OpenCores
URL https://opencores.org/ocsvn/openrisc/openrisc/trunk

Subversion Repositories openrisc

[/] [openrisc/] [trunk/] [gnu-old/] [gcc-4.2.2/] [libiberty/] [regex.c] - Blame information for rev 816

Details | Compare with Previous | View Log

Line No. Rev Author Line
1 38 julius
/* Extended regular expression matching and search library,
2
   version 0.12.
3
   (Implements POSIX draft P1003.2/D11.2, except for some of the
4
   internationalization features.)
5
 
6
   Copyright (C) 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001,
7
   2002, 2005 Free Software Foundation, Inc.
8
   This file is part of the GNU C Library.
9
 
10
   The GNU C Library is free software; you can redistribute it and/or
11
   modify it under the terms of the GNU Lesser General Public
12
   License as published by the Free Software Foundation; either
13
   version 2.1 of the License, or (at your option) any later version.
14
 
15
   The GNU C Library is distributed in the hope that it will be useful,
16
   but WITHOUT ANY WARRANTY; without even the implied warranty of
17
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
18
   Lesser General Public License for more details.
19
 
20
   You should have received a copy of the GNU Lesser General Public
21
   License along with the GNU C Library; if not, write to the Free
22
   Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
23
   02110-1301 USA.  */
24
 
25
/* This file has been modified for usage in libiberty.  It includes "xregex.h"
26
   instead of <regex.h>.  The "xregex.h" header file renames all external
27
   routines with an "x" prefix so they do not collide with the native regex
28
   routines or with other components regex routines. */
29
/* AIX requires this to be the first thing in the file. */
30
#if defined _AIX && !defined __GNUC__ && !defined REGEX_MALLOC
31
  #pragma alloca
32
#endif
33
 
34
#undef  _GNU_SOURCE
35
#define _GNU_SOURCE
36
 
37
#ifndef INSIDE_RECURSION
38
# ifdef HAVE_CONFIG_H
39
#  include <config.h>
40
# endif
41
#endif
42
 
43
#include <ansidecl.h>
44
 
45
#ifndef INSIDE_RECURSION
46
 
47
# if defined STDC_HEADERS && !defined emacs
48
#  include <stddef.h>
49
# else
50
/* We need this for `regex.h', and perhaps for the Emacs include files.  */
51
#  include <sys/types.h>
52
# endif
53
 
54
# define WIDE_CHAR_SUPPORT (HAVE_WCTYPE_H && HAVE_WCHAR_H && HAVE_BTOWC)
55
 
56
/* For platform which support the ISO C amendement 1 functionality we
57
   support user defined character classes.  */
58
# if defined _LIBC || WIDE_CHAR_SUPPORT
59
/* Solaris 2.5 has a bug: <wchar.h> must be included before <wctype.h>.  */
60
#  include <wchar.h>
61
#  include <wctype.h>
62
# endif
63
 
64
# ifdef _LIBC
65
/* We have to keep the namespace clean.  */
66
#  define regfree(preg) __regfree (preg)
67
#  define regexec(pr, st, nm, pm, ef) __regexec (pr, st, nm, pm, ef)
68
#  define regcomp(preg, pattern, cflags) __regcomp (preg, pattern, cflags)
69
#  define regerror(errcode, preg, errbuf, errbuf_size) \
70
        __regerror(errcode, preg, errbuf, errbuf_size)
71
#  define re_set_registers(bu, re, nu, st, en) \
72
        __re_set_registers (bu, re, nu, st, en)
73
#  define re_match_2(bufp, string1, size1, string2, size2, pos, regs, stop) \
74
        __re_match_2 (bufp, string1, size1, string2, size2, pos, regs, stop)
75
#  define re_match(bufp, string, size, pos, regs) \
76
        __re_match (bufp, string, size, pos, regs)
77
#  define re_search(bufp, string, size, startpos, range, regs) \
78
        __re_search (bufp, string, size, startpos, range, regs)
79
#  define re_compile_pattern(pattern, length, bufp) \
80
        __re_compile_pattern (pattern, length, bufp)
81
#  define re_set_syntax(syntax) __re_set_syntax (syntax)
82
#  define re_search_2(bufp, st1, s1, st2, s2, startpos, range, regs, stop) \
83
        __re_search_2 (bufp, st1, s1, st2, s2, startpos, range, regs, stop)
84
#  define re_compile_fastmap(bufp) __re_compile_fastmap (bufp)
85
 
86
#  define btowc __btowc
87
 
88
/* We are also using some library internals.  */
89
#  include <locale/localeinfo.h>
90
#  include <locale/elem-hash.h>
91
#  include <langinfo.h>
92
#  include <locale/coll-lookup.h>
93
# endif
94
 
95
/* This is for other GNU distributions with internationalized messages.  */
96
# if (HAVE_LIBINTL_H && ENABLE_NLS) || defined _LIBC
97
#  include <libintl.h>
98
#  ifdef _LIBC
99
#   undef gettext
100
#   define gettext(msgid) __dcgettext ("libc", msgid, LC_MESSAGES)
101
#  endif
102
# else
103
#  define gettext(msgid) (msgid)
104
# endif
105
 
106
# ifndef gettext_noop
107
/* This define is so xgettext can find the internationalizable
108
   strings.  */
109
#  define gettext_noop(String) String
110
# endif
111
 
112
/* The `emacs' switch turns on certain matching commands
113
   that make sense only in Emacs. */
114
# ifdef emacs
115
 
116
#  include "lisp.h"
117
#  include "buffer.h"
118
#  include "syntax.h"
119
 
120
# else  /* not emacs */
121
 
122
/* If we are not linking with Emacs proper,
123
   we can't use the relocating allocator
124
   even if config.h says that we can.  */
125
#  undef REL_ALLOC
126
 
127
#  if defined STDC_HEADERS || defined _LIBC
128
#   include <stdlib.h>
129
#  else
130
char *malloc ();
131
char *realloc ();
132
#  endif
133
 
134
/* When used in Emacs's lib-src, we need to get bzero and bcopy somehow.
135
   If nothing else has been done, use the method below.  */
136
#  ifdef INHIBIT_STRING_HEADER
137
#   if !(defined HAVE_BZERO && defined HAVE_BCOPY)
138
#    if !defined bzero && !defined bcopy
139
#     undef INHIBIT_STRING_HEADER
140
#    endif
141
#   endif
142
#  endif
143
 
144
/* This is the normal way of making sure we have a bcopy and a bzero.
145
   This is used in most programs--a few other programs avoid this
146
   by defining INHIBIT_STRING_HEADER.  */
147
#  ifndef INHIBIT_STRING_HEADER
148
#   if defined HAVE_STRING_H || defined STDC_HEADERS || defined _LIBC
149
#    include <string.h>
150
#    ifndef bzero
151
#     ifndef _LIBC
152
#      define bzero(s, n)       (memset (s, '\0', n), (s))
153
#     else
154
#      define bzero(s, n)       __bzero (s, n)
155
#     endif
156
#    endif
157
#   else
158
#    include <strings.h>
159
#    ifndef memcmp
160
#     define memcmp(s1, s2, n)  bcmp (s1, s2, n)
161
#    endif
162
#    ifndef memcpy
163
#     define memcpy(d, s, n)    (bcopy (s, d, n), (d))
164
#    endif
165
#   endif
166
#  endif
167
 
168
/* Define the syntax stuff for \<, \>, etc.  */
169
 
170
/* This must be nonzero for the wordchar and notwordchar pattern
171
   commands in re_match_2.  */
172
#  ifndef Sword
173
#   define Sword 1
174
#  endif
175
 
176
#  ifdef SWITCH_ENUM_BUG
177
#   define SWITCH_ENUM_CAST(x) ((int)(x))
178
#  else
179
#   define SWITCH_ENUM_CAST(x) (x)
180
#  endif
181
 
182
# endif /* not emacs */
183
 
184
# if defined _LIBC || HAVE_LIMITS_H
185
#  include <limits.h>
186
# endif
187
 
188
# ifndef MB_LEN_MAX
189
#  define MB_LEN_MAX 1
190
# endif
191
 
192
/* Get the interface, including the syntax bits.  */
193
# include "xregex.h"  /* change for libiberty */
194
 
195
/* isalpha etc. are used for the character classes.  */
196
# include <ctype.h>
197
 
198
/* Jim Meyering writes:
199
 
200
   "... Some ctype macros are valid only for character codes that
201
   isascii says are ASCII (SGI's IRIX-4.0.5 is one such system --when
202
   using /bin/cc or gcc but without giving an ansi option).  So, all
203
   ctype uses should be through macros like ISPRINT...  If
204
   STDC_HEADERS is defined, then autoconf has verified that the ctype
205
   macros don't need to be guarded with references to isascii. ...
206
   Defining isascii to 1 should let any compiler worth its salt
207
   eliminate the && through constant folding."
208
   Solaris defines some of these symbols so we must undefine them first.  */
209
 
210
# undef ISASCII
211
# if defined STDC_HEADERS || (!defined isascii && !defined HAVE_ISASCII)
212
#  define ISASCII(c) 1
213
# else
214
#  define ISASCII(c) isascii(c)
215
# endif
216
 
217
# ifdef isblank
218
#  define ISBLANK(c) (ISASCII (c) && isblank (c))
219
# else
220
#  define ISBLANK(c) ((c) == ' ' || (c) == '\t')
221
# endif
222
# ifdef isgraph
223
#  define ISGRAPH(c) (ISASCII (c) && isgraph (c))
224
# else
225
#  define ISGRAPH(c) (ISASCII (c) && isprint (c) && !isspace (c))
226
# endif
227
 
228
# undef ISPRINT
229
# define ISPRINT(c) (ISASCII (c) && isprint (c))
230
# define ISDIGIT(c) (ISASCII (c) && isdigit (c))
231
# define ISALNUM(c) (ISASCII (c) && isalnum (c))
232
# define ISALPHA(c) (ISASCII (c) && isalpha (c))
233
# define ISCNTRL(c) (ISASCII (c) && iscntrl (c))
234
# define ISLOWER(c) (ISASCII (c) && islower (c))
235
# define ISPUNCT(c) (ISASCII (c) && ispunct (c))
236
# define ISSPACE(c) (ISASCII (c) && isspace (c))
237
# define ISUPPER(c) (ISASCII (c) && isupper (c))
238
# define ISXDIGIT(c) (ISASCII (c) && isxdigit (c))
239
 
240
# ifdef _tolower
241
#  define TOLOWER(c) _tolower(c)
242
# else
243
#  define TOLOWER(c) tolower(c)
244
# endif
245
 
246
# ifndef NULL
247
#  define NULL (void *)0
248
# endif
249
 
250
/* We remove any previous definition of `SIGN_EXTEND_CHAR',
251
   since ours (we hope) works properly with all combinations of
252
   machines, compilers, `char' and `unsigned char' argument types.
253
   (Per Bothner suggested the basic approach.)  */
254
# undef SIGN_EXTEND_CHAR
255
# if __STDC__
256
#  define SIGN_EXTEND_CHAR(c) ((signed char) (c))
257
# else  /* not __STDC__ */
258
/* As in Harbison and Steele.  */
259
#  define SIGN_EXTEND_CHAR(c) ((((unsigned char) (c)) ^ 128) - 128)
260
# endif
261
 
262
# ifndef emacs
263
/* How many characters in the character set.  */
264
#  define CHAR_SET_SIZE 256
265
 
266
#  ifdef SYNTAX_TABLE
267
 
268
extern char *re_syntax_table;
269
 
270
#  else /* not SYNTAX_TABLE */
271
 
272
static char re_syntax_table[CHAR_SET_SIZE];
273
 
274
static void init_syntax_once (void);
275
 
276
static void
277
init_syntax_once (void)
278
{
279
   register int c;
280
   static int done = 0;
281
 
282
   if (done)
283
     return;
284
   bzero (re_syntax_table, sizeof re_syntax_table);
285
 
286
   for (c = 0; c < CHAR_SET_SIZE; ++c)
287
     if (ISALNUM (c))
288
        re_syntax_table[c] = Sword;
289
 
290
   re_syntax_table['_'] = Sword;
291
 
292
   done = 1;
293
}
294
 
295
#  endif /* not SYNTAX_TABLE */
296
 
297
#  define SYNTAX(c) re_syntax_table[(unsigned char) (c)]
298
 
299
# endif /* emacs */
300
 
301
/* Integer type for pointers.  */
302
# if !defined _LIBC && !defined HAVE_UINTPTR_T
303
typedef unsigned long int uintptr_t;
304
# endif
305
 
306
/* Should we use malloc or alloca?  If REGEX_MALLOC is not defined, we
307
   use `alloca' instead of `malloc'.  This is because using malloc in
308
   re_search* or re_match* could cause memory leaks when C-g is used in
309
   Emacs; also, malloc is slower and causes storage fragmentation.  On
310
   the other hand, malloc is more portable, and easier to debug.
311
 
312
   Because we sometimes use alloca, some routines have to be macros,
313
   not functions -- `alloca'-allocated space disappears at the end of the
314
   function it is called in.  */
315
 
316
# ifdef REGEX_MALLOC
317
 
318
#  define REGEX_ALLOCATE malloc
319
#  define REGEX_REALLOCATE(source, osize, nsize) realloc (source, nsize)
320
#  define REGEX_FREE free
321
 
322
# else /* not REGEX_MALLOC  */
323
 
324
/* Emacs already defines alloca, sometimes.  */
325
#  ifndef alloca
326
 
327
/* Make alloca work the best possible way.  */
328
#   ifdef __GNUC__
329
#    define alloca __builtin_alloca
330
#   else /* not __GNUC__ */
331
#    if HAVE_ALLOCA_H
332
#     include <alloca.h>
333
#    endif /* HAVE_ALLOCA_H */
334
#   endif /* not __GNUC__ */
335
 
336
#  endif /* not alloca */
337
 
338
#  define REGEX_ALLOCATE alloca
339
 
340
/* Assumes a `char *destination' variable.  */
341
#  define REGEX_REALLOCATE(source, osize, nsize)                        \
342
  (destination = (char *) alloca (nsize),                               \
343
   memcpy (destination, source, osize))
344
 
345
/* No need to do anything to free, after alloca.  */
346
#  define REGEX_FREE(arg) ((void)0) /* Do nothing!  But inhibit gcc warning.  */
347
 
348
# endif /* not REGEX_MALLOC */
349
 
350
/* Define how to allocate the failure stack.  */
351
 
352
# if defined REL_ALLOC && defined REGEX_MALLOC
353
 
354
#  define REGEX_ALLOCATE_STACK(size)                            \
355
  r_alloc (&failure_stack_ptr, (size))
356
#  define REGEX_REALLOCATE_STACK(source, osize, nsize)          \
357
  r_re_alloc (&failure_stack_ptr, (nsize))
358
#  define REGEX_FREE_STACK(ptr)                                 \
359
  r_alloc_free (&failure_stack_ptr)
360
 
361
# else /* not using relocating allocator */
362
 
363
#  ifdef REGEX_MALLOC
364
 
365
#   define REGEX_ALLOCATE_STACK malloc
366
#   define REGEX_REALLOCATE_STACK(source, osize, nsize) realloc (source, nsize)
367
#   define REGEX_FREE_STACK free
368
 
369
#  else /* not REGEX_MALLOC */
370
 
371
#   define REGEX_ALLOCATE_STACK alloca
372
 
373
#   define REGEX_REALLOCATE_STACK(source, osize, nsize)                 \
374
   REGEX_REALLOCATE (source, osize, nsize)
375
/* No need to explicitly free anything.  */
376
#   define REGEX_FREE_STACK(arg)
377
 
378
#  endif /* not REGEX_MALLOC */
379
# endif /* not using relocating allocator */
380
 
381
 
382
/* True if `size1' is non-NULL and PTR is pointing anywhere inside
383
   `string1' or just past its end.  This works if PTR is NULL, which is
384
   a good thing.  */
385
# define FIRST_STRING_P(ptr)                                    \
386
  (size1 && string1 <= (ptr) && (ptr) <= string1 + size1)
387
 
388
/* (Re)Allocate N items of type T using malloc, or fail.  */
389
# define TALLOC(n, t) ((t *) malloc ((n) * sizeof (t)))
390
# define RETALLOC(addr, n, t) ((addr) = (t *) realloc (addr, (n) * sizeof (t)))
391
# define RETALLOC_IF(addr, n, t) \
392
  if (addr) RETALLOC((addr), (n), t); else (addr) = TALLOC ((n), t)
393
# define REGEX_TALLOC(n, t) ((t *) REGEX_ALLOCATE ((n) * sizeof (t)))
394
 
395
# define BYTEWIDTH 8 /* In bits.  */
396
 
397
# define STREQ(s1, s2) ((strcmp (s1, s2) == 0))
398
 
399
# undef MAX
400
# undef MIN
401
# define MAX(a, b) ((a) > (b) ? (a) : (b))
402
# define MIN(a, b) ((a) < (b) ? (a) : (b))
403
 
404
typedef char boolean;
405
# define false 0
406
# define true 1
407
 
408
static reg_errcode_t byte_regex_compile (const char *pattern, size_t size,
409
                                         reg_syntax_t syntax,
410
                                         struct re_pattern_buffer *bufp);
411
 
412
static int byte_re_match_2_internal (struct re_pattern_buffer *bufp,
413
                                     const char *string1, int size1,
414
                                     const char *string2, int size2,
415
                                     int pos,
416
                                     struct re_registers *regs,
417
                                     int stop);
418
static int byte_re_search_2 (struct re_pattern_buffer *bufp,
419
                             const char *string1, int size1,
420
                             const char *string2, int size2,
421
                             int startpos, int range,
422
                             struct re_registers *regs, int stop);
423
static int byte_re_compile_fastmap (struct re_pattern_buffer *bufp);
424
 
425
#ifdef MBS_SUPPORT
426
static reg_errcode_t wcs_regex_compile (const char *pattern, size_t size,
427
                                        reg_syntax_t syntax,
428
                                        struct re_pattern_buffer *bufp);
429
 
430
 
431
static int wcs_re_match_2_internal (struct re_pattern_buffer *bufp,
432
                                    const char *cstring1, int csize1,
433
                                    const char *cstring2, int csize2,
434
                                    int pos,
435
                                    struct re_registers *regs,
436
                                    int stop,
437
                                    wchar_t *string1, int size1,
438
                                    wchar_t *string2, int size2,
439
                                    int *mbs_offset1, int *mbs_offset2);
440
static int wcs_re_search_2 (struct re_pattern_buffer *bufp,
441
                            const char *string1, int size1,
442
                            const char *string2, int size2,
443
                            int startpos, int range,
444
                            struct re_registers *regs, int stop);
445
static int wcs_re_compile_fastmap (struct re_pattern_buffer *bufp);
446
#endif
447
 
448
/* These are the command codes that appear in compiled regular
449
   expressions.  Some opcodes are followed by argument bytes.  A
450
   command code can specify any interpretation whatsoever for its
451
   arguments.  Zero bytes may appear in the compiled regular expression.  */
452
 
453
typedef enum
454
{
455
  no_op = 0,
456
 
457
  /* Succeed right away--no more backtracking.  */
458
  succeed,
459
 
460
        /* Followed by one byte giving n, then by n literal bytes.  */
461
  exactn,
462
 
463
# ifdef MBS_SUPPORT
464
        /* Same as exactn, but contains binary data.  */
465
  exactn_bin,
466
# endif
467
 
468
        /* Matches any (more or less) character.  */
469
  anychar,
470
 
471
        /* Matches any one char belonging to specified set.  First
472
           following byte is number of bitmap bytes.  Then come bytes
473
           for a bitmap saying which chars are in.  Bits in each byte
474
           are ordered low-bit-first.  A character is in the set if its
475
           bit is 1.  A character too large to have a bit in the map is
476
           automatically not in the set.  */
477
        /* ifdef MBS_SUPPORT, following element is length of character
478
           classes, length of collating symbols, length of equivalence
479
           classes, length of character ranges, and length of characters.
480
           Next, character class element, collating symbols elements,
481
           equivalence class elements, range elements, and character
482
           elements follow.
483
           See regex_compile function.  */
484
  charset,
485
 
