OpenCores
URL https://opencores.org/ocsvn/openrisc/openrisc/trunk

Subversion Repositories openrisc

[/] [openrisc/] [trunk/] [gnu-old/] [gcc-4.2.2/] [gcc/] [testsuite/] [ada/] [acats/] [tests/] [cxg/] [cxg2008.a] - Blame information for rev 827

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 149 jeremybenn
-- CXG2008.A
2
--
3
--                             Grant of Unlimited Rights
4
--
5
--     Under contracts F33600-87-D-0337, F33600-84-D-0280, MDA903-79-C-0687,
6
--     F08630-91-C-0015, and DCA100-97-D-0025, the U.S. Government obtained
7
--     unlimited rights in the software and documentation contained herein.
8
--     Unlimited rights are defined in DFAR 252.227-7013(a)(19).  By making
9
--     this public release, the Government intends to confer upon all
10
--     recipients unlimited rights  equal to those held by the Government.
11
--     These rights include rights to use, duplicate, release or disclose the
12
--     released technical data and computer software in whole or in part, in
13
--     any manner and for any purpose whatsoever, and to have or permit others
14
--     to do so.
15
--
16
--                                    DISCLAIMER
17
--
18
--     ALL MATERIALS OR INFORMATION HEREIN RELEASED, MADE AVAILABLE OR
19
--     DISCLOSED ARE AS IS.  THE GOVERNMENT MAKES NO EXPRESS OR IMPLIED
20
--     WARRANTY AS TO ANY MATTER WHATSOEVER, INCLUDING THE CONDITIONS OF THE
21
--     SOFTWARE, DOCUMENTATION OR OTHER INFORMATION RELEASED, MADE AVAILABLE
22
--     OR DISCLOSED, OR THE OWNERSHIP, MERCHANTABILITY, OR FITNESS FOR A
23
--     PARTICULAR PURPOSE OF SAID MATERIAL.
24
--*
25
--
26
-- OBJECTIVE:
27
--      Check that the complex multiplication and division
28
--      operations return results that are within the allowed
29
--      error bound.
30
--      Check that all the required pure Numerics packages are pure.
31
--
32
-- TEST DESCRIPTION:
33
--      This test contains three test packages that are almost
34
--      identical.  The first two packages differ only in the
35
--      floating point type that is being tested.  The first
36
--      and third package differ only in whether the generic
37
--      complex types package or the pre-instantiated
38
--      package is used.
39
--      The test package is not generic so that the arguments
40
--      and expected results for some of the test values
41
--      can be expressed as universal real instead of being
42
--      computed at runtime.
43
--
44
-- SPECIAL REQUIREMENTS
45
--      The Strict Mode for the numerical accuracy must be
46
--      selected.  The method by which this mode is selected
47
--      is implementation dependent.
48
--
49
-- APPLICABILITY CRITERIA:
50
--      This test applies only to implementations supporting the
51
--      Numerics Annex.
52
--      This test only applies to the Strict Mode for numerical
53
--      accuracy.
54
--
55
--
56
-- CHANGE HISTORY:
57
--      24 FEB 96   SAIC    Initial release for 2.1
58
--      03 JUN 98   EDS     Correct the test program's incorrect assumption
59
--                          that Constraint_Error must be raised by complex
60
--                          division by zero, which is contrary to the
61
--                          allowance given by the Ada 95 standard G.1.1(40).
62
--      13 MAR 01   RLB     Replaced commented out Pure check on non-generic
63
--                          packages, as required by Defect Report
64
--                          8652/0020 and as reflected in Technical
65
--                          Corrigendum 1.
66
--!
67
 
68
------------------------------------------------------------------------------
69
-- Check that the required pure packages are pure by withing them from a
70
-- pure package. The non-generic versions of those packages are required to
71
-- be pure by Defect Report 8652/0020, Technical Corrigendum 1 [A.5.1(9/1) and
72
-- G.1.1(25/1)].
73
with Ada.Numerics.Generic_Elementary_Functions;
74
with Ada.Numerics.Elementary_Functions;
75
with Ada.Numerics.Generic_Complex_Types;
76
with Ada.Numerics.Complex_Types;
77
with Ada.Numerics.Generic_Complex_Elementary_Functions;
78
with Ada.Numerics.Complex_Elementary_Functions;
79
package CXG2008_0 is
80
  pragma Pure;
81
   -- CRC Standard Mathematical Tables;  23rd Edition; pg 738
82
   Sqrt2 : constant :=
83
        1.41421_35623_73095_04880_16887_24209_69807_85696_71875_37695;
84
   Sqrt3 : constant :=
85
        1.73205_08075_68877_29352_74463_41505_87236_69428_05253_81039;
86
end CXG2008_0;
87
 
88
------------------------------------------------------------------------------
89
 
