| 1 |
38 |
julius |
/* Generic SSA value propagation engine.
|
| 2 |
|
|
Copyright (C) 2004, 2005, 2006, 2007 Free Software Foundation, Inc.
|
| 3 |
|
|
Contributed by Diego Novillo <dnovillo@redhat.com>
|
| 4 |
|
|
|
| 5 |
|
|
This file is part of GCC.
|
| 6 |
|
|
|
| 7 |
|
|
GCC is free software; you can redistribute it and/or modify it
|
| 8 |
|
|
under the terms of the GNU General Public License as published by the
|
| 9 |
|
|
Free Software Foundation; either version 3, or (at your option) any
|
| 10 |
|
|
later version.
|
| 11 |
|
|
|
| 12 |
|
|
GCC is distributed in the hope that it will be useful, but WITHOUT
|
| 13 |
|
|
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
| 14 |
|
|
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
| 15 |
|
|
for more details.
|
| 16 |
|
|
|
| 17 |
|
|
You should have received a copy of the GNU General Public License
|
| 18 |
|
|
along with GCC; see the file COPYING3. If not see
|
| 19 |
|
|
<http://www.gnu.org/licenses/>. */
|
| 20 |
|
|
|
| 21 |
|
|
#include "config.h"
|
| 22 |
|
|
#include "system.h"
|
| 23 |
|
|
#include "coretypes.h"
|
| 24 |
|
|
#include "tm.h"
|
| 25 |
|
|
#include "tree.h"
|
| 26 |
|
|
#include "flags.h"
|
| 27 |
|
|
#include "rtl.h"
|
| 28 |
|
|
#include "tm_p.h"
|
| 29 |
|
|
#include "ggc.h"
|
| 30 |
|
|
#include "basic-block.h"
|
| 31 |
|
|
#include "output.h"
|
| 32 |
|
|
#include "expr.h"
|
| 33 |
|
|
#include "function.h"
|
| 34 |
|
|
#include "diagnostic.h"
|
| 35 |
|
|
#include "timevar.h"
|
| 36 |
|
|
#include "tree-dump.h"
|
| 37 |
|
|
#include "tree-flow.h"
|
| 38 |
|
|
#include "tree-pass.h"
|
| 39 |
|
|
#include "tree-ssa-propagate.h"
|
| 40 |
|
|
#include "langhooks.h"
|
| 41 |
|
|
#include "varray.h"
|
| 42 |
|
|
#include "vec.h"
|
| 43 |
|
|
|
| 44 |
|
|
/* This file implements a generic value propagation engine based on
|
| 45 |
|
|
the same propagation used by the SSA-CCP algorithm [1].
|
| 46 |
|
|
|
| 47 |
|
|
Propagation is performed by simulating the execution of every
|
| 48 |
|
|
statement that produces the value being propagated. Simulation
|
| 49 |
|
|
proceeds as follows:
|
| 50 |
|
|
|
| 51 |
|
|
1- Initially, all edges of the CFG are marked not executable and
|
| 52 |
|
|
the CFG worklist is seeded with all the statements in the entry
|
| 53 |
|
|
basic block (block 0).
|
| 54 |
|
|
|
| 55 |
|
|
2- Every statement S is simulated with a call to the call-back
|
| 56 |
|
|
function SSA_PROP_VISIT_STMT. This evaluation may produce 3
|
| 57 |
|
|
results:
|
| 58 |
|
|
|
| 59 |
|
|
SSA_PROP_NOT_INTERESTING: Statement S produces nothing of
|
| 60 |
|
|
interest and does not affect any of the work lists.
|
| 61 |
|
|
|
| 62 |
|
|
SSA_PROP_VARYING: The value produced by S cannot be determined
|
| 63 |
|
|
at compile time. Further simulation of S is not required.
|
| 64 |
|
|
If S is a conditional jump, all the outgoing edges for the
|
| 65 |
|
|
block are considered executable and added to the work
|
| 66 |
|
|
list.
|
| 67 |
|
|
|
| 68 |
|
|
SSA_PROP_INTERESTING: S produces a value that can be computed
|
| 69 |
|
|
at compile time. Its result can be propagated into the
|
| 70 |
|
|
statements that feed from S. Furthermore, if S is a
|
| 71 |
|
|
conditional jump, only the edge known to be taken is added
|
| 72 |
|
|
to the work list. Edges that are known not to execute are
|
| 73 |
|
|
never simulated.
|
| 74 |
|
|
|
| 75 |
|
|
3- PHI nodes are simulated with a call to SSA_PROP_VISIT_PHI. The
|
| 76 |
|
|
return value from SSA_PROP_VISIT_PHI has the same semantics as
|
| 77 |
|
|
described in #2.
|
| 78 |
|
|
|
| 79 |
|
|
4- Three work lists are kept. Statements are only added to these
|
| 80 |
|
|
lists if they produce one of SSA_PROP_INTERESTING or
|
| 81 |
|
|
SSA_PROP_VARYING.
|
| 82 |
|
|
|
| 83 |
|
|
CFG_BLOCKS contains the list of blocks to be simulated.
|
| 84 |
|
|
Blocks are added to this list if their incoming edges are
|
| 85 |
|
|
found executable.
|
| 86 |
|
|
|
| 87 |
|
|
VARYING_SSA_EDGES contains the list of statements that feed
|
| 88 |
|
|
from statements that produce an SSA_PROP_VARYING result.
|
| 89 |
|
|
These are simulated first to speed up processing.
|
| 90 |
|
|
|
| 91 |
|
|
INTERESTING_SSA_EDGES contains the list of statements that
|
| 92 |
|
|
feed from statements that produce an SSA_PROP_INTERESTING
|
| 93 |
|
|
result.
|
| 94 |
|
|
|
| 95 |
|
|
5- Simulation terminates when all three work lists are drained.
|
| 96 |
|
|
|
| 97 |
|
|
Before calling ssa_propagate, it is important to clear
|
| 98 |
|
|
DONT_SIMULATE_AGAIN for all the statements in the program that
|
| 99 |
|
|
should be simulated. This initialization allows an implementation
|
| 100 |
|
|
to specify which statements should never be simulated.
|
| 101 |
|
|
|
| 102 |
|
|
It is also important to compute def-use information before calling
|
| 103 |
|
|
ssa_propagate.
|
| 104 |
|
|
|
| 105 |
|
|
References:
|
| 106 |
|
|
|
| 107 |
|
|
[1] Constant propagation with conditional branches,
|
| 108 |
|
|
Wegman and Zadeck, ACM TOPLAS 13(2):181-210.
|
| 109 |
|
|
|
| 110 |
|
|
[2] Building an Optimizing Compiler,
|
| 111 |
|
|
Robert Morgan, Butterworth-Heinemann, 1998, Section 8.9.
|
| 112 |
|
|
|
| 113 |
|
|
[3] Advanced Compiler Design and Implementation,
|
| 114 |
|
|
Steven Muchnick, Morgan Kaufmann, 1997, Section 12.6 */
|
| 115 |
|
|
|
| 116 |
|
|
/* Function pointers used to parameterize the propagation engine. */
|
| 117 |
|
|
static ssa_prop_visit_stmt_fn ssa_prop_visit_stmt;
|
| 118 |
|
|
static ssa_prop_visit_phi_fn ssa_prop_visit_phi;
|
| 119 |
|
|
|
| 120 |
|
|
/* Use the TREE_DEPRECATED bitflag to mark statements that have been
|
| 121 |
|
|
added to one of the SSA edges worklists. This flag is used to
|
| 122 |
|
|
avoid visiting statements unnecessarily when draining an SSA edge
|
| 123 |
|
|
worklist. If while simulating a basic block, we find a statement with
|
| 124 |
|
|
STMT_IN_SSA_EDGE_WORKLIST set, we clear it to prevent SSA edge
|
| 125 |
|
|
processing from visiting it again. */
|
| 126 |
|
|
#define STMT_IN_SSA_EDGE_WORKLIST(T) TREE_DEPRECATED (T)
|
| 127 |
|
|
|
| 128 |
|
|
/* A bitmap to keep track of executable blocks in the CFG. */
|
| 129 |
|
|
static sbitmap executable_blocks;
|
| 130 |
|
|
|
| 131 |
|
|
/* Array of control flow edges on the worklist. */
|
| 132 |
|
|
static VEC(basic_block,heap) *cfg_blocks;
|
| 133 |
|
|
|
| 134 |
|
|
static unsigned int cfg_blocks_num = 0;
|
| 135 |
|
|
static int cfg_blocks_tail;
|
| 136 |
|
|
static int cfg_blocks_head;
|
| 137 |
|
|
|
| 138 |
|
|
static sbitmap bb_in_list;
|
| 139 |
|
|
|
| 140 |
|
|
/* Worklist of SSA edges which will need reexamination as their
|
| 141 |
|
|
definition has changed. SSA edges are def-use edges in the SSA
|
| 142 |
|
|
web. For each D-U edge, we store the target statement or PHI node
|
| 143 |
|
|
U. */
|
| 144 |
|
|
static GTY(()) VEC(tree,gc) *interesting_ssa_edges;
|
| 145 |
|
|
|
| 146 |
|
|
/* Identical to INTERESTING_SSA_EDGES. For performance reasons, the
|
| 147 |
|
|
list of SSA edges is split into two. One contains all SSA edges
|
| 148 |
|
|
who need to be reexamined because their lattice value changed to
|
| 149 |
|
|
varying (this worklist), and the other contains all other SSA edges
|
| 150 |
|
|
to be reexamined (INTERESTING_SSA_EDGES).
