| 1 |
38 |
julius |
/* Optimization of PHI nodes by converting them into straightline code.
|
| 2 |
|
|
Copyright (C) 2004, 2005, 2007 Free Software Foundation, Inc.
|
| 3 |
|
|
|
| 4 |
|
|
This file is part of GCC.
|
| 5 |
|
|
|
| 6 |
|
|
GCC is free software; you can redistribute it and/or modify it
|
| 7 |
|
|
under the terms of the GNU General Public License as published by the
|
| 8 |
|
|
Free Software Foundation; either version 3, or (at your option) any
|
| 9 |
|
|
later version.
|
| 10 |
|
|
|
| 11 |
|
|
GCC is distributed in the hope that it will be useful, but WITHOUT
|
| 12 |
|
|
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
| 13 |
|
|
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
| 14 |
|
|
for more details.
|
| 15 |
|
|
|
| 16 |
|
|
You should have received a copy of the GNU General Public License
|
| 17 |
|
|
along with GCC; see the file COPYING3. If not see
|
| 18 |
|
|
<http://www.gnu.org/licenses/>. */
|
| 19 |
|
|
|
| 20 |
|
|
#include "config.h"
|
| 21 |
|
|
#include "system.h"
|
| 22 |
|
|
#include "coretypes.h"
|
| 23 |
|
|
#include "tm.h"
|
| 24 |
|
|
#include "ggc.h"
|
| 25 |
|
|
#include "tree.h"
|
| 26 |
|
|
#include "rtl.h"
|
| 27 |
|
|
#include "flags.h"
|
| 28 |
|
|
#include "tm_p.h"
|
| 29 |
|
|
#include "basic-block.h"
|
| 30 |
|
|
#include "timevar.h"
|
| 31 |
|
|
#include "diagnostic.h"
|
| 32 |
|
|
#include "tree-flow.h"
|
| 33 |
|
|
#include "tree-pass.h"
|
| 34 |
|
|
#include "tree-dump.h"
|
| 35 |
|
|
#include "langhooks.h"
|
| 36 |
|
|
|
| 37 |
|
|
static unsigned int tree_ssa_phiopt (void);
|
| 38 |
|
|
static bool conditional_replacement (basic_block, basic_block,
|
| 39 |
|
|
edge, edge, tree, tree, tree);
|
| 40 |
|
|
static bool value_replacement (basic_block, basic_block,
|
| 41 |
|
|
edge, edge, tree, tree, tree);
|
| 42 |
|
|
static bool minmax_replacement (basic_block, basic_block,
|
| 43 |
|
|
edge, edge, tree, tree, tree);
|
| 44 |
|
|
static bool abs_replacement (basic_block, basic_block,
|
| 45 |
|
|
edge, edge, tree, tree, tree);
|
| 46 |
|
|
static void replace_phi_edge_with_variable (basic_block, edge, tree, tree);
|
| 47 |
|
|
static basic_block *blocks_in_phiopt_order (void);
|
| 48 |
|
|
|
| 49 |
|
|
/* This pass tries to replaces an if-then-else block with an
|
| 50 |
|
|
assignment. We have four kinds of transformations. Some of these
|
| 51 |
|
|
transformations are also performed by the ifcvt RTL optimizer.
|
| 52 |
|
|
|
| 53 |
|
|
Conditional Replacement
|
| 54 |
|
|
-----------------------
|
| 55 |
|
|
|
| 56 |
|
|
This transformation, implemented in conditional_replacement,
|
| 57 |
|
|
replaces
|
| 58 |
|
|
|
| 59 |
|
|
bb0:
|
| 60 |
|
|
if (cond) goto bb2; else goto bb1;
|
| 61 |
|
|
bb1:
|
| 62 |
|
|
bb2:
|
| 63 |
|
|
x = PHI <0 (bb1), 1 (bb0), ...>;
|
| 64 |
|
|
|
| 65 |
|
|
with
|
| 66 |
|
|
|
| 67 |
|
|
bb0:
|
| 68 |
|
|
x' = cond;
|
| 69 |
|
|
goto bb2;
|
| 70 |
|
|
bb2:
|
| 71 |
|
|
x = PHI <x' (bb0), ...>;
|
| 72 |
|
|
|
| 73 |
|
|
We remove bb1 as it becomes unreachable. This occurs often due to
|
| 74 |
|
|
gimplification of conditionals.
|
| 75 |
|
|
|
| 76 |
|
|
Value Replacement
|
| 77 |
|
|
-----------------
|
| 78 |
|
|
|
| 79 |
|
|
This transformation, implemented in value_replacement, replaces
|
| 80 |
|
|
|
| 81 |
|
|
bb0:
|
| 82 |
|
|
if (a != b) goto bb2; else goto bb1;
|
| 83 |
|
|
bb1:
|
| 84 |
|
|
bb2:
|
| 85 |
|
|
x = PHI <a (bb1), b (bb0), ...>;
|
| 86 |
|
|
|
| 87 |
|
|
with
|
| 88 |
|
|
|
| 89 |
|
|
bb0:
|
| 90 |
|
|
bb2:
|
| 91 |
|
|
x = PHI <b (bb0), ...>;
|
| 92 |
|
|
|
| 93 |
|
|
This opportunity can sometimes occur as a result of other
|
| 94 |
|
|
optimizations.
|
| 95 |
|
|
|
| 96 |
|
|
ABS Replacement
|
| 97 |
|
|
---------------
|
| 98 |
|
|
|
| 99 |
|
|
This transformation, implemented in abs_replacement, replaces
|
| 100 |
|
|
|
| 101 |
|
|
bb0:
|
| 102 |
|
|
if (a >= 0) goto bb2; else goto bb1;
|
| 103 |
|
|
bb1:
|
| 104 |
|
|
x = -a;
|
| 105 |
|
|
bb2:
|
| 106 |
|
|
x = PHI <x (bb1), a (bb0), ...>;
|
| 107 |
|
|
|
| 108 |
|
|
with
|
| 109 |
|
|
|
| 110 |
|
|
bb0:
|
| 111 |
|
|
x' = ABS_EXPR< a >;
|
| 112 |
|
|
bb2:
|
| 113 |
|
|
x = PHI <x' (bb0), ...>;
|
| 114 |
|
|
|
| 115 |
|
|
MIN/MAX Replacement
|
| 116 |
|
|
-------------------
|
| 117 |
|
|
|
| 118 |
|
|
This transformation, minmax_replacement replaces
|
| 119 |
|
|
|
| 120 |
|
|
bb0:
|
| 121 |
|
|
if (a <= b) goto bb2; else goto bb1;
|
| 122 |
|
|
bb1:
|
| 123 |
|
|
bb2:
|
| 124 |
|
|
x = PHI <b (bb1), a (bb0), ...>;
|
| 125 |
|
|
|
| 126 |
|
|
with
|
| 127 |
|
|
|
| 128 |
|
|
bb0:
|
| 129 |
|
|
x' = MIN_EXPR (a, b)
|
| 130 |
|
|
bb2:
|
| 131 |
|
|
x = PHI <x' (bb0), ...>;
|
| 132 |
|
|
|
| 133 |
|
|
A similar transformation is done for MAX_EXPR. */
|
| 134 |
|
|
|
| 135 |
|
|
static unsigned int
|
| 136 |
|
|
tree_ssa_phiopt (void)
|
| 137 |
|
|
{
|
| 138 |
|
|
basic_block bb;
|
| 139 |
|
|
basic_block *bb_order;
|
| 140 |
|
|
unsigned n, i;
|
| 141 |
|
|
bool cfgchanged = false;
|
| 142 |
|
|
|
| 143 |
|
|
/* Search every basic block for COND_EXPR we may be able to optimize.
