OpenCores
URL https://opencores.org/ocsvn/openrisc/openrisc/trunk

Subversion Repositories openrisc

[/] [openrisc/] [trunk/] [gnu-old/] [gcc-4.2.2/] [gcc/] [tree-ssa-address.c] - Blame information for rev 858

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 38 julius
/* Memory address lowering and addressing mode selection.
2
   Copyright (C) 2004, 2007 Free Software Foundation, Inc.
3
 
4
This file is part of GCC.
5
 
6
GCC is free software; you can redistribute it and/or modify it
7
under the terms of the GNU General Public License as published by the
8
Free Software Foundation; either version 3, or (at your option) any
9
later version.
10
 
11
GCC is distributed in the hope that it will be useful, but WITHOUT
12
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14
for more details.
15
 
16
You should have received a copy of the GNU General Public License
17
along with GCC; see the file COPYING3.  If not see
18
<http://www.gnu.org/licenses/>.  */
19
 
20
/* Utility functions for manipulation with TARGET_MEM_REFs -- tree expressions
21
   that directly map to addressing modes of the target.  */
22
 
23
#include "config.h"
24
#include "system.h"
25
#include "coretypes.h"
26
#include "tm.h"
27
#include "tree.h"
28
#include "rtl.h"
29
#include "tm_p.h"
30
#include "hard-reg-set.h"
31
#include "basic-block.h"
32
#include "output.h"
33
#include "diagnostic.h"
34
#include "tree-flow.h"
35
#include "tree-dump.h"
36
#include "tree-pass.h"
37
#include "timevar.h"
38
#include "flags.h"
39
#include "tree-inline.h"
40
#include "insn-config.h"
41
#include "recog.h"
42
#include "expr.h"
43
#include "ggc.h"
44
 
45
/* TODO -- handling of symbols (according to Richard Hendersons
46
   comments, http://gcc.gnu.org/ml/gcc-patches/2005-04/msg00949.html):
47
 
48
   There are at least 5 different kinds of symbols that we can run up against:
49
 
50
     (1) binds_local_p, small data area.
51
     (2) binds_local_p, eg local statics
52
     (3) !binds_local_p, eg global variables
53
     (4) thread local, local_exec
54
     (5) thread local, !local_exec
55
 
56
   Now, (1) won't appear often in an array context, but it certainly can.
57
   All you have to do is set -GN high enough, or explicitly mark any
58
   random object __attribute__((section (".sdata"))).
59
 
60
   All of these affect whether or not a symbol is in fact a valid address.
61
   The only one tested here is (3).  And that result may very well
62
   be incorrect for (4) or (5).
63
 
64
   An incorrect result here does not cause incorrect results out the
65
   back end, because the expander in expr.c validizes the address.  However
66
   it would be nice to improve the handling here in order to produce more
67
   precise results.  */
68
 
69
/* A "template" for memory address, used to determine whether the address is
70
   valid for mode.  */
71
 
72
struct mem_addr_template GTY (())
73
{
74
  rtx ref;                      /* The template.  */
75
  rtx * GTY ((skip)) step_p;    /* The point in template where the step should be
76
                                   filled in.  */
77
  rtx * GTY ((skip)) off_p;     /* The point in template where the offset should
78
                                   be filled in.  */
79
};
80
 
81
/* The templates.  Each of the five bits of the index corresponds to one
82
   component of TARGET_MEM_REF being present, see TEMPL_IDX.  */
83
 
84
static GTY (()) struct mem_addr_template templates[32];
85
 
86
#define TEMPL_IDX(SYMBOL, BASE, INDEX, STEP, OFFSET) \
87
  (((SYMBOL != 0) << 4) \
88
   | ((BASE != 0) << 3) \
89
   | ((INDEX != 0) << 2) \
90
   | ((STEP != 0) << 1) \
91
   | (OFFSET != 0))
92
 
93
/* Stores address for memory reference with parameters SYMBOL, BASE, INDEX,
94
   STEP and OFFSET to *ADDR.  Stores pointers to where step is placed to
95
   *STEP_P and offset to *OFFSET_P.  */
96
 