|
| 151 |
|
|
|
| 152 |
|
|
Since most values in the program are VARYING, the ideal situation
|
| 153 |
|
|
is to move them to that lattice value as quickly as possible.
|
| 154 |
|
|
Thus, it doesn't make sense to process any other type of lattice
|
| 155 |
|
|
value until all VARYING values are propagated fully, which is one
|
| 156 |
|
|
thing using the VARYING worklist achieves. In addition, if we
|
| 157 |
|
|
don't use a separate worklist for VARYING edges, we end up with
|
| 158 |
|
|
situations where lattice values move from
|
| 159 |
|
|
UNDEFINED->INTERESTING->VARYING instead of UNDEFINED->VARYING. */
|
| 160 |
|
|
static GTY(()) VEC(tree,gc) *varying_ssa_edges;
|
| 161 |
|
|
|
| 162 |
|
|
|
| 163 |
|
|
/* Return true if the block worklist empty. */
|
| 164 |
|
|
|
| 165 |
|
|
static inline bool
|
| 166 |
|
|
cfg_blocks_empty_p (void)
|
| 167 |
|
|
{
|
| 168 |
|
|
return (cfg_blocks_num == 0);
|
| 169 |
|
|
}
|
| 170 |
|
|
|
| 171 |
|
|
|
| 172 |
|
|
/* Add a basic block to the worklist. The block must not be already
|
| 173 |
|
|
in the worklist, and it must not be the ENTRY or EXIT block. */
|
| 174 |
|
|
|
| 175 |
|
|
static void
|
| 176 |
|
|
cfg_blocks_add (basic_block bb)
|
| 177 |
|
|
{
|
| 178 |
|
|
gcc_assert (bb != ENTRY_BLOCK_PTR && bb != EXIT_BLOCK_PTR);
|
| 179 |
|
|
gcc_assert (!TEST_BIT (bb_in_list, bb->index));
|
| 180 |
|
|
|
| 181 |
|
|
if (cfg_blocks_empty_p ())
|
| 182 |
|
|
{
|
| 183 |
|
|
cfg_blocks_tail = cfg_blocks_head = 0;
|
| 184 |
|
|
cfg_blocks_num = 1;
|
| 185 |
|
|
}
|
| 186 |
|
|
else
|
| 187 |
|
|
{
|
| 188 |
|
|
cfg_blocks_num++;
|
| 189 |
|
|
if (cfg_blocks_num > VEC_length (basic_block, cfg_blocks))
|
| 190 |
|
|
{
|
| 191 |
|
|
/* We have to grow the array now. Adjust to queue to occupy
|
| 192 |
|
|
the full space of the original array. We do not need to
|
| 193 |
|
|
initialize the newly allocated portion of the array
|
| 194 |
|
|
because we keep track of CFG_BLOCKS_HEAD and
|
| 195 |
|
|
CFG_BLOCKS_HEAD. */
|
| 196 |
|
|
cfg_blocks_tail = VEC_length (basic_block, cfg_blocks);
|
| 197 |
|
|
cfg_blocks_head = 0;
|
| 198 |
|
|
VEC_safe_grow (basic_block, heap, cfg_blocks, 2 * cfg_blocks_tail);
|
| 199 |
|
|
}
|
| 200 |
|
|
else
|
| 201 |
|
|
cfg_blocks_tail = ((cfg_blocks_tail + 1)
|
| 202 |
|
|
% VEC_length (basic_block, cfg_blocks));
|
| 203 |
|
|
}
|
| 204 |
|
|
|
| 205 |
|
|
VEC_replace (basic_block, cfg_blocks, cfg_blocks_tail, bb);
|
| 206 |
|
|
SET_BIT (bb_in_list, bb->index);
|
| 207 |
|
|
}
|
| 208 |
|
|
|
| 209 |
|
|
|
| 210 |
|
|
/* Remove a block from the worklist. */
|
| 211 |
|
|
|
| 212 |
|
|
static basic_block
|
| 213 |
|
|
cfg_blocks_get (void)
|
| 214 |
|
|
{
|
| 215 |
|
|
basic_block bb;
|
| 216 |
|
|
|
| 217 |
|
|
bb = VEC_index (basic_block, cfg_blocks, cfg_blocks_head);
|
| 218 |
|
|
|
| 219 |
|
|
gcc_assert (!cfg_blocks_empty_p ());
|
| 220 |
|
|
gcc_assert (bb);
|
| 221 |
|
|
|
| 222 |
|
|
cfg_blocks_head = ((cfg_blocks_head + 1)
|
| 223 |
|
|
% VEC_length (basic_block, cfg_blocks));
|
| 224 |
|
|
--cfg_blocks_num;
|
| 225 |
|
|
RESET_BIT (bb_in_list, bb->index);
|
| 226 |
|
|
|
| 227 |
|
|
return bb;
|
| 228 |
|
|
}
|
| 229 |
|
|
|
| 230 |
|
|
|
| 231 |
|
|
/* We have just defined a new value for VAR. If IS_VARYING is true,
|
| 232 |
|
|
add all immediate uses of VAR to VARYING_SSA_EDGES, otherwise add
|
| 233 |
|
|
them to INTERESTING_SSA_EDGES. */
|
| 234 |
|
|
|
| 235 |
|
|
static void
|
| 236 |
|
|
add_ssa_edge (tree var, bool is_varying)
|
| 237 |
|
|
{
|
| 238 |
|
|
imm_use_iterator iter;
|
| 239 |
|
|
use_operand_p use_p;
|
| 240 |
|
|
|
| 241 |
|
|
FOR_EACH_IMM_USE_FAST (use_p, iter, var)
|
| 242 |
|
|
{
|
| 243 |
|
|
tree use_stmt = USE_STMT (use_p);
|
| 244 |
|
|
|
| 245 |
|
|
if (!DONT_SIMULATE_AGAIN (use_stmt)
|
| 246 |
|
|
&& !STMT_IN_SSA_EDGE_WORKLIST (use_stmt))
|
| 247 |
|
|
{
|
| 248 |
|
|
STMT_IN_SSA_EDGE_WORKLIST (use_stmt) = 1;
|
| 249 |
|
|
if (is_varying)
|
| 250 |
|
|
VEC_safe_push (tree, gc, varying_ssa_edges, use_stmt);
|
| 251 |
|
|
else
|
| 252 |
|
|
VEC_safe_push (tree, gc, interesting_ssa_edges, use_stmt);
|
| 253 |
|
|
}
|
| 254 |
|
|
}
|
| 255 |
|
|
}
|
| 256 |
|
|
|
| 257 |
|
|
|
| 258 |
|
|
/* Add edge E to the control flow worklist. */
|
| 259 |
|
|
|
| 260 |
|
|
static void
|
| 261 |
|
|
add_control_edge (edge e)
|
| 262 |
|
|
{
|
| 263 |
|
|
basic_block bb = e->dest;
|
| 264 |
|
|
if (bb == EXIT_BLOCK_PTR)
|
| 265 |
|
|
return;
|
| 266 |
|
|
|
| 267 |
|
|
/* If the edge had already been executed, skip it. */
|
| 268 |
|
|
if (e->flags & EDGE_EXECUTABLE)
|
| 269 |
|
|
return;
|
| 270 |
|
|
|
| 271 |
|
|
e->flags |= EDGE_EXECUTABLE;
|
| 272 |
|
|
|
| 273 |
|
|
/* If the block is already in the list, we're done. */
|
| 274 |
|
|
if (TEST_BIT (bb_in_list, bb->index))
|
| 275 |
|
|
return;
|
| 276 |
|
|
|
| 277 |
|
|
cfg_blocks_add (bb);
|
| 278 |
|
|
|
| 279 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
| 280 |
|
|
fprintf (dump_file, "Adding Destination of edge (%d -> %d) to worklist\n\n",
|
| 281 |
|
|
e->src->index, e->dest->index);
|
| 282 |
|
|
}
|
| 283 |
|
|
|
| 284 |
|
|
|
| 285 |
|
|
/* Simulate the execution of STMT and update the work lists accordingly. */
|
| 286 |
|
|
|
| 287 |
|
|
static void
|
| 288 |
|
|
simulate_stmt (tree stmt)
|
| 289 |
|
|
{
|
| 290 |
|
|
enum ssa_prop_result val = SSA_PROP_NOT_INTERESTING;
|
| 291 |
|
|
edge taken_edge = NULL;
|
| 292 |
|
|
tree output_name = NULL_TREE;
|
| 293 |
|
|
|
| 294 |
|
|
/* Don't bother visiting statements that are already
|
| 295 |
|
|
considered varying by the propagator. */
|
| 296 |
|
|
if (DONT_SIMULATE_AGAIN (stmt))
