1 |
149 |
jeremybenn |
-- CXG2015.A
|
2 |
|
|
--
|
3 |
|
|
-- Grant of Unlimited Rights
|
4 |
|
|
--
|
5 |
|
|
-- Under contracts F33600-87-D-0337, F33600-84-D-0280, MDA903-79-C-0687,
|
6 |
|
|
-- F08630-91-C-0015, and DCA100-97-D-0025, the U.S. Government obtained
|
7 |
|
|
-- unlimited rights in the software and documentation contained herein.
|
8 |
|
|
-- Unlimited rights are defined in DFAR 252.227-7013(a)(19). By making
|
9 |
|
|
-- this public release, the Government intends to confer upon all
|
10 |
|
|
-- recipients unlimited rights equal to those held by the Government.
|
11 |
|
|
-- These rights include rights to use, duplicate, release or disclose the
|
12 |
|
|
-- released technical data and computer software in whole or in part, in
|
13 |
|
|
-- any manner and for any purpose whatsoever, and to have or permit others
|
14 |
|
|
-- to do so.
|
15 |
|
|
--
|
16 |
|
|
-- DISCLAIMER
|
17 |
|
|
--
|
18 |
|
|
-- ALL MATERIALS OR INFORMATION HEREIN RELEASED, MADE AVAILABLE OR
|
19 |
|
|
-- DISCLOSED ARE AS IS. THE GOVERNMENT MAKES NO EXPRESS OR IMPLIED
|
20 |
|
|
-- WARRANTY AS TO ANY MATTER WHATSOEVER, INCLUDING THE CONDITIONS OF THE
|
21 |
|
|
-- SOFTWARE, DOCUMENTATION OR OTHER INFORMATION RELEASED, MADE AVAILABLE
|
22 |
|
|
-- OR DISCLOSED, OR THE OWNERSHIP, MERCHANTABILITY, OR FITNESS FOR A
|
23 |
|
|
-- PARTICULAR PURPOSE OF SAID MATERIAL.
|
24 |
|
|
--*
|
25 |
|
|
--
|
26 |
|
|
-- OBJECTIVE:
|
27 |
|
|
-- Check that the ARCSIN and ARCCOS functions return
|
28 |
|
|
-- results that are within the error bound allowed.
|
29 |
|
|
--
|
30 |
|
|
-- TEST DESCRIPTION:
|
31 |
|
|
-- This test consists of a generic package that is
|
32 |
|
|
-- instantiated to check both Float and a long float type.
|
33 |
|
|
-- The test for each floating point type is divided into
|
34 |
|
|
-- several parts:
|
35 |
|
|
-- Special value checks where the result is a known constant.
|
36 |
|
|
-- Checks in a specific range where a Taylor series can be
|
37 |
|
|
-- used to compute an accurate result for comparison.
|
38 |
|
|
-- Exception checks.
|
39 |
|
|
-- The Taylor series tests are a direct translation of the
|
40 |
|
|
-- FORTRAN code found in the reference.
|
41 |
|
|
--
|
42 |
|
|
-- SPECIAL REQUIREMENTS
|
43 |
|
|
-- The Strict Mode for the numerical accuracy must be
|
44 |
|
|
-- selected. The method by which this mode is selected
|
45 |
|
|
-- is implementation dependent.
|
46 |
|
|
--
|
47 |
|
|
-- APPLICABILITY CRITERIA:
|
48 |
|
|
-- This test applies only to implementations supporting the
|
49 |
|
|
-- Numerics Annex.
|
50 |
|
|
-- This test only applies to the Strict Mode for numerical
|
51 |
|
|
-- accuracy.
|
52 |
|
|
--
|
53 |
|
|
--
|
54 |
|
|
-- CHANGE HISTORY:
|
55 |
|
|
-- 18 Mar 96 SAIC Initial release for 2.1
|
56 |
|
|
-- 24 Apr 96 SAIC Fixed error bounds.
|
57 |
|
|
-- 17 Aug 96 SAIC Added reference information and improved
|
58 |
|
|
-- checking for machines with more than 23
|
59 |
|
|
-- digits of precision.
|
60 |
|
|
-- 03 Feb 97 PWB.CTA Removed checks with explicit Cycle => 2.0*Pi
|
61 |
|
|
-- 22 Dec 99 RLB Added model range checking to "exact" results,
|
62 |
|
|
-- in order to avoid too strictly requiring a specific
|
63 |
|
|
-- result, and too weakly checking results.
|
64 |
|
|
--
|
65 |
|
|
-- CHANGE NOTE:
|
66 |
|
|
-- According to Ken Dritz, author of the Numerics Annex of the RM,
|
67 |
|
|
-- one should never specify the cycle 2.0*Pi for the trigonometric
|
68 |
|
|
-- functions. In particular, if the machine number for the first
|
69 |
|
|
-- argument is not an exact multiple of the machine number for the
|
70 |
|
|
-- explicit cycle, then the specified exact results cannot be
|
71 |
|
|
-- reasonably expected. The affected checks in this test have been
|
72 |
|
|
-- marked as comments, with the additional notation "pwb-math".
|
73 |
|
|
-- Phil Brashear
|
74 |
|
|
--!