97
static void
98
gen_addr_rtx (rtx symbol, rtx base, rtx index, rtx step, rtx offset,
99
              rtx *addr, rtx **step_p, rtx **offset_p)
100
{
101
  rtx act_elem;
102
 
103
  *addr = NULL_RTX;
104
  if (step_p)
105
    *step_p = NULL;
106
  if (offset_p)
107
    *offset_p = NULL;
108
 
109
  if (index)
110
    {
111
      act_elem = index;
112
      if (step)
113
        {
114
          act_elem = gen_rtx_MULT (Pmode, act_elem, step);
115
 
116
          if (step_p)
117
            *step_p = &XEXP (act_elem, 1);
118
        }
119
 
120
      *addr = act_elem;
121
    }
122
 
123
  if (base)
124
    {
125
      if (*addr)
126
        *addr = gen_rtx_PLUS (Pmode, *addr, base);
127
      else
128
        *addr = base;
129
    }
130
 
131
  if (symbol)
132
    {
133
      act_elem = symbol;
134
      if (offset)
135
        {
136
          act_elem = gen_rtx_CONST (Pmode,
137
                                    gen_rtx_PLUS (Pmode, act_elem, offset));
138
          if (offset_p)
139
            *offset_p = &XEXP (XEXP (act_elem, 0), 1);
140
        }
141
 
142
      if (*addr)
143
        *addr = gen_rtx_PLUS (Pmode, *addr, act_elem);
144
      else
145
        *addr = act_elem;
146
    }
147
  else if (offset)
148
    {
149
      if (*addr)
150
        {
151
          *addr = gen_rtx_PLUS (Pmode, *addr, offset);
152
          if (offset_p)
153
            *offset_p = &XEXP (*addr, 1);
154
        }
155
      else
156
        {
157
          *addr = offset;
158
          if (offset_p)
159
            *offset_p = addr;
160
        }
161
    }
162
 
163
  if (!*addr)
164
    *addr = const0_rtx;
165
}
166
 
167
/* Returns address for TARGET_MEM_REF with parameters given by ADDR.
168
   If REALLY_EXPAND is false, just make fake registers instead
169
   of really expanding the operands, and perform the expansion in-place
170
   by using one of the "templates".  */
171
 
172
rtx
173
addr_for_mem_ref (struct mem_address *addr, bool really_expand)
174
{
175
  rtx address, sym, bse, idx, st, off;
176
  static bool templates_initialized = false;
177
  struct mem_addr_template *templ;
178
 
179
  if (addr->step && !integer_onep (addr->step))
180
    st = immed_double_const (TREE_INT_CST_LOW (addr->step),
181
                             TREE_INT_CST_HIGH (addr->step), Pmode);
182
  else
183
    st = NULL_RTX;
184
 
185
  if (addr->offset && !integer_zerop (addr->offset))
186
    off = immed_double_const (TREE_INT_CST_LOW (addr->offset),
187
                              TREE_INT_CST_HIGH (addr->offset), Pmode);
188
  else
189
    off = NULL_RTX;
190
 
191
  if (!really_expand)
192
    {
193
      /* Reuse the templates for addresses, so that we do not waste memory.  */
194
      if (!templates_initialized)
195
        {
196
          unsigned i;
197
 
198
          templates_initialized = true;
199
          sym = gen_rtx_SYMBOL_REF (Pmode, ggc_strdup ("test_symbol"));
200
          bse = gen_raw_REG (Pmode, LAST_VIRTUAL_REGISTER + 1);
201
          idx = gen_raw_REG (Pmode, LAST_VIRTUAL_REGISTER + 2);
202
 
203
          for (i = 0; i < 32; i++)
204
            gen_addr_rtx ((i & 16 ? sym : NULL_RTX),
205
                          (i & 8 ? bse : NULL_RTX),
206
                          (i & 4 ? idx : NULL_RTX),
207
                          (i & 2 ? const0_rtx : NULL_RTX),
208
                          (i & 1 ? const0_rtx : NULL_RTX),
209
                          &templates[i].ref,
210
                          &templates[i].step_p,
211
                          &templates[i].off_p);
212
        }
213
 