486
        /* Same parameters as charset, but match any character that is
487
           not one of those specified.  */
488
  charset_not,
489
 
490
        /* Start remembering the text that is matched, for storing in a
491
           register.  Followed by one byte with the register number, in
492
           the range 0 to one less than the pattern buffer's re_nsub
493
           field.  Then followed by one byte with the number of groups
494
           inner to this one.  (This last has to be part of the
495
           start_memory only because we need it in the on_failure_jump
496
           of re_match_2.)  */
497
  start_memory,
498
 
499
        /* Stop remembering the text that is matched and store it in a
500
           memory register.  Followed by one byte with the register
501
           number, in the range 0 to one less than `re_nsub' in the
502
           pattern buffer, and one byte with the number of inner groups,
503
           just like `start_memory'.  (We need the number of inner
504
           groups here because we don't have any easy way of finding the
505
           corresponding start_memory when we're at a stop_memory.)  */
506
  stop_memory,
507
 
508
        /* Match a duplicate of something remembered. Followed by one
509
           byte containing the register number.  */
510
  duplicate,
511
 
512
        /* Fail unless at beginning of line.  */
513
  begline,
514
 
515
        /* Fail unless at end of line.  */
516
  endline,
517
 
518
        /* Succeeds if at beginning of buffer (if emacs) or at beginning
519
           of string to be matched (if not).  */
520
  begbuf,
521
 
522
        /* Analogously, for end of buffer/string.  */
523
  endbuf,
524
 
525
        /* Followed by two byte relative address to which to jump.  */
526
  jump,
527
 
528
        /* Same as jump, but marks the end of an alternative.  */
529
  jump_past_alt,
530
 
531
        /* Followed by two-byte relative address of place to resume at
532
           in case of failure.  */
533
        /* ifdef MBS_SUPPORT, the size of address is 1.  */
534
  on_failure_jump,
535
 
536
        /* Like on_failure_jump, but pushes a placeholder instead of the
537
           current string position when executed.  */
538
  on_failure_keep_string_jump,
539
 
540
        /* Throw away latest failure point and then jump to following
541
           two-byte relative address.  */
542
        /* ifdef MBS_SUPPORT, the size of address is 1.  */
543
  pop_failure_jump,
544
 
545
        /* Change to pop_failure_jump if know won't have to backtrack to
546
           match; otherwise change to jump.  This is used to jump
547
           back to the beginning of a repeat.  If what follows this jump
548
           clearly won't match what the repeat does, such that we can be
549
           sure that there is no use backtracking out of repetitions
550
           already matched, then we change it to a pop_failure_jump.
551
           Followed by two-byte address.  */
552
        /* ifdef MBS_SUPPORT, the size of address is 1.  */
553
  maybe_pop_jump,
554
 
555
        /* Jump to following two-byte address, and push a dummy failure
556
           point. This failure point will be thrown away if an attempt
557
           is made to use it for a failure.  A `+' construct makes this
558
           before the first repeat.  Also used as an intermediary kind
559
           of jump when compiling an alternative.  */
560
        /* ifdef MBS_SUPPORT, the size of address is 1.  */
561
  dummy_failure_jump,
562
 
563
        /* Push a dummy failure point and continue.  Used at the end of
564
           alternatives.  */
565
  push_dummy_failure,
566
 
567
        /* Followed by two-byte relative address and two-byte number n.
568
           After matching N times, jump to the address upon failure.  */
569
        /* ifdef MBS_SUPPORT, the size of address is 1.  */
570
  succeed_n,
571
 
572
        /* Followed by two-byte relative address, and two-byte number n.
573
           Jump to the address N times, then fail.  */
574
        /* ifdef MBS_SUPPORT, the size of address is 1.  */
575
  jump_n,
576
 
577
        /* Set the following two-byte relative address to the
578
           subsequent two-byte number.  The address *includes* the two
579
           bytes of number.  */
580
        /* ifdef MBS_SUPPORT, the size of address is 1.  */
581
  set_number_at,
582
 
583
  wordchar,     /* Matches any word-constituent character.  */
584
  notwordchar,  /* Matches any char that is not a word-constituent.  */
585
 
586
  wordbeg,      /* Succeeds if at word beginning.  */
587
  wordend,      /* Succeeds if at word end.  */
588
 
589
  wordbound,    /* Succeeds if at a word boundary.  */
590
  notwordbound  /* Succeeds if not at a word boundary.  */
591
 
592
# ifdef emacs
593
  ,before_dot,  /* Succeeds if before point.  */
594
  at_dot,       /* Succeeds if at point.  */
595
  after_dot,    /* Succeeds if after point.  */
596
 
597
        /* Matches any character whose syntax is specified.  Followed by
598
           a byte which contains a syntax code, e.g., Sword.  */
599
  syntaxspec,
600
 
601
        /* Matches any character whose syntax is not that specified.  */
602
  notsyntaxspec
603
# endif /* emacs */
604
} re_opcode_t;
605
#endif /* not INSIDE_RECURSION */
606
 
607
 
608
#ifdef BYTE
609
# define CHAR_T char
610
# define UCHAR_T unsigned char
611
# define COMPILED_BUFFER_VAR bufp->buffer
612
# define OFFSET_ADDRESS_SIZE 2
613
# define PREFIX(name) byte_##name
614
# define ARG_PREFIX(name) name
615
# define PUT_CHAR(c) putchar (c)
616
#else
617
# ifdef WCHAR
618
#  define CHAR_T wchar_t
619
#  define UCHAR_T wchar_t
620
#  define COMPILED_BUFFER_VAR wc_buffer
621
#  define OFFSET_ADDRESS_SIZE 1 /* the size which STORE_NUMBER macro use */
622
#  define CHAR_CLASS_SIZE ((__alignof__(wctype_t)+sizeof(wctype_t))/sizeof(CHAR_T)+1)
623
#  define PREFIX(name) wcs_##name
624
#  define ARG_PREFIX(name) c##name
625
/* Should we use wide stream??  */
626
#  define PUT_CHAR(c) printf ("%C", c);
627
#  define TRUE 1
628
#  define FALSE 0
629
# else
630
#  ifdef MBS_SUPPORT
631
#   define WCHAR
632
#   define INSIDE_RECURSION
633
#   include "regex.c"
634
#   undef INSIDE_RECURSION
635
#  endif
636
#  define BYTE
637
#  define INSIDE_RECURSION
638
#  include "regex.c"
639
#  undef INSIDE_RECURSION
640
# endif
641
#endif
642
 
643
#ifdef INSIDE_RECURSION
644
/* Common operations on the compiled pattern.  */
645
 
646
/* Store NUMBER in two contiguous bytes starting at DESTINATION.  */
647
/* ifdef MBS_SUPPORT, we store NUMBER in 1 element.  */
648
 
649
# ifdef WCHAR
650
#  define STORE_NUMBER(destination, number)                             \
651
  do {                                                                  \
652
    *(destination) = (UCHAR_T)(number);                         \
653
  } while (0)
654
# else /* BYTE */
655
#  define STORE_NUMBER(destination, number)                             \
656
  do {                                                                  \
657
    (destination)[0] = (number) & 0377;                                  \
658
    (destination)[1] = (number) >> 8;                                   \
659
  } while (0)
660
# endif /* WCHAR */
661
 
662
/* Same as STORE_NUMBER, except increment DESTINATION to
663
   the byte after where the number is stored.  Therefore, DESTINATION
664
   must be an lvalue.  */
665
/* ifdef MBS_SUPPORT, we store NUMBER in 1 element.  */
666
 
667
# define STORE_NUMBER_AND_INCR(destination, number)                     \
668
  do {                                                                  \
669
    STORE_NUMBER (destination, number);                                 \
670
    (destination) += OFFSET_ADDRESS_SIZE;                               \
671
  } while (0)
672
 
673
/* Put into DESTINATION a number stored in two contiguous bytes starting
674
   at SOURCE.  */
675
/* ifdef MBS_SUPPORT, we store NUMBER in 1 element.  */
676
 
677
# ifdef WCHAR
678
#  define EXTRACT_NUMBER(destination, source)                           \
679
  do {                                                                  \
680
    (destination) = *(source);                                          \
681
  } while (0)
682
# else /* BYTE */
683
#  define EXTRACT_NUMBER(destination, source)                           \
684
  do {                                                                  \
685
    (destination) = *(source) & 0377;                                   \
686
    (destination) += SIGN_EXTEND_CHAR (*((source) + 1)) << 8;           \
687
  } while (0)
688
# endif
689
 
690
# ifdef DEBUG
691
static void PREFIX(extract_number) (int *dest, UCHAR_T *source);
692
static void
693
PREFIX(extract_number) (int *dest, UCHAR_T *source)
694
{
695
#  ifdef WCHAR
696
  *dest = *source;
697
#  else /* BYTE */
698
  int temp = SIGN_EXTEND_CHAR (*(source + 1));
699
  *dest = *source & 0377;
700
  *dest += temp << 8;
701
#  endif
702
}
703
 
704
#  ifndef EXTRACT_MACROS /* To debug the macros.  */
705
#   undef EXTRACT_NUMBER
706
#   define EXTRACT_NUMBER(dest, src) PREFIX(extract_number) (&dest, src)
707
#  endif /* not EXTRACT_MACROS */
708
 
709
# endif /* DEBUG */
710
 
711
/* Same as EXTRACT_NUMBER, except increment SOURCE to after the number.
712
   SOURCE must be an lvalue.  */
713
 
714
# define EXTRACT_NUMBER_AND_INCR(destination, source)                   \
715
  do {                                                                  \
716
    EXTRACT_NUMBER (destination, source);                               \
717
    (source) += OFFSET_ADDRESS_SIZE;                                    \
718
  } while (0)
719
 
720
# ifdef DEBUG
721
static void PREFIX(extract_number_and_incr) (int *destination,
722
                                             UCHAR_T **source);
723
static void
724
PREFIX(extract_number_and_incr) (int *destination, UCHAR_T **source)
725
{
726
  PREFIX(extract_number) (destination, *source);
727
  *source += OFFSET_ADDRESS_SIZE;
728
}
729
 
730
#  ifndef EXTRACT_MACROS
731
#   undef EXTRACT_NUMBER_AND_INCR
732
#   define EXTRACT_NUMBER_AND_INCR(dest, src) \
733
  PREFIX(extract_number_and_incr) (&dest, &src)
734
#  endif /* not EXTRACT_MACROS */
735
 
736
# endif /* DEBUG */
737
 
738
 
739
 
740
/* If DEBUG is defined, Regex prints many voluminous messages about what
741
   it is doing (if the variable `debug' is nonzero).  If linked with the
742
   main program in `iregex.c', you can enter patterns and strings
743
   interactively.  And if linked with the main program in `main.c' and
744
   the other test files, you can run the already-written tests.  */
745
 
746
# ifdef DEBUG
747
 
748
#  ifndef DEFINED_ONCE
749
 
750
/* We use standard I/O for debugging.  */
751
#   include <stdio.h>
752
 
753
/* It is useful to test things that ``must'' be true when debugging.  */
754
#   include <assert.h>
755
 
756
static int debug;
757
 
758
#   define DEBUG_STATEMENT(e) e
759
#   define DEBUG_PRINT1(x) if (debug) printf (x)
760
#   define DEBUG_PRINT2(x1, x2) if (debug) printf (x1, x2)
761
#   define DEBUG_PRINT3(x1, x2, x3) if (debug) printf (x1, x2, x3)
762
#   define DEBUG_PRINT4(x1, x2, x3, x4) if (debug) printf (x1, x2, x3, x4)
763
#  endif /* not DEFINED_ONCE */
764
 
765
#  define DEBUG_PRINT_COMPILED_PATTERN(p, s, e)                         \
766
  if (debug) PREFIX(print_partial_compiled_pattern) (s, e)
767
#  define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2)                \
768
  if (debug) PREFIX(print_double_string) (w, s1, sz1, s2, sz2)
769
 
770
 
771
/* Print the fastmap in human-readable form.  */
772
 
773
#  ifndef DEFINED_ONCE
774
void
775
print_fastmap (char *fastmap)
776
{
777
  unsigned was_a_range = 0;
778
  unsigned i = 0;
779
 
780
  while (i < (1 << BYTEWIDTH))
781
    {
782
      if (fastmap[i++])
783
        {
784
          was_a_range = 0;
785
          putchar (i - 1);
786
          while (i < (1 << BYTEWIDTH)  &&  fastmap[i])
787
            {
788
              was_a_range = 1;
789
              i++;
790
            }
791
          if (was_a_range)
792
            {
793
              printf ("-");
794
              putchar (i - 1);
795
            }
796
        }
797
    }
798
  putchar ('\n');
799
}
800
#  endif /* not DEFINED_ONCE */
801
 
802
 
803
/* Print a compiled pattern string in human-readable form, starting at
804
   the START pointer into it and ending just before the pointer END.  */
805
 
806
void
807
PREFIX(print_partial_compiled_pattern) (UCHAR_T *start, UCHAR_T *end)
808
{
809
  int mcnt, mcnt2;
810
  UCHAR_T *p1;
811
  UCHAR_T *p = start;
812
  UCHAR_T *pend = end;
813
 
814
  if (start == NULL)
815
    {
816
      printf ("(null)\n");
817
      return;
818
    }
819
 
820
  /* Loop over pattern commands.  */
821
  while (p < pend)
822
    {
823
#  ifdef _LIBC
824
      printf ("%td:\t", p - start);
825
#  else
826
      printf ("%ld:\t", (long int) (p - start));
827
#  endif
828
 
829
      switch ((re_opcode_t) *p++)
830
        {
831
        case no_op:
832
          printf ("/no_op");
833
          break;
834
 
835
        case exactn:
836
          mcnt = *p++;
837
          printf ("/exactn/%d", mcnt);
838
          do
839
            {
840
              putchar ('/');
841
              PUT_CHAR (*p++);
842
            }
843
          while (--mcnt);
844
          break;
845
 
846
#  ifdef MBS_SUPPORT
847
        case exactn_bin:
848
          mcnt = *p++;
849
          printf ("/exactn_bin/%d", mcnt);
850
          do
851
            {
852
              printf("/%lx", (long int) *p++);
853
            }
854
          while (--mcnt);
855
          break;
856
#  endif /* MBS_SUPPORT */
857
 
858
        case start_memory:
859
          mcnt = *p++;
860
          printf ("/start_memory/%d/%ld", mcnt, (long int) *p++);
861
          break;
862
 
863
        case stop_memory:
864
          mcnt = *p++;
865
          printf ("/stop_memory/%d/%ld", mcnt, (long int) *p++);
866
          break;
867
 
868
        case duplicate:
869
          printf ("/duplicate/%ld", (long int) *p++);
870
          break;
871
 
872
        case anychar:
873
          printf ("/anychar");
874
          break;
875
 
876
        case charset:
877
        case charset_not:
878
          {
879
#  ifdef WCHAR
880
            int i, length;
881
            wchar_t *workp = p;
882
            printf ("/charset [%s",
883
                    (re_opcode_t) *(workp - 1) == charset_not ? "^" : "");
884
            p += 5;
885
            length = *workp++; /* the length of char_classes */
886
            for (i=0 ; i<length ; i++)
887
              printf("[:%lx:]", (long int) *p++);
888
            length = *workp++; /* the length of collating_symbol */
889
            for (i=0 ; i<length ;)
890
              {
891
                printf("[.");
892
                while(*p != 0)
893
                  PUT_CHAR((i++,*p++));
894
                i++,p++;
895
                printf(".]");
896
              }
897
            length = *workp++; /* the length of equivalence_class */
898
            for (i=0 ; i<length ;)
899
              {
900
                printf("[=");
901
                while(*p != 0)
902
                  PUT_CHAR((i++,*p++));
903
                i++,p++;
904
                printf("=]");
905
              }
906
            length = *workp++; /* the length of char_range */
907
            for (i=0 ; i<length ; i++)
908
              {
909
                wchar_t range_start = *p++;
910
                wchar_t range_end = *p++;
911
                printf("%C-%C", range_start, range_end);
912
              }
913
            length = *workp++; /* the length of char */
914
            for (i=0 ; i<length ; i++)
915
              printf("%C", *p++);
916
            putchar (']');
917
#  else
918
            register int c, last = -100;
919
            register int in_range = 0;
920
 
921
            printf ("/charset [%s",
922
                    (re_opcode_t) *(p - 1) == charset_not ? "^" : "");
923
 
924
            assert (p + *p < pend);
925
 
926
            for (c = 0; c < 256; c++)
927
              if (c / 8 < *p
928
                  && (p[1 + (c/8)] & (1 << (c % 8))))
929
                {
930
                  /* Are we starting a range?  */
931
                  if (last + 1 == c && ! in_range)
932
                    {
933
                      putchar ('-');
934
                      in_range = 1;
935
                    }
936
                  /* Have we broken a range?  */
937
                  else if (last + 1 != c && in_range)
938
              {
939
                      putchar (last);
940
                      in_range = 0;
941
                    }
942
 
943
                  if (! in_range)
944
                    putchar (c);
945
 
946
                  last = c;
947
              }
948
 
949
            if (in_range)
950
              putchar (last);
951
 
952
            putchar (']');
953
 
954
            p += 1 + *p;
955
#  endif /* WCHAR */
956
          }
957
          break;
958
 
959
        case begline:
960
          printf ("/begline");
961
          break;
962
 
963
        case endline:
964
          printf ("/endline");
965
          break;
966
 
967
        case on_failure_jump:
968
          PREFIX(extract_number_and_incr) (&mcnt, &p);
969
#  ifdef _LIBC
970
          printf ("/on_failure_jump to %td", p + mcnt - start);
971
#  else
972
          printf ("/on_failure_jump to %ld", (long int) (p + mcnt - start));
973
#  endif
974
          break;
975
 
976
        case on_failure_keep_string_jump:
977
          PREFIX(extract_number_and_incr) (&mcnt, &p);
978
#  ifdef _LIBC
979
          printf ("/on_failure_keep_string_jump to %td", p + mcnt - start);
980
#  else
981
          printf ("/on_failure_keep_string_jump to %ld",
982
                  (long int) (p + mcnt - start));
983
#  endif
984
          break;
985
 
986
        case dummy_failure_jump:
987
          PREFIX(extract_number_and_incr) (&mcnt, &p);
988
#  ifdef _LIBC
989
          printf ("/dummy_failure_jump to %td", p + mcnt - start);
990
#  else
991
          printf ("/dummy_failure_jump to %ld", (long int) (p + mcnt - start));
992
#  endif
993
          break;
994
 
995
        case push_dummy_failure:
996
          printf ("/push_dummy_failure");
997
          break;
998
 
999
        case maybe_pop_jump:
1000
          PREFIX(extract_number_and_incr) (&mcnt, &p);
1001
#  ifdef _LIBC
1002
          printf ("/maybe_pop_jump to %td", p + mcnt - start);
1003
#  else
1004
          printf ("/maybe_pop_jump to %ld", (long int) (p + mcnt - start));
1005
#  endif
1006
          break;
1007
 
1008
        case pop_failure_jump:
1009
          PREFIX(extract_number_and_incr) (&mcnt, &p);
1010
#  ifdef _LIBC
1011
          printf ("/pop_failure_jump to %td", p + mcnt - start);
1012
#  else
1013
          printf ("/pop_failure_jump to %ld", (long int) (p + mcnt - start));
1014
#  endif
1015
          break;
1016
 