|
| 144 |
|
|
|
| 145 |
|
|
We walk the blocks in order that guarantees that a block with
|
| 146 |
|
|
a single predecessor is processed before the predecessor.
|
| 147 |
|
|
This ensures that we collapse inner ifs before visiting the
|
| 148 |
|
|
outer ones, and also that we do not try to visit a removed
|
| 149 |
|
|
block. */
|
| 150 |
|
|
bb_order = blocks_in_phiopt_order ();
|
| 151 |
|
|
n = n_basic_blocks - NUM_FIXED_BLOCKS;
|
| 152 |
|
|
|
| 153 |
|
|
for (i = 0; i < n; i++)
|
| 154 |
|
|
{
|
| 155 |
|
|
tree cond_expr;
|
| 156 |
|
|
tree phi;
|
| 157 |
|
|
basic_block bb1, bb2;
|
| 158 |
|
|
edge e1, e2;
|
| 159 |
|
|
tree arg0, arg1;
|
| 160 |
|
|
|
| 161 |
|
|
bb = bb_order[i];
|
| 162 |
|
|
|
| 163 |
|
|
cond_expr = last_stmt (bb);
|
| 164 |
|
|
/* Check to see if the last statement is a COND_EXPR. */
|
| 165 |
|
|
if (!cond_expr
|
| 166 |
|
|
|| TREE_CODE (cond_expr) != COND_EXPR)
|
| 167 |
|
|
continue;
|
| 168 |
|
|
|
| 169 |
|
|
e1 = EDGE_SUCC (bb, 0);
|
| 170 |
|
|
bb1 = e1->dest;
|
| 171 |
|
|
e2 = EDGE_SUCC (bb, 1);
|
| 172 |
|
|
bb2 = e2->dest;
|
| 173 |
|
|
|
| 174 |
|
|
/* We cannot do the optimization on abnormal edges. */
|
| 175 |
|
|
if ((e1->flags & EDGE_ABNORMAL) != 0
|
| 176 |
|
|
|| (e2->flags & EDGE_ABNORMAL) != 0)
|
| 177 |
|
|
continue;
|
| 178 |
|
|
|
| 179 |
|
|
/* If either bb1's succ or bb2 or bb2's succ is non NULL. */
|
| 180 |
|
|
if (EDGE_COUNT (bb1->succs) == 0
|
| 181 |
|
|
|| bb2 == NULL
|
| 182 |
|
|
|| EDGE_COUNT (bb2->succs) == 0)
|
| 183 |
|
|
continue;
|
| 184 |
|
|
|
| 185 |
|
|
/* Find the bb which is the fall through to the other. */
|
| 186 |
|
|
if (EDGE_SUCC (bb1, 0)->dest == bb2)
|
| 187 |
|
|
;
|
| 188 |
|
|
else if (EDGE_SUCC (bb2, 0)->dest == bb1)
|
| 189 |
|
|
{
|
| 190 |
|
|
basic_block bb_tmp = bb1;
|
| 191 |
|
|
edge e_tmp = e1;
|
| 192 |
|
|
bb1 = bb2;
|
| 193 |
|
|
bb2 = bb_tmp;
|
| 194 |
|
|
e1 = e2;
|
| 195 |
|
|
e2 = e_tmp;
|
| 196 |
|
|
}
|
| 197 |
|
|
else
|
| 198 |
|
|
continue;
|
| 199 |
|
|
|
| 200 |
|
|
e1 = EDGE_SUCC (bb1, 0);
|
| 201 |
|
|
|
| 202 |
|
|
/* Make sure that bb1 is just a fall through. */
|
| 203 |
|
|
if (!single_succ_p (bb1)
|
| 204 |
|
|
|| (e1->flags & EDGE_FALLTHRU) == 0)
|
| 205 |
|
|
continue;
|
| 206 |
|
|
|
| 207 |
|
|
/* Also make sure that bb1 only have one predecessor and that it
|
| 208 |
|
|
is bb. */
|
| 209 |
|
|
if (!single_pred_p (bb1)
|
| 210 |
|
|
|| single_pred (bb1) != bb)
|
| 211 |
|
|
continue;
|
| 212 |
|
|
|
| 213 |
|
|
phi = phi_nodes (bb2);
|
| 214 |
|
|
|
| 215 |
|
|
/* Check to make sure that there is only one PHI node.
|
| 216 |
|
|
TODO: we could do it with more than one iff the other PHI nodes
|
| 217 |
|
|
have the same elements for these two edges. */
|
| 218 |
|
|
if (!phi || PHI_CHAIN (phi) != NULL)
|
| 219 |
|
|
continue;
|
| 220 |
|
|
|
| 221 |
|
|
arg0 = PHI_ARG_DEF_TREE (phi, e1->dest_idx);
|
| 222 |
|
|
arg1 = PHI_ARG_DEF_TREE (phi, e2->dest_idx);
|
| 223 |
|
|
|
| 224 |
|
|
/* Something is wrong if we cannot find the arguments in the PHI
|
| 225 |
|
|
node. */
|
| 226 |
|
|
gcc_assert (arg0 != NULL && arg1 != NULL);
|
| 227 |
|
|
|
| 228 |
|
|
/* Do the replacement of conditional if it can be done. */
|
| 229 |
|
|
if (conditional_replacement (bb, bb1, e1, e2, phi, arg0, arg1))
|
| 230 |
|
|
cfgchanged = true;
|
| 231 |
|
|
else if (value_replacement (bb, bb1, e1, e2, phi, arg0, arg1))
|
| 232 |
|
|
cfgchanged = true;
|
| 233 |
|
|
else if (abs_replacement (bb, bb1, e1, e2, phi, arg0, arg1))
|
| 234 |
|
|
cfgchanged = true;
|
| 235 |
|
|
else if (minmax_replacement (bb, bb1, e1, e2, phi, arg0, arg1))
|
| 236 |
|
|
cfgchanged = true;
|
| 237 |
|
|
}
|
| 238 |
|
|
|
| 239 |
|
|
free (bb_order);
|
| 240 |
|
|
|
| 241 |
|
|
/* If the CFG has changed, we should cleanup the CFG. */
|
| 242 |
|
|
return cfgchanged ? TODO_cleanup_cfg : 0;
|
| 243 |
|
|
}
|
| 244 |
|
|
|
| 245 |
|
|
/* Returns the list of basic blocks in the function in an order that guarantees
|
| 246 |
|
|
that if a block X has just a single predecessor Y, then Y is after X in the
|
| 247 |
|
|
ordering. */
|
| 248 |
|
|
|
| 249 |
|
|
static basic_block *
|
| 250 |
|
|
blocks_in_phiopt_order (void)
|
| 251 |
|
|
{
|
| 252 |
|
|
basic_block x, y;
|
| 253 |
|
|
basic_block *order = XNEWVEC (basic_block, n_basic_blocks);
|
| 254 |
|
|
unsigned n = n_basic_blocks - NUM_FIXED_BLOCKS;
|
| 255 |
|
|
unsigned np, i;
|
| 256 |
|
|