214
      templ = templates + TEMPL_IDX (addr->symbol, addr->base, addr->index,
215
                                     st, off);
216
      if (st)
217
        *templ->step_p = st;
218
      if (off)
219
        *templ->off_p = off;
220
 
221
      return templ->ref;
222
    }
223
 
224
  /* Otherwise really expand the expressions.  */
225
  sym = (addr->symbol
226
         ? expand_expr (build_addr (addr->symbol, current_function_decl),
227
                        NULL_RTX, Pmode, EXPAND_NORMAL)
228
         : NULL_RTX);
229
  bse = (addr->base
230
         ? expand_expr (addr->base, NULL_RTX, Pmode, EXPAND_NORMAL)
231
         : NULL_RTX);
232
  idx = (addr->index
233
         ? expand_expr (addr->index, NULL_RTX, Pmode, EXPAND_NORMAL)
234
         : NULL_RTX);
235
 
236
  gen_addr_rtx (sym, bse, idx, st, off, &address, NULL, NULL);
237
  return address;
238
}
239
 
240
/* Returns address of MEM_REF in TYPE.  */
241
 
242
tree
243
tree_mem_ref_addr (tree type, tree mem_ref)
244
{
245
  tree addr;
246
  tree act_elem;
247
  tree step = TMR_STEP (mem_ref), offset = TMR_OFFSET (mem_ref);
248
  tree sym = TMR_SYMBOL (mem_ref), base = TMR_BASE (mem_ref);
249
  tree addr_base = NULL_TREE, addr_off = NULL_TREE;
250
 
251
  if (sym)
252
    addr_base = fold_convert (type, build_addr (sym, current_function_decl));
253
  else if (base && POINTER_TYPE_P (TREE_TYPE (base)))
254
    {
255
      addr_base = fold_convert (type, base);
256
      base = NULL_TREE;
257
    }
258
 
259
  act_elem = TMR_INDEX (mem_ref);
260
  if (act_elem)
261
    {
262
      if (step)
263
        act_elem = fold_build2 (MULT_EXPR, sizetype, act_elem, step);
264
      addr_off = act_elem;
265
    }
266
 
267
  act_elem = base;
268
  if (act_elem)
269
    {
270
      if (addr_off)
271
        addr_off = fold_build2 (PLUS_EXPR, sizetype, addr_off, act_elem);
272
      else
273
        addr_off = act_elem;
274
    }
275
 
276
  if (!zero_p (offset))
277
    {
278
      if (addr_off)
279
        addr_off = fold_build2 (PLUS_EXPR, sizetype, addr_off, offset);
280
      else
281
        addr_off = offset;
282
    }
283
 
284
  if (addr_off)
285
    {
286
      addr = fold_convert (type, addr_off);
287
      if (addr_base)
288
        addr = fold_build2 (PLUS_EXPR, type, addr_base, addr);
289
    }
290
  else if (addr_base)
291
    addr = addr_base;
292
  else
293
    addr = build_int_cst (type, 0);
294
 
295
  return addr;
296
}
297
 
298
/* Returns true if a memory reference in MODE and with parameters given by
299
   ADDR is valid on the current target.  */
300
 
301
static bool
302
valid_mem_ref_p (enum machine_mode mode, struct mem_address *addr)
303
{
304
  rtx address;
305
 
306
  address = addr_for_mem_ref (addr, false);
307
  if (!address)
308
    return false;
309
 
310
  return memory_address_p (mode, address);
311
}
312
 
313
/* Checks whether a TARGET_MEM_REF with type TYPE and parameters given by ADDR
314
   is valid on the current target and if so, creates and returns the
315
   TARGET_MEM_REF.  */
316
 
317
static tree
318
create_mem_ref_raw (tree type, struct mem_address *addr)
319
{
320
  if (!valid_mem_ref_p (TYPE_MODE (type), addr))
321
    return NULL_TREE;
322
 
