OpenCores
URL https://opencores.org/ocsvn/openrisc/openrisc/trunk

Subversion Repositories openrisc

[/] [openrisc/] [trunk/] [gnu-old/] [gcc-4.2.2/] [gcc/] [tree-ssa-dce.c] - Blame information for rev 867

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 38 julius
/* Dead code elimination pass for the GNU compiler.
2
   Copyright (C) 2002, 2003, 2004, 2005, 2006, 2007
3
   Free Software Foundation, Inc.
4
   Contributed by Ben Elliston <bje@redhat.com>
5
   and Andrew MacLeod <amacleod@redhat.com>
6
   Adapted to use control dependence by Steven Bosscher, SUSE Labs.
7
 
8
This file is part of GCC.
9
 
10
GCC is free software; you can redistribute it and/or modify it
11
under the terms of the GNU General Public License as published by the
12
Free Software Foundation; either version 3, or (at your option) any
13
later version.
14
 
15
GCC is distributed in the hope that it will be useful, but WITHOUT
16
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
17
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
18
for more details.
19
 
20
You should have received a copy of the GNU General Public License
21
along with GCC; see the file COPYING3.  If not see
22
<http://www.gnu.org/licenses/>.  */
23
 
24
/* Dead code elimination.
25
 
26
   References:
27
 
28
     Building an Optimizing Compiler,
29
     Robert Morgan, Butterworth-Heinemann, 1998, Section 8.9.
30
 
31
     Advanced Compiler Design and Implementation,
32
     Steven Muchnick, Morgan Kaufmann, 1997, Section 18.10.
33
 
34
   Dead-code elimination is the removal of statements which have no
35
   impact on the program's output.  "Dead statements" have no impact
36
   on the program's output, while "necessary statements" may have
37
   impact on the output.
38
 
39
   The algorithm consists of three phases:
40
   1. Marking as necessary all statements known to be necessary,
41
      e.g. most function calls, writing a value to memory, etc;
42
   2. Propagating necessary statements, e.g., the statements
43
      giving values to operands in necessary statements; and
44
   3. Removing dead statements.  */
45
 
46
#include "config.h"
47
#include "system.h"
48
#include "coretypes.h"
49
#include "tm.h"
50
#include "ggc.h"
51
 
52
/* These RTL headers are needed for basic-block.h.  */
53
#include "rtl.h"
54
#include "tm_p.h"
55
#include "hard-reg-set.h"
56
#include "obstack.h"
57
#include "basic-block.h"
58
 
59
#include "tree.h"
60
#include "diagnostic.h"
61
#include "tree-flow.h"
62
#include "tree-gimple.h"
63
#include "tree-dump.h"
64
#include "tree-pass.h"
65
#include "timevar.h"
66
#include "flags.h"
67
#include "cfgloop.h"
68
#include "tree-scalar-evolution.h"
69
 
70
static struct stmt_stats
71
{
72
  int total;
73
  int total_phis;
74
  int removed;
75
  int removed_phis;
76
} stats;
77
 
78
static VEC(tree,heap) *worklist;
79
 
80
/* Vector indicating an SSA name has already been processed and marked
81
   as necessary.  */
82
static sbitmap processed;
83
 
84
/* Vector indicating that last_stmt if a basic block has already been
85
   marked as necessary.  */
86
static sbitmap last_stmt_necessary;
87
 
88
/* Before we can determine whether a control branch is dead, we need to
89
   compute which blocks are control dependent on which edges.
90
 
91
   We expect each block to be control dependent on very few edges so we
92
   use a bitmap for each block recording its edges.  An array holds the
93
   bitmap.  The Ith bit in the bitmap is set if that block is dependent
94
   on the Ith edge.  */
95
static bitmap *control_dependence_map;
96
 
97
/* Vector indicating that a basic block has already had all the edges
98
   processed that it is control dependent on.  */
99
static sbitmap visited_control_parents;
100
 
101
/* TRUE if this pass alters the CFG (by removing control statements).
102
   FALSE otherwise.
103
 
104
   If this pass alters the CFG, then it will arrange for the dominators
105
   to be recomputed.  */
106
static bool cfg_altered;
107
 
108
/* Execute code that follows the macro for each edge (given number
109
   EDGE_NUMBER within the CODE) for which the block with index N is
110
   control dependent.  */
111
#define EXECUTE_IF_CONTROL_DEPENDENT(BI, N, EDGE_NUMBER)        \
112
  EXECUTE_IF_SET_IN_BITMAP (control_dependence_map[(N)], 0,      \
113
                            (EDGE_NUMBER), (BI))
114
 
