1 |
38 |
julius |
/* Functions to determine/estimate number of iterations of a loop.
|
2 |
|
|
Copyright (C) 2004, 2005, 2006, 2007 Free Software Foundation, Inc.
|
3 |
|
|
|
4 |
|
|
This file is part of GCC.
|
5 |
|
|
|
6 |
|
|
GCC is free software; you can redistribute it and/or modify it
|
7 |
|
|
under the terms of the GNU General Public License as published by the
|
8 |
|
|
Free Software Foundation; either version 3, or (at your option) any
|
9 |
|
|
later version.
|
10 |
|
|
|
11 |
|
|
GCC is distributed in the hope that it will be useful, but WITHOUT
|
12 |
|
|
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
13 |
|
|
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
14 |
|
|
for more details.
|
15 |
|
|
|
16 |
|
|
You should have received a copy of the GNU General Public License
|
17 |
|
|
along with GCC; see the file COPYING3. If not see
|
18 |
|
|
<http://www.gnu.org/licenses/>. */
|
19 |
|
|
|
20 |
|
|
#include "config.h"
|
21 |
|
|
#include "system.h"
|
22 |
|
|
#include "coretypes.h"
|
23 |
|
|
#include "tm.h"
|
24 |
|
|
#include "tree.h"
|
25 |
|
|
#include "rtl.h"
|
26 |
|
|
#include "tm_p.h"
|
27 |
|
|
#include "hard-reg-set.h"
|
28 |
|
|
#include "basic-block.h"
|
29 |
|
|
#include "output.h"
|
30 |
|
|
#include "diagnostic.h"
|
31 |
|
|
#include "intl.h"
|
32 |
|
|
#include "tree-flow.h"
|
33 |
|
|
#include "tree-dump.h"
|
34 |
|
|
#include "cfgloop.h"
|
35 |
|
|
#include "tree-pass.h"
|
36 |
|
|
#include "ggc.h"
|
37 |
|
|
#include "tree-chrec.h"
|
38 |
|
|
#include "tree-scalar-evolution.h"
|
39 |
|
|
#include "tree-data-ref.h"
|
40 |
|
|
#include "params.h"
|
41 |
|
|
#include "flags.h"
|
42 |
|
|
#include "toplev.h"
|
43 |
|
|
#include "tree-inline.h"
|
44 |
|
|
|
45 |
|
|
#define SWAP(X, Y) do { void *tmp = (X); (X) = (Y); (Y) = tmp; } while (0)
|
46 |
|
|
|
47 |
|
|
|
48 |
|
|
/*
|
49 |
|
|
|
50 |
|
|
Analysis of number of iterations of an affine exit test.
|
51 |
|
|
|
52 |
|
|
*/
|
53 |
|
|
|
54 |
|
|
/* Returns true if ARG is either NULL_TREE or constant zero. Unlike
|
55 |
|
|
integer_zerop, it does not care about overflow flags. */
|
56 |
|
|
|
57 |
|
|
bool
|
58 |
|
|
zero_p (tree arg)
|
59 |
|
|
{
|
60 |
|
|
if (!arg)
|
61 |
|
|
return true;
|
62 |
|
|
|
63 |
|
|
if (TREE_CODE (arg) != INTEGER_CST)
|
64 |
|
|
return false;
|
65 |
|
|
|
66 |
|
|
return (TREE_INT_CST_LOW (arg) == 0 && TREE_INT_CST_HIGH (arg) == 0);
|
67 |
|
|
}
|
68 |
|
|
|
69 |
|
|
/* Returns true if ARG a nonzero constant. Unlike integer_nonzerop, it does
|
70 |
|
|
not care about overflow flags. */
|
71 |
|
|
|
72 |
|
|
static bool
|
73 |
|
|
nonzero_p (tree arg)
|
74 |
|
|
{
|
75 |
|
|
if (!arg)
|
76 |
|
|
return false;
|
77 |
|
|
|
78 |
|
|
if (TREE_CODE (arg) != INTEGER_CST)
|
79 |
|
|
return false;
|
80 |
|
|
|
81 |
|
|
return (TREE_INT_CST_LOW (arg) != 0 || TREE_INT_CST_HIGH (arg) != 0);
|
82 |
|
|
}
|
83 |
|
|
|
84 |
|
|
/* Returns inverse of X modulo 2^s, where MASK = 2^s-1. */
|
85 |
|
|
|
86 |
|
|
static tree
|
87 |
|
|
inverse (tree x, tree mask)
|
88 |
|
|
{
|
89 |
|
|
tree type = TREE_TYPE (x);
|
90 |
|
|
tree rslt;
|
91 |
|
|
unsigned ctr = tree_floor_log2 (mask);
|
92 |
|
|
|
93 |
|
|
if (TYPE_PRECISION (type) <= HOST_BITS_PER_WIDE_INT)
|
94 |
|
|
{
|
95 |
|
|
unsigned HOST_WIDE_INT ix;
|
96 |
|
|
unsigned HOST_WIDE_INT imask;
|
97 |
|
|
unsigned HOST_WIDE_INT irslt = 1;
|
98 |
|
|
|
99 |
|
|
gcc_assert (cst_and_fits_in_hwi (x));
|
100 |
|
|
gcc_assert (cst_and_fits_in_hwi (mask));
|
101 |
|
|
|
102 |
|
|
ix = int_cst_value (x);
|
103 |
|
|
imask = int_cst_value (mask);
|
104 |
|
|
|
105 |
|
|
for (; ctr; ctr--)
|
106 |
|
|
{
|
107 |
|
|
irslt *= ix;
|
108 |
|
|
ix *= ix;
|
109 |
|
|
}
|
110 |
|
|
irslt &= imask;
|
111 |
|
|
|
112 |
|
|
rslt = build_int_cst_type (type, irslt);
|
113 |
|
|
}
|
114 |
|
|
else
|
115 |
|
|
{
|
116 |
|
|
rslt = build_int_cst (type, 1);
|
117 |
|
|
for (; ctr; ctr--)
|
118 |
|
|
{
|
119 |
|
|
rslt = int_const_binop (MULT_EXPR, rslt, x, 0);
|
120 |
|
|
x = int_const_binop (MULT_EXPR, x, x, 0);
|
121 |
|
|
}
|
122 |
|
|
rslt = int_const_binop (BIT_AND_EXPR, rslt, mask, 0);
|
123 |
|
|
}
|
124 |
|
|
|
125 |
|
|
return rslt;
|
126 |
|
|
}
|
127 |
|
|
|
128 |
|
|
/* Determines number of iterations of loop whose ending condition
|
129 |
|
|
is IV <> FINAL. TYPE is the type of the iv. The number of
|
130 |
|
|
iterations is stored to NITER. NEVER_INFINITE is true if
|
131 |
|
|
we know that the exit must be taken eventually, i.e., that the IV
|
132 |
|
|
ever reaches the value FINAL (we derived this earlier, and possibly set
|
133 |
|
|
NITER->assumptions to make sure this is the case). */
|
134 |
|
|
|
135 |
|
|
static bool
|
136 |
|
|
number_of_iterations_ne (tree type, affine_iv *iv, tree final,
|
137 |
|
|
struct tree_niter_desc *niter, bool never_infinite)
|
138 |
|
|
{
|
139 |
|
|
tree niter_type = unsigned_type_for (type);
|
140 |
|
|
tree s, c, d, bits, assumption, tmp, bound;
|
141 |
|
|
|
142 |
|
|
niter->control = *iv;
|
143 |
|
|
niter->bound = final;
|
144 |
|
|
niter->cmp = NE_EXPR;
|
145 |
|
|
|
146 |
|
|
/* Rearrange the terms so that we get inequality s * i <> c, with s
|
147 |
|
|
positive. Also cast everything to the unsigned type. */
|
148 |
|
|
if (tree_int_cst_sign_bit (iv->step))
|
149 |
|
|
{
|
150 |
|
|
s = fold_convert (niter_type,
|
151 |
|
|
fold_build1 (NEGATE_EXPR, type, iv->step));
|
152 |
|
|
c = fold_build2 (MINUS_EXPR, niter_type,
|
153 |
|
|
fold_convert (niter_type, iv->base),
|
154 |
|
|
fold_convert (niter_type, final));
|
155 |
|
|
}
|
156 |
|
|
else
|
157 |
|
|
{
|
158 |
|
|
s = fold_convert (niter_type, iv->step);
|
159 |
|
|
c = fold_build2 (MINUS_EXPR, niter_type,
|
160 |
|
|
fold_convert (niter_type, final),
|
161 |
|
|
fold_convert (niter_type, iv->base));
|
162 |
|
|
}
|
163 |
|
|
|
164 |
|
|
/* First the trivial cases -- when the step is 1. */
|
165 |
|
|
if (integer_onep (s))
|
166 |
|
|
{
|
167 |
|
|
niter->niter = c;
|
168 |
|
|
return true;
|
169 |
|
|
}
|
170 |
|
|
|
171 |
|
|
/* Let nsd (step, size of mode) = d. If d does not divide c, the loop
|
172 |
|
|
is infinite. Otherwise, the number of iterations is
|
173 |
|
|
(inverse(s/d) * (c/d)) mod (size of mode/d). */
|
174 |
|
|
bits = num_ending_zeros (s);
|
175 |
|
|
bound = build_low_bits_mask (niter_type,
|
176 |
|
|
(TYPE_PRECISION (niter_type)
|
177 |
|
|
- tree_low_cst (bits, 1)));
|
178 |
|
|
|
179 |
|
|
d = fold_binary_to_constant (LSHIFT_EXPR, niter_type,
|
180 |
|
|
build_int_cst (niter_type, 1), bits);
|
181 |
|
|
s = fold_binary_to_constant (RSHIFT_EXPR, niter_type, s, bits);
|
182 |
|
|
|
183 |
|
|
if (!never_infinite)
|
184 |
|
|
{
|
185 |
|
|
/* If we cannot assume that the loop is not infinite, record the
|
186 |
|
|
assumptions for divisibility of c. */
|
187 |
|
|
assumption = fold_build2 (FLOOR_MOD_EXPR, niter_type, c, d);
|
188 |
|
|
assumption = fold_build2 (EQ_EXPR, boolean_type_node,
|
189 |
|
|
assumption, build_int_cst (niter_type, 0));
|
190 |
|
|
if (!nonzero_p (assumption))
|
191 |
|
|
niter->assumptions = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
|
192 |
|
|
niter->assumptions, assumption);
|
193 |
|
|
}
|
194 |
|
|
|
195 |
|
|
c = fold_build2 (EXACT_DIV_EXPR, niter_type, c, d);
|
196 |
|
|
tmp = fold_build2 (MULT_EXPR, niter_type, c, inverse (s, bound));
|
197 |
|
|
niter->niter = fold_build2 (BIT_AND_EXPR, niter_type, tmp, bound);
|
198 |
|
|
return true;
|
199 |
|
|
}
|
200 |
|
|
|
201 |
|
|
/* Checks whether we can determine the final value of the control variable
|
202 |
|
|
of the loop with ending condition IV0 < IV1 (computed in TYPE).