sbitmap visited = sbitmap_alloc (last_basic_block);
|
| 257 |
|
|
|
| 258 |
|
|
#define MARK_VISITED(BB) (SET_BIT (visited, (BB)->index))
|
| 259 |
|
|
#define VISITED_P(BB) (TEST_BIT (visited, (BB)->index))
|
| 260 |
|
|
|
| 261 |
|
|
sbitmap_zero (visited);
|
| 262 |
|
|
|
| 263 |
|
|
MARK_VISITED (ENTRY_BLOCK_PTR);
|
| 264 |
|
|
FOR_EACH_BB (x)
|
| 265 |
|
|
{
|
| 266 |
|
|
if (VISITED_P (x))
|
| 267 |
|
|
continue;
|
| 268 |
|
|
|
| 269 |
|
|
/* Walk the predecessors of x as long as they have precisely one
|
| 270 |
|
|
predecessor and add them to the list, so that they get stored
|
| 271 |
|
|
after x. */
|
| 272 |
|
|
for (y = x, np = 1;
|
| 273 |
|
|
single_pred_p (y) && !VISITED_P (single_pred (y));
|
| 274 |
|
|
y = single_pred (y))
|
| 275 |
|
|
np++;
|
| 276 |
|
|
for (y = x, i = n - np;
|
| 277 |
|
|
single_pred_p (y) && !VISITED_P (single_pred (y));
|
| 278 |
|
|
y = single_pred (y), i++)
|
| 279 |
|
|
{
|
| 280 |
|
|
order[i] = y;
|
| 281 |
|
|
MARK_VISITED (y);
|
| 282 |
|
|
}
|
| 283 |
|
|
order[i] = y;
|
| 284 |
|
|
MARK_VISITED (y);
|
| 285 |
|
|
|
| 286 |
|
|
gcc_assert (i == n - 1);
|
| 287 |
|
|
n -= np;
|
| 288 |
|
|
}
|
| 289 |
|
|
|
| 290 |
|
|
sbitmap_free (visited);
|
| 291 |
|
|
gcc_assert (n == 0);
|
| 292 |
|
|
return order;
|
| 293 |
|
|
|
| 294 |
|
|
#undef MARK_VISITED
|
| 295 |
|
|
#undef VISITED_P
|
| 296 |
|
|
}
|
| 297 |
|
|
|
| 298 |
|
|
/* Return TRUE if block BB has no executable statements, otherwise return
|
| 299 |
|
|
FALSE. */
|
| 300 |
|
|
bool
|
| 301 |
|
|
empty_block_p (basic_block bb)
|
| 302 |
|
|
{
|
| 303 |
|
|
block_stmt_iterator bsi;
|
| 304 |
|
|
|
| 305 |
|
|
/* BB must have no executable statements. */
|
| 306 |
|
|
bsi = bsi_start (bb);
|
| 307 |
|
|
while (!bsi_end_p (bsi)
|
| 308 |
|
|
&& (TREE_CODE (bsi_stmt (bsi)) == LABEL_EXPR
|
| 309 |
|
|
|| IS_EMPTY_STMT (bsi_stmt (bsi))))
|
| 310 |
|
|
bsi_next (&bsi);
|
| 311 |
|
|
|
| 312 |
|
|
if (!bsi_end_p (bsi))
|
| 313 |
|
|
return false;
|
| 314 |
|
|
|
| 315 |
|
|
return true;
|
| 316 |
|
|
}
|
| 317 |
|
|
|
| 318 |
|
|
/* Replace PHI node element whose edge is E in block BB with variable NEW.
|
| 319 |
|
|
Remove the edge from COND_BLOCK which does not lead to BB (COND_BLOCK
|
| 320 |
|
|
is known to have two edges, one of which must reach BB). */
|
| 321 |
|
|
|
| 322 |
|
|
static void
|
| 323 |
|
|
replace_phi_edge_with_variable (basic_block cond_block,
|
| 324 |
|
|
edge e, tree phi, tree new)
|
| 325 |
|
|
{
|
| 326 |
|
|
basic_block bb = bb_for_stmt (phi);
|
| 327 |
|
|
basic_block block_to_remove;
|
| 328 |
|
|
block_stmt_iterator bsi;
|
| 329 |
|
|
|
| 330 |
|
|
/* Change the PHI argument to new. */
|
| 331 |
|
|
SET_USE (PHI_ARG_DEF_PTR (phi, e->dest_idx), new);
|
| 332 |
|
|
|
| 333 |
|
|
/* Remove the empty basic block. */
|
| 334 |
|
|
if (EDGE_SUCC (cond_block, 0)->dest == bb)
|
| 335 |
|
|
{
|
| 336 |
|
|
EDGE_SUCC (cond_block, 0)->flags |= EDGE_FALLTHRU;
|
| 337 |
|
|
EDGE_SUCC (cond_block, 0)->flags &= ~(EDGE_TRUE_VALUE | EDGE_FALSE_VALUE);
|
| 338 |
|
|
EDGE_SUCC (cond_block, 0)->probability = REG_BR_PROB_BASE;
|
| 339 |
|
|
EDGE_SUCC (cond_block, 0)->count += EDGE_SUCC (cond_block, 1)->count;
|
| 340 |
|
|
|
| 341 |
|
|
block_to_remove = EDGE_SUCC (cond_block, 1)->dest;
|
| 342 |
|
|
}
|
| 343 |
|
|
else
|
| 344 |
|
|
{
|
| 345 |
|
|
EDGE_SUCC (cond_block, 1)->flags |= EDGE_FALLTHRU;
|
| 346 |
|
|
EDGE_SUCC (cond_block, 1)->flags
|
| 347 |
|
|
&= ~(EDGE_TRUE_VALUE | EDGE_FALSE_VALUE);
|
| 348 |
|
|
EDGE_SUCC (cond_block, 1)->probability = REG_BR_PROB_BASE;
|
| 349 |
|
|
EDGE_SUCC (cond_block, 1)->count += EDGE_SUCC (cond_block, 0)->count;
|
| 350 |
|
|
|
| 351 |
|
|
block_to_remove = EDGE_SUCC (cond_block, 0)->dest;
|
| 352 |
|
|
}
|
| 353 |
|
|
delete_basic_block (block_to_remove);
|
| 354 |
|
|
|
| 355 |
|
|
/* Eliminate the COND_EXPR at the end of COND_BLOCK. */
|
| 356 |
|
|
bsi = bsi_last (cond_block);
|
| 357 |
|
|
bsi_remove (&bsi, true);
|
| 358 |
|
|
|
| 359 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
| 360 |
|
|
fprintf (dump_file,
|
| 361 |
|
|
"COND_EXPR in block %d and PHI in block %d converted to straightline code.\n",
|
| 362 |
|
|
cond_block->index,
|
| 363 |
|
|
bb->index);
|
| 364 |
|
|
}
|
| 365 |
|
|
|
| 366 |
|
|
/* The function conditional_replacement does the main work of doing the
|
| 367 |
|
|
conditional replacement. Return true if the replacement is done.
|
| 368 |
|
|
Otherwise return false.