323
  if (addr->step && integer_onep (addr->step))
324
    addr->step = NULL_TREE;
325
 
326
  if (addr->offset && zero_p (addr->offset))
327
    addr->offset = NULL_TREE;
328
 
329
  return build7 (TARGET_MEM_REF, type,
330
                 addr->symbol, addr->base, addr->index,
331
                 addr->step, addr->offset, NULL, NULL);
332
}
333
 
334
/* Returns true if OBJ is an object whose address is a link time constant.  */
335
 
336
static bool
337
fixed_address_object_p (tree obj)
338
{
339
  return (TREE_CODE (obj) == VAR_DECL
340
          && (TREE_STATIC (obj)
341
              || DECL_EXTERNAL (obj)));
342
}
343
 
344
/* Remove M-th element from COMB.  */
345
 
346
static void
347
aff_combination_remove_elt (struct affine_tree_combination *comb, unsigned m)
348
{
349
  comb->n--;
350
  if (m <= comb->n)
351
    {
352
      comb->coefs[m] = comb->coefs[comb->n];
353
      comb->elts[m] = comb->elts[comb->n];
354
    }
355
  if (comb->rest)
356
    {
357
      comb->coefs[comb->n] = 1;
358
      comb->elts[comb->n] = comb->rest;
359
      comb->rest = NULL_TREE;
360
      comb->n++;
361
    }
362
}
363
 
364
/* If ADDR contains an address of object that is a link time constant,
365
   move it to PARTS->symbol.  */
366
 
367
static void
368
move_fixed_address_to_symbol (struct mem_address *parts,
369
                              struct affine_tree_combination *addr)
370
{
371
  unsigned i;
372
  tree val = NULL_TREE;
373
 
374
  for (i = 0; i < addr->n; i++)
375
    {
376
      if (addr->coefs[i] != 1)
377
        continue;
378
 
379
      val = addr->elts[i];
380
      if (TREE_CODE (val) == ADDR_EXPR
381
          && fixed_address_object_p (TREE_OPERAND (val, 0)))
382
        break;
383
    }
384
 
385
  if (i == addr->n)
386
    return;
387
 
388
  parts->symbol = TREE_OPERAND (val, 0);
389
  aff_combination_remove_elt (addr, i);
390
}
391
 
392
/* If ADDR contains an address of a dereferenced pointer, move it to
393
   PARTS->base.  */
394
 
395
static void
396
move_pointer_to_base (struct mem_address *parts,
397
                      struct affine_tree_combination *addr)
398
{
399
  unsigned i;
400
  tree val = NULL_TREE;
401
 
402
  for (i = 0; i < addr->n; i++)
403
    {
404
      if (addr->coefs[i] != 1)
405
        continue;
406
 
407
      val = addr->elts[i];
408
      if (POINTER_TYPE_P (TREE_TYPE (val)))
409
        break;
410
    }
411
 
412
  if (i == addr->n)
413
    return;
414
 
415
  parts->base = val;
416
  aff_combination_remove_elt (addr, i);
417
}
418
 
419
/* Adds ELT to PARTS.  */
420
 
421
static void
422
add_to_parts (struct mem_address *parts, tree elt)
423
{
424
  tree type;
425
 
426
  if (!parts->index)
427
    {
428
      parts->index = elt;
429
      return;
430
    }
431
 
432
  if (!parts->base)
433
    {
434
      parts->base = elt;
435
      return;
436
    }
437
 
438
  /* Add ELT to base.  */
439
  type = TREE_TYPE (parts->base);
440
  parts->base = fold_build2 (PLUS_EXPR, type,
441
                             parts->base,
442
                             fold_convert (type, elt));
443
}
444
 
445
/* Finds the most expensive multiplication in ADDR that can be
446
   expressed in an addressing mode and move the corresponding
447
   element(s) to PARTS.  */
448
 
449
static void
450
most_expensive_mult_to_index (struct mem_address *parts,
451
                              struct affine_tree_combination *addr)
452
{
453
  unsigned HOST_WIDE_INT best_mult = 0;
454
  unsigned best_mult_cost = 0, acost;
455
  tree mult_elt = NULL_TREE, elt;
456
  unsigned i, j;
457
 