1017
        case jump_past_alt:
1018
          PREFIX(extract_number_and_incr) (&mcnt, &p);
1019
#  ifdef _LIBC
1020
          printf ("/jump_past_alt to %td", p + mcnt - start);
1021
#  else
1022
          printf ("/jump_past_alt to %ld", (long int) (p + mcnt - start));
1023
#  endif
1024
          break;
1025
 
1026
        case jump:
1027
          PREFIX(extract_number_and_incr) (&mcnt, &p);
1028
#  ifdef _LIBC
1029
          printf ("/jump to %td", p + mcnt - start);
1030
#  else
1031
          printf ("/jump to %ld", (long int) (p + mcnt - start));
1032
#  endif
1033
          break;
1034
 
1035
        case succeed_n:
1036
          PREFIX(extract_number_and_incr) (&mcnt, &p);
1037
          p1 = p + mcnt;
1038
          PREFIX(extract_number_and_incr) (&mcnt2, &p);
1039
#  ifdef _LIBC
1040
          printf ("/succeed_n to %td, %d times", p1 - start, mcnt2);
1041
#  else
1042
          printf ("/succeed_n to %ld, %d times",
1043
                  (long int) (p1 - start), mcnt2);
1044
#  endif
1045
          break;
1046
 
1047
        case jump_n:
1048
          PREFIX(extract_number_and_incr) (&mcnt, &p);
1049
          p1 = p + mcnt;
1050
          PREFIX(extract_number_and_incr) (&mcnt2, &p);
1051
          printf ("/jump_n to %d, %d times", p1 - start, mcnt2);
1052
          break;
1053
 
1054
        case set_number_at:
1055
          PREFIX(extract_number_and_incr) (&mcnt, &p);
1056
          p1 = p + mcnt;
1057
          PREFIX(extract_number_and_incr) (&mcnt2, &p);
1058
#  ifdef _LIBC
1059
          printf ("/set_number_at location %td to %d", p1 - start, mcnt2);
1060
#  else
1061
          printf ("/set_number_at location %ld to %d",
1062
                  (long int) (p1 - start), mcnt2);
1063
#  endif
1064
          break;
1065
 
1066
        case wordbound:
1067
          printf ("/wordbound");
1068
          break;
1069
 
1070
        case notwordbound:
1071
          printf ("/notwordbound");
1072
          break;
1073
 
1074
        case wordbeg:
1075
          printf ("/wordbeg");
1076
          break;
1077
 
1078
        case wordend:
1079
          printf ("/wordend");
1080
          break;
1081
 
1082
#  ifdef emacs
1083
        case before_dot:
1084
          printf ("/before_dot");
1085
          break;
1086
 
1087
        case at_dot:
1088
          printf ("/at_dot");
1089
          break;
1090
 
1091
        case after_dot:
1092
          printf ("/after_dot");
1093
          break;
1094
 
1095
        case syntaxspec:
1096
          printf ("/syntaxspec");
1097
          mcnt = *p++;
1098
          printf ("/%d", mcnt);
1099
          break;
1100
 
1101
        case notsyntaxspec:
1102
          printf ("/notsyntaxspec");
1103
          mcnt = *p++;
1104
          printf ("/%d", mcnt);
1105
          break;
1106
#  endif /* emacs */
1107
 
1108
        case wordchar:
1109
          printf ("/wordchar");
1110
          break;
1111
 
1112
        case notwordchar:
1113
          printf ("/notwordchar");
1114
          break;
1115
 
1116
        case begbuf:
1117
          printf ("/begbuf");
1118
          break;
1119
 
1120
        case endbuf:
1121
          printf ("/endbuf");
1122
          break;
1123
 
1124
        default:
1125
          printf ("?%ld", (long int) *(p-1));
1126
        }
1127
 
1128
      putchar ('\n');
1129
    }
1130
 
1131
#  ifdef _LIBC
1132
  printf ("%td:\tend of pattern.\n", p - start);
1133
#  else
1134
  printf ("%ld:\tend of pattern.\n", (long int) (p - start));
1135
#  endif
1136
}
1137
 
1138
 
1139
void
1140
PREFIX(print_compiled_pattern) (struct re_pattern_buffer *bufp)
1141
{
1142
  UCHAR_T *buffer = (UCHAR_T*) bufp->buffer;
1143
 
1144
  PREFIX(print_partial_compiled_pattern) (buffer, buffer
1145
                                  + bufp->used / sizeof(UCHAR_T));
1146
  printf ("%ld bytes used/%ld bytes allocated.\n",
1147
          bufp->used, bufp->allocated);
1148
 
1149
  if (bufp->fastmap_accurate && bufp->fastmap)
1150
    {
1151
      printf ("fastmap: ");
1152
      print_fastmap (bufp->fastmap);
1153
    }
1154
 
1155
#  ifdef _LIBC
1156
  printf ("re_nsub: %Zd\t", bufp->re_nsub);
1157
#  else
1158
  printf ("re_nsub: %ld\t", (long int) bufp->re_nsub);
1159
#  endif
1160
  printf ("regs_alloc: %d\t", bufp->regs_allocated);
1161
  printf ("can_be_null: %d\t", bufp->can_be_null);
1162
  printf ("newline_anchor: %d\n", bufp->newline_anchor);
1163
  printf ("no_sub: %d\t", bufp->no_sub);
1164
  printf ("not_bol: %d\t", bufp->not_bol);
1165
  printf ("not_eol: %d\t", bufp->not_eol);
1166
  printf ("syntax: %lx\n", bufp->syntax);
1167
  /* Perhaps we should print the translate table?  */
1168
}
1169
 
1170
 
1171
void
1172
PREFIX(print_double_string) (const CHAR_T *where, const CHAR_T *string1,
1173
                             int size1, const CHAR_T *string2, int size2)
1174
{
1175
  int this_char;
1176
 
1177
  if (where == NULL)
1178
    printf ("(null)");
1179
  else
1180
    {
1181
      int cnt;
1182
 
1183
      if (FIRST_STRING_P (where))
1184
        {
1185
          for (this_char = where - string1; this_char < size1; this_char++)
1186
            PUT_CHAR (string1[this_char]);
1187
 
1188
          where = string2;
1189
        }
1190
 
1191
      cnt = 0;
1192
      for (this_char = where - string2; this_char < size2; this_char++)
1193
        {
1194
          PUT_CHAR (string2[this_char]);
1195
          if (++cnt > 100)
1196
            {
1197
              fputs ("...", stdout);
1198
              break;
1199
            }
1200
        }
1201
    }
1202
}
1203
 
1204
#  ifndef DEFINED_ONCE
1205
void
1206
printchar (int c)
1207
{
1208
  putc (c, stderr);
1209
}
1210
#  endif
1211
 
1212
# else /* not DEBUG */
1213
 
1214
#  ifndef DEFINED_ONCE
1215
#   undef assert
1216
#   define assert(e)
1217
 
1218
#   define DEBUG_STATEMENT(e)
1219
#   define DEBUG_PRINT1(x)
1220
#   define DEBUG_PRINT2(x1, x2)
1221
#   define DEBUG_PRINT3(x1, x2, x3)
1222
#   define DEBUG_PRINT4(x1, x2, x3, x4)
1223
#  endif /* not DEFINED_ONCE */
1224
#  define DEBUG_PRINT_COMPILED_PATTERN(p, s, e)
1225
#  define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2)
1226
 
1227
# endif /* not DEBUG */
1228
 
1229
 
1230
 
1231
# ifdef WCHAR
1232
/* This  convert a multibyte string to a wide character string.
1233
   And write their correspondances to offset_buffer(see below)
1234
   and write whether each wchar_t is binary data to is_binary.
1235
   This assume invalid multibyte sequences as binary data.
1236
   We assume offset_buffer and is_binary is already allocated
1237
   enough space.  */
1238
 
1239
static size_t convert_mbs_to_wcs (CHAR_T *dest, const unsigned char* src,
1240
                                  size_t len, int *offset_buffer,
1241
                                  char *is_binary);
1242
static size_t
1243
convert_mbs_to_wcs (CHAR_T *dest, const unsigned char*src, size_t len,
1244
                    int *offset_buffer, char *is_binary)
1245
     /* It hold correspondances between src(char string) and
1246
        dest(wchar_t string) for optimization.
1247
        e.g. src  = "xxxyzz"
1248
             dest = {'X', 'Y', 'Z'}
1249
              (each "xxx", "y" and "zz" represent one multibyte character
1250
               corresponding to 'X', 'Y' and 'Z'.)
1251
          offset_buffer = {0, 0+3("xxx"), 0+3+1("y"), 0+3+1+2("zz")}
1252
                        = {0, 3, 4, 6}
1253
     */
1254
{
1255
  wchar_t *pdest = dest;
1256
  const unsigned char *psrc = src;
1257
  size_t wc_count = 0;
1258
 
1259
  mbstate_t mbs;
1260
  int i, consumed;
1261
  size_t mb_remain = len;
1262
  size_t mb_count = 0;
1263
 
1264
  /* Initialize the conversion state.  */
1265
  memset (&mbs, 0, sizeof (mbstate_t));
1266
 
1267
  offset_buffer[0] = 0;
1268
  for( ; mb_remain > 0 ; ++wc_count, ++pdest, mb_remain -= consumed,
1269
         psrc += consumed)
1270
    {
1271
#ifdef _LIBC
1272
      consumed = __mbrtowc (pdest, psrc, mb_remain, &mbs);
1273
#else
1274
      consumed = mbrtowc (pdest, psrc, mb_remain, &mbs);
1275
#endif
1276
 
1277
      if (consumed <= 0)
1278
        /* failed to convert. maybe src contains binary data.
1279
           So we consume 1 byte manualy.  */
1280
        {
1281
          *pdest = *psrc;
1282
          consumed = 1;
1283
          is_binary[wc_count] = TRUE;
1284
        }
1285
      else
1286
        is_binary[wc_count] = FALSE;
1287
      /* In sjis encoding, we use yen sign as escape character in
1288
         place of reverse solidus. So we convert 0x5c(yen sign in
1289
         sjis) to not 0xa5(yen sign in UCS2) but 0x5c(reverse
1290
         solidus in UCS2).  */
1291
      if (consumed == 1 && (int) *psrc == 0x5c && (int) *pdest == 0xa5)
1292
        *pdest = (wchar_t) *psrc;
1293
 
1294
      offset_buffer[wc_count + 1] = mb_count += consumed;
1295
    }
1296
 
1297
  /* Fill remain of the buffer with sentinel.  */
1298
  for (i = wc_count + 1 ; i <= len ; i++)
1299
    offset_buffer[i] = mb_count + 1;
1300
 
1301
  return wc_count;
1302
}
1303
 
1304
# endif /* WCHAR */
1305
 
1306
#else /* not INSIDE_RECURSION */
1307
 
1308
/* Set by `re_set_syntax' to the current regexp syntax to recognize.  Can
1309
   also be assigned to arbitrarily: each pattern buffer stores its own
1310
   syntax, so it can be changed between regex compilations.  */
1311
/* This has no initializer because initialized variables in Emacs
1312
   become read-only after dumping.  */
1313
reg_syntax_t re_syntax_options;
1314
 
1315
 
1316
/* Specify the precise syntax of regexps for compilation.  This provides
1317
   for compatibility for various utilities which historically have
1318
   different, incompatible syntaxes.
1319
 
1320
   The argument SYNTAX is a bit mask comprised of the various bits
1321
   defined in regex.h.  We return the old syntax.  */
1322
 
1323
reg_syntax_t
1324
re_set_syntax (reg_syntax_t syntax)
1325
{
1326
  reg_syntax_t ret = re_syntax_options;
1327
 
1328
  re_syntax_options = syntax;
1329
# ifdef DEBUG
1330
  if (syntax & RE_DEBUG)
1331
    debug = 1;
1332
  else if (debug) /* was on but now is not */
1333
    debug = 0;
1334
# endif /* DEBUG */
1335
  return ret;
1336
}
1337
# ifdef _LIBC
1338
weak_alias (__re_set_syntax, re_set_syntax)
1339
# endif
1340
 
1341
/* This table gives an error message for each of the error codes listed
1342
   in regex.h.  Obviously the order here has to be same as there.
1343
   POSIX doesn't require that we do anything for REG_NOERROR,
1344
   but why not be nice?  */
1345
 
1346
static const char *re_error_msgid[] =
1347
  {
1348
    gettext_noop ("Success"),   /* REG_NOERROR */
1349
    gettext_noop ("No match"),  /* REG_NOMATCH */
1350
    gettext_noop ("Invalid regular expression"), /* REG_BADPAT */
1351
    gettext_noop ("Invalid collation character"), /* REG_ECOLLATE */
1352
    gettext_noop ("Invalid character class name"), /* REG_ECTYPE */
1353
    gettext_noop ("Trailing backslash"), /* REG_EESCAPE */
1354
    gettext_noop ("Invalid back reference"), /* REG_ESUBREG */
1355
    gettext_noop ("Unmatched [ or [^"), /* REG_EBRACK */
1356
    gettext_noop ("Unmatched ( or \\("), /* REG_EPAREN */
1357
    gettext_noop ("Unmatched \\{"), /* REG_EBRACE */
1358
    gettext_noop ("Invalid content of \\{\\}"), /* REG_BADBR */
1359
    gettext_noop ("Invalid range end"), /* REG_ERANGE */
1360
    gettext_noop ("Memory exhausted"), /* REG_ESPACE */
1361
    gettext_noop ("Invalid preceding regular expression"), /* REG_BADRPT */
1362
    gettext_noop ("Premature end of regular expression"), /* REG_EEND */
1363
    gettext_noop ("Regular expression too big"), /* REG_ESIZE */
1364
    gettext_noop ("Unmatched ) or \\)") /* REG_ERPAREN */
1365
  };
1366
 
1367
#endif /* INSIDE_RECURSION */
1368
 
1369
#ifndef DEFINED_ONCE
1370
/* Avoiding alloca during matching, to placate r_alloc.  */
1371
 
1372
/* Define MATCH_MAY_ALLOCATE unless we need to make sure that the
1373
   searching and matching functions should not call alloca.  On some
1374
   systems, alloca is implemented in terms of malloc, and if we're
1375
   using the relocating allocator routines, then malloc could cause a
1376
   relocation, which might (if the strings being searched are in the
1377
   ralloc heap) shift the data out from underneath the regexp
1378
   routines.
1379
 
1380
   Here's another reason to avoid allocation: Emacs
1381
   processes input from X in a signal handler; processing X input may
1382
   call malloc; if input arrives while a matching routine is calling
1383
   malloc, then we're scrod.  But Emacs can't just block input while
1384
   calling matching routines; then we don't notice interrupts when
1385
   they come in.  So, Emacs blocks input around all regexp calls
1386
   except the matching calls, which it leaves unprotected, in the
1387
   faith that they will not malloc.  */
1388
 
1389
/* Normally, this is fine.  */
1390
# define MATCH_MAY_ALLOCATE
1391
 
1392
/* When using GNU C, we are not REALLY using the C alloca, no matter
1393
   what config.h may say.  So don't take precautions for it.  */
1394
# ifdef __GNUC__
1395
#  undef C_ALLOCA
1396
# endif
1397
 
1398
/* The match routines may not allocate if (1) they would do it with malloc
1399
   and (2) it's not safe for them to use malloc.
1400
   Note that if REL_ALLOC is defined, matching would not use malloc for the
1401
   failure stack, but we would still use it for the register vectors;
1402
   so REL_ALLOC should not affect this.  */
1403
# if (defined C_ALLOCA || defined REGEX_MALLOC) && defined emacs
1404
#  undef MATCH_MAY_ALLOCATE
1405
# endif
1406
#endif /* not DEFINED_ONCE */
1407
 
1408
#ifdef INSIDE_RECURSION
1409
/* Failure stack declarations and macros; both re_compile_fastmap and
1410
   re_match_2 use a failure stack.  These have to be macros because of
1411
   REGEX_ALLOCATE_STACK.  */
1412
 
1413
 
1414
/* Number of failure points for which to initially allocate space
1415
   when matching.  If this number is exceeded, we allocate more
1416
   space, so it is not a hard limit.  */
1417
# ifndef INIT_FAILURE_ALLOC
1418
#  define INIT_FAILURE_ALLOC 5
1419
# endif
1420
 
1421
/* Roughly the maximum number of failure points on the stack.  Would be
1422
   exactly that if always used MAX_FAILURE_ITEMS items each time we failed.
1423
   This is a variable only so users of regex can assign to it; we never
1424
   change it ourselves.  */
1425
 
1426
# ifdef INT_IS_16BIT
1427
 
1428
#  ifndef DEFINED_ONCE
1429
#   if defined MATCH_MAY_ALLOCATE
1430
/* 4400 was enough to cause a crash on Alpha OSF/1,
1431
   whose default stack limit is 2mb.  */
1432
long int re_max_failures = 4000;
1433
#   else
1434
long int re_max_failures = 2000;
1435
#   endif
1436
#  endif
1437
 
1438
union PREFIX(fail_stack_elt)
1439
{
1440
  UCHAR_T *pointer;
1441
  long int integer;
1442
};
1443
 
1444
typedef union PREFIX(fail_stack_elt) PREFIX(fail_stack_elt_t);
1445
 
1446
typedef struct
1447
{
1448
  PREFIX(fail_stack_elt_t) *stack;
1449
  unsigned long int size;
1450
  unsigned long int avail;              /* Offset of next open position.  */
1451
} PREFIX(fail_stack_type);
1452
 
1453
# else /* not INT_IS_16BIT */
1454
 
1455
#  ifndef DEFINED_ONCE
1456
#   if defined MATCH_MAY_ALLOCATE
1457
/* 4400 was enough to cause a crash on Alpha OSF/1,
1458
   whose default stack limit is 2mb.  */
1459
int re_max_failures = 4000;
1460
#   else
1461
int re_max_failures = 2000;
1462
#   endif
1463
#  endif
1464
 
1465
union PREFIX(fail_stack_elt)
1466
{
1467
  UCHAR_T *pointer;
1468
  int integer;
1469
};
1470
 
1471
typedef union PREFIX(fail_stack_elt) PREFIX(fail_stack_elt_t);
1472
 
1473
typedef struct
1474
{
1475
  PREFIX(fail_stack_elt_t) *stack;
1476
  unsigned size;
1477
  unsigned avail;                       /* Offset of next open position.  */
1478
} PREFIX(fail_stack_type);
1479
 
1480
# endif /* INT_IS_16BIT */
1481
 
1482
# ifndef DEFINED_ONCE
1483
#  define FAIL_STACK_EMPTY()     (fail_stack.avail == 0)
1484
#  define FAIL_STACK_PTR_EMPTY() (fail_stack_ptr->avail == 0)
1485
#  define FAIL_STACK_FULL()      (fail_stack.avail == fail_stack.size)
1486
# endif
1487
 
1488
 
1489
/* Define macros to initialize and free the failure stack.
1490
   Do `return -2' if the alloc fails.  */
1491
 
1492
# ifdef MATCH_MAY_ALLOCATE
1493
#  define INIT_FAIL_STACK()                                             \
1494
  do {                                                                  \
1495
    fail_stack.stack = (PREFIX(fail_stack_elt_t) *)             \
1496
      REGEX_ALLOCATE_STACK (INIT_FAILURE_ALLOC * sizeof (PREFIX(fail_stack_elt_t))); \
1497
                                                                        \
1498
    if (fail_stack.stack == NULL)                               \
1499
      return -2;                                                        \
1500
                                                                        \
1501
    fail_stack.size = INIT_FAILURE_ALLOC;                       \
1502
    fail_stack.avail = 0;                                        \
1503
  } while (0)
1504
 
1505
#  define RESET_FAIL_STACK()  REGEX_FREE_STACK (fail_stack.stack)
1506
# else
1507
#  define INIT_FAIL_STACK()                                             \
1508
  do {                                                                  \
1509
    fail_stack.avail = 0;                                        \
1510
  } while (0)
1511
 