|
203 |
|
|
DELTA is the difference IV1->base - IV0->base, STEP is the absolute value
|
204 |
|
|
of the step. The assumptions necessary to ensure that the computation
|
205 |
|
|
of the final value does not overflow are recorded in NITER. If we
|
206 |
|
|
find the final value, we adjust DELTA and return TRUE. Otherwise
|
207 |
|
|
we return false. */
|
208 |
|
|
|
209 |
|
|
static bool
|
210 |
|
|
number_of_iterations_lt_to_ne (tree type, affine_iv *iv0, affine_iv *iv1,
|
211 |
|
|
struct tree_niter_desc *niter,
|
212 |
|
|
tree *delta, tree step)
|
213 |
|
|
{
|
214 |
|
|
tree niter_type = TREE_TYPE (step);
|
215 |
|
|
tree mod = fold_build2 (FLOOR_MOD_EXPR, niter_type, *delta, step);
|
216 |
|
|
tree tmod;
|
217 |
|
|
tree assumption = boolean_true_node, bound, noloop;
|
218 |
|
|
|
219 |
|
|
if (TREE_CODE (mod) != INTEGER_CST)
|
220 |
|
|
return false;
|
221 |
|
|
if (nonzero_p (mod))
|
222 |
|
|
mod = fold_build2 (MINUS_EXPR, niter_type, step, mod);
|
223 |
|
|
tmod = fold_convert (type, mod);
|
224 |
|
|
|
225 |
|
|
if (nonzero_p (iv0->step))
|
226 |
|
|
{
|
227 |
|
|
/* The final value of the iv is iv1->base + MOD, assuming that this
|
228 |
|
|
computation does not overflow, and that
|
229 |
|
|
iv0->base <= iv1->base + MOD. */
|
230 |
|
|
if (!iv1->no_overflow && !zero_p (mod))
|
231 |
|
|
{
|
232 |
|
|
bound = fold_build2 (MINUS_EXPR, type,
|
233 |
|
|
TYPE_MAX_VALUE (type), tmod);
|
234 |
|
|
assumption = fold_build2 (LE_EXPR, boolean_type_node,
|
235 |
|
|
iv1->base, bound);
|
236 |
|
|
if (zero_p (assumption))
|
237 |
|
|
return false;
|
238 |
|
|
}
|
239 |
|
|
noloop = fold_build2 (GT_EXPR, boolean_type_node,
|
240 |
|
|
iv0->base,
|
241 |
|
|
fold_build2 (PLUS_EXPR, type,
|
242 |
|
|
iv1->base, tmod));
|
243 |
|
|
}
|
244 |
|
|
else
|
245 |
|
|
{
|
246 |
|
|
/* The final value of the iv is iv0->base - MOD, assuming that this
|
247 |
|
|
computation does not overflow, and that
|
248 |
|
|
iv0->base - MOD <= iv1->base. */
|
249 |
|
|
if (!iv0->no_overflow && !zero_p (mod))
|
250 |
|
|
{
|
251 |
|
|
bound = fold_build2 (PLUS_EXPR, type,
|
252 |
|
|
TYPE_MIN_VALUE (type), tmod);
|
253 |
|
|
assumption = fold_build2 (GE_EXPR, boolean_type_node,
|
254 |
|
|
iv0->base, bound);
|
255 |
|
|
if (zero_p (assumption))
|
256 |
|
|
return false;
|
257 |
|
|
}
|
258 |
|
|
noloop = fold_build2 (GT_EXPR, boolean_type_node,
|
259 |
|
|
fold_build2 (MINUS_EXPR, type,
|
260 |
|
|
iv0->base, tmod),
|
261 |
|
|
iv1->base);
|
262 |
|
|
}
|
263 |
|
|
|
264 |
|
|
if (!nonzero_p (assumption))
|
265 |
|
|
niter->assumptions = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
|
266 |
|
|
niter->assumptions,
|
267 |
|
|
assumption);
|
268 |
|
|
if (!zero_p (noloop))
|
269 |
|
|
niter->may_be_zero = fold_build2 (TRUTH_OR_EXPR, boolean_type_node,
|
270 |
|
|
niter->may_be_zero,
|
271 |
|
|
noloop);
|
272 |
|
|
*delta = fold_build2 (PLUS_EXPR, niter_type, *delta, mod);
|
273 |
|
|
return true;
|
274 |
|
|
}
|
275 |
|
|
|
276 |
|
|
/* Add assertions to NITER that ensure that the control variable of the loop
|
277 |
|
|
with ending condition IV0 < IV1 does not overflow. Types of IV0 and IV1
|
278 |
|
|
are TYPE. Returns false if we can prove that there is an overflow, true
|
279 |
|
|
otherwise. STEP is the absolute value of the step. */
|
280 |
|
|
|
281 |
|
|
static bool
|
282 |
|
|
assert_no_overflow_lt (tree type, affine_iv *iv0, affine_iv *iv1,
|
283 |
|
|
struct tree_niter_desc *niter, tree step)
|
284 |
|
|
{
|
285 |
|
|
tree bound, d, assumption, diff;
|
286 |
|
|
tree niter_type = TREE_TYPE (step);
|
287 |
|
|
|
288 |
|
|
if (nonzero_p (iv0->step))
|
289 |
|
|
{
|
290 |
|
|
/* for (i = iv0->base; i < iv1->base; i += iv0->step) */
|
291 |
|
|
if (iv0->no_overflow)
|
292 |
|
|
return true;
|
293 |
|
|
|
294 |
|
|
/* If iv0->base is a constant, we can determine the last value before
|
295 |
|
|
overflow precisely; otherwise we conservatively assume
|
296 |
|
|
MAX - STEP + 1. */
|
297 |
|
|
|
298 |
|
|
if (TREE_CODE (iv0->base) == INTEGER_CST)
|
299 |
|
|
{
|
300 |
|
|
d = fold_build2 (MINUS_EXPR, niter_type,
|
301 |
|
|
fold_convert (niter_type, TYPE_MAX_VALUE (type)),
|
302 |
|
|
fold_convert (niter_type, iv0->base));
|
303 |
|
|
diff = fold_build2 (FLOOR_MOD_EXPR, niter_type, d, step);
|
304 |
|
|
}
|
305 |
|
|
else
|
306 |
|
|
diff = fold_build2 (MINUS_EXPR, niter_type, step,
|
307 |
|
|
build_int_cst (niter_type, 1));
|
308 |
|
|
bound = fold_build2 (MINUS_EXPR, type,
|
309 |
|
|
TYPE_MAX_VALUE (type), fold_convert (type, diff));
|
310 |
|
|
assumption = fold_build2 (LE_EXPR, boolean_type_node,
|
311 |
|
|
iv1->base, bound);
|
312 |
|
|
}
|
313 |
|
|
else
|
314 |
|
|
{
|
315 |
|
|
/* for (i = iv1->base; i > iv0->base; i += iv1->step) */
|
316 |
|
|
if (iv1->no_overflow)
|
317 |
|
|
return true;
|
318 |
|
|
|
319 |
|
|
if (TREE_CODE (iv1->base) == INTEGER_CST)
|
320 |
|
|
{
|
321 |
|
|
d = fold_build2 (MINUS_EXPR, niter_type,
|
322 |
|
|
fold_convert (niter_type, iv1->base),
|
323 |
|
|
fold_convert (niter_type, TYPE_MIN_VALUE (type)));
|
324 |
|
|
diff = fold_build2 (FLOOR_MOD_EXPR, niter_type, d, step);
|
325 |
|
|
}
|
326 |
|
|
else
|
327 |
|
|
diff = fold_build2 (MINUS_EXPR, niter_type, step,
|
328 |
|
|
build_int_cst (niter_type, 1));
|
329 |
|
|
bound = fold_build2 (PLUS_EXPR, type,
|
330 |
|
|
TYPE_MIN_VALUE (type), fold_convert (type, diff));
|
331 |
|
|
assumption = fold_build2 (GE_EXPR, boolean_type_node,
|
332 |
|
|
iv0->base, bound);
|
333 |
|
|
}
|
334 |
|
|
|
335 |
|
|
if (zero_p (assumption))
|
336 |
|
|
return false;
|
337 |
|
|
if (!nonzero_p (assumption))
|
338 |
|
|
niter->assumptions = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
|
339 |
|
|
niter->assumptions, assumption);
|
340 |
|
|
|
341 |
|
|
iv0->no_overflow = true;
|
342 |
|
|
iv1->no_overflow = true;
|
343 |
|
|
return true;
|
344 |
|
|
}
|
345 |
|
|
|
346 |
|
|
/* Add an assumption to NITER that a loop whose ending condition
|
347 |
|
|
is IV0 < IV1 rolls. TYPE is the type of the control iv. */
|
348 |
|
|
|
349 |
|
|
static void
|
350 |
|
|
assert_loop_rolls_lt (tree type, affine_iv *iv0, affine_iv *iv1,
|
351 |
|
|
struct tree_niter_desc *niter)
|
352 |
|
|
{
|
353 |
|
|
tree assumption = boolean_true_node, bound, diff;
|
354 |
|
|
tree mbz, mbzl, mbzr;
|
355 |
|
|
|
356 |
|
|
if (nonzero_p (iv0->step))
|
357 |
|
|
{
|
358 |
|
|
diff = fold_build2 (MINUS_EXPR, type,
|
359 |
|
|
iv0->step, build_int_cst (type, 1));
|
360 |
|
|
|
361 |
|
|
/* We need to know that iv0->base >= MIN + iv0->step - 1. Since
|
362 |
|
|
|
363 |
|
|
pointers. */
|
364 |
|
|
if (!POINTER_TYPE_P (type))
|
365 |
|
|
{
|
366 |
|
|
bound = fold_build2 (PLUS_EXPR, type,
|
367 |
|
|
TYPE_MIN_VALUE (type), diff);
|
368 |
|
|
assumption = fold_build2 (GE_EXPR, boolean_type_node,
|
369 |
|
|
iv0->base, bound);
|
370 |
|
|
}
|
371 |
|
|
|
372 |
|
|
/* And then we can compute iv0->base - diff, and compare it with
|
373 |
|
|
iv1->base. */
|
374 |
|
|
mbzl = fold_build2 (MINUS_EXPR, type, iv0->base, diff);
|
375 |
|
|
mbzr = iv1->base;
|
376 |
|
|
}
|
377 |
|
|
else
|
378 |
|
|
{
|
379 |
|
|
diff = fold_build2 (PLUS_EXPR, type,
|
380 |
|
|
iv1->step, build_int_cst (type, 1));
|
381 |
|
|
|
382 |
|
|
if (!POINTER_TYPE_P (type))
|
383 |
|
|
{
|
384 |
|
|
bound = fold_build2 (PLUS_EXPR, type,
|
385 |
|
|
TYPE_MAX_VALUE (type), diff);
|
386 |
|
|
assumption = fold_build2 (LE_EXPR, boolean_type_node,
|
387 |
|
|
iv1->base, bound);
|
388 |
|
|
}
|
389 |
|
|
|
390 |
|
|
mbzl = iv0->base;
|
391 |
|
|
mbzr = fold_build2 (MINUS_EXPR, type, iv1->base, diff);
|
392 |
|
|
}
|
393 |
|
|
|
394 |
|
|
mbz = fold_build2 (GT_EXPR, boolean_type_node, mbzl, mbzr);
|
395 |
|
|
|
396 |
|
|
if (!nonzero_p (assumption))
|
397 |
|
|
niter->assumptions = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
|
398 |
|
|
niter->assumptions, assumption);
|
399 |
|
|
if (!zero_p (mbz))
|
400 |
|
|
niter->may_be_zero = fold_build2 (TRUTH_OR_EXPR, boolean_type_node,
|
401 |
|
|
niter->may_be_zero, mbz);
|
402 |
|
|
}
|
403 |
|
|
|
404 |
|
|
/* Determines number of iterations of loop whose ending condition
|
405 |
|
|
is IV0 < IV1. TYPE is the type of the iv. The number of
|
406 |
|
|
iterations is stored to NITER. */
|
407 |
|
|
|
408 |
|
|
static bool
|
409 |
|
|
number_of_iterations_lt (tree type, affine_iv *iv0, affine_iv *iv1,
|
410 |
|
|
struct tree_niter_desc *niter,
|
411 |
|
|
bool never_infinite ATTRIBUTE_UNUSED)
|
412 |
|
|
{
|
413 |
|
|
tree niter_type = unsigned_type_for (type);
|
414 |
|
|
tree delta, step, s;
|
415 |
|
|
|
416 |
|
|
if (nonzero_p (iv0->step))
|
417 |
|
|
{
|
418 |
|
|
niter->control = *iv0;
|
419 |
|
|
niter->cmp = LT_EXPR;
|
420 |
|
|
niter->bound = iv1->base;
|
421 |
|
|
}
|
422 |
|
|
else
|
423 |
|
|
{
|
424 |
|
|
niter->control = *iv1;
|
425 |
|
|
niter->cmp = GT_EXPR;
|
426 |
|
|
niter->bound = iv0->base;
|
427 |
|
|
}
|
428 |
|
|
|
429 |
|
|
delta = fold_build2 (MINUS_EXPR, niter_type,
|
430 |
|
|
fold_convert (niter_type, iv1->base),
|
431 |
|
|
fold_convert (niter_type, iv0->base));
|
432 |
|
|
|
433 |
|
|
/* First handle the special case that the step is +-1. */
|
434 |
|
|
if ((iv0->step && integer_onep (iv0->step)
|
435 |
|
|
&& zero_p (iv1->step))
|
436 |
|
|
|| (iv1->step && integer_all_onesp (iv1->step)
|
437 |
|
|
&& zero_p (iv0->step)))
|
438 |
|
|
{
|
439 |
|
|
/* for (i = iv0->base; i < iv1->base; i++)
|
440 |
|
|
|
441 |
|
|
or
|
442 |
|
|
|
443 |
|
|
for (i = iv1->base; i > iv0->base; i--).
|
444 |
|
|
|
445 |
|
|
In both cases # of iterations is iv1->base - iv0->base, assuming that
|
446 |
|
|
iv1->base >= iv0->base. */
|
447 |
|
|
niter->may_be_zero = fold_build2 (LT_EXPR, boolean_type_node,
|
448 |
|
|
iv1->base, iv0->base);
|
449 |
|
|
niter->niter = delta;
|
450 |
|
|
return true;
|
451 |
|
|
}
|
452 |
|
|
|
453 |
|
|
if (nonzero_p (iv0->step))
|
454 |
|
|
step = fold_convert (niter_type, iv0->step);
|
455 |
|
|
else
|
456 |
|
|
step = fold_convert (niter_type,
|
457 |
|
|
fold_build1 (NEGATE_EXPR, type, iv1->step));
|
458 |
|
|
|
459 |
|
|
/* If we can determine the final value of the control iv exactly, we can
|
460 |
|
|
transform the condition to != comparison. In particular, this will be
|
461 |
|
|
the case if DELTA is constant. */
|
462 |
|
|
if (number_of_iterations_lt_to_ne (type, iv0, iv1, niter, &delta, step))
|
463 |
|
|
{
|
464 |
|
|
affine_iv zps;
|
465 |
|
|
|
466 |
|
|
zps.base = build_int_cst (niter_type, 0);
|
467 |
|
|
zps.step = step;
|
468 |
|
|
/* number_of_iterations_lt_to_ne will add assumptions that ensure that
|
469 |
|
|
zps does not overflow. */
|
470 |
|
|
zps.no_overflow = true;
|
471 |
|
|
|
472 |
|
|
return number_of_iterations_ne (type, &zps, delta, niter, true);
|
473 |
|
|
}
|
474 |
|
|
|
475 |
|
|
/* Make sure that the control iv does not overflow. */
|
476 |
|
|
if (!assert_no_overflow_lt (type, iv0, iv1, niter, step))
|
477 |
|
|
return false;
|
478 |
|
|
|
479 |
|
|
/* We determine the number of iterations as (delta + step - 1) / step. For
|
480 |
|
|
this to work, we must know that iv1->base >= iv0->base - step + 1,
|
481 |
|
|
otherwise the loop does not roll. */
|
482 |
|
|
assert_loop_rolls_lt (type, iv0, iv1, niter);
|
483 |
|
|
|
484 |
|
|
s = fold_build2 (MINUS_EXPR, niter_type,
|
485 |
|
|
step, build_int_cst (niter_type, 1));
|
486 |
|
|
delta = fold_build2 (PLUS_EXPR, niter_type, delta, s);
|
487 |
|
|
niter->niter = fold_build2 (FLOOR_DIV_EXPR, niter_type, delta, step);
|
488 |
|
|
return true;
|
489 |
|
|
}
|
490 |
|
|
|
491 |
|
|
/* Determines number of iterations of loop whose ending condition
|
492 |
|
|
is IV0 <= IV1. TYPE is the type of the iv. The number of
|
493 |
|
|
iterations is stored to NITER. NEVER_INFINITE is true if
|
494 |
|
|
we know that this condition must eventually become false (we derived this
|
495 |
|
|
earlier, and possibly set NITER->assumptions to make sure this
|
496 |
|
|
is the case). */
|
497 |
|
|
|
498 |
|
|
static bool
|
499 |
|
|
number_of_iterations_le (tree type, affine_iv *iv0, affine_iv *iv1,
|
500 |
|
|
struct tree_niter_desc *niter, bool never_infinite)
|
501 |
|
|
{
|
502 |
|
|
tree assumption;
|
503 |
|
|
|
504 |
|
|
/* Say that IV0 is the control variable. Then IV0 <= IV1 iff
|
505 |
|
|
IV0 < IV1 + 1, assuming that IV1 is not equal to the greatest
|
506 |
|
|
value of the type. This we must know anyway, since if it is
|
507 |
|
|
equal to this value, the loop rolls forever. */
|
508 |
|
|
|
509 |
|
|
if (!never_infinite)
|
510 |
|
|
{
|
511 |
|
|
if (nonzero_p (iv0->step))
|
512 |
|
|
assumption = fold_build2 (NE_EXPR, boolean_type_node,
|
513 |
|
|
iv1->base, TYPE_MAX_VALUE (type));
|
514 |
|
|
else
|
515 |
|
|
assumption = fold_build2 (NE_EXPR, boolean_type_node,
|
516 |
|
|
iv0->base, TYPE_MIN_VALUE (type));
|
517 |
|
|
|
518 |
|
|
if (zero_p (assumption))
|
519 |
|
|
return false;
|
520 |
|
|
if (!nonzero_p (assumption))
|
521 |
|
|
niter->assumptions = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
|
522 |
|
|
niter->assumptions, assumption);
|
523 |
|
|
}
|
524 |
|
|
|
525 |
|
|
if (nonzero_p (iv0->step))
|
526 |
|
|
iv1->base = fold_build2 (PLUS_EXPR, type,
|
527 |
|
|
iv1->base, build_int_cst (type, 1));
|
528 |
|
|
else
|
529 |
|
|
iv0->base = fold_build2 (MINUS_EXPR, type,
|
530 |
|
|
iv0->base, build_int_cst (type, 1));
|
531 |
|
|
return number_of_iterations_lt (type, iv0, iv1, niter, never_infinite);
|
532 |
|
|
}
|
533 |
|
|
|
534 |
|
|
/* Determine the number of iterations according to condition (for staying
|
535 |
|
|
inside loop) which compares two induction variables using comparison
|
536 |
|
|
operator CODE. The induction variable on left side of the comparison
|
537 |
|
|
is IV0, the right-hand side is IV1. Both induction variables must have
|
538 |
|
|
type TYPE, which must be an integer or pointer type. The steps of the
|
539 |
|
|
ivs must be constants (or NULL_TREE, which is interpreted as constant zero).