115
/* Local function prototypes.  */
116
static inline void set_control_dependence_map_bit (basic_block, int);
117
static inline void clear_control_dependence_bitmap (basic_block);
118
static void find_all_control_dependences (struct edge_list *);
119
static void find_control_dependence (struct edge_list *, int);
120
static inline basic_block find_pdom (basic_block);
121
 
122
static inline void mark_stmt_necessary (tree, bool);
123
static inline void mark_operand_necessary (tree, bool);
124
 
125
static void mark_stmt_if_obviously_necessary (tree, bool);
126
static void find_obviously_necessary_stmts (struct edge_list *);
127
 
128
static void mark_control_dependent_edges_necessary (basic_block, struct edge_list *);
129
static void propagate_necessity (struct edge_list *);
130
 
131
static void eliminate_unnecessary_stmts (void);
132
static void remove_dead_phis (basic_block);
133
static void remove_dead_stmt (block_stmt_iterator *, basic_block);
134
 
135
static void print_stats (void);
136
static void tree_dce_init (bool);
137
static void tree_dce_done (bool);
138
 
139
/* Indicate block BB is control dependent on an edge with index EDGE_INDEX.  */
140
static inline void
141
set_control_dependence_map_bit (basic_block bb, int edge_index)
142
{
143
  if (bb == ENTRY_BLOCK_PTR)
144
    return;
145
  gcc_assert (bb != EXIT_BLOCK_PTR);
146
  bitmap_set_bit (control_dependence_map[bb->index], edge_index);
147
}
148
 
149
/* Clear all control dependences for block BB.  */
150
static inline void
151
clear_control_dependence_bitmap (basic_block bb)
152
{
153
  bitmap_clear (control_dependence_map[bb->index]);
154
}
155
 
156
/* Record all blocks' control dependences on all edges in the edge
157
   list EL, ala Morgan, Section 3.6.  */
158
 
159
static void
160
find_all_control_dependences (struct edge_list *el)
161
{
162
  int i;
163
 
164
  for (i = 0; i < NUM_EDGES (el); ++i)
165
    find_control_dependence (el, i);
166
}
167
 
168
/* Determine all blocks' control dependences on the given edge with edge_list
169
   EL index EDGE_INDEX, ala Morgan, Section 3.6.  */
170
 
171
static void
172
find_control_dependence (struct edge_list *el, int edge_index)
173
{
174
  basic_block current_block;
175
  basic_block ending_block;
176
 
177
  gcc_assert (INDEX_EDGE_PRED_BB (el, edge_index) != EXIT_BLOCK_PTR);
178
 
179
  if (INDEX_EDGE_PRED_BB (el, edge_index) == ENTRY_BLOCK_PTR)
180
    ending_block = single_succ (ENTRY_BLOCK_PTR);
181
  else
182
    ending_block = find_pdom (INDEX_EDGE_PRED_BB (el, edge_index));
183
 
184
  for (current_block = INDEX_EDGE_SUCC_BB (el, edge_index);
185
       current_block != ending_block && current_block != EXIT_BLOCK_PTR;
186
       current_block = find_pdom (current_block))
187
    {
188
      edge e = INDEX_EDGE (el, edge_index);
189
 
190
      /* For abnormal edges, we don't make current_block control
191
         dependent because instructions that throw are always necessary
192
         anyway.  */
193
      if (e->flags & EDGE_ABNORMAL)
194
        continue;
195
 
196
      set_control_dependence_map_bit (current_block, edge_index);
197
    }
198
}
199
 
200
/* Find the immediate postdominator PDOM of the specified basic block BLOCK.
201
   This function is necessary because some blocks have negative numbers.  */
202
 
203
static inline basic_block
204
find_pdom (basic_block block)
205
{
206
  gcc_assert (block != ENTRY_BLOCK_PTR);
207
 
208
  if (block == EXIT_BLOCK_PTR)
209
    return EXIT_BLOCK_PTR;
210
  else
211
    {
212
      basic_block bb = get_immediate_dominator (CDI_POST_DOMINATORS, block);
213
      if (! bb)
214
        return EXIT_BLOCK_PTR;
215
      return bb;
216
    }
217
}
218
 
219
#define NECESSARY(stmt)         stmt->common.asm_written_flag
220
 
221
/* If STMT is not already marked necessary, mark it, and add it to the
222
   worklist if ADD_TO_WORKLIST is true.  */
223
static inline void
224
mark_stmt_necessary (tree stmt, bool add_to_worklist)
225
{
226
  gcc_assert (stmt);
227
  gcc_assert (!DECL_P (stmt));
228
 
229
  if (NECESSARY (stmt))
230
    return;
231
 
232
  if (dump_file && (dump_flags & TDF_DETAILS))
233
    {
234
      fprintf (dump_file, "Marking useful stmt: ");
235
      print_generic_stmt (dump_file, stmt, TDF_SLIM);
236
      fprintf (dump_file, "\n");
237
    }
238
 