|
75 |
|
|
|
76 |
|
|
--
|
77 |
|
|
-- References:
|
78 |
|
|
--
|
79 |
|
|
-- Software Manual for the Elementary Functions
|
80 |
|
|
-- William J. Cody, Jr. and William Waite
|
81 |
|
|
-- Prentice-Hall, 1980
|
82 |
|
|
--
|
83 |
|
|
-- CRC Standard Mathematical Tables
|
84 |
|
|
-- 23rd Edition
|
85 |
|
|
--
|
86 |
|
|
-- Implementation and Testing of Function Software
|
87 |
|
|
-- W. J. Cody
|
88 |
|
|
-- Problems and Methodologies in Mathematical Software Production
|
89 |
|
|
-- editors P. C. Messina and A. Murli
|
90 |
|
|
-- Lecture Notes in Computer Science Volume 142
|
91 |
|
|
-- Springer Verlag, 1982
|
92 |
|
|
--
|
93 |
|
|
-- CELEFUNT: A Portable Test Package for Complex Elementary Functions
|
94 |
|
|
-- ACM Collected Algorithms number 714
|
95 |
|
|
|
96 |
|
|
with System;
|
97 |
|
|
with Report;
|
98 |
|
|
with Ada.Numerics.Generic_Elementary_Functions;
|
99 |
|
|
procedure CXG2015 is
|
100 |
|
|
Verbose : constant Boolean := False;
|
101 |
|
|
Max_Samples : constant := 1000;
|
102 |
|
|
|
103 |
|
|
|
104 |
|
|
-- CRC Standard Mathematical Tables; 23rd Edition; pg 738
|
105 |
|
|
Sqrt2 : constant :=
|
106 |
|
|
1.41421_35623_73095_04880_16887_24209_69807_85696_71875_37695;
|
107 |
|
|
Sqrt3 : constant :=
|
108 |
|
|
1.73205_08075_68877_29352_74463_41505_87236_69428_05253_81039;
|
109 |
|
|
|
110 |
|
|
Pi : constant := Ada.Numerics.Pi;
|
111 |
|
|
|
112 |
|
|
-- relative error bound from G.2.4(7);6.0
|
113 |
|
|
Minimum_Error : constant := 4.0;
|
114 |
|
|
|
115 |
|
|
generic
|
116 |
|
|
type Real is digits <>;
|
117 |
|
|
Half_PI_Low : in Real; -- The machine number closest to, but not greater
|
118 |
|
|
-- than PI/2.0.
|
119 |
|
|
Half_PI_High : in Real;-- The machine number closest to, but not less
|
120 |
|
|
-- than PI/2.0.
|
121 |
|
|
PI_Low : in Real; -- The machine number closest to, but not greater
|
122 |
|
|
-- than PI.
|
123 |
|
|
PI_High : in Real; -- The machine number closest to, but not less
|
124 |
|
|
-- than PI.
|
125 |
|
|
package Generic_Check is
|
126 |
|
|
procedure Do_Test;
|
127 |
|
|
end Generic_Check;
|
128 |
|
|
|
129 |
|
|
package body Generic_Check is
|
130 |
|
|
package Elementary_Functions is new
|
131 |
|
|
Ada.Numerics.Generic_Elementary_Functions (Real);
|
132 |
|
|
|
133 |
|
|
function Arcsin (X : Real) return Real renames
|
134 |
|
|
Elementary_Functions.Arcsin;
|
135 |
|
|
function Arcsin (X, Cycle : Real) return Real renames
|
136 |
|
|
Elementary_Functions.Arcsin;
|
137 |
|
|
function Arccos (X : Real) return Real renames
|
138 |
|
|
Elementary_Functions.ArcCos;
|
139 |
|
|
function Arccos (X, Cycle : Real) return Real renames
|
140 |
|
|
Elementary_Functions.ArcCos;
|
141 |
|
|
|
142 |
|
|
-- needed for support
|
143 |
|
|
function Log (X, Base : Real) return Real renames
|
144 |
|
|
Elementary_Functions.Log;
|
145 |
|
|
|
146 |
|
|
-- flag used to terminate some tests early
|
147 |
|
|
Accuracy_Error_Reported : Boolean := False;
|
148 |
|
|
|
149 |
|
|
-- The following value is a lower bound on the accuracy
|
150 |
|
|
-- required. It is normally 0.0 so that the lower bound
|
151 |
|
|
-- is computed from Model_Epsilon. However, for tests
|
152 |
|
|
-- where the expected result is only known to a certain
|
153 |
|
|
-- amount of precision this bound takes on a non-zero
|
154 |
|
|
-- value to account for that level of precision.
|
155 |
|
|
Error_Low_Bound : Real := 0.0;
|
156 |
|
|
|
157 |
|
|
|
158 |
|
|
procedure Check (Actual, Expected : Real;
|
159 |
|
|
Test_Name : String;
|
160 |
|
|
MRE : Real) is
|
161 |
|
|
Max_Error : Real;
|
162 |
|
|
Rel_Error : Real;
|
163 |
|
|
Abs_Error : Real;
|
164 |
|
|
begin
|
165 |
|
|
-- In the case where the expected result is very small or 0
|
166 |
|
|
-- we compute the maximum error as a multiple of Model_Epsilon instead
|
167 |
|
|
-- of Model_Epsilon and Expected.
