1 |
38 |
julius |
/* Generic SSA value propagation engine.
|
2 |
|
|
Copyright (C) 2004, 2005, 2006, 2007 Free Software Foundation, Inc.
|
3 |
|
|
Contributed by Diego Novillo <dnovillo@redhat.com>
|
4 |
|
|
|
5 |
|
|
This file is part of GCC.
|
6 |
|
|
|
7 |
|
|
GCC is free software; you can redistribute it and/or modify it
|
8 |
|
|
under the terms of the GNU General Public License as published by the
|
9 |
|
|
Free Software Foundation; either version 3, or (at your option) any
|
10 |
|
|
later version.
|
11 |
|
|
|
12 |
|
|
GCC is distributed in the hope that it will be useful, but WITHOUT
|
13 |
|
|
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
14 |
|
|
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
15 |
|
|
for more details.
|
16 |
|
|
|
17 |
|
|
You should have received a copy of the GNU General Public License
|
18 |
|
|
along with GCC; see the file COPYING3. If not see
|
19 |
|
|
<http://www.gnu.org/licenses/>. */
|
20 |
|
|
|
21 |
|
|
#include "config.h"
|
22 |
|
|
#include "system.h"
|
23 |
|
|
#include "coretypes.h"
|
24 |
|
|
#include "tm.h"
|
25 |
|
|
#include "tree.h"
|
26 |
|
|
#include "flags.h"
|
27 |
|
|
#include "rtl.h"
|
28 |
|
|
#include "tm_p.h"
|
29 |
|
|
#include "ggc.h"
|
30 |
|
|
#include "basic-block.h"
|
31 |
|
|
#include "output.h"
|
32 |
|
|
#include "expr.h"
|
33 |
|
|
#include "function.h"
|
34 |
|
|
#include "diagnostic.h"
|
35 |
|
|
#include "timevar.h"
|
36 |
|
|
#include "tree-dump.h"
|
37 |
|
|
#include "tree-flow.h"
|
38 |
|
|
#include "tree-pass.h"
|
39 |
|
|
#include "tree-ssa-propagate.h"
|
40 |
|
|
#include "langhooks.h"
|
41 |
|
|
#include "varray.h"
|
42 |
|
|
#include "vec.h"
|
43 |
|
|
|
44 |
|
|
/* This file implements a generic value propagation engine based on
|
45 |
|
|
the same propagation used by the SSA-CCP algorithm [1].
|
46 |
|
|
|
47 |
|
|
Propagation is performed by simulating the execution of every
|
48 |
|
|
statement that produces the value being propagated. Simulation
|
49 |
|
|
proceeds as follows:
|
50 |
|
|
|
51 |
|
|
1- Initially, all edges of the CFG are marked not executable and
|
52 |
|
|
the CFG worklist is seeded with all the statements in the entry
|
53 |
|
|
basic block (block 0).
|
54 |
|
|
|
55 |
|
|
2- Every statement S is simulated with a call to the call-back
|
56 |
|
|
function SSA_PROP_VISIT_STMT. This evaluation may produce 3
|
57 |
|
|
results:
|
58 |
|
|
|
59 |
|
|
SSA_PROP_NOT_INTERESTING: Statement S produces nothing of
|
60 |
|
|
interest and does not affect any of the work lists.
|
61 |
|
|
|
62 |
|
|
SSA_PROP_VARYING: The value produced by S cannot be determined
|
63 |
|
|
at compile time. Further simulation of S is not required.
|
64 |
|
|
If S is a conditional jump, all the outgoing edges for the
|
65 |
|
|
block are considered executable and added to the work
|
66 |
|
|
list.
|
67 |
|
|
|
68 |
|
|
SSA_PROP_INTERESTING: S produces a value that can be computed
|
69 |
|
|
at compile time. Its result can be propagated into the
|
70 |
|
|
statements that feed from S. Furthermore, if S is a
|
71 |
|
|
conditional jump, only the edge known to be taken is added
|
72 |
|
|
to the work list. Edges that are known not to execute are
|
73 |
|
|
never simulated.
|
74 |
|
|
|
75 |
|
|
3- PHI nodes are simulated with a call to SSA_PROP_VISIT_PHI. The
|
76 |
|
|
return value from SSA_PROP_VISIT_PHI has the same semantics as
|
77 |
|
|
described in #2.
|
78 |
|
|
|
79 |
|
|
4- Three work lists are kept. Statements are only added to these
|
80 |
|
|
lists if they produce one of SSA_PROP_INTERESTING or
|
81 |
|
|
SSA_PROP_VARYING.
|
82 |
|
|
|
83 |
|
|
CFG_BLOCKS contains the list of blocks to be simulated.
|
84 |
|
|
Blocks are added to this list if their incoming edges are
|
85 |
|
|
found executable.
|
86 |
|
|
|
87 |
|
|
VARYING_SSA_EDGES contains the list of statements that feed
|
88 |
|
|
from statements that produce an SSA_PROP_VARYING result.
|
89 |
|
|
These are simulated first to speed up processing.
|
90 |
|
|
|
91 |
|
|
INTERESTING_SSA_EDGES contains the list of statements that
|
92 |
|
|
feed from statements that produce an SSA_PROP_INTERESTING
|
93 |
|
|
result.
|
94 |
|
|
|
95 |
|
|
5- Simulation terminates when all three work lists are drained.
|
96 |
|
|
|
97 |
|
|
Before calling ssa_propagate, it is important to clear
|
98 |
|
|
DONT_SIMULATE_AGAIN for all the statements in the program that
|
99 |
|
|
should be simulated. This initialization allows an implementation
|
100 |
|
|
to specify which statements should never be simulated.
|
101 |
|
|
|
102 |
|
|
It is also important to compute def-use information before calling
|
103 |
|
|
ssa_propagate.
|
104 |
|
|
|
105 |
|
|
References:
|
106 |
|
|
|
107 |
|
|
[1] Constant propagation with conditional branches,
|
108 |
|
|
Wegman and Zadeck, ACM TOPLAS 13(2):181-210.
|
109 |
|
|
|
110 |
|
|
[2] Building an Optimizing Compiler,
|
111 |
|
|
Robert Morgan, Butterworth-Heinemann, 1998, Section 8.9.
|
112 |
|
|
|
113 |
|
|
[3] Advanced Compiler Design and Implementation,
|
114 |
|
|
Steven Muchnick, Morgan Kaufmann, 1997, Section 12.6 */
|
115 |
|
|
|
116 |
|
|
/* Function pointers used to parameterize the propagation engine. */
|
117 |
|
|
static ssa_prop_visit_stmt_fn ssa_prop_visit_stmt;
|
118 |
|
|
static ssa_prop_visit_phi_fn ssa_prop_visit_phi;
|
119 |
|
|
|
120 |
|
|
/* Use the TREE_DEPRECATED bitflag to mark statements that have been
|
121 |
|
|
added to one of the SSA edges worklists. This flag is used to
|
122 |
|
|
avoid visiting statements unnecessarily when draining an SSA edge
|
123 |
|
|
worklist. If while simulating a basic block, we find a statement with
|
124 |
|
|
STMT_IN_SSA_EDGE_WORKLIST set, we clear it to prevent SSA edge
|
125 |
|
|
processing from visiting it again. */
|
126 |
|
|
#define STMT_IN_SSA_EDGE_WORKLIST(T) TREE_DEPRECATED (T)
|
127 |
|
|
|
128 |
|
|
/* A bitmap to keep track of executable blocks in the CFG. */
|
129 |
|
|
static sbitmap executable_blocks;
|
130 |
|
|
|
131 |
|
|
/* Array of control flow edges on the worklist. */
|
132 |
|
|
static VEC(basic_block,heap) *cfg_blocks;
|
133 |
|
|
|
134 |
|
|
static unsigned int cfg_blocks_num = 0;
|
135 |
|
|
static int cfg_blocks_tail;
|
136 |
|
|
static int cfg_blocks_head;
|
137 |
|
|
|
138 |
|
|
static sbitmap bb_in_list;
|
139 |
|
|
|
140 |
|
|
/* Worklist of SSA edges which will need reexamination as their
|
141 |
|
|
definition has changed. SSA edges are def-use edges in the SSA
|
142 |
|
|
web. For each D-U edge, we store the target statement or PHI node
|
143 |
|
|
U. */
|
144 |
|
|
static GTY(()) VEC(tree,gc) *interesting_ssa_edges;
|
145 |
|
|
|
146 |
|
|
/* Identical to INTERESTING_SSA_EDGES. For performance reasons, the
|
147 |
|
|
list of SSA edges is split into two. One contains all SSA edges
|
148 |
|
|
who need to be reexamined because their lattice value changed to
|
149 |
|
|
varying (this worklist), and the other contains all other SSA edges
|
150 |
|
|
to be reexamined (INTERESTING_SSA_EDGES).