90
with System;
91
with Report;
92
with Ada.Numerics.Generic_Complex_Types;
93
with Ada.Numerics.Complex_Types;
94
with CXG2008_0;  use CXG2008_0;
95
procedure CXG2008 is
96
   Verbose : constant Boolean := False;
97
 
98
   package Float_Check is
99
      subtype Real is Float;
100
      procedure Do_Test;
101
   end Float_Check;
102
 
103
   package body Float_Check is
104
      package Complex_Types is new
105
           Ada.Numerics.Generic_Complex_Types (Real);
106
      use Complex_Types;
107
 
108
      -- keep track if an accuracy failure has occurred so the test
109
      -- can be short-circuited to avoid thousands of error messages.
110
      Failure_Detected : Boolean := False;
111
 
112
      Mult_MBE : constant Real := 5.0;
113
      Divide_MBE : constant Real := 13.0;
114
 
115
 
116
      procedure Check (Actual, Expected : Complex;
117
                       Test_Name : String;
118
                       MBE : Real) is
119
         Rel_Error : Real;
120
         Abs_Error : Real;
121
         Max_Error : Real;
122
      begin
123
         -- In the case where the expected result is very small or 0
124
         -- we compute the maximum error as a multiple of Model_Epsilon instead
125
         -- of Model_Epsilon and Expected.
126
         Rel_Error := MBE * abs Expected.Re * Real'Model_Epsilon;
127
         Abs_Error := MBE * Real'Model_Epsilon;
128
         if Rel_Error > Abs_Error then
129
            Max_Error := Rel_Error;
130
         else
131
            Max_Error := Abs_Error;
132
         end if;
133
 
134
         if abs (Actual.Re - Expected.Re) > Max_Error then
135
            Failure_Detected := True;
136
            Report.Failed (Test_Name &
137
                           " actual.re: " & Real'Image (Actual.Re) &
138
                           " expected.re: " & Real'Image (Expected.Re) &
139
                           " difference.re " &
140
                           Real'Image (Actual.Re - Expected.Re) &
141
                           " mre:" & Real'Image (Max_Error) );
142
         elsif Verbose then
143
            if Actual = Expected then
144
               Report.Comment (Test_Name & " exact result for real part");
145
            else
146
               Report.Comment (Test_Name & " passed for real part");
147
            end if;
148
         end if;
149
 
150
         Rel_Error := MBE * abs Expected.Im * Real'Model_Epsilon;
151
         if Rel_Error > Abs_Error then
152
            Max_Error := Rel_Error;
153
         else
154
            Max_Error := Abs_Error;
155
         end if;
156
         if abs (Actual.Im - Expected.Im) > Max_Error then
157
            Failure_Detected := True;
158
            Report.Failed (Test_Name &
159
                           " actual.im: " & Real'Image (Actual.Im) &
160
                           " expected.im: " & Real'Image (Expected.Im) &
161
                           " difference.im " &
162
                           Real'Image (Actual.Im - Expected.Im) &
163
                           " mre:" & Real'Image (Max_Error) );
164
         elsif Verbose then
165
            if Actual = Expected then
166
               Report.Comment (Test_Name & " exact result for imaginary part");
167
            else
168
               Report.Comment (Test_Name & " passed for imaginary part");
169
            end if;
170
         end if;
171
      end Check;
172
 
173
 
174
      procedure Special_Values is
175
      begin
176
 
177
         --- test 1 ---
178
         declare
179
            T : constant := (Real'Machine_EMax - 1) / 2;
180
            Big : constant := (1.0 * Real'Machine_Radix) ** (2 * T);
181
            Expected : Complex := (0.0, 0.0);
182
            X : Complex := (0.0, 0.0);
183
            Y : Complex := (Big, Big);
184
            Z : Complex;
185
         begin
186
            Z := X * Y;
187
            Check (Z, Expected, "test 1a -- (0+0i) * (big+big*i)",
188
                   Mult_MBE);
189
            Z := Y * X;
190
            Check (Z, Expected, "test 1b -- (big+big*i) * (0+0i)",
191
                   Mult_MBE);
192
         exception
193
            when Constraint_Error =>
194
               Report.Failed ("Constraint_Error raised in test 1");
195
            when others =>
196
               Report.Failed ("exception in test 1");
197
         end;
198
 
199
         --- test 2 ---
200
         declare
201
            T : constant := Real'Model_EMin + 1;
202
            Tiny : constant := (1.0 * Real'Machine_Radix) ** T;
203
            U : Complex := (Tiny, Tiny);
204
            X : Complex := (0.0, 0.0);
205
            Expected : Complex := (0.0, 0.0);
206
            Z : Complex;
207
         begin
208
            Z := U * X;
209
            Check (Z, Expected, "test 2 -- (tiny,tiny) * (0,0)",
210
                   Mult_MBE);
211
         exception
212
            when Constraint_Error =>
213
               Report.Failed ("Constraint_Error raised in test 2");
214
            when others =>
215
               Report.Failed ("exception in test 2");
216
         end;
217
 