|
| 369 |
|
|
BB is the basic block where the replacement is going to be done on. ARG0
|
| 370 |
|
|
is argument 0 from PHI. Likewise for ARG1. */
|
| 371 |
|
|
|
| 372 |
|
|
static bool
|
| 373 |
|
|
conditional_replacement (basic_block cond_bb, basic_block middle_bb,
|
| 374 |
|
|
edge e0, edge e1, tree phi,
|
| 375 |
|
|
tree arg0, tree arg1)
|
| 376 |
|
|
{
|
| 377 |
|
|
tree result;
|
| 378 |
|
|
tree old_result = NULL;
|
| 379 |
|
|
tree new, cond;
|
| 380 |
|
|
block_stmt_iterator bsi;
|
| 381 |
|
|
edge true_edge, false_edge;
|
| 382 |
|
|
tree new_var = NULL;
|
| 383 |
|
|
tree new_var1;
|
| 384 |
|
|
|
| 385 |
|
|
/* The PHI arguments have the constants 0 and 1, then convert
|
| 386 |
|
|
it to the conditional. */
|
| 387 |
|
|
if ((integer_zerop (arg0) && integer_onep (arg1))
|
| 388 |
|
|
|| (integer_zerop (arg1) && integer_onep (arg0)))
|
| 389 |
|
|
;
|
| 390 |
|
|
else
|
| 391 |
|
|
return false;
|
| 392 |
|
|
|
| 393 |
|
|
if (!empty_block_p (middle_bb))
|
| 394 |
|
|
return false;
|
| 395 |
|
|
|
| 396 |
|
|
/* If the condition is not a naked SSA_NAME and its type does not
|
| 397 |
|
|
match the type of the result, then we have to create a new
|
| 398 |
|
|
variable to optimize this case as it would likely create
|
| 399 |
|
|
non-gimple code when the condition was converted to the
|
| 400 |
|
|
result's type. */
|
| 401 |
|
|
cond = COND_EXPR_COND (last_stmt (cond_bb));
|
| 402 |
|
|
result = PHI_RESULT (phi);
|
| 403 |
|
|
if (TREE_CODE (cond) != SSA_NAME
|
| 404 |
|
|
&& !lang_hooks.types_compatible_p (TREE_TYPE (cond), TREE_TYPE (result)))
|
| 405 |
|
|
{
|
| 406 |
|
|
tree tmp;
|
| 407 |
|
|
|
| 408 |
|
|
if (!COMPARISON_CLASS_P (cond))
|
| 409 |
|
|
return false;
|
| 410 |
|
|
|
| 411 |
|
|
tmp = create_tmp_var (TREE_TYPE (cond), NULL);
|
| 412 |
|
|
add_referenced_var (tmp);
|
| 413 |
|
|
new_var = make_ssa_name (tmp, NULL);
|
| 414 |
|
|
old_result = cond;
|
| 415 |
|
|
cond = new_var;
|
| 416 |
|
|
}
|
| 417 |
|
|
|
| 418 |
|
|
/* If the condition was a naked SSA_NAME and the type is not the
|
| 419 |
|
|
same as the type of the result, then convert the type of the
|
| 420 |
|
|
condition. */
|
| 421 |
|
|
if (!lang_hooks.types_compatible_p (TREE_TYPE (cond), TREE_TYPE (result)))
|
| 422 |
|
|
cond = fold_convert (TREE_TYPE (result), cond);
|
| 423 |
|
|
|
| 424 |
|
|
/* We need to know which is the true edge and which is the false
|
| 425 |
|
|
edge so that we know when to invert the condition below. */
|
| 426 |
|
|
extract_true_false_edges_from_block (cond_bb, &true_edge, &false_edge);
|
| 427 |
|
|
|
| 428 |
|
|
/* Insert our new statement at the end of conditional block before the
|
| 429 |
|
|
COND_EXPR. */
|
| 430 |
|
|
bsi = bsi_last (cond_bb);
|
| 431 |
|
|
bsi_insert_before (&bsi, build_empty_stmt (), BSI_NEW_STMT);
|
| 432 |
|
|
|
| 433 |
|
|
if (old_result)
|
| 434 |
|
|
{
|
| 435 |
|
|
tree new1;
|
| 436 |
|
|
|
| 437 |
|
|
new1 = build2 (TREE_CODE (old_result), TREE_TYPE (old_result),
|
| 438 |
|
|
TREE_OPERAND (old_result, 0),
|
| 439 |
|
|
TREE_OPERAND (old_result, 1));
|
| 440 |
|
|
|
| 441 |
|
|
new1 = build2 (MODIFY_EXPR, TREE_TYPE (old_result), new_var, new1);
|
| 442 |
|
|
SSA_NAME_DEF_STMT (new_var) = new1;
|
| 443 |
|
|
|
| 444 |
|
|
bsi_insert_after (&bsi, new1, BSI_NEW_STMT);
|
| 445 |
|
|
}
|
| 446 |
|
|
|
| 447 |
|
|
new_var1 = duplicate_ssa_name (PHI_RESULT (phi), NULL);
|
| 448 |
|
|
|
| 449 |
|
|
|
| 450 |
|
|
/* At this point we know we have a COND_EXPR with two successors.
|
| 451 |
|
|
One successor is BB, the other successor is an empty block which
|
| 452 |
|
|
falls through into BB.
|
| 453 |
|
|
|
| 454 |
|
|
There is a single PHI node at the join point (BB) and its arguments
|
| 455 |
|
|
are constants (0, 1).
|
| 456 |
|
|
|
| 457 |
|
|
So, given the condition COND, and the two PHI arguments, we can
|
| 458 |
|
|
rewrite this PHI into non-branching code:
|
| 459 |
|
|
|
| 460 |
|
|
dest = (COND) or dest = COND'
|
| 461 |
|
|
|
| 462 |
|
|
We use the condition as-is if the argument associated with the
|
| 463 |
|
|
true edge has the value one or the argument associated with the
|
| 464 |
|
|
false edge as the value zero. Note that those conditions are not
|
| 465 |
|
|
the same since only one of the outgoing edges from the COND_EXPR
|
| 466 |
|
|
will directly reach BB and thus be associated with an argument. */
|
| 467 |
|
|
if ((e0 == true_edge && integer_onep (arg0))
|
| 468 |
|
|
|| (e0 == false_edge && integer_zerop (arg0))
|
| 469 |
|
|
|| (e1 == true_edge && integer_onep (arg1))
|
| 470 |
|
|
|| (e1 == false_edge && integer_zerop (arg1)))
|
| 471 |
|
|
{
|
| 472 |
|
|
new = build2 (MODIFY_EXPR, TREE_TYPE (new_var1), new_var1, cond);
|
| 473 |
|
|
}
|
| 474 |
|
|
else
|
| 475 |
|
|
{
|
| 476 |
|
|
tree cond1 = invert_truthvalue (cond);
|
| 477 |
|
|
|
| 478 |
|
|
cond = cond1;
|
| 479 |
|
|
|
| 480 |
|
|
/* If what we get back is a conditional expression, there is no
|
| 481 |
|
|
way that it can be gimple. */
|
| 482 |
|
|
if (TREE_CODE (cond) == COND_EXPR)
|
| 483 |
|
|
{
|
| 484 |
|
|
release_ssa_name (new_var1);
|
| 485 |
|
|
return false;
|
| 486 |
|
|
}
|
| 487 |
|
|
|
| 488 |
|
|
/* If COND is not something we can expect to be reducible to a GIMPLE
|
| 489 |
|
|
condition, return early. */
|
| 490 |
|
|
if (is_gimple_cast (cond))
|
| 491 |
|
|
cond1 = TREE_OPERAND (cond, 0);
|
| 492 |
|
|
if (TREE_CODE (cond1) == TRUTH_NOT_EXPR
|
| 493 |
|
|
&& !is_gimple_val (TREE_OPERAND (cond1, 0)))
|
| 494 |
|
|
{
|
| 495 |
|
|
release_ssa_name (new_var1);
|
| 496 |
|
|
return false;
|
| 497 |
|
|
}
|
| 498 |
|
|
|
| 499 |
|
|
/* If what we get back is not gimple try to create it as gimple by
|
| 500 |
|
|
using a temporary variable. */
|
| 501 |
|
|
if (is_gimple_cast (cond)
|
| 502 |
|
|
&& !is_gimple_val (TREE_OPERAND (cond, 0)))
|
| 503 |
|
|
{
|
| 504 |
|
|
tree op0, tmp, cond_tmp;
|
| 505 |
|
|
|
| 506 |
|
|
/* Only "real" casts are OK here, not everything that is
|
| 507 |
|
|
acceptable to is_gimple_cast. Make sure we don't do
|
| 508 |
|
|
anything stupid here. */
|
| 509 |
|
|
gcc_assert (TREE_CODE (cond) == NOP_EXPR
|
| 510 |
|
|
|| TREE_CODE (cond) == CONVERT_EXPR);
|
| 511 |
|
|
|
| 512 |
|
|
op0 = TREE_OPERAND (cond, 0);
|
| 513 |
|
|
tmp = create_tmp_var (TREE_TYPE (op0), NULL);
|
| 514 |
|
|
add_referenced_var (tmp);
|
| 515 |
|
|
cond_tmp = make_ssa_name (tmp, NULL);
|
| 516 |
|
|
new = build2 (MODIFY_EXPR, TREE_TYPE (cond_tmp), cond_tmp, op0);
|
| 517 |
|
|
SSA_NAME_DEF_STMT (cond_tmp) = new;
|
| 518 |
|
|
|
| 519 |
|
|
bsi_insert_after (&bsi, new, BSI_NEW_STMT);
|
| 520 |
|
|
cond = fold_convert (TREE_TYPE (result), cond_tmp);
|
| 521 |
|
|
}
|
| 522 |
|
|
|
| 523 |
|
|
new = build2 (MODIFY_EXPR, TREE_TYPE (new_var1), new_var1, cond);
|
| 524 |
|
|
}
|
| 525 |
|
|
|
| 526 |
|
|
bsi_insert_after (&bsi, new, BSI_NEW_STMT);
|
| 527 |
|
|
|
| 528 |
|
|
SSA_NAME_DEF_STMT (new_var1) = new;
|
| 529 |
|
|
|
| 530 |
|
|
replace_phi_edge_with_variable (cond_bb, e1, phi, new_var1);
|
| 531 |
|
|
|
| 532 |
|
|
/* Note that we optimized this PHI. */
|
| 533 |
|
|
return true;
|
| 534 |
|
|
}
|
| 535 |
|
|
|
| 536 |
|
|
/* The function value_replacement does the main work of doing the value
|
| 537 |
|
|
replacement. Return true if the replacement is done. Otherwise return
|
| 538 |
|
|
false.