|
| 297 |
|
|
return;
|
| 298 |
|
|
|
| 299 |
|
|
if (TREE_CODE (stmt) == PHI_NODE)
|
| 300 |
|
|
{
|
| 301 |
|
|
val = ssa_prop_visit_phi (stmt);
|
| 302 |
|
|
output_name = PHI_RESULT (stmt);
|
| 303 |
|
|
}
|
| 304 |
|
|
else
|
| 305 |
|
|
val = ssa_prop_visit_stmt (stmt, &taken_edge, &output_name);
|
| 306 |
|
|
|
| 307 |
|
|
if (val == SSA_PROP_VARYING)
|
| 308 |
|
|
{
|
| 309 |
|
|
DONT_SIMULATE_AGAIN (stmt) = 1;
|
| 310 |
|
|
|
| 311 |
|
|
/* If the statement produced a new varying value, add the SSA
|
| 312 |
|
|
edges coming out of OUTPUT_NAME. */
|
| 313 |
|
|
if (output_name)
|
| 314 |
|
|
add_ssa_edge (output_name, true);
|
| 315 |
|
|
|
| 316 |
|
|
/* If STMT transfers control out of its basic block, add
|
| 317 |
|
|
all outgoing edges to the work list. */
|
| 318 |
|
|
if (stmt_ends_bb_p (stmt))
|
| 319 |
|
|
{
|
| 320 |
|
|
edge e;
|
| 321 |
|
|
edge_iterator ei;
|
| 322 |
|
|
basic_block bb = bb_for_stmt (stmt);
|
| 323 |
|
|
FOR_EACH_EDGE (e, ei, bb->succs)
|
| 324 |
|
|
add_control_edge (e);
|
| 325 |
|
|
}
|
| 326 |
|
|
}
|
| 327 |
|
|
else if (val == SSA_PROP_INTERESTING)
|
| 328 |
|
|
{
|
| 329 |
|
|
/* If the statement produced new value, add the SSA edges coming
|
| 330 |
|
|
out of OUTPUT_NAME. */
|
| 331 |
|
|
if (output_name)
|
| 332 |
|
|
add_ssa_edge (output_name, false);
|
| 333 |
|
|
|
| 334 |
|
|
/* If we know which edge is going to be taken out of this block,
|
| 335 |
|
|
add it to the CFG work list. */
|
| 336 |
|
|
if (taken_edge)
|
| 337 |
|
|
add_control_edge (taken_edge);
|
| 338 |
|
|
}
|
| 339 |
|
|
}
|
| 340 |
|
|
|
| 341 |
|
|
/* Process an SSA edge worklist. WORKLIST is the SSA edge worklist to
|
| 342 |
|
|
drain. This pops statements off the given WORKLIST and processes
|
| 343 |
|
|
them until there are no more statements on WORKLIST.
|
| 344 |
|
|
We take a pointer to WORKLIST because it may be reallocated when an
|
| 345 |
|
|
SSA edge is added to it in simulate_stmt. */
|
| 346 |
|
|
|
| 347 |
|
|
static void
|
| 348 |
|
|
process_ssa_edge_worklist (VEC(tree,gc) **worklist)
|
| 349 |
|
|
{
|
| 350 |
|
|
/* Drain the entire worklist. */
|
| 351 |
|
|
while (VEC_length (tree, *worklist) > 0)
|
| 352 |
|
|
{
|
| 353 |
|
|
basic_block bb;
|
| 354 |
|
|
|
| 355 |
|
|
/* Pull the statement to simulate off the worklist. */
|
| 356 |
|
|
tree stmt = VEC_pop (tree, *worklist);
|
| 357 |
|
|
|
| 358 |
|
|
/* If this statement was already visited by simulate_block, then
|
| 359 |
|
|
we don't need to visit it again here. */
|
| 360 |
|
|
if (!STMT_IN_SSA_EDGE_WORKLIST (stmt))
|
| 361 |
|
|
continue;
|
| 362 |
|
|
|
| 363 |
|
|
/* STMT is no longer in a worklist. */
|
| 364 |
|
|
STMT_IN_SSA_EDGE_WORKLIST (stmt) = 0;
|
| 365 |
|
|
|
| 366 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
| 367 |
|
|
{
|
| 368 |
|
|
fprintf (dump_file, "\nSimulating statement (from ssa_edges): ");
|
| 369 |
|
|
print_generic_stmt (dump_file, stmt, dump_flags);
|
| 370 |
|
|
}
|
| 371 |
|
|
|
| 372 |
|
|
bb = bb_for_stmt (stmt);
|
| 373 |
|
|
|
| 374 |
|
|
/* PHI nodes are always visited, regardless of whether or not
|
| 375 |
|
|
the destination block is executable. Otherwise, visit the
|
| 376 |
|
|
statement only if its block is marked executable. */
|
| 377 |
|
|
if (TREE_CODE (stmt) == PHI_NODE
|
| 378 |
|
|
|| TEST_BIT (executable_blocks, bb->index))
|
| 379 |
|
|
simulate_stmt (stmt);
|
| 380 |
|
|
}
|
| 381 |
|
|
}
|
| 382 |
|
|
|
| 383 |
|
|
|
| 384 |
|
|
/* Simulate the execution of BLOCK. Evaluate the statement associated
|
| 385 |
|
|
with each variable reference inside the block. */
|
| 386 |
|
|
|
| 387 |
|
|
static void
|
| 388 |
|
|
simulate_block (basic_block block)
|
| 389 |
|
|
{
|
| 390 |
|
|
tree phi;
|
| 391 |
|
|
|
| 392 |
|
|
/* There is nothing to do for the exit block. */
|
| 393 |
|
|
if (block == EXIT_BLOCK_PTR)
|
| 394 |
|
|
return;
|
| 395 |
|
|
|
| 396 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
| 397 |
|
|
fprintf (dump_file, "\nSimulating block %d\n", block->index);
|
| 398 |
|
|
|
| 399 |
|
|
/* Always simulate PHI nodes, even if we have simulated this block
|
| 400 |
|
|
before. */
|
| 401 |
|
|
for (phi = phi_nodes (block); phi; phi = PHI_CHAIN (phi))
|
| 402 |
|
|
simulate_stmt (phi);
|
| 403 |
|
|
|
| 404 |
|
|
/* If this is the first time we've simulated this block, then we
|
| 405 |
|
|
must simulate each of its statements. */
|
| 406 |
|
|
if (!TEST_BIT (executable_blocks, block->index))
|
| 407 |
|
|
{
|
| 408 |
|
|
block_stmt_iterator j;
|
| 409 |
|
|
unsigned int normal_edge_count;
|
| 410 |
|
|
edge e, normal_edge;
|
| 411 |
|
|
edge_iterator ei;
|
| 412 |
|
|
|
| 413 |
|
|
/* Note that we have simulated this block. */
|
| 414 |
|
|
SET_BIT (executable_blocks, block->index);
|
| 415 |
|
|
|
| 416 |
|
|
for (j = bsi_start (block); !bsi_end_p (j); bsi_next (&j))
|
| 417 |
|
|
{
|
| 418 |
|
|
tree stmt = bsi_stmt (j);
|
| 419 |
|
|
|
| 420 |
|
|
/* If this statement is already in the worklist then
|
| 421 |
|
|
"cancel" it. The reevaluation implied by the worklist
|
| 422 |
|
|
entry will produce the same value we generate here and
|
| 423 |
|
|
thus reevaluating it again from the worklist is
|
| 424 |
|
|
pointless. */
|
| 425 |
|
|
if (STMT_IN_SSA_EDGE_WORKLIST (stmt))
|
| 426 |
|
|
STMT_IN_SSA_EDGE_WORKLIST (stmt) = 0;
|
| 427 |
|
|
|
| 428 |
|
|
simulate_stmt (stmt);
|
| 429 |
|
|
}
|
| 430 |
|
|
|
| 431 |
|
|
/* We can not predict when abnormal edges will be executed, so
|
| 432 |
|
|
once a block is considered executable, we consider any
|
| 433 |
|
|
outgoing abnormal edges as executable.