1512
#  define RESET_FAIL_STACK()
1513
# endif
1514
 
1515
 
1516
/* Double the size of FAIL_STACK, up to approximately `re_max_failures' items.
1517
 
1518
   Return 1 if succeeds, and 0 if either ran out of memory
1519
   allocating space for it or it was already too large.
1520
 
1521
   REGEX_REALLOCATE_STACK requires `destination' be declared.   */
1522
 
1523
# define DOUBLE_FAIL_STACK(fail_stack)                                  \
1524
  ((fail_stack).size > (unsigned) (re_max_failures * MAX_FAILURE_ITEMS) \
1525
   ? 0                                                                   \
1526
   : ((fail_stack).stack = (PREFIX(fail_stack_elt_t) *)                 \
1527
        REGEX_REALLOCATE_STACK ((fail_stack).stack,                     \
1528
          (fail_stack).size * sizeof (PREFIX(fail_stack_elt_t)),        \
1529
          ((fail_stack).size << 1) * sizeof (PREFIX(fail_stack_elt_t))),\
1530
                                                                        \
1531
      (fail_stack).stack == NULL                                        \
1532
      ? 0                                                                \
1533
      : ((fail_stack).size <<= 1,                                       \
1534
         1)))
1535
 
1536
 
1537
/* Push pointer POINTER on FAIL_STACK.
1538
   Return 1 if was able to do so and 0 if ran out of memory allocating
1539
   space to do so.  */
1540
# define PUSH_PATTERN_OP(POINTER, FAIL_STACK)                           \
1541
  ((FAIL_STACK_FULL ()                                                  \
1542
    && !DOUBLE_FAIL_STACK (FAIL_STACK))                                 \
1543
   ? 0                                                                   \
1544
   : ((FAIL_STACK).stack[(FAIL_STACK).avail++].pointer = POINTER,       \
1545
      1))
1546
 
1547
/* Push a pointer value onto the failure stack.
1548
   Assumes the variable `fail_stack'.  Probably should only
1549
   be called from within `PUSH_FAILURE_POINT'.  */
1550
# define PUSH_FAILURE_POINTER(item)                                     \
1551
  fail_stack.stack[fail_stack.avail++].pointer = (UCHAR_T *) (item)
1552
 
1553
/* This pushes an integer-valued item onto the failure stack.
1554
   Assumes the variable `fail_stack'.  Probably should only
1555
   be called from within `PUSH_FAILURE_POINT'.  */
1556
# define PUSH_FAILURE_INT(item)                                 \
1557
  fail_stack.stack[fail_stack.avail++].integer = (item)
1558
 
1559
/* Push a fail_stack_elt_t value onto the failure stack.
1560
   Assumes the variable `fail_stack'.  Probably should only
1561
   be called from within `PUSH_FAILURE_POINT'.  */
1562
# define PUSH_FAILURE_ELT(item)                                 \
1563
  fail_stack.stack[fail_stack.avail++] =  (item)
1564
 
1565
/* These three POP... operations complement the three PUSH... operations.
1566
   All assume that `fail_stack' is nonempty.  */
1567
# define POP_FAILURE_POINTER() fail_stack.stack[--fail_stack.avail].pointer
1568
# define POP_FAILURE_INT() fail_stack.stack[--fail_stack.avail].integer
1569
# define POP_FAILURE_ELT() fail_stack.stack[--fail_stack.avail]
1570
 
1571
/* Used to omit pushing failure point id's when we're not debugging.  */
1572
# ifdef DEBUG
1573
#  define DEBUG_PUSH PUSH_FAILURE_INT
1574
#  define DEBUG_POP(item_addr) *(item_addr) = POP_FAILURE_INT ()
1575
# else
1576
#  define DEBUG_PUSH(item)
1577
#  define DEBUG_POP(item_addr)
1578
# endif
1579
 
1580
 
1581
/* Push the information about the state we will need
1582
   if we ever fail back to it.
1583
 
1584
   Requires variables fail_stack, regstart, regend, reg_info, and
1585
   num_regs_pushed be declared.  DOUBLE_FAIL_STACK requires `destination'
1586
   be declared.
1587
 
1588
   Does `return FAILURE_CODE' if runs out of memory.  */
1589
 
1590
# define PUSH_FAILURE_POINT(pattern_place, string_place, failure_code)  \
1591
  do {                                                                  \
1592
    char *destination;                                                  \
1593
    /* Must be int, so when we don't save any registers, the arithmetic \
1594
       of 0 + -1 isn't done as unsigned.  */                            \
1595
    /* Can't be int, since there is not a shred of a guarantee that int \
1596
       is wide enough to hold a value of something to which pointer can \
1597
       be assigned */                                                   \
1598
    active_reg_t this_reg;                                              \
1599
                                                                        \
1600
    DEBUG_STATEMENT (failure_id++);                                     \
1601
    DEBUG_STATEMENT (nfailure_points_pushed++);                         \
1602
    DEBUG_PRINT2 ("\nPUSH_FAILURE_POINT #%u:\n", failure_id);           \
1603
    DEBUG_PRINT2 ("  Before push, next avail: %d\n", (fail_stack).avail);\
1604
    DEBUG_PRINT2 ("                     size: %d\n", (fail_stack).size);\
1605
                                                                        \
1606
    DEBUG_PRINT2 ("  slots needed: %ld\n", NUM_FAILURE_ITEMS);          \
1607
    DEBUG_PRINT2 ("     available: %d\n", REMAINING_AVAIL_SLOTS);       \
1608
                                                                        \
1609
    /* Ensure we have enough space allocated for what we will push.  */ \
1610
    while (REMAINING_AVAIL_SLOTS < NUM_FAILURE_ITEMS)                   \
1611
      {                                                                 \
1612
        if (!DOUBLE_FAIL_STACK (fail_stack))                            \
1613
          return failure_code;                                          \
1614
                                                                        \
1615
        DEBUG_PRINT2 ("\n  Doubled stack; size now: %d\n",              \
1616
                       (fail_stack).size);                              \
1617
        DEBUG_PRINT2 ("  slots available: %d\n", REMAINING_AVAIL_SLOTS);\
1618
      }                                                                 \
1619
                                                                        \
1620
    /* Push the info, starting with the registers.  */                  \
1621
    DEBUG_PRINT1 ("\n");                                                \
1622
                                                                        \
1623
    if (1)                                                              \
1624
      for (this_reg = lowest_active_reg; this_reg <= highest_active_reg; \
1625
           this_reg++)                                                  \
1626
        {                                                               \
1627
          DEBUG_PRINT2 ("  Pushing reg: %lu\n", this_reg);              \
1628
          DEBUG_STATEMENT (num_regs_pushed++);                          \
1629
                                                                        \
1630
          DEBUG_PRINT2 ("    start: %p\n", regstart[this_reg]);         \
1631
          PUSH_FAILURE_POINTER (regstart[this_reg]);                    \
1632
                                                                        \
1633
          DEBUG_PRINT2 ("    end: %p\n", regend[this_reg]);             \
1634
          PUSH_FAILURE_POINTER (regend[this_reg]);                      \
1635
                                                                        \
1636
          DEBUG_PRINT2 ("    info: %p\n      ",                         \
1637
                        reg_info[this_reg].word.pointer);               \
1638
          DEBUG_PRINT2 (" match_null=%d",                               \
1639
                        REG_MATCH_NULL_STRING_P (reg_info[this_reg]));  \
1640
          DEBUG_PRINT2 (" active=%d", IS_ACTIVE (reg_info[this_reg]));  \
1641
          DEBUG_PRINT2 (" matched_something=%d",                        \
1642
                        MATCHED_SOMETHING (reg_info[this_reg]));        \
1643
          DEBUG_PRINT2 (" ever_matched=%d",                             \
1644
                        EVER_MATCHED_SOMETHING (reg_info[this_reg]));   \
1645
          DEBUG_PRINT1 ("\n");                                          \
1646
          PUSH_FAILURE_ELT (reg_info[this_reg].word);                   \
1647
        }                                                               \
1648
                                                                        \
1649
    DEBUG_PRINT2 ("  Pushing  low active reg: %ld\n", lowest_active_reg);\
1650
    PUSH_FAILURE_INT (lowest_active_reg);                               \
1651
                                                                        \
1652
    DEBUG_PRINT2 ("  Pushing high active reg: %ld\n", highest_active_reg);\
1653
    PUSH_FAILURE_INT (highest_active_reg);                              \
1654
                                                                        \
1655
    DEBUG_PRINT2 ("  Pushing pattern %p:\n", pattern_place);            \
1656
    DEBUG_PRINT_COMPILED_PATTERN (bufp, pattern_place, pend);           \
1657
    PUSH_FAILURE_POINTER (pattern_place);                               \
1658
                                                                        \
1659
    DEBUG_PRINT2 ("  Pushing string %p: `", string_place);              \
1660
    DEBUG_PRINT_DOUBLE_STRING (string_place, string1, size1, string2,   \
1661
                                 size2);                                \
1662
    DEBUG_PRINT1 ("'\n");                                               \
1663
    PUSH_FAILURE_POINTER (string_place);                                \
1664
                                                                        \
1665
    DEBUG_PRINT2 ("  Pushing failure id: %u\n", failure_id);            \
1666
    DEBUG_PUSH (failure_id);                                            \
1667
  } while (0)
1668
 
1669
# ifndef DEFINED_ONCE
1670
/* This is the number of items that are pushed and popped on the stack
1671
   for each register.  */
1672
#  define NUM_REG_ITEMS  3
1673
 
1674
/* Individual items aside from the registers.  */
1675
#  ifdef DEBUG
1676
#   define NUM_NONREG_ITEMS 5 /* Includes failure point id.  */
1677
#  else
1678
#   define NUM_NONREG_ITEMS 4
1679
#  endif
1680
 
1681
/* We push at most this many items on the stack.  */
1682
/* We used to use (num_regs - 1), which is the number of registers
1683
   this regexp will save; but that was changed to 5
1684
   to avoid stack overflow for a regexp with lots of parens.  */
1685
#  define MAX_FAILURE_ITEMS (5 * NUM_REG_ITEMS + NUM_NONREG_ITEMS)
1686
 
1687
/* We actually push this many items.  */
1688
#  define NUM_FAILURE_ITEMS                             \
1689
  (((0                                                   \
1690
     ? 0 : highest_active_reg - lowest_active_reg + 1)   \
1691
    * NUM_REG_ITEMS)                                    \
1692
   + NUM_NONREG_ITEMS)
1693
 
1694
/* How many items can still be added to the stack without overflowing it.  */
1695
#  define REMAINING_AVAIL_SLOTS ((fail_stack).size - (fail_stack).avail)
1696
# endif /* not DEFINED_ONCE */
1697
 
1698
 
1699
/* Pops what PUSH_FAIL_STACK pushes.
1700
 
1701
   We restore into the parameters, all of which should be lvalues:
1702
     STR -- the saved data position.
1703
     PAT -- the saved pattern position.
1704
     LOW_REG, HIGH_REG -- the highest and lowest active registers.
1705
     REGSTART, REGEND -- arrays of string positions.
1706
     REG_INFO -- array of information about each subexpression.
1707
 
1708
   Also assumes the variables `fail_stack' and (if debugging), `bufp',
1709
   `pend', `string1', `size1', `string2', and `size2'.  */
1710
# define POP_FAILURE_POINT(str, pat, low_reg, high_reg, regstart, regend, reg_info)\
1711
{                                                                       \
1712
  DEBUG_STATEMENT (unsigned failure_id;)                                \
1713
  active_reg_t this_reg;                                                \
1714
  const UCHAR_T *string_temp;                                           \
1715
                                                                        \
1716
  assert (!FAIL_STACK_EMPTY ());                                        \
1717
                                                                        \
1718
  /* Remove failure points and point to how many regs pushed.  */       \
1719
  DEBUG_PRINT1 ("POP_FAILURE_POINT:\n");                                \
1720
  DEBUG_PRINT2 ("  Before pop, next avail: %d\n", fail_stack.avail);    \
1721
  DEBUG_PRINT2 ("                    size: %d\n", fail_stack.size);     \
1722
                                                                        \
1723
  assert (fail_stack.avail >= NUM_NONREG_ITEMS);                        \
1724
                                                                        \
1725
  DEBUG_POP (&failure_id);                                              \
1726
  DEBUG_PRINT2 ("  Popping failure id: %u\n", failure_id);              \
1727
                                                                        \
1728
  /* If the saved string location is NULL, it came from an              \
1729
     on_failure_keep_string_jump opcode, and we want to throw away the  \
1730
     saved NULL, thus retaining our current position in the string.  */ \
1731
  string_temp = POP_FAILURE_POINTER ();                                 \
1732
  if (string_temp != NULL)                                              \
1733
    str = (const CHAR_T *) string_temp;                                 \
1734
                                                                        \
1735
  DEBUG_PRINT2 ("  Popping string %p: `", str);                         \
1736
  DEBUG_PRINT_DOUBLE_STRING (str, string1, size1, string2, size2);      \
1737
  DEBUG_PRINT1 ("'\n");                                                 \
1738
                                                                        \
1739
  pat = (UCHAR_T *) POP_FAILURE_POINTER ();                             \
1740
  DEBUG_PRINT2 ("  Popping pattern %p:\n", pat);                        \
1741
  DEBUG_PRINT_COMPILED_PATTERN (bufp, pat, pend);                       \
1742
                                                                        \
1743
  /* Restore register info.  */                                         \
1744
  high_reg = (active_reg_t) POP_FAILURE_INT ();                         \
1745
  DEBUG_PRINT2 ("  Popping high active reg: %ld\n", high_reg);          \
1746
                                                                        \
1747
  low_reg = (active_reg_t) POP_FAILURE_INT ();                          \
1748
  DEBUG_PRINT2 ("  Popping  low active reg: %ld\n", low_reg);           \
1749
                                                                        \
1750
  if (1)                                                                \
1751
    for (this_reg = high_reg; this_reg >= low_reg; this_reg--)          \
1752
      {                                                                 \
1753
        DEBUG_PRINT2 ("    Popping reg: %ld\n", this_reg);              \
1754
                                                                        \
1755
        reg_info[this_reg].word = POP_FAILURE_ELT ();                   \
1756
        DEBUG_PRINT2 ("      info: %p\n",                               \
1757
                      reg_info[this_reg].word.pointer);                 \
1758
                                                                        \
1759
        regend[this_reg] = (const CHAR_T *) POP_FAILURE_POINTER ();     \
1760
        DEBUG_PRINT2 ("      end: %p\n", regend[this_reg]);             \
1761
                                                                        \
1762
        regstart[this_reg] = (const CHAR_T *) POP_FAILURE_POINTER ();   \
1763
        DEBUG_PRINT2 ("      start: %p\n", regstart[this_reg]);         \
1764
      }                                                                 \
1765
  else                                                                  \
1766
    {                                                                   \
1767
      for (this_reg = highest_active_reg; this_reg > high_reg; this_reg--) \
1768
        {                                                               \
1769
          reg_info[this_reg].word.integer = 0;                           \
1770
          regend[this_reg] = 0;                                          \
1771
          regstart[this_reg] = 0;                                        \
1772
        }                                                               \
1773
      highest_active_reg = high_reg;                                    \
1774
    }                                                                   \
1775
                                                                        \
1776
  set_regs_matched_done = 0;                                             \
1777
  DEBUG_STATEMENT (nfailure_points_popped++);                           \
1778
} /* POP_FAILURE_POINT */
1779
 
1780
/* Structure for per-register (a.k.a. per-group) information.
1781
   Other register information, such as the
1782
   starting and ending positions (which are addresses), and the list of
1783
   inner groups (which is a bits list) are maintained in separate
1784
   variables.
1785
 
1786
   We are making a (strictly speaking) nonportable assumption here: that
1787
   the compiler will pack our bit fields into something that fits into
1788
   the type of `word', i.e., is something that fits into one item on the
1789
   failure stack.  */
1790
 
1791
 
1792
/* Declarations and macros for re_match_2.  */
1793
 
1794
typedef union
1795
{
1796
  PREFIX(fail_stack_elt_t) word;
1797
  struct
1798
  {
1799
      /* This field is one if this group can match the empty string,
1800
         zero if not.  If not yet determined,  `MATCH_NULL_UNSET_VALUE'.  */
1801
# define MATCH_NULL_UNSET_VALUE 3
1802
    unsigned match_null_string_p : 2;
1803
    unsigned is_active : 1;
1804
    unsigned matched_something : 1;
1805
    unsigned ever_matched_something : 1;
1806
  } bits;
1807
} PREFIX(register_info_type);
1808
 
1809
# ifndef DEFINED_ONCE
1810
#  define REG_MATCH_NULL_STRING_P(R)  ((R).bits.match_null_string_p)
1811
#  define IS_ACTIVE(R)  ((R).bits.is_active)
1812
#  define MATCHED_SOMETHING(R)  ((R).bits.matched_something)
1813
#  define EVER_MATCHED_SOMETHING(R)  ((R).bits.ever_matched_something)
1814
 
1815
 
1816
/* Call this when have matched a real character; it sets `matched' flags
1817
   for the subexpressions which we are currently inside.  Also records
1818
   that those subexprs have matched.  */
1819
#  define SET_REGS_MATCHED()                                            \
1820
  do                                                                    \
1821
    {                                                                   \
1822
      if (!set_regs_matched_done)                                       \
1823
        {                                                               \
1824
          active_reg_t r;                                               \
1825
          set_regs_matched_done = 1;                                    \
1826
          for (r = lowest_active_reg; r <= highest_active_reg; r++)     \
1827
            {                                                           \
1828
              MATCHED_SOMETHING (reg_info[r])                           \
1829
                = EVER_MATCHED_SOMETHING (reg_info[r])                  \
1830
                = 1;                                                    \
1831
            }                                                           \
1832
        }                                                               \
1833
    }                                                                   \
1834
  while (0)
1835
# endif /* not DEFINED_ONCE */
1836
 
1837
/* Registers are set to a sentinel when they haven't yet matched.  */
1838
static CHAR_T PREFIX(reg_unset_dummy);
1839
# define REG_UNSET_VALUE (&PREFIX(reg_unset_dummy))
1840
# define REG_UNSET(e) ((e) == REG_UNSET_VALUE)
1841
 
1842
/* Subroutine declarations and macros for regex_compile.  */
1843
static void PREFIX(store_op1) (re_opcode_t op, UCHAR_T *loc, int arg);
1844
static void PREFIX(store_op2) (re_opcode_t op, UCHAR_T *loc,
1845
                               int arg1, int arg2);
1846
static void PREFIX(insert_op1) (re_opcode_t op, UCHAR_T *loc,
1847
                                int arg, UCHAR_T *end);
1848
static void PREFIX(insert_op2) (re_opcode_t op, UCHAR_T *loc,
1849
                                int arg1, int arg2, UCHAR_T *end);
1850
static boolean PREFIX(at_begline_loc_p) (const CHAR_T *pattern,
1851
                                         const CHAR_T *p,
1852
                                         reg_syntax_t syntax);
1853
static boolean PREFIX(at_endline_loc_p) (const CHAR_T *p,
1854
                                         const CHAR_T *pend,
1855
                                         reg_syntax_t syntax);
1856
# ifdef WCHAR
1857
static reg_errcode_t wcs_compile_range (CHAR_T range_start,
1858
                                        const CHAR_T **p_ptr,
1859
                                        const CHAR_T *pend,
1860
                                        char *translate,
1861
                                        reg_syntax_t syntax,
1862
                                        UCHAR_T *b,
1863
                                        CHAR_T *char_set);
1864
static void insert_space (int num, CHAR_T *loc, CHAR_T *end);
1865
# else /* BYTE */
1866
static reg_errcode_t byte_compile_range (unsigned int range_start,
1867
                                         const char **p_ptr,
1868
                                         const char *pend,
1869
                                         char *translate,
1870
                                         reg_syntax_t syntax,
1871
                                         unsigned char *b);
1872
# endif /* WCHAR */
1873
 