|
| 539 |
|
|
BB is the basic block where the replacement is going to be done on. ARG0
|
| 540 |
|
|
is argument 0 from the PHI. Likewise for ARG1. */
|
| 541 |
|
|
|
| 542 |
|
|
static bool
|
| 543 |
|
|
value_replacement (basic_block cond_bb, basic_block middle_bb,
|
| 544 |
|
|
edge e0, edge e1, tree phi,
|
| 545 |
|
|
tree arg0, tree arg1)
|
| 546 |
|
|
{
|
| 547 |
|
|
tree cond;
|
| 548 |
|
|
edge true_edge, false_edge;
|
| 549 |
|
|
|
| 550 |
|
|
/* If the type says honor signed zeros we cannot do this
|
| 551 |
|
|
optimization. */
|
| 552 |
|
|
if (HONOR_SIGNED_ZEROS (TYPE_MODE (TREE_TYPE (arg1))))
|
| 553 |
|
|
return false;
|
| 554 |
|
|
|
| 555 |
|
|
if (!empty_block_p (middle_bb))
|
| 556 |
|
|
return false;
|
| 557 |
|
|
|
| 558 |
|
|
cond = COND_EXPR_COND (last_stmt (cond_bb));
|
| 559 |
|
|
|
| 560 |
|
|
/* This transformation is only valid for equality comparisons. */
|
| 561 |
|
|
if (TREE_CODE (cond) != NE_EXPR && TREE_CODE (cond) != EQ_EXPR)
|
| 562 |
|
|
return false;
|
| 563 |
|
|
|
| 564 |
|
|
/* We need to know which is the true edge and which is the false
|
| 565 |
|
|
edge so that we know if have abs or negative abs. */
|
| 566 |
|
|
extract_true_false_edges_from_block (cond_bb, &true_edge, &false_edge);
|
| 567 |
|
|
|
| 568 |
|
|
/* At this point we know we have a COND_EXPR with two successors.
|
| 569 |
|
|
One successor is BB, the other successor is an empty block which
|
| 570 |
|
|
falls through into BB.
|
| 571 |
|
|
|
| 572 |
|
|
The condition for the COND_EXPR is known to be NE_EXPR or EQ_EXPR.
|
| 573 |
|
|
|
| 574 |
|
|
There is a single PHI node at the join point (BB) with two arguments.
|
| 575 |
|
|
|
| 576 |
|
|
We now need to verify that the two arguments in the PHI node match
|
| 577 |
|
|
the two arguments to the equality comparison. */
|
| 578 |
|
|
|
| 579 |
|
|
if ((operand_equal_for_phi_arg_p (arg0, TREE_OPERAND (cond, 0))
|
| 580 |
|
|
&& operand_equal_for_phi_arg_p (arg1, TREE_OPERAND (cond, 1)))
|
| 581 |
|
|
|| (operand_equal_for_phi_arg_p (arg1, TREE_OPERAND (cond, 0))
|
| 582 |
|
|
&& operand_equal_for_phi_arg_p (arg0, TREE_OPERAND (cond, 1))))
|
| 583 |
|
|
{
|
| 584 |
|
|
edge e;
|
| 585 |
|
|
tree arg;
|
| 586 |
|
|
|
| 587 |
|
|
/* For NE_EXPR, we want to build an assignment result = arg where
|
| 588 |
|
|
arg is the PHI argument associated with the true edge. For
|
| 589 |
|
|
EQ_EXPR we want the PHI argument associated with the false edge. */
|
| 590 |
|
|
e = (TREE_CODE (cond) == NE_EXPR ? true_edge : false_edge);
|
| 591 |
|
|
|
| 592 |
|
|
/* Unfortunately, E may not reach BB (it may instead have gone to
|
| 593 |
|
|
OTHER_BLOCK). If that is the case, then we want the single outgoing
|
| 594 |
|
|
edge from OTHER_BLOCK which reaches BB and represents the desired
|
| 595 |
|
|
path from COND_BLOCK. */
|
| 596 |
|
|
if (e->dest == middle_bb)
|
| 597 |
|
|
e = single_succ_edge (e->dest);
|
| 598 |
|
|
|
| 599 |
|
|
/* Now we know the incoming edge to BB that has the argument for the
|
| 600 |
|
|
RHS of our new assignment statement. */
|
| 601 |
|
|
if (e0 == e)
|
| 602 |
|
|
arg = arg0;
|
| 603 |
|
|
else
|
| 604 |
|
|
arg = arg1;
|
| 605 |
|
|
|
| 606 |
|
|
replace_phi_edge_with_variable (cond_bb, e1, phi, arg);
|
| 607 |
|
|
|
| 608 |
|
|
/* Note that we optimized this PHI. */
|
| 609 |
|
|
return true;
|
| 610 |
|
|
}
|
| 611 |
|
|
return false;
|
| 612 |
|
|
}
|
| 613 |
|
|
|
| 614 |
|
|
/* The function minmax_replacement does the main work of doing the minmax
|
| 615 |
|
|
replacement. Return true if the replacement is done. Otherwise return
|
| 616 |
|
|
false.