239
  NECESSARY (stmt) = 1;
240
  if (add_to_worklist)
241
    VEC_safe_push (tree, heap, worklist, stmt);
242
}
243
 
244
/* Mark the statement defining operand OP as necessary.  PHIONLY is true
245
   if we should only mark it necessary if it is a phi node.  */
246
 
247
static inline void
248
mark_operand_necessary (tree op, bool phionly)
249
{
250
  tree stmt;
251
  int ver;
252
 
253
  gcc_assert (op);
254
 
255
  ver = SSA_NAME_VERSION (op);
256
  if (TEST_BIT (processed, ver))
257
    return;
258
  SET_BIT (processed, ver);
259
 
260
  stmt = SSA_NAME_DEF_STMT (op);
261
  gcc_assert (stmt);
262
 
263
  if (NECESSARY (stmt)
264
      || IS_EMPTY_STMT (stmt)
265
      || (phionly && TREE_CODE (stmt) != PHI_NODE))
266
    return;
267
 
268
  NECESSARY (stmt) = 1;
269
  VEC_safe_push (tree, heap, worklist, stmt);
270
}
271
 
272
 
273
/* Mark STMT as necessary if it obviously is.  Add it to the worklist if
274
   it can make other statements necessary.
275
 
276
   If AGGRESSIVE is false, control statements are conservatively marked as
277
   necessary.  */
278
 
279
static void
280
mark_stmt_if_obviously_necessary (tree stmt, bool aggressive)
281
{
282
  stmt_ann_t ann;
283
  tree op;
284
 
285
  /* With non-call exceptions, we have to assume that all statements could
286
     throw.  If a statement may throw, it is inherently necessary.  */
287
  if (flag_non_call_exceptions
288
      && tree_could_throw_p (stmt))
289
    {
290
      mark_stmt_necessary (stmt, true);
291
      return;
292
    }
293
 
294
  /* Statements that are implicitly live.  Most function calls, asm and return
295
     statements are required.  Labels and BIND_EXPR nodes are kept because
296
     they are control flow, and we have no way of knowing whether they can be
297
     removed.  DCE can eliminate all the other statements in a block, and CFG
298
     can then remove the block and labels.  */
299
  switch (TREE_CODE (stmt))
300
    {
301
    case BIND_EXPR:
302
    case LABEL_EXPR:
303
    case CASE_LABEL_EXPR:
304
      mark_stmt_necessary (stmt, false);
305
      return;
306
 
307
    case ASM_EXPR:
308
    case RESX_EXPR:
309
    case RETURN_EXPR:
310
      mark_stmt_necessary (stmt, true);
311
      return;
312
 
313
    case CALL_EXPR:
314
      /* Most, but not all function calls are required.  Function calls that
315
         produce no result and have no side effects (i.e. const pure
316
         functions) are unnecessary.  */
317
      if (TREE_SIDE_EFFECTS (stmt))
318
        mark_stmt_necessary (stmt, true);
319
      return;
320
 
321
    case MODIFY_EXPR:
322
      op = get_call_expr_in (stmt);
323
      if (op && TREE_SIDE_EFFECTS (op))
324
        {
325
          mark_stmt_necessary (stmt, true);
326
          return;
327
        }
328
 
329
      /* These values are mildly magic bits of the EH runtime.  We can't
330
         see the entire lifetime of these values until landing pads are
331
         generated.  */
332
      if (TREE_CODE (TREE_OPERAND (stmt, 0)) == EXC_PTR_EXPR
333
          || TREE_CODE (TREE_OPERAND (stmt, 0)) == FILTER_EXPR)
334
        {
335
          mark_stmt_necessary (stmt, true);
336
          return;
337
        }
338
      break;
339
 
340
    case GOTO_EXPR:
341
      gcc_assert (!simple_goto_p (stmt));
342
      mark_stmt_necessary (stmt, true);
343
      return;
344
 
345
    case COND_EXPR:
346
      gcc_assert (EDGE_COUNT (bb_for_stmt (stmt)->succs) == 2);
347
      /* Fall through.  */
348
 
349
    case SWITCH_EXPR:
350
      if (! aggressive)
351
        mark_stmt_necessary (stmt, true);
352
      break;
353
 
354
    default:
355
      break;
356
    }
357
 
358
  ann = stmt_ann (stmt);
359
 
360
  /* If the statement has volatile operands, it needs to be preserved.
361
     Same for statements that can alter control flow in unpredictable
362
     ways.  */
363
  if (ann->has_volatile_ops || is_ctrl_altering_stmt (stmt))
364
    {
365
      mark_stmt_necessary (stmt, true);
366
      return;
367
    }
368
 