1874
/* Fetch the next character in the uncompiled pattern---translating it
1875
   if necessary.  Also cast from a signed character in the constant
1876
   string passed to us by the user to an unsigned char that we can use
1877
   as an array index (in, e.g., `translate').  */
1878
/* ifdef MBS_SUPPORT, we translate only if character <= 0xff,
1879
   because it is impossible to allocate 4GB array for some encodings
1880
   which have 4 byte character_set like UCS4.  */
1881
# ifndef PATFETCH
1882
#  ifdef WCHAR
1883
#   define PATFETCH(c)                                                  \
1884
  do {if (p == pend) return REG_EEND;                                   \
1885
    c = (UCHAR_T) *p++;                                                 \
1886
    if (translate && (c <= 0xff)) c = (UCHAR_T) translate[c];           \
1887
  } while (0)
1888
#  else /* BYTE */
1889
#   define PATFETCH(c)                                                  \
1890
  do {if (p == pend) return REG_EEND;                                   \
1891
    c = (unsigned char) *p++;                                           \
1892
    if (translate) c = (unsigned char) translate[c];                    \
1893
  } while (0)
1894
#  endif /* WCHAR */
1895
# endif
1896
 
1897
/* Fetch the next character in the uncompiled pattern, with no
1898
   translation.  */
1899
# define PATFETCH_RAW(c)                                                \
1900
  do {if (p == pend) return REG_EEND;                                   \
1901
    c = (UCHAR_T) *p++;                                                 \
1902
  } while (0)
1903
 
1904
/* Go backwards one character in the pattern.  */
1905
# define PATUNFETCH p--
1906
 
1907
 
1908
/* If `translate' is non-null, return translate[D], else just D.  We
1909
   cast the subscript to translate because some data is declared as
1910
   `char *', to avoid warnings when a string constant is passed.  But
1911
   when we use a character as a subscript we must make it unsigned.  */
1912
/* ifdef MBS_SUPPORT, we translate only if character <= 0xff,
1913
   because it is impossible to allocate 4GB array for some encodings
1914
   which have 4 byte character_set like UCS4.  */
1915
 
1916
# ifndef TRANSLATE
1917
#  ifdef WCHAR
1918
#   define TRANSLATE(d) \
1919
  ((translate && ((UCHAR_T) (d)) <= 0xff) \
1920
   ? (char) translate[(unsigned char) (d)] : (d))
1921
# else /* BYTE */
1922
#   define TRANSLATE(d) \
1923
  (translate ? (char) translate[(unsigned char) (d)] : (char) (d))
1924
#  endif /* WCHAR */
1925
# endif
1926
 
1927
 
1928
/* Macros for outputting the compiled pattern into `buffer'.  */
1929
 
1930
/* If the buffer isn't allocated when it comes in, use this.  */
1931
# define INIT_BUF_SIZE  (32 * sizeof(UCHAR_T))
1932
 
1933
/* Make sure we have at least N more bytes of space in buffer.  */
1934
# ifdef WCHAR
1935
#  define GET_BUFFER_SPACE(n)                                           \
1936
    while (((unsigned long)b - (unsigned long)COMPILED_BUFFER_VAR       \
1937
            + (n)*sizeof(CHAR_T)) > bufp->allocated)                    \
1938
      EXTEND_BUFFER ()
1939
# else /* BYTE */
1940
#  define GET_BUFFER_SPACE(n)                                           \
1941
    while ((unsigned long) (b - bufp->buffer + (n)) > bufp->allocated)  \
1942
      EXTEND_BUFFER ()
1943
# endif /* WCHAR */
1944
 
1945
/* Make sure we have one more byte of buffer space and then add C to it.  */
1946
# define BUF_PUSH(c)                                                    \
1947
  do {                                                                  \
1948
    GET_BUFFER_SPACE (1);                                               \
1949
    *b++ = (UCHAR_T) (c);                                               \
1950
  } while (0)
1951
 
1952
 
1953
/* Ensure we have two more bytes of buffer space and then append C1 and C2.  */
1954
# define BUF_PUSH_2(c1, c2)                                             \
1955
  do {                                                                  \
1956
    GET_BUFFER_SPACE (2);                                               \
1957
    *b++ = (UCHAR_T) (c1);                                              \
1958
    *b++ = (UCHAR_T) (c2);                                              \
1959
  } while (0)
1960
 
1961
 
1962
/* As with BUF_PUSH_2, except for three bytes.  */
1963
# define BUF_PUSH_3(c1, c2, c3)                                         \
1964
  do {                                                                  \
1965
    GET_BUFFER_SPACE (3);                                               \
1966
    *b++ = (UCHAR_T) (c1);                                              \
1967
    *b++ = (UCHAR_T) (c2);                                              \
1968
    *b++ = (UCHAR_T) (c3);                                              \
1969
  } while (0)
1970
 
1971
/* Store a jump with opcode OP at LOC to location TO.  We store a
1972
   relative address offset by the three bytes the jump itself occupies.  */
1973
# define STORE_JUMP(op, loc, to) \
1974
 PREFIX(store_op1) (op, loc, (int) ((to) - (loc) - (1 + OFFSET_ADDRESS_SIZE)))
1975
 
1976
/* Likewise, for a two-argument jump.  */
1977
# define STORE_JUMP2(op, loc, to, arg) \
1978
  PREFIX(store_op2) (op, loc, (int) ((to) - (loc) - (1 + OFFSET_ADDRESS_SIZE)), arg)
1979
 
1980
/* Like `STORE_JUMP', but for inserting.  Assume `b' is the buffer end.  */
1981
# define INSERT_JUMP(op, loc, to) \
1982
  PREFIX(insert_op1) (op, loc, (int) ((to) - (loc) - (1 + OFFSET_ADDRESS_SIZE)), b)
1983
 
1984
/* Like `STORE_JUMP2', but for inserting.  Assume `b' is the buffer end.  */
1985
# define INSERT_JUMP2(op, loc, to, arg) \
1986
  PREFIX(insert_op2) (op, loc, (int) ((to) - (loc) - (1 + OFFSET_ADDRESS_SIZE)),\
1987
              arg, b)
1988
 
1989
/* This is not an arbitrary limit: the arguments which represent offsets
1990
   into the pattern are two bytes long.  So if 2^16 bytes turns out to
1991
   be too small, many things would have to change.  */
1992
/* Any other compiler which, like MSC, has allocation limit below 2^16
1993
   bytes will have to use approach similar to what was done below for
1994
   MSC and drop MAX_BUF_SIZE a bit.  Otherwise you may end up
1995
   reallocating to 0 bytes.  Such thing is not going to work too well.
1996
   You have been warned!!  */
1997
# ifndef DEFINED_ONCE
1998
#  if defined _MSC_VER  && !defined WIN32
1999
/* Microsoft C 16-bit versions limit malloc to approx 65512 bytes.
2000
   The REALLOC define eliminates a flurry of conversion warnings,
2001
   but is not required. */
2002
#   define MAX_BUF_SIZE  65500L
2003
#   define REALLOC(p,s) realloc ((p), (size_t) (s))
2004
#  else
2005
#   define MAX_BUF_SIZE (1L << 16)
2006
#   define REALLOC(p,s) realloc ((p), (s))
2007
#  endif
2008
 
2009
/* Extend the buffer by twice its current size via realloc and
2010
   reset the pointers that pointed into the old block to point to the
2011
   correct places in the new one.  If extending the buffer results in it
2012
   being larger than MAX_BUF_SIZE, then flag memory exhausted.  */
2013
#  if __BOUNDED_POINTERS__
2014
#   define SET_HIGH_BOUND(P) (__ptrhigh (P) = __ptrlow (P) + bufp->allocated)
2015
#   define MOVE_BUFFER_POINTER(P) \
2016
  (__ptrlow (P) += incr, SET_HIGH_BOUND (P), __ptrvalue (P) += incr)
2017
#   define ELSE_EXTEND_BUFFER_HIGH_BOUND        \
2018
  else                                          \
2019
    {                                           \
2020
      SET_HIGH_BOUND (b);                       \
2021
      SET_HIGH_BOUND (begalt);                  \
2022
      if (fixup_alt_jump)                       \
2023
        SET_HIGH_BOUND (fixup_alt_jump);        \
2024
      if (laststart)                            \
2025
        SET_HIGH_BOUND (laststart);             \
2026
      if (pending_exact)                        \
2027
        SET_HIGH_BOUND (pending_exact);         \
2028
    }
2029
#  else
2030
#   define MOVE_BUFFER_POINTER(P) (P) += incr
2031
#   define ELSE_EXTEND_BUFFER_HIGH_BOUND
2032
#  endif
2033
# endif /* not DEFINED_ONCE */
2034
 
2035
# ifdef WCHAR
2036
#  define EXTEND_BUFFER()                                               \
2037
  do {                                                                  \
2038
    UCHAR_T *old_buffer = COMPILED_BUFFER_VAR;                          \
2039
    int wchar_count;                                                    \
2040
    if (bufp->allocated + sizeof(UCHAR_T) > MAX_BUF_SIZE)               \
2041
      return REG_ESIZE;                                                 \
2042
    bufp->allocated <<= 1;                                              \
2043
    if (bufp->allocated > MAX_BUF_SIZE)                                 \
2044
      bufp->allocated = MAX_BUF_SIZE;                                   \
2045
    /* How many characters the new buffer can have?  */                 \
2046
    wchar_count = bufp->allocated / sizeof(UCHAR_T);                    \
2047
    if (wchar_count == 0) wchar_count = 1;                               \
2048
    /* Truncate the buffer to CHAR_T align.  */                 \
2049
    bufp->allocated = wchar_count * sizeof(UCHAR_T);                    \
2050
    RETALLOC (COMPILED_BUFFER_VAR, wchar_count, UCHAR_T);               \
2051
    bufp->buffer = (char*)COMPILED_BUFFER_VAR;                          \
2052
    if (COMPILED_BUFFER_VAR == NULL)                                    \
2053
      return REG_ESPACE;                                                \
2054
    /* If the buffer moved, move all the pointers into it.  */          \
2055
    if (old_buffer != COMPILED_BUFFER_VAR)                              \
2056
      {                                                                 \
2057
        int incr = COMPILED_BUFFER_VAR - old_buffer;                    \
2058
        MOVE_BUFFER_POINTER (b);                                        \
2059
        MOVE_BUFFER_POINTER (begalt);                                   \
2060
        if (fixup_alt_jump)                                             \
2061
          MOVE_BUFFER_POINTER (fixup_alt_jump);                         \
2062
        if (laststart)                                                  \
2063
          MOVE_BUFFER_POINTER (laststart);                              \
2064
        if (pending_exact)                                              \
2065
          MOVE_BUFFER_POINTER (pending_exact);                          \
2066
      }                                                                 \
2067
    ELSE_EXTEND_BUFFER_HIGH_BOUND                                       \
2068
  } while (0)
2069
# else /* BYTE */
2070
#  define EXTEND_BUFFER()                                               \
2071
  do {                                                                  \
2072
    UCHAR_T *old_buffer = COMPILED_BUFFER_VAR;                          \
2073
    if (bufp->allocated == MAX_BUF_SIZE)                                \
2074
      return REG_ESIZE;                                                 \
2075
    bufp->allocated <<= 1;                                              \
2076
    if (bufp->allocated > MAX_BUF_SIZE)                                 \
2077
      bufp->allocated = MAX_BUF_SIZE;                                   \
2078
    bufp->buffer = (UCHAR_T *) REALLOC (COMPILED_BUFFER_VAR,            \
2079
                                                bufp->allocated);       \
2080
    if (COMPILED_BUFFER_VAR == NULL)                                    \
2081
      return REG_ESPACE;                                                \
2082
    /* If the buffer moved, move all the pointers into it.  */          \
2083
    if (old_buffer != COMPILED_BUFFER_VAR)                              \
2084
      {                                                                 \
2085
        int incr = COMPILED_BUFFER_VAR - old_buffer;                    \
2086
        MOVE_BUFFER_POINTER (b);                                        \
2087
        MOVE_BUFFER_POINTER (begalt);                                   \
2088
        if (fixup_alt_jump)                                             \
2089
          MOVE_BUFFER_POINTER (fixup_alt_jump);                         \
2090
        if (laststart)                                                  \
2091
          MOVE_BUFFER_POINTER (laststart);                              \
2092
        if (pending_exact)                                              \
2093
          MOVE_BUFFER_POINTER (pending_exact);                          \
2094
      }                                                                 \
2095
    ELSE_EXTEND_BUFFER_HIGH_BOUND                                       \
2096
  } while (0)
2097
# endif /* WCHAR */
2098
 
2099
# ifndef DEFINED_ONCE
2100
/* Since we have one byte reserved for the register number argument to
2101
   {start,stop}_memory, the maximum number of groups we can report
2102
   things about is what fits in that byte.  */
2103
#  define MAX_REGNUM 255
2104
 
2105
/* But patterns can have more than `MAX_REGNUM' registers.  We just
2106
   ignore the excess.  */
2107
typedef unsigned regnum_t;
2108
 
2109
 
2110
/* Macros for the compile stack.  */
2111
 
2112
/* Since offsets can go either forwards or backwards, this type needs to
2113
   be able to hold values from -(MAX_BUF_SIZE - 1) to MAX_BUF_SIZE - 1.  */
2114
/* int may be not enough when sizeof(int) == 2.  */
2115
typedef long pattern_offset_t;
2116
 
2117
typedef struct
2118
{
2119
  pattern_offset_t begalt_offset;
2120
  pattern_offset_t fixup_alt_jump;
2121
  pattern_offset_t inner_group_offset;
2122
  pattern_offset_t laststart_offset;
2123
  regnum_t regnum;
2124
} compile_stack_elt_t;
2125
 
2126
 
2127
typedef struct
2128
{
2129
  compile_stack_elt_t *stack;
2130
  unsigned size;
2131
  unsigned avail;                       /* Offset of next open position.  */
2132
} compile_stack_type;
2133
 
2134
 
2135
#  define INIT_COMPILE_STACK_SIZE 32
2136
 
2137
#  define COMPILE_STACK_EMPTY  (compile_stack.avail == 0)
2138
#  define COMPILE_STACK_FULL  (compile_stack.avail == compile_stack.size)
2139
 
2140
/* The next available element.  */
2141
#  define COMPILE_STACK_TOP (compile_stack.stack[compile_stack.avail])
2142
 
2143
# endif /* not DEFINED_ONCE */
2144
 
2145
/* Set the bit for character C in a list.  */
2146
# ifndef DEFINED_ONCE
2147
#  define SET_LIST_BIT(c)                               \
2148
  (b[((unsigned char) (c)) / BYTEWIDTH]               \
2149
   |= 1 << (((unsigned char) c) % BYTEWIDTH))
2150
# endif /* DEFINED_ONCE */
2151
 
2152
/* Get the next unsigned number in the uncompiled pattern.  */
2153
# define GET_UNSIGNED_NUMBER(num) \
2154
  {                                                                     \
2155
    while (p != pend)                                                   \
2156
      {                                                                 \
2157
        PATFETCH (c);                                                   \
2158
        if (c < '0' || c > '9')                                         \
2159
          break;                                                        \
2160
        if (num <= RE_DUP_MAX)                                          \
2161
          {                                                             \
2162
            if (num < 0)                                         \
2163
              num = 0;                                                   \
2164
            num = num * 10 + c - '0';                                   \
2165
          }                                                             \
2166
      }                                                                 \
2167
  }
2168
 
2169
# ifndef DEFINED_ONCE
2170
#  if defined _LIBC || WIDE_CHAR_SUPPORT
2171
/* The GNU C library provides support for user-defined character classes
2172
   and the functions from ISO C amendement 1.  */
2173
#   ifdef CHARCLASS_NAME_MAX
2174
#    define CHAR_CLASS_MAX_LENGTH CHARCLASS_NAME_MAX
2175
#   else
2176
/* This shouldn't happen but some implementation might still have this
2177
   problem.  Use a reasonable default value.  */
2178
#    define CHAR_CLASS_MAX_LENGTH 256
2179
#   endif
2180
 
2181
#   ifdef _LIBC
2182
#    define IS_CHAR_CLASS(string) __wctype (string)
2183
#   else
2184
#    define IS_CHAR_CLASS(string) wctype (string)
2185
#   endif
2186
#  else
2187
#   define CHAR_CLASS_MAX_LENGTH  6 /* Namely, `xdigit'.  */
2188
 
2189
#   define IS_CHAR_CLASS(string)                                        \
2190
   (STREQ (string, "alpha") || STREQ (string, "upper")                  \
2191
    || STREQ (string, "lower") || STREQ (string, "digit")               \
2192
    || STREQ (string, "alnum") || STREQ (string, "xdigit")              \
2193
    || STREQ (string, "space") || STREQ (string, "print")               \
2194
    || STREQ (string, "punct") || STREQ (string, "graph")               \
2195
    || STREQ (string, "cntrl") || STREQ (string, "blank"))
2196
#  endif
2197
# endif /* DEFINED_ONCE */
2198
 
2199
# ifndef MATCH_MAY_ALLOCATE
2200
 
2201
/* If we cannot allocate large objects within re_match_2_internal,
2202
   we make the fail stack and register vectors global.
2203
   The fail stack, we grow to the maximum size when a regexp
2204
   is compiled.
2205
   The register vectors, we adjust in size each time we
2206
   compile a regexp, according to the number of registers it needs.  */
2207
 
2208
static PREFIX(fail_stack_type) fail_stack;
2209
 
2210
/* Size with which the following vectors are currently allocated.
2211
   That is so we can make them bigger as needed,
2212
   but never make them smaller.  */
2213
#  ifdef DEFINED_ONCE
2214
static int regs_allocated_size;
2215
 
2216
static const char **     regstart, **     regend;
2217
static const char ** old_regstart, ** old_regend;
2218
static const char **best_regstart, **best_regend;
2219
static const char **reg_dummy;
2220
#  endif /* DEFINED_ONCE */
2221
 
2222
static PREFIX(register_info_type) *PREFIX(reg_info);
2223
static PREFIX(register_info_type) *PREFIX(reg_info_dummy);
2224
 
2225
/* Make the register vectors big enough for NUM_REGS registers,
2226
   but don't make them smaller.  */
2227
 
2228
static void
2229
PREFIX(regex_grow_registers) (int num_regs)
2230
{
2231
  if (num_regs > regs_allocated_size)
2232
    {
2233
      RETALLOC_IF (regstart,     num_regs, const char *);
2234
      RETALLOC_IF (regend,       num_regs, const char *);
2235
      RETALLOC_IF (old_regstart, num_regs, const char *);
2236
      RETALLOC_IF (old_regend,   num_regs, const char *);
2237
      RETALLOC_IF (best_regstart, num_regs, const char *);
2238
      RETALLOC_IF (best_regend,  num_regs, const char *);
2239
      RETALLOC_IF (PREFIX(reg_info), num_regs, PREFIX(register_info_type));
2240
      RETALLOC_IF (reg_dummy,    num_regs, const char *);
2241
      RETALLOC_IF (PREFIX(reg_info_dummy), num_regs, PREFIX(register_info_type));
2242
 
2243
      regs_allocated_size = num_regs;
2244
    }
2245
}
2246
 
2247
# endif /* not MATCH_MAY_ALLOCATE */
2248
 
2249
# ifndef DEFINED_ONCE
2250
static boolean group_in_compile_stack (compile_stack_type compile_stack,
2251
                                       regnum_t regnum);
2252
# endif /* not DEFINED_ONCE */
2253
 