|
| 617 |
|
|
BB is the basic block where the replacement is going to be done on. ARG0
|
| 618 |
|
|
is argument 0 from the PHI. Likewise for ARG1. */
|
| 619 |
|
|
|
| 620 |
|
|
static bool
|
| 621 |
|
|
minmax_replacement (basic_block cond_bb, basic_block middle_bb,
|
| 622 |
|
|
edge e0, edge e1, tree phi,
|
| 623 |
|
|
tree arg0, tree arg1)
|
| 624 |
|
|
{
|
| 625 |
|
|
tree result, type;
|
| 626 |
|
|
tree cond, new;
|
| 627 |
|
|
edge true_edge, false_edge;
|
| 628 |
|
|
enum tree_code cmp, minmax, ass_code;
|
| 629 |
|
|
tree smaller, larger, arg_true, arg_false;
|
| 630 |
|
|
block_stmt_iterator bsi, bsi_from;
|
| 631 |
|
|
|
| 632 |
|
|
type = TREE_TYPE (PHI_RESULT (phi));
|
| 633 |
|
|
|
| 634 |
|
|
/* The optimization may be unsafe due to NaNs. */
|
| 635 |
|
|
if (HONOR_NANS (TYPE_MODE (type)))
|
| 636 |
|
|
return false;
|
| 637 |
|
|
|
| 638 |
|
|
cond = COND_EXPR_COND (last_stmt (cond_bb));
|
| 639 |
|
|
cmp = TREE_CODE (cond);
|
| 640 |
|
|
result = PHI_RESULT (phi);
|
| 641 |
|
|
|
| 642 |
|
|
/* This transformation is only valid for order comparisons. Record which
|
| 643 |
|
|
operand is smaller/larger if the result of the comparison is true. */
|
| 644 |
|
|
if (cmp == LT_EXPR || cmp == LE_EXPR)
|
| 645 |
|
|
{
|
| 646 |
|
|
smaller = TREE_OPERAND (cond, 0);
|
| 647 |
|
|
larger = TREE_OPERAND (cond, 1);
|
| 648 |
|
|
}
|
| 649 |
|
|
else if (cmp == GT_EXPR || cmp == GE_EXPR)
|
| 650 |
|
|
{
|
| 651 |
|
|
smaller = TREE_OPERAND (cond, 1);
|
| 652 |
|
|
larger = TREE_OPERAND (cond, 0);
|
| 653 |
|
|
}
|
| 654 |
|
|
else
|
| 655 |
|
|
return false;
|
| 656 |
|
|
|
| 657 |
|
|
/* We need to know which is the true edge and which is the false
|
| 658 |
|
|
edge so that we know if have abs or negative abs. */
|
| 659 |
|
|
extract_true_false_edges_from_block (cond_bb, &true_edge, &false_edge);
|
| 660 |
|
|
|
| 661 |
|
|
/* Forward the edges over the middle basic block. */
|
| 662 |
|
|
if (true_edge->dest == middle_bb)
|
| 663 |
|
|
true_edge = EDGE_SUCC (true_edge->dest, 0);
|
| 664 |
|
|
if (false_edge->dest == middle_bb)
|
| 665 |
|
|
false_edge = EDGE_SUCC (false_edge->dest, 0);
|
| 666 |
|
|
|
| 667 |
|
|
if (true_edge == e0)
|
| 668 |
|
|
{
|
| 669 |
|
|
gcc_assert (false_edge == e1);
|
| 670 |
|
|
arg_true = arg0;
|
| 671 |
|
|
arg_false = arg1;
|
| 672 |
|
|
}
|
| 673 |
|
|
else
|
| 674 |
|
|
{
|
| 675 |
|
|
gcc_assert (false_edge == e0);
|
| 676 |
|
|
gcc_assert (true_edge == e1);
|
| 677 |
|
|
arg_true = arg1;
|
| 678 |
|
|
arg_false = arg0;
|
| 679 |
|
|
}
|
| 680 |
|
|
|
| 681 |
|
|
if (empty_block_p (middle_bb))
|
| 682 |
|
|
{
|
| 683 |
|
|
if (operand_equal_for_phi_arg_p (arg_true, smaller)
|
| 684 |
|
|
&& operand_equal_for_phi_arg_p (arg_false, larger))
|
| 685 |
|
|
{
|
| 686 |
|
|
/* Case
|
| 687 |
|
|
|
| 688 |
|
|
if (smaller < larger)
|
| 689 |
|
|
rslt = smaller;
|
| 690 |
|
|
else
|
| 691 |
|
|
rslt = larger; */
|
| 692 |
|
|
minmax = MIN_EXPR;
|
| 693 |
|
|
}
|
| 694 |
|
|
else if (operand_equal_for_phi_arg_p (arg_false, smaller)
|
| 695 |
|
|
&& operand_equal_for_phi_arg_p (arg_true, larger))
|
| 696 |
|
|
minmax = MAX_EXPR;
|
| 697 |
|
|
else
|
| 698 |
|
|
return false;
|
| 699 |
|
|
}
|
| 700 |
|
|
else
|
| 701 |
|
|
{
|
| 702 |
|
|
/* Recognize the following case, assuming d <= u:
|
| 703 |
|
|
|
| 704 |
|
|
if (a <= u)
|
| 705 |
|
|
b = MAX (a, d);
|
| 706 |
|
|
x = PHI <b, u>
|
| 707 |
|
|
|
| 708 |
|
|
This is equivalent to
|
| 709 |
|
|
|
| 710 |
|
|
b = MAX (a, d);
|
| 711 |
|
|
x = MIN (b, u); */
|
| 712 |
|
|
|
| 713 |
|
|
tree assign = last_and_only_stmt (middle_bb);
|
| 714 |
|
|
tree lhs, rhs, op0, op1, bound;
|
| 715 |
|
|
|
| 716 |
|
|
if (!assign
|
| 717 |
|
|
|| TREE_CODE (assign) != MODIFY_EXPR)
|
| 718 |
|
|
return false;
|
| 719 |
|
|
|
| 720 |
|
|
lhs = TREE_OPERAND (assign, 0);
|
| 721 |
|
|
rhs = TREE_OPERAND (assign, 1);
|
| 722 |
|
|
ass_code = TREE_CODE (rhs);
|
| 723 |
|
|
if (ass_code != MAX_EXPR && ass_code != MIN_EXPR)
|
| 724 |
|
|
return false;
|
| 725 |
|
|
op0 = TREE_OPERAND (rhs, 0);
|
| 726 |
|
|
op1 = TREE_OPERAND (rhs, 1);
|
| 727 |
|
|
|
| 728 |
|
|
if (true_edge->src == middle_bb)
|
| 729 |
|
|
{
|
| 730 |
|
|
/* We got here if the condition is true, i.e., SMALLER < LARGER. */
|
| 731 |
|
|
if (!operand_equal_for_phi_arg_p (lhs, arg_true))
|
| 732 |
|
|
return false;
|
| 733 |
|
|
|
| 734 |
|
|
if (operand_equal_for_phi_arg_p (arg_false, larger))
|
| 735 |
|
|
{
|
| 736 |
|
|
/* Case
|
| 737 |
|
|
|
| 738 |
|
|
if (smaller < larger)
|
| 739 |
|
|
{
|
| 740 |
|
|
r' = MAX_EXPR (smaller, bound)