|
151 |
|
|
|
152 |
|
|
Since most values in the program are VARYING, the ideal situation
|
153 |
|
|
is to move them to that lattice value as quickly as possible.
|
154 |
|
|
Thus, it doesn't make sense to process any other type of lattice
|
155 |
|
|
value until all VARYING values are propagated fully, which is one
|
156 |
|
|
thing using the VARYING worklist achieves. In addition, if we
|
157 |
|
|
don't use a separate worklist for VARYING edges, we end up with
|
158 |
|
|
situations where lattice values move from
|
159 |
|
|
UNDEFINED->INTERESTING->VARYING instead of UNDEFINED->VARYING. */
|
160 |
|
|
static GTY(()) VEC(tree,gc) *varying_ssa_edges;
|
161 |
|
|
|
162 |
|
|
|
163 |
|
|
/* Return true if the block worklist empty. */
|
164 |
|
|
|
165 |
|
|
static inline bool
|
166 |
|
|
cfg_blocks_empty_p (void)
|
167 |
|
|
{
|
168 |
|
|
return (cfg_blocks_num == 0);
|
169 |
|
|
}
|
170 |
|
|
|
171 |
|
|
|
172 |
|
|
/* Add a basic block to the worklist. The block must not be already
|
173 |
|
|
in the worklist, and it must not be the ENTRY or EXIT block. */
|
174 |
|
|
|
175 |
|
|
static void
|
176 |
|
|
cfg_blocks_add (basic_block bb)
|
177 |
|
|
{
|
178 |
|
|
gcc_assert (bb != ENTRY_BLOCK_PTR && bb != EXIT_BLOCK_PTR);
|
179 |
|
|
gcc_assert (!TEST_BIT (bb_in_list, bb->index));
|
180 |
|
|
|
181 |
|
|
if (cfg_blocks_empty_p ())
|
182 |
|
|
{
|
183 |
|
|
cfg_blocks_tail = cfg_blocks_head = 0;
|
184 |
|
|
cfg_blocks_num = 1;
|
185 |
|
|
}
|
186 |
|
|
else
|
187 |
|
|
{
|
188 |
|
|
cfg_blocks_num++;
|
189 |
|
|
if (cfg_blocks_num > VEC_length (basic_block, cfg_blocks))
|
190 |
|
|
{
|
191 |
|
|
/* We have to grow the array now. Adjust to queue to occupy
|
192 |
|
|
the full space of the original array. We do not need to
|
193 |
|
|
initialize the newly allocated portion of the array
|
194 |
|
|
because we keep track of CFG_BLOCKS_HEAD and
|
195 |
|
|
CFG_BLOCKS_HEAD. */
|
196 |
|
|
cfg_blocks_tail = VEC_length (basic_block, cfg_blocks);
|
197 |
|
|
cfg_blocks_head = 0;
|
198 |
|
|
VEC_safe_grow (basic_block, heap, cfg_blocks, 2 * cfg_blocks_tail);
|
199 |
|
|
}
|
200 |
|
|
else
|
201 |
|
|
cfg_blocks_tail = ((cfg_blocks_tail + 1)
|
202 |
|
|
% VEC_length (basic_block, cfg_blocks));
|
203 |
|
|
}
|
204 |
|
|
|
205 |
|
|
VEC_replace (basic_block, cfg_blocks, cfg_blocks_tail, bb);
|
206 |
|
|
SET_BIT (bb_in_list, bb->index);
|
207 |
|
|
}
|
208 |
|
|
|
209 |
|
|
|
210 |
|
|
/* Remove a block from the worklist. */
|
211 |
|
|
|
212 |
|
|
static basic_block
|
213 |
|
|
cfg_blocks_get (void)
|
214 |
|
|
{
|
215 |
|
|
basic_block bb;
|
216 |
|
|
|
217 |
|
|
bb = VEC_index (basic_block, cfg_blocks, cfg_blocks_head);
|
218 |
|
|
|
219 |
|
|
gcc_assert (!cfg_blocks_empty_p ());
|
220 |
|
|
gcc_assert (bb);
|
221 |
|
|
|
222 |
|
|
cfg_blocks_head = ((cfg_blocks_head + 1)
|
223 |
|
|
% VEC_length (basic_block, cfg_blocks));
|
224 |
|
|
--cfg_blocks_num;
|
225 |
|
|
RESET_BIT (bb_in_list, bb->index);
|
226 |
|
|
|
227 |
|
|
return bb;
|
228 |
|
|
}
|
229 |
|
|
|
230 |
|
|
|
231 |
|
|
/* We have just defined a new value for VAR. If IS_VARYING is true,
|
232 |
|
|
add all immediate uses of VAR to VARYING_SSA_EDGES, otherwise add
|
233 |
|
|
them to INTERESTING_SSA_EDGES. */
|
234 |
|
|
|
235 |
|
|
static void
|
236 |
|
|
add_ssa_edge (tree var, bool is_varying)
|
237 |
|
|
{
|
238 |
|
|
imm_use_iterator iter;
|
239 |
|
|
use_operand_p use_p;
|
240 |
|
|
|
241 |
|
|
FOR_EACH_IMM_USE_FAST (use_p, iter, var)
|
242 |
|
|
{
|
243 |
|
|
tree use_stmt = USE_STMT (use_p);
|
244 |
|
|
|
245 |
|
|
if (!DONT_SIMULATE_AGAIN (use_stmt)
|
246 |
|
|
&& !STMT_IN_SSA_EDGE_WORKLIST (use_stmt))
|
247 |
|
|
{
|
248 |
|
|
STMT_IN_SSA_EDGE_WORKLIST (use_stmt) = 1;
|
249 |
|
|
if (is_varying)
|
250 |
|
|
VEC_safe_push (tree, gc, varying_ssa_edges, use_stmt);
|
251 |
|
|
else
|
252 |
|
|
VEC_safe_push (tree, gc, interesting_ssa_edges, use_stmt);
|
253 |
|
|
}
|
254 |
|
|
}
|
255 |
|
|
}
|
256 |
|
|
|
257 |
|
|
|
258 |
|
|
/* Add edge E to the control flow worklist. */
|
259 |
|
|
|
260 |
|
|
static void
|
261 |
|
|
add_control_edge (edge e)
|
262 |
|
|
{
|
263 |
|
|
basic_block bb = e->dest;
|
264 |
|
|
if (bb == EXIT_BLOCK_PTR)
|
265 |
|
|
return;
|
266 |
|
|
|
267 |
|
|
/* If the edge had already been executed, skip it. */
|
268 |
|
|
if (e->flags & EDGE_EXECUTABLE)
|
269 |
|
|
return;
|
270 |
|
|
|
271 |
|
|
e->flags |= EDGE_EXECUTABLE;
|
272 |
|
|
|
273 |
|
|
/* If the block is already in the list, we're done. */
|
274 |
|
|
if (TEST_BIT (bb_in_list, bb->index))
|
275 |
|
|
return;
|
276 |
|
|
|
277 |
|
|
cfg_blocks_add (bb);
|
278 |
|
|
|
279 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
280 |
|
|
fprintf (dump_file, "Adding Destination of edge (%d -> %d) to worklist\n\n",
|
281 |
|
|
e->src->index, e->dest->index);
|
282 |
|
|
}
|
283 |
|
|
|
284 |
|
|
|
285 |
|
|
/* Simulate the execution of STMT and update the work lists accordingly. */
|
286 |
|
|
|
287 |
|
|
static void
|
288 |
|
|
simulate_stmt (tree stmt)
|
289 |
|
|
{
|
290 |
|
|
enum ssa_prop_result val = SSA_PROP_NOT_INTERESTING;
|
291 |
|
|
edge taken_edge = NULL;
|
292 |
|
|
tree output_name = NULL_TREE;
|
293 |
|
|
|
294 |
|
|
/* Don't bother visiting statements that are already
|
295 |
|
|
considered varying by the propagator. */
|
296 |
|
|
if (DONT_SIMULATE_AGAIN (stmt))