369
  if (is_hidden_global_store (stmt))
370
    {
371
      mark_stmt_necessary (stmt, true);
372
      return;
373
    }
374
 
375
  return;
376
}
377
 
378
/* Find obviously necessary statements.  These are things like most function
379
   calls, and stores to file level variables.
380
 
381
   If EL is NULL, control statements are conservatively marked as
382
   necessary.  Otherwise it contains the list of edges used by control
383
   dependence analysis.  */
384
 
385
static void
386
find_obviously_necessary_stmts (struct edge_list *el)
387
{
388
  basic_block bb;
389
  block_stmt_iterator i;
390
  edge e;
391
 
392
  FOR_EACH_BB (bb)
393
    {
394
      tree phi;
395
 
396
      /* Check any PHI nodes in the block.  */
397
      for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
398
        {
399
          NECESSARY (phi) = 0;
400
 
401
          /* PHIs for virtual variables do not directly affect code
402
             generation and need not be considered inherently necessary
403
             regardless of the bits set in their decl.
404
 
405
             Thus, we only need to mark PHIs for real variables which
406
             need their result preserved as being inherently necessary.  */
407
          if (is_gimple_reg (PHI_RESULT (phi))
408
              && is_global_var (SSA_NAME_VAR (PHI_RESULT (phi))))
409
            mark_stmt_necessary (phi, true);
410
        }
411
 
412
      /* Check all statements in the block.  */
413
      for (i = bsi_start (bb); ! bsi_end_p (i); bsi_next (&i))
414
        {
415
          tree stmt = bsi_stmt (i);
416
          NECESSARY (stmt) = 0;
417
          mark_stmt_if_obviously_necessary (stmt, el != NULL);
418
        }
419
    }
420
 
421
  if (el)
422
    {
423
      /* Prevent the loops from being removed.  We must keep the infinite loops,
424
         and we currently do not have a means to recognize the finite ones.  */
425
      FOR_EACH_BB (bb)
426
        {
427
          edge_iterator ei;
428
          FOR_EACH_EDGE (e, ei, bb->succs)
429
            if (e->flags & EDGE_DFS_BACK)
430
              mark_control_dependent_edges_necessary (e->dest, el);
431
        }
432
    }
433
}
434
 
435
/* Make corresponding control dependent edges necessary.  We only
436
   have to do this once for each basic block, so we clear the bitmap
437
   after we're done.  */
438
static void
439
mark_control_dependent_edges_necessary (basic_block bb, struct edge_list *el)
440
{
441
  bitmap_iterator bi;
442
  unsigned edge_number;
443
 
444
  gcc_assert (bb != EXIT_BLOCK_PTR);
445
 
446
  if (bb == ENTRY_BLOCK_PTR)
447
    return;
448
 
449
  EXECUTE_IF_CONTROL_DEPENDENT (bi, bb->index, edge_number)
450
    {
451
      tree t;
452
      basic_block cd_bb = INDEX_EDGE_PRED_BB (el, edge_number);
453
 
454
      if (TEST_BIT (last_stmt_necessary, cd_bb->index))
455
        continue;
456
      SET_BIT (last_stmt_necessary, cd_bb->index);
457
 
458
      t = last_stmt (cd_bb);
459
      if (t && is_ctrl_stmt (t))
460
        mark_stmt_necessary (t, true);
461
    }
462
}
463
 
464
/* Propagate necessity using the operands of necessary statements.  Process
465
   the uses on each statement in the worklist, and add all feeding statements
466
   which contribute to the calculation of this value to the worklist.
467
 
468
   In conservative mode, EL is NULL.  */
469
 
470
static void
471
propagate_necessity (struct edge_list *el)
472
{
473
  tree i;
474
  bool aggressive = (el ? true : false);
475
 
476
  if (dump_file && (dump_flags & TDF_DETAILS))
477
    fprintf (dump_file, "\nProcessing worklist:\n");
478
 
479
  while (VEC_length (tree, worklist) > 0)
480
    {
481
      /* Take `i' from worklist.  */
482
      i = VEC_pop (tree, worklist);
483
 
484
      if (dump_file && (dump_flags & TDF_DETAILS))
485
        {
486
          fprintf (dump_file, "processing: ");
487
          print_generic_stmt (dump_file, i, TDF_SLIM);
488
          fprintf (dump_file, "\n");
489
        }
490
 
491
      if (aggressive)
492
        {
493
          /* Mark the last statements of the basic blocks that the block
494
             containing `i' is control dependent on, but only if we haven't
495
             already done so.  */
496
          basic_block bb = bb_for_stmt (i);
497
          if (bb != ENTRY_BLOCK_PTR
498
              && ! TEST_BIT (visited_control_parents, bb->index))
499
            {
500
              SET_BIT (visited_control_parents, bb->index);
501
              mark_control_dependent_edges_necessary (bb, el);
502
            }
503
        }
504
 