2254
/* `regex_compile' compiles PATTERN (of length SIZE) according to SYNTAX.
2255
   Returns one of error codes defined in `regex.h', or zero for success.
2256
 
2257
   Assumes the `allocated' (and perhaps `buffer') and `translate'
2258
   fields are set in BUFP on entry.
2259
 
2260
   If it succeeds, results are put in BUFP (if it returns an error, the
2261
   contents of BUFP are undefined):
2262
     `buffer' is the compiled pattern;
2263
     `syntax' is set to SYNTAX;
2264
     `used' is set to the length of the compiled pattern;
2265
     `fastmap_accurate' is zero;
2266
     `re_nsub' is the number of subexpressions in PATTERN;
2267
     `not_bol' and `not_eol' are zero;
2268
 
2269
   The `fastmap' and `newline_anchor' fields are neither
2270
   examined nor set.  */
2271
 
2272
/* Return, freeing storage we allocated.  */
2273
# ifdef WCHAR
2274
#  define FREE_STACK_RETURN(value)              \
2275
  return (free(pattern), free(mbs_offset), free(is_binary), free (compile_stack.stack), value)
2276
# else
2277
#  define FREE_STACK_RETURN(value)              \
2278
  return (free (compile_stack.stack), value)
2279
# endif /* WCHAR */
2280
 
2281
static reg_errcode_t
2282
PREFIX(regex_compile) (const char *ARG_PREFIX(pattern),
2283
                       size_t ARG_PREFIX(size), reg_syntax_t syntax,
2284
                       struct re_pattern_buffer *bufp)
2285
{
2286
  /* We fetch characters from PATTERN here.  Even though PATTERN is
2287
     `char *' (i.e., signed), we declare these variables as unsigned, so
2288
     they can be reliably used as array indices.  */
2289
  register UCHAR_T c, c1;
2290
 
2291
#ifdef WCHAR
2292
  /* A temporary space to keep wchar_t pattern and compiled pattern.  */
2293
  CHAR_T *pattern, *COMPILED_BUFFER_VAR;
2294
  size_t size;
2295
  /* offset buffer for optimization. See convert_mbs_to_wc.  */
2296
  int *mbs_offset = NULL;
2297
  /* It hold whether each wchar_t is binary data or not.  */
2298
  char *is_binary = NULL;
2299
  /* A flag whether exactn is handling binary data or not.  */
2300
  char is_exactn_bin = FALSE;
2301
#endif /* WCHAR */
2302
 
2303
  /* A random temporary spot in PATTERN.  */
2304
  const CHAR_T *p1;
2305
 
2306
  /* Points to the end of the buffer, where we should append.  */
2307
  register UCHAR_T *b;
2308
 
2309
  /* Keeps track of unclosed groups.  */
2310
  compile_stack_type compile_stack;
2311
 
2312
  /* Points to the current (ending) position in the pattern.  */
2313
#ifdef WCHAR
2314
  const CHAR_T *p;
2315
  const CHAR_T *pend;
2316
#else /* BYTE */
2317
  const CHAR_T *p = pattern;
2318
  const CHAR_T *pend = pattern + size;
2319
#endif /* WCHAR */
2320
 
2321
  /* How to translate the characters in the pattern.  */
2322
  RE_TRANSLATE_TYPE translate = bufp->translate;
2323
 
2324
  /* Address of the count-byte of the most recently inserted `exactn'
2325
     command.  This makes it possible to tell if a new exact-match
2326
     character can be added to that command or if the character requires
2327
     a new `exactn' command.  */
2328
  UCHAR_T *pending_exact = 0;
2329
 
2330
  /* Address of start of the most recently finished expression.
2331
     This tells, e.g., postfix * where to find the start of its
2332
     operand.  Reset at the beginning of groups and alternatives.  */
2333
  UCHAR_T *laststart = 0;
2334
 
2335
  /* Address of beginning of regexp, or inside of last group.  */
2336
  UCHAR_T *begalt;
2337
 
2338
  /* Address of the place where a forward jump should go to the end of
2339
     the containing expression.  Each alternative of an `or' -- except the
2340
     last -- ends with a forward jump of this sort.  */
2341
  UCHAR_T *fixup_alt_jump = 0;
2342
 
2343
  /* Counts open-groups as they are encountered.  Remembered for the
2344
     matching close-group on the compile stack, so the same register
2345
     number is put in the stop_memory as the start_memory.  */
2346
  regnum_t regnum = 0;
2347
 
2348
#ifdef WCHAR
2349
  /* Initialize the wchar_t PATTERN and offset_buffer.  */
2350
  p = pend = pattern = TALLOC(csize + 1, CHAR_T);
2351
  mbs_offset = TALLOC(csize + 1, int);
2352
  is_binary = TALLOC(csize + 1, char);
2353
  if (pattern == NULL || mbs_offset == NULL || is_binary == NULL)
2354
    {
2355
      free(pattern);
2356
      free(mbs_offset);
2357
      free(is_binary);
2358
      return REG_ESPACE;
2359
    }
2360
  pattern[csize] = L'\0';       /* sentinel */
2361
  size = convert_mbs_to_wcs(pattern, cpattern, csize, mbs_offset, is_binary);
2362
  pend = p + size;
2363
  if (size < 0)
2364
    {
2365
      free(pattern);
2366
      free(mbs_offset);
2367
      free(is_binary);
2368
      return REG_BADPAT;
2369
    }
2370
#endif
2371
 
2372
#ifdef DEBUG
2373
  DEBUG_PRINT1 ("\nCompiling pattern: ");
2374
  if (debug)
2375
    {
2376
      unsigned debug_count;
2377
 
2378
      for (debug_count = 0; debug_count < size; debug_count++)
2379
        PUT_CHAR (pattern[debug_count]);
2380
      putchar ('\n');
2381
    }
2382
#endif /* DEBUG */
2383
 
2384
  /* Initialize the compile stack.  */
2385
  compile_stack.stack = TALLOC (INIT_COMPILE_STACK_SIZE, compile_stack_elt_t);
2386
  if (compile_stack.stack == NULL)
2387
    {
2388
#ifdef WCHAR
2389
      free(pattern);
2390
      free(mbs_offset);
2391
      free(is_binary);
2392
#endif
2393
      return REG_ESPACE;
2394
    }
2395
 
2396
  compile_stack.size = INIT_COMPILE_STACK_SIZE;
2397
  compile_stack.avail = 0;
2398
 
2399
  /* Initialize the pattern buffer.  */
2400
  bufp->syntax = syntax;
2401
  bufp->fastmap_accurate = 0;
2402
  bufp->not_bol = bufp->not_eol = 0;
2403
 
2404
  /* Set `used' to zero, so that if we return an error, the pattern
2405
     printer (for debugging) will think there's no pattern.  We reset it
2406
     at the end.  */
2407
  bufp->used = 0;
2408
 
2409
  /* Always count groups, whether or not bufp->no_sub is set.  */
2410
  bufp->re_nsub = 0;
2411
 
2412
#if !defined emacs && !defined SYNTAX_TABLE
2413
  /* Initialize the syntax table.  */
2414
   init_syntax_once ();
2415
#endif
2416
 
2417
  if (bufp->allocated == 0)
2418
    {
2419
      if (bufp->buffer)
2420
        { /* If zero allocated, but buffer is non-null, try to realloc
2421
             enough space.  This loses if buffer's address is bogus, but
2422
             that is the user's responsibility.  */
2423
#ifdef WCHAR
2424
          /* Free bufp->buffer and allocate an array for wchar_t pattern
2425
             buffer.  */
2426
          free(bufp->buffer);
2427
          COMPILED_BUFFER_VAR = TALLOC (INIT_BUF_SIZE/sizeof(UCHAR_T),
2428
                                        UCHAR_T);
2429
#else
2430
          RETALLOC (COMPILED_BUFFER_VAR, INIT_BUF_SIZE, UCHAR_T);
2431
#endif /* WCHAR */
2432
        }
2433
      else
2434
        { /* Caller did not allocate a buffer.  Do it for them.  */
2435
          COMPILED_BUFFER_VAR = TALLOC (INIT_BUF_SIZE / sizeof(UCHAR_T),
2436
                                        UCHAR_T);
2437
        }
2438
 
2439
      if (!COMPILED_BUFFER_VAR) FREE_STACK_RETURN (REG_ESPACE);
2440
#ifdef WCHAR
2441
      bufp->buffer = (char*)COMPILED_BUFFER_VAR;
2442
#endif /* WCHAR */
2443
      bufp->allocated = INIT_BUF_SIZE;
2444
    }
2445
#ifdef WCHAR
2446
  else
2447
    COMPILED_BUFFER_VAR = (UCHAR_T*) bufp->buffer;
2448
#endif
2449
 
2450
  begalt = b = COMPILED_BUFFER_VAR;
2451
 
2452
  /* Loop through the uncompiled pattern until we're at the end.  */
2453
  while (p != pend)
2454
    {
2455
      PATFETCH (c);
2456
 
2457
      switch (c)
2458
        {
2459
        case '^':
2460
          {
2461
            if (   /* If at start of pattern, it's an operator.  */
2462
                   p == pattern + 1
2463
                   /* If context independent, it's an operator.  */
2464
                || syntax & RE_CONTEXT_INDEP_ANCHORS
2465
                   /* Otherwise, depends on what's come before.  */
2466
                || PREFIX(at_begline_loc_p) (pattern, p, syntax))
2467
              BUF_PUSH (begline);
2468
            else
2469
              goto normal_char;
2470
          }
2471
          break;
2472
 
2473
 
2474
        case '$':
2475
          {
2476
            if (   /* If at end of pattern, it's an operator.  */
2477
                   p == pend
2478
                   /* If context independent, it's an operator.  */
2479
                || syntax & RE_CONTEXT_INDEP_ANCHORS
2480
                   /* Otherwise, depends on what's next.  */
2481
                || PREFIX(at_endline_loc_p) (p, pend, syntax))
2482
               BUF_PUSH (endline);
2483
             else
2484
               goto normal_char;
2485
           }
2486
           break;
2487
 
2488
 
2489
        case '+':
2490
        case '?':
2491
          if ((syntax & RE_BK_PLUS_QM)
2492
              || (syntax & RE_LIMITED_OPS))
2493
            goto normal_char;
2494
        handle_plus:
2495
        case '*':
2496
          /* If there is no previous pattern... */
2497
          if (!laststart)
2498
            {
2499
              if (syntax & RE_CONTEXT_INVALID_OPS)
2500
                FREE_STACK_RETURN (REG_BADRPT);
2501
              else if (!(syntax & RE_CONTEXT_INDEP_OPS))
2502
                goto normal_char;
2503
            }
2504
 
2505
          {
2506
            /* Are we optimizing this jump?  */
2507
            boolean keep_string_p = false;
2508
 
2509
            /* 1 means zero (many) matches is allowed.  */
2510
            char zero_times_ok = 0, many_times_ok = 0;
2511
 
2512
            /* If there is a sequence of repetition chars, collapse it
2513
               down to just one (the right one).  We can't combine
2514
               interval operators with these because of, e.g., `a{2}*',
2515
               which should only match an even number of `a's.  */
2516
 
2517
            for (;;)
2518
              {
2519
                zero_times_ok |= c != '+';
2520
                many_times_ok |= c != '?';
2521
 
2522
                if (p == pend)
2523
                  break;
2524
 
2525
                PATFETCH (c);
2526
 
2527
                if (c == '*'
2528
                    || (!(syntax & RE_BK_PLUS_QM) && (c == '+' || c == '?')))
2529
                  ;
2530
 
2531
                else if (syntax & RE_BK_PLUS_QM  &&  c == '\\')
2532
                  {
2533
                    if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
2534
 
2535
                    PATFETCH (c1);
2536
                    if (!(c1 == '+' || c1 == '?'))
2537
                      {
2538
                        PATUNFETCH;
2539
                        PATUNFETCH;
2540
                        break;
2541
                      }
2542
 
2543
                    c = c1;
2544
                  }
2545
                else
2546
                  {
2547
                    PATUNFETCH;
2548
                    break;
2549
                  }
2550
 
2551
                /* If we get here, we found another repeat character.  */
2552
               }
2553
 
2554
            /* Star, etc. applied to an empty pattern is equivalent
2555
               to an empty pattern.  */
2556
            if (!laststart)
2557
              break;
2558
 
2559
            /* Now we know whether or not zero matches is allowed
2560
               and also whether or not two or more matches is allowed.  */
2561
            if (many_times_ok)
2562
              { /* More than one repetition is allowed, so put in at the
2563
                   end a backward relative jump from `b' to before the next
2564
                   jump we're going to put in below (which jumps from
2565
                   laststart to after this jump).
2566
 
2567
                   But if we are at the `*' in the exact sequence `.*\n',
2568
                   insert an unconditional jump backwards to the .,
2569
                   instead of the beginning of the loop.  This way we only
2570
                   push a failure point once, instead of every time
2571
                   through the loop.  */
2572
                assert (p - 1 > pattern);
2573
 
2574
                /* Allocate the space for the jump.  */
2575
                GET_BUFFER_SPACE (1 + OFFSET_ADDRESS_SIZE);
2576
 
2577
                /* We know we are not at the first character of the pattern,
2578
                   because laststart was nonzero.  And we've already
2579
                   incremented `p', by the way, to be the character after
2580
                   the `*'.  Do we have to do something analogous here
2581
                   for null bytes, because of RE_DOT_NOT_NULL?  */
2582
                if (TRANSLATE (*(p - 2)) == TRANSLATE ('.')
2583
                    && zero_times_ok
2584
                    && p < pend && TRANSLATE (*p) == TRANSLATE ('\n')
2585
                    && !(syntax & RE_DOT_NEWLINE))
2586
                  { /* We have .*\n.  */
2587
                    STORE_JUMP (jump, b, laststart);
2588
                    keep_string_p = true;
2589
                  }
2590
                else
2591
                  /* Anything else.  */
2592
                  STORE_JUMP (maybe_pop_jump, b, laststart -
2593
                              (1 + OFFSET_ADDRESS_SIZE));
2594
 
2595
                /* We've added more stuff to the buffer.  */
2596
                b += 1 + OFFSET_ADDRESS_SIZE;
2597
              }
2598
 
2599
            /* On failure, jump from laststart to b + 3, which will be the
2600
               end of the buffer after this jump is inserted.  */
2601
            /* ifdef WCHAR, 'b + 1 + OFFSET_ADDRESS_SIZE' instead of
2602
               'b + 3'.  */
2603
            GET_BUFFER_SPACE (1 + OFFSET_ADDRESS_SIZE);
2604
            INSERT_JUMP (keep_string_p ? on_failure_keep_string_jump
2605
                                       : on_failure_jump,
2606
                         laststart, b + 1 + OFFSET_ADDRESS_SIZE);
2607
            pending_exact = 0;
2608
            b += 1 + OFFSET_ADDRESS_SIZE;
2609
 
2610
            if (!zero_times_ok)
2611
              {
2612
                /* At least one repetition is required, so insert a
2613
                   `dummy_failure_jump' before the initial
2614
                   `on_failure_jump' instruction of the loop. This
2615
                   effects a skip over that instruction the first time
2616
                   we hit that loop.  */
2617
                GET_BUFFER_SPACE (1 + OFFSET_ADDRESS_SIZE);
2618
                INSERT_JUMP (dummy_failure_jump, laststart, laststart +
2619
                             2 + 2 * OFFSET_ADDRESS_SIZE);
2620
                b += 1 + OFFSET_ADDRESS_SIZE;
2621
              }
2622
            }
2623
          break;
2624
 
2625
 
2626
        case '.':
2627
          laststart = b;
2628
          BUF_PUSH (anychar);
2629
          break;
2630
 
2631
 
2632
        case '[':
2633
          {
2634
            boolean had_char_class = false;
2635
#ifdef WCHAR
2636
            CHAR_T range_start = 0xffffffff;
2637
#else
2638
            unsigned int range_start = 0xffffffff;
2639
#endif
2640
            if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2641
 
2642
#ifdef WCHAR
2643
            /* We assume a charset(_not) structure as a wchar_t array.
2644
               charset[0] = (re_opcode_t) charset(_not)
2645
               charset[1] = l (= length of char_classes)
2646
               charset[2] = m (= length of collating_symbols)
2647
               charset[3] = n (= length of equivalence_classes)
2648
               charset[4] = o (= length of char_ranges)
2649
               charset[5] = p (= length of chars)
2650
 
2651
               charset[6] = char_class (wctype_t)
2652
               charset[6+CHAR_CLASS_SIZE] = char_class (wctype_t)
2653
                         ...
2654
               charset[l+5]  = char_class (wctype_t)
2655
 
2656
               charset[l+6]  = collating_symbol (wchar_t)
2657
                            ...
2658
               charset[l+m+5]  = collating_symbol (wchar_t)
2659
                                        ifdef _LIBC we use the index if
2660
                                        _NL_COLLATE_SYMB_EXTRAMB instead of
2661
                                        wchar_t string.
2662
 
2663
               charset[l+m+6]  = equivalence_classes (wchar_t)
2664
                              ...
2665
               charset[l+m+n+5]  = equivalence_classes (wchar_t)
2666
                                        ifdef _LIBC we use the index in
2667
                                        _NL_COLLATE_WEIGHT instead of
2668
                                        wchar_t string.
2669
 
2670
               charset[l+m+n+6] = range_start
2671
               charset[l+m+n+7] = range_end
2672
                               ...
2673
               charset[l+m+n+2o+4] = range_start
2674
               charset[l+m+n+2o+5] = range_end
2675
                                        ifdef _LIBC we use the value looked up
2676
                                        in _NL_COLLATE_COLLSEQ instead of
2677
                                        wchar_t character.
2678
 
2679
               charset[l+m+n+2o+6] = char
2680
                                  ...
2681
               charset[l+m+n+2o+p+5] = char
2682
 
2683
             */
2684
 
2685
            /* We need at least 6 spaces: the opcode, the length of
2686
               char_classes, the length of collating_symbols, the length of
2687
               equivalence_classes, the length of char_ranges, the length of
2688
               chars.  */
2689
            GET_BUFFER_SPACE (6);
2690
 
2691
            /* Save b as laststart. And We use laststart as the pointer
2692
               to the first element of the charset here.
2693
               In other words, laststart[i] indicates charset[i].  */
2694
            laststart = b;
2695
 
2696
            /* We test `*p == '^' twice, instead of using an if
2697
               statement, so we only need one BUF_PUSH.  */
2698
            BUF_PUSH (*p == '^' ? charset_not : charset);
2699
            if (*p == '^')
2700
              p++;
2701
 
2702
            /* Push the length of char_classes, the length of
2703
               collating_symbols, the length of equivalence_classes, the
2704
               length of char_ranges and the length of chars.  */
2705
            BUF_PUSH_3 (0, 0, 0);
2706
            BUF_PUSH_2 (0, 0);
2707
 
2708
            /* Remember the first position in the bracket expression.  */
2709
            p1 = p;
2710
 
2711
            /* charset_not matches newline according to a syntax bit.  */
2712
            if ((re_opcode_t) b[-6] == charset_not
2713
                && (syntax & RE_HAT_LISTS_NOT_NEWLINE))
2714
              {
2715
                BUF_PUSH('\n');
2716
                laststart[5]++; /* Update the length of characters  */
2717
              }
2718
 
2719
            /* Read in characters and ranges, setting map bits.  */
2720
            for (;;)
2721
              {
2722
                if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2723
 
2724
                PATFETCH (c);
2725
 
2726
                /* \ might escape characters inside [...] and [^...].  */
2727
                if ((syntax & RE_BACKSLASH_ESCAPE_IN_LISTS) && c == '\\')
2728
                  {
2729
                    if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
2730
 
2731
                    PATFETCH (c1);
2732
                    BUF_PUSH(c1);
2733
                    laststart[5]++; /* Update the length of chars  */
2734
                    range_start = c1;
2735
                    continue;
2736
                  }
2737
 