|
540 |
|
|
|
541 |
|
|
ONLY_EXIT is true if we are sure this is the only way the loop could be
|
542 |
|
|
exited (including possibly non-returning function calls, exceptions, etc.)
|
543 |
|
|
-- in this case we can use the information whether the control induction
|
544 |
|
|
variables can overflow or not in a more efficient way.
|
545 |
|
|
|
546 |
|
|
The results (number of iterations and assumptions as described in
|
547 |
|
|
comments at struct tree_niter_desc in tree-flow.h) are stored to NITER.
|
548 |
|
|
Returns false if it fails to determine number of iterations, true if it
|
549 |
|
|
was determined (possibly with some assumptions). */
|
550 |
|
|
|
551 |
|
|
static bool
|
552 |
|
|
number_of_iterations_cond (tree type, affine_iv *iv0, enum tree_code code,
|
553 |
|
|
affine_iv *iv1, struct tree_niter_desc *niter,
|
554 |
|
|
bool only_exit)
|
555 |
|
|
{
|
556 |
|
|
bool never_infinite;
|
557 |
|
|
|
558 |
|
|
/* The meaning of these assumptions is this:
|
559 |
|
|
if !assumptions
|
560 |
|
|
then the rest of information does not have to be valid
|
561 |
|
|
if may_be_zero then the loop does not roll, even if
|
562 |
|
|
niter != 0. */
|
563 |
|
|
niter->assumptions = boolean_true_node;
|
564 |
|
|
niter->may_be_zero = boolean_false_node;
|
565 |
|
|
niter->niter = NULL_TREE;
|
566 |
|
|
niter->additional_info = boolean_true_node;
|
567 |
|
|
|
568 |
|
|
niter->bound = NULL_TREE;
|
569 |
|
|
niter->cmp = ERROR_MARK;
|
570 |
|
|
|
571 |
|
|
/* Make < comparison from > ones, and for NE_EXPR comparisons, ensure that
|
572 |
|
|
the control variable is on lhs. */
|
573 |
|
|
if (code == GE_EXPR || code == GT_EXPR
|
574 |
|
|
|| (code == NE_EXPR && zero_p (iv0->step)))
|
575 |
|
|
{
|
576 |
|
|
SWAP (iv0, iv1);
|
577 |
|
|
code = swap_tree_comparison (code);
|
578 |
|
|
}
|
579 |
|
|
|
580 |
|
|
if (!only_exit)
|
581 |
|
|
{
|
582 |
|
|
/* If this is not the only possible exit from the loop, the information
|
583 |
|
|
that the induction variables cannot overflow as derived from
|
584 |
|
|
signedness analysis cannot be relied upon. We use them e.g. in the
|
585 |
|
|
following way: given loop for (i = 0; i <= n; i++), if i is
|
586 |
|
|
signed, it cannot overflow, thus this loop is equivalent to
|
587 |
|
|
for (i = 0; i < n + 1; i++); however, if n == MAX, but the loop
|
588 |
|
|
is exited in some other way before i overflows, this transformation
|
589 |
|
|
is incorrect (the new loop exits immediately). */
|
590 |
|
|
iv0->no_overflow = false;
|
591 |
|
|
iv1->no_overflow = false;
|
592 |
|
|
}
|
593 |
|
|
|
594 |
|
|
if (POINTER_TYPE_P (type))
|
595 |
|
|
{
|
596 |
|
|
/* Comparison of pointers is undefined unless both iv0 and iv1 point
|
597 |
|
|
to the same object. If they do, the control variable cannot wrap
|
598 |
|
|
(as wrap around the bounds of memory will never return a pointer
|
599 |
|
|
that would be guaranteed to point to the same object, even if we
|
600 |
|
|
avoid undefined behavior by casting to size_t and back). The
|
601 |
|
|
restrictions on pointer arithmetics and comparisons of pointers
|
602 |
|
|
ensure that using the no-overflow assumptions is correct in this
|
603 |
|
|
case even if ONLY_EXIT is false. */
|
604 |
|
|
iv0->no_overflow = true;
|
605 |
|
|
iv1->no_overflow = true;
|
606 |
|
|
}
|
607 |
|
|
|
608 |
|
|
/* If the control induction variable does not overflow, the loop obviously
|
609 |
|
|
cannot be infinite. */
|
610 |
|
|
if (!zero_p (iv0->step) && iv0->no_overflow)
|
611 |
|
|
never_infinite = true;
|
612 |
|
|
else if (!zero_p (iv1->step) && iv1->no_overflow)
|
613 |
|
|
never_infinite = true;
|
614 |
|
|
else
|
615 |
|
|
never_infinite = false;
|
616 |
|
|
|
617 |
|
|
/* We can handle the case when neither of the sides of the comparison is
|
618 |
|
|
invariant, provided that the test is NE_EXPR. This rarely occurs in
|
619 |
|
|
practice, but it is simple enough to manage. */
|
620 |
|
|
if (!zero_p (iv0->step) && !zero_p (iv1->step))
|
621 |
|
|
{
|
622 |
|
|
if (code != NE_EXPR)
|
623 |
|
|
return false;
|
624 |
|
|
|
625 |
|
|
iv0->step = fold_binary_to_constant (MINUS_EXPR, type,
|
626 |
|
|
iv0->step, iv1->step);
|
627 |
|
|
iv0->no_overflow = false;
|
628 |
|
|
iv1->step = NULL_TREE;
|
629 |
|
|
iv1->no_overflow = true;
|
630 |
|
|
}
|
631 |
|
|
|
632 |
|
|
/* If the result of the comparison is a constant, the loop is weird. More
|
633 |
|
|
precise handling would be possible, but the situation is not common enough
|
634 |
|
|
to waste time on it. */
|
635 |
|
|
if (zero_p (iv0->step) && zero_p (iv1->step))
|
636 |
|
|
return false;
|
637 |
|
|
|
638 |
|
|
/* Ignore loops of while (i-- < 10) type. */
|
639 |
|
|
if (code != NE_EXPR)
|
640 |
|
|
{
|
641 |
|
|
if (iv0->step && tree_int_cst_sign_bit (iv0->step))
|
642 |
|
|
return false;
|
643 |
|
|
|
644 |
|
|
if (!zero_p (iv1->step) && !tree_int_cst_sign_bit (iv1->step))
|
645 |
|
|
return false;
|
646 |
|
|
}
|
647 |
|
|
|
648 |
|
|
/* If the loop exits immediately, there is nothing to do. */
|
649 |
|
|
if (zero_p (fold_build2 (code, boolean_type_node, iv0->base, iv1->base)))
|
650 |
|
|
{
|
651 |
|
|
niter->niter = build_int_cst (unsigned_type_for (type), 0);
|
652 |
|
|
return true;
|
653 |
|
|
}
|
654 |
|
|
|
655 |
|
|
/* OK, now we know we have a senseful loop. Handle several cases, depending
|
656 |
|
|
on what comparison operator is used. */
|
657 |
|
|
switch (code)
|
658 |
|
|
{
|
659 |
|
|
case NE_EXPR:
|
660 |
|
|
gcc_assert (zero_p (iv1->step));
|
661 |
|
|
return number_of_iterations_ne (type, iv0, iv1->base, niter, never_infinite);
|
662 |
|
|
case LT_EXPR:
|
663 |
|
|
return number_of_iterations_lt (type, iv0, iv1, niter, never_infinite);
|
664 |
|
|
case LE_EXPR:
|
665 |
|
|
return number_of_iterations_le (type, iv0, iv1, niter, never_infinite);
|
666 |
|
|
default:
|
667 |
|
|
gcc_unreachable ();
|
668 |
|
|
}
|
669 |
|
|
}
|
670 |
|
|
|
671 |
|
|
/* Substitute NEW for OLD in EXPR and fold the result. */
|
672 |
|
|
|
673 |
|
|
static tree
|
674 |
|
|
simplify_replace_tree (tree expr, tree old, tree new)
|
675 |
|
|
{
|
676 |
|
|
unsigned i, n;
|
677 |
|
|
tree ret = NULL_TREE, e, se;
|
678 |
|
|
|
679 |
|
|
if (!expr)
|
680 |
|
|
return NULL_TREE;
|
681 |
|
|
|
682 |
|
|
if (expr == old
|
683 |
|
|
|| operand_equal_p (expr, old, 0))
|
684 |
|
|
return unshare_expr (new);
|
685 |
|
|
|
686 |
|
|
if (!EXPR_P (expr))
|
687 |
|
|
return expr;
|
688 |
|
|
|
689 |
|
|
n = TREE_CODE_LENGTH (TREE_CODE (expr));
|
690 |
|
|
for (i = 0; i < n; i++)
|
691 |
|
|
{
|
692 |
|
|
e = TREE_OPERAND (expr, i);
|
693 |
|
|
se = simplify_replace_tree (e, old, new);
|
694 |
|
|
if (e == se)
|
695 |
|
|
continue;
|
696 |
|
|
|
697 |
|
|
if (!ret)
|
698 |
|
|
ret = copy_node (expr);
|
699 |
|
|
|
700 |
|
|
TREE_OPERAND (ret, i) = se;
|
701 |
|
|
}
|
702 |
|
|
|
703 |
|
|
return (ret ? fold (ret) : expr);
|
704 |
|
|
}
|
705 |
|
|
|
706 |
|
|
/* Expand definitions of ssa names in EXPR as long as they are simple
|
707 |
|
|
enough, and return the new expression. */
|
708 |
|
|
|
709 |
|
|
tree
|
710 |
|
|
expand_simple_operations (tree expr)
|
711 |
|
|
{
|
712 |
|
|
unsigned i, n;
|
713 |
|
|
tree ret = NULL_TREE, e, ee, stmt;
|
714 |
|
|
enum tree_code code;
|
715 |
|
|
|
716 |
|
|
if (expr == NULL_TREE)
|
717 |
|
|
return expr;
|
718 |
|
|
|
719 |
|
|
if (is_gimple_min_invariant (expr))
|
720 |
|
|
return expr;
|
721 |
|
|
|
722 |
|
|
code = TREE_CODE (expr);
|
723 |
|
|
if (IS_EXPR_CODE_CLASS (TREE_CODE_CLASS (code)))
|
724 |
|
|
{
|
725 |
|
|
n = TREE_CODE_LENGTH (code);
|
726 |
|
|
for (i = 0; i < n; i++)
|
727 |
|
|
{
|
728 |
|
|
e = TREE_OPERAND (expr, i);
|
729 |
|
|
ee = expand_simple_operations (e);
|
730 |
|
|
if (e == ee)
|
731 |
|
|
continue;
|
732 |
|
|
|
733 |
|
|
if (!ret)
|
734 |
|
|
ret = copy_node (expr);
|
735 |
|
|
|
736 |
|
|
TREE_OPERAND (ret, i) = ee;
|
737 |
|
|
}
|
738 |
|
|
|
739 |
|
|
if (!ret)
|
740 |
|
|
return expr;
|
741 |
|
|
|
742 |
|
|
fold_defer_overflow_warnings ();
|
743 |
|
|
ret = fold (ret);
|
744 |
|
|
fold_undefer_and_ignore_overflow_warnings ();
|
745 |
|
|
return ret;
|
746 |
|
|
}
|
747 |
|
|
|
748 |
|
|
if (TREE_CODE (expr) != SSA_NAME)
|
749 |
|
|
return expr;
|
750 |
|
|
|
751 |
|
|
stmt = SSA_NAME_DEF_STMT (expr);
|
752 |
|
|
if (TREE_CODE (stmt) != MODIFY_EXPR)
|
753 |
|
|
return expr;
|
754 |
|
|
|
755 |
|
|
e = TREE_OPERAND (stmt, 1);
|
756 |
|
|
if (/* Casts are simple. */
|
757 |
|
|
TREE_CODE (e) != NOP_EXPR
|
758 |
|
|
&& TREE_CODE (e) != CONVERT_EXPR
|
759 |
|
|
/* Copies are simple. */
|
760 |
|
|
&& TREE_CODE (e) != SSA_NAME
|
761 |
|
|
/* Assignments of invariants are simple. */
|
762 |
|
|
&& !is_gimple_min_invariant (e)
|
763 |
|
|
/* And increments and decrements by a constant are simple. */
|
764 |
|
|
&& !((TREE_CODE (e) == PLUS_EXPR
|
765 |
|
|
|| TREE_CODE (e) == MINUS_EXPR)
|
766 |
|
|
&& is_gimple_min_invariant (TREE_OPERAND (e, 1))))
|
767 |
|
|
return expr;
|
768 |
|
|
|
769 |
|
|
return expand_simple_operations (e);
|
770 |
|
|
}
|
771 |
|
|
|
772 |
|
|
/* Tries to simplify EXPR using the condition COND. Returns the simplified
|
773 |
|
|
expression (or EXPR unchanged, if no simplification was possible). */
|
774 |
|
|
|
775 |
|
|
static tree
|
776 |
|
|
tree_simplify_using_condition_1 (tree cond, tree expr)
|
777 |
|
|
{
|
778 |
|
|
bool changed;
|
779 |
|
|
tree e, te, e0, e1, e2, notcond;
|
780 |
|
|
enum tree_code code = TREE_CODE (expr);
|
781 |
|
|
|
782 |
|
|
if (code == INTEGER_CST)
|
783 |
|
|
return expr;
|
784 |
|
|
|
785 |
|
|
if (code == TRUTH_OR_EXPR
|
786 |
|
|
|| code == TRUTH_AND_EXPR
|
787 |
|
|
|| code == COND_EXPR)
|
788 |
|
|
{
|
789 |
|
|
changed = false;
|
790 |
|
|
|
791 |
|
|
e0 = tree_simplify_using_condition_1 (cond, TREE_OPERAND (expr, 0));
|
792 |
|
|
if (TREE_OPERAND (expr, 0) != e0)
|
793 |
|
|
changed = true;
|
794 |
|
|
|
795 |
|
|
e1 = tree_simplify_using_condition_1 (cond, TREE_OPERAND (expr, 1));
|
796 |
|
|
if (TREE_OPERAND (expr, 1) != e1)
|
797 |
|
|
changed = true;
|
798 |
|
|
|
799 |
|
|
if (code == COND_EXPR)
|
800 |
|
|
{
|
801 |
|
|
e2 = tree_simplify_using_condition_1 (cond, TREE_OPERAND (expr, 2));
|
802 |
|
|
if (TREE_OPERAND (expr, 2) != e2)
|
803 |
|
|
changed = true;
|
804 |
|
|
}
|
805 |
|
|
else
|
806 |
|
|
e2 = NULL_TREE;
|
807 |
|
|
|
808 |
|
|
if (changed)
|
809 |
|
|
{
|
810 |
|
|
if (code == COND_EXPR)
|
811 |
|
|
expr = fold_build3 (code, boolean_type_node, e0, e1, e2);
|
812 |
|
|
else
|
813 |
|
|
expr = fold_build2 (code, boolean_type_node, e0, e1);
|
814 |
|
|
}
|
815 |
|
|
|
816 |
|
|
return expr;
|
817 |
|
|
}
|
818 |
|
|
|
819 |
|
|
/* In case COND is equality, we may be able to simplify EXPR by copy/constant
|
820 |
|
|
propagation, and vice versa. Fold does not handle this, since it is
|
821 |
|
|
considered too expensive. */
|
822 |
|
|
if (TREE_CODE (cond) == EQ_EXPR)
|
823 |
|
|
{
|
824 |
|
|
e0 = TREE_OPERAND (cond, 0);
|
825 |
|
|
e1 = TREE_OPERAND (cond, 1);
|
826 |
|
|
|
827 |
|
|