505
      if (TREE_CODE (i) == PHI_NODE)
506
        {
507
          /* PHI nodes are somewhat special in that each PHI alternative has
508
             data and control dependencies.  All the statements feeding the
509
             PHI node's arguments are always necessary.  In aggressive mode,
510
             we also consider the control dependent edges leading to the
511
             predecessor block associated with each PHI alternative as
512
             necessary.  */
513
          int k;
514
          for (k = 0; k < PHI_NUM_ARGS (i); k++)
515
            {
516
              tree arg = PHI_ARG_DEF (i, k);
517
              if (TREE_CODE (arg) == SSA_NAME)
518
                mark_operand_necessary (arg, false);
519
            }
520
 
521
          if (aggressive)
522
            {
523
              for (k = 0; k < PHI_NUM_ARGS (i); k++)
524
                {
525
                  basic_block arg_bb = PHI_ARG_EDGE (i, k)->src;
526
                  if (arg_bb != ENTRY_BLOCK_PTR
527
                      && ! TEST_BIT (visited_control_parents, arg_bb->index))
528
                    {
529
                      SET_BIT (visited_control_parents, arg_bb->index);
530
                      mark_control_dependent_edges_necessary (arg_bb, el);
531
                    }
532
                }
533
            }
534
        }
535
      else
536
        {
537
          /* Propagate through the operands.  Examine all the USE, VUSE and
538
             V_MAY_DEF operands in this statement.  Mark all the statements
539
             which feed this statement's uses as necessary.  */
540
          ssa_op_iter iter;
541
          tree use;
542
 
543
          /* The operands of V_MAY_DEF expressions are also needed as they
544
             represent potential definitions that may reach this
545
             statement (V_MAY_DEF operands allow us to follow def-def
546
             links).  */
547
 
548
          FOR_EACH_SSA_TREE_OPERAND (use, i, iter, SSA_OP_ALL_USES)
549
            mark_operand_necessary (use, false);
550
        }
551
    }
552
}
553
 
554
 
555
/* Propagate necessity around virtual phi nodes used in kill operands.
556
   The reason this isn't done during propagate_necessity is because we don't
557
   want to keep phis around that are just there for must-defs, unless we
558
   absolutely have to.  After we've rewritten the reaching definitions to be
559
   correct in the previous part of the fixup routine, we can simply propagate
560
   around the information about which of these virtual phi nodes are really
561
   used, and set the NECESSARY flag accordingly.
562
   Note that we do the minimum here to ensure that we keep alive the phis that
563
   are actually used in the corrected SSA form.  In particular, some of these
564
   phis may now have all of the same operand, and will be deleted by some
565
   other pass.  */
566
 
567
static void
568
mark_really_necessary_kill_operand_phis (void)
569
{
570
  basic_block bb;
571
  int i;
572
 
573
  /* Seed the worklist with the new virtual phi arguments and virtual
574
     uses */
575
  FOR_EACH_BB (bb)
576
    {
577
      block_stmt_iterator bsi;
578
      tree phi;
579
 
580
      for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
581
        {
582
          if (!is_gimple_reg (PHI_RESULT (phi)) && NECESSARY (phi))
583
            {
584
              for (i = 0; i < PHI_NUM_ARGS (phi); i++)
585
                mark_operand_necessary (PHI_ARG_DEF (phi, i), true);
586
            }
587
        }
588
 
589
      for (bsi = bsi_last (bb); !bsi_end_p (bsi); bsi_prev (&bsi))
590
        {
591
          tree stmt = bsi_stmt (bsi);
592
 
593
          if (NECESSARY (stmt))
594
            {
595
              use_operand_p use_p;
596
              ssa_op_iter iter;
597
              FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter,
598
                                        SSA_OP_VIRTUAL_USES | SSA_OP_VIRTUAL_KILLS)
599
                {
600
                  tree use = USE_FROM_PTR (use_p);
601
                  mark_operand_necessary (use, true);
602
                }
603
            }
604
        }
605
    }
606
 
607
  /* Mark all virtual phis still in use as necessary, and all of their
608
     arguments that are phis as necessary.  */
609
  while (VEC_length (tree, worklist) > 0)
610
    {
611
      tree use = VEC_pop (tree, worklist);
612
 
613
      for (i = 0; i < PHI_NUM_ARGS (use); i++)
614
        mark_operand_necessary (PHI_ARG_DEF (use, i), true);
615
    }
616
}
617
 
618
 
619
 
620
 
621
/* Eliminate unnecessary statements. Any instruction not marked as necessary
622
   contributes nothing to the program, and can be deleted.  */
623
 