|
297 |
|
|
return;
|
298 |
|
|
|
299 |
|
|
if (TREE_CODE (stmt) == PHI_NODE)
|
300 |
|
|
{
|
301 |
|
|
val = ssa_prop_visit_phi (stmt);
|
302 |
|
|
output_name = PHI_RESULT (stmt);
|
303 |
|
|
}
|
304 |
|
|
else
|
305 |
|
|
val = ssa_prop_visit_stmt (stmt, &taken_edge, &output_name);
|
306 |
|
|
|
307 |
|
|
if (val == SSA_PROP_VARYING)
|
308 |
|
|
{
|
309 |
|
|
DONT_SIMULATE_AGAIN (stmt) = 1;
|
310 |
|
|
|
311 |
|
|
/* If the statement produced a new varying value, add the SSA
|
312 |
|
|
edges coming out of OUTPUT_NAME. */
|
313 |
|
|
if (output_name)
|
314 |
|
|
add_ssa_edge (output_name, true);
|
315 |
|
|
|
316 |
|
|
/* If STMT transfers control out of its basic block, add
|
317 |
|
|
all outgoing edges to the work list. */
|
318 |
|
|
if (stmt_ends_bb_p (stmt))
|
319 |
|
|
{
|
320 |
|
|
edge e;
|
321 |
|
|
edge_iterator ei;
|
322 |
|
|
basic_block bb = bb_for_stmt (stmt);
|
323 |
|
|
FOR_EACH_EDGE (e, ei, bb->succs)
|
324 |
|
|
add_control_edge (e);
|
325 |
|
|
}
|
326 |
|
|
}
|
327 |
|
|
else if (val == SSA_PROP_INTERESTING)
|
328 |
|
|
{
|
329 |
|
|
/* If the statement produced new value, add the SSA edges coming
|
330 |
|
|
out of OUTPUT_NAME. */
|
331 |
|
|
if (output_name)
|
332 |
|
|
add_ssa_edge (output_name, false);
|
333 |
|
|
|
334 |
|
|
/* If we know which edge is going to be taken out of this block,
|
335 |
|
|
add it to the CFG work list. */
|
336 |
|
|
if (taken_edge)
|
337 |
|
|
add_control_edge (taken_edge);
|
338 |
|
|
}
|
339 |
|
|
}
|
340 |
|
|
|
341 |
|
|
/* Process an SSA edge worklist. WORKLIST is the SSA edge worklist to
|
342 |
|
|
drain. This pops statements off the given WORKLIST and processes
|
343 |
|
|
them until there are no more statements on WORKLIST.
|
344 |
|
|
We take a pointer to WORKLIST because it may be reallocated when an
|
345 |
|
|
SSA edge is added to it in simulate_stmt. */
|
346 |
|
|
|
347 |
|
|
static void
|
348 |
|
|
process_ssa_edge_worklist (VEC(tree,gc) **worklist)
|
349 |
|
|
{
|
350 |
|
|
/* Drain the entire worklist. */
|
351 |
|
|
while (VEC_length (tree, *worklist) > 0)
|
352 |
|
|
{
|
353 |
|
|
basic_block bb;
|
354 |
|
|
|
355 |
|
|
/* Pull the statement to simulate off the worklist. */
|
356 |
|
|
tree stmt = VEC_pop (tree, *worklist);
|
357 |
|
|
|
358 |
|
|
/* If this statement was already visited by simulate_block, then
|
359 |
|
|
we don't need to visit it again here. */
|
360 |
|
|
if (!STMT_IN_SSA_EDGE_WORKLIST (stmt))
|
361 |
|
|
continue;
|
362 |
|
|
|
363 |
|
|
/* STMT is no longer in a worklist. */
|
364 |
|
|
STMT_IN_SSA_EDGE_WORKLIST (stmt) = 0;
|
365 |
|
|
|
366 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
367 |
|
|
{
|
368 |
|
|
fprintf (dump_file, "\nSimulating statement (from ssa_edges): ");
|
369 |
|
|
print_generic_stmt (dump_file, stmt, dump_flags);
|
370 |
|
|
}
|
371 |
|
|
|
372 |
|
|
bb = bb_for_stmt (stmt);
|
373 |
|
|
|
374 |
|
|
/* PHI nodes are always visited, regardless of whether or not
|
375 |
|
|
the destination block is executable. Otherwise, visit the
|
376 |
|
|
statement only if its block is marked executable. */
|
377 |
|
|
if (TREE_CODE (stmt) == PHI_NODE
|
378 |
|
|
|| TEST_BIT (executable_blocks, bb->index))
|
379 |
|
|
simulate_stmt (stmt);
|
380 |
|
|
}
|
381 |
|
|
}
|
382 |
|
|
|
383 |
|
|
|
384 |
|
|
/* Simulate the execution of BLOCK. Evaluate the statement associated
|
385 |
|
|
with each variable reference inside the block. */
|
386 |
|
|
|
387 |
|
|
static void
|
388 |
|
|
simulate_block (basic_block block)
|
389 |
|
|
{
|
390 |
|
|
tree phi;
|
391 |
|
|
|
392 |
|
|
/* There is nothing to do for the exit block. */
|
393 |
|
|
if (block == EXIT_BLOCK_PTR)
|
394 |
|
|
return;
|
395 |
|
|
|
396 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
397 |
|
|
fprintf (dump_file, "\nSimulating block %d\n", block->index);
|
398 |
|
|
|
399 |
|
|
/* Always simulate PHI nodes, even if we have simulated this block
|
400 |
|
|
before. */
|
401 |
|
|
for (phi = phi_nodes (block); phi; phi = PHI_CHAIN (phi))
|
402 |
|
|
simulate_stmt (phi);
|
403 |
|
|
|
404 |
|
|
/* If this is the first time we've simulated this block, then we
|
405 |
|
|
must simulate each of its statements. */
|
406 |
|
|
if (!TEST_BIT (executable_blocks, block->index))
|
407 |
|
|
{
|
408 |
|
|
block_stmt_iterator j;
|
409 |
|
|
unsigned int normal_edge_count;
|
410 |
|
|
edge e, normal_edge;
|
411 |
|
|
edge_iterator ei;
|
412 |
|
|
|
413 |
|
|
/* Note that we have simulated this block. */
|
414 |
|
|
SET_BIT (executable_blocks, block->index);
|
415 |
|
|
|
416 |
|
|
for (j = bsi_start (block); !bsi_end_p (j); bsi_next (&j))
|
417 |
|
|
{
|
418 |
|
|
tree stmt = bsi_stmt (j);
|
419 |
|
|
|
420 |
|
|
/* If this statement is already in the worklist then
|
421 |
|
|
"cancel" it. The reevaluation implied by the worklist
|
422 |
|
|
entry will produce the same value we generate here and
|
423 |
|
|
thus reevaluating it again from the worklist is
|
424 |
|
|
pointless. */
|
425 |
|
|
if (STMT_IN_SSA_EDGE_WORKLIST (stmt))
|
426 |
|
|
STMT_IN_SSA_EDGE_WORKLIST (stmt) = 0;
|
427 |
|
|
|
428 |
|
|
simulate_stmt (stmt);
|
429 |
|
|
}
|
430 |
|
|
|
431 |
|
|
/* We can not predict when abnormal edges will be executed, so
|
432 |
|
|
once a block is considered executable, we consider any
|
433 |
|
|
outgoing abnormal edges as executable.