|
| 741 |
|
|
}
|
| 742 |
|
|
r = PHI <r', larger> --> to be turned to MIN_EXPR. */
|
| 743 |
|
|
if (ass_code != MAX_EXPR)
|
| 744 |
|
|
return false;
|
| 745 |
|
|
|
| 746 |
|
|
minmax = MIN_EXPR;
|
| 747 |
|
|
if (operand_equal_for_phi_arg_p (op0, smaller))
|
| 748 |
|
|
bound = op1;
|
| 749 |
|
|
else if (operand_equal_for_phi_arg_p (op1, smaller))
|
| 750 |
|
|
bound = op0;
|
| 751 |
|
|
else
|
| 752 |
|
|
return false;
|
| 753 |
|
|
|
| 754 |
|
|
/* We need BOUND <= LARGER. */
|
| 755 |
|
|
if (!integer_nonzerop (fold_build2 (LE_EXPR, boolean_type_node,
|
| 756 |
|
|
bound, larger)))
|
| 757 |
|
|
return false;
|
| 758 |
|
|
}
|
| 759 |
|
|
else if (operand_equal_for_phi_arg_p (arg_false, smaller))
|
| 760 |
|
|
{
|
| 761 |
|
|
/* Case
|
| 762 |
|
|
|
| 763 |
|
|
if (smaller < larger)
|
| 764 |
|
|
{
|
| 765 |
|
|
r' = MIN_EXPR (larger, bound)
|
| 766 |
|
|
}
|
| 767 |
|
|
r = PHI <r', smaller> --> to be turned to MAX_EXPR. */
|
| 768 |
|
|
if (ass_code != MIN_EXPR)
|
| 769 |
|
|
return false;
|
| 770 |
|
|
|
| 771 |
|
|
minmax = MAX_EXPR;
|
| 772 |
|
|
if (operand_equal_for_phi_arg_p (op0, larger))
|
| 773 |
|
|
bound = op1;
|
| 774 |
|
|
else if (operand_equal_for_phi_arg_p (op1, larger))
|
| 775 |
|
|
bound = op0;
|
| 776 |
|
|
else
|
| 777 |
|
|
return false;
|
| 778 |
|
|
|
| 779 |
|
|
/* We need BOUND >= SMALLER. */
|
| 780 |
|
|
if (!integer_nonzerop (fold_build2 (GE_EXPR, boolean_type_node,
|
| 781 |
|
|
bound, smaller)))
|
| 782 |
|
|
return false;
|
| 783 |
|
|
}
|
| 784 |
|
|
else
|
| 785 |
|
|
return false;
|
| 786 |
|
|
}
|
| 787 |
|
|
else
|
| 788 |
|
|
{
|
| 789 |
|
|
/* We got here if the condition is false, i.e., SMALLER > LARGER. */
|
| 790 |
|
|
if (!operand_equal_for_phi_arg_p (lhs, arg_false))
|
| 791 |
|
|
return false;
|
| 792 |
|
|
|
| 793 |
|
|
if (operand_equal_for_phi_arg_p (arg_true, larger))
|
| 794 |
|
|
{
|
| 795 |
|
|
/* Case
|
| 796 |
|
|
|
| 797 |
|
|
if (smaller > larger)
|
| 798 |
|
|
{
|
| 799 |
|
|
r' = MIN_EXPR (smaller, bound)
|
| 800 |
|
|
}
|
| 801 |
|
|
r = PHI <r', larger> --> to be turned to MAX_EXPR. */
|
| 802 |
|
|
if (ass_code != MIN_EXPR)
|
| 803 |
|
|
return false;
|
| 804 |
|
|
|
| 805 |
|
|
minmax = MAX_EXPR;
|
| 806 |
|
|
if (operand_equal_for_phi_arg_p (op0, smaller))
|
| 807 |
|
|
bound = op1;
|
| 808 |
|
|
else if (operand_equal_for_phi_arg_p (op1, smaller))
|
| 809 |
|
|
bound = op0;
|
| 810 |
|
|
else
|
| 811 |
|
|
return false;
|
| 812 |
|
|
|
| 813 |
|
|
/* We need BOUND >= LARGER. */
|
| 814 |
|
|
if (!integer_nonzerop (fold_build2 (GE_EXPR, boolean_type_node,
|
| 815 |
|
|
bound, larger)))
|
| 816 |
|
|
return false;
|
| 817 |
|
|
}
|
| 818 |
|
|
else if (operand_equal_for_phi_arg_p (arg_true, smaller))
|
| 819 |
|
|
{
|
| 820 |
|
|
/* Case
|
| 821 |
|
|
|
| 822 |
|
|
if (smaller > larger)
|
| 823 |
|
|
{
|
| 824 |
|
|
r' = MAX_EXPR (larger, bound)
|
| 825 |
|
|
}
|
| 826 |
|
|
r = PHI <r', smaller> --> to be turned to MIN_EXPR. */
|
| 827 |
|
|
if (ass_code != MAX_EXPR)
|
| 828 |
|
|
return false;
|
| 829 |
|
|
|
| 830 |
|
|
minmax = MIN_EXPR;
|
| 831 |
|
|
if (operand_equal_for_phi_arg_p (op0, larger))
|
| 832 |
|
|
bound = op1;
|
| 833 |
|
|
else if (operand_equal_for_phi_arg_p (op1, larger))
|
| 834 |
|
|
bound = op0;
|
| 835 |
|
|
else
|
| 836 |
|
|
return false;
|
| 837 |
|
|
|
| 838 |
|
|
/* We need BOUND <= SMALLER. */
|
| 839 |
|
|
if (!integer_nonzerop (fold_build2 (LE_EXPR, boolean_type_node,
|
| 840 |
|
|
bound, smaller)))
|
| 841 |
|
|
return false;
|
| 842 |
|
|
}
|
| 843 |
|
|
else
|
| 844 |
|
|
return false;
|
| 845 |
|
|
}
|
| 846 |
|
|
|
| 847 |
|
|
/* Move the statement from the middle block. */
|
| 848 |
|
|
bsi = bsi_last (cond_bb);
|
| 849 |
|
|
bsi_from = bsi_last (middle_bb);
|
| 850 |
|
|
bsi_move_before (&bsi_from, &bsi);
|
| 851 |
|
|
}
|
| 852 |
|
|
|
| 853 |
|
|
/* Emit the statement to compute min/max. */
|
| 854 |
|
|
result = duplicate_ssa_name (PHI_RESULT (phi), NULL);
|
| 855 |
|
|
new = build2 (MODIFY_EXPR, type, result,
|
| 856 |
|
|
build2 (minmax, type, arg0, arg1));
|
| 857 |
|
|
SSA_NAME_DEF_STMT (result) = new;
|
| 858 |
|
|
bsi = bsi_last (cond_bb);
|
| 859 |
|
|
bsi_insert_before (&bsi, new, BSI_NEW_STMT);
|
| 860 |
|
|
|
| 861 |
|
|
replace_phi_edge_with_variable (cond_bb, e1, phi, result);
|
| 862 |
|
|
return true;
|
| 863 |
|
|
}
|
| 864 |
|
|
|
| 865 |
|
|
/* The function absolute_replacement does the main work of doing the absolute
|
| 866 |
|
|
replacement. Return true if the replacement is done. Otherwise return
|
| 867 |
|
|
false.