624
static void
625
eliminate_unnecessary_stmts (void)
626
{
627
  basic_block bb;
628
  block_stmt_iterator i;
629
 
630
  if (dump_file && (dump_flags & TDF_DETAILS))
631
    fprintf (dump_file, "\nEliminating unnecessary statements:\n");
632
 
633
  clear_special_calls ();
634
  FOR_EACH_BB (bb)
635
    {
636
      /* Remove dead PHI nodes.  */
637
      remove_dead_phis (bb);
638
    }
639
 
640
  FOR_EACH_BB (bb)
641
    {
642
      /* Remove dead statements.  */
643
      for (i = bsi_start (bb); ! bsi_end_p (i) ; )
644
        {
645
         tree t = bsi_stmt (i);
646
 
647
         stats.total++;
648
 
649
         /* If `i' is not necessary then remove it.  */
650
         if (! NECESSARY (t))
651
           remove_dead_stmt (&i, bb);
652
         else
653
           {
654
             tree call = get_call_expr_in (t);
655
             if (call)
656
               notice_special_calls (call);
657
             bsi_next (&i);
658
           }
659
        }
660
    }
661
 }
662
 
663
/* Remove dead PHI nodes from block BB.  */
664
 
665
static void
666
remove_dead_phis (basic_block bb)
667
{
668
  tree prev, phi;
669
 
670
  prev = NULL_TREE;
671
  phi = phi_nodes (bb);
672
  while (phi)
673
    {
674
      stats.total_phis++;
675
 
676
      if (! NECESSARY (phi))
677
        {
678
          tree next = PHI_CHAIN (phi);
679
 
680
          if (dump_file && (dump_flags & TDF_DETAILS))
681
            {
682
              fprintf (dump_file, "Deleting : ");
683
              print_generic_stmt (dump_file, phi, TDF_SLIM);
684
              fprintf (dump_file, "\n");
685
            }
686
 
687
          remove_phi_node (phi, prev);
688
          stats.removed_phis++;
689
          phi = next;
690
        }
691
      else
692
        {
693
          prev = phi;
694
          phi = PHI_CHAIN (phi);
695
        }
696
    }
697
}
698
 
699
/* Remove dead statement pointed to by iterator I.  Receives the basic block BB
700
   containing I so that we don't have to look it up.  */
701
 
702
static void
703
remove_dead_stmt (block_stmt_iterator *i, basic_block bb)
704
{
705
  tree t = bsi_stmt (*i);
706
  def_operand_p def_p;
707
 
708
  ssa_op_iter iter;
709
 
710
  if (dump_file && (dump_flags & TDF_DETAILS))
711
    {
712
      fprintf (dump_file, "Deleting : ");
713
      print_generic_stmt (dump_file, t, TDF_SLIM);
714
      fprintf (dump_file, "\n");
715
    }
716
 
717
  stats.removed++;
718
 
719
  /* If we have determined that a conditional branch statement contributes
720
     nothing to the program, then we not only remove it, but we also change
721
     the flow graph so that the current block will simply fall-thru to its
722
     immediate post-dominator.  The blocks we are circumventing will be
723
     removed by cleanup_tree_cfg if this change in the flow graph makes them
724
     unreachable.  */
725
  if (is_ctrl_stmt (t))
726
    {
727
      basic_block post_dom_bb;
728
 
729
      /* The post dominance info has to be up-to-date.  */
730
      gcc_assert (dom_computed[CDI_POST_DOMINATORS] == DOM_OK);
731
      /* Get the immediate post dominator of bb.  */
732
      post_dom_bb = get_immediate_dominator (CDI_POST_DOMINATORS, bb);
733
 
734
      /* There are three particularly problematical cases.
735
 
736
         1. Blocks that do not have an immediate post dominator.  This
737
            can happen with infinite loops.
738
 
739
         2. Blocks that are only post dominated by the exit block.  These
740
            can also happen for infinite loops as we create fake edges
741
            in the dominator tree.
742
 
743
         3. If the post dominator has PHI nodes we may be able to compute
744
            the right PHI args for them.
745
 
746
 
747
         In each of these cases we must remove the control statement
748
         as it may reference SSA_NAMEs which are going to be removed and
749
         we remove all but one outgoing edge from the block.  */
750
      if (! post_dom_bb
751
          || post_dom_bb == EXIT_BLOCK_PTR
752
          || phi_nodes (post_dom_bb))
753
        ;
754
      else
755
        {
756
          /* Redirect the first edge out of BB to reach POST_DOM_BB.  */
757
          redirect_edge_and_branch (EDGE_SUCC (bb, 0), post_dom_bb);
758
          PENDING_STMT (EDGE_SUCC (bb, 0)) = NULL;
759
        }
760
      EDGE_SUCC (bb, 0)->probability = REG_BR_PROB_BASE;
761
      EDGE_SUCC (bb, 0)->count = bb->count;
762
 