|
| 434 |
|
|
|
| 435 |
|
|
At the same time, if this block has only one successor that is
|
| 436 |
|
|
reached by non-abnormal edges, then add that successor to the
|
| 437 |
|
|
worklist. */
|
| 438 |
|
|
normal_edge_count = 0;
|
| 439 |
|
|
normal_edge = NULL;
|
| 440 |
|
|
FOR_EACH_EDGE (e, ei, block->succs)
|
| 441 |
|
|
{
|
| 442 |
|
|
if (e->flags & EDGE_ABNORMAL)
|
| 443 |
|
|
add_control_edge (e);
|
| 444 |
|
|
else
|
| 445 |
|
|
{
|
| 446 |
|
|
normal_edge_count++;
|
| 447 |
|
|
normal_edge = e;
|
| 448 |
|
|
}
|
| 449 |
|
|
}
|
| 450 |
|
|
|
| 451 |
|
|
if (normal_edge_count == 1)
|
| 452 |
|
|
add_control_edge (normal_edge);
|
| 453 |
|
|
}
|
| 454 |
|
|
}
|
| 455 |
|
|
|
| 456 |
|
|
|
| 457 |
|
|
/* Initialize local data structures and work lists. */
|
| 458 |
|
|
|
| 459 |
|
|
static void
|
| 460 |
|
|
ssa_prop_init (void)
|
| 461 |
|
|
{
|
| 462 |
|
|
edge e;
|
| 463 |
|
|
edge_iterator ei;
|
| 464 |
|
|
basic_block bb;
|
| 465 |
|
|
size_t i;
|
| 466 |
|
|
|
| 467 |
|
|
/* Worklists of SSA edges. */
|
| 468 |
|
|
interesting_ssa_edges = VEC_alloc (tree, gc, 20);
|
| 469 |
|
|
varying_ssa_edges = VEC_alloc (tree, gc, 20);
|
| 470 |
|
|
|
| 471 |
|
|
executable_blocks = sbitmap_alloc (last_basic_block);
|
| 472 |
|
|
sbitmap_zero (executable_blocks);
|
| 473 |
|
|
|
| 474 |
|
|
bb_in_list = sbitmap_alloc (last_basic_block);
|
| 475 |
|
|
sbitmap_zero (bb_in_list);
|
| 476 |
|
|
|
| 477 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
| 478 |
|
|
dump_immediate_uses (dump_file);
|
| 479 |
|
|
|
| 480 |
|
|
cfg_blocks = VEC_alloc (basic_block, heap, 20);
|
| 481 |
|
|
VEC_safe_grow (basic_block, heap, cfg_blocks, 20);
|
| 482 |
|
|
|
| 483 |
|
|
/* Initialize the values for every SSA_NAME. */
|
| 484 |
|
|
for (i = 1; i < num_ssa_names; i++)
|
| 485 |
|
|
if (ssa_name (i))
|
| 486 |
|
|
SSA_NAME_VALUE (ssa_name (i)) = NULL_TREE;
|
| 487 |
|
|
|
| 488 |
|
|
/* Initially assume that every edge in the CFG is not executable.
|
| 489 |
|
|
(including the edges coming out of ENTRY_BLOCK_PTR). */
|
| 490 |
|
|
FOR_ALL_BB (bb)
|
| 491 |
|
|
{
|
| 492 |
|
|
block_stmt_iterator si;
|
| 493 |
|
|
|
| 494 |
|
|
for (si = bsi_start (bb); !bsi_end_p (si); bsi_next (&si))
|
| 495 |
|
|
STMT_IN_SSA_EDGE_WORKLIST (bsi_stmt (si)) = 0;
|
| 496 |
|
|
|
| 497 |
|
|
FOR_EACH_EDGE (e, ei, bb->succs)
|
| 498 |
|
|
e->flags &= ~EDGE_EXECUTABLE;
|
| 499 |
|
|
}
|
| 500 |
|
|
|
| 501 |
|
|
/* Seed the algorithm by adding the successors of the entry block to the
|
| 502 |
|
|
edge worklist. */
|
| 503 |
|
|
FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR->succs)
|
| 504 |
|
|
add_control_edge (e);
|
| 505 |
|
|
}
|
| 506 |
|
|
|
| 507 |
|
|
|
| 508 |
|
|
/* Free allocated storage. */
|
| 509 |
|
|
|
| 510 |
|
|
static void
|
| 511 |
|
|
ssa_prop_fini (void)
|
| 512 |
|
|
{
|
| 513 |
|
|
VEC_free (tree, gc, interesting_ssa_edges);
|
| 514 |
|
|
VEC_free (tree, gc, varying_ssa_edges);
|
| 515 |
|
|
VEC_free (basic_block, heap, cfg_blocks);
|
| 516 |
|
|
cfg_blocks = NULL;
|
| 517 |
|
|
sbitmap_free (bb_in_list);
|
| 518 |
|
|
sbitmap_free (executable_blocks);
|
| 519 |
|
|
}
|
| 520 |
|
|
|
| 521 |
|
|
|
| 522 |
|
|
/* Get the main expression from statement STMT. */
|
| 523 |
|
|
|
| 524 |
|
|
tree
|
| 525 |
|
|
get_rhs (tree stmt)
|
| 526 |
|
|
{
|
| 527 |
|
|
enum tree_code code = TREE_CODE (stmt);
|
| 528 |
|
|
|
| 529 |
|
|
switch (code)
|
| 530 |
|
|
{
|
| 531 |
|
|
case RETURN_EXPR:
|
| 532 |
|
|
stmt = TREE_OPERAND (stmt, 0);
|
| 533 |
|
|
if (!stmt || TREE_CODE (stmt) != MODIFY_EXPR)
|
| 534 |
|
|
return stmt;
|
| 535 |
|
|
/* FALLTHRU */
|
| 536 |
|
|
|
| 537 |
|
|
case MODIFY_EXPR:
|
| 538 |
|
|
stmt = TREE_OPERAND (stmt, 1);
|
| 539 |
|
|
if (TREE_CODE (stmt) == WITH_SIZE_EXPR)
|
| 540 |
|
|
return TREE_OPERAND (stmt, 0);
|
| 541 |
|
|
else
|
| 542 |
|
|
return stmt;
|
| 543 |
|
|
|
| 544 |
|
|
case COND_EXPR:
|
| 545 |
|
|
return COND_EXPR_COND (stmt);
|
| 546 |
|
|
case SWITCH_EXPR:
|
| 547 |
|
|
return SWITCH_COND (stmt);
|
| 548 |
|
|
case GOTO_EXPR:
|
| 549 |
|
|
return GOTO_DESTINATION (stmt);
|
| 550 |
|
|
case LABEL_EXPR:
|
| 551 |
|
|
return LABEL_EXPR_LABEL (stmt);
|
| 552 |
|
|
|
| 553 |
|
|
default:
|
| 554 |
|
|
return stmt;
|
| 555 |
|
|
}
|
| 556 |
|
|
}
|
| 557 |
|
|
|
| 558 |
|
|
|
| 559 |
|
|
/* Set the main expression of *STMT_P to EXPR. If EXPR is not a valid
|
| 560 |
|
|
GIMPLE expression no changes are done and the function returns
|
| 561 |
|
|
false. */
|
| 562 |
|
|
|
| 563 |
|
|
bool
|
| 564 |
|
|
set_rhs (tree *stmt_p, tree expr)
|
| 565 |
|
|
{
|
| 566 |
|
|
tree stmt = *stmt_p, op;
|
| 567 |
|
|
enum tree_code code = TREE_CODE (expr);
|
| 568 |
|
|
stmt_ann_t ann;
|
| 569 |
|
|
tree var;
|
| 570 |
|
|
ssa_op_iter iter;
|
| 571 |
|
|
|
| 572 |
|
|
/* Verify the constant folded result is valid gimple. */
|
| 573 |
|
|
if (TREE_CODE_CLASS (code) == tcc_binary
|
| 574 |
|
|
|| TREE_CODE_CLASS (code) == tcc_comparison)
|
| 575 |
|
|
{
|
| 576 |
|
|
if (!is_gimple_val (TREE_OPERAND (expr, 0))
|
| 577 |
|
|
|| !is_gimple_val (TREE_OPERAND (expr, 1)))
|
| 578 |
|
|
return false;
|
| 579 |
|
|
}
|
| 580 |
|
|
else if (TREE_CODE_CLASS (code) == tcc_unary)
|
| 581 |
|
|
{
|
| 582 |
|
|
if (!is_gimple_val (TREE_OPERAND (expr, 0)))
|
| 583 |
|
|
return false;
|
| 584 |
|
|
}
|
| 585 |
|
|
else if (code == ADDR_EXPR)
|
| 586 |
|
|
{
|
| 587 |
|
|
if (TREE_CODE (TREE_OPERAND (expr, 0)) == ARRAY_REF
|
| 588 |
|
|
&& !is_gimple_val (TREE_OPERAND (TREE_OPERAND (expr, 0), 1)))
|
| 589 |
|
|
return false;
|
| 590 |
|
|
}
|
| 591 |
|
|
else if (code == COMPOUND_EXPR
|
| 592 |
|
|