|
434 |
|
|
|
435 |
|
|
At the same time, if this block has only one successor that is
|
436 |
|
|
reached by non-abnormal edges, then add that successor to the
|
437 |
|
|
worklist. */
|
438 |
|
|
normal_edge_count = 0;
|
439 |
|
|
normal_edge = NULL;
|
440 |
|
|
FOR_EACH_EDGE (e, ei, block->succs)
|
441 |
|
|
{
|
442 |
|
|
if (e->flags & EDGE_ABNORMAL)
|
443 |
|
|
add_control_edge (e);
|
444 |
|
|
else
|
445 |
|
|
{
|
446 |
|
|
normal_edge_count++;
|
447 |
|
|
normal_edge = e;
|
448 |
|
|
}
|
449 |
|
|
}
|
450 |
|
|
|
451 |
|
|
if (normal_edge_count == 1)
|
452 |
|
|
add_control_edge (normal_edge);
|
453 |
|
|
}
|
454 |
|
|
}
|
455 |
|
|
|
456 |
|
|
|
457 |
|
|
/* Initialize local data structures and work lists. */
|
458 |
|
|
|
459 |
|
|
static void
|
460 |
|
|
ssa_prop_init (void)
|
461 |
|
|
{
|
462 |
|
|
edge e;
|
463 |
|
|
edge_iterator ei;
|
464 |
|
|
basic_block bb;
|
465 |
|
|
size_t i;
|
466 |
|
|
|
467 |
|
|
/* Worklists of SSA edges. */
|
468 |
|
|
interesting_ssa_edges = VEC_alloc (tree, gc, 20);
|
469 |
|
|
varying_ssa_edges = VEC_alloc (tree, gc, 20);
|
470 |
|
|
|
471 |
|
|
executable_blocks = sbitmap_alloc (last_basic_block);
|
472 |
|
|
sbitmap_zero (executable_blocks);
|
473 |
|
|
|
474 |
|
|
bb_in_list = sbitmap_alloc (last_basic_block);
|
475 |
|
|
sbitmap_zero (bb_in_list);
|
476 |
|
|
|
477 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
478 |
|
|
dump_immediate_uses (dump_file);
|
479 |
|
|
|
480 |
|
|
cfg_blocks = VEC_alloc (basic_block, heap, 20);
|
481 |
|
|
VEC_safe_grow (basic_block, heap, cfg_blocks, 20);
|
482 |
|
|
|
483 |
|
|
/* Initialize the values for every SSA_NAME. */
|
484 |
|
|
for (i = 1; i < num_ssa_names; i++)
|
485 |
|
|
if (ssa_name (i))
|
486 |
|
|
SSA_NAME_VALUE (ssa_name (i)) = NULL_TREE;
|
487 |
|
|
|
488 |
|
|
/* Initially assume that every edge in the CFG is not executable.
|
489 |
|
|
(including the edges coming out of ENTRY_BLOCK_PTR). */
|
490 |
|
|
FOR_ALL_BB (bb)
|
491 |
|
|
{
|
492 |
|
|
block_stmt_iterator si;
|
493 |
|
|
|
494 |
|
|
for (si = bsi_start (bb); !bsi_end_p (si); bsi_next (&si))
|
495 |
|
|
STMT_IN_SSA_EDGE_WORKLIST (bsi_stmt (si)) = 0;
|
496 |
|
|
|
497 |
|
|
FOR_EACH_EDGE (e, ei, bb->succs)
|
498 |
|
|
e->flags &= ~EDGE_EXECUTABLE;
|
499 |
|
|
}
|
500 |
|
|
|
501 |
|
|
/* Seed the algorithm by adding the successors of the entry block to the
|
502 |
|
|
edge worklist. */
|
503 |
|
|
FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR->succs)
|
504 |
|
|
add_control_edge (e);
|
505 |
|
|
}
|
506 |
|
|
|
507 |
|
|
|
508 |
|
|
/* Free allocated storage. */
|
509 |
|
|
|
510 |
|
|
static void
|
511 |
|
|
ssa_prop_fini (void)
|
512 |
|
|
{
|
513 |
|
|
VEC_free (tree, gc, interesting_ssa_edges);
|
514 |
|
|
VEC_free (tree, gc, varying_ssa_edges);
|
515 |
|
|
VEC_free (basic_block, heap, cfg_blocks);
|
516 |
|
|
cfg_blocks = NULL;
|
517 |
|
|
sbitmap_free (bb_in_list);
|
518 |
|
|
sbitmap_free (executable_blocks);
|
519 |
|
|
}
|
520 |
|
|
|
521 |
|
|
|
522 |
|
|
/* Get the main expression from statement STMT. */
|
523 |
|
|
|
524 |
|
|
tree
|
525 |
|
|
get_rhs (tree stmt)
|
526 |
|
|
{
|
527 |
|
|
enum tree_code code = TREE_CODE (stmt);
|
528 |
|
|
|
529 |
|
|
switch (code)
|
530 |
|
|
{
|
531 |
|
|
case RETURN_EXPR:
|
532 |
|
|
stmt = TREE_OPERAND (stmt, 0);
|
533 |
|
|
if (!stmt || TREE_CODE (stmt) != MODIFY_EXPR)
|
534 |
|
|
return stmt;
|
535 |
|
|
/* FALLTHRU */
|
536 |
|
|
|
537 |
|
|
case MODIFY_EXPR:
|
538 |
|
|
stmt = TREE_OPERAND (stmt, 1);
|
539 |
|
|
if (TREE_CODE (stmt) == WITH_SIZE_EXPR)
|
540 |
|
|
return TREE_OPERAND (stmt, 0);
|
541 |
|
|
else
|
542 |
|
|
return stmt;
|
543 |
|
|
|
544 |
|
|
case COND_EXPR:
|
545 |
|
|
return COND_EXPR_COND (stmt);
|
546 |
|
|
case SWITCH_EXPR:
|
547 |
|
|
return SWITCH_COND (stmt);
|
548 |
|
|
case GOTO_EXPR:
|
549 |
|
|
return GOTO_DESTINATION (stmt);
|
550 |
|
|
case LABEL_EXPR:
|
551 |
|
|
return LABEL_EXPR_LABEL (stmt);
|
552 |
|
|
|
553 |
|
|
default:
|
554 |
|
|
return stmt;
|
555 |
|
|
}
|
556 |
|
|
}
|
557 |
|
|
|
558 |
|
|
|
559 |
|
|
/* Set the main expression of *STMT_P to EXPR. If EXPR is not a valid
|
560 |
|
|
GIMPLE expression no changes are done and the function returns
|
561 |
|
|
false. */
|
562 |
|
|
|
563 |
|
|
bool
|
564 |
|
|
set_rhs (tree *stmt_p, tree expr)
|
565 |
|
|
{
|
566 |
|
|
tree stmt = *stmt_p, op;
|
567 |
|
|
enum tree_code code = TREE_CODE (expr);
|
568 |
|
|
stmt_ann_t ann;
|
569 |
|
|
tree var;
|
570 |
|
|
ssa_op_iter iter;
|
571 |
|
|
|
572 |
|
|
/* Verify the constant folded result is valid gimple. */
|
573 |
|
|
if (TREE_CODE_CLASS (code) == tcc_binary
|
574 |
|
|
|| TREE_CODE_CLASS (code) == tcc_comparison)
|
575 |
|
|
{
|
576 |
|
|
if (!is_gimple_val (TREE_OPERAND (expr, 0))
|
577 |
|
|
|| !is_gimple_val (TREE_OPERAND (expr, 1)))
|
578 |
|
|
return false;
|
579 |
|
|
}
|
580 |
|
|
else if (TREE_CODE_CLASS (code) == tcc_unary)
|
581 |
|
|
{
|
582 |
|
|
if (!is_gimple_val (TREE_OPERAND (expr, 0)))
|
583 |
|
|
return false;
|
584 |
|
|
}
|
585 |
|
|
else if (code == ADDR_EXPR)
|
586 |
|
|
{
|
587 |
|
|
if (TREE_CODE (TREE_OPERAND (expr, 0)) == ARRAY_REF
|
588 |
|
|
&& !is_gimple_val (TREE_OPERAND (TREE_OPERAND (expr, 0), 1)))
|
589 |
|
|
return false;
|
590 |
|
|
}
|
591 |
|
|
else if (code == COMPOUND_EXPR
|
592 |
|
|
