I).Radians, 2.0*Pi);
|
390 |
|
|
--pwb-math Check (Y, Test_Data (I).Cosine,
|
391 |
|
|
--pwb-math "test" & Integer'Image (I) & " cos(r,2pi)",
|
392 |
|
|
--pwb-math 2.0 + Cos_Result_Err);
|
393 |
|
|
end loop;
|
394 |
|
|
exception
|
395 |
|
|
when Constraint_Error =>
|
396 |
|
|
Report.Failed ("Constraint_Error raised in special angle test");
|
397 |
|
|
when others =>
|
398 |
|
|
Report.Failed ("exception in special angle test");
|
399 |
|
|
end Special_Angle_Checks;
|
400 |
|
|
|
401 |
|
|
|
402 |
|
|
-- check the rule of A.5.1(41);6.0 which requires that the
|
403 |
|
|
-- result be exact if the mathematical result is 0.0, 1.0,
|
404 |
|
|
-- or -1.0
|
405 |
|
|
procedure Exact_Result_Checks is
|
406 |
|
|
type Data_Point is
|
407 |
|
|
record
|
408 |
|
|
Degrees,
|
409 |
|
|
Sine,
|
410 |
|
|
Cosine : Real;
|
411 |
|
|
end record;
|
412 |
|
|
|
413 |
|
|
type Test_Data_Type is array (Positive range <>) of Data_Point;
|
414 |
|
|
Test_Data : constant Test_Data_Type := (
|
415 |
|
|
-- degrees sine cosine test #
|
416 |
|
|
( 0.0, 0.0, 1.0 ), -- 1
|
417 |
|
|
( 90.0, 1.0, 0.0 ), -- 2
|
418 |
|
|
(180.0, 0.0, -1.0 ), -- 3
|
419 |
|
|
(270.0, -1.0, 0.0 ), -- 4
|
420 |
|
|
(360.0, 0.0, 1.0 ), -- 5
|
421 |
|
|
( 90.0 + 360.0, 1.0, 0.0 ), -- 6
|
422 |
|
|
(180.0 + 360.0, 0.0, -1.0 ), -- 7
|
423 |
|
|
(270.0 + 360.0,-1.0, 0.0 ), -- 8
|
424 |
|
|
(360.0 + 360.0, 0.0, 1.0 ) ); -- 9
|
425 |
|
|
|
426 |
|
|
Y : Real;
|
427 |
|
|
begin
|
428 |
|
|
for I in Test_Data'Range loop
|
429 |
|
|
Y := Sin (Test_Data(I).Degrees, 360.0);
|
430 |
|
|
if Y /= Test_Data(I).Sine then
|
431 |
|
|
Report.Failed ("exact result for sin(" &
|
432 |
|
|
Real'Image (Test_Data(I).Degrees) &
|
433 |
|
|
", 360.0) is not" &
|
434 |
|
|
Real'Image (Test_Data(I).Sine) &
|
435 |
|
|
" Difference is " &
|
436 |
|
|
Real'Image (Y - Test_Data(I).Sine) );
|
437 |
|
|
end if;
|
438 |
|
|
|
439 |
|
|
Y := Cos (Test_Data(I).Degrees, 360.0);
|
440 |
|
|
if Y /= Test_Data(I).Cosine then
|
441 |
|
|
Report.Failed ("exact result for cos(" &
|
442 |
|
|
Real'Image (Test_Data(I).Degrees) &
|
443 |
|
|
", 360.0) is not" &
|
444 |
|
|
Real'Image (Test_Data(I).Cosine) &
|
445 |
|
|
" Difference is " &
|
446 |
|
|
Real'Image (Y - Test_Data(I).Cosine) );
|
447 |
|
|
end if;
|
448 |
|
|
end loop;
|
449 |
|
|
exception
|
450 |
|
|
when Constraint_Error =>
|
451 |
|
|
Report.Failed ("Constraint_Error raised in exact result check");
|
452 |
|
|
when others =>
|
453 |
|
|
Report.Failed ("exception in exact result check");
|
454 |
|
|
end Exact_Result_Checks;
|
455 |
|
|
|
456 |
|
|
|
457 |
|
|
procedure Do_Test is
|
458 |
|
|
begin
|
459 |
|
|
Special_Angle_Checks;
|
460 |
|
|
Sin_Check (0.0, Pi/2.0, "0..pi/2");
|
461 |
|
|
Sin_Check (6.0*Pi, 6.5*Pi, "6pi..6.5pi");
|
462 |
|
|
Cos_Check (7.0*Pi, 7.5*Pi, "7pi..7.5pi");
|
463 |
|
|
Exact_Result_Checks;
|
464 |
|
|
end Do_Test;
|
465 |
|
|
end Generic_Check;
|
466 |
|
|
|
467 |
|
|
-----------------------------------------------------------------------
|
468 |
|
|
-----------------------------------------------------------------------
|
469 |
|
|
|
470 |
|
|
package Float_Check is new Generic_Check (Float);
|
471 |
|
|
|
472 |
|
|
-- check the floating point type with the most digits
|
473 |
|
|
type A_Long_Float is digits System.Max_Digits;
|
474 |
|
|
package A_Long_Float_Check is new Generic_Check (A_Long_Float);
|
475 |
|
|
|
476 |
|
|
-----------------------------------------------------------------------
|
477 |
|
|
-----------------------------------------------------------------------
|
478 |
|
|
|
479 |
|
|
|
480 |
|
|
begin
|
481 |
|
|
Report.Test ("CXG2004",
|
482 |
|
|
"Check the accuracy of the sin and cos functions");
|
483 |
|
|
|
484 |
|
|
if Verbose then
|
485 |
|
|
Report.Comment ("checking Standard.Float");
|
486 |
|
|
end if;
|
487 |
|
|
|
488 |
|
|
Float_Check.Do_Test;
|
489 |
|
|
|
490 |
|
|
if Verbose then
|
491 |
|
|
Report.Comment ("checking a digits" &
|
492 |
|
|
Integer'Image (System.Max_Digits) &
|
493 |
|
|
" floating point type");
|
494 |
|
|
end if;
|
495 |
|
|
|
496 |
|
|
A_Long_Float_Check.Do_Test;
|
497 |
|
|
|
498 |
|
|
Report.Result;
|
499 |
|
|
end CXG2004;
|