218
         --- test 3 ---
219
         declare
220
            T : constant := (Real'Machine_EMax - 1) / 2;
221
            Big : constant := (1.0 * Real'Machine_Radix) ** (2 * T);
222
            B : Complex := (Big, Big);
223
            X : Complex := (0.0, 0.0);
224
            Z : Complex;
225
         begin
226
            if Real'Machine_Overflows then
227
               Z := B / X;
228
               Report.Failed ("test 3 - Constraint_Error not raised");
229
               Check (Z, Z, "not executed - optimizer thwarting", 0.0);
230
            end if;
231
         exception
232
            when Constraint_Error => null;  -- expected
233
            when others =>
234
               Report.Failed ("exception in test 3");
235
         end;
236
 
237
         --- test 4 ---
238
         declare
239
            T : constant := Real'Model_EMin + 1;
240
            Tiny : constant := (1.0 * Real'Machine_Radix) ** T;
241
            U : Complex := (Tiny, Tiny);
242
            X : Complex := (0.0, 0.0);
243
            Z : Complex;
244
         begin
245
            if Real'Machine_Overflows then
246
               Z := U / X;
247
               Report.Failed ("test 4 - Constraint_Error not raised");
248
               Check (Z, Z, "not executed - optimizer thwarting", 0.0);
249
            end if;
250
         exception
251
            when Constraint_Error => null;  -- expected
252
            when others =>
253
               Report.Failed ("exception in test 4");
254
         end;
255
 
256
 
257
         --- test 5 ---
258
         declare
259
            X : Complex := (Sqrt2, Sqrt2);
260
            Z : Complex;
261
            Expected : constant Complex := (0.0, 4.0);
262
         begin
263
            Z := X * X;
264
            Check (Z, Expected, "test 5 -- (sqrt2,sqrt2) * (sqrt2,sqrt2)",
265
                   Mult_MBE);
266
         exception
267
            when Constraint_Error =>
268
               Report.Failed ("Constraint_Error raised in test 5");
269
            when others =>
270
               Report.Failed ("exception in test 5");
271
         end;
272
 
273
         --- test 6 ---
274
         declare
275
            X : Complex := Sqrt3 - Sqrt3 * i;
276
            Z : Complex;
277
            Expected : constant Complex := (0.0, -6.0);
278
         begin
279
            Z := X * X;
280
            Check (Z, Expected, "test 6 -- (sqrt3,-sqrt3) * (sqrt3,-sqrt3)",
281
                   Mult_MBE);
282
         exception
283
            when Constraint_Error =>
284
               Report.Failed ("Constraint_Error raised in test 6");
285
            when others =>
286
               Report.Failed ("exception in test 6");
287
         end;
288
 
289
         --- test 7 ---
290
         declare
291
            X : Complex := Sqrt2 + Sqrt2 * i;
292
            Y : Complex := Sqrt2 - Sqrt2 * i;
293
            Z : Complex;
294
            Expected : constant Complex := 0.0 + i;
295
         begin
296
            Z := X / Y;
297
            Check (Z, Expected, "test 7 -- (sqrt2,sqrt2) / (sqrt2,-sqrt2)",
298
                   Divide_MBE);
299
         exception
300
            when Constraint_Error =>
301
               Report.Failed ("Constraint_Error raised in test 7");
302
            when others =>
303
               Report.Failed ("exception in test 7");
304
         end;
305
      end Special_Values;
306
 
307
 
308
      procedure Do_Mult_Div (X, Y : Complex) is
309
         Z : Complex;
310
         Args : constant String :=
311
           "X=(" & Real'Image (X.Re) & "," & Real'Image (X.Im) & ") " &
312
           "Y=(" & Real'Image (Y.Re) & "," & Real'Image (Y.Im) & ") " ;
313
      begin
314
         Z := (X * X) / X;
315
         Check (Z, X, "X*X/X " & Args, Mult_MBE + Divide_MBE);
316
         Z := (X * Y) / X;
317
         Check (Z, Y, "X*Y/X " & Args, Mult_MBE + Divide_MBE);
318
         Z := (X * Y) / Y;
319
         Check (Z, X, "X*Y/Y " & Args, Mult_MBE + Divide_MBE);
320
      exception
321
         when Constraint_Error =>
322
            Report.Failed ("Constraint_Error in Do_Mult_Div for " & Args);
323
         when others =>
324
            Report.Failed ("exception in Do_Mult_Div for " & Args);
325
      end Do_Mult_Div;
326
 