|| code == MODIFY_EXPR)
|
| 593 |
|
|
return false;
|
| 594 |
|
|
|
| 595 |
|
|
if (EXPR_HAS_LOCATION (stmt)
|
| 596 |
|
|
&& EXPR_P (expr)
|
| 597 |
|
|
&& ! EXPR_HAS_LOCATION (expr)
|
| 598 |
|
|
&& TREE_SIDE_EFFECTS (expr)
|
| 599 |
|
|
&& TREE_CODE (expr) != LABEL_EXPR)
|
| 600 |
|
|
SET_EXPR_LOCATION (expr, EXPR_LOCATION (stmt));
|
| 601 |
|
|
|
| 602 |
|
|
switch (TREE_CODE (stmt))
|
| 603 |
|
|
{
|
| 604 |
|
|
case RETURN_EXPR:
|
| 605 |
|
|
op = TREE_OPERAND (stmt, 0);
|
| 606 |
|
|
if (TREE_CODE (op) != MODIFY_EXPR)
|
| 607 |
|
|
{
|
| 608 |
|
|
TREE_OPERAND (stmt, 0) = expr;
|
| 609 |
|
|
break;
|
| 610 |
|
|
}
|
| 611 |
|
|
stmt = op;
|
| 612 |
|
|
/* FALLTHRU */
|
| 613 |
|
|
|
| 614 |
|
|
case MODIFY_EXPR:
|
| 615 |
|
|
op = TREE_OPERAND (stmt, 1);
|
| 616 |
|
|
if (TREE_CODE (op) == WITH_SIZE_EXPR)
|
| 617 |
|
|
stmt = op;
|
| 618 |
|
|
TREE_OPERAND (stmt, 1) = expr;
|
| 619 |
|
|
break;
|
| 620 |
|
|
|
| 621 |
|
|
case COND_EXPR:
|
| 622 |
|
|
if (!is_gimple_condexpr (expr))
|
| 623 |
|
|
return false;
|
| 624 |
|
|
COND_EXPR_COND (stmt) = expr;
|
| 625 |
|
|
break;
|
| 626 |
|
|
case SWITCH_EXPR:
|
| 627 |
|
|
SWITCH_COND (stmt) = expr;
|
| 628 |
|
|
break;
|
| 629 |
|
|
case GOTO_EXPR:
|
| 630 |
|
|
GOTO_DESTINATION (stmt) = expr;
|
| 631 |
|
|
break;
|
| 632 |
|
|
case LABEL_EXPR:
|
| 633 |
|
|
LABEL_EXPR_LABEL (stmt) = expr;
|
| 634 |
|
|
break;
|
| 635 |
|
|
|
| 636 |
|
|
default:
|
| 637 |
|
|
/* Replace the whole statement with EXPR. If EXPR has no side
|
| 638 |
|
|
effects, then replace *STMT_P with an empty statement. */
|
| 639 |
|
|
ann = stmt_ann (stmt);
|
| 640 |
|
|
*stmt_p = TREE_SIDE_EFFECTS (expr) ? expr : build_empty_stmt ();
|
| 641 |
|
|
(*stmt_p)->common.ann = (tree_ann_t) ann;
|
| 642 |
|
|
|
| 643 |
|
|
if (in_ssa_p
|
| 644 |
|
|
&& TREE_SIDE_EFFECTS (expr))
|
| 645 |
|
|
{
|
| 646 |
|
|
/* Fix all the SSA_NAMEs created by *STMT_P to point to its new
|
| 647 |
|
|
replacement. */
|
| 648 |
|
|
FOR_EACH_SSA_TREE_OPERAND (var, stmt, iter, SSA_OP_ALL_DEFS)
|
| 649 |
|
|
{
|
| 650 |
|
|
if (TREE_CODE (var) == SSA_NAME)
|
| 651 |
|
|
SSA_NAME_DEF_STMT (var) = *stmt_p;
|
| 652 |
|
|
}
|
| 653 |
|
|
}
|
| 654 |
|
|
break;
|
| 655 |
|
|
}
|
| 656 |
|
|
|
| 657 |
|
|
return true;
|
| 658 |
|
|
}
|
| 659 |
|
|
|
| 660 |
|
|
|
| 661 |
|
|
/* Entry point to the propagation engine.
|
| 662 |
|
|
|
| 663 |
|
|
VISIT_STMT is called for every statement visited.
|
| 664 |
|
|
VISIT_PHI is called for every PHI node visited. */
|
| 665 |
|
|
|
| 666 |
|
|
void
|
| 667 |
|
|
ssa_propagate (ssa_prop_visit_stmt_fn visit_stmt,
|
| 668 |
|
|
ssa_prop_visit_phi_fn visit_phi)
|
| 669 |
|
|
{
|
| 670 |
|
|
ssa_prop_visit_stmt = visit_stmt;
|
| 671 |
|
|
ssa_prop_visit_phi = visit_phi;
|
| 672 |
|
|
|
| 673 |
|
|
ssa_prop_init ();
|
| 674 |
|
|
|
| 675 |
|
|
/* Iterate until the worklists are empty. */
|
| 676 |
|
|
while (!cfg_blocks_empty_p ()
|
| 677 |
|
|
|| VEC_length (tree, interesting_ssa_edges) > 0
|
| 678 |
|
|
|| VEC_length (tree, varying_ssa_edges) > 0)
|
| 679 |
|
|
{
|
| 680 |
|
|
if (!cfg_blocks_empty_p ())
|
| 681 |
|
|
{
|
| 682 |
|
|
/* Pull the next block to simulate off the worklist. */
|
| 683 |
|
|
basic_block dest_block = cfg_blocks_get ();
|
| 684 |
|
|
simulate_block (dest_block);
|
| 685 |
|
|
}
|
| 686 |
|
|
|
| 687 |
|
|
/* In order to move things to varying as quickly as
|
| 688 |
|
|
possible,process the VARYING_SSA_EDGES worklist first. */
|
| 689 |
|
|
process_ssa_edge_worklist (&varying_ssa_edges);
|
| 690 |
|
|
|
| 691 |
|
|
/* Now process the INTERESTING_SSA_EDGES worklist. */
|
| 692 |
|
|
process_ssa_edge_worklist (&interesting_ssa_edges);
|
| 693 |
|
|
}
|
| 694 |
|
|
|
| 695 |
|
|
ssa_prop_fini ();
|
| 696 |
|
|
}
|
| 697 |
|
|
|
| 698 |
|
|
|
| 699 |
|
|
/* Return the first V_MAY_DEF or V_MUST_DEF operand for STMT. */
|
| 700 |
|
|
|
| 701 |
|
|
tree
|
| 702 |
|
|
first_vdef (tree stmt)
|
| 703 |
|
|
{
|
| 704 |
|
|
ssa_op_iter iter;
|
| 705 |
|
|
tree op;
|
| 706 |
|
|
|
| 707 |
|
|
/* Simply return the first operand we arrive at. */
|
| 708 |
|
|
FOR_EACH_SSA_TREE_OPERAND (op, stmt, iter, SSA_OP_VIRTUAL_DEFS)
|
| 709 |
|
|
return (op);
|
| 710 |
|
|
|
| 711 |
|
|
gcc_unreachable ();
|
| 712 |
|
|
}
|
| 713 |
|
|
|
| 714 |
|
|
|
| 715 |
|
|
/* Return true if STMT is of the form 'LHS = mem_ref', where 'mem_ref'
|
| 716 |
|
|
is a non-volatile pointer dereference, a structure reference or a
|
| 717 |
|
|
reference to a single _DECL. Ignore volatile memory references
|
| 718 |
|
|
because they are not interesting for the optimizers. */
|
| 719 |
|
|
|
| 720 |
|
|
bool
|
| 721 |
|
|
stmt_makes_single_load (tree stmt)
|
| 722 |
|
|
{
|
| 723 |
|
|
tree rhs;
|
| 724 |
|
|
|
| 725 |
|
|
if (TREE_CODE (stmt) != MODIFY_EXPR)
|
| 726 |
|
|
return false;
|
| 727 |
|
|
|
| 728 |
|
|
if (ZERO_SSA_OPERANDS (stmt, SSA_OP_VMAYDEF|SSA_OP_VUSE))
|
| 729 |
|
|
return false;
|
| 730 |
|
|
|
| 731 |
|
|
rhs = TREE_OPERAND (stmt, 1);
|
| 732 |
|
|
STRIP_NOPS (rhs);
|
| 733 |
|
|
|
| 734 |
|
|
return (!TREE_THIS_VOLATILE (rhs)
|
| 735 |
|
|
&& (DECL_P (rhs)
|
| 736 |
|
|
|| REFERENCE_CLASS_P (rhs)));
|
| 737 |
|
|
}
|
| 738 |
|
|
|
| 739 |
|
|
|
| 740 |
|
|
/* Return true if STMT is of the form 'mem_ref = RHS', where 'mem_ref'
|
| 741 |
|
|
is a non-volatile pointer dereference, a structure reference or a
|
| 742 |
|
|
reference to a single _DECL. Ignore volatile memory references
|
| 743 |
|
|
because they are not interesting for the optimizers. */
|
| 744 |
|
|
|
| 745 |
|
|
bool
|
| 746 |
|
|
stmt_makes_single_store (tree stmt)
|
| 747 |
|
|
{
|
| 748 |
|
|
tree lhs;
|
