OpenCores
URL https://opencores.org/ocsvn/openrisc/openrisc/trunk

Subversion Repositories openrisc

[/] [openrisc/] [trunk/] [gnu-old/] [gcc-4.2.2/] [gcc/] [testsuite/] [ada/] [acats/] [tests/] [cxg/] [cxg2009.a] - Blame information for rev 859

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 149 jeremybenn
-- CXG2009.A
2
--
3
--                             Grant of Unlimited Rights
4
--
5
--     Under contracts F33600-87-D-0337, F33600-84-D-0280, MDA903-79-C-0687,
6
--     F08630-91-C-0015, and DCA100-97-D-0025, the U.S. Government obtained
7
--     unlimited rights in the software and documentation contained herein.
8
--     Unlimited rights are defined in DFAR 252.227-7013(a)(19).  By making
9
--     this public release, the Government intends to confer upon all
10
--     recipients unlimited rights  equal to those held by the Government.
11
--     These rights include rights to use, duplicate, release or disclose the
12
--     released technical data and computer software in whole or in part, in
13
--     any manner and for any purpose whatsoever, and to have or permit others
14
--     to do so.
15
--
16
--                                    DISCLAIMER
17
--
18
--     ALL MATERIALS OR INFORMATION HEREIN RELEASED, MADE AVAILABLE OR
19
--     DISCLOSED ARE AS IS.  THE GOVERNMENT MAKES NO EXPRESS OR IMPLIED
20
--     WARRANTY AS TO ANY MATTER WHATSOEVER, INCLUDING THE CONDITIONS OF THE
21
--     SOFTWARE, DOCUMENTATION OR OTHER INFORMATION RELEASED, MADE AVAILABLE
22
--     OR DISCLOSED, OR THE OWNERSHIP, MERCHANTABILITY, OR FITNESS FOR A
23
--     PARTICULAR PURPOSE OF SAID MATERIAL.
24
--*
25
--
26
-- OBJECTIVE:
27
--      Check that the real sqrt and complex modulus functions
28
--      return results that are within the allowed
29
--      error bound.
30
--
31
-- TEST DESCRIPTION:
32
--      This test checks the accuracy of the sqrt and modulus functions
33
--      by computing the norm of various vectors where the result
34
--      is known in advance.
35
--      This test uses real and complex math together as would an
36
--      actual application.  Considerable use of generics is also
37
--      employed.
38
--
39
-- SPECIAL REQUIREMENTS
40
--      The Strict Mode for the numerical accuracy must be
41
--      selected.  The method by which this mode is selected
42
--      is implementation dependent.
43
--
44
-- APPLICABILITY CRITERIA:
45
--      This test applies only to implementations supporting the
46
--      Numerics Annex.
47
--      This test only applies to the Strict Mode for numerical
48
--      accuracy.
49
--
50
--
51
-- CHANGE HISTORY:
52
--      26 FEB 96   SAIC    Initial release for 2.1
53
--      22 AUG 96   SAIC    Revised Check procedure
54
--
55
--!
56
 
57
------------------------------------------------------------------------------
58
 
59
with System;
60
with Report;
61
with Ada.Numerics.Generic_Complex_Types;
62
with Ada.Numerics.Generic_Elementary_Functions;
63
procedure CXG2009 is
64
   Verbose : constant Boolean := False;
65
 
66
   --=====================================================================
67
 
68
   generic
69
      type Real is digits <>;
70
   package Generic_Real_Norm_Check is
71
      procedure Do_Test;
72
   end Generic_Real_Norm_Check;
73
 
74
   -----------------------------------------------------------------------
75
 
76
   package body Generic_Real_Norm_Check is
77
      type Vector is array (Integer range <>) of Real;
78
 
79
      package GEF is new Ada.Numerics.Generic_Elementary_Functions (Real);
80
      function Sqrt (X : Real) return Real renames GEF.Sqrt;
81
 
82
      function One_Norm (V : Vector) return Real is
83
      -- sum of absolute values of the elements of the vector
84
         Result : Real := 0.0;
85
      begin
86
         for I in V'Range loop
87
            Result := Result + abs V(I);
88
         end loop;
89
         return Result;
90
      end One_Norm;
91
 