458
  for (i = 0; i < addr->n; i++)
459
    {
460
      if (addr->coefs[i] == 1
461
          || !multiplier_allowed_in_address_p (addr->coefs[i]))
462
        continue;
463
 
464
      acost = multiply_by_cost (addr->coefs[i], Pmode);
465
 
466
      if (acost > best_mult_cost)
467
        {
468
          best_mult_cost = acost;
469
          best_mult = addr->coefs[i];
470
        }
471
    }
472
 
473
  if (!best_mult)
474
    return;
475
 
476
  for (i = j = 0; i < addr->n; i++)
477
    {
478
      if (addr->coefs[i] != best_mult)
479
        {
480
          addr->coefs[j] = addr->coefs[i];
481
          addr->elts[j] = addr->elts[i];
482
          j++;
483
          continue;
484
        }
485
 
486
      elt = fold_convert (sizetype, addr->elts[i]);
487
      if (!mult_elt)
488
        mult_elt = elt;
489
      else
490
        mult_elt = fold_build2 (PLUS_EXPR, sizetype, mult_elt, elt);
491
    }
492
  addr->n = j;
493
 
494
  parts->index = mult_elt;
495
  parts->step = build_int_cst_type (sizetype, best_mult);
496
}
497
 
498
/* Splits address ADDR into PARTS.
499
 
500
   TODO -- be more clever about the distribution of the elements of ADDR
501
   to PARTS.  Some architectures do not support anything but single
502
   register in address, possibly with a small integer offset; while
503
   create_mem_ref will simplify the address to an acceptable shape
504
   later, it would be a small bit more efficient to know that asking
505
   for complicated addressing modes is useless.  */
506
 
507
static void
508
addr_to_parts (struct affine_tree_combination *addr, struct mem_address *parts)
509
{
510
  unsigned i;
511
  tree part;
512
 
513
  parts->symbol = NULL_TREE;
514
  parts->base = NULL_TREE;
515
  parts->index = NULL_TREE;
516
  parts->step = NULL_TREE;
517
 
518
  if (addr->offset)
519
    parts->offset = build_int_cst_type (sizetype, addr->offset);
520
  else
521
    parts->offset = NULL_TREE;
522
 
523
  /* Try to find a symbol.  */
524
  move_fixed_address_to_symbol (parts, addr);
525
 
526
  /* First move the most expensive feasible multiplication
527
     to index.  */
528
  most_expensive_mult_to_index (parts, addr);
529
 
530
  /* Try to find a base of the reference.  Since at the moment
531
     there is no reliable way how to distinguish between pointer and its
532
     offset, this is just a guess.  */
533
  if (!parts->symbol)
534
    move_pointer_to_base (parts, addr);
535
 
536
  /* Then try to process the remaining elements.  */
537
  for (i = 0; i < addr->n; i++)
538
    {
539
      part = fold_convert (sizetype, addr->elts[i]);
540
      if (addr->coefs[i] != 1)
541
        part = fold_build2 (MULT_EXPR, sizetype, part,
542
                            build_int_cst_type (sizetype, addr->coefs[i]));
543
      add_to_parts (parts, part);
544
    }
545
  if (addr->rest)
546
    add_to_parts (parts, fold_convert (sizetype, addr->rest));
547
}
548
 
549
/* Force the PARTS to register.  */
550
 
551
static void
552
gimplify_mem_ref_parts (block_stmt_iterator *bsi, struct mem_address *parts)
553
{
554
  if (parts->base)
555
    parts->base = force_gimple_operand_bsi (bsi, parts->base,
556
                                            true, NULL_TREE);
557
  if (parts->index)
558
    parts->index = force_gimple_operand_bsi (bsi, parts->index,
559
                                             true, NULL_TREE);
560
}
561
 
562
/* Creates and returns a TARGET_MEM_REF for address ADDR.  If necessary
563
   computations are emitted in front of BSI.  TYPE is the mode
564
   of created memory reference.  */
565
 