| 749 |
|
|
|
| 750 |
|
|
if (TREE_CODE (stmt) != MODIFY_EXPR)
|
| 751 |
|
|
return false;
|
| 752 |
|
|
|
| 753 |
|
|
if (ZERO_SSA_OPERANDS (stmt, SSA_OP_VMAYDEF|SSA_OP_VMUSTDEF))
|
| 754 |
|
|
return false;
|
| 755 |
|
|
|
| 756 |
|
|
lhs = TREE_OPERAND (stmt, 0);
|
| 757 |
|
|
STRIP_NOPS (lhs);
|
| 758 |
|
|
|
| 759 |
|
|
return (!TREE_THIS_VOLATILE (lhs)
|
| 760 |
|
|
&& (DECL_P (lhs)
|
| 761 |
|
|
|| REFERENCE_CLASS_P (lhs)));
|
| 762 |
|
|
}
|
| 763 |
|
|
|
| 764 |
|
|
|
| 765 |
|
|
/* If STMT makes a single memory load and all the virtual use operands
|
| 766 |
|
|
have the same value in array VALUES, return it. Otherwise, return
|
| 767 |
|
|
NULL. */
|
| 768 |
|
|
|
| 769 |
|
|
prop_value_t *
|
| 770 |
|
|
get_value_loaded_by (tree stmt, prop_value_t *values)
|
| 771 |
|
|
{
|
| 772 |
|
|
ssa_op_iter i;
|
| 773 |
|
|
tree vuse;
|
| 774 |
|
|
prop_value_t *prev_val = NULL;
|
| 775 |
|
|
prop_value_t *val = NULL;
|
| 776 |
|
|
|
| 777 |
|
|
FOR_EACH_SSA_TREE_OPERAND (vuse, stmt, i, SSA_OP_VIRTUAL_USES)
|
| 778 |
|
|
{
|
| 779 |
|
|
val = &values[SSA_NAME_VERSION (vuse)];
|
| 780 |
|
|
if (prev_val && prev_val->value != val->value)
|
| 781 |
|
|
return NULL;
|
| 782 |
|
|
prev_val = val;
|
| 783 |
|
|
}
|
| 784 |
|
|
|
| 785 |
|
|
return val;
|
| 786 |
|
|
}
|
| 787 |
|
|
|
| 788 |
|
|
|
| 789 |
|
|
/* Propagation statistics. */
|
| 790 |
|
|
struct prop_stats_d
|
| 791 |
|
|
{
|
| 792 |
|
|
long num_const_prop;
|
| 793 |
|
|
long num_copy_prop;
|
| 794 |
|
|
long num_pred_folded;
|
| 795 |
|
|
};
|
| 796 |
|
|
|
| 797 |
|
|
static struct prop_stats_d prop_stats;
|
| 798 |
|
|
|
| 799 |
|
|
/* Replace USE references in statement STMT with the values stored in
|
| 800 |
|
|
PROP_VALUE. Return true if at least one reference was replaced. If
|
| 801 |
|
|
REPLACED_ADDRESSES_P is given, it will be set to true if an address
|
| 802 |
|
|
constant was replaced. */
|
| 803 |
|
|
|
| 804 |
|
|
bool
|
| 805 |
|
|
replace_uses_in (tree stmt, bool *replaced_addresses_p,
|
| 806 |
|
|
prop_value_t *prop_value)
|
| 807 |
|
|
{
|
| 808 |
|
|
bool replaced = false;
|
| 809 |
|
|
use_operand_p use;
|
| 810 |
|
|
ssa_op_iter iter;
|
| 811 |
|
|
|
| 812 |
|
|
FOR_EACH_SSA_USE_OPERAND (use, stmt, iter, SSA_OP_USE)
|
| 813 |
|
|
{
|
| 814 |
|
|
tree tuse = USE_FROM_PTR (use);
|
| 815 |
|
|
tree val = prop_value[SSA_NAME_VERSION (tuse)].value;
|
| 816 |
|
|
|
| 817 |
|
|
if (val == tuse || val == NULL_TREE)
|
| 818 |
|
|
continue;
|
| 819 |
|
|
|
| 820 |
|
|
if (TREE_CODE (stmt) == ASM_EXPR
|
| 821 |
|
|
&& !may_propagate_copy_into_asm (tuse))
|
| 822 |
|
|
continue;
|
| 823 |
|
|
|
| 824 |
|
|
if (!may_propagate_copy (tuse, val))
|
| 825 |
|
|
continue;
|
| 826 |
|
|
|
| 827 |
|
|
if (TREE_CODE (val) != SSA_NAME)
|
| 828 |
|
|
prop_stats.num_const_prop++;
|
| 829 |
|
|
else
|
| 830 |
|
|
prop_stats.num_copy_prop++;
|
| 831 |
|
|
|
| 832 |
|
|
propagate_value (use, val);
|
| 833 |
|
|
|
| 834 |
|
|
replaced = true;
|
| 835 |
|
|
if (POINTER_TYPE_P (TREE_TYPE (tuse)) && replaced_addresses_p)
|
| 836 |
|
|
*replaced_addresses_p = true;
|
| 837 |
|
|
}
|
| 838 |
|
|
|
| 839 |
|
|
return replaced;
|
| 840 |
|
|
}
|
| 841 |
|
|
|
| 842 |
|
|
|
| 843 |
|
|
/* Replace the VUSE references in statement STMT with the values
|
| 844 |
|
|
stored in PROP_VALUE. Return true if a reference was replaced. If
|
| 845 |
|
|
REPLACED_ADDRESSES_P is given, it will be set to true if an address
|
| 846 |
|
|
constant was replaced.
|
| 847 |
|
|
|
| 848 |
|
|
Replacing VUSE operands is slightly more complex than replacing
|
| 849 |
|
|
regular USEs. We are only interested in two types of replacements
|
| 850 |
|
|
here:
|
| 851 |
|
|
|
| 852 |
|
|
1- If the value to be replaced is a constant or an SSA name for a
|
| 853 |
|
|
GIMPLE register, then we are making a copy/constant propagation
|
| 854 |
|
|
from a memory store. For instance,
|
| 855 |
|
|
|
| 856 |
|
|
# a_3 = V_MAY_DEF <a_2>
|
| 857 |
|
|
a.b = x_1;
|
| 858 |
|
|
...
|
| 859 |
|
|
# VUSE <a_3>
|
| 860 |
|
|
y_4 = a.b;
|
| 861 |
|
|
|
| 862 |
|
|
This replacement is only possible iff STMT is an assignment
|
| 863 |
|
|
whose RHS is identical to the LHS of the statement that created
|
| 864 |
|
|
the VUSE(s) that we are replacing. Otherwise, we may do the
|
| 865 |
|
|
wrong replacement:
|
| 866 |
|
|
|
| 867 |
|
|
# a_3 = V_MAY_DEF <a_2>
|
| 868 |
|
|
# b_5 = V_MAY_DEF <b_4>
|
| 869 |
|
|
*p = 10;
|
| 870 |
|
|
...
|
| 871 |
|
|
# VUSE <b_5>
|
| 872 |
|
|
x_8 = b;
|
| 873 |
|
|
|
| 874 |
|
|
Even though 'b_5' acquires the value '10' during propagation,
|
| 875 |
|
|
there is no way for the propagator to tell whether the
|
| 876 |
|
|
replacement is correct in every reached use, because values are
|
| 877 |
|
|
computed at definition sites. Therefore, when doing final
|
| 878 |
|
|
substitution of propagated values, we have to check each use
|
| 879 |
|
|
site. Since the RHS of STMT ('b') is different from the LHS of
|
| 880 |
|
|
the originating statement ('*p'), we cannot replace 'b' with
|
| 881 |
|
|
'10'.
|
| 882 |
|
|
|
| 883 |
|
|
Similarly, when merging values from PHI node arguments,
|
| 884 |
|
|
propagators need to take care not to merge the same values
|
| 885 |
|
|
stored in different locations:
|
| 886 |
|
|
|
| 887 |
|
|
if (...)
|
| 888 |
|
|
# a_3 = V_MAY_DEF <a_2>
|
| 889 |
|
|
a.b = 3;
|
| 890 |
|
|
else
|
| 891 |
|
|
# a_4 = V_MAY_DEF <a_2>
|
| 892 |
|
|
a.c = 3;
|
| 893 |
|
|
# a_5 = PHI <a_3, a_4>
|
| 894 |
|
|
|
| 895 |
|
|
It would be wrong to propagate '3' into 'a_5' because that
|
| 896 |
|
|
operation merges two stores to different memory locations.