92
      function Inf_Norm (V : Vector) return Real is
93
      -- greatest absolute vector element
94
         Result : Real := 0.0;
95
      begin
96
         for I in V'Range loop
97
            if abs V(I) > Result then
98
               Result := abs V(I);
99
            end if;
100
         end loop;
101
         return Result;
102
      end Inf_Norm;
103
 
104
      function Two_Norm (V : Vector) return Real is
105
      -- if greatest absolute vector element is 0 then return 0
106
      -- else return greatest * sqrt (sum((element / greatest) ** 2)))
107
      --   where greatest is Inf_Norm of the vector
108
         Inf_N : Real;
109
         Sum_Squares : Real;
110
         Term : Real;
111
      begin
112
         Inf_N := Inf_Norm (V);
113
         if Inf_N = 0.0 then
114
            return 0.0;
115
         end if;
116
         Sum_Squares := 0.0;
117
         for I in V'Range loop
118
            Term := V (I) / Inf_N;
119
            Sum_Squares := Sum_Squares + Term * Term;
120
         end loop;
121
         return Inf_N * Sqrt (Sum_Squares);
122
      end Two_Norm;
123
 
124
 
125
      procedure Check (Actual, Expected : Real;
126
                       Test_Name : String;
127
                       MRE : Real;
128
                       Vector_Length : Integer) is
129
         Rel_Error : Real;
130
         Abs_Error : Real;
131
         Max_Error : Real;
132
      begin
133
         -- In the case where the expected result is very small or 0
134
         -- we compute the maximum error as a multiple of Model_Epsilon instead
135
         -- of Model_Epsilon and Expected.
136
         Rel_Error := MRE * abs Expected * Real'Model_Epsilon;
137
         Abs_Error := MRE * Real'Model_Epsilon;
138
         if Rel_Error > Abs_Error then
139
            Max_Error := Rel_Error;
140
         else
141
            Max_Error := Abs_Error;
142
         end if;
143
 
144
         if abs (Actual - Expected) > Max_Error then
145
            Report.Failed (Test_Name &
146
                             "  VectLength:" &
147
                           Integer'Image (Vector_Length) &
148
                           " actual: " & Real'Image (Actual) &
149
                           " expected: " & Real'Image (Expected) &
150
                           " difference: " &
151
                           Real'Image (Actual - Expected) &
152
                           " mre:" & Real'Image (Max_Error) );
153
         elsif Verbose then
154
            Report.Comment (Test_Name & " vector length" &
155
                            Integer'Image (Vector_Length));
156
          end if;
157
      end Check;
158
 
159
 
160
      procedure Do_Test is
161
      begin
162
         for Vector_Length in 1 .. 10 loop
163
            declare
164
               V  : Vector (1..Vector_Length) := (1..Vector_Length => 0.0);
165
               V1 : Vector (1..Vector_Length) := (1..Vector_Length => 1.0);
166
            begin
167
               Check (One_Norm (V), 0.0, "one_norm (z)", 0.0, Vector_Length);
168
               Check (Inf_Norm (V), 0.0, "inf_norm (z)", 0.0, Vector_Length);
169
 
170
               for J in 1..Vector_Length loop
171
                 V := (1..Vector_Length => 0.0);
172
                 V (J) := 1.0;
173
                 Check (One_Norm (V), 1.0, "one_norm (010)",
174
                        0.0, Vector_Length);
175
                 Check (Inf_Norm (V), 1.0, "inf_norm (010)",
176
                        0.0, Vector_Length);
177
                 Check (Two_Norm (V), 1.0, "two_norm (010)",
178
                        0.0, Vector_Length);
179
               end loop;
180
 
181
               Check (One_Norm (V1), Real (Vector_Length), "one_norm (1)",
182
                      0.0, Vector_Length);
183
               Check (Inf_Norm (V1), 1.0, "inf_norm (1)",
184
                      0.0, Vector_Length);
185
 
186
               -- error in computing Two_Norm and expected result
187
               -- are as follows  (ME is Model_Epsilon * Expected_Value):
188
               --   2ME from expected Sqrt
189
               --   2ME from Sqrt in Two_Norm times the error in the
190
               --   vector calculation.
191
               --   The vector calculation contains the following error
192
               --   based upon the length N of the vector:
193
               --      N*1ME from squaring terms in Two_Norm
194
               --      N*1ME from the division of each term in Two_Norm
195
               --      (N-1)*1ME from the sum of the terms
196
               -- This gives (2 + 2 * (N + N + (N-1)) ) * ME
197
               -- which simplifies to (2 + 2N + 2N + 2N - 2) * ME
198
               -- or 6*N*ME
199
               Check (Two_Norm (V1), Sqrt (Real(Vector_Length)),
200
                      "two_norm (1)",
201
                      (Real (6 * Vector_Length)),
202
                      Vector_Length);
203
            exception
204
               when others => Report.Failed ("exception for vector length" &
205
                                Integer'Image (Vector_Length) );
206
            end;
207
         end loop;
208
      end Do_Test;
209
   end Generic_Real_Norm_Check;
210
 