/* We know that e0 == e1. Check whether we cannot simplify expr
|
828 |
|
|
using this fact. */
|
829 |
|
|
e = simplify_replace_tree (expr, e0, e1);
|
830 |
|
|
if (zero_p (e) || nonzero_p (e))
|
831 |
|
|
return e;
|
832 |
|
|
|
833 |
|
|
e = simplify_replace_tree (expr, e1, e0);
|
834 |
|
|
if (zero_p (e) || nonzero_p (e))
|
835 |
|
|
return e;
|
836 |
|
|
}
|
837 |
|
|
if (TREE_CODE (expr) == EQ_EXPR)
|
838 |
|
|
{
|
839 |
|
|
e0 = TREE_OPERAND (expr, 0);
|
840 |
|
|
e1 = TREE_OPERAND (expr, 1);
|
841 |
|
|
|
842 |
|
|
/* If e0 == e1 (EXPR) implies !COND, then EXPR cannot be true. */
|
843 |
|
|
e = simplify_replace_tree (cond, e0, e1);
|
844 |
|
|
if (zero_p (e))
|
845 |
|
|
return e;
|
846 |
|
|
e = simplify_replace_tree (cond, e1, e0);
|
847 |
|
|
if (zero_p (e))
|
848 |
|
|
return e;
|
849 |
|
|
}
|
850 |
|
|
if (TREE_CODE (expr) == NE_EXPR)
|
851 |
|
|
{
|
852 |
|
|
e0 = TREE_OPERAND (expr, 0);
|
853 |
|
|
e1 = TREE_OPERAND (expr, 1);
|
854 |
|
|
|
855 |
|
|
/* If e0 == e1 (!EXPR) implies !COND, then EXPR must be true. */
|
856 |
|
|
e = simplify_replace_tree (cond, e0, e1);
|
857 |
|
|
if (zero_p (e))
|
858 |
|
|
return boolean_true_node;
|
859 |
|
|
e = simplify_replace_tree (cond, e1, e0);
|
860 |
|
|
if (zero_p (e))
|
861 |
|
|
return boolean_true_node;
|
862 |
|
|
}
|
863 |
|
|
|
864 |
|
|
te = expand_simple_operations (expr);
|
865 |
|
|
|
866 |
|
|
/* Check whether COND ==> EXPR. */
|
867 |
|
|
notcond = invert_truthvalue (cond);
|
868 |
|
|
e = fold_binary (TRUTH_OR_EXPR, boolean_type_node, notcond, te);
|
869 |
|
|
if (nonzero_p (e))
|
870 |
|
|
return e;
|
871 |
|
|
|
872 |
|
|
/* Check whether COND ==> not EXPR. */
|
873 |
|
|
e = fold_binary (TRUTH_AND_EXPR, boolean_type_node, cond, te);
|
874 |
|
|
if (e && zero_p (e))
|
875 |
|
|
return e;
|
876 |
|
|
|
877 |
|
|
return expr;
|
878 |
|
|
}
|
879 |
|
|
|
880 |
|
|
/* Tries to simplify EXPR using the condition COND. Returns the simplified
|
881 |
|
|
expression (or EXPR unchanged, if no simplification was possible).
|
882 |
|
|
Wrapper around tree_simplify_using_condition_1 that ensures that chains
|
883 |
|
|
of simple operations in definitions of ssa names in COND are expanded,
|
884 |
|
|
so that things like casts or incrementing the value of the bound before
|
885 |
|
|
the loop do not cause us to fail. */
|
886 |
|
|
|
887 |
|
|
static tree
|
888 |
|
|
tree_simplify_using_condition (tree cond, tree expr)
|
889 |
|
|
{
|
890 |
|
|
cond = expand_simple_operations (cond);
|
891 |
|
|
|
892 |
|
|
return tree_simplify_using_condition_1 (cond, expr);
|
893 |
|
|
}
|
894 |
|
|
|
895 |
|
|
/* The maximum number of dominator BBs we search for conditions
|
896 |
|
|
of loop header copies we use for simplifying a conditional
|
897 |
|
|
expression. */
|
898 |
|
|
#define MAX_DOMINATORS_TO_WALK 8
|
899 |
|
|
|
900 |
|
|
/* Tries to simplify EXPR using the conditions on entry to LOOP.
|
901 |
|
|
Record the conditions used for simplification to CONDS_USED.
|
902 |
|
|
Returns the simplified expression (or EXPR unchanged, if no
|
903 |
|
|
simplification was possible).*/
|
904 |
|
|
|
905 |
|
|
static tree
|
906 |
|
|
simplify_using_initial_conditions (struct loop *loop, tree expr,
|
907 |
|
|
tree *conds_used)
|
908 |
|
|
{
|
909 |
|
|
edge e;
|
910 |
|
|
basic_block bb;
|
911 |
|
|
tree exp, cond;
|
912 |
|
|
int cnt = 0;
|
913 |
|
|
|
914 |
|
|
if (TREE_CODE (expr) == INTEGER_CST)
|
915 |
|
|
return expr;
|
916 |
|
|
|
917 |
|
|
/* Limit walking the dominators to avoid quadraticness in
|
918 |
|
|
the number of BBs times the number of loops in degenerate
|
919 |
|
|
cases. */
|
920 |
|
|
for (bb = loop->header;
|
921 |
|
|
bb != ENTRY_BLOCK_PTR && cnt < MAX_DOMINATORS_TO_WALK;
|
922 |
|
|
bb = get_immediate_dominator (CDI_DOMINATORS, bb))
|
923 |
|
|
{
|
924 |
|
|
if (!single_pred_p (bb))
|
925 |
|
|
continue;
|
926 |
|
|
e = single_pred_edge (bb);
|
927 |
|
|
|
928 |
|
|
if (!(e->flags & (EDGE_TRUE_VALUE | EDGE_FALSE_VALUE)))
|
929 |
|
|
continue;
|
930 |
|
|
|
931 |
|
|
cond = COND_EXPR_COND (last_stmt (e->src));
|
932 |
|
|
if (e->flags & EDGE_FALSE_VALUE)
|
933 |
|
|
cond = invert_truthvalue (cond);
|
934 |
|
|
exp = tree_simplify_using_condition (cond, expr);
|
935 |
|
|
|
936 |
|
|
if (exp != expr)
|
937 |
|
|
*conds_used = fold_build2 (TRUTH_AND_EXPR,
|
938 |
|
|
boolean_type_node,
|
939 |
|
|
*conds_used,
|
940 |
|
|
cond);
|
941 |
|
|
|
942 |
|
|
expr = exp;
|
943 |
|
|
++cnt;
|
944 |
|
|
}
|
945 |
|
|
|
946 |
|
|
return expr;
|
947 |
|
|
}
|
948 |
|
|
|
949 |
|
|
/* Tries to simplify EXPR using the evolutions of the loop invariants
|
950 |
|
|
in the superloops of LOOP. Returns the simplified expression
|
951 |
|
|
(or EXPR unchanged, if no simplification was possible). */
|
952 |
|
|
|
953 |
|
|
static tree
|
954 |
|
|
simplify_using_outer_evolutions (struct loop *loop, tree expr)
|
955 |
|
|
{
|
956 |
|
|
enum tree_code code = TREE_CODE (expr);
|
957 |
|
|
bool changed;
|
958 |
|
|
tree e, e0, e1, e2;
|
959 |
|
|
|
960 |
|
|
if (is_gimple_min_invariant (expr))
|
961 |
|
|
return expr;
|
962 |
|
|
|
963 |
|
|
if (code == TRUTH_OR_EXPR
|
964 |
|
|
|| code == TRUTH_AND_EXPR
|
965 |
|
|
|| code == COND_EXPR)
|
966 |
|
|
{
|
967 |
|
|
changed = false;
|
968 |
|
|
|
969 |
|
|
e0 = simplify_using_outer_evolutions (loop, TREE_OPERAND (expr, 0));
|
970 |
|
|
if (TREE_OPERAND (expr, 0) != e0)
|
971 |
|
|
changed = true;
|
972 |
|
|
|
973 |
|
|
e1 = simplify_using_outer_evolutions (loop, TREE_OPERAND (expr, 1));
|
974 |
|
|
if (TREE_OPERAND (expr, 1) != e1)
|
975 |
|
|
changed = true;
|
976 |
|
|
|
977 |
|
|
if (code == COND_EXPR)
|
978 |
|
|
{
|
979 |
|
|
e2 = simplify_using_outer_evolutions (loop, TREE_OPERAND (expr, 2));
|
980 |
|
|
if (TREE_OPERAND (expr, 2) != e2)
|
981 |
|
|
changed = true;
|
982 |
|
|
}
|
983 |
|
|
else
|
984 |
|
|
e2 = NULL_TREE;
|
985 |
|
|
|
986 |
|
|
if (changed)
|
987 |
|
|
{
|
988 |
|
|
if (code == COND_EXPR)
|
989 |
|
|
expr = fold_build3 (code, boolean_type_node, e0, e1, e2);
|
990 |
|
|
else
|
991 |
|
|
expr = fold_build2 (code, boolean_type_node, e0, e1);
|
992 |
|
|
}
|
993 |
|
|
|
994 |
|
|
return expr;
|
995 |
|
|
}
|
996 |
|
|
|
997 |
|
|
e = instantiate_parameters (loop, expr);
|
998 |
|
|
if (is_gimple_min_invariant (e))
|
999 |
|
|
return e;
|
1000 |
|
|
|
1001 |
|
|
return expr;
|
1002 |
|
|
}
|
1003 |
|
|
|
1004 |
|
|
/* Returns true if EXIT is the only possible exit from LOOP. */
|
1005 |
|
|
|
1006 |
|
|
static bool
|
1007 |
|
|
loop_only_exit_p (struct loop *loop, edge exit)
|
1008 |
|
|
{
|
1009 |
|
|
basic_block *body;
|
1010 |
|
|
block_stmt_iterator bsi;
|
1011 |
|
|
unsigned i;
|
1012 |
|
|
tree call;
|
1013 |
|
|
|
1014 |
|
|
if (exit != loop->single_exit)
|
1015 |
|
|
return false;
|
1016 |
|
|
|
1017 |
|
|
body = get_loop_body (loop);
|
1018 |
|
|
for (i = 0; i < loop->num_nodes; i++)
|
1019 |
|
|
{
|
1020 |
|
|
for (bsi = bsi_start (body[0]); !bsi_end_p (bsi); bsi_next (&bsi))
|
1021 |
|
|
{
|
1022 |
|
|
call = get_call_expr_in (bsi_stmt (bsi));
|
1023 |
|
|
if (call && TREE_SIDE_EFFECTS (call))
|
1024 |
|
|
{
|
1025 |
|
|
free (body);
|
1026 |
|
|
return false;
|
1027 |
|
|
}
|
1028 |
|
|
}
|
1029 |
|
|
}
|
1030 |
|
|
|
1031 |
|
|
free (body);
|
1032 |
|
|
return true;
|
1033 |
|
|
}
|
1034 |
|
|
|
1035 |
|
|
/* Stores description of number of iterations of LOOP derived from
|
1036 |
|
|
EXIT (an exit edge of the LOOP) in NITER. Returns true if some
|
1037 |
|
|
useful information could be derived (and fields of NITER has
|
1038 |
|
|
meaning described in comments at struct tree_niter_desc
|
1039 |
|
|
declaration), false otherwise. If WARN is true and
|
1040 |
|
|
-Wunsafe-loop-optimizations was given, warn if the optimizer is going to use
|
1041 |
|
|
potentially unsafe assumptions. */
|
1042 |
|
|
|
1043 |
|
|
bool
|
1044 |
|
|
number_of_iterations_exit (struct loop *loop, edge exit,
|
1045 |
|
|
struct tree_niter_desc *niter,
|
1046 |
|
|
bool warn)
|
1047 |
|
|
{
|
1048 |
|
|
tree stmt, cond, type;
|
1049 |
|
|
tree op0, op1;
|
1050 |
|
|
enum tree_code code;
|
1051 |
|
|
affine_iv iv0, iv1;
|
1052 |
|
|
|
1053 |
|
|
if (!dominated_by_p (CDI_DOMINATORS, loop->latch, exit->src))
|
1054 |
|
|
return false;
|
1055 |
|
|
|
1056 |
|
|
niter->assumptions = boolean_false_node;
|
1057 |
|
|
stmt = last_stmt (exit->src);
|
1058 |
|
|
if (!stmt || TREE_CODE (stmt) != COND_EXPR)
|
1059 |
|
|
return false;
|
1060 |
|
|
|
1061 |
|
|
/* We want the condition for staying inside loop. */
|
1062 |
|
|
cond = COND_EXPR_COND (stmt);
|
1063 |
|
|
if (exit->flags & EDGE_TRUE_VALUE)
|
1064 |
|
|
cond = invert_truthvalue (cond);
|
1065 |
|
|
|
1066 |
|
|
code = TREE_CODE (cond);
|
1067 |
|
|
switch (code)
|
1068 |
|
|
{
|
1069 |
|
|
case GT_EXPR:
|
1070 |
|
|
case GE_EXPR:
|
1071 |
|
|
case NE_EXPR:
|
1072 |
|
|
case LT_EXPR:
|
1073 |
|
|
case LE_EXPR:
|
1074 |
|
|
break;
|
1075 |
|
|
|
1076 |
|
|
default:
|
1077 |
|
|
return false;
|
1078 |
|
|
}
|
1079 |
|
|
|
1080 |
|
|
op0 = TREE_OPERAND (cond, 0);
|
1081 |
|
|
op1 = TREE_OPERAND (cond, 1);
|
1082 |
|
|
type = TREE_TYPE (op0);
|
1083 |
|
|
|
1084 |
|
|
if (TREE_CODE (type) != INTEGER_TYPE
|
1085 |
|
|
&& !POINTER_TYPE_P (type))
|
1086 |
|
|
return false;
|
1087 |
|
|
|
1088 |
|
|
if (!simple_iv (loop, stmt, op0, &iv0, false))
|
1089 |
|
|
return false;
|
1090 |
|
|
if (!simple_iv (loop, stmt, op1, &iv1, false))
|
1091 |
|
|
return false;
|
1092 |
|
|
|
1093 |
|
|
/* We don't want to see undefined signed overflow warnings while
|
1094 |
|
|
computing the nmber of iterations. */
|
1095 |
|
|
fold_defer_overflow_warnings ();
|
1096 |
|
|
|
1097 |
|
|
iv0.base = expand_simple_operations (iv0.base);
|
1098 |
|
|
iv1.base = expand_simple_operations (iv1.base);
|
1099 |
|
|
if (!number_of_iterations_cond (type, &iv0, code, &iv1, niter,
|
1100 |
|
|
loop_only_exit_p (loop, exit)))
|
1101 |
|
|
{
|
1102 |
|
|
fold_undefer_and_ignore_overflow_warnings ();
|
1103 |
|
|
return false;
|
1104 |
|
|
}
|
1105 |
|
|
|
1106 |
|
|
if (optimize >= 3)
|
1107 |
|
|
{
|
1108 |
|
|
niter->assumptions = simplify_using_outer_evolutions (loop,
|
1109 |
|
|
niter->assumptions);
|
1110 |
|
|
niter->may_be_zero = simplify_using_outer_evolutions (loop,
|
1111 |
|
|
niter->may_be_zero);
|
1112 |
|
|
niter->niter = simplify_using_outer_evolutions (loop, niter->niter);
|
1113 |
|
|
}
|
1114 |
|
|
|
1115 |
|
|
niter->additional_info = boolean_true_node;
|
1116 |
|
|
niter->assumptions
|
1117 |
|
|
= simplify_using_initial_conditions (loop,
|
1118 |
|
|
niter->assumptions,
|
1119 |
|
|
&niter->additional_info);
|
1120 |
|
|
niter->may_be_zero
|
1121 |
|
|
= simplify_using_initial_conditions (loop,
|
1122 |
|
|
niter->may_be_zero,
|
1123 |
|
|
&niter->additional_info);
|
1124 |
|
|
|
1125 |
|
|
fold_undefer_and_ignore_overflow_warnings ();
|
1126 |
|
|
|
1127 |
|
|
if (integer_onep (niter->assumptions))
|
1128 |
|
|
return true;
|
1129 |
|
|
|
1130 |
|
|
/* With -funsafe-loop-optimizations we assume that nothing bad can happen.