566
tree
567
create_mem_ref (block_stmt_iterator *bsi, tree type,
568
                struct affine_tree_combination *addr)
569
{
570
  tree mem_ref, tmp;
571
  tree addr_type = build_pointer_type (type), atype;
572
  struct mem_address parts;
573
 
574
  addr_to_parts (addr, &parts);
575
  gimplify_mem_ref_parts (bsi, &parts);
576
  mem_ref = create_mem_ref_raw (type, &parts);
577
  if (mem_ref)
578
    return mem_ref;
579
 
580
  /* The expression is too complicated.  Try making it simpler.  */
581
 
582
  if (parts.step && !integer_onep (parts.step))
583
    {
584
      /* Move the multiplication to index.  */
585
      gcc_assert (parts.index);
586
      parts.index = force_gimple_operand_bsi (bsi,
587
                                fold_build2 (MULT_EXPR, sizetype,
588
                                             parts.index, parts.step),
589
                                true, NULL_TREE);
590
      parts.step = NULL_TREE;
591
 
592
      mem_ref = create_mem_ref_raw (type, &parts);
593
      if (mem_ref)
594
        return mem_ref;
595
    }
596
 
597
  if (parts.symbol)
598
    {
599
      tmp = fold_convert (addr_type,
600
                          build_addr (parts.symbol, current_function_decl));
601
 
602
      /* Add the symbol to base, eventually forcing it to register.  */
603
      if (parts.base)
604
        {
605
          if (parts.index)
606
            parts.base = force_gimple_operand_bsi (bsi,
607
                        fold_build2 (PLUS_EXPR, addr_type,
608
                                     fold_convert (addr_type, parts.base),
609
                                     tmp),
610
                        true, NULL_TREE);
611
          else
612
            {
613
              parts.index = parts.base;
614
              parts.base = tmp;
615
            }
616
        }
617
      else
618
        parts.base = tmp;
619
      parts.symbol = NULL_TREE;
620
 
621
      mem_ref = create_mem_ref_raw (type, &parts);
622
      if (mem_ref)
623
        return mem_ref;
624
    }
625
 
626
  if (parts.index)
627
    {
628
      /* Add index to base.  */
629
      if (parts.base)
630
        {
631
          atype = TREE_TYPE (parts.base);
632
          parts.base = force_gimple_operand_bsi (bsi,
633
                        fold_build2 (PLUS_EXPR, atype,
634
                                     parts.base,
635
                                     fold_convert (atype, parts.index)),
636
                        true, NULL_TREE);
637
        }
638
      else
639
        parts.base = parts.index;
640
      parts.index = NULL_TREE;
641
 
642
      mem_ref = create_mem_ref_raw (type, &parts);
643
      if (mem_ref)
644
        return mem_ref;
645
    }
646
 
647
  if (parts.offset && !integer_zerop (parts.offset))
648
    {
649
      /* Try adding offset to base.  */
650
      if (parts.base)
651
        {
652
          atype = TREE_TYPE (parts.base);
653
          parts.base = force_gimple_operand_bsi (bsi,
654
                        fold_build2 (PLUS_EXPR, atype,
655
                                     parts.base,
656
                                     fold_convert (atype, parts.offset)),
657
                        true, NULL_TREE);
658
        }
659
      else
660
        parts.base = parts.offset;
661
 
662
      parts.offset = NULL_TREE;
663
 
664
      mem_ref = create_mem_ref_raw (type, &parts);
665
      if (mem_ref)
666
        return mem_ref;
667
    }
668
 
669
  /* Verify that the address is in the simplest possible shape
670
     (only a register).  If we cannot create such a memory reference,
671
     something is really wrong.  */
672
  gcc_assert (parts.symbol == NULL_TREE);
673
  gcc_assert (parts.index == NULL_TREE);
674
  gcc_assert (!parts.step || integer_onep (parts.step));
675
  gcc_assert (!parts.offset || integer_zerop (parts.offset));
676
  gcc_unreachable ();
677
}
678
 