211
   --=====================================================================
212
 
213
   generic
214
      type Real is digits <>;
215
   package Generic_Complex_Norm_Check is
216
      procedure Do_Test;
217
   end Generic_Complex_Norm_Check;
218
 
219
   -----------------------------------------------------------------------
220
 
221
   package body Generic_Complex_Norm_Check is
222
      package Complex_Types is new Ada.Numerics.Generic_Complex_Types (Real);
223
      use Complex_Types;
224
      type Vector is array (Integer range <>) of Complex;
225
 
226
      package GEF is new Ada.Numerics.Generic_Elementary_Functions (Real);
227
      function Sqrt (X : Real) return Real renames GEF.Sqrt;
228
 
229
      function One_Norm (V : Vector) return Real is
230
         Result : Real := 0.0;
231
      begin
232
         for I in V'Range loop
233
            Result := Result + abs V(I);
234
         end loop;
235
         return Result;
236
      end One_Norm;
237
 
238
      function Inf_Norm (V : Vector) return Real is
239
         Result : Real := 0.0;
240
      begin
241
         for I in V'Range loop
242
            if abs V(I) > Result then
243
               Result := abs V(I);
244
            end if;
245
         end loop;
246
         return Result;
247
      end Inf_Norm;
248
 
249
      function Two_Norm (V : Vector) return Real is
250
         Inf_N : Real;
251
         Sum_Squares : Real;
252
         Term : Real;
253
      begin
254
         Inf_N := Inf_Norm (V);
255
         if Inf_N = 0.0 then
256
            return 0.0;
257
         end if;
258
         Sum_Squares := 0.0;
259
         for I in V'Range loop
260
            Term := abs (V (I) / Inf_N );
261
            Sum_Squares := Sum_Squares + Term * Term;
262
         end loop;
263
         return Inf_N * Sqrt (Sum_Squares);
264
      end Two_Norm;
265
 
266
 
267
      procedure Check (Actual, Expected : Real;
268
                       Test_Name : String;
269
                       MRE : Real;
270
                       Vector_Length : Integer) is
271
         Rel_Error : Real;
272
         Abs_Error : Real;
273
         Max_Error : Real;
274
      begin
275
         -- In the case where the expected result is very small or 0
276
         -- we compute the maximum error as a multiple of Model_Epsilon instead
277
         -- of Model_Epsilon and Expected.
278
         Rel_Error := MRE * abs Expected * Real'Model_Epsilon;
279
         Abs_Error := MRE * Real'Model_Epsilon;
280
         if Rel_Error > Abs_Error then
281
            Max_Error := Rel_Error;
282
         else
283
            Max_Error := Abs_Error;
284
         end if;
285
 
286
         if abs (Actual - Expected) > Max_Error then
287
            Report.Failed (Test_Name &
288
                             "  VectLength:" &
289
                           Integer'Image (Vector_Length) &
290
                           " actual: " & Real'Image (Actual) &
291
                           " expected: " & Real'Image (Expected) &
292
                           " difference: " &
293
                           Real'Image (Actual - Expected) &
294
                           " mre:" & Real'Image (Max_Error) );
295
         elsif Verbose then
296
            Report.Comment (Test_Name & " vector length" &
297
                            Integer'Image (Vector_Length));
298
          end if;
299
      end Check;
300
 
301
 
302
      procedure Do_Test is
303
      begin
304
         for Vector_Length in 1 .. 10 loop
305
            declare
306
               V  : Vector (1..Vector_Length) :=
307
                      (1..Vector_Length => (0.0, 0.0));
308
               X, Y : Vector (1..Vector_Length);
309
            begin
310
               Check (One_Norm (V), 0.0, "one_norm (z)", 0.0, Vector_Length);
311
               Check (Inf_Norm (V), 0.0, "inf_norm (z)", 0.0, Vector_Length);
312
 