|
| 897 |
|
|
|
| 898 |
|
|
|
| 899 |
|
|
2- If the value to be replaced is an SSA name for a virtual
|
| 900 |
|
|
register, then we simply replace each VUSE operand with its
|
| 901 |
|
|
value from PROP_VALUE. This is the same replacement done by
|
| 902 |
|
|
replace_uses_in. */
|
| 903 |
|
|
|
| 904 |
|
|
static bool
|
| 905 |
|
|
replace_vuses_in (tree stmt, bool *replaced_addresses_p,
|
| 906 |
|
|
prop_value_t *prop_value)
|
| 907 |
|
|
{
|
| 908 |
|
|
bool replaced = false;
|
| 909 |
|
|
ssa_op_iter iter;
|
| 910 |
|
|
use_operand_p vuse;
|
| 911 |
|
|
|
| 912 |
|
|
if (stmt_makes_single_load (stmt))
|
| 913 |
|
|
{
|
| 914 |
|
|
/* If STMT is an assignment whose RHS is a single memory load,
|
| 915 |
|
|
see if we are trying to propagate a constant or a GIMPLE
|
| 916 |
|
|
register (case #1 above). */
|
| 917 |
|
|
prop_value_t *val = get_value_loaded_by (stmt, prop_value);
|
| 918 |
|
|
tree rhs = TREE_OPERAND (stmt, 1);
|
| 919 |
|
|
|
| 920 |
|
|
if (val
|
| 921 |
|
|
&& val->value
|
| 922 |
|
|
&& (is_gimple_reg (val->value)
|
| 923 |
|
|
|| is_gimple_min_invariant (val->value))
|
| 924 |
|
|
&& simple_cst_equal (rhs, val->mem_ref) == 1)
|
| 925 |
|
|
|
| 926 |
|
|
{
|
| 927 |
|
|
/* If we are replacing a constant address, inform our
|
| 928 |
|
|
caller. */
|
| 929 |
|
|
if (TREE_CODE (val->value) != SSA_NAME
|
| 930 |
|
|
&& POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (stmt, 1)))
|
| 931 |
|
|
&& replaced_addresses_p)
|
| 932 |
|
|
*replaced_addresses_p = true;
|
| 933 |
|
|
|
| 934 |
|
|
/* We can only perform the substitution if the load is done
|
| 935 |
|
|
from the same memory location as the original store.
|
| 936 |
|
|
Since we already know that there are no intervening
|
| 937 |
|
|
stores between DEF_STMT and STMT, we only need to check
|
| 938 |
|
|
that the RHS of STMT is the same as the memory reference
|
| 939 |
|
|
propagated together with the value. */
|
| 940 |
|
|
TREE_OPERAND (stmt, 1) = val->value;
|
| 941 |
|
|
|
| 942 |
|
|
if (TREE_CODE (val->value) != SSA_NAME)
|
| 943 |
|
|
prop_stats.num_const_prop++;
|
| 944 |
|
|
else
|
| 945 |
|
|
prop_stats.num_copy_prop++;
|
| 946 |
|
|
|
| 947 |
|
|
/* Since we have replaced the whole RHS of STMT, there
|
| 948 |
|
|
is no point in checking the other VUSEs, as they will
|
| 949 |
|
|
all have the same value. */
|
| 950 |
|
|
return true;
|
| 951 |
|
|
}
|
| 952 |
|
|
}
|
| 953 |
|
|
|
| 954 |
|
|
/* Otherwise, the values for every VUSE operand must be other
|
| 955 |
|
|
SSA_NAMEs that can be propagated into STMT. */
|
| 956 |
|
|
FOR_EACH_SSA_USE_OPERAND (vuse, stmt, iter, SSA_OP_VIRTUAL_USES)
|
| 957 |
|
|
{
|
| 958 |
|
|
tree var = USE_FROM_PTR (vuse);
|
| 959 |
|
|
tree val = prop_value[SSA_NAME_VERSION (var)].value;
|
| 960 |
|
|
|
| 961 |
|
|
if (val == NULL_TREE || var == val)
|
| 962 |
|
|
continue;
|
| 963 |
|
|
|
| 964 |
|
|
/* Constants and copies propagated between real and virtual
|
| 965 |
|
|
operands are only possible in the cases handled above. They
|
| 966 |
|
|
should be ignored in any other context. */
|
| 967 |
|
|
if (is_gimple_min_invariant (val) || is_gimple_reg (val))
|
| 968 |
|
|
continue;
|
| 969 |
|
|
|
| 970 |
|
|
propagate_value (vuse, val);
|
| 971 |
|
|
prop_stats.num_copy_prop++;
|
| 972 |
|
|
replaced = true;
|
| 973 |
|
|
}
|
| 974 |
|
|
|
| 975 |
|
|
return replaced;
|
| 976 |
|
|
}
|
| 977 |
|
|
|
| 978 |
|
|
|
| 979 |
|
|
/* Replace propagated values into all the arguments for PHI using the
|
| 980 |
|
|
values from PROP_VALUE. */
|
| 981 |
|
|
|
| 982 |
|
|
static void
|
| 983 |
|
|
replace_phi_args_in (tree phi, prop_value_t *prop_value)
|
| 984 |
|
|
{
|
| 985 |
|
|
int i;
|
| 986 |
|
|
bool replaced = false;
|
| 987 |
|
|
tree prev_phi = NULL;
|
| 988 |
|
|
|
| 989 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
| 990 |
|
|
prev_phi = unshare_expr (phi);
|
| 991 |
|
|
|
| 992 |
|
|
for (i = 0; i < PHI_NUM_ARGS (phi); i++)
|
| 993 |
|
|
{
|
| 994 |
|
|
tree arg = PHI_ARG_DEF (phi, i);
|
| 995 |
|
|
|
| 996 |
|
|
if (TREE_CODE (arg) == SSA_NAME)
|
| 997 |
|
|
{
|
| 998 |
|
|
tree val = prop_value[SSA_NAME_VERSION (arg)].value;
|
| 999 |
|
|
|
| 1000 |
|
|
if (val && val != arg && may_propagate_copy (arg, val))
|
| 1001 |
|
|
{
|
| 1002 |
|
|
if (TREE_CODE (val) != SSA_NAME)
|
| 1003 |
|
|
prop_stats.num_const_prop++;
|
| 1004 |
|
|
else
|
| 1005 |
|
|
prop_stats.num_copy_prop++;
|
| 1006 |
|
|
|
| 1007 |
|
|
propagate_value (PHI_ARG_DEF_PTR (phi, i), val);
|
| 1008 |
|
|
replaced = true;
|
| 1009 |
|
|
|
| 1010 |
|
|
/* If we propagated a copy and this argument flows
|
| 1011 |
|
|
through an abnormal edge, update the replacement
|
| 1012 |
|
|
accordingly. */
|
| 1013 |
|
|
if (TREE_CODE (val) == SSA_NAME
|
| 1014 |
|
|
&& PHI_ARG_EDGE (phi, i)->flags & EDGE_ABNORMAL)
|
| 1015 |
|
|
SSA_NAME_OCCURS_IN_ABNORMAL_PHI (val) = 1;
|
| 1016 |
|
|
}
|
| 1017 |
|
|
}
|
| 1018 |
|
|
}
|
| 1019 |
|
|
|
| 1020 |
|
|
if (replaced && dump_file && (dump_flags & TDF_DETAILS))
|
| 1021 |
|
|
{
|
| 1022 |
|
|
fprintf (dump_file, "Folded PHI node: ");
|
| 1023 |
|
|
print_generic_stmt (dump_file, prev_phi, TDF_SLIM);
|
| 1024 |
|
|
fprintf (dump_file, " into: ");
|
| 1025 |
|
|
print_generic_stmt (dump_file, phi, TDF_SLIM);
|
| 1026 |
|
|
fprintf (dump_file, "\n");
|
| 1027 |
|
|
}
|
| 1028 |
|
|
}
|
| 1029 |
|
|
|
| 1030 |
|
|
|
| 1031 |
|
|
/* If STMT has a predicate whose value can be computed using the value
|
| 1032 |
|
|
range information computed by VRP, compute its value and return true.
|
| 1033 |
|
|
Otherwise, return false. */
|
| 1034 |
|
|
|
| 1035 |
|
|
static bool
|
| 1036 |
|
|
fold_predicate_in (tree stmt)
|
| 1037 |
|
|
{
|
| 1038 |
|
|
tree *pred_p = NULL;
|
| 1039 |
|
|
bool modify_expr_p = false;
|
| 1040 |
|
|
tree val;
|
| 1041 |
|
|
|
| 1042 |
|
|
if (TREE_CODE (stmt) == MODIFY_EXPR
|
| 1043 |
|
|
&& COMPARISON_CLASS_P (TREE_OPERAND (stmt, 1)))
|
| 1044 |
|
|
{
|
| 1045 |
|
|
modify_expr_p = true;
|
| 1046 |
|
|
pred_p = &TREE_OPERAND (stmt, 1);
|
| 1047 |
|
|
}
|
| 1048 |
|
|
else if (TREE_CODE (stmt) == COND_EXPR)
|
| 1049 |
|
|
pred_p = &COND_EXPR_COND (stmt);
|
| 1050 |
|
|
else
|
| 1051 |
|
|
return false;
|
| 1052 |
|
|
|
| 1053 |
|
|
val = vrp_evaluate_conditional (*pred_p, stmt);
|
| 1054 |
|
|
if (val)
|
| 1055 |
|
|
{
|
| 1056 |
|
|
if (modify_expr_p)
|
| 1057 |
|
|
val = fold_convert (TREE_TYPE (*pred_p), val);
|
| 1058 |
|
|
|
| 1059 |
|
|
if (dump_file)
|
| 1060 |
|
|
{
|
| 1061 |
|
|
fprintf (dump_file, "Folding predicate ");
|
| 1062 |
|
|
print_generic_expr (dump_file, *pred_p, 0);
|
| 1063 |
|
|
fprintf (dump_file, " to ");
|
| 1064 |
|
|
print_generic_expr (dump_file, val, 0);
|
| 1065 |
|
|
fprintf (dump_file, "\n");
|
| 1066 |
|
|
}
|
| 1067 |
|
|
|
| 1068 |
|
|
prop_stats.num_pred_folded++;
|
| 1069 |
|
|
*pred_p = val;
|
| 1070 |
|
|
return true;
|
| 1071 |
|
|
}
|
| 1072 |
|
|
|
| 1073 |
|
|
return false;
|
| 1074 |
|
|
}
|
| 1075 |
|
|
|
| 1076 |
|
|
|
| 1077 |
|
|
/* Perform final substitution and folding of propagated values.