|| code == MODIFY_EXPR)
|
593 |
|
|
return false;
|
594 |
|
|
|
595 |
|
|
if (EXPR_HAS_LOCATION (stmt)
|
596 |
|
|
&& EXPR_P (expr)
|
597 |
|
|
&& ! EXPR_HAS_LOCATION (expr)
|
598 |
|
|
&& TREE_SIDE_EFFECTS (expr)
|
599 |
|
|
&& TREE_CODE (expr) != LABEL_EXPR)
|
600 |
|
|
SET_EXPR_LOCATION (expr, EXPR_LOCATION (stmt));
|
601 |
|
|
|
602 |
|
|
switch (TREE_CODE (stmt))
|
603 |
|
|
{
|
604 |
|
|
case RETURN_EXPR:
|
605 |
|
|
op = TREE_OPERAND (stmt, 0);
|
606 |
|
|
if (TREE_CODE (op) != MODIFY_EXPR)
|
607 |
|
|
{
|
608 |
|
|
TREE_OPERAND (stmt, 0) = expr;
|
609 |
|
|
break;
|
610 |
|
|
}
|
611 |
|
|
stmt = op;
|
612 |
|
|
/* FALLTHRU */
|
613 |
|
|
|
614 |
|
|
case MODIFY_EXPR:
|
615 |
|
|
op = TREE_OPERAND (stmt, 1);
|
616 |
|
|
if (TREE_CODE (op) == WITH_SIZE_EXPR)
|
617 |
|
|
stmt = op;
|
618 |
|
|
TREE_OPERAND (stmt, 1) = expr;
|
619 |
|
|
break;
|
620 |
|
|
|
621 |
|
|
case COND_EXPR:
|
622 |
|
|
if (!is_gimple_condexpr (expr))
|
623 |
|
|
return false;
|
624 |
|
|
COND_EXPR_COND (stmt) = expr;
|
625 |
|
|
break;
|
626 |
|
|
case SWITCH_EXPR:
|
627 |
|
|
SWITCH_COND (stmt) = expr;
|
628 |
|
|
break;
|
629 |
|
|
case GOTO_EXPR:
|
630 |
|
|
GOTO_DESTINATION (stmt) = expr;
|
631 |
|
|
break;
|
632 |
|
|
case LABEL_EXPR:
|
633 |
|
|
LABEL_EXPR_LABEL (stmt) = expr;
|
634 |
|
|
break;
|
635 |
|
|
|
636 |
|
|
default:
|
637 |
|
|
/* Replace the whole statement with EXPR. If EXPR has no side
|
638 |
|
|
effects, then replace *STMT_P with an empty statement. */
|
639 |
|
|
ann = stmt_ann (stmt);
|
640 |
|
|
*stmt_p = TREE_SIDE_EFFECTS (expr) ? expr : build_empty_stmt ();
|
641 |
|
|
(*stmt_p)->common.ann = (tree_ann_t) ann;
|
642 |
|
|
|
643 |
|
|
if (in_ssa_p
|
644 |
|
|
&& TREE_SIDE_EFFECTS (expr))
|
645 |
|
|
{
|
646 |
|
|
/* Fix all the SSA_NAMEs created by *STMT_P to point to its new
|
647 |
|
|
replacement. */
|
648 |
|
|
FOR_EACH_SSA_TREE_OPERAND (var, stmt, iter, SSA_OP_ALL_DEFS)
|
649 |
|
|
{
|
650 |
|
|
if (TREE_CODE (var) == SSA_NAME)
|
651 |
|
|
SSA_NAME_DEF_STMT (var) = *stmt_p;
|
652 |
|
|
}
|
653 |
|
|
}
|
654 |
|
|
break;
|
655 |
|
|
}
|
656 |
|
|
|
657 |
|
|
return true;
|
658 |
|
|
}
|
659 |
|
|
|
660 |
|
|
|
661 |
|
|
/* Entry point to the propagation engine.
|
662 |
|
|
|
663 |
|
|
VISIT_STMT is called for every statement visited.
|
664 |
|
|
VISIT_PHI is called for every PHI node visited. */
|
665 |
|
|
|
666 |
|
|
void
|
667 |
|
|
ssa_propagate (ssa_prop_visit_stmt_fn visit_stmt,
|
668 |
|
|
ssa_prop_visit_phi_fn visit_phi)
|
669 |
|
|
{
|
670 |
|
|
ssa_prop_visit_stmt = visit_stmt;
|
671 |
|
|
ssa_prop_visit_phi = visit_phi;
|
672 |
|
|
|
673 |
|
|
ssa_prop_init ();
|
674 |
|
|
|
675 |
|
|
/* Iterate until the worklists are empty. */
|
676 |
|
|
while (!cfg_blocks_empty_p ()
|
677 |
|
|
|| VEC_length (tree, interesting_ssa_edges) > 0
|
678 |
|
|
|| VEC_length (tree, varying_ssa_edges) > 0)
|
679 |
|
|
{
|
680 |
|
|
if (!cfg_blocks_empty_p ())
|
681 |
|
|
{
|
682 |
|
|
/* Pull the next block to simulate off the worklist. */
|
683 |
|
|
basic_block dest_block = cfg_blocks_get ();
|
684 |
|
|
simulate_block (dest_block);
|
685 |
|
|
}
|
686 |
|
|
|
687 |
|
|
/* In order to move things to varying as quickly as
|
688 |
|
|
possible,process the VARYING_SSA_EDGES worklist first. */
|
689 |
|
|
process_ssa_edge_worklist (&varying_ssa_edges);
|
690 |
|
|
|
691 |
|
|
/* Now process the INTERESTING_SSA_EDGES worklist. */
|
692 |
|
|
process_ssa_edge_worklist (&interesting_ssa_edges);
|
693 |
|
|
}
|
694 |
|
|
|
695 |
|
|
ssa_prop_fini ();
|
696 |
|
|
}
|
697 |
|
|
|
698 |
|
|
|
699 |
|
|
/* Return the first V_MAY_DEF or V_MUST_DEF operand for STMT. */
|
700 |
|
|
|
701 |
|
|
tree
|
702 |
|
|
first_vdef (tree stmt)
|
703 |
|
|
{
|
704 |
|
|
ssa_op_iter iter;
|
705 |
|
|
tree op;
|
706 |
|
|
|
707 |
|
|
/* Simply return the first operand we arrive at. */
|
708 |
|
|
FOR_EACH_SSA_TREE_OPERAND (op, stmt, iter, SSA_OP_VIRTUAL_DEFS)
|
709 |
|
|
return (op);
|
710 |
|
|
|
711 |
|
|
gcc_unreachable ();
|
712 |
|
|
}
|
713 |
|
|
|
714 |
|
|
|
715 |
|
|
/* Return true if STMT is of the form 'LHS = mem_ref', where 'mem_ref'
|
716 |
|
|
is a non-volatile pointer dereference, a structure reference or a
|
717 |
|
|
reference to a single _DECL. Ignore volatile memory references
|
718 |
|
|
because they are not interesting for the optimizers. */
|
719 |
|
|
|
720 |
|
|
bool
|
721 |
|
|
stmt_makes_single_load (tree stmt)
|
722 |
|
|
{
|
723 |
|
|
tree rhs;
|
724 |
|
|
|
725 |
|
|
if (TREE_CODE (stmt) != MODIFY_EXPR)
|
726 |
|
|
return false;
|
727 |
|
|
|
728 |
|
|
if (ZERO_SSA_OPERANDS (stmt, SSA_OP_VMAYDEF|SSA_OP_VUSE))
|
729 |
|
|
return false;
|
730 |
|
|
|
731 |
|
|
rhs = TREE_OPERAND (stmt, 1);
|
732 |
|
|
STRIP_NOPS (rhs);
|
733 |
|
|
|
734 |
|
|
return (!TREE_THIS_VOLATILE (rhs)
|
735 |
|
|
&& (DECL_P (rhs)
|
736 |
|
|
|| REFERENCE_CLASS_P (rhs)));
|
737 |
|
|
}
|
738 |
|
|
|
739 |
|
|
|
740 |
|
|
/* Return true if STMT is of the form 'mem_ref = RHS', where 'mem_ref'
|
741 |
|
|
is a non-volatile pointer dereference, a structure reference or a
|
742 |
|
|
reference to a single _DECL. Ignore volatile memory references
|
743 |
|
|
because they are not interesting for the optimizers. */
|
744 |
|
|
|
745 |
|
|
bool
|
746 |
|
|
stmt_makes_single_store (tree stmt)
|
747 |
|
|
{
|
748 |
|
|
tree lhs;
|
749 |
|
|
|