327
      -- select complex values X and Y where the real and imaginary
328
      -- parts are selected from the ranges (1/radix..1) and
329
      -- (1..radix).  This translates into quite a few combinations.
330
      procedure Mult_Div_Check is
331
         Samples : constant := 17;
332
         Radix : constant Real := Real(Real'Machine_Radix);
333
         Inv_Radix : constant Real := 1.0 / Real(Real'Machine_Radix);
334
         Low_Sample : Real;  -- (1/radix .. 1)
335
         High_Sample : Real; -- (1 .. radix)
336
         Sample : array (1..2) of Real;
337
         X, Y : Complex;
338
      begin
339
         for I in 1 .. Samples loop
340
            Low_Sample := (1.0 - Inv_Radix) / Real (Samples) * Real (I) +
341
                          Inv_Radix;
342
            Sample (1) := Low_Sample;
343
            for J in 1 .. Samples loop
344
               High_Sample := (Radix - 1.0) / Real (Samples) * Real (I) +
345
                              Radix;
346
               Sample (2) := High_Sample;
347
               for K in 1 .. 2 loop
348
                  for L in 1 .. 2 loop
349
                     X := Complex'(Sample (K), Sample (L));
350
                     Y := Complex'(Sample (L), Sample (K));
351
                     Do_Mult_Div (X, Y);
352
                     if Failure_Detected then
353
                        return;   -- minimize flood of error messages
354
                     end if;
355
                  end loop;
356
               end loop;
357
            end loop;  -- J
358
         end loop;  -- I
359
      end Mult_Div_Check;
360
 
361
 
362
      procedure Do_Test is
363
      begin
364
         Special_Values;
365
         Mult_Div_Check;
366
      end Do_Test;
367
   end Float_Check;
368
 
369
   -----------------------------------------------------------------------
370
   -----------------------------------------------------------------------
371
   -- check the floating point type with the most digits
372
 
373
   package A_Long_Float_Check is
374
      type A_Long_Float is digits System.Max_Digits;
375
      subtype Real is A_Long_Float;
376
      procedure Do_Test;
377
   end A_Long_Float_Check;
378
 
379
   package body A_Long_Float_Check is
380
 
381
      package Complex_Types is new
382
           Ada.Numerics.Generic_Complex_Types (Real);
383
      use Complex_Types;
384
 
385
      -- keep track if an accuracy failure has occurred so the test
386
      -- can be short-circuited to avoid thousands of error messages.
387
      Failure_Detected : Boolean := False;
388
 
389
      Mult_MBE : constant Real := 5.0;
390
      Divide_MBE : constant Real := 13.0;
391
 
392
 
393
      procedure Check (Actual, Expected : Complex;
394
                       Test_Name : String;
395
                       MBE : Real) is
396
         Rel_Error : Real;
397
         Abs_Error : Real;
398
         Max_Error : Real;
399
      begin
400
         -- In the case where the expected result is very small or 0
401
         -- we compute the maximum error as a multiple of Model_Epsilon instead
402
         -- of Model_Epsilon and Expected.
403
         Rel_Error := MBE * abs Expected.Re * Real'Model_Epsilon;
404
         Abs_Error := MBE * Real'Model_Epsilon;
405
         if Rel_Error > Abs_Error then
406
            Max_Error := Rel_Error;
407
         else
408
            Max_Error := Abs_Error;
409
         end if;
410
 
411
         if abs (Actual.Re - Expected.Re) > Max_Error then
412
            Failure_Detected := True;
413
            Report.Failed (Test_Name &
414
                           " actual.re: " & Real'Image (Actual.Re) &
415
                           " expected.re: " & Real'Image (Expected.Re) &
416
                           " difference.re " &
417
                           Real'Image (Actual.Re - Expected.Re) &
418
                           " mre:" & Real'Image (Max_Error) );
419
         elsif Verbose then
420
            if Actual = Expected then
421
               Report.Comment (Test_Name & " exact result for real part");
422
            else
423
               Report.Comment (Test_Name & " passed for real part");
424
            end if;
425
         end if;
426
 
427
         Rel_Error := MBE * abs Expected.Im * Real'Model_Epsilon;
428
         if Rel_Error > Abs_Error then
429
            Max_Error := Rel_Error;
430
         else
431
            Max_Error := Abs_Error;
432
         end if;
433
         if abs (Actual.Im - Expected.Im) > Max_Error then
434
            Failure_Detected := True;
435
            Report.Failed (Test_Name &
436
                           " actual.im: " & Real'Image (Actual.Im) &
437
                           " expected.im: " & Real'Image (Expected.Im) &
438
                           " difference.im " &
439
                           Real'Image (Actual.Im - Expected.Im) &
440
                           " mre:" & Real'Image (Max_Error) );
441
         elsif Verbose then
442
            if Actual = Expected then
443
               Report.Comment (Test_Name & " exact result for imaginary part");
444
            else
445
               Report.Comment (Test_Name & " passed for imaginary part");
446
            end if;
447
         end if;
448
      end Check;
449
 