|
| 1078 |
|
|
|
| 1079 |
|
|
PROP_VALUE[I] contains the single value that should be substituted
|
| 1080 |
|
|
at every use of SSA name N_I. If PROP_VALUE is NULL, no values are
|
| 1081 |
|
|
substituted.
|
| 1082 |
|
|
|
| 1083 |
|
|
If USE_RANGES_P is true, statements that contain predicate
|
| 1084 |
|
|
expressions are evaluated with a call to vrp_evaluate_conditional.
|
| 1085 |
|
|
This will only give meaningful results when called from tree-vrp.c
|
| 1086 |
|
|
(the information used by vrp_evaluate_conditional is built by the
|
| 1087 |
|
|
VRP pass). */
|
| 1088 |
|
|
|
| 1089 |
|
|
void
|
| 1090 |
|
|
substitute_and_fold (prop_value_t *prop_value, bool use_ranges_p)
|
| 1091 |
|
|
{
|
| 1092 |
|
|
basic_block bb;
|
| 1093 |
|
|
|
| 1094 |
|
|
if (prop_value == NULL && !use_ranges_p)
|
| 1095 |
|
|
return;
|
| 1096 |
|
|
|
| 1097 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
| 1098 |
|
|
fprintf (dump_file, "\nSubstituing values and folding statements\n\n");
|
| 1099 |
|
|
|
| 1100 |
|
|
memset (&prop_stats, 0, sizeof (prop_stats));
|
| 1101 |
|
|
|
| 1102 |
|
|
/* Substitute values in every statement of every basic block. */
|
| 1103 |
|
|
FOR_EACH_BB (bb)
|
| 1104 |
|
|
{
|
| 1105 |
|
|
block_stmt_iterator i;
|
| 1106 |
|
|
tree phi;
|
| 1107 |
|
|
|
| 1108 |
|
|
/* Propagate known values into PHI nodes. */
|
| 1109 |
|
|
if (prop_value)
|
| 1110 |
|
|
for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
|
| 1111 |
|
|
replace_phi_args_in (phi, prop_value);
|
| 1112 |
|
|
|
| 1113 |
|
|
for (i = bsi_start (bb); !bsi_end_p (i); bsi_next (&i))
|
| 1114 |
|
|
{
|
| 1115 |
|
|
bool replaced_address, did_replace;
|
| 1116 |
|
|
tree prev_stmt = NULL;
|
| 1117 |
|
|
tree stmt = bsi_stmt (i);
|
| 1118 |
|
|
|
| 1119 |
|
|
/* Ignore ASSERT_EXPRs. They are used by VRP to generate
|
| 1120 |
|
|
range information for names and they are discarded
|
| 1121 |
|
|
afterwards. */
|
| 1122 |
|
|
if (TREE_CODE (stmt) == MODIFY_EXPR
|
| 1123 |
|
|
&& TREE_CODE (TREE_OPERAND (stmt, 1)) == ASSERT_EXPR)
|
| 1124 |
|
|
continue;
|
| 1125 |
|
|
|
| 1126 |
|
|
/* Replace the statement with its folded version and mark it
|
| 1127 |
|
|
folded. */
|
| 1128 |
|
|
did_replace = false;
|
| 1129 |
|
|
replaced_address = false;
|
| 1130 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
| 1131 |
|
|
prev_stmt = unshare_expr (stmt);
|
| 1132 |
|
|
|
| 1133 |
|
|
/* If we have range information, see if we can fold
|
| 1134 |
|
|
predicate expressions. */
|
| 1135 |
|
|
if (use_ranges_p)
|
| 1136 |
|
|
did_replace = fold_predicate_in (stmt);
|
| 1137 |
|
|
|
| 1138 |
|
|
if (prop_value)
|
| 1139 |
|
|
{
|
| 1140 |
|
|
/* Only replace real uses if we couldn't fold the
|
| 1141 |
|
|
statement using value range information (value range
|
| 1142 |
|
|
information is not collected on virtuals, so we only
|
| 1143 |
|
|
need to check this for real uses). */
|
| 1144 |
|
|
if (!did_replace)
|
| 1145 |
|
|
did_replace |= replace_uses_in (stmt, &replaced_address,
|
| 1146 |
|
|
prop_value);
|
| 1147 |
|
|
|
| 1148 |
|
|
did_replace |= replace_vuses_in (stmt, &replaced_address,
|
| 1149 |
|
|
prop_value);
|
| 1150 |
|
|
}
|
| 1151 |
|
|
|
| 1152 |
|
|
/* If we made a replacement, fold and cleanup the statement. */
|
| 1153 |
|
|
if (did_replace)
|
| 1154 |
|
|
{
|
| 1155 |
|
|
tree old_stmt = stmt;
|
| 1156 |
|
|
tree rhs;
|
| 1157 |
|
|
|
| 1158 |
|
|
fold_stmt (bsi_stmt_ptr (i));
|
| 1159 |
|
|
stmt = bsi_stmt (i);
|
| 1160 |
|
|
|
| 1161 |
|
|
/* If we folded a builtin function, we'll likely
|
| 1162 |
|
|
need to rename VDEFs. */
|
| 1163 |
|
|
mark_new_vars_to_rename (stmt);
|
| 1164 |
|
|
|
| 1165 |
|
|
/* If we cleaned up EH information from the statement,
|
| 1166 |
|
|
remove EH edges. */
|
| 1167 |
|
|
if (maybe_clean_or_replace_eh_stmt (old_stmt, stmt))
|
| 1168 |
|
|
tree_purge_dead_eh_edges (bb);
|
| 1169 |
|
|
|
| 1170 |
|
|
rhs = get_rhs (stmt);
|
| 1171 |
|
|
if (TREE_CODE (rhs) == ADDR_EXPR)
|
| 1172 |
|
|
recompute_tree_invariant_for_addr_expr (rhs);
|
| 1173 |
|
|
|
| 1174 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
| 1175 |
|
|
{
|
| 1176 |
|
|
fprintf (dump_file, "Folded statement: ");
|
| 1177 |
|
|
print_generic_stmt (dump_file, prev_stmt, TDF_SLIM);
|
| 1178 |
|
|
fprintf (dump_file, " into: ");
|
| 1179 |
|
|
print_generic_stmt (dump_file, stmt, TDF_SLIM);
|
| 1180 |
|
|
fprintf (dump_file, "\n");
|
| 1181 |
|
|
}
|
| 1182 |
|
|
}
|
| 1183 |
|
|
|
| 1184 |
|
|
/* Some statements may be simplified using ranges. For
|
| 1185 |
|
|
example, division may be replaced by shifts, modulo
|
| 1186 |
|
|
replaced with bitwise and, etc. Do this after
|
| 1187 |
|
|
substituting constants, folding, etc so that we're
|
| 1188 |
|
|
presented with a fully propagated, canonicalized
|
| 1189 |
|
|
statement. */
|
| 1190 |
|
|
if (use_ranges_p)
|
| 1191 |
|
|
simplify_stmt_using_ranges (stmt);
|
| 1192 |
|
|
|
| 1193 |
|
|
}
|
| 1194 |
|
|
}
|
| 1195 |
|
|
|
| 1196 |
|
|
if (dump_file && (dump_flags & TDF_STATS))
|
| 1197 |
|
|
{
|
| 1198 |
|
|
fprintf (dump_file, "Constants propagated: %6ld\n",
|
| 1199 |
|
|
prop_stats.num_const_prop);
|
| 1200 |
|
|
fprintf (dump_file, "Copies propagated: %6ld\n",
|
| 1201 |
|
|
prop_stats.num_copy_prop);
|
| 1202 |
|
|
fprintf (dump_file, "Predicates folded: %6ld\n",
|
| 1203 |
|
|
prop_stats.num_pred_folded);
|
| 1204 |
|
|
}
|
| 1205 |
|
|
}
|
| 1206 |
|
|
|
| 1207 |
|
|
#include "gt-tree-ssa-propagate.h"
|