2738
                /* Could be the end of the bracket expression.  If it's
2739
                   not (i.e., when the bracket expression is `[]' so
2740
                   far), the ']' character bit gets set way below.  */
2741
                if (c == ']' && p != p1 + 1)
2742
                  break;
2743
 
2744
                /* Look ahead to see if it's a range when the last thing
2745
                   was a character class.  */
2746
                if (had_char_class && c == '-' && *p != ']')
2747
                  FREE_STACK_RETURN (REG_ERANGE);
2748
 
2749
                /* Look ahead to see if it's a range when the last thing
2750
                   was a character: if this is a hyphen not at the
2751
                   beginning or the end of a list, then it's the range
2752
                   operator.  */
2753
                if (c == '-'
2754
                    && !(p - 2 >= pattern && p[-2] == '[')
2755
                    && !(p - 3 >= pattern && p[-3] == '[' && p[-2] == '^')
2756
                    && *p != ']')
2757
                  {
2758
                    reg_errcode_t ret;
2759
                    /* Allocate the space for range_start and range_end.  */
2760
                    GET_BUFFER_SPACE (2);
2761
                    /* Update the pointer to indicate end of buffer.  */
2762
                    b += 2;
2763
                    ret = wcs_compile_range (range_start, &p, pend, translate,
2764
                                         syntax, b, laststart);
2765
                    if (ret != REG_NOERROR) FREE_STACK_RETURN (ret);
2766
                    range_start = 0xffffffff;
2767
                  }
2768
                else if (p[0] == '-' && p[1] != ']')
2769
                  { /* This handles ranges made up of characters only.  */
2770
                    reg_errcode_t ret;
2771
 
2772
                    /* Move past the `-'.  */
2773
                    PATFETCH (c1);
2774
                    /* Allocate the space for range_start and range_end.  */
2775
                    GET_BUFFER_SPACE (2);
2776
                    /* Update the pointer to indicate end of buffer.  */
2777
                    b += 2;
2778
                    ret = wcs_compile_range (c, &p, pend, translate, syntax, b,
2779
                                         laststart);
2780
                    if (ret != REG_NOERROR) FREE_STACK_RETURN (ret);
2781
                    range_start = 0xffffffff;
2782
                  }
2783
 
2784
                /* See if we're at the beginning of a possible character
2785
                   class.  */
2786
                else if (syntax & RE_CHAR_CLASSES && c == '[' && *p == ':')
2787
                  { /* Leave room for the null.  */
2788
                    char str[CHAR_CLASS_MAX_LENGTH + 1];
2789
 
2790
                    PATFETCH (c);
2791
                    c1 = 0;
2792
 
2793
                    /* If pattern is `[[:'.  */
2794
                    if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2795
 
2796
                    for (;;)
2797
                      {
2798
                        PATFETCH (c);
2799
                        if ((c == ':' && *p == ']') || p == pend)
2800
                          break;
2801
                        if (c1 < CHAR_CLASS_MAX_LENGTH)
2802
                          str[c1++] = c;
2803
                        else
2804
                          /* This is in any case an invalid class name.  */
2805
                          str[0] = '\0';
2806
                      }
2807
                    str[c1] = '\0';
2808
 
2809
                    /* If isn't a word bracketed by `[:' and `:]':
2810
                       undo the ending character, the letters, and leave
2811
                       the leading `:' and `[' (but store them as character).  */
2812
                    if (c == ':' && *p == ']')
2813
                      {
2814
                        wctype_t wt;
2815
                        uintptr_t alignedp;
2816
 
2817
                        /* Query the character class as wctype_t.  */
2818
                        wt = IS_CHAR_CLASS (str);
2819
                        if (wt == 0)
2820
                          FREE_STACK_RETURN (REG_ECTYPE);
2821
 
2822
                        /* Throw away the ] at the end of the character
2823
                           class.  */
2824
                        PATFETCH (c);
2825
 
2826
                        if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2827
 
2828
                        /* Allocate the space for character class.  */
2829
                        GET_BUFFER_SPACE(CHAR_CLASS_SIZE);
2830
                        /* Update the pointer to indicate end of buffer.  */
2831
                        b += CHAR_CLASS_SIZE;
2832
                        /* Move data which follow character classes
2833
                            not to violate the data.  */
2834
                        insert_space(CHAR_CLASS_SIZE,
2835
                                     laststart + 6 + laststart[1],
2836
                                     b - 1);
2837
                        alignedp = ((uintptr_t)(laststart + 6 + laststart[1])
2838
                                    + __alignof__(wctype_t) - 1)
2839
                                    & ~(uintptr_t)(__alignof__(wctype_t) - 1);
2840
                        /* Store the character class.  */
2841
                        *((wctype_t*)alignedp) = wt;
2842
                        /* Update length of char_classes */
2843
                        laststart[1] += CHAR_CLASS_SIZE;
2844
 
2845
                        had_char_class = true;
2846
                      }
2847
                    else
2848
                      {
2849
                        c1++;
2850
                        while (c1--)
2851
                          PATUNFETCH;
2852
                        BUF_PUSH ('[');
2853
                        BUF_PUSH (':');
2854
                        laststart[5] += 2; /* Update the length of characters  */
2855
                        range_start = ':';
2856
                        had_char_class = false;
2857
                      }
2858
                  }
2859
                else if (syntax & RE_CHAR_CLASSES && c == '[' && (*p == '='
2860
                                                          || *p == '.'))
2861
                  {
2862
                    CHAR_T str[128];    /* Should be large enough.  */
2863
                    CHAR_T delim = *p; /* '=' or '.'  */
2864
# ifdef _LIBC
2865
                    uint32_t nrules =
2866
                      _NL_CURRENT_WORD (LC_COLLATE, _NL_COLLATE_NRULES);
2867
# endif
2868
                    PATFETCH (c);
2869
                    c1 = 0;
2870
 
2871
                    /* If pattern is `[[=' or '[[.'.  */
2872
                    if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2873
 
2874
                    for (;;)
2875
                      {
2876
                        PATFETCH (c);
2877
                        if ((c == delim && *p == ']') || p == pend)
2878
                          break;
2879
                        if (c1 < sizeof (str) - 1)
2880
                          str[c1++] = c;
2881
                        else
2882
                          /* This is in any case an invalid class name.  */
2883
                          str[0] = '\0';
2884
                      }
2885
                    str[c1] = '\0';
2886
 
2887
                    if (c == delim && *p == ']' && str[0] != '\0')
2888
                      {
2889
                        unsigned int i, offset;
2890
                        /* If we have no collation data we use the default
2891
                           collation in which each character is in a class
2892
                           by itself.  It also means that ASCII is the
2893
                           character set and therefore we cannot have character
2894
                           with more than one byte in the multibyte
2895
                           representation.  */
2896
 
2897
                        /* If not defined _LIBC, we push the name and
2898
                           `\0' for the sake of matching performance.  */
2899
                        int datasize = c1 + 1;
2900
 
2901
# ifdef _LIBC
2902
                        int32_t idx = 0;
2903
                        if (nrules == 0)
2904
# endif
2905
                          {
2906
                            if (c1 != 1)
2907
                              FREE_STACK_RETURN (REG_ECOLLATE);
2908
                          }
2909
# ifdef _LIBC
2910
                        else
2911
                          {
2912
                            const int32_t *table;
2913
                            const int32_t *weights;
2914
                            const int32_t *extra;
2915
                            const int32_t *indirect;
2916
                            wint_t *cp;
2917
 
2918
                            /* This #include defines a local function!  */
2919
#  include <locale/weightwc.h>
2920
 
2921
                            if(delim == '=')
2922
                              {
2923
                                /* We push the index for equivalence class.  */
2924
                                cp = (wint_t*)str;
2925
 
2926
                                table = (const int32_t *)
2927
                                  _NL_CURRENT (LC_COLLATE,
2928
                                               _NL_COLLATE_TABLEWC);
2929
                                weights = (const int32_t *)
2930
                                  _NL_CURRENT (LC_COLLATE,
2931
                                               _NL_COLLATE_WEIGHTWC);
2932
                                extra = (const int32_t *)
2933
                                  _NL_CURRENT (LC_COLLATE,
2934
                                               _NL_COLLATE_EXTRAWC);
2935
                                indirect = (const int32_t *)
2936
                                  _NL_CURRENT (LC_COLLATE,
2937
                                               _NL_COLLATE_INDIRECTWC);
2938
 
2939
                                idx = findidx ((const wint_t**)&cp);
2940
                                if (idx == 0 || cp < (wint_t*) str + c1)
2941
                                  /* This is no valid character.  */
2942
                                  FREE_STACK_RETURN (REG_ECOLLATE);
2943
 
2944
                                str[0] = (wchar_t)idx;
2945
                              }
2946
                            else /* delim == '.' */
2947
                              {
2948
                                /* We push collation sequence value
2949
                                   for collating symbol.  */
2950
                                int32_t table_size;
2951
                                const int32_t *symb_table;
2952
                                const unsigned char *extra;
2953
                                int32_t idx;
2954
                                int32_t elem;
2955
                                int32_t second;
2956
                                int32_t hash;
2957
                                char char_str[c1];
2958
 
2959
                                /* We have to convert the name to a single-byte
2960
                                   string.  This is possible since the names
2961
                                   consist of ASCII characters and the internal
2962
                                   representation is UCS4.  */
2963
                                for (i = 0; i < c1; ++i)
2964
                                  char_str[i] = str[i];
2965
 
2966
                                table_size =
2967
                                  _NL_CURRENT_WORD (LC_COLLATE,
2968
                                                    _NL_COLLATE_SYMB_HASH_SIZEMB);
2969
                                symb_table = (const int32_t *)
2970
                                  _NL_CURRENT (LC_COLLATE,
2971
                                               _NL_COLLATE_SYMB_TABLEMB);
2972
                                extra = (const unsigned char *)
2973
                                  _NL_CURRENT (LC_COLLATE,
2974
                                               _NL_COLLATE_SYMB_EXTRAMB);
2975
 
2976
                                /* Locate the character in the hashing table.  */
2977
                                hash = elem_hash (char_str, c1);
2978
 
2979
                                idx = 0;
2980
                                elem = hash % table_size;
2981
                                second = hash % (table_size - 2);
2982
                                while (symb_table[2 * elem] != 0)
2983
                                  {
2984
                                    /* First compare the hashing value.  */
2985
                                    if (symb_table[2 * elem] == hash
2986
                                        && c1 == extra[symb_table[2 * elem + 1]]
2987
                                        && memcmp (char_str,
2988
                                                   &extra[symb_table[2 * elem + 1]
2989
                                                         + 1], c1) == 0)
2990
                                      {
2991
                                        /* Yep, this is the entry.  */
2992
                                        idx = symb_table[2 * elem + 1];
2993
                                        idx += 1 + extra[idx];
2994
                                        break;
2995
                                      }
2996
 
2997
                                    /* Next entry.  */
2998
                                    elem += second;
2999
                                  }
3000
 
3001
                                if (symb_table[2 * elem] != 0)
3002
                                  {
3003
                                    /* Compute the index of the byte sequence
3004
                                       in the table.  */
3005
                                    idx += 1 + extra[idx];
3006
                                    /* Adjust for the alignment.  */
3007
                                    idx = (idx + 3) & ~3;
3008
 
3009
                                    str[0] = (wchar_t) idx + 4;
3010
                                  }
3011
                                else if (symb_table[2 * elem] == 0 && c1 == 1)
3012
                                  {
3013
                                    /* No valid character.  Match it as a
3014
                                       single byte character.  */
3015
                                    had_char_class = false;
3016
                                    BUF_PUSH(str[0]);
3017
                                    /* Update the length of characters  */
3018
                                    laststart[5]++;
3019
                                    range_start = str[0];
3020
 
3021
                                    /* Throw away the ] at the end of the
3022
                                       collating symbol.  */
3023
                                    PATFETCH (c);
3024
                                    /* exit from the switch block.  */
3025
                                    continue;
3026
                                  }
3027
                                else
3028
                                  FREE_STACK_RETURN (REG_ECOLLATE);
3029
                              }
3030
                            datasize = 1;
3031
                          }
3032
# endif
3033
                        /* Throw away the ] at the end of the equivalence
3034
                           class (or collating symbol).  */
3035
                        PATFETCH (c);
3036
 
3037
                        /* Allocate the space for the equivalence class
3038
                           (or collating symbol) (and '\0' if needed).  */
3039
                        GET_BUFFER_SPACE(datasize);
3040
                        /* Update the pointer to indicate end of buffer.  */
3041
                        b += datasize;
3042
 
3043
                        if (delim == '=')
3044
                          { /* equivalence class  */
3045
                            /* Calculate the offset of char_ranges,
3046
                               which is next to equivalence_classes.  */
3047
                            offset = laststart[1] + laststart[2]
3048
                              + laststart[3] +6;
3049
                            /* Insert space.  */
3050
                            insert_space(datasize, laststart + offset, b - 1);
3051
 
3052
                            /* Write the equivalence_class and \0.  */
3053
                            for (i = 0 ; i < datasize ; i++)
3054
                              laststart[offset + i] = str[i];
3055
 
3056
                            /* Update the length of equivalence_classes.  */
3057
                            laststart[3] += datasize;
3058
                            had_char_class = true;
3059
                          }
3060
                        else /* delim == '.' */
3061
                          { /* collating symbol  */
3062
                            /* Calculate the offset of the equivalence_classes,
3063
                               which is next to collating_symbols.  */
3064
                            offset = laststart[1] + laststart[2] + 6;
3065
                            /* Insert space and write the collationg_symbol
3066
                               and \0.  */
3067
                            insert_space(datasize, laststart + offset, b-1);
3068
                            for (i = 0 ; i < datasize ; i++)
3069
                              laststart[offset + i] = str[i];
3070
 
3071
                            /* In re_match_2_internal if range_start < -1, we
3072
                               assume -range_start is the offset of the
3073
                               collating symbol which is specified as
3074
                               the character of the range start.  So we assign
3075
                               -(laststart[1] + laststart[2] + 6) to
3076
                               range_start.  */
3077
                            range_start = -(laststart[1] + laststart[2] + 6);
3078
                            /* Update the length of collating_symbol.  */
3079
                            laststart[2] += datasize;
3080
                            had_char_class = false;
3081
                          }
3082
                      }
3083
                    else
3084
                      {
3085
                        c1++;
3086
                        while (c1--)
3087
                          PATUNFETCH;
3088
                        BUF_PUSH ('[');
3089
                        BUF_PUSH (delim);
3090
                        laststart[5] += 2; /* Update the length of characters  */
3091
                        range_start = delim;
3092
                        had_char_class = false;
3093
                      }
3094
                  }
3095
                else
3096
                  {
3097
                    had_char_class = false;
3098
                    BUF_PUSH(c);
3099
                    laststart[5]++;  /* Update the length of characters  */
3100
                    range_start = c;
3101
                  }
3102
              }
3103
 
3104
#else /* BYTE */
3105
            /* Ensure that we have enough space to push a charset: the
3106
               opcode, the length count, and the bitset; 34 bytes in all.  */
3107
            GET_BUFFER_SPACE (34);
3108
 
3109
            laststart = b;
3110
 
3111
            /* We test `*p == '^' twice, instead of using an if
3112
               statement, so we only need one BUF_PUSH.  */
3113
            BUF_PUSH (*p == '^' ? charset_not : charset);
3114
            if (*p == '^')
3115
              p++;
3116
 
3117
            /* Remember the first position in the bracket expression.  */
3118
            p1 = p;
3119
 
3120
            /* Push the number of bytes in the bitmap.  */
3121
            BUF_PUSH ((1 << BYTEWIDTH) / BYTEWIDTH);
3122
 
3123
            /* Clear the whole map.  */
3124
            bzero (b, (1 << BYTEWIDTH) / BYTEWIDTH);
3125
 
3126
            /* charset_not matches newline according to a syntax bit.  */
3127
            if ((re_opcode_t) b[-2] == charset_not
3128
                && (syntax & RE_HAT_LISTS_NOT_NEWLINE))
3129
              SET_LIST_BIT ('\n');
3130
 
3131
            /* Read in characters and ranges, setting map bits.  */
3132
            for (;;)
3133
              {
3134
                if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
3135
 
3136
                PATFETCH (c);
3137
 
3138
                /* \ might escape characters inside [...] and [^...].  */
3139
                if ((syntax & RE_BACKSLASH_ESCAPE_IN_LISTS) && c == '\\')
3140
                  {
3141
                    if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
3142
 
3143
                    PATFETCH (c1);
3144
                    SET_LIST_BIT (c1);
3145
                    range_start = c1;
3146
                    continue;
3147
                  }
3148
 
3149
                /* Could be the end of the bracket expression.  If it's
3150
                   not (i.e., when the bracket expression is `[]' so
3151
                   far), the ']' character bit gets set way below.  */
3152
                if (c == ']' && p != p1 + 1)
3153
                  break;
3154
 
3155
                /* Look ahead to see if it's a range when the last thing
3156
                   was a character class.  */
3157
                if (had_char_class && c == '-' && *p != ']')
3158
                  FREE_STACK_RETURN (REG_ERANGE);
3159
 
3160
                /* Look ahead to see if it's a range when the last thing
3161
                   was a character: if this is a hyphen not at the
3162
                   beginning or the end of a list, then it's the range
3163
                   operator.  */
3164
                if (c == '-'
3165
                    && !(p - 2 >= pattern && p[-2] == '[')
3166
                    && !(p - 3 >= pattern && p[-3] == '[' && p[-2] == '^')
3167
                    && *p != ']')
3168
                  {
3169
                    reg_errcode_t ret
3170
                      = byte_compile_range (range_start, &p, pend, translate,
3171
                                            syntax, b);
3172
                    if (ret != REG_NOERROR) FREE_STACK_RETURN (ret);
3173
                    range_start = 0xffffffff;
3174
                  }
3175
 
3176
                else if (p[0] == '-' && p[1] != ']')
3177
                  { /* This handles ranges made up of characters only.  */
3178
                    reg_errcode_t ret;
3179
 
3180
                    /* Move past the `-'.  */
3181
                    PATFETCH (c1);
3182
 
3183
                    ret = byte_compile_range (c, &p, pend, translate, syntax, b);
3184
                    if (ret != REG_NOERROR) FREE_STACK_RETURN (ret);
3185
                    range_start = 0xffffffff;
3186
                  }
3187
 
3188
                /* See if we're at the beginning of a possible character
3189
                   class.  */
3190
 
3191
                else if (syntax & RE_CHAR_CLASSES && c == '[' && *p == ':')
3192
                  { /* Leave room for the null.  */
3193
                    char str[CHAR_CLASS_MAX_LENGTH + 1];
3194
 
3195
                    PATFETCH (c);
3196
                    c1 = 0;
3197
 
3198
                    /* If pattern is `[[:'.  */
3199
                    if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
3200
 
3201
                    for (;;)
3202
                      {
3203
                        PATFETCH (c);
3204
                        if ((c == ':' && *p == ']') || p == pend)
3205
                          break;
3206
                        if (c1 < CHAR_CLASS_MAX_LENGTH)
3207
                          str[c1++] = c;
3208
                        else
3209
                          /* This is in any case an invalid class name.  */
3210
                          str[0] = '\0';
3211
                      }
3212
                    str[c1] = '\0';
3213
 
3214
                    /* If isn't a word bracketed by `[:' and `:]':
3215
                       undo the ending character, the letters, and leave
3216
                       the leading `:' and `[' (but set bits for them).  */
3217
                    if (c == ':' && *p == ']')
3218
                      {
3219
# if defined _LIBC || WIDE_CHAR_SUPPORT
3220
                        boolean is_lower = STREQ (str, "lower");
3221
                        boolean is_upper = STREQ (str, "upper");
3222
                        wctype_t wt;
3223
                        int ch;
3224
 