450
 
451
      procedure Special_Values is
452
      begin
453
 
454
         --- test 1 ---
455
         declare
456
            T : constant := (Real'Machine_EMax - 1) / 2;
457
            Big : constant := (1.0 * Real'Machine_Radix) ** (2 * T);
458
            Expected : Complex := (0.0, 0.0);
459
            X : Complex := (0.0, 0.0);
460
            Y : Complex := (Big, Big);
461
            Z : Complex;
462
         begin
463
            Z := X * Y;
464
            Check (Z, Expected, "test 1a -- (0+0i) * (big+big*i)",
465
                   Mult_MBE);
466
            Z := Y * X;
467
            Check (Z, Expected, "test 1b -- (big+big*i) * (0+0i)",
468
                   Mult_MBE);
469
         exception
470
            when Constraint_Error =>
471
               Report.Failed ("Constraint_Error raised in test 1");
472
            when others =>
473
               Report.Failed ("exception in test 1");
474
         end;
475
 
476
         --- test 2 ---
477
         declare
478
            T : constant := Real'Model_EMin + 1;
479
            Tiny : constant := (1.0 * Real'Machine_Radix) ** T;
480
            U : Complex := (Tiny, Tiny);
481
            X : Complex := (0.0, 0.0);
482
            Expected : Complex := (0.0, 0.0);
483
            Z : Complex;
484
         begin
485
            Z := U * X;
486
            Check (Z, Expected, "test 2 -- (tiny,tiny) * (0,0)",
487
                   Mult_MBE);
488
         exception
489
            when Constraint_Error =>
490
               Report.Failed ("Constraint_Error raised in test 2");
491
            when others =>
492
               Report.Failed ("exception in test 2");
493
         end;
494
 
495
         --- test 3 ---
496
         declare
497
            T : constant := (Real'Machine_EMax - 1) / 2;
498
            Big : constant := (1.0 * Real'Machine_Radix) ** (2 * T);
499
            B : Complex := (Big, Big);
500
            X : Complex := (0.0, 0.0);
501
            Z : Complex;
502
         begin
503
            if Real'Machine_Overflows then
504
               Z := B / X;
505
               Report.Failed ("test 3 - Constraint_Error not raised");
506
               Check (Z, Z, "not executed - optimizer thwarting", 0.0);
507
            end if;
508
         exception
509
            when Constraint_Error => null;  -- expected
510
            when others =>
511
               Report.Failed ("exception in test 3");
512
         end;
513
 
514
         --- test 4 ---
515
         declare
516
            T : constant := Real'Model_EMin + 1;
517
            Tiny : constant := (1.0 * Real'Machine_Radix) ** T;
518
            U : Complex := (Tiny, Tiny);
519
            X : Complex := (0.0, 0.0);
520
            Z : Complex;
521
         begin
522
            if Real'Machine_Overflows then
523
               Z := U / X;
524
               Report.Failed ("test 4 - Constraint_Error not raised");
525
               Check (Z, Z, "not executed - optimizer thwarting", 0.0);
526
            end if;
527
         exception
528
            when Constraint_Error => null;  -- expected
529
            when others =>
530
               Report.Failed ("exception in test 4");
531
         end;
532
 
533
 
534
         --- test 5 ---
535
         declare
536
            X : Complex := (Sqrt2, Sqrt2);
537
            Z : Complex;
538
            Expected : constant Complex := (0.0, 4.0);
539
         begin
540
            Z := X * X;
541
            Check (Z, Expected, "test 5 -- (sqrt2,sqrt2) * (sqrt2,sqrt2)",
542
                   Mult_MBE);
543
         exception
544
            when Constraint_Error =>
545
               Report.Failed ("Constraint_Error raised in test 5");
546
            when others =>
547
               Report.Failed ("exception in test 5");
548
         end;
549
 
550
         --- test 6 ---
551
         declare
552
            X : Complex := Sqrt3 - Sqrt3 * i;
553
            Z : Complex;
554
            Expected : constant Complex := (0.0, -6.0);
555
         begin
556
            Z := X * X;
557
            Check (Z, Expected, "test 6 -- (sqrt3,-sqrt3) * (sqrt3,-sqrt3)",
558
                   Mult_MBE);
559
         exception
560
            when Constraint_Error =>
561
               Report.Failed ("Constraint_Error raised in test 6");
562
            when others =>
563
               Report.Failed ("exception in test 6");
564
         end;
565
 
566
         --- test 7 ---
567
         declare
568
            X : Complex := Sqrt2 + Sqrt2 * i;
569
            Y : Complex := Sqrt2 - Sqrt2 * i;
570
            Z : Complex;
571
            Expected : constant Complex := 0.0 + i;
572
         begin
573
            Z := X / Y;
574
            Check (Z, Expected, "test 7 -- (sqrt2,sqrt2) / (sqrt2,-sqrt2)",
575
                   Divide_MBE);
576
         exception
577
            when Constraint_Error =>
578
               Report.Failed ("Constraint_Error raised in test 7");
579
            when others =>
580
               Report.Failed ("exception in test 7");
581
         end;
582
      end Special_Values;
583
 