750 |
|
|
if (TREE_CODE (stmt) != MODIFY_EXPR)
|
751 |
|
|
return false;
|
752 |
|
|
|
753 |
|
|
if (ZERO_SSA_OPERANDS (stmt, SSA_OP_VMAYDEF|SSA_OP_VMUSTDEF))
|
754 |
|
|
return false;
|
755 |
|
|
|
756 |
|
|
lhs = TREE_OPERAND (stmt, 0);
|
757 |
|
|
STRIP_NOPS (lhs);
|
758 |
|
|
|
759 |
|
|
return (!TREE_THIS_VOLATILE (lhs)
|
760 |
|
|
&& (DECL_P (lhs)
|
761 |
|
|
|| REFERENCE_CLASS_P (lhs)));
|
762 |
|
|
}
|
763 |
|
|
|
764 |
|
|
|
765 |
|
|
/* If STMT makes a single memory load and all the virtual use operands
|
766 |
|
|
have the same value in array VALUES, return it. Otherwise, return
|
767 |
|
|
NULL. */
|
768 |
|
|
|
769 |
|
|
prop_value_t *
|
770 |
|
|
get_value_loaded_by (tree stmt, prop_value_t *values)
|
771 |
|
|
{
|
772 |
|
|
ssa_op_iter i;
|
773 |
|
|
tree vuse;
|
774 |
|
|
prop_value_t *prev_val = NULL;
|
775 |
|
|
prop_value_t *val = NULL;
|
776 |
|
|
|
777 |
|
|
FOR_EACH_SSA_TREE_OPERAND (vuse, stmt, i, SSA_OP_VIRTUAL_USES)
|
778 |
|
|
{
|
779 |
|
|
val = &values[SSA_NAME_VERSION (vuse)];
|
780 |
|
|
if (prev_val && prev_val->value != val->value)
|
781 |
|
|
return NULL;
|
782 |
|
|
prev_val = val;
|
783 |
|
|
}
|
784 |
|
|
|
785 |
|
|
return val;
|
786 |
|
|
}
|
787 |
|
|
|
788 |
|
|
|
789 |
|
|
/* Propagation statistics. */
|
790 |
|
|
struct prop_stats_d
|
791 |
|
|
{
|
792 |
|
|
long num_const_prop;
|
793 |
|
|
long num_copy_prop;
|
794 |
|
|
long num_pred_folded;
|
795 |
|
|
};
|
796 |
|
|
|
797 |
|
|
static struct prop_stats_d prop_stats;
|
798 |
|
|
|
799 |
|
|
/* Replace USE references in statement STMT with the values stored in
|
800 |
|
|
PROP_VALUE. Return true if at least one reference was replaced. If
|
801 |
|
|
REPLACED_ADDRESSES_P is given, it will be set to true if an address
|
802 |
|
|
constant was replaced. */
|
803 |
|
|
|
804 |
|
|
bool
|
805 |
|
|
replace_uses_in (tree stmt, bool *replaced_addresses_p,
|
806 |
|
|
prop_value_t *prop_value)
|
807 |
|
|
{
|
808 |
|
|
bool replaced = false;
|
809 |
|
|
use_operand_p use;
|
810 |
|
|
ssa_op_iter iter;
|
811 |
|
|
|
812 |
|
|
FOR_EACH_SSA_USE_OPERAND (use, stmt, iter, SSA_OP_USE)
|
813 |
|
|
{
|
814 |
|
|
tree tuse = USE_FROM_PTR (use);
|
815 |
|
|
tree val = prop_value[SSA_NAME_VERSION (tuse)].value;
|
816 |
|
|
|
817 |
|
|
if (val == tuse || val == NULL_TREE)
|
818 |
|
|
continue;
|
819 |
|
|
|
820 |
|
|
if (TREE_CODE (stmt) == ASM_EXPR
|
821 |
|
|
&& !may_propagate_copy_into_asm (tuse))
|
822 |
|
|
continue;
|
823 |
|
|
|
824 |
|
|
if (!may_propagate_copy (tuse, val))
|
825 |
|
|
continue;
|
826 |
|
|
|
827 |
|
|
if (TREE_CODE (val) != SSA_NAME)
|
828 |
|
|
prop_stats.num_const_prop++;
|
829 |
|
|
else
|
830 |
|
|
prop_stats.num_copy_prop++;
|
831 |
|
|
|
832 |
|
|
propagate_value (use, val);
|
833 |
|
|
|
834 |
|
|
replaced = true;
|
835 |
|
|
if (POINTER_TYPE_P (TREE_TYPE (tuse)) && replaced_addresses_p)
|
836 |
|
|
*replaced_addresses_p = true;
|
837 |
|
|
}
|
838 |
|
|
|
839 |
|
|
return replaced;
|
840 |
|
|
}
|
841 |
|
|
|
842 |
|
|
|
843 |
|
|
/* Replace the VUSE references in statement STMT with the values
|
844 |
|
|
stored in PROP_VALUE. Return true if a reference was replaced. If
|
845 |
|
|
REPLACED_ADDRESSES_P is given, it will be set to true if an address
|
846 |
|
|
constant was replaced.
|
847 |
|
|
|
848 |
|
|
Replacing VUSE operands is slightly more complex than replacing
|
849 |
|
|
regular USEs. We are only interested in two types of replacements
|
850 |
|
|
here:
|
851 |
|
|
|
852 |
|
|
1- If the value to be replaced is a constant or an SSA name for a
|
853 |
|
|
GIMPLE register, then we are making a copy/constant propagation
|
854 |
|
|
from a memory store. For instance,
|
855 |
|
|
|
856 |
|
|
# a_3 = V_MAY_DEF <a_2>
|
857 |
|
|
a.b = x_1;
|
858 |
|
|
...
|
859 |
|
|
# VUSE <a_3>
|
860 |
|
|
y_4 = a.b;
|
861 |
|
|
|
862 |
|
|
This replacement is only possible iff STMT is an assignment
|
863 |
|
|
whose RHS is identical to the LHS of the statement that created
|
864 |
|
|
the VUSE(s) that we are replacing. Otherwise, we may do the
|
865 |
|
|
wrong replacement:
|
866 |
|
|
|
867 |
|
|
# a_3 = V_MAY_DEF <a_2>
|
868 |
|
|
# b_5 = V_MAY_DEF <b_4>
|
869 |
|
|
*p = 10;
|
870 |
|
|
...
|
871 |
|
|
# VUSE <b_5>
|
872 |
|
|
x_8 = b;
|
873 |
|
|
|
874 |
|
|
Even though 'b_5' acquires the value '10' during propagation,
|
875 |
|
|
there is no way for the propagator to tell whether the
|
876 |
|
|
replacement is correct in every reached use, because values are
|
877 |
|
|
computed at definition sites. Therefore, when doing final
|
878 |
|
|
substitution of propagated values, we have to check each use
|
879 |
|
|
site. Since the RHS of STMT ('b') is different from the LHS of
|
880 |
|
|
the originating statement ('*p'), we cannot replace 'b' with
|
881 |
|
|
'10'.
|
882 |
|
|
|
883 |
|
|
Similarly, when merging values from PHI node arguments,
|
884 |
|
|
propagators need to take care not to merge the same values
|
885 |
|
|
stored in different locations:
|
886 |
|
|
|
887 |
|
|
if (...)
|
888 |
|
|
# a_3 = V_MAY_DEF <a_2>
|
889 |
|
|
a.b = 3;
|
890 |
|
|
else
|
891 |
|
|
# a_4 = V_MAY_DEF <a_2>
|
892 |
|
|
a.c = 3;
|
893 |
|
|
# a_5 = PHI <a_3, a_4>
|
894 |
|
|
|
895 |
|
|
It would be wrong to propagate '3' into 'a_5' because that
|
896 |
|
|
operation merges two stores to different memory locations.