|
1131 |
|
|
But if we can prove that there is overflow or some other source of weird
|
1132 |
|
|
behavior, ignore the loop even with -funsafe-loop-optimizations. */
|
1133 |
|
|
if (integer_zerop (niter->assumptions))
|
1134 |
|
|
return false;
|
1135 |
|
|
|
1136 |
|
|
if (flag_unsafe_loop_optimizations)
|
1137 |
|
|
niter->assumptions = boolean_true_node;
|
1138 |
|
|
|
1139 |
|
|
if (warn)
|
1140 |
|
|
{
|
1141 |
|
|
const char *wording;
|
1142 |
|
|
location_t loc = EXPR_LOCATION (stmt);
|
1143 |
|
|
|
1144 |
|
|
/* We can provide a more specific warning if one of the operator is
|
1145 |
|
|
constant and the other advances by +1 or -1. */
|
1146 |
|
|
if (!zero_p (iv1.step)
|
1147 |
|
|
? (zero_p (iv0.step)
|
1148 |
|
|
&& (integer_onep (iv1.step) || integer_all_onesp (iv1.step)))
|
1149 |
|
|
: (iv0.step
|
1150 |
|
|
&& (integer_onep (iv0.step) || integer_all_onesp (iv0.step))))
|
1151 |
|
|
wording =
|
1152 |
|
|
flag_unsafe_loop_optimizations
|
1153 |
|
|
? N_("assuming that the loop is not infinite")
|
1154 |
|
|
: N_("cannot optimize possibly infinite loops");
|
1155 |
|
|
else
|
1156 |
|
|
wording =
|
1157 |
|
|
flag_unsafe_loop_optimizations
|
1158 |
|
|
? N_("assuming that the loop counter does not overflow")
|
1159 |
|
|
: N_("cannot optimize loop, the loop counter may overflow");
|
1160 |
|
|
|
1161 |
|
|
if (LOCATION_LINE (loc) > 0)
|
1162 |
|
|
warning (OPT_Wunsafe_loop_optimizations, "%H%s", &loc, gettext (wording));
|
1163 |
|
|
else
|
1164 |
|
|
warning (OPT_Wunsafe_loop_optimizations, "%s", gettext (wording));
|
1165 |
|
|
}
|
1166 |
|
|
|
1167 |
|
|
return flag_unsafe_loop_optimizations;
|
1168 |
|
|
}
|
1169 |
|
|
|
1170 |
|
|
/* Try to determine the number of iterations of LOOP. If we succeed,
|
1171 |
|
|
expression giving number of iterations is returned and *EXIT is
|
1172 |
|
|
set to the edge from that the information is obtained. Otherwise
|
1173 |
|
|
chrec_dont_know is returned. */
|
1174 |
|
|
|
1175 |
|
|
tree
|
1176 |
|
|
find_loop_niter (struct loop *loop, edge *exit)
|
1177 |
|
|
{
|
1178 |
|
|
unsigned n_exits, i;
|
1179 |
|
|
edge *exits = get_loop_exit_edges (loop, &n_exits);
|
1180 |
|
|
edge ex;
|
1181 |
|
|
tree niter = NULL_TREE, aniter;
|
1182 |
|
|
struct tree_niter_desc desc;
|
1183 |
|
|
|
1184 |
|
|
*exit = NULL;
|
1185 |
|
|
for (i = 0; i < n_exits; i++)
|
1186 |
|
|
{
|
1187 |
|
|
ex = exits[i];
|
1188 |
|
|
if (!just_once_each_iteration_p (loop, ex->src))
|
1189 |
|
|
continue;
|
1190 |
|
|
|
1191 |
|
|
if (!number_of_iterations_exit (loop, ex, &desc, false))
|
1192 |
|
|
continue;
|
1193 |
|
|
|
1194 |
|
|
if (nonzero_p (desc.may_be_zero))
|
1195 |
|
|
{
|
1196 |
|
|
/* We exit in the first iteration through this exit.
|
1197 |
|
|
We won't find anything better. */
|
1198 |
|
|
niter = build_int_cst (unsigned_type_node, 0);
|
1199 |
|
|
*exit = ex;
|
1200 |
|
|
break;
|
1201 |
|
|
}
|
1202 |
|
|
|
1203 |
|
|
if (!zero_p (desc.may_be_zero))
|
1204 |
|
|
continue;
|
1205 |
|
|
|
1206 |
|
|
aniter = desc.niter;
|
1207 |
|
|
|
1208 |
|
|
if (!niter)
|
1209 |
|
|
{
|
1210 |
|
|
/* Nothing recorded yet. */
|
1211 |
|
|
niter = aniter;
|
1212 |
|
|
*exit = ex;
|
1213 |
|
|
continue;
|
1214 |
|
|
}
|
1215 |
|
|
|
1216 |
|
|
/* Prefer constants, the lower the better. */
|
1217 |
|
|
if (TREE_CODE (aniter) != INTEGER_CST)
|
1218 |
|
|
continue;
|
1219 |
|
|
|
1220 |
|
|
if (TREE_CODE (niter) != INTEGER_CST)
|
1221 |
|
|
{
|
1222 |
|
|
niter = aniter;
|
1223 |
|
|
*exit = ex;
|
1224 |
|
|
continue;
|
1225 |
|
|
}
|
1226 |
|
|
|
1227 |
|
|
if (tree_int_cst_lt (aniter, niter))
|
1228 |
|
|
{
|
1229 |
|
|
niter = aniter;
|
1230 |
|
|
*exit = ex;
|
1231 |
|
|
continue;
|
1232 |
|
|
}
|
1233 |
|
|
}
|
1234 |
|
|
free (exits);
|
1235 |
|
|
|
1236 |
|
|
return niter ? niter : chrec_dont_know;
|
1237 |
|
|
}
|
1238 |
|
|
|
1239 |
|
|
/*
|
1240 |
|
|
|
1241 |
|
|
Analysis of a number of iterations of a loop by a brute-force evaluation.
|
1242 |
|
|
|
1243 |
|
|
*/
|
1244 |
|
|
|
1245 |
|
|
/* Bound on the number of iterations we try to evaluate. */
|
1246 |
|
|
|
1247 |
|
|
#define MAX_ITERATIONS_TO_TRACK \
|
1248 |
|
|
((unsigned) PARAM_VALUE (PARAM_MAX_ITERATIONS_TO_TRACK))
|
1249 |
|
|
|
1250 |
|
|
/* Returns the loop phi node of LOOP such that ssa name X is derived from its
|
1251 |
|
|
result by a chain of operations such that all but exactly one of their
|
1252 |
|
|
operands are constants. */
|
1253 |
|
|
|
1254 |
|
|
static tree
|
1255 |
|
|
chain_of_csts_start (struct loop *loop, tree x)
|
1256 |
|
|
{
|
1257 |
|
|
tree stmt = SSA_NAME_DEF_STMT (x);
|
1258 |
|
|
tree use;
|
1259 |
|
|
basic_block bb = bb_for_stmt (stmt);
|
1260 |
|
|
|
1261 |
|
|
if (!bb
|
1262 |
|
|
|| !flow_bb_inside_loop_p (loop, bb))
|
1263 |
|
|
return NULL_TREE;
|
1264 |
|
|
|
1265 |
|
|
if (TREE_CODE (stmt) == PHI_NODE)
|
1266 |
|
|
{
|
1267 |
|
|
if (bb == loop->header)
|
1268 |
|
|
return stmt;
|
1269 |
|
|
|
1270 |
|
|
return NULL_TREE;
|
1271 |
|
|
}
|
1272 |
|
|
|
1273 |
|
|
if (TREE_CODE (stmt) != MODIFY_EXPR)
|
1274 |
|
|
return NULL_TREE;
|
1275 |
|
|
|
1276 |
|
|
if (!ZERO_SSA_OPERANDS (stmt, SSA_OP_ALL_VIRTUALS))
|
1277 |
|
|
return NULL_TREE;
|
1278 |
|
|
if (SINGLE_SSA_DEF_OPERAND (stmt, SSA_OP_DEF) == NULL_DEF_OPERAND_P)
|
1279 |
|
|
return NULL_TREE;
|
1280 |
|
|
|
1281 |
|
|
use = SINGLE_SSA_TREE_OPERAND (stmt, SSA_OP_USE);
|
1282 |
|
|
if (use == NULL_USE_OPERAND_P)
|
1283 |
|
|
return NULL_TREE;
|
1284 |
|
|
|
1285 |
|
|
return chain_of_csts_start (loop, use);
|
1286 |
|
|
}
|
1287 |
|
|
|
1288 |
|
|
/* Determines whether the expression X is derived from a result of a phi node
|
1289 |
|
|
in header of LOOP such that
|
1290 |
|
|
|
1291 |
|
|
* the derivation of X consists only from operations with constants
|
1292 |
|
|
* the initial value of the phi node is constant
|
1293 |
|
|
* the value of the phi node in the next iteration can be derived from the
|
1294 |
|
|
value in the current iteration by a chain of operations with constants.
|
1295 |
|
|
|
1296 |
|
|
If such phi node exists, it is returned. If X is a constant, X is returned
|
1297 |
|
|
unchanged. Otherwise NULL_TREE is returned. */
|
1298 |
|
|
|
1299 |
|
|
static tree
|
1300 |
|
|
get_base_for (struct loop *loop, tree x)
|
1301 |
|
|
{
|
1302 |
|
|
tree phi, init, next;
|
1303 |
|
|
|
1304 |
|
|
if (is_gimple_min_invariant (x))
|
1305 |
|
|
return x;
|
1306 |
|
|
|
1307 |
|
|
phi = chain_of_csts_start (loop, x);
|
1308 |
|
|
if (!phi)
|
1309 |
|
|
return NULL_TREE;
|
1310 |
|
|
|
1311 |
|
|
init = PHI_ARG_DEF_FROM_EDGE (phi, loop_preheader_edge (loop));
|
1312 |
|
|
next = PHI_ARG_DEF_FROM_EDGE (phi, loop_latch_edge (loop));
|
1313 |
|
|
|
1314 |
|
|
if (TREE_CODE (next) != SSA_NAME)
|
1315 |
|
|
return NULL_TREE;
|
1316 |
|
|
|
1317 |
|
|
if (!is_gimple_min_invariant (init))
|
1318 |
|
|
return NULL_TREE;
|
1319 |
|
|
|
1320 |
|
|
if (chain_of_csts_start (loop, next) != phi)
|
1321 |
|
|
return NULL_TREE;
|
1322 |
|
|
|
1323 |
|
|
return phi;
|
1324 |
|
|
}
|
1325 |
|
|
|
1326 |
|
|
/* Given an expression X, then
|
1327 |
|
|
|
1328 |
|
|
* if X is NULL_TREE, we return the constant BASE.