584
 
585
      procedure Do_Mult_Div (X, Y : Complex) is
586
         Z : Complex;
587
         Args : constant String :=
588
           "X=(" & Real'Image (X.Re) & "," & Real'Image (X.Im) & ") " &
589
           "Y=(" & Real'Image (Y.Re) & "," & Real'Image (Y.Im) & ") " ;
590
      begin
591
         Z := (X * X) / X;
592
         Check (Z, X, "X*X/X " & Args, Mult_MBE + Divide_MBE);
593
         Z := (X * Y) / X;
594
         Check (Z, Y, "X*Y/X " & Args, Mult_MBE + Divide_MBE);
595
         Z := (X * Y) / Y;
596
         Check (Z, X, "X*Y/Y " & Args, Mult_MBE + Divide_MBE);
597
      exception
598
         when Constraint_Error =>
599
            Report.Failed ("Constraint_Error in Do_Mult_Div for " & Args);
600
         when others =>
601
            Report.Failed ("exception in Do_Mult_Div for " & Args);
602
      end Do_Mult_Div;
603
 
604
      -- select complex values X and Y where the real and imaginary
605
      -- parts are selected from the ranges (1/radix..1) and
606
      -- (1..radix).  This translates into quite a few combinations.
607
      procedure Mult_Div_Check is
608
         Samples : constant := 17;
609
         Radix : constant Real := Real(Real'Machine_Radix);
610
         Inv_Radix : constant Real := 1.0 / Real(Real'Machine_Radix);
611
         Low_Sample : Real;  -- (1/radix .. 1)
612
         High_Sample : Real; -- (1 .. radix)
613
         Sample : array (1..2) of Real;
614
         X, Y : Complex;
615
      begin
616
         for I in 1 .. Samples loop
617
            Low_Sample := (1.0 - Inv_Radix) / Real (Samples) * Real (I) +
618
                          Inv_Radix;
619
            Sample (1) := Low_Sample;
620
            for J in 1 .. Samples loop
621
               High_Sample := (Radix - 1.0) / Real (Samples) * Real (I) +
622
                              Radix;
623
               Sample (2) := High_Sample;
624
               for K in 1 .. 2 loop
625
                  for L in 1 .. 2 loop
626
                     X := Complex'(Sample (K), Sample (L));
627
                     Y := Complex'(Sample (L), Sample (K));
628
                     Do_Mult_Div (X, Y);
629
                     if Failure_Detected then
630
                        return;   -- minimize flood of error messages
631
                     end if;
632
                  end loop;
633
               end loop;
634
            end loop;  -- J
635
         end loop;  -- I
636
      end Mult_Div_Check;
637
 
638
 
639
      procedure Do_Test is
640
      begin
641
         Special_Values;
642
         Mult_Div_Check;
643
      end Do_Test;
644
   end A_Long_Float_Check;
645
 
646
   -----------------------------------------------------------------------
647
   -----------------------------------------------------------------------
648
 
649
   package Non_Generic_Check is
650
      subtype Real is Float;
651
      procedure Do_Test;
652
   end Non_Generic_Check;
653
 
654
   package body Non_Generic_Check is
655
 
656
      use Ada.Numerics.Complex_Types;
657
 
658
      -- keep track if an accuracy failure has occurred so the test
659
      -- can be short-circuited to avoid thousands of error messages.
660
      Failure_Detected : Boolean := False;
661
 
662
      Mult_MBE : constant Real := 5.0;
663
      Divide_MBE : constant Real := 13.0;
664
 
665
 
666
      procedure Check (Actual, Expected : Complex;
667
                       Test_Name : String;
668
                       MBE : Real) is
669
         Rel_Error : Real;
670
         Abs_Error : Real;
671
         Max_Error : Real;
672
      begin
673
         -- In the case where the expected result is very small or 0
674
         -- we compute the maximum error as a multiple of Model_Epsilon instead
675
         -- of Model_Epsilon and Expected.
676
         Rel_Error := MBE * abs Expected.Re * Real'Model_Epsilon;
677
         Abs_Error := MBE * Real'Model_Epsilon;
678
         if Rel_Error > Abs_Error then
679
            Max_Error := Rel_Error;
680
         else
681
            Max_Error := Abs_Error;
682
         end if;
683
 
684
         if abs (Actual.Re - Expected.Re) > Max_Error then
685
            Failure_Detected := True;
686
            Report.Failed (Test_Name &
687
                           " actual.re: " & Real'Image (Actual.Re) &
688
                           " expected.re: " & Real'Image (Expected.Re) &
689
                           " difference.re " &
690
                           Real'Image (Actual.Re - Expected.Re) &
691
                           " mre:" & Real'Image (Max_Error) );
692
         elsif Verbose then
693
            if Actual = Expected then
694
               Report.Comment (Test_Name & " exact result for real part");
695
            else
696
               Report.Comment (Test_Name & " passed for real part");
697
            end if;
698
         end if;
699
 