|
897 |
|
|
|
898 |
|
|
|
899 |
|
|
2- If the value to be replaced is an SSA name for a virtual
|
900 |
|
|
register, then we simply replace each VUSE operand with its
|
901 |
|
|
value from PROP_VALUE. This is the same replacement done by
|
902 |
|
|
replace_uses_in. */
|
903 |
|
|
|
904 |
|
|
static bool
|
905 |
|
|
replace_vuses_in (tree stmt, bool *replaced_addresses_p,
|
906 |
|
|
prop_value_t *prop_value)
|
907 |
|
|
{
|
908 |
|
|
bool replaced = false;
|
909 |
|
|
ssa_op_iter iter;
|
910 |
|
|
use_operand_p vuse;
|
911 |
|
|
|
912 |
|
|
if (stmt_makes_single_load (stmt))
|
913 |
|
|
{
|
914 |
|
|
/* If STMT is an assignment whose RHS is a single memory load,
|
915 |
|
|
see if we are trying to propagate a constant or a GIMPLE
|
916 |
|
|
register (case #1 above). */
|
917 |
|
|
prop_value_t *val = get_value_loaded_by (stmt, prop_value);
|
918 |
|
|
tree rhs = TREE_OPERAND (stmt, 1);
|
919 |
|
|
|
920 |
|
|
if (val
|
921 |
|
|
&& val->value
|
922 |
|
|
&& (is_gimple_reg (val->value)
|
923 |
|
|
|| is_gimple_min_invariant (val->value))
|
924 |
|
|
&& simple_cst_equal (rhs, val->mem_ref) == 1)
|
925 |
|
|
|
926 |
|
|
{
|
927 |
|
|
/* If we are replacing a constant address, inform our
|
928 |
|
|
caller. */
|
929 |
|
|
if (TREE_CODE (val->value) != SSA_NAME
|
930 |
|
|
&& POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (stmt, 1)))
|
931 |
|
|
&& replaced_addresses_p)
|
932 |
|
|
*replaced_addresses_p = true;
|
933 |
|
|
|
934 |
|
|
/* We can only perform the substitution if the load is done
|
935 |
|
|
from the same memory location as the original store.
|
936 |
|
|
Since we already know that there are no intervening
|
937 |
|
|
stores between DEF_STMT and STMT, we only need to check
|
938 |
|
|
that the RHS of STMT is the same as the memory reference
|
939 |
|
|
propagated together with the value. */
|
940 |
|
|
TREE_OPERAND (stmt, 1) = val->value;
|
941 |
|
|
|
942 |
|
|
if (TREE_CODE (val->value) != SSA_NAME)
|
943 |
|
|
prop_stats.num_const_prop++;
|
944 |
|
|
else
|
945 |
|
|
prop_stats.num_copy_prop++;
|
946 |
|
|
|
947 |
|
|
/* Since we have replaced the whole RHS of STMT, there
|
948 |
|
|
is no point in checking the other VUSEs, as they will
|
949 |
|
|
all have the same value. */
|
950 |
|
|
return true;
|
951 |
|
|
}
|
952 |
|
|
}
|
953 |
|
|
|
954 |
|
|
/* Otherwise, the values for every VUSE operand must be other
|
955 |
|
|
SSA_NAMEs that can be propagated into STMT. */
|
956 |
|
|
FOR_EACH_SSA_USE_OPERAND (vuse, stmt, iter, SSA_OP_VIRTUAL_USES)
|
957 |
|
|
{
|
958 |
|
|
tree var = USE_FROM_PTR (vuse);
|
959 |
|
|
tree val = prop_value[SSA_NAME_VERSION (var)].value;
|
960 |
|
|
|
961 |
|
|
if (val == NULL_TREE || var == val)
|
962 |
|
|
continue;
|
963 |
|
|
|
964 |
|
|
/* Constants and copies propagated between real and virtual
|
965 |
|
|
operands are only possible in the cases handled above. They
|
966 |
|
|
should be ignored in any other context. */
|
967 |
|
|
if (is_gimple_min_invariant (val) || is_gimple_reg (val))
|
968 |
|
|
continue;
|
969 |
|
|
|
970 |
|
|
propagate_value (vuse, val);
|
971 |
|
|
prop_stats.num_copy_prop++;
|
972 |
|
|
replaced = true;
|
973 |
|
|
}
|
974 |
|
|
|
975 |
|
|
return replaced;
|
976 |
|
|
}
|
977 |
|
|
|
978 |
|
|
|
979 |
|
|
/* Replace propagated values into all the arguments for PHI using the
|
980 |
|
|
values from PROP_VALUE. */
|
981 |
|
|
|
982 |
|
|
static void
|
983 |
|
|
replace_phi_args_in (tree phi, prop_value_t *prop_value)
|
984 |
|
|
{
|
985 |
|
|
int i;
|
986 |
|
|
bool replaced = false;
|
987 |
|
|
tree prev_phi = NULL;
|
988 |
|
|
|
989 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
990 |
|
|
prev_phi = unshare_expr (phi);
|
991 |
|
|
|
992 |
|
|
for (i = 0; i < PHI_NUM_ARGS (phi); i++)
|
993 |
|
|
{
|
994 |
|
|
tree arg = PHI_ARG_DEF (phi, i);
|
995 |
|
|
|
996 |
|
|
if (TREE_CODE (arg) == SSA_NAME)
|
997 |
|
|
{
|
998 |
|
|
tree val = prop_value[SSA_NAME_VERSION (arg)].value;
|
999 |
|
|
|
1000 |
|
|
if (val && val != arg && may_propagate_copy (arg, val))
|
1001 |
|
|
{
|
1002 |
|
|
if (TREE_CODE (val) != SSA_NAME)
|
1003 |
|
|
prop_stats.num_const_prop++;
|
1004 |
|
|
else
|
1005 |
|
|
prop_stats.num_copy_prop++;
|
1006 |
|
|
|
1007 |
|
|
propagate_value (PHI_ARG_DEF_PTR (phi, i), val);
|
1008 |
|
|
replaced = true;
|
1009 |
|
|
|
1010 |
|
|
/* If we propagated a copy and this argument flows
|
1011 |
|
|
through an abnormal edge, update the replacement
|
1012 |
|
|
accordingly. */
|
1013 |
|
|
if (TREE_CODE (val) == SSA_NAME
|
1014 |
|
|
&& PHI_ARG_EDGE (phi, i)->flags & EDGE_ABNORMAL)
|
1015 |
|
|
SSA_NAME_OCCURS_IN_ABNORMAL_PHI (val) = 1;
|
1016 |
|
|
}
|
1017 |
|
|
}
|
1018 |
|
|
}
|
1019 |
|
|
|
1020 |
|
|
if (replaced && dump_file && (dump_flags & TDF_DETAILS))
|
1021 |
|
|
{
|
1022 |
|
|
fprintf (dump_file, "Folded PHI node: ");
|
1023 |
|
|
print_generic_stmt (dump_file, prev_phi, TDF_SLIM);
|
1024 |
|
|
fprintf (dump_file, " into: ");
|
1025 |
|
|
print_generic_stmt (dump_file, phi, TDF_SLIM);
|
1026 |
|
|
fprintf (dump_file, "\n");
|
1027 |
|
|
}
|
1028 |
|
|
}
|
1029 |
|
|
|
1030 |
|
|
|
1031 |
|
|
/* If STMT has a predicate whose value can be computed using the value
|
1032 |
|
|
range information computed by VRP, compute its value and return true.
|
1033 |
|
|
Otherwise, return false. */
|
1034 |
|
|
|
1035 |
|
|
static bool
|
1036 |
|
|
fold_predicate_in (tree stmt)
|
1037 |
|
|
{
|
1038 |
|
|
tree *pred_p = NULL;
|
1039 |
|
|
bool modify_expr_p = false;
|
1040 |
|
|
tree val;
|
1041 |
|
|
|
1042 |
|
|
if (TREE_CODE (stmt) == MODIFY_EXPR
|
1043 |
|
|
&& COMPARISON_CLASS_P (TREE_OPERAND (stmt, 1)))
|
1044 |
|
|
{
|
1045 |
|
|
modify_expr_p = true;
|
1046 |
|
|
pred_p = &TREE_OPERAND (stmt, 1);
|
1047 |
|
|
}
|
1048 |
|
|
else if (TREE_CODE (stmt) == COND_EXPR)
|
1049 |
|
|
pred_p = &COND_EXPR_COND (stmt);
|
1050 |
|
|
else
|
1051 |
|
|
return false;
|
1052 |
|
|
|
1053 |
|
|
val = vrp_evaluate_conditional (*pred_p, stmt);
|
1054 |
|
|
if (val)
|
1055 |
|
|
{
|
1056 |
|
|
if (modify_expr_p)
|
1057 |
|
|
val = fold_convert (TREE_TYPE (*pred_p), val);
|
1058 |
|
|
|
1059 |
|
|
if (dump_file)
|
1060 |
|
|
{
|
1061 |
|
|
fprintf (dump_file, "Folding predicate ");
|
1062 |
|
|
print_generic_expr (dump_file, *pred_p, 0);
|
1063 |
|
|
fprintf (dump_file, " to ");
|
1064 |
|
|
print_generic_expr (dump_file, val, 0);
|
1065 |
|
|
fprintf (dump_file, "\n");
|
1066 |
|
|
}
|
1067 |
|
|
|
1068 |
|
|
prop_stats.num_pred_folded++;
|
1069 |
|
|
*pred_p = val;
|
1070 |
|
|
return true;
|
1071 |
|
|
}
|
1072 |
|
|
|
1073 |
|
|
return false;
|
1074 |
|
|
}
|
1075 |
|
|
|
1076 |
|
|
|
1077 |
|
|
/* Perform final substitution and folding of propagated values.