|
| 868 |
|
|
bb is the basic block where the replacement is going to be done on. arg0
|
| 869 |
|
|
is argument 0 from the phi. Likewise for arg1. */
|
| 870 |
|
|
|
| 871 |
|
|
static bool
|
| 872 |
|
|
abs_replacement (basic_block cond_bb, basic_block middle_bb,
|
| 873 |
|
|
edge e0 ATTRIBUTE_UNUSED, edge e1,
|
| 874 |
|
|
tree phi, tree arg0, tree arg1)
|
| 875 |
|
|
{
|
| 876 |
|
|
tree result;
|
| 877 |
|
|
tree new, cond;
|
| 878 |
|
|
block_stmt_iterator bsi;
|
| 879 |
|
|
edge true_edge, false_edge;
|
| 880 |
|
|
tree assign;
|
| 881 |
|
|
edge e;
|
| 882 |
|
|
tree rhs, lhs;
|
| 883 |
|
|
bool negate;
|
| 884 |
|
|
enum tree_code cond_code;
|
| 885 |
|
|
|
| 886 |
|
|
/* If the type says honor signed zeros we cannot do this
|
| 887 |
|
|
optimization. */
|
| 888 |
|
|
if (HONOR_SIGNED_ZEROS (TYPE_MODE (TREE_TYPE (arg1))))
|
| 889 |
|
|
return false;
|
| 890 |
|
|
|
| 891 |
|
|
/* OTHER_BLOCK must have only one executable statement which must have the
|
| 892 |
|
|
form arg0 = -arg1 or arg1 = -arg0. */
|
| 893 |
|
|
|
| 894 |
|
|
assign = last_and_only_stmt (middle_bb);
|
| 895 |
|
|
/* If we did not find the proper negation assignment, then we can not
|
| 896 |
|
|
optimize. */
|
| 897 |
|
|
if (assign == NULL)
|
| 898 |
|
|
return false;
|
| 899 |
|
|
|
| 900 |
|
|
/* If we got here, then we have found the only executable statement
|
| 901 |
|
|
in OTHER_BLOCK. If it is anything other than arg = -arg1 or
|
| 902 |
|
|
arg1 = -arg0, then we can not optimize. */
|
| 903 |
|
|
if (TREE_CODE (assign) != MODIFY_EXPR)
|
| 904 |
|
|
return false;
|
| 905 |
|
|
|
| 906 |
|
|
lhs = TREE_OPERAND (assign, 0);
|
| 907 |
|
|
rhs = TREE_OPERAND (assign, 1);
|
| 908 |
|
|
|
| 909 |
|
|
if (TREE_CODE (rhs) != NEGATE_EXPR)
|
| 910 |
|
|
return false;
|
| 911 |
|
|
|
| 912 |
|
|
rhs = TREE_OPERAND (rhs, 0);
|
| 913 |
|
|
|
| 914 |
|
|
/* The assignment has to be arg0 = -arg1 or arg1 = -arg0. */
|
| 915 |
|
|
if (!(lhs == arg0 && rhs == arg1)
|
| 916 |
|
|
&& !(lhs == arg1 && rhs == arg0))
|
| 917 |
|
|
return false;
|
| 918 |
|
|
|
| 919 |
|
|
cond = COND_EXPR_COND (last_stmt (cond_bb));
|
| 920 |
|
|
result = PHI_RESULT (phi);
|
| 921 |
|
|
|
| 922 |
|
|
/* Only relationals comparing arg[01] against zero are interesting. */
|
| 923 |
|
|
cond_code = TREE_CODE (cond);
|
| 924 |
|
|
if (cond_code != GT_EXPR && cond_code != GE_EXPR
|
| 925 |
|
|
&& cond_code != LT_EXPR && cond_code != LE_EXPR)
|
| 926 |
|
|
return false;
|
| 927 |
|
|
|
| 928 |
|
|
/* Make sure the conditional is arg[01] OP y. */
|
| 929 |
|
|
if (TREE_OPERAND (cond, 0) != rhs)
|
| 930 |
|
|
return false;
|
| 931 |
|
|
|
| 932 |
|
|
if (FLOAT_TYPE_P (TREE_TYPE (TREE_OPERAND (cond, 1)))
|
| 933 |
|
|
? real_zerop (TREE_OPERAND (cond, 1))
|
| 934 |
|
|
: integer_zerop (TREE_OPERAND (cond, 1)))
|
| 935 |
|
|
;
|
| 936 |
|
|
else
|
| 937 |
|
|
return false;
|
| 938 |
|
|
|
| 939 |
|
|
/* We need to know which is the true edge and which is the false
|
| 940 |
|
|
edge so that we know if have abs or negative abs. */
|
| 941 |
|
|
extract_true_false_edges_from_block (cond_bb, &true_edge, &false_edge);
|
| 942 |
|
|
|
| 943 |
|
|
/* For GT_EXPR/GE_EXPR, if the true edge goes to OTHER_BLOCK, then we
|
| 944 |
|
|
will need to negate the result. Similarly for LT_EXPR/LE_EXPR if
|
| 945 |
|
|
the false edge goes to OTHER_BLOCK. */
|
| 946 |
|
|
if (cond_code == GT_EXPR || cond_code == GE_EXPR)
|
| 947 |
|
|
e = true_edge;
|
| 948 |
|
|
else
|
| 949 |
|
|
e = false_edge;
|
| 950 |
|
|
|
| 951 |
|
|
if (e->dest == middle_bb)
|
| 952 |
|
|
negate = true;
|
| 953 |
|
|
else
|
| 954 |
|
|
negate = false;
|
| 955 |
|
|
|
| 956 |
|
|
result = duplicate_ssa_name (result, NULL);
|
| 957 |
|
|
|
| 958 |
|
|
if (negate)
|
| 959 |
|
|
{
|
| 960 |
|
|
tree tmp = create_tmp_var (TREE_TYPE (result), NULL);
|
| 961 |
|
|
add_referenced_var (tmp);
|
| 962 |
|
|
lhs = make_ssa_name (tmp, NULL);
|
| 963 |
|
|
}
|
| 964 |
|
|
else
|
| 965 |
|
|
lhs = result;
|
| 966 |
|
|
|
| 967 |
|
|
/* Build the modify expression with abs expression. */
|
| 968 |
|
|
new = build2 (MODIFY_EXPR, TREE_TYPE (lhs),
|
| 969 |
|
|
lhs, build1 (ABS_EXPR, TREE_TYPE (lhs), rhs));
|
| 970 |
|
|
SSA_NAME_DEF_STMT (lhs) = new;
|
| 971 |
|
|
|
| 972 |
|
|
bsi = bsi_last (cond_bb);
|
| 973 |
|
|
bsi_insert_before (&bsi, new, BSI_NEW_STMT);
|
| 974 |
|
|
|
| 975 |
|
|
if (negate)
|
| 976 |
|
|
{
|
| 977 |
|
|
/* Get the right BSI. We want to insert after the recently
|
| 978 |
|
|
added ABS_EXPR statement (which we know is the first statement
|
| 979 |
|
|
in the block. */
|
| 980 |
|
|
new = build2 (MODIFY_EXPR, TREE_TYPE (result),
|
| 981 |
|
|
result, build1 (NEGATE_EXPR, TREE_TYPE (lhs), lhs));
|
| 982 |
|
|
SSA_NAME_DEF_STMT (result) = new;
|
| 983 |
|
|
|
| 984 |
|
|
bsi_insert_after (&bsi, new, BSI_NEW_STMT);
|
| 985 |
|
|
}
|
| 986 |
|
|
|
| 987 |
|
|
replace_phi_edge_with_variable (cond_bb, e1, phi, result);
|
| 988 |
|
|
|
| 989 |
|
|
/* Note that we optimized this PHI. */
|
| 990 |
|
|
return true;
|
| 991 |
|
|
}
|
| 992 |
|
|
|
| 993 |
|
|
|
| 994 |
|
|
/* Always do these optimizations if we have SSA
|
| 995 |
|
|
trees to work on. */
|
| 996 |
|
|
static bool
|
| 997 |
|
|
gate_phiopt (void)
|
| 998 |
|
|
{
|
| 999 |
|
|
return 1;
|
| 1000 |
|
|
}
|
| 1001 |
|
|
|
| 1002 |
|
|
struct tree_opt_pass pass_phiopt =
|
| 1003 |
|
|
{
|
| 1004 |
|
|
"phiopt", /* name */
|
| 1005 |
|
|
gate_phiopt, /* gate */
|
| 1006 |
|
|
tree_ssa_phiopt, /* execute */
|
| 1007 |
|
|
NULL, /* sub */
|
| 1008 |
|
|
NULL, /* next */
|
| 1009 |
|
|
0, /* static_pass_number */
|
| 1010 |
|
|
TV_TREE_PHIOPT, /* tv_id */
|
| 1011 |
|
|
PROP_cfg | PROP_ssa | PROP_alias, /* properties_required */
|
| 1012 |
|
|
0, /* properties_provided */
|
| 1013 |
|
|
0, /* properties_destroyed */
|
| 1014 |
|
|
0, /* todo_flags_start */
|
| 1015 |
|
|
TODO_dump_func
|
| 1016 |
|
|
| TODO_ggc_collect
|
| 1017 |
|
|
| TODO_verify_ssa
|
| 1018 |
|
|
| TODO_verify_flow
|
| 1019 |
|
|
| TODO_verify_stmts, /* todo_flags_finish */
|
| 1020 |
|
|
|
| 1021 |
|
|
};
|