700
         Rel_Error := MBE * abs Expected.Im * Real'Model_Epsilon;
701
         if Rel_Error > Abs_Error then
702
            Max_Error := Rel_Error;
703
         else
704
            Max_Error := Abs_Error;
705
         end if;
706
         if abs (Actual.Im - Expected.Im) > Max_Error then
707
            Failure_Detected := True;
708
            Report.Failed (Test_Name &
709
                           " actual.im: " & Real'Image (Actual.Im) &
710
                           " expected.im: " & Real'Image (Expected.Im) &
711
                           " difference.im " &
712
                           Real'Image (Actual.Im - Expected.Im) &
713
                           " mre:" & Real'Image (Max_Error) );
714
         elsif Verbose then
715
            if Actual = Expected then
716
               Report.Comment (Test_Name & " exact result for imaginary part");
717
            else
718
               Report.Comment (Test_Name & " passed for imaginary part");
719
            end if;
720
         end if;
721
      end Check;
722
 
723
 
724
      procedure Special_Values is
725
      begin
726
 
727
         --- test 1 ---
728
         declare
729
            T : constant := (Real'Machine_EMax - 1) / 2;
730
            Big : constant := (1.0 * Real'Machine_Radix) ** (2 * T);
731
            Expected : Complex := (0.0, 0.0);
732
            X : Complex := (0.0, 0.0);
733
            Y : Complex := (Big, Big);
734
            Z : Complex;
735
         begin
736
            Z := X * Y;
737
            Check (Z, Expected, "test 1a -- (0+0i) * (big+big*i)",
738
                   Mult_MBE);
739
            Z := Y * X;
740
            Check (Z, Expected, "test 1b -- (big+big*i) * (0+0i)",
741
                   Mult_MBE);
742
         exception
743
            when Constraint_Error =>
744
               Report.Failed ("Constraint_Error raised in test 1");
745
            when others =>
746
               Report.Failed ("exception in test 1");
747
         end;
748
 
749
         --- test 2 ---
750
         declare
751
            T : constant := Real'Model_EMin + 1;
752
            Tiny : constant := (1.0 * Real'Machine_Radix) ** T;
753
            U : Complex := (Tiny, Tiny);
754
            X : Complex := (0.0, 0.0);
755
            Expected : Complex := (0.0, 0.0);
756
            Z : Complex;
757
         begin
758
            Z := U * X;
759
            Check (Z, Expected, "test 2 -- (tiny,tiny) * (0,0)",
760
                   Mult_MBE);
761
         exception
762
            when Constraint_Error =>
763
               Report.Failed ("Constraint_Error raised in test 2");
764
            when others =>
765
               Report.Failed ("exception in test 2");
766
         end;
767
 
768
         --- test 3 ---
769
         declare
770
            T : constant := (Real'Machine_EMax - 1) / 2;
771
            Big : constant := (1.0 * Real'Machine_Radix) ** (2 * T);
772
            B : Complex := (Big, Big);
773
            X : Complex := (0.0, 0.0);
774
            Z : Complex;
775
         begin
776
            if Real'Machine_Overflows then
777
               Z := B / X;
778
               Report.Failed ("test 3 - Constraint_Error not raised");
779
               Check (Z, Z, "not executed - optimizer thwarting", 0.0);
780
            end if;
781
         exception
782
            when Constraint_Error => null;  -- expected
783
            when others =>
784
               Report.Failed ("exception in test 3");
785
         end;
786
 
787
         --- test 4 ---
788
         declare
789
            T : constant := Real'Model_EMin + 1;
790
            Tiny : constant := (1.0 * Real'Machine_Radix) ** T;
791
            U : Complex := (Tiny, Tiny);
792
            X : Complex := (0.0, 0.0);
793
            Z : Complex;
794
         begin
795
            if Real'Machine_Overflows then
796
               Z := U / X;
797
               Report.Failed ("test 4 - Constraint_Error not raised");
798
               Check (Z, Z, "not executed - optimizer thwarting", 0.0);
799
            end if;
800
         exception
801
            when Constraint_Error => null;  -- expected
802
            when others =>
803
               Report.Failed ("exception in test 4");
804
         end;
805
 
806
 
807
         --- test 5 ---
808
         declare
809
            X : Complex := (Sqrt2, Sqrt2);
810
            Z : Complex;
811
            Expected : constant Complex := (0.0, 4.0);
812
         begin
813
            Z := X * X;
814
            Check (Z, Expected, "test 5 -- (sqrt2,sqrt2) * (sqrt2,sqrt2)",
815
                   Mult_MBE);
816
         exception
817
            when Constraint_Error =>
818
               Report.Failed ("Constraint_Error raised in test 5");
819
            when others =>
820
               Report.Failed ("exception in test 5");
821
         end;
822
 