|
168 |
|
|
Rel_Error := MRE * abs Expected * Real'Model_Epsilon;
|
169 |
|
|
Abs_Error := MRE * Real'Model_Epsilon;
|
170 |
|
|
if Rel_Error > Abs_Error then
|
171 |
|
|
Max_Error := Rel_Error;
|
172 |
|
|
else
|
173 |
|
|
Max_Error := Abs_Error;
|
174 |
|
|
end if;
|
175 |
|
|
|
176 |
|
|
-- take into account the low bound on the error
|
177 |
|
|
if Max_Error < Error_Low_Bound then
|
178 |
|
|
Max_Error := Error_Low_Bound;
|
179 |
|
|
end if;
|
180 |
|
|
|
181 |
|
|
if abs (Actual - Expected) > Max_Error then
|
182 |
|
|
Accuracy_Error_Reported := True;
|
183 |
|
|
Report.Failed (Test_Name &
|
184 |
|
|
" actual: " & Real'Image (Actual) &
|
185 |
|
|
" expected: " & Real'Image (Expected) &
|
186 |
|
|
" difference: " & Real'Image (Actual - Expected) &
|
187 |
|
|
" max err:" & Real'Image (Max_Error) );
|
188 |
|
|
elsif Verbose then
|
189 |
|
|
if Actual = Expected then
|
190 |
|
|
Report.Comment (Test_Name & " exact result");
|
191 |
|
|
else
|
192 |
|
|
Report.Comment (Test_Name & " passed");
|
193 |
|
|
end if;
|
194 |
|
|
end if;
|
195 |
|
|
end Check;
|
196 |
|
|
|
197 |
|
|
|
198 |
|
|
procedure Special_Value_Test is
|
199 |
|
|
-- In the following tests the expected result is accurate
|
200 |
|
|
-- to the machine precision so the minimum guaranteed error
|
201 |
|
|
-- bound can be used.
|
202 |
|
|
|
203 |
|
|
type Data_Point is
|
204 |
|
|
record
|
205 |
|
|
Degrees,
|
206 |
|
|
Radians,
|
207 |
|
|
Argument,
|
208 |
|
|
Error_Bound : Real;
|
209 |
|
|
end record;
|
210 |
|
|
|
211 |
|
|
type Test_Data_Type is array (Positive range <>) of Data_Point;
|
212 |
|
|
|
213 |
|
|
-- the values in the following tables only involve static
|
214 |
|
|
-- expressions so no loss of precision occurs. However,
|
215 |
|
|
-- rounding can be an issue with expressions involving Pi
|
216 |
|
|
-- and square roots. The error bound specified in the
|
217 |
|
|
-- table takes the sqrt error into account but not the
|
218 |
|
|
-- error due to Pi. The Pi error is added in in the
|
219 |
|
|
-- radians test below.
|
220 |
|
|
|
221 |
|
|
Arcsin_Test_Data : constant Test_Data_Type := (
|
222 |
|
|
-- degrees radians sine error_bound test #
|
223 |
|
|
--( 0.0, 0.0, 0.0, 0.0 ), -- 1 - In Exact_Result_Test.
|
224 |
|
|
( 30.0, Pi/6.0, 0.5, 4.0 ), -- 2
|
225 |
|
|
( 60.0, Pi/3.0, Sqrt3/2.0, 5.0 ), -- 3
|
226 |
|
|
--( 90.0, Pi/2.0, 1.0, 4.0 ), -- 4 - In Exact_Result_Test.
|
227 |
|
|
--(-90.0, -Pi/2.0, -1.0, 4.0 ), -- 5 - In Exact_Result_Test.
|
228 |
|
|
(-60.0, -Pi/3.0, -Sqrt3/2.0, 5.0 ), -- 6
|
229 |
|
|
(-30.0, -Pi/6.0, -0.5, 4.0 ), -- 7
|
230 |
|
|
( 45.0, Pi/4.0, Sqrt2/2.0, 5.0 ), -- 8
|
231 |
|
|
(-45.0, -Pi/4.0, -Sqrt2/2.0, 5.0 ) ); -- 9
|
232 |
|
|
|
233 |
|
|
Arccos_Test_Data : constant Test_Data_Type := (
|
234 |
|
|
-- degrees radians cosine error_bound test #
|
235 |
|
|
--( 0.0, 0.0, 1.0, 0.0 ), -- 1 - In Exact_Result_Test.
|
236 |
|
|
( 30.0, Pi/6.0, Sqrt3/2.0, 5.0 ), -- 2
|
237 |
|
|
( 60.0, Pi/3.0, 0.5, 4.0 ), -- 3
|
238 |
|
|
--( 90.0, Pi/2.0, 0.0, 4.0 ), -- 4 - In Exact_Result_Test.
|
239 |
|
|
(120.0, 2.0*Pi/3.0, -0.5, 4.0 ), -- 5
|
240 |
|
|
(150.0, 5.0*Pi/6.0, -Sqrt3/2.0, 5.0 ), -- 6
|
241 |
|
|
--(180.0, Pi, -1.0, 4.0 ), -- 7 - In Exact_Result_Test.