|
1329 |
|
|
* otherwise X is a SSA name, whose value in the considered loop is derived
|
1330 |
|
|
by a chain of operations with constant from a result of a phi node in
|
1331 |
|
|
the header of the loop. Then we return value of X when the value of the
|
1332 |
|
|
result of this phi node is given by the constant BASE. */
|
1333 |
|
|
|
1334 |
|
|
static tree
|
1335 |
|
|
get_val_for (tree x, tree base)
|
1336 |
|
|
{
|
1337 |
|
|
tree stmt, nx, val;
|
1338 |
|
|
use_operand_p op;
|
1339 |
|
|
ssa_op_iter iter;
|
1340 |
|
|
|
1341 |
|
|
gcc_assert (is_gimple_min_invariant (base));
|
1342 |
|
|
|
1343 |
|
|
if (!x)
|
1344 |
|
|
return base;
|
1345 |
|
|
|
1346 |
|
|
stmt = SSA_NAME_DEF_STMT (x);
|
1347 |
|
|
if (TREE_CODE (stmt) == PHI_NODE)
|
1348 |
|
|
return base;
|
1349 |
|
|
|
1350 |
|
|
FOR_EACH_SSA_USE_OPERAND (op, stmt, iter, SSA_OP_USE)
|
1351 |
|
|
{
|
1352 |
|
|
nx = USE_FROM_PTR (op);
|
1353 |
|
|
val = get_val_for (nx, base);
|
1354 |
|
|
SET_USE (op, val);
|
1355 |
|
|
val = fold (TREE_OPERAND (stmt, 1));
|
1356 |
|
|
SET_USE (op, nx);
|
1357 |
|
|
/* only iterate loop once. */
|
1358 |
|
|
return val;
|
1359 |
|
|
}
|
1360 |
|
|
|
1361 |
|
|
/* Should never reach here. */
|
1362 |
|
|
gcc_unreachable();
|
1363 |
|
|
}
|
1364 |
|
|
|
1365 |
|
|
/* Tries to count the number of iterations of LOOP till it exits by EXIT
|
1366 |
|
|
by brute force -- i.e. by determining the value of the operands of the
|
1367 |
|
|
condition at EXIT in first few iterations of the loop (assuming that
|
1368 |
|
|
these values are constant) and determining the first one in that the
|
1369 |
|
|
condition is not satisfied. Returns the constant giving the number
|
1370 |
|
|
of the iterations of LOOP if successful, chrec_dont_know otherwise. */
|
1371 |
|
|
|
1372 |
|
|
tree
|
1373 |
|
|
loop_niter_by_eval (struct loop *loop, edge exit)
|
1374 |
|
|
{
|
1375 |
|
|
tree cond, cnd, acnd;
|
1376 |
|
|
tree op[2], val[2], next[2], aval[2], phi[2];
|
1377 |
|
|
unsigned i, j;
|
1378 |
|
|
enum tree_code cmp;
|
1379 |
|
|
|
1380 |
|
|
cond = last_stmt (exit->src);
|
1381 |
|
|
if (!cond || TREE_CODE (cond) != COND_EXPR)
|
1382 |
|
|
return chrec_dont_know;
|
1383 |
|
|
|
1384 |
|
|
cnd = COND_EXPR_COND (cond);
|
1385 |
|
|
if (exit->flags & EDGE_TRUE_VALUE)
|
1386 |
|
|
cnd = invert_truthvalue (cnd);
|
1387 |
|
|
|
1388 |
|
|
cmp = TREE_CODE (cnd);
|
1389 |
|
|
switch (cmp)
|
1390 |
|
|
{
|
1391 |
|
|
case EQ_EXPR:
|
1392 |
|
|
case NE_EXPR:
|
1393 |
|
|
case GT_EXPR:
|
1394 |
|
|
case GE_EXPR:
|
1395 |
|
|
case LT_EXPR:
|
1396 |
|
|
case LE_EXPR:
|
1397 |
|
|
for (j = 0; j < 2; j++)
|
1398 |
|
|
op[j] = TREE_OPERAND (cnd, j);
|
1399 |
|
|
break;
|
1400 |
|
|
|
1401 |
|
|
default:
|
1402 |
|
|
return chrec_dont_know;
|
1403 |
|
|
}
|
1404 |
|
|
|
1405 |
|
|
for (j = 0; j < 2; j++)
|
1406 |
|
|
{
|
1407 |
|
|
phi[j] = get_base_for (loop, op[j]);
|
1408 |
|
|
if (!phi[j])
|
1409 |
|
|
return chrec_dont_know;
|
1410 |
|
|
}
|
1411 |
|
|
|
1412 |
|
|
for (j = 0; j < 2; j++)
|
1413 |
|
|
{
|
1414 |
|
|
if (TREE_CODE (phi[j]) == PHI_NODE)
|
1415 |
|
|
{
|
1416 |
|
|
val[j] = PHI_ARG_DEF_FROM_EDGE (phi[j], loop_preheader_edge (loop));
|
1417 |
|
|
next[j] = PHI_ARG_DEF_FROM_EDGE (phi[j], loop_latch_edge (loop));
|
1418 |
|
|
}
|
1419 |
|
|
else
|
1420 |
|
|
{
|
1421 |
|
|
val[j] = phi[j];
|
1422 |
|
|
next[j] = NULL_TREE;
|
1423 |
|
|
op[j] = NULL_TREE;
|
1424 |
|
|
}
|
1425 |
|
|
}
|
1426 |
|
|
|
1427 |
|
|
/* Don't issue signed overflow warnings. */
|
1428 |
|
|
fold_defer_overflow_warnings ();
|
1429 |
|
|
|
1430 |
|
|
for (i = 0; i < MAX_ITERATIONS_TO_TRACK; i++)
|
1431 |
|
|
{
|
1432 |
|
|
for (j = 0; j < 2; j++)
|
1433 |
|
|
aval[j] = get_val_for (op[j], val[j]);
|
1434 |
|
|
|
1435 |
|
|
acnd = fold_binary (cmp, boolean_type_node, aval[0], aval[1]);
|
1436 |
|
|
if (acnd && zero_p (acnd))
|
1437 |
|
|
{
|
1438 |
|
|
fold_undefer_and_ignore_overflow_warnings ();
|
1439 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
1440 |
|
|
fprintf (dump_file,
|
1441 |
|
|
"Proved that loop %d iterates %d times using brute force.\n",
|
1442 |
|
|
loop->num, i);
|
1443 |
|
|
return build_int_cst (unsigned_type_node, i);
|
1444 |
|
|
}
|
1445 |
|
|
|
1446 |
|
|
for (j = 0; j < 2; j++)
|
1447 |
|
|
{
|
1448 |
|
|
val[j] = get_val_for (next[j], val[j]);
|
1449 |
|
|
if (!is_gimple_min_invariant (val[j]))
|
1450 |
|
|
{
|
1451 |
|
|
fold_undefer_and_ignore_overflow_warnings ();
|
1452 |
|
|
return chrec_dont_know;
|
1453 |
|
|
}
|
1454 |
|
|
}
|
1455 |
|
|
}
|
1456 |
|
|
|
1457 |
|
|
fold_undefer_and_ignore_overflow_warnings ();
|
1458 |
|
|
|
1459 |
|
|
return chrec_dont_know;
|
1460 |
|
|
}
|
1461 |
|
|
|
1462 |
|
|
/* Finds the exit of the LOOP by that the loop exits after a constant
|
1463 |
|
|
number of iterations and stores the exit edge to *EXIT. The constant
|
1464 |
|
|
giving the number of iterations of LOOP is returned. The number of
|
1465 |
|
|
iterations is determined using loop_niter_by_eval (i.e. by brute force
|
1466 |
|
|
evaluation). If we are unable to find the exit for that loop_niter_by_eval
|
1467 |
|
|
determines the number of iterations, chrec_dont_know is returned. */
|
1468 |
|
|
|
1469 |
|
|
tree
|
1470 |
|
|
find_loop_niter_by_eval (struct loop *loop, edge *exit)
|
1471 |
|
|
{
|
1472 |
|
|
unsigned n_exits, i;
|
1473 |
|
|
edge *exits = get_loop_exit_edges (loop, &n_exits);
|
1474 |
|
|
edge ex;
|
1475 |
|
|
tree niter = NULL_TREE, aniter;
|
1476 |
|
|
|
1477 |
|
|
*exit = NULL;
|
1478 |
|
|
for (i = 0; i < n_exits; i++)
|
1479 |
|
|
{
|
1480 |
|
|
ex = exits[i];
|
1481 |
|
|
if (!just_once_each_iteration_p (loop, ex->src))
|
1482 |
|
|
continue;
|
1483 |
|
|
|
1484 |
|
|
aniter = loop_niter_by_eval (loop, ex);
|
1485 |
|
|
if (chrec_contains_undetermined (aniter))
|
1486 |
|
|
continue;
|
1487 |
|
|
|
1488 |
|
|
if (niter
|
1489 |
|
|
&& !tree_int_cst_lt (aniter, niter))
|
1490 |
|
|
continue;
|
1491 |
|
|
|
1492 |
|
|
niter = aniter;
|
1493 |
|
|
*exit = ex;
|
1494 |
|
|
}
|
1495 |
|
|
free (exits);
|
1496 |
|
|
|
1497 |
|
|
return niter ? niter : chrec_dont_know;
|
1498 |
|
|
}
|
1499 |
|
|
|
1500 |
|
|
/*
|
1501 |
|
|
|
1502 |
|
|
Analysis of upper bounds on number of iterations of a loop.
|
1503 |
|
|
|
1504 |
|
|
*/
|
1505 |
|
|
|
1506 |
|
|
/* Returns true if we can prove that COND ==> VAL >= 0. */
|
1507 |
|
|
|
1508 |
|
|
static bool
|
1509 |
|
|
implies_nonnegative_p (tree cond, tree val)
|
1510 |
|
|
{
|
1511 |
|
|
tree type = TREE_TYPE (val);
|
1512 |
|
|
tree compare;
|
1513 |
|
|
|
1514 |
|
|
if (tree_expr_nonnegative_p (val))
|
1515 |
|
|
return true;
|
1516 |
|
|
|
1517 |
|
|
if (nonzero_p (cond))
|
1518 |
|
|
return false;
|
1519 |
|
|
|
1520 |
|
|
compare = fold_build2 (GE_EXPR,
|
1521 |
|
|
boolean_type_node, val, build_int_cst (type, 0));
|
1522 |
|
|
compare = tree_simplify_using_condition_1 (cond, compare);
|
1523 |
|
|
|
1524 |
|
|
return nonzero_p (compare);
|
1525 |
|
|
}
|
1526 |
|
|
|
1527 |
|
|
/* Returns true if we can prove that COND ==> A >= B. */
|
1528 |
|
|
|
1529 |
|
|
static bool
|
1530 |
|
|
implies_ge_p (tree cond, tree a, tree b)
|
1531 |
|
|
{
|
1532 |
|
|
tree compare = fold_build2 (GE_EXPR, boolean_type_node, a, b);
|
1533 |
|
|
|
1534 |
|
|
if (nonzero_p (compare))
|
1535 |
|
|
return true;
|
1536 |
|
|
|
1537 |
|
|
if (nonzero_p (cond))
|
1538 |
|
|
return false;
|
1539 |
|
|
|
1540 |
|
|
compare = tree_simplify_using_condition_1 (cond, compare);
|
1541 |
|
|
|
1542 |
|
|
return nonzero_p (compare);
|
1543 |
|
|
}
|
1544 |
|
|
|
1545 |
|
|
/* Returns a constant upper bound on the value of expression VAL. VAL
|
1546 |
|
|
is considered to be unsigned. If its type is signed, its value must
|
1547 |
|
|
be nonnegative.
|
1548 |
|
|
|
1549 |
|
|
The condition ADDITIONAL must be satisfied (for example, if VAL is
|
1550 |
|
|
"(unsigned) n" and ADDITIONAL is "n > 0", then we can derive that
|
1551 |
|
|
VAL is at most (unsigned) MAX_INT). */
|
1552 |
|
|
|
1553 |
|
|
static double_int
|
1554 |
|
|
derive_constant_upper_bound (tree val, tree additional)
|
1555 |
|
|
{
|
1556 |
|
|
tree type = TREE_TYPE (val);
|
1557 |
|
|
tree op0, op1, subtype, maxt;
|
1558 |
|
|
double_int bnd, max, mmax, cst;
|
1559 |
|
|
|
1560 |
|
|
if (INTEGRAL_TYPE_P (type))
|
1561 |
|
|
maxt = TYPE_MAX_VALUE (type);
|
1562 |
|
|
else
|
1563 |
|
|
maxt = upper_bound_in_type (type, type);
|
1564 |
|
|
|
1565 |
|
|
max = tree_to_double_int (maxt);
|
1566 |
|
|
|
1567 |
|
|
switch (TREE_CODE (val))
|
1568 |
|
|
{
|
1569 |
|
|
case INTEGER_CST:
|
1570 |
|
|
return tree_to_double_int (val);
|
1571 |
|
|
|
1572 |
|
|
case NOP_EXPR:
|
1573 |
|
|
case CONVERT_EXPR:
|
1574 |
|
|
op0 = TREE_OPERAND (val, 0);
|
1575 |
|
|
subtype = TREE_TYPE (op0);
|
1576 |
|
|
if (!TYPE_UNSIGNED (subtype)
|
1577 |
|
|
/* If TYPE is also signed, the fact that VAL is nonnegative implies
|
1578 |
|
|
that OP0 is nonnegative. */
|
1579 |
|
|
&& TYPE_UNSIGNED (type)
|
1580 |
|
|
&& !implies_nonnegative_p (additional, op0))
|
1581 |
|
|
{
|
1582 |
|
|
/* If we cannot prove that the casted expression is nonnegative,
|
1583 |
|
|
we cannot establish more useful upper bound than the precision
|
1584 |
|
|
of the type gives us. */
|
1585 |
|
|
return max;
|
1586 |
|
|
}
|
1587 |
|
|
|
1588 |
|
|
/* We now know that op0 is an nonnegative value. Try deriving an upper
|
1589 |
|
|
bound for it. */
|
1590 |
|
|
bnd = derive_constant_upper_bound (op0, additional);
|
1591 |
|
|
|
1592 |
|
|
/* If the bound does not fit in TYPE, max. value of TYPE could be
|
1593 |
|
|
attained. */
|
1594 |
|
|
if (double_int_ucmp (max, bnd) < 0)
|
1595 |
|
|
return max;
|
1596 |
|
|
|
1597 |
|
|
return bnd;
|
1598 |
|
|
|
1599 |
|
|
case PLUS_EXPR:
|
1600 |
|
|
case MINUS_EXPR:
|
1601 |
|
|
op0 = TREE_OPERAND (val, 0);
|
1602 |
|
|
op1 = TREE_OPERAND (val, 1);
|
1603 |
|
|
|
1604 |
|
|
if (TREE_CODE (op1) != INTEGER_CST
|
1605 |
|
|
|| !implies_nonnegative_p (additional, op0))
|
1606 |
|
|
return max;
|
1607 |
|
|
|
1608 |
|
|
/* Canonicalize to OP0 - CST. Consider CST to be signed, in order to
|
1609 |
|
|
choose the most logical way how to treat this constant regardless
|
1610 |
|
|
of the signedness of the type. */
|
1611 |
|
|
cst = tree_to_double_int (op1);
|
1612 |
|
|
cst = double_int_sext (cst, TYPE_PRECISION (type));
|
1613 |
|
|
if (TREE_CODE (val) == PLUS_EXPR)
|
1614 |
|
|
cst = double_int_neg (cst);
|
1615 |
|
|
|
1616 |
|
|
bnd = derive_constant_upper_bound (op0, additional);
|
1617 |
|
|
|
1618 |
|
|
if (double_int_negative_p (cst))
|
1619 |
|
|
{
|
1620 |
|
|
cst = double_int_neg (cst);
|
1621 |
|
|
/* Avoid CST == 0x80000... */
|
1622 |
|
|
if (double_int_negative_p (cst))
|
1623 |
|
|
return max;;
|
1624 |
|
|
|
1625 |
|
|
/* OP0 + CST. We need to check that
|
1626 |
|
|
BND <= MAX (type) - CST. */
|
1627 |
|
|
|
1628 |
|
|
mmax = double_int_add (max, double_int_neg (cst));
|
1629 |
|
|
if (double_int_ucmp (bnd, mmax) > 0)
|
1630 |
|
|
return max;
|
1631 |
|
|
|
1632 |
|
|
return double_int_add (bnd, cst);
|
1633 |
|
|
}
|
1634 |
|
|
else
|
1635 |
|
|
{
|
1636 |
|
|
/* OP0 - CST, where CST >= 0.