763
      /* The edge is no longer associated with a conditional, so it does
764
         not have TRUE/FALSE flags.  */
765
      EDGE_SUCC (bb, 0)->flags &= ~(EDGE_TRUE_VALUE | EDGE_FALSE_VALUE);
766
 
767
      /* The lone outgoing edge from BB will be a fallthru edge.  */
768
      EDGE_SUCC (bb, 0)->flags |= EDGE_FALLTHRU;
769
 
770
      /* Remove the remaining the outgoing edges.  */
771
      while (!single_succ_p (bb))
772
        {
773
          /* FIXME.  When we remove the edge, we modify the CFG, which
774
             in turn modifies the dominator and post-dominator tree.
775
             Is it safe to postpone recomputing the dominator and
776
             post-dominator tree until the end of this pass given that
777
             the post-dominators are used above?  */
778
          cfg_altered = true;
779
          remove_edge (EDGE_SUCC (bb, 1));
780
        }
781
    }
782
 
783
  FOR_EACH_SSA_DEF_OPERAND (def_p, t, iter, SSA_OP_VIRTUAL_DEFS)
784
    {
785
      tree def = DEF_FROM_PTR (def_p);
786
      mark_sym_for_renaming (SSA_NAME_VAR (def));
787
    }
788
  bsi_remove (i, true);
789
  release_defs (t);
790
}
791
 
792
/* Print out removed statement statistics.  */
793
 
794
static void
795
print_stats (void)
796
{
797
  if (dump_file && (dump_flags & (TDF_STATS|TDF_DETAILS)))
798
    {
799
      float percg;
800
 
801
      percg = ((float) stats.removed / (float) stats.total) * 100;
802
      fprintf (dump_file, "Removed %d of %d statements (%d%%)\n",
803
               stats.removed, stats.total, (int) percg);
804
 
805
      if (stats.total_phis == 0)
806
        percg = 0;
807
      else
808
        percg = ((float) stats.removed_phis / (float) stats.total_phis) * 100;
809
 
810
      fprintf (dump_file, "Removed %d of %d PHI nodes (%d%%)\n",
811
               stats.removed_phis, stats.total_phis, (int) percg);
812
    }
813
}
814
 
815
/* Initialization for this pass.  Set up the used data structures.  */
816
 
817
static void
818
tree_dce_init (bool aggressive)
819
{
820
  memset ((void *) &stats, 0, sizeof (stats));
821
 
822
  if (aggressive)
823
    {
824
      int i;
825
 
826
      control_dependence_map = XNEWVEC (bitmap, last_basic_block);
827
      for (i = 0; i < last_basic_block; ++i)
828
        control_dependence_map[i] = BITMAP_ALLOC (NULL);
829
 
830
      last_stmt_necessary = sbitmap_alloc (last_basic_block);
831
      sbitmap_zero (last_stmt_necessary);
832
    }
833
 
834
  processed = sbitmap_alloc (num_ssa_names + 1);
835
  sbitmap_zero (processed);
836
 
837
  worklist = VEC_alloc (tree, heap, 64);
838
  cfg_altered = false;
839
}
840
 
841
/* Cleanup after this pass.  */
842
 
843
static void
844
tree_dce_done (bool aggressive)
845
{
846
  if (aggressive)
847
    {
848
      int i;
849
 
850
      for (i = 0; i < last_basic_block; ++i)
851
        BITMAP_FREE (control_dependence_map[i]);
852
      free (control_dependence_map);
853
 
854
      sbitmap_free (visited_control_parents);
855
      sbitmap_free (last_stmt_necessary);
856
    }
857
 
858
  sbitmap_free (processed);
859
 
860
  VEC_free (tree, heap, worklist);
861
}
862
 
863
/* Main routine to eliminate dead code.
864
 
865
   AGGRESSIVE controls the aggressiveness of the algorithm.
866
   In conservative mode, we ignore control dependence and simply declare
867
   all but the most trivially dead branches necessary.  This mode is fast.
868
   In aggressive mode, control dependences are taken into account, which
869
   results in more dead code elimination, but at the cost of some time.
870
 
871
   FIXME: Aggressive mode before PRE doesn't work currently because
872
          the dominance info is not invalidated after DCE1.  This is
873
          not an issue right now because we only run aggressive DCE
874
          as the last tree SSA pass, but keep this in mind when you
875
          start experimenting with pass ordering.  */
876
 
877
static void
878
perform_tree_ssa_dce (bool aggressive)
879
{
880
  struct edge_list *el = NULL;
881
 