|
242 |
|
|
( 45.0, Pi/4.0, Sqrt2/2.0, 5.0 ), -- 8
|
243 |
|
|
(135.0, 3.0*Pi/4.0, -Sqrt2/2.0, 5.0 ) ); -- 9
|
244 |
|
|
|
245 |
|
|
Cycle_Error,
|
246 |
|
|
Radian_Error : Real;
|
247 |
|
|
begin
|
248 |
|
|
for I in Arcsin_Test_Data'Range loop
|
249 |
|
|
|
250 |
|
|
-- note exact result requirements A.5.1(38);6.0 and
|
251 |
|
|
-- G.2.4(12);6.0
|
252 |
|
|
if Arcsin_Test_Data (I).Error_Bound = 0.0 then
|
253 |
|
|
Cycle_Error := 0.0;
|
254 |
|
|
Radian_Error := 0.0;
|
255 |
|
|
else
|
256 |
|
|
Cycle_Error := Arcsin_Test_Data (I).Error_Bound;
|
257 |
|
|
-- allow for rounding error in the specification of Pi
|
258 |
|
|
Radian_Error := Cycle_Error + 1.0;
|
259 |
|
|
end if;
|
260 |
|
|
|
261 |
|
|
Check (Arcsin (Arcsin_Test_Data (I).Argument),
|
262 |
|
|
Arcsin_Test_Data (I).Radians,
|
263 |
|
|
"test" & Integer'Image (I) &
|
264 |
|
|
" arcsin(" &
|
265 |
|
|
Real'Image (Arcsin_Test_Data (I).Argument) &
|
266 |
|
|
")",
|
267 |
|
|
Radian_Error);
|
268 |
|
|
--pwb-math Check (Arcsin (Arcsin_Test_Data (I).Argument, 2.0 * Pi),
|
269 |
|
|
--pwb-math Arcsin_Test_Data (I).Radians,
|
270 |
|
|
--pwb-math "test" & Integer'Image (I) &
|
271 |
|
|
--pwb-math " arcsin(" &
|
272 |
|
|
--pwb-math Real'Image (Arcsin_Test_Data (I).Argument) &
|
273 |
|
|
--pwb-math ", 2pi)",
|
274 |
|
|
--pwb-math Cycle_Error);
|
275 |
|
|
Check (Arcsin (Arcsin_Test_Data (I).Argument, 360.0),
|
276 |
|
|
Arcsin_Test_Data (I).Degrees,
|
277 |
|
|
"test" & Integer'Image (I) &
|
278 |
|
|
" arcsin(" &
|
279 |
|
|
Real'Image (Arcsin_Test_Data (I).Argument) &
|
280 |
|
|
", 360)",
|
281 |
|
|
Cycle_Error);
|
282 |
|
|
end loop;
|
283 |
|
|
|
284 |
|
|
|
285 |
|
|
for I in Arccos_Test_Data'Range loop
|
286 |
|
|
|
287 |
|
|
-- note exact result requirements A.5.1(39);6.0 and
|
288 |
|
|
-- G.2.4(12);6.0
|
289 |
|
|
if Arccos_Test_Data (I).Error_Bound = 0.0 then
|
290 |
|
|
Cycle_Error := 0.0;
|
291 |
|
|
Radian_Error := 0.0;
|
292 |
|
|
else
|
293 |
|
|
Cycle_Error := Arccos_Test_Data (I).Error_Bound;
|
294 |
|
|
-- allow for rounding error in the specification of Pi
|
295 |
|
|
Radian_Error := Cycle_Error + 1.0;
|
296 |
|
|
end if;
|
297 |
|
|
|
298 |
|
|
Check (Arccos (Arccos_Test_Data (I).Argument),
|
299 |
|
|
Arccos_Test_Data (I).Radians,
|
300 |
|
|
"test" & Integer'Image (I) &
|
301 |
|
|
" arccos(" &
|
302 |
|
|
Real'Image (Arccos_Test_Data (I).Argument) &
|
303 |
|
|
")",
|
304 |
|
|
Radian_Error);
|
305 |
|
|
--pwb-math Check (Arccos (Arccos_Test_Data (I).Argument, 2.0 * Pi),
|
306 |
|
|
--pwb-math Arccos_Test_Data (I).Radians,
|
307 |
|
|
--pwb-math "test" & Integer'Image (I) &
|
308 |
|
|
--pwb-math " arccos(" &
|
309 |
|
|
--pwb-math Real'Image (Arccos_Test_Data (I).Argument) &
|
310 |
|
|
--pwb-math ", 2pi)",
|
311 |
|
|
--pwb-math Cycle_Error);
|
312 |
|
|
Check (Arccos (Arccos_Test_Data (I).Argument, 360.0),
|
313 |
|
|
Arccos_Test_Data (I).Degrees,
|
314 |
|
|
"test" & Integer'Image (I) &
|
315 |
|
|
" arccos(" &
|
316 |
|
|
Real'Image (Arccos_Test_Data (I).Argument) &
|
317 |
|
|
", 360)",
|
318 |
|
|
Cycle_Error);
|
319 |
|
|
end loop;
|
320 |
|
|
|
321 |
|
|
exception
|
322 |
|
|
when Constraint_Error =>
|
323 |
|
|
Report.Failed ("Constraint_Error raised in special value test");
|
324 |
|
|
when others =>
|
325 |
|
|
Report.Failed ("exception in special value test");
|
326 |
|
|
end Special_Value_Test;
|
327 |
|
|
|
328 |
|
|
|
329 |
|
|
procedure Check_Exact (Actual, Expected_Low, Expected_High : Real;
|
330 |
|
|
Test_Name : String) is
|
331 |
|
|
-- If the expected result is not a model number, then Expected_Low is
|
332 |
|
|
-- the first machine number less than the (exact) expected
|
333 |
|
|
-- result, and Expected_High is the first machine number greater than
|
334 |
|
|
-- the (exact) expected result. If the expected result is a model
|
335 |
|
|
-- number, Expected_Low = Expected_High = the result.