|
1637 |
|
|
|
1638 |
|
|
If TYPE is signed, we have already verified that OP0 >= 0, and we
|
1639 |
|
|
know that the result is nonnegative. This implies that
|
1640 |
|
|
VAL <= BND - CST.
|
1641 |
|
|
|
1642 |
|
|
If TYPE is unsigned, we must additionally know that OP0 >= CST,
|
1643 |
|
|
otherwise the operation underflows.
|
1644 |
|
|
*/
|
1645 |
|
|
|
1646 |
|
|
/* This should only happen if the type is unsigned; however, for
|
1647 |
|
|
programs that use overflowing signed arithmetics even with
|
1648 |
|
|
-fno-wrapv, this condition may also be true for signed values. */
|
1649 |
|
|
if (double_int_ucmp (bnd, cst) < 0)
|
1650 |
|
|
return max;
|
1651 |
|
|
|
1652 |
|
|
if (TYPE_UNSIGNED (type)
|
1653 |
|
|
&& !implies_ge_p (additional,
|
1654 |
|
|
op0, double_int_to_tree (type, cst)))
|
1655 |
|
|
return max;
|
1656 |
|
|
|
1657 |
|
|
bnd = double_int_add (bnd, double_int_neg (cst));
|
1658 |
|
|
}
|
1659 |
|
|
|
1660 |
|
|
return bnd;
|
1661 |
|
|
|
1662 |
|
|
case FLOOR_DIV_EXPR:
|
1663 |
|
|
case EXACT_DIV_EXPR:
|
1664 |
|
|
op0 = TREE_OPERAND (val, 0);
|
1665 |
|
|
op1 = TREE_OPERAND (val, 1);
|
1666 |
|
|
if (TREE_CODE (op1) != INTEGER_CST
|
1667 |
|
|
|| tree_int_cst_sign_bit (op1))
|
1668 |
|
|
return max;
|
1669 |
|
|
|
1670 |
|
|
bnd = derive_constant_upper_bound (op0, additional);
|
1671 |
|
|
return double_int_udiv (bnd, tree_to_double_int (op1), FLOOR_DIV_EXPR);
|
1672 |
|
|
|
1673 |
|
|
default:
|
1674 |
|
|
return max;
|
1675 |
|
|
}
|
1676 |
|
|
}
|
1677 |
|
|
|
1678 |
|
|
/* Records that AT_STMT is executed at most BOUND times in LOOP. The
|
1679 |
|
|
additional condition ADDITIONAL is recorded with the bound. */
|
1680 |
|
|
|
1681 |
|
|
void
|
1682 |
|
|
record_estimate (struct loop *loop, tree bound, tree additional, tree at_stmt)
|
1683 |
|
|
{
|
1684 |
|
|
struct nb_iter_bound *elt = xmalloc (sizeof (struct nb_iter_bound));
|
1685 |
|
|
double_int i_bound = derive_constant_upper_bound (bound, additional);
|
1686 |
|
|
tree c_bound = double_int_to_tree (unsigned_type_for (TREE_TYPE (bound)),
|
1687 |
|
|
i_bound);
|
1688 |
|
|
|
1689 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
1690 |
|
|
{
|
1691 |
|
|
fprintf (dump_file, "Statements after ");
|
1692 |
|
|
print_generic_expr (dump_file, at_stmt, TDF_SLIM);
|
1693 |
|
|
fprintf (dump_file, " are executed at most ");
|
1694 |
|
|
print_generic_expr (dump_file, bound, TDF_SLIM);
|
1695 |
|
|
fprintf (dump_file, " (bounded by ");
|
1696 |
|
|
print_generic_expr (dump_file, c_bound, TDF_SLIM);
|
1697 |
|
|
fprintf (dump_file, ") times in loop %d.\n", loop->num);
|
1698 |
|
|
}
|
1699 |
|
|
|
1700 |
|
|
elt->bound = c_bound;
|
1701 |
|
|
elt->at_stmt = at_stmt;
|
1702 |
|
|
elt->next = loop->bounds;
|
1703 |
|
|
loop->bounds = elt;
|
1704 |
|
|
}
|
1705 |
|
|
|
1706 |
|
|
/* Initialize LOOP->ESTIMATED_NB_ITERATIONS with the lowest safe
|
1707 |
|
|
approximation of the number of iterations for LOOP. */
|
1708 |
|
|
|
1709 |
|
|
static void
|
1710 |
|
|
compute_estimated_nb_iterations (struct loop *loop)
|
1711 |
|
|
{
|
1712 |
|
|
struct nb_iter_bound *bound;
|
1713 |
|
|
|
1714 |
|
|
for (bound = loop->bounds; bound; bound = bound->next)
|
1715 |
|
|
{
|
1716 |
|
|
if (TREE_CODE (bound->bound) != INTEGER_CST)
|
1717 |
|
|
continue;
|
1718 |
|
|
|
1719 |
|
|
/* Update only when there is no previous estimation, or when the current
|
1720 |
|
|
estimation is smaller. */
|
1721 |
|
|
if (chrec_contains_undetermined (loop->estimated_nb_iterations)
|
1722 |
|
|
|| tree_int_cst_lt (bound->bound, loop->estimated_nb_iterations))
|
1723 |
|
|
loop->estimated_nb_iterations = bound->bound;
|
1724 |
|
|
}
|
1725 |
|
|
}
|
1726 |
|
|
|
1727 |
|
|
/* The following analyzers are extracting informations on the bounds
|
1728 |
|
|
of LOOP from the following undefined behaviors:
|
1729 |
|
|
|
1730 |
|
|
- data references should not access elements over the statically
|
1731 |
|
|
allocated size,
|
1732 |
|
|
|
1733 |
|
|
- signed variables should not overflow when flag_wrapv is not set.
|
1734 |
|
|
*/
|
1735 |
|
|
|
1736 |
|
|
static void
|
1737 |
|
|
infer_loop_bounds_from_undefined (struct loop *loop)
|
1738 |
|
|
{
|
1739 |
|
|
unsigned i;
|
1740 |
|
|
basic_block bb, *bbs;
|
1741 |
|
|
block_stmt_iterator bsi;
|
1742 |
|
|
|
1743 |
|
|
bbs = get_loop_body (loop);
|
1744 |
|
|
|
1745 |
|
|
for (i = 0; i < loop->num_nodes; i++)
|
1746 |
|
|
{
|
1747 |
|
|
bb = bbs[i];
|
1748 |
|
|
|
1749 |
|
|
/* If BB is not executed in each iteration of the loop, we cannot
|
1750 |
|
|
use the operations in it to infer reliable upper bound on the
|
1751 |
|
|
# of iterations of the loop. */
|
1752 |
|
|
if (!dominated_by_p (CDI_DOMINATORS, loop->latch, bb))
|
1753 |
|
|
continue;
|
1754 |
|
|
|
1755 |
|
|
for (bsi = bsi_start (bb); !bsi_end_p (bsi); bsi_next (&bsi))
|
1756 |
|
|
{
|
1757 |
|
|
tree stmt = bsi_stmt (bsi);
|
1758 |
|
|
|
1759 |
|
|
switch (TREE_CODE (stmt))
|
1760 |
|
|
{
|
1761 |
|
|
case MODIFY_EXPR:
|
1762 |
|
|
{
|
1763 |
|
|
tree op0 = TREE_OPERAND (stmt, 0);
|
1764 |
|
|
tree op1 = TREE_OPERAND (stmt, 1);
|
1765 |
|
|
|
1766 |
|
|
/* For each array access, analyze its access function
|
1767 |
|
|
and record a bound on the loop iteration domain. */
|
1768 |
|
|
if (TREE_CODE (op1) == ARRAY_REF
|
1769 |
|
|
&& !array_ref_contains_indirect_ref (op1))
|
1770 |
|
|
estimate_iters_using_array (stmt, op1);
|
1771 |
|
|
|
1772 |
|
|
if (TREE_CODE (op0) == ARRAY_REF
|
1773 |
|
|
&& !array_ref_contains_indirect_ref (op0))
|
1774 |
|
|
estimate_iters_using_array (stmt, op0);
|
1775 |
|
|
|
1776 |
|
|
/* For each signed type variable in LOOP, analyze its
|
1777 |
|
|
scalar evolution and record a bound of the loop
|
1778 |
|
|
based on the type's ranges. */
|
1779 |
|
|
else if (!flag_wrapv && TREE_CODE (op0) == SSA_NAME)
|
1780 |
|
|
{
|
1781 |
|
|
tree init, step, diff, estimation;
|
1782 |
|
|
tree scev = instantiate_parameters
|
1783 |
|
|
(loop, analyze_scalar_evolution (loop, op0));
|
1784 |
|
|
tree type = chrec_type (scev);
|
1785 |
|
|
|
1786 |
|
|
if (chrec_contains_undetermined (scev)
|
1787 |
|
|
|| TYPE_OVERFLOW_WRAPS (type))
|
1788 |
|
|
break;
|
1789 |
|
|
|
1790 |
|
|
init = initial_condition_in_loop_num (scev, loop->num);
|
1791 |
|
|
step = evolution_part_in_loop_num (scev, loop->num);
|
1792 |
|
|
|
1793 |
|
|
if (init == NULL_TREE
|
1794 |
|
|
|| step == NULL_TREE
|
1795 |
|
|
|| TREE_CODE (init) != INTEGER_CST
|
1796 |
|
|
|| TREE_CODE (step) != INTEGER_CST
|
1797 |
|
|
|| TYPE_MIN_VALUE (type) == NULL_TREE
|
1798 |
|
|
|| TYPE_MAX_VALUE (type) == NULL_TREE)
|
1799 |
|
|
break;
|
1800 |
|
|
|
1801 |
|
|
if (integer_nonzerop (step))
|
1802 |
|
|
{
|
1803 |
|
|
tree utype;
|
1804 |
|
|
|
1805 |
|
|
if (tree_int_cst_lt (step, integer_zero_node))
|
1806 |
|
|
diff = fold_build2 (MINUS_EXPR, type, init,
|
1807 |
|
|
TYPE_MIN_VALUE (type));
|
1808 |
|
|
else
|
1809 |
|
|
diff = fold_build2 (MINUS_EXPR, type,
|
1810 |
|
|
TYPE_MAX_VALUE (type), init);
|
1811 |
|
|
|
1812 |
|
|
utype = unsigned_type_for (type);
|
1813 |
|
|
estimation = fold_build2 (CEIL_DIV_EXPR, type, diff,
|
1814 |
|
|
step);
|
1815 |
|
|
record_estimate (loop,
|
1816 |
|
|
fold_convert (utype, estimation),
|
1817 |
|
|
boolean_true_node, stmt);
|
1818 |
|
|
}
|
1819 |
|
|
}
|
1820 |
|
|
|
1821 |
|
|
break;
|
1822 |
|
|
}
|
1823 |
|
|
|
1824 |
|
|
case CALL_EXPR:
|
1825 |
|
|
{
|
1826 |
|
|
tree args;
|
1827 |
|
|
|
1828 |
|
|
for (args = TREE_OPERAND (stmt, 1); args;
|
1829 |
|
|
args = TREE_CHAIN (args))
|
1830 |
|
|
if (TREE_CODE (TREE_VALUE (args)) == ARRAY_REF
|
1831 |
|
|
&& !array_ref_contains_indirect_ref (TREE_VALUE (args)))
|
1832 |
|
|
estimate_iters_using_array (stmt, TREE_VALUE (args));
|
1833 |
|
|
|
1834 |
|
|
break;
|
1835 |
|
|
}
|
1836 |
|
|
|
1837 |
|
|
default:
|
1838 |
|
|
break;
|
1839 |
|
|
}
|
1840 |
|
|
}
|
1841 |
|
|
}
|
1842 |
|
|
|
1843 |
|
|
compute_estimated_nb_iterations (loop);
|
1844 |
|
|
free (bbs);
|
1845 |
|
|
}
|
1846 |
|
|
|
1847 |
|
|
/* Records estimates on numbers of iterations of LOOP. */
|
1848 |
|
|
|
1849 |
|
|
static void
|
1850 |
|
|
estimate_numbers_of_iterations_loop (struct loop *loop)
|
1851 |
|
|
{
|
1852 |
|
|
edge *exits;
|
1853 |
|
|
tree niter, type;
|
1854 |
|
|
unsigned i, n_exits;
|
1855 |
|
|
struct tree_niter_desc niter_desc;
|
1856 |
|
|
|
1857 |
|
|
/* Give up if we already have tried to compute an estimation. */
|
1858 |
|
|
if (loop->estimated_nb_iterations == chrec_dont_know
|
1859 |
|
|
/* Or when we already have an estimation. */
|
1860 |
|
|
|| (loop->estimated_nb_iterations != NULL_TREE
|
1861 |
|
|
&& TREE_CODE (loop->estimated_nb_iterations) == INTEGER_CST))
|
1862 |
|
|
return;
|
1863 |
|
|
else
|
1864 |
|
|
loop->estimated_nb_iterations = chrec_dont_know;
|
1865 |
|
|
|
1866 |
|
|
exits = get_loop_exit_edges (loop, &n_exits);
|
1867 |
|
|
for (i = 0; i < n_exits; i++)
|
1868 |
|
|
{
|
1869 |
|
|
if (!number_of_iterations_exit (loop, exits[i], &niter_desc, false))
|
1870 |
|
|
continue;
|
1871 |
|
|
|
1872 |
|
|
niter = niter_desc.niter;
|
1873 |
|
|
type = TREE_TYPE (niter);
|
1874 |
|
|
if (!zero_p (niter_desc.may_be_zero)
|
1875 |
|
|
&& !nonzero_p (niter_desc.may_be_zero))
|
1876 |
|
|
niter = build3 (COND_EXPR, type, niter_desc.may_be_zero,
|
1877 |
|
|
build_int_cst (type, 0),
|
1878 |
|
|
niter);
|
1879 |
|
|
record_estimate (loop, niter,
|
1880 |
|
|
niter_desc.additional_info,