882
  tree_dce_init (aggressive);
883
 
884
  if (aggressive)
885
    {
886
      /* Compute control dependence.  */
887
      timevar_push (TV_CONTROL_DEPENDENCES);
888
      calculate_dominance_info (CDI_POST_DOMINATORS);
889
      el = create_edge_list ();
890
      find_all_control_dependences (el);
891
      timevar_pop (TV_CONTROL_DEPENDENCES);
892
 
893
      visited_control_parents = sbitmap_alloc (last_basic_block);
894
      sbitmap_zero (visited_control_parents);
895
 
896
      mark_dfs_back_edges ();
897
    }
898
 
899
  find_obviously_necessary_stmts (el);
900
 
901
  propagate_necessity (el);
902
 
903
  mark_really_necessary_kill_operand_phis ();
904
  eliminate_unnecessary_stmts ();
905
 
906
  if (aggressive)
907
    free_dominance_info (CDI_POST_DOMINATORS);
908
 
909
  /* If we removed paths in the CFG, then we need to update
910
     dominators as well.  I haven't investigated the possibility
911
     of incrementally updating dominators.  */
912
  if (cfg_altered)
913
    free_dominance_info (CDI_DOMINATORS);
914
 
915
  /* Debugging dumps.  */
916
  if (dump_file)
917
    print_stats ();
918
 
919
  tree_dce_done (aggressive);
920
 
921
  free_edge_list (el);
922
}
923
 
924
/* Pass entry points.  */
925
static unsigned int
926
tree_ssa_dce (void)
927
{
928
  perform_tree_ssa_dce (/*aggressive=*/false);
929
  return 0;
930
}
931
 
932
static unsigned int
933
tree_ssa_dce_loop (void)
934
{
935
  perform_tree_ssa_dce (/*aggressive=*/false);
936
  free_numbers_of_iterations_estimates (current_loops);
937
  scev_reset ();
938
  return 0;
939
}
940
 
941
static unsigned int
942
tree_ssa_cd_dce (void)
943
{
944
  perform_tree_ssa_dce (/*aggressive=*/optimize >= 2);
945
  return 0;
946
}
947
 
948
static bool
949
gate_dce (void)
950
{
951
  return flag_tree_dce != 0;
952
}
953
 
954
struct tree_opt_pass pass_dce =
955
{
956
  "dce",                                /* name */
957
  gate_dce,                             /* gate */
958
  tree_ssa_dce,                         /* execute */
959
  NULL,                                 /* sub */
960
  NULL,                                 /* next */
961
  0,                                     /* static_pass_number */
962
  TV_TREE_DCE,                          /* tv_id */
963
  PROP_cfg | PROP_ssa | PROP_alias,     /* properties_required */
964
  0,                                     /* properties_provided */
965
  0,                                     /* properties_destroyed */
966
  0,                                     /* todo_flags_start */
967
  TODO_dump_func
968
    | TODO_update_ssa
969
    | TODO_cleanup_cfg
970
    | TODO_ggc_collect
971
    | TODO_verify_ssa
972
    | TODO_remove_unused_locals,        /* todo_flags_finish */
973
 
974
};
975
 
976
struct tree_opt_pass pass_dce_loop =
977
{
978
  "dceloop",                            /* name */
979
  gate_dce,                             /* gate */
980
  tree_ssa_dce_loop,                    /* execute */
981
  NULL,                                 /* sub */
982
  NULL,                                 /* next */
983
  0,                                     /* static_pass_number */
984
  TV_TREE_DCE,                          /* tv_id */
985
  PROP_cfg | PROP_ssa | PROP_alias,     /* properties_required */
986
  0,                                     /* properties_provided */
987
  0,                                     /* properties_destroyed */
988
  0,                                     /* todo_flags_start */
989
  TODO_dump_func
990
    | TODO_update_ssa
991
    | TODO_cleanup_cfg
992
    | TODO_verify_ssa,                  /* todo_flags_finish */
993
 
994
};
995
 
996
struct tree_opt_pass pass_cd_dce =
997
{
998
  "cddce",                              /* name */
999
  gate_dce,                             /* gate */
1000
  tree_ssa_cd_dce,                      /* execute */
1001
  NULL,                                 /* sub */
1002
  NULL,                                 /* next */
1003
  0,                                     /* static_pass_number */
1004
  TV_TREE_CD_DCE,                       /* tv_id */
1005
  PROP_cfg | PROP_ssa | PROP_alias,     /* properties_required */
1006
  0,                                     /* properties_provided */
1007
  0,                                     /* properties_destroyed */
1008
  0,                                     /* todo_flags_start */
1009
  TODO_dump_func
1010
    | TODO_update_ssa
1011
    | TODO_cleanup_cfg
1012
    | TODO_ggc_collect
1013
    | TODO_verify_ssa
1014
    | TODO_verify_flow,                 /* todo_flags_finish */
1015
 
1016
};

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.