|
336 |
|
|
Model_Expected_Low : Real := Expected_Low;
|
337 |
|
|
Model_Expected_High : Real := Expected_High;
|
338 |
|
|
begin
|
339 |
|
|
-- Calculate the first model number nearest to, but below (or equal)
|
340 |
|
|
-- to the expected result:
|
341 |
|
|
while Real'Model (Model_Expected_Low) /= Model_Expected_Low loop
|
342 |
|
|
-- Try the next machine number lower:
|
343 |
|
|
Model_Expected_Low := Real'Adjacent(Model_Expected_Low, 0.0);
|
344 |
|
|
end loop;
|
345 |
|
|
-- Calculate the first model number nearest to, but above (or equal)
|
346 |
|
|
-- to the expected result:
|
347 |
|
|
while Real'Model (Model_Expected_High) /= Model_Expected_High loop
|
348 |
|
|
-- Try the next machine number higher:
|
349 |
|
|
Model_Expected_High := Real'Adjacent(Model_Expected_High, 100.0);
|
350 |
|
|
end loop;
|
351 |
|
|
|
352 |
|
|
if Actual < Model_Expected_Low or Actual > Model_Expected_High then
|
353 |
|
|
Accuracy_Error_Reported := True;
|
354 |
|
|
if Actual < Model_Expected_Low then
|
355 |
|
|
Report.Failed (Test_Name &
|
356 |
|
|
" actual: " & Real'Image (Actual) &
|
357 |
|
|
" expected low: " & Real'Image (Model_Expected_Low) &
|
358 |
|
|
" expected high: " & Real'Image (Model_Expected_High) &
|
359 |
|
|
" difference: " & Real'Image (Actual - Expected_Low));
|
360 |
|
|
else
|
361 |
|
|
Report.Failed (Test_Name &
|
362 |
|
|
" actual: " & Real'Image (Actual) &
|
363 |
|
|
" expected low: " & Real'Image (Model_Expected_Low) &
|
364 |
|
|
" expected high: " & Real'Image (Model_Expected_High) &
|
365 |
|
|
" difference: " & Real'Image (Expected_High - Actual));
|
366 |
|
|
end if;
|
367 |
|
|
elsif Verbose then
|
368 |
|
|
Report.Comment (Test_Name & " passed");
|
369 |
|
|
end if;
|
370 |
|
|
end Check_Exact;
|
371 |
|
|
|
372 |
|
|
|
373 |
|
|
procedure Exact_Result_Test is
|
374 |
|
|
begin
|
375 |
|
|
-- A.5.1(38)
|
376 |
|
|
Check_Exact (Arcsin (0.0), 0.0, 0.0, "arcsin(0)");
|
377 |
|
|
Check_Exact (Arcsin (0.0, 45.0), 0.0, 0.0, "arcsin(0,45)");
|
378 |
|
|
|
379 |
|
|
-- A.5.1(39)
|
380 |
|
|
Check_Exact (Arccos (1.0), 0.0, 0.0, "arccos(1)");
|
381 |
|
|
Check_Exact (Arccos (1.0, 75.0), 0.0, 0.0, "arccos(1,75)");
|
382 |
|
|
|
383 |
|
|
-- G.2.4(11-13)
|
384 |
|
|
Check_Exact (Arcsin (1.0), Half_PI_Low, Half_PI_High, "arcsin(1)");
|
385 |
|
|
Check_Exact (Arcsin (1.0, 360.0), 90.0, 90.0, "arcsin(1,360)");
|
386 |
|
|
|
387 |
|
|
Check_Exact (Arcsin (-1.0), -Half_PI_High, -Half_PI_Low, "arcsin(-1)");
|
388 |
|
|
Check_Exact (Arcsin (-1.0, 360.0), -90.0, -90.0, "arcsin(-1,360)");
|
389 |
|
|
|
390 |
|
|
Check_Exact (Arccos (0.0), Half_PI_Low, Half_PI_High, "arccos(0)");
|
391 |
|
|
Check_Exact (Arccos (0.0, 360.0), 90.0, 90.0, "arccos(0,360)");
|
392 |
|
|
|
393 |
|
|
Check_Exact (Arccos (-1.0), PI_Low, PI_High, "arccos(-1)");
|
394 |
|
|
Check_Exact (Arccos (-1.0, 360.0), 180.0, 180.0, "arccos(-1,360)");
|
395 |
|
|
|
396 |
|
|
exception
|
397 |
|
|
when Constraint_Error =>
|
398 |
|
|
Report.Failed ("Constraint_Error raised in Exact_Result Test");
|
399 |
|
|
when others =>
|
400 |
|
|
Report.Failed ("Exception in Exact_Result Test");
|
401 |
|
|
end Exact_Result_Test;
|
402 |
|
|
|
403 |
|
|
|
404 |
|
|
procedure Arcsin_Taylor_Series_Test is
|
405 |
|
|
-- the following range is chosen so that the Taylor series
|
406 |
|
|
-- used will produce a result accurate to machine precision.