|
1078 |
|
|
|
1079 |
|
|
PROP_VALUE[I] contains the single value that should be substituted
|
1080 |
|
|
at every use of SSA name N_I. If PROP_VALUE is NULL, no values are
|
1081 |
|
|
substituted.
|
1082 |
|
|
|
1083 |
|
|
If USE_RANGES_P is true, statements that contain predicate
|
1084 |
|
|
expressions are evaluated with a call to vrp_evaluate_conditional.
|
1085 |
|
|
This will only give meaningful results when called from tree-vrp.c
|
1086 |
|
|
(the information used by vrp_evaluate_conditional is built by the
|
1087 |
|
|
VRP pass). */
|
1088 |
|
|
|
1089 |
|
|
void
|
1090 |
|
|
substitute_and_fold (prop_value_t *prop_value, bool use_ranges_p)
|
1091 |
|
|
{
|
1092 |
|
|
basic_block bb;
|
1093 |
|
|
|
1094 |
|
|
if (prop_value == NULL && !use_ranges_p)
|
1095 |
|
|
return;
|
1096 |
|
|
|
1097 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
1098 |
|
|
fprintf (dump_file, "\nSubstituing values and folding statements\n\n");
|
1099 |
|
|
|
1100 |
|
|
memset (&prop_stats, 0, sizeof (prop_stats));
|
1101 |
|
|
|
1102 |
|
|
/* Substitute values in every statement of every basic block. */
|
1103 |
|
|
FOR_EACH_BB (bb)
|
1104 |
|
|
{
|
1105 |
|
|
block_stmt_iterator i;
|
1106 |
|
|
tree phi;
|
1107 |
|
|
|
1108 |
|
|
/* Propagate known values into PHI nodes. */
|
1109 |
|
|
if (prop_value)
|
1110 |
|
|
for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
|
1111 |
|
|
replace_phi_args_in (phi, prop_value);
|
1112 |
|
|
|
1113 |
|
|
for (i = bsi_start (bb); !bsi_end_p (i); bsi_next (&i))
|
1114 |
|
|
{
|
1115 |
|
|
bool replaced_address, did_replace;
|
1116 |
|
|
tree prev_stmt = NULL;
|
1117 |
|
|
tree stmt = bsi_stmt (i);
|
1118 |
|
|
|
1119 |
|
|
/* Ignore ASSERT_EXPRs. They are used by VRP to generate
|
1120 |
|
|
range information for names and they are discarded
|
1121 |
|
|
afterwards. */
|
1122 |
|
|
if (TREE_CODE (stmt) == MODIFY_EXPR
|
1123 |
|
|
&& TREE_CODE (TREE_OPERAND (stmt, 1)) == ASSERT_EXPR)
|
1124 |
|
|
continue;
|
1125 |
|
|
|
1126 |
|
|
/* Replace the statement with its folded version and mark it
|
1127 |
|
|
folded. */
|
1128 |
|
|
did_replace = false;
|
1129 |
|
|
replaced_address = false;
|
1130 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
1131 |
|
|
prev_stmt = unshare_expr (stmt);
|
1132 |
|
|
|
1133 |
|
|
/* If we have range information, see if we can fold
|
1134 |
|
|
predicate expressions. */
|
1135 |
|
|
if (use_ranges_p)
|
1136 |
|
|
did_replace = fold_predicate_in (stmt);
|
1137 |
|
|
|
1138 |
|
|
if (prop_value)
|
1139 |
|
|
{
|
1140 |
|
|
/* Only replace real uses if we couldn't fold the
|
1141 |
|
|
statement using value range information (value range
|
1142 |
|
|
information is not collected on virtuals, so we only
|
1143 |
|
|
need to check this for real uses). */
|
1144 |
|
|
if (!did_replace)
|
1145 |
|
|
did_replace |= replace_uses_in (stmt, &replaced_address,
|
1146 |
|
|
prop_value);
|
1147 |
|
|
|
1148 |
|
|
did_replace |= replace_vuses_in (stmt, &replaced_address,
|
1149 |
|
|
prop_value);
|
1150 |
|
|
}
|
1151 |
|
|
|
1152 |
|
|
/* If we made a replacement, fold and cleanup the statement. */
|
1153 |
|
|
if (did_replace)
|
1154 |
|
|
{
|
1155 |
|
|
tree old_stmt = stmt;
|
1156 |
|
|
tree rhs;
|
1157 |
|
|
|
1158 |
|
|
fold_stmt (bsi_stmt_ptr (i));
|
1159 |
|
|
stmt = bsi_stmt (i);
|
1160 |
|
|
|
1161 |
|
|
/* If we folded a builtin function, we'll likely
|
1162 |
|
|
need to rename VDEFs. */
|
1163 |
|
|
mark_new_vars_to_rename (stmt);
|
1164 |
|
|
|
1165 |
|
|
/* If we cleaned up EH information from the statement,
|
1166 |
|
|
remove EH edges. */
|
1167 |
|
|
if (maybe_clean_or_replace_eh_stmt (old_stmt, stmt))
|
1168 |
|
|
tree_purge_dead_eh_edges (bb);
|
1169 |
|
|
|
1170 |
|
|
rhs = get_rhs (stmt);
|
1171 |
|
|
if (TREE_CODE (rhs) == ADDR_EXPR)
|
1172 |
|
|
recompute_tree_invariant_for_addr_expr (rhs);
|
1173 |
|
|
|
1174 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
1175 |
|
|
{
|
1176 |
|
|
fprintf (dump_file, "Folded statement: ");
|
1177 |
|
|
print_generic_stmt (dump_file, prev_stmt, TDF_SLIM);
|
1178 |
|
|
fprintf (dump_file, " into: ");
|
1179 |
|
|
print_generic_stmt (dump_file, stmt, TDF_SLIM);
|
1180 |
|
|
fprintf (dump_file, "\n");
|
1181 |
|
|
}
|
1182 |
|
|
}
|
1183 |
|
|
|
1184 |
|
|
/* Some statements may be simplified using ranges. For
|
1185 |
|
|
example, division may be replaced by shifts, modulo
|
1186 |
|
|
replaced with bitwise and, etc. Do this after
|
1187 |
|
|
substituting constants, folding, etc so that we're
|
1188 |
|
|
presented with a fully propagated, canonicalized
|
1189 |
|
|
statement. */
|
1190 |
|
|
if (use_ranges_p)
|
1191 |
|
|
simplify_stmt_using_ranges (stmt);
|
1192 |
|
|
|
1193 |
|
|
}
|
1194 |
|
|
}
|
1195 |
|
|
|
1196 |
|
|
if (dump_file && (dump_flags & TDF_STATS))
|
1197 |
|
|
{
|
1198 |
|
|
fprintf (dump_file, "Constants propagated: %6ld\n",
|
1199 |
|
|
prop_stats.num_const_prop);
|
1200 |
|
|
fprintf (dump_file, "Copies propagated: %6ld\n",
|
1201 |
|
|
prop_stats.num_copy_prop);
|
1202 |
|
|
fprintf (dump_file, "Predicates folded: %6ld\n",
|
1203 |
|
|
prop_stats.num_pred_folded);
|
1204 |
|
|
}
|
1205 |
|
|
}
|
1206 |
|
|
|
1207 |
|
|
#include "gt-tree-ssa-propagate.h"
|