313
               for J in 1..Vector_Length loop
314
                 X := (1..Vector_Length => (0.0, 0.0) );
315
                 Y := X;   -- X and Y are now both zeroed
316
                 X (J).Re := 1.0;
317
                 Y (J).Im := 1.0;
318
                 Check (One_Norm (X), 1.0, "one_norm (0x0)",
319
                        0.0, Vector_Length);
320
                 Check (Inf_Norm (X), 1.0, "inf_norm (0x0)",
321
                        0.0, Vector_Length);
322
                 Check (Two_Norm (X), 1.0, "two_norm (0x0)",
323
                        0.0, Vector_Length);
324
                 Check (One_Norm (Y), 1.0, "one_norm (0y0)",
325
                        0.0, Vector_Length);
326
                 Check (Inf_Norm (Y), 1.0, "inf_norm (0y0)",
327
                        0.0, Vector_Length);
328
                 Check (Two_Norm (Y), 1.0, "two_norm (0y0)",
329
                        0.0, Vector_Length);
330
               end loop;
331
 
332
               V := (1..Vector_Length => (3.0, 4.0));
333
 
334
               -- error in One_Norm is 3*N*ME for abs computation +
335
               --  (N-1)*ME for the additions
336
               -- which gives (4N-1) * ME
337
               Check (One_Norm (V), 5.0 * Real (Vector_Length),
338
                      "one_norm ((3,4))",
339
                      Real (4*Vector_Length - 1),
340
                      Vector_Length);
341
 
342
               -- error in Inf_Norm is from abs of single element (3ME)
343
               Check (Inf_Norm (V), 5.0,
344
                      "inf_norm ((3,4))",
345
                      3.0,
346
                      Vector_Length);
347
 
348
               -- error in following comes from:
349
               --   2ME in sqrt of expected result
350
               --   3ME in Inf_Norm calculation
351
               --   2ME in sqrt of vector calculation
352
               --   vector calculation has following error
353
               --      3N*ME for abs
354
               --       N*ME for squaring
355
               --       N*ME for division
356
               --       (N-1)ME for sum
357
               -- this results in [2 + 3 + 2(6N-1) ] * ME
358
               -- or (12N + 3)ME
359
               Check (Two_Norm (V), 5.0 * Sqrt (Real(Vector_Length)),
360
                      "two_norm ((3,4))",
361
                      (12.0 * Real (Vector_Length) + 3.0),
362
                      Vector_Length);
363
            exception
364
               when others => Report.Failed ("exception for complex " &
365
                                             "vector length" &
366
                                             Integer'Image (Vector_Length) );
367
            end;
368
         end loop;
369
      end Do_Test;
370
   end Generic_Complex_Norm_Check;
371
 
372
   --=====================================================================
373
 
374
   generic
375
      type Real is digits <>;
376
   package Generic_Norm_Check is
377
      procedure Do_Test;
378
   end Generic_Norm_Check;
379
 
380
   -----------------------------------------------------------------------
381
 
382
   package body Generic_Norm_Check is
383
      package RNC is new Generic_Real_Norm_Check (Real);
384
      package CNC is new Generic_Complex_Norm_Check (Real);
385
      procedure Do_Test is
386
      begin
387
         RNC.Do_Test;
388
         CNC.Do_Test;
389
      end Do_Test;
390
   end Generic_Norm_Check;
391
 
392
   --=====================================================================
393
 
394
   package Float_Check is new Generic_Norm_Check (Float);
395
 
396
   type A_Long_Float is digits System.Max_Digits;
397
   package A_Long_Float_Check is new Generic_Norm_Check (A_Long_Float);
398
 
399
   -----------------------------------------------------------------------
400
 
401
begin
402
   Report.Test ("CXG2009",
403
                "Check the accuracy of the real sqrt and complex " &
404
                " modulus functions");
405
 
406
   if Verbose then
407
      Report.Comment ("checking Standard.Float");
408
   end if;
409
 
410
   Float_Check.Do_Test;
411
 
412
   if Verbose then
413
      Report.Comment ("checking a digits" &
414
                      Integer'Image (System.Max_Digits) &
415
                      " floating point type");
416
   end if;
417
 
418
   A_Long_Float_Check.Do_Test;
419
 
420
   Report.Result;
421
end CXG2009;

powered by: WebSVN 2.1.0

© copyright 1999-2025 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.