|
407 |
|
|
--
|
408 |
|
|
-- The following formula is used for the Taylor series:
|
409 |
|
|
-- TS(x) = x { 1 + (xsq/2) [ (1/3) + (3/4)xsq { (1/5) +
|
410 |
|
|
-- (5/6)xsq [ (1/7) + (7/8)xsq/9 ] } ] }
|
411 |
|
|
-- where xsq = x * x
|
412 |
|
|
--
|
413 |
|
|
A : constant := -0.125;
|
414 |
|
|
B : constant := 0.125;
|
415 |
|
|
X : Real;
|
416 |
|
|
Y, Y_Sq : Real;
|
417 |
|
|
Actual, Sum, Xm : Real;
|
418 |
|
|
-- terms in Taylor series
|
419 |
|
|
K : constant Integer := Integer (
|
420 |
|
|
Log (
|
421 |
|
|
Real (Real'Machine_Radix) ** Real'Machine_Mantissa,
|
422 |
|
|
10.0)) + 1;
|
423 |
|
|
begin
|
424 |
|
|
Accuracy_Error_Reported := False; -- reset
|
425 |
|
|
for I in 1..Max_Samples loop
|
426 |
|
|
-- make sure there is no error in x-1, x, and x+1
|
427 |
|
|
X := (B - A) * Real (I) / Real (Max_Samples) + A;
|
428 |
|
|
|
429 |
|
|
Y := X;
|
430 |
|
|
Y_Sq := Y * Y;
|
431 |
|
|
Sum := 0.0;
|
432 |
|
|
Xm := Real (K + K + 1);
|
433 |
|
|
for M in 1 .. K loop
|
434 |
|
|
Sum := Y_Sq * (Sum + 1.0/Xm);
|
435 |
|
|
Xm := Xm - 2.0;
|
436 |
|
|
Sum := Sum * (Xm /(Xm + 1.0));
|
437 |
|
|
end loop;
|
438 |
|
|
Sum := Sum * Y;
|
439 |
|
|
Actual := Y + Sum;
|
440 |
|
|
Sum := (Y - Actual) + Sum;
|
441 |
|
|
if not Real'Machine_Rounds then
|
442 |
|
|
Actual := Actual + (Sum + Sum);
|
443 |
|
|
end if;
|
444 |
|
|
|
445 |
|
|
Check (Actual, Arcsin (X),
|
446 |
|
|
"Taylor Series test" & Integer'Image (I) & ": arcsin(" &
|
447 |
|
|
Real'Image (X) & ") ",
|
448 |
|
|
Minimum_Error);
|
449 |
|
|
|
450 |
|
|
if Accuracy_Error_Reported then
|
451 |
|
|
-- only report the first error in this test in order to keep
|
452 |
|
|
-- lots of failures from producing a huge error log
|
453 |
|
|
return;
|
454 |
|
|
end if;
|
455 |
|
|
|
456 |
|
|
end loop;
|
457 |
|
|
|
458 |
|
|
exception
|
459 |
|
|
when Constraint_Error =>
|
460 |
|
|
Report.Failed
|
461 |
|
|
("Constraint_Error raised in Arcsin_Taylor_Series_Test" &
|
462 |
|
|
" for X=" & Real'Image (X));
|
463 |
|
|
when others =>
|
464 |
|
|
Report.Failed ("exception in Arcsin_Taylor_Series_Test" &
|
465 |
|
|
" for X=" & Real'Image (X));
|
466 |
|
|
end Arcsin_Taylor_Series_Test;
|
467 |
|
|
|
468 |
|
|
|
469 |
|
|
|
470 |
|
|
procedure Arccos_Taylor_Series_Test is
|
471 |
|
|
-- the following range is chosen so that the Taylor series
|
472 |
|
|
-- used will produce a result accurate to machine precision.
|
473 |
|
|
--
|
474 |
|
|
-- The following formula is used for the Taylor series:
|
475 |
|
|
-- TS(x) = x { 1 + (xsq/2) [ (1/3) + (3/4)xsq { (1/5) +
|
476 |
|
|
-- (5/6)xsq [ (1/7) + (7/8)xsq/9 ] } ] }
|
477 |
|
|
-- arccos(x) = pi/2 - TS(x)
|
478 |
|
|
A : constant := -0.125;
|
479 |
|
|
B : constant := 0.125;
|
480 |
|
|
C1, C2 : Real;
|
481 |
|
|
X : Real;
|
482 |
|
|
Y, Y_Sq : Real;
|
483 |
|
|
Actual, Sum, Xm, S : Real;
|
484 |
|
|
-- terms in Taylor series
|
485 |
|
|
K : constant Integer := Integer (
|
486 |
|
|
Log (
|
487 |
|
|
Real (Real'Machine_Radix) ** Real'Machine_Mantissa,
|
488 |
|
|
10.0)) + 1;
|
489 |
|
|
begin
|
490 |
|
|
if Real'Digits > 23 then
|
491 |
|
|
-- constants in this section only accurate to 23 digits
|
492 |
|
|
Error_Low_Bound := 0.00000_00000_00000_00000_001;
|
493 |
|
|
Report.Comment ("arctan accuracy checked to 23 digits");
|
494 |
|
|
end if;
|
495 |
|
|
|
496 |
|
|
-- C1 + C2 equals Pi/2 accurate to 23 digits
|
497 |
|
|
if Real'Machine_Radix = 10 then
|
498 |
|
|
C1 := 1.57;
|
499 |
|
|
C2 := 7.9632679489661923132E-4;
|
500 |
|
|
else
|
501 |
|
|
C1 := 201.0 / 128.0;
|
502 |
|
|
C2 := 4.8382679489661923132E-4;
|
503 |
|
|
end if;
|
504 |
|
|
|
505 |
|
|
Accuracy_Error_Reported := False; -- reset
|
506 |
|
|
for I in 1..Max_Samples loop
|
507 |
|
|
-- make sure there is no error in x-1, x, and x+1
|
508 |
|
|
X := (B - A) * Real (I) / Real (Max_Samples) + A;
|
509 |
|
|
|
510 |
|
|
Y := X;
|
511 |
|
|
Y_Sq := Y * Y;
|
512 |
|
|
Sum := 0.0;
|
513 |
|
|
Xm := Real (K + K + 1);
|
514 |
|
|
for M in 1 .. K loop
|
515 |
|
|
Sum := Y_Sq * (Sum + 1.0/Xm);
|
516 |
|
|
Xm := Xm - 2.0;
|
517 |
|
|
Sum := Sum * (Xm /(Xm + 1.0));
|
518 |
|
|
end loop;
|
519 |
|
|
Sum := Sum * Y;
|
520 |
|
|
|
521 |
|
|
-- at this point we have arcsin(x).