679
/* Copies components of the address from OP to ADDR.  */
680
 
681
void
682
get_address_description (tree op, struct mem_address *addr)
683
{
684
  addr->symbol = TMR_SYMBOL (op);
685
  addr->base = TMR_BASE (op);
686
  addr->index = TMR_INDEX (op);
687
  addr->step = TMR_STEP (op);
688
  addr->offset = TMR_OFFSET (op);
689
}
690
 
691
/* Copies the additional information attached to target_mem_ref FROM to TO.  */
692
 
693
void
694
copy_mem_ref_info (tree to, tree from)
695
{
696
  /* Copy the annotation, to preserve the aliasing information.  */
697
  TMR_TAG (to) = TMR_TAG (from);
698
 
699
  /* And the info about the original reference.  */
700
  TMR_ORIGINAL (to) = TMR_ORIGINAL (from);
701
}
702
 
703
/* Move constants in target_mem_ref REF to offset.  Returns the new target
704
   mem ref if anything changes, NULL_TREE otherwise.  */
705
 
706
tree
707
maybe_fold_tmr (tree ref)
708
{
709
  struct mem_address addr;
710
  bool changed = false;
711
  tree ret, off;
712
 
713
  get_address_description (ref, &addr);
714
 
715
  if (addr.base && TREE_CODE (addr.base) == INTEGER_CST)
716
    {
717
      if (addr.offset)
718
        addr.offset = fold_binary_to_constant (PLUS_EXPR, sizetype,
719
                        addr.offset,
720
                        fold_convert (sizetype, addr.base));
721
      else
722
        addr.offset = addr.base;
723
 
724
      addr.base = NULL_TREE;
725
      changed = true;
726
    }
727
 
728
  if (addr.index && TREE_CODE (addr.index) == INTEGER_CST)
729
    {
730
      off = addr.index;
731
      if (addr.step)
732
        {
733
          off = fold_binary_to_constant (MULT_EXPR, sizetype,
734
                                         off, addr.step);
735
          addr.step = NULL_TREE;
736
        }
737
 
738
      if (addr.offset)
739
        {
740
          addr.offset = fold_binary_to_constant (PLUS_EXPR, sizetype,
741
                                                 addr.offset, off);
742
        }
743
      else
744
        addr.offset = off;
745
 
746
      addr.index = NULL_TREE;
747
      changed = true;
748
    }
749
 
750
  if (!changed)
751
    return NULL_TREE;
752
 
753
  ret = create_mem_ref_raw (TREE_TYPE (ref), &addr);
754
  if (!ret)
755
    return NULL_TREE;
756
 
757
  copy_mem_ref_info (ret, ref);
758
  return ret;
759
}
760
 
761
/* Dump PARTS to FILE.  */
762
 
763
extern void dump_mem_address (FILE *, struct mem_address *);
764
void
765
dump_mem_address (FILE *file, struct mem_address *parts)
766
{
767
  if (parts->symbol)
768
    {
769
      fprintf (file, "symbol: ");
770
      print_generic_expr (file, parts->symbol, TDF_SLIM);
771
      fprintf (file, "\n");
772
    }
773
  if (parts->base)
774
    {
775
      fprintf (file, "base: ");
776
      print_generic_expr (file, parts->base, TDF_SLIM);
777
      fprintf (file, "\n");
778
    }
779
  if (parts->index)
780
    {
781
      fprintf (file, "index: ");
782
      print_generic_expr (file, parts->index, TDF_SLIM);
783
      fprintf (file, "\n");
784
    }
785
  if (parts->step)
786
    {
787
      fprintf (file, "step: ");
788
      print_generic_expr (file, parts->step, TDF_SLIM);
789
      fprintf (file, "\n");
790
    }
791
  if (parts->offset)
792
    {
793
      fprintf (file, "offset: ");
794
      print_generic_expr (file, parts->offset, TDF_SLIM);
795
      fprintf (file, "\n");
796
    }
797
}
798
 
799
#include "gt-tree-ssa-address.h"

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.