823
         --- test 6 ---
824
         declare
825
            X : Complex := Sqrt3 - Sqrt3 * i;
826
            Z : Complex;
827
            Expected : constant Complex := (0.0, -6.0);
828
         begin
829
            Z := X * X;
830
            Check (Z, Expected, "test 6 -- (sqrt3,-sqrt3) * (sqrt3,-sqrt3)",
831
                   Mult_MBE);
832
         exception
833
            when Constraint_Error =>
834
               Report.Failed ("Constraint_Error raised in test 6");
835
            when others =>
836
               Report.Failed ("exception in test 6");
837
         end;
838
 
839
         --- test 7 ---
840
         declare
841
            X : Complex := Sqrt2 + Sqrt2 * i;
842
            Y : Complex := Sqrt2 - Sqrt2 * i;
843
            Z : Complex;
844
            Expected : constant Complex := 0.0 + i;
845
         begin
846
            Z := X / Y;
847
            Check (Z, Expected, "test 7 -- (sqrt2,sqrt2) / (sqrt2,-sqrt2)",
848
                   Divide_MBE);
849
         exception
850
            when Constraint_Error =>
851
               Report.Failed ("Constraint_Error raised in test 7");
852
            when others =>
853
               Report.Failed ("exception in test 7");
854
         end;
855
      end Special_Values;
856
 
857
 
858
      procedure Do_Mult_Div (X, Y : Complex) is
859
         Z : Complex;
860
         Args : constant String :=
861
           "X=(" & Real'Image (X.Re) & "," & Real'Image (X.Im) & ") " &
862
           "Y=(" & Real'Image (Y.Re) & "," & Real'Image (Y.Im) & ") " ;
863
      begin
864
         Z := (X * X) / X;
865
         Check (Z, X, "X*X/X " & Args, Mult_MBE + Divide_MBE);
866
         Z := (X * Y) / X;
867
         Check (Z, Y, "X*Y/X " & Args, Mult_MBE + Divide_MBE);
868
         Z := (X * Y) / Y;
869
         Check (Z, X, "X*Y/Y " & Args, Mult_MBE + Divide_MBE);
870
      exception
871
         when Constraint_Error =>
872
            Report.Failed ("Constraint_Error in Do_Mult_Div for " & Args);
873
         when others =>
874
            Report.Failed ("exception in Do_Mult_Div for " & Args);
875
      end Do_Mult_Div;
876
 
877
      -- select complex values X and Y where the real and imaginary
878
      -- parts are selected from the ranges (1/radix..1) and
879
      -- (1..radix).  This translates into quite a few combinations.
880
      procedure Mult_Div_Check is
881
         Samples : constant := 17;
882
         Radix : constant Real := Real(Real'Machine_Radix);
883
         Inv_Radix : constant Real := 1.0 / Real(Real'Machine_Radix);
884
         Low_Sample : Real;  -- (1/radix .. 1)
885
         High_Sample : Real; -- (1 .. radix)
886
         Sample : array (1..2) of Real;
887
         X, Y : Complex;
888
      begin
889
         for I in 1 .. Samples loop
890
            Low_Sample := (1.0 - Inv_Radix) / Real (Samples) * Real (I) +
891
                          Inv_Radix;
892
            Sample (1) := Low_Sample;
893
            for J in 1 .. Samples loop
894
               High_Sample := (Radix - 1.0) / Real (Samples) * Real (I) +
895
                              Radix;
896
               Sample (2) := High_Sample;
897
               for K in 1 .. 2 loop
898
                  for L in 1 .. 2 loop
899
                     X := Complex'(Sample (K), Sample (L));
900
                     Y := Complex'(Sample (L), Sample (K));
901
                     Do_Mult_Div (X, Y);
902
                     if Failure_Detected then
903
                        return;   -- minimize flood of error messages
904
                     end if;
905
                  end loop;
906
               end loop;
907
            end loop;  -- J
908
         end loop;  -- I
909
      end Mult_Div_Check;
910
 
911
 
912
      procedure Do_Test is
913
      begin
914
         Special_Values;
915
         Mult_Div_Check;
916
      end Do_Test;
917
   end Non_Generic_Check;
918
 
919
   -----------------------------------------------------------------------
920
   -----------------------------------------------------------------------
921
 
922
begin
923
   Report.Test ("CXG2008",
924
                "Check the accuracy of the complex multiplication and" &
925
                " division operators");
926
 
927
   if Verbose then
928
      Report.Comment ("checking Standard.Float");
929
   end if;
930
 
931
   Float_Check.Do_Test;
932
 
933
   if Verbose then
934
      Report.Comment ("checking a digits" &
935
                      Integer'Image (System.Max_Digits) &
936
                      " floating point type");
937
   end if;
938
 
939
   A_Long_Float_Check.Do_Test;
940
 
941
   if Verbose then
942
      Report.Comment ("checking non-generic package");
943
   end if;
944
 
945
   Non_Generic_Check.Do_Test;
946
 
947
   Report.Result;
948
end CXG2008;

powered by: WebSVN 2.1.0

© copyright 1999-2025 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.