|
522 |
|
|
-- We compute arccos(x) = pi/2 - arcsin(x).
|
523 |
|
|
-- The following code segment is translated directly from
|
524 |
|
|
-- the CELEFUNT FORTRAN implementation
|
525 |
|
|
|
526 |
|
|
S := C1 + C2;
|
527 |
|
|
Sum := ((C1 - S) + C2) - Sum;
|
528 |
|
|
Actual := S + Sum;
|
529 |
|
|
Sum := ((S - Actual) + Sum) - Y;
|
530 |
|
|
S := Actual;
|
531 |
|
|
Actual := S + Sum;
|
532 |
|
|
Sum := (S - Actual) + Sum;
|
533 |
|
|
|
534 |
|
|
if not Real'Machine_Rounds then
|
535 |
|
|
Actual := Actual + (Sum + Sum);
|
536 |
|
|
end if;
|
537 |
|
|
|
538 |
|
|
Check (Actual, Arccos (X),
|
539 |
|
|
"Taylor Series test" & Integer'Image (I) & ": arccos(" &
|
540 |
|
|
Real'Image (X) & ") ",
|
541 |
|
|
Minimum_Error);
|
542 |
|
|
|
543 |
|
|
-- only report the first error in this test in order to keep
|
544 |
|
|
-- lots of failures from producing a huge error log
|
545 |
|
|
exit when Accuracy_Error_Reported;
|
546 |
|
|
end loop;
|
547 |
|
|
Error_Low_Bound := 0.0; -- reset
|
548 |
|
|
exception
|
549 |
|
|
when Constraint_Error =>
|
550 |
|
|
Report.Failed
|
551 |
|
|
("Constraint_Error raised in Arccos_Taylor_Series_Test" &
|
552 |
|
|
" for X=" & Real'Image (X));
|
553 |
|
|
when others =>
|
554 |
|
|
Report.Failed ("exception in Arccos_Taylor_Series_Test" &
|
555 |
|
|
" for X=" & Real'Image (X));
|
556 |
|
|
end Arccos_Taylor_Series_Test;
|
557 |
|
|
|
558 |
|
|
|
559 |
|
|
|
560 |
|
|
procedure Identity_Test is
|
561 |
|
|
-- test the identity arcsin(-x) = -arcsin(x)
|
562 |
|
|
-- range chosen to be most of the valid range of the argument.
|
563 |
|
|
A : constant := -0.999;
|
564 |
|
|
B : constant := 0.999;
|
565 |
|
|
X : Real;
|
566 |
|
|
begin
|
567 |
|
|
Accuracy_Error_Reported := False; -- reset
|
568 |
|
|
for I in 1..Max_Samples loop
|
569 |
|
|
-- make sure there is no error in x-1, x, and x+1
|
570 |
|
|
X := (B - A) * Real (I) / Real (Max_Samples) + A;
|
571 |
|
|
|
572 |
|
|
Check (Arcsin(-X), -Arcsin (X),
|
573 |
|
|
"Identity test" & Integer'Image (I) & ": arcsin(" &
|
574 |
|
|
Real'Image (X) & ") ",
|
575 |
|
|
8.0); -- 2 arcsin evaluations => twice the error bound
|
576 |
|
|
|
577 |
|
|
if Accuracy_Error_Reported then
|
578 |
|
|
-- only report the first error in this test in order to keep
|
579 |
|
|
-- lots of failures from producing a huge error log
|
580 |
|
|
return;
|
581 |
|
|
end if;
|
582 |
|
|
end loop;
|
583 |
|
|
end Identity_Test;
|
584 |
|
|
|
585 |
|
|
|
586 |
|
|
procedure Exception_Test is
|
587 |
|
|
X1, X2 : Real := 0.0;
|
588 |
|
|
begin
|
589 |
|
|
begin
|
590 |
|
|
X1 := Arcsin (1.1);
|
591 |
|
|
Report.Failed ("no exception for Arcsin (1.1)");
|
592 |
|
|
exception
|
593 |
|
|
when Constraint_Error =>
|
594 |
|
|
Report.Failed ("Constraint_Error instead of " &
|
595 |
|
|
"Argument_Error for Arcsin (1.1)");
|
596 |
|
|
when Ada.Numerics.Argument_Error =>
|
597 |
|
|
null; -- expected result
|
598 |
|
|
when others =>
|
599 |
|
|
Report.Failed ("wrong exception for Arcsin(1.1)");
|
600 |
|
|
end;
|
601 |
|
|
|
602 |
|
|
begin
|
603 |
|
|
X2 := Arccos (-1.1);
|
604 |
|
|
Report.Failed ("no exception for Arccos (-1.1)");
|
605 |
|
|
exception
|
606 |
|
|
when Constraint_Error =>
|
607 |
|
|
Report.Failed ("Constraint_Error instead of " &
|
608 |
|
|
"Argument_Error for Arccos (-1.1)");
|
609 |