|
1881 |
|
|
last_stmt (exits[i]->src));
|
1882 |
|
|
}
|
1883 |
|
|
free (exits);
|
1884 |
|
|
|
1885 |
|
|
if (chrec_contains_undetermined (loop->estimated_nb_iterations))
|
1886 |
|
|
infer_loop_bounds_from_undefined (loop);
|
1887 |
|
|
}
|
1888 |
|
|
|
1889 |
|
|
/* Records estimates on numbers of iterations of LOOPS. */
|
1890 |
|
|
|
1891 |
|
|
void
|
1892 |
|
|
estimate_numbers_of_iterations (struct loops *loops)
|
1893 |
|
|
{
|
1894 |
|
|
unsigned i;
|
1895 |
|
|
struct loop *loop;
|
1896 |
|
|
|
1897 |
|
|
/* We don't want to issue signed overflow warnings while getting
|
1898 |
|
|
loop iteration estimates. */
|
1899 |
|
|
fold_defer_overflow_warnings ();
|
1900 |
|
|
|
1901 |
|
|
for (i = 1; i < loops->num; i++)
|
1902 |
|
|
{
|
1903 |
|
|
loop = loops->parray[i];
|
1904 |
|
|
if (loop)
|
1905 |
|
|
estimate_numbers_of_iterations_loop (loop);
|
1906 |
|
|
}
|
1907 |
|
|
|
1908 |
|
|
fold_undefer_and_ignore_overflow_warnings ();
|
1909 |
|
|
}
|
1910 |
|
|
|
1911 |
|
|
/* Returns true if statement S1 dominates statement S2. */
|
1912 |
|
|
|
1913 |
|
|
static bool
|
1914 |
|
|
stmt_dominates_stmt_p (tree s1, tree s2)
|
1915 |
|
|
{
|
1916 |
|
|
basic_block bb1 = bb_for_stmt (s1), bb2 = bb_for_stmt (s2);
|
1917 |
|
|
|
1918 |
|
|
if (!bb1
|
1919 |
|
|
|| s1 == s2)
|
1920 |
|
|
return true;
|
1921 |
|
|
|
1922 |
|
|
if (bb1 == bb2)
|
1923 |
|
|
{
|
1924 |
|
|
block_stmt_iterator bsi;
|
1925 |
|
|
|
1926 |
|
|
for (bsi = bsi_start (bb1); bsi_stmt (bsi) != s2; bsi_next (&bsi))
|
1927 |
|
|
if (bsi_stmt (bsi) == s1)
|
1928 |
|
|
return true;
|
1929 |
|
|
|
1930 |
|
|
return false;
|
1931 |
|
|
}
|
1932 |
|
|
|
1933 |
|
|
return dominated_by_p (CDI_DOMINATORS, bb2, bb1);
|
1934 |
|
|
}
|
1935 |
|
|
|
1936 |
|
|
/* Returns true when we can prove that the number of executions of
|
1937 |
|
|
STMT in the loop is at most NITER, according to the fact
|
1938 |
|
|
that the statement NITER_BOUND->at_stmt is executed at most
|
1939 |
|
|
NITER_BOUND->bound times. */
|
1940 |
|
|
|
1941 |
|
|
static bool
|
1942 |
|
|
n_of_executions_at_most (tree stmt,
|
1943 |
|
|
struct nb_iter_bound *niter_bound,
|
1944 |
|
|
tree niter)
|
1945 |
|
|
{
|
1946 |
|
|
tree cond;
|
1947 |
|
|
tree bound = niter_bound->bound;
|
1948 |
|
|
tree bound_type = TREE_TYPE (bound);
|
1949 |
|
|
tree nit_type = TREE_TYPE (niter);
|
1950 |
|
|
enum tree_code cmp;
|
1951 |
|
|
|
1952 |
|
|
gcc_assert (TYPE_UNSIGNED (bound_type)
|
1953 |
|
|
&& TYPE_UNSIGNED (nit_type)
|
1954 |
|
|
&& is_gimple_min_invariant (bound));
|
1955 |
|
|
if (TYPE_PRECISION (nit_type) > TYPE_PRECISION (bound_type))
|
1956 |
|
|
bound = fold_convert (nit_type, bound);
|
1957 |
|
|
else
|
1958 |
|
|
niter = fold_convert (bound_type, niter);
|
1959 |
|
|
|
1960 |
|
|
/* After the statement niter_bound->at_stmt we know that anything is
|
1961 |
|
|
executed at most BOUND times. */
|
1962 |
|
|
if (stmt && stmt_dominates_stmt_p (niter_bound->at_stmt, stmt))
|
1963 |
|
|
cmp = GE_EXPR;
|
1964 |
|
|
/* Before the statement niter_bound->at_stmt we know that anything
|
1965 |
|
|
is executed at most BOUND + 1 times. */
|
1966 |
|
|
else
|
1967 |
|
|
cmp = GT_EXPR;
|
1968 |
|
|
|
1969 |
|
|
cond = fold_binary (cmp, boolean_type_node, niter, bound);
|
1970 |
|
|
return nonzero_p (cond);
|
1971 |
|
|
}
|
1972 |
|
|
|
1973 |
|
|
/* Returns true if the arithmetics in TYPE can be assumed not to wrap. */
|
1974 |
|
|
|
1975 |
|
|
bool
|
1976 |
|
|
nowrap_type_p (tree type)
|
1977 |
|
|
{
|
1978 |
|
|
if (INTEGRAL_TYPE_P (type)
|
1979 |
|
|
&& TYPE_OVERFLOW_UNDEFINED (type))
|
1980 |
|
|
return true;
|
1981 |
|
|
|
1982 |
|
|
if (POINTER_TYPE_P (type))
|
1983 |
|
|
return true;
|
1984 |
|
|
|
1985 |
|
|
return false;
|
1986 |
|
|
}
|
1987 |
|
|
|
1988 |
|
|
/* Return false only when the induction variable BASE + STEP * I is
|
1989 |
|
|
known to not overflow: i.e. when the number of iterations is small
|
1990 |
|
|
enough with respect to the step and initial condition in order to
|
1991 |
|
|
keep the evolution confined in TYPEs bounds. Return true when the
|
1992 |
|
|
iv is known to overflow or when the property is not computable.
|
1993 |
|
|
|
1994 |
|
|
USE_OVERFLOW_SEMANTICS is true if this function should assume that
|
1995 |
|
|
the rules for overflow of the given language apply (e.g., that signed
|
1996 |
|
|
arithmetics in C does not overflow). */
|
1997 |
|
|
|
1998 |
|
|
bool
|
1999 |
|
|
scev_probably_wraps_p (tree base, tree step,
|
2000 |
|
|
tree at_stmt, struct loop *loop,
|
2001 |
|
|
bool use_overflow_semantics)
|
2002 |
|
|
{
|
2003 |
|
|
struct nb_iter_bound *bound;
|
2004 |
|
|
tree delta, step_abs;
|
2005 |
|
|
tree unsigned_type, valid_niter;
|
2006 |
|
|
tree type = TREE_TYPE (step);
|
2007 |
|
|
|
2008 |
|
|
/* FIXME: We really need something like
|
2009 |
|
|
http://gcc.gnu.org/ml/gcc-patches/2005-06/msg02025.html.
|
2010 |
|
|
|
2011 |
|
|
We used to test for the following situation that frequently appears
|
2012 |
|
|
during address arithmetics:
|
2013 |
|
|
|
2014 |
|
|
D.1621_13 = (long unsigned intD.4) D.1620_12;
|
2015 |
|
|
D.1622_14 = D.1621_13 * 8;
|
2016 |
|
|
D.1623_15 = (doubleD.29 *) D.1622_14;
|
2017 |
|
|
|
2018 |
|
|
And derived that the sequence corresponding to D_14
|
2019 |
|
|
can be proved to not wrap because it is used for computing a
|
2020 |
|
|
memory access; however, this is not really the case -- for example,
|
2021 |
|
|
if D_12 = (unsigned char) [254,+,1], then D_14 has values
|
2022 |
|
|
2032, 2040, 0, 8, ..., but the code is still legal. */
|
2023 |
|
|
|
2024 |
|
|
if (chrec_contains_undetermined (base)
|
2025 |
|
|
|| chrec_contains_undetermined (step)
|
2026 |
|
|
|| TREE_CODE (step) != INTEGER_CST)
|
2027 |
|
|
return true;
|
2028 |
|
|
|
2029 |
|
|
if (zero_p (step))
|
2030 |
|
|
return false;
|
2031 |
|
|
|
2032 |
|
|
/* If we can use the fact that signed and pointer arithmetics does not
|
2033 |
|
|
wrap, we are done. */
|
2034 |
|
|
if (use_overflow_semantics && nowrap_type_p (type))
|
2035 |
|
|
return false;
|
2036 |
|
|
|
2037 |
|
|
/* Don't issue signed overflow warnings. */
|
2038 |
|
|
fold_defer_overflow_warnings ();
|
2039 |
|
|
|
2040 |
|
|
/* Otherwise, compute the number of iterations before we reach the
|
2041 |
|
|
bound of the type, and verify that the loop is exited before this
|
2042 |
|
|
occurs. */
|
2043 |
|
|
unsigned_type = unsigned_type_for (type);
|
2044 |
|
|
base = fold_convert (unsigned_type, base);
|
2045 |
|
|
|
2046 |
|
|
if (tree_int_cst_sign_bit (step))
|
2047 |
|
|
{
|
2048 |
|
|
tree extreme = fold_convert (unsigned_type,
|
2049 |
|
|
lower_bound_in_type (type, type));
|
2050 |
|
|
delta = fold_build2 (MINUS_EXPR, unsigned_type, base, extreme);
|
2051 |
|
|
step_abs = fold_build1 (NEGATE_EXPR, unsigned_type,
|
2052 |
|
|
fold_convert (unsigned_type, step));
|
2053 |
|
|
}
|
2054 |
|
|
else
|
2055 |
|
|
{
|
2056 |
|
|
tree extreme = fold_convert (unsigned_type,
|
2057 |
|
|
upper_bound_in_type (type, type));
|
2058 |
|
|
delta = fold_build2 (MINUS_EXPR, unsigned_type, extreme, base);
|
2059 |
|
|
step_abs = fold_convert (unsigned_type, step);
|
2060 |
|
|
}
|
2061 |
|
|
|
2062 |
|
|
valid_niter = fold_build2 (FLOOR_DIV_EXPR, unsigned_type, delta, step_abs);
|
2063 |
|
|
|
2064 |
|
|
estimate_numbers_of_iterations_loop (loop);
|
2065 |
|
|
for (bound = loop->bounds; bound; bound = bound->next)
|
2066 |
|
|
{
|
2067 |
|
|
if (n_of_executions_at_most (at_stmt, bound, valid_niter))
|
2068 |
|
|
{
|
2069 |
|
|
fold_undefer_and_ignore_overflow_warnings ();
|
2070 |
|
|
return false;
|
2071 |
|
|
}
|
2072 |
|
|
}
|
2073 |
|
|
|
2074 |
|
|
fold_undefer_and_ignore_overflow_warnings ();
|
2075 |
|
|
|
2076 |
|
|
/* At this point we still don't have a proof that the iv does not
|
2077 |
|
|
overflow: give up. */
|
2078 |
|
|
return true;
|
2079 |
|
|
}
|
2080 |
|
|
|
2081 |
|
|
/* Frees the information on upper bounds on numbers of iterations of LOOP. */
|
2082 |
|
|
|
2083 |
|
|
void
|
2084 |
|
|
free_numbers_of_iterations_estimates_loop (struct loop *loop)
|
2085 |
|
|
{
|
2086 |
|
|
struct nb_iter_bound *bound, *next;
|
2087 |
|
|
|
2088 |
|
|
loop->nb_iterations = NULL;
|
2089 |
|
|
loop->estimated_nb_iterations = NULL;
|
2090 |
|
|
for (bound = loop->bounds; bound; bound = next)
|
2091 |
|
|
{
|
2092 |
|
|
next = bound->next;
|
2093 |
|
|
free (bound);
|
2094 |
|
|
}
|
2095 |
|
|
|
2096 |
|
|
loop->bounds = NULL;
|
2097 |
|
|
}
|
2098 |
|
|
|
2099 |
|
|
/* Frees the information on upper bounds on numbers of iterations of LOOPS. */
|
2100 |
|
|
|
2101 |
|
|
void
|
2102 |
|
|
free_numbers_of_iterations_estimates (struct loops *loops)
|
2103 |
|
|
{
|
2104 |
|
|
unsigned i;
|
2105 |
|
|
struct loop *loop;
|
2106 |
|
|
|
2107 |
|
|
for (i = 1; i < loops->num; i++)
|
2108 |
|
|
{
|
2109 |
|
|
loop = loops->parray[i];
|
2110 |
|
|
if (loop)
|
2111 |
|
|
free_numbers_of_iterations_estimates_loop (loop);
|
2112 |
|
|
}
|
2113 |
|
|
}
|
2114 |
|
|
|
2115 |
|
|
/* Substitute value VAL for ssa name NAME inside expressions held
|
2116 |
|
|
at LOOP. */
|
2117 |
|
|
|
2118 |
|
|
void
|
2119 |
|
|
substitute_in_loop_info (struct loop *loop, tree name, tree val)
|
2120 |
|
|
{
|
2121 |
|
|
loop->nb_iterations = simplify_replace_tree (loop->nb_iterations, name, val);
|
2122 |
|
|
loop->estimated_nb_iterations
|
2123 |
|
|
= simplify_replace_tree (loop->estimated_nb_iterations, name, val);
|
2124 |
|
|
}
|