|
|
when Ada.Numerics.Argument_Error =>
|
610 |
|
|
null; -- expected result
|
611 |
|
|
when others =>
|
612 |
|
|
Report.Failed ("wrong exception for Arccos(-1.1)");
|
613 |
|
|
end;
|
614 |
|
|
|
615 |
|
|
|
616 |
|
|
-- optimizer thwarting
|
617 |
|
|
if Report.Ident_Bool (False) then
|
618 |
|
|
Report.Comment (Real'Image (X1 + X2));
|
619 |
|
|
end if;
|
620 |
|
|
end Exception_Test;
|
621 |
|
|
|
622 |
|
|
|
623 |
|
|
procedure Do_Test is
|
624 |
|
|
begin
|
625 |
|
|
Special_Value_Test;
|
626 |
|
|
Exact_Result_Test;
|
627 |
|
|
Arcsin_Taylor_Series_Test;
|
628 |
|
|
Arccos_Taylor_Series_Test;
|
629 |
|
|
Identity_Test;
|
630 |
|
|
Exception_Test;
|
631 |
|
|
end Do_Test;
|
632 |
|
|
end Generic_Check;
|
633 |
|
|
|
634 |
|
|
-----------------------------------------------------------------------
|
635 |
|
|
-----------------------------------------------------------------------
|
636 |
|
|
-- These expressions must be truly static, which is why we have to do them
|
637 |
|
|
-- outside of the generic, and we use the named numbers. Note that we know
|
638 |
|
|
-- that PI is not a machine number (it is irrational), and it should be
|
639 |
|
|
-- represented to more digits than supported by the target machine.
|
640 |
|
|
Float_Half_PI_Low : constant := Float'Adjacent(PI/2.0, 0.0);
|
641 |
|
|
Float_Half_PI_High : constant := Float'Adjacent(PI/2.0, 10.0);
|
642 |
|
|
Float_PI_Low : constant := Float'Adjacent(PI, 0.0);
|
643 |
|
|
Float_PI_High : constant := Float'Adjacent(PI, 10.0);
|
644 |
|
|
package Float_Check is new Generic_Check (Float,
|
645 |
|
|
Half_PI_Low => Float_Half_PI_Low,
|
646 |
|
|
Half_PI_High => Float_Half_PI_High,
|
647 |
|
|
PI_Low => Float_PI_Low,
|
648 |
|
|
PI_High => Float_PI_High);
|
649 |
|
|
|
650 |
|
|
-- check the floating point type with the most digits
|
651 |
|
|
type A_Long_Float is digits System.Max_Digits;
|
652 |
|
|
A_Long_Float_Half_PI_Low : constant := A_Long_Float'Adjacent(PI/2.0, 0.0);
|
653 |
|
|
A_Long_Float_Half_PI_High : constant := A_Long_Float'Adjacent(PI/2.0, 10.0);
|
654 |
|
|
A_Long_Float_PI_Low : constant := A_Long_Float'Adjacent(PI, 0.0);
|
655 |
|
|
A_Long_Float_PI_High : constant := A_Long_Float'Adjacent(PI, 10.0);
|
656 |
|
|
package A_Long_Float_Check is new Generic_Check (A_Long_Float,
|
657 |
|
|
Half_PI_Low => A_Long_Float_Half_PI_Low,
|
658 |
|
|
Half_PI_High => A_Long_Float_Half_PI_High,
|
659 |
|
|
PI_Low => A_Long_Float_PI_Low,
|
660 |
|
|
PI_High => A_Long_Float_PI_High);
|
661 |
|
|
|
662 |
|
|
-----------------------------------------------------------------------
|
663 |
|
|
-----------------------------------------------------------------------
|
664 |
|
|
|
665 |
|
|
|
666 |
|
|
begin
|
667 |
|
|
Report.Test ("CXG2015",
|
668 |
|
|
"Check the accuracy of the ARCSIN and ARCCOS functions");
|
669 |
|
|
|
670 |
|
|
if Verbose then
|
671 |
|
|
Report.Comment ("checking Standard.Float");
|
672 |
|
|
end if;
|
673 |
|
|
|
674 |
|
|
Float_Check.Do_Test;
|
675 |
|
|
|
676 |
|
|
if Verbose then
|
677 |
|
|
Report.Comment ("checking a digits" &
|
678 |
|
|
Integer'Image (System.Max_Digits) &
|
679 |
|
|
" floating point type");
|
680 |
|
|
end if;
|
681 |
|
|
|
682 |
|
|
A_Long_Float_Check.Do_Test;
|
683 |
|
|
|
684 |
|
|
|
685 |
|
|
Report.Result;
|
686 |
|
|
end CXG2015;
|