3225
                        wt = IS_CHAR_CLASS (str);
3226
                        if (wt == 0)
3227
                          FREE_STACK_RETURN (REG_ECTYPE);
3228
 
3229
                        /* Throw away the ] at the end of the character
3230
                           class.  */
3231
                        PATFETCH (c);
3232
 
3233
                        if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
3234
 
3235
                        for (ch = 0; ch < 1 << BYTEWIDTH; ++ch)
3236
                          {
3237
#  ifdef _LIBC
3238
                            if (__iswctype (__btowc (ch), wt))
3239
                              SET_LIST_BIT (ch);
3240
#  else
3241
                            if (iswctype (btowc (ch), wt))
3242
                              SET_LIST_BIT (ch);
3243
#  endif
3244
 
3245
                            if (translate && (is_upper || is_lower)
3246
                                && (ISUPPER (ch) || ISLOWER (ch)))
3247
                              SET_LIST_BIT (ch);
3248
                          }
3249
 
3250
                        had_char_class = true;
3251
# else
3252
                        int ch;
3253
                        boolean is_alnum = STREQ (str, "alnum");
3254
                        boolean is_alpha = STREQ (str, "alpha");
3255
                        boolean is_blank = STREQ (str, "blank");
3256
                        boolean is_cntrl = STREQ (str, "cntrl");
3257
                        boolean is_digit = STREQ (str, "digit");
3258
                        boolean is_graph = STREQ (str, "graph");
3259
                        boolean is_lower = STREQ (str, "lower");
3260
                        boolean is_print = STREQ (str, "print");
3261
                        boolean is_punct = STREQ (str, "punct");
3262
                        boolean is_space = STREQ (str, "space");
3263
                        boolean is_upper = STREQ (str, "upper");
3264
                        boolean is_xdigit = STREQ (str, "xdigit");
3265
 
3266
                        if (!IS_CHAR_CLASS (str))
3267
                          FREE_STACK_RETURN (REG_ECTYPE);
3268
 
3269
                        /* Throw away the ] at the end of the character
3270
                           class.  */
3271
                        PATFETCH (c);
3272
 
3273
                        if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
3274
 
3275
                        for (ch = 0; ch < 1 << BYTEWIDTH; ch++)
3276
                          {
3277
                            /* This was split into 3 if's to
3278
                               avoid an arbitrary limit in some compiler.  */
3279
                            if (   (is_alnum  && ISALNUM (ch))
3280
                                || (is_alpha  && ISALPHA (ch))
3281
                                || (is_blank  && ISBLANK (ch))
3282
                                || (is_cntrl  && ISCNTRL (ch)))
3283
                              SET_LIST_BIT (ch);
3284
                            if (   (is_digit  && ISDIGIT (ch))
3285
                                || (is_graph  && ISGRAPH (ch))
3286
                                || (is_lower  && ISLOWER (ch))
3287
                                || (is_print  && ISPRINT (ch)))
3288
                              SET_LIST_BIT (ch);
3289
                            if (   (is_punct  && ISPUNCT (ch))
3290
                                || (is_space  && ISSPACE (ch))
3291
                                || (is_upper  && ISUPPER (ch))
3292
                                || (is_xdigit && ISXDIGIT (ch)))
3293
                              SET_LIST_BIT (ch);
3294
                            if (   translate && (is_upper || is_lower)
3295
                                && (ISUPPER (ch) || ISLOWER (ch)))
3296
                              SET_LIST_BIT (ch);
3297
                          }
3298
                        had_char_class = true;
3299
# endif /* libc || wctype.h */
3300
                      }
3301
                    else
3302
                      {
3303
                        c1++;
3304
                        while (c1--)
3305
                          PATUNFETCH;
3306
                        SET_LIST_BIT ('[');
3307
                        SET_LIST_BIT (':');
3308
                        range_start = ':';
3309
                        had_char_class = false;
3310
                      }
3311
                  }
3312
                else if (syntax & RE_CHAR_CLASSES && c == '[' && *p == '=')
3313
                  {
3314
                    unsigned char str[MB_LEN_MAX + 1];
3315
# ifdef _LIBC
3316
                    uint32_t nrules =
3317
                      _NL_CURRENT_WORD (LC_COLLATE, _NL_COLLATE_NRULES);
3318
# endif
3319
 
3320
                    PATFETCH (c);
3321
                    c1 = 0;
3322
 
3323
                    /* If pattern is `[[='.  */
3324
                    if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
3325
 
3326
                    for (;;)
3327
                      {
3328
                        PATFETCH (c);
3329
                        if ((c == '=' && *p == ']') || p == pend)
3330
                          break;
3331
                        if (c1 < MB_LEN_MAX)
3332
                          str[c1++] = c;
3333
                        else
3334
                          /* This is in any case an invalid class name.  */
3335
                          str[0] = '\0';
3336
                      }
3337
                    str[c1] = '\0';
3338
 
3339
                    if (c == '=' && *p == ']' && str[0] != '\0')
3340
                      {
3341
                        /* If we have no collation data we use the default
3342
                           collation in which each character is in a class
3343
                           by itself.  It also means that ASCII is the
3344
                           character set and therefore we cannot have character
3345
                           with more than one byte in the multibyte
3346
                           representation.  */
3347
# ifdef _LIBC
3348
                        if (nrules == 0)
3349
# endif
3350
                          {
3351
                            if (c1 != 1)
3352
                              FREE_STACK_RETURN (REG_ECOLLATE);
3353
 
3354
                            /* Throw away the ] at the end of the equivalence
3355
                               class.  */
3356
                            PATFETCH (c);
3357
 
3358
                            /* Set the bit for the character.  */
3359
                            SET_LIST_BIT (str[0]);
3360
                          }
3361
# ifdef _LIBC
3362
                        else
3363
                          {
3364
                            /* Try to match the byte sequence in `str' against
3365
                               those known to the collate implementation.
3366
                               First find out whether the bytes in `str' are
3367
                               actually from exactly one character.  */
3368
                            const int32_t *table;
3369
                            const unsigned char *weights;
3370
                            const unsigned char *extra;
3371
                            const int32_t *indirect;
3372
                            int32_t idx;
3373
                            const unsigned char *cp = str;
3374
                            int ch;
3375
 
3376
                            /* This #include defines a local function!  */
3377
#  include <locale/weight.h>
3378
 
3379
                            table = (const int32_t *)
3380
                              _NL_CURRENT (LC_COLLATE, _NL_COLLATE_TABLEMB);
3381
                            weights = (const unsigned char *)
3382
                              _NL_CURRENT (LC_COLLATE, _NL_COLLATE_WEIGHTMB);
3383
                            extra = (const unsigned char *)
3384
                              _NL_CURRENT (LC_COLLATE, _NL_COLLATE_EXTRAMB);
3385
                            indirect = (const int32_t *)
3386
                              _NL_CURRENT (LC_COLLATE, _NL_COLLATE_INDIRECTMB);
3387
 
3388
                            idx = findidx (&cp);
3389
                            if (idx == 0 || cp < str + c1)
3390
                              /* This is no valid character.  */
3391
                              FREE_STACK_RETURN (REG_ECOLLATE);
3392
 
3393
                            /* Throw away the ] at the end of the equivalence
3394
                               class.  */
3395
                            PATFETCH (c);
3396
 
3397
                            /* Now we have to go throught the whole table
3398
                               and find all characters which have the same
3399
                               first level weight.
3400
 
3401
                               XXX Note that this is not entirely correct.
3402
                               we would have to match multibyte sequences
3403
                               but this is not possible with the current
3404
                               implementation.  */
3405
                            for (ch = 1; ch < 256; ++ch)
3406
                              /* XXX This test would have to be changed if we
3407
                                 would allow matching multibyte sequences.  */
3408
                              if (table[ch] > 0)
3409
                                {
3410
                                  int32_t idx2 = table[ch];
3411
                                  size_t len = weights[idx2];
3412
 
3413
                                  /* Test whether the lenghts match.  */
3414
                                  if (weights[idx] == len)
3415
                                    {
3416
                                      /* They do.  New compare the bytes of
3417
                                         the weight.  */
3418
                                      size_t cnt = 0;
3419
 
3420
                                      while (cnt < len
3421
                                             && (weights[idx + 1 + cnt]
3422
                                                 == weights[idx2 + 1 + cnt]))
3423
                                        ++cnt;
3424
 
3425
                                      if (cnt == len)
3426
                                        /* They match.  Mark the character as
3427
                                           acceptable.  */
3428
                                        SET_LIST_BIT (ch);
3429
                                    }
3430
                                }
3431
                          }
3432
# endif
3433
                        had_char_class = true;
3434
                      }
3435
                    else
3436
                      {
3437
                        c1++;
3438
                        while (c1--)
3439
                          PATUNFETCH;
3440
                        SET_LIST_BIT ('[');
3441
                        SET_LIST_BIT ('=');
3442
                        range_start = '=';
3443
                        had_char_class = false;
3444
                      }
3445
                  }
3446
                else if (syntax & RE_CHAR_CLASSES && c == '[' && *p == '.')
3447
                  {
3448
                    unsigned char str[128];     /* Should be large enough.  */
3449
# ifdef _LIBC
3450
                    uint32_t nrules =
3451
                      _NL_CURRENT_WORD (LC_COLLATE, _NL_COLLATE_NRULES);
3452
# endif
3453
 
3454
                    PATFETCH (c);
3455
                    c1 = 0;
3456
 
3457
                    /* If pattern is `[[.'.  */
3458
                    if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
3459
 
3460
                    for (;;)
3461
                      {
3462
                        PATFETCH (c);
3463
                        if ((c == '.' && *p == ']') || p == pend)
3464
                          break;
3465
                        if (c1 < sizeof (str))
3466
                          str[c1++] = c;
3467
                        else
3468
                          /* This is in any case an invalid class name.  */
3469
                          str[0] = '\0';
3470
                      }
3471
                    str[c1] = '\0';
3472
 
3473
                    if (c == '.' && *p == ']' && str[0] != '\0')
3474
                      {
3475
                        /* If we have no collation data we use the default
3476
                           collation in which each character is the name
3477
                           for its own class which contains only the one
3478
                           character.  It also means that ASCII is the
3479
                           character set and therefore we cannot have character
3480
                           with more than one byte in the multibyte
3481
                           representation.  */
3482
# ifdef _LIBC
3483
                        if (nrules == 0)
3484
# endif
3485
                          {
3486
                            if (c1 != 1)
3487
                              FREE_STACK_RETURN (REG_ECOLLATE);
3488
 
3489
                            /* Throw away the ] at the end of the equivalence
3490
                               class.  */
3491
                            PATFETCH (c);
3492
 
3493
                            /* Set the bit for the character.  */
3494
                            SET_LIST_BIT (str[0]);
3495
                            range_start = ((const unsigned char *) str)[0];
3496
                          }
3497
# ifdef _LIBC
3498
                        else
3499
                          {
3500
                            /* Try to match the byte sequence in `str' against
3501
                               those known to the collate implementation.
3502
                               First find out whether the bytes in `str' are
3503
                               actually from exactly one character.  */
3504
                            int32_t table_size;
3505
                            const int32_t *symb_table;
3506
                            const unsigned char *extra;
3507
                            int32_t idx;
3508
                            int32_t elem;
3509
                            int32_t second;
3510
                            int32_t hash;
3511
 
3512
                            table_size =
3513
                              _NL_CURRENT_WORD (LC_COLLATE,
3514
                                                _NL_COLLATE_SYMB_HASH_SIZEMB);
3515
                            symb_table = (const int32_t *)
3516
                              _NL_CURRENT (LC_COLLATE,
3517
                                           _NL_COLLATE_SYMB_TABLEMB);
3518
                            extra = (const unsigned char *)
3519
                              _NL_CURRENT (LC_COLLATE,
3520
                                           _NL_COLLATE_SYMB_EXTRAMB);
3521
 
3522
                            /* Locate the character in the hashing table.  */
3523
                            hash = elem_hash (str, c1);
3524
 
3525
                            idx = 0;
3526
                            elem = hash % table_size;
3527
                            second = hash % (table_size - 2);
3528
                            while (symb_table[2 * elem] != 0)
3529
                              {
3530
                                /* First compare the hashing value.  */
3531
                                if (symb_table[2 * elem] == hash
3532
                                    && c1 == extra[symb_table[2 * elem + 1]]
3533
                                    && memcmp (str,
3534
                                               &extra[symb_table[2 * elem + 1]
3535
                                                     + 1],
3536
                                               c1) == 0)
3537
                                  {
3538
                                    /* Yep, this is the entry.  */
3539
                                    idx = symb_table[2 * elem + 1];
3540
                                    idx += 1 + extra[idx];
3541
                                    break;
3542
                                  }
3543
 
3544
                                /* Next entry.  */
3545
                                elem += second;
3546
                              }
3547
 
3548
                            if (symb_table[2 * elem] == 0)
3549
                              /* This is no valid character.  */
3550
                              FREE_STACK_RETURN (REG_ECOLLATE);
3551
 
3552
                            /* Throw away the ] at the end of the equivalence
3553
                               class.  */
3554
                            PATFETCH (c);
3555
 
3556
                            /* Now add the multibyte character(s) we found
3557
                               to the accept list.
3558
 
3559
                               XXX Note that this is not entirely correct.
3560
                               we would have to match multibyte sequences
3561
                               but this is not possible with the current
3562
                               implementation.  Also, we have to match
3563
                               collating symbols, which expand to more than
3564
                               one file, as a whole and not allow the
3565
                               individual bytes.  */
3566
                            c1 = extra[idx++];
3567
                            if (c1 == 1)
3568
                              range_start = extra[idx];
3569
                            while (c1-- > 0)
3570
                              {
3571
                                SET_LIST_BIT (extra[idx]);
3572
                                ++idx;
3573
                              }
3574
                          }
3575
# endif
3576
                        had_char_class = false;
3577
                      }
3578
                    else
3579
                      {
3580
                        c1++;
3581
                        while (c1--)
3582
                          PATUNFETCH;
3583
                        SET_LIST_BIT ('[');
3584
                        SET_LIST_BIT ('.');
3585
                        range_start = '.';
3586
                        had_char_class = false;
3587
                      }
3588
                  }
3589
                else
3590
                  {
3591
                    had_char_class = false;
3592
                    SET_LIST_BIT (c);
3593
                    range_start = c;
3594
                  }
3595
              }
3596
 
3597
            /* Discard any (non)matching list bytes that are all 0 at the
3598
               end of the map.  Decrease the map-length byte too.  */
3599
            while ((int) b[-1] > 0 && b[b[-1] - 1] == 0)
3600
              b[-1]--;
3601
            b += b[-1];
3602
#endif /* WCHAR */
3603
          }
3604
          break;
3605
 
3606
 
3607
        case '(':
3608
          if (syntax & RE_NO_BK_PARENS)
3609
            goto handle_open;
3610
          else
3611
            goto normal_char;
3612
 
3613
 
3614
        case ')':
3615
          if (syntax & RE_NO_BK_PARENS)
3616
            goto handle_close;
3617
          else
3618
            goto normal_char;
3619
 
3620
 
3621
        case '\n':
3622
          if (syntax & RE_NEWLINE_ALT)
3623
            goto handle_alt;
3624
          else
3625
            goto normal_char;
3626
 
3627
 
3628
        case '|':
3629
          if (syntax & RE_NO_BK_VBAR)
3630
            goto handle_alt;
3631
          else
3632
            goto normal_char;
3633
 
3634
 
3635
        case '{':
3636
           if (syntax & RE_INTERVALS && syntax & RE_NO_BK_BRACES)
3637
             goto handle_interval;
3638
           else
3639
             goto normal_char;
3640
 
3641
 
3642
        case '\\':
3643
          if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
3644
 
3645
          /* Do not translate the character after the \, so that we can
3646
             distinguish, e.g., \B from \b, even if we normally would
3647
             translate, e.g., B to b.  */
3648
          PATFETCH_RAW (c);
3649
 
3650
          switch (c)
3651
            {
3652
            case '(':
3653
              if (syntax & RE_NO_BK_PARENS)
3654
                goto normal_backslash;
3655
 
3656
            handle_open:
3657
              bufp->re_nsub++;
3658
              regnum++;
3659
 
3660
              if (COMPILE_STACK_FULL)
3661
                {
3662
                  RETALLOC (compile_stack.stack, compile_stack.size << 1,
3663
                            compile_stack_elt_t);
3664
                  if (compile_stack.stack == NULL) return REG_ESPACE;
3665
 
3666
                  compile_stack.size <<= 1;
3667
                }
3668
 
3669
              /* These are the values to restore when we hit end of this
3670
                 group.  They are all relative offsets, so that if the
3671
                 whole pattern moves because of realloc, they will still
3672
                 be valid.  */
3673
              COMPILE_STACK_TOP.begalt_offset = begalt - COMPILED_BUFFER_VAR;
3674
              COMPILE_STACK_TOP.fixup_alt_jump
3675
                = fixup_alt_jump ? fixup_alt_jump - COMPILED_BUFFER_VAR + 1 : 0;
3676
              COMPILE_STACK_TOP.laststart_offset = b - COMPILED_BUFFER_VAR;
3677
              COMPILE_STACK_TOP.regnum = regnum;
3678
 
3679
              /* We will eventually replace the 0 with the number of
3680
                 groups inner to this one.  But do not push a
3681
                 start_memory for groups beyond the last one we can
3682
                 represent in the compiled pattern.  */
3683
              if (regnum <= MAX_REGNUM)
3684
                {
3685
                  COMPILE_STACK_TOP.inner_group_offset = b
3686
                    - COMPILED_BUFFER_VAR + 2;
3687
                  BUF_PUSH_3 (start_memory, regnum, 0);
3688
                }
3689
 
3690
              compile_stack.avail++;
3691
 
3692
              fixup_alt_jump = 0;
3693
              laststart = 0;
3694
              begalt = b;
3695
              /* If we've reached MAX_REGNUM groups, then this open
3696
                 won't actually generate any code, so we'll have to
3697
                 clear pending_exact explicitly.  */
3698
              pending_exact = 0;
3699
              break;
3700
 
3701
 
3702
            case ')':
3703
              if (syntax & RE_NO_BK_PARENS) goto normal_backslash;
3704
 
3705
              if (COMPILE_STACK_EMPTY)
3706
                {
3707
                  if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
3708
                    goto normal_backslash;
3709
                  else
3710
                    FREE_STACK_RETURN (REG_ERPAREN);
3711
                }
3712
 
3713
            handle_close:
3714
              if (fixup_alt_jump)
3715
                { /* Push a dummy failure point at the end of the
3716
                     alternative for a possible future
3717
                     `pop_failure_jump' to pop.  See comments at
3718
                     `push_dummy_failure' in `re_match_2'.  */
3719
                  BUF_PUSH (push_dummy_failure);
3720
 
3721
                  /* We allocated space for this jump when we assigned
3722
                     to `fixup_alt_jump', in the `handle_alt' case below.  */
3723
                  STORE_JUMP (jump_past_alt, fixup_alt_jump, b - 1);
3724
                }
3725
 
3726
              /* See similar code for backslashed left paren above.  */
3727
              if (COMPILE_STACK_EMPTY)
3728
                {
3729
                  if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
3730
                    goto normal_char;
3731
                  else
3732
                    FREE_STACK_RETURN (REG_ERPAREN);
3733
                }
3734
 
3735
              /* Since we just checked for an empty stack above, this
3736
                 ``can't happen''.  */
3737
              assert (compile_stack.avail != 0);
3738
              {
3739
                /* We don't just want to restore into `regnum', because
3740
                   later groups should continue to be numbered higher,
3741
                   as in `(ab)c(de)' -- the second group is #2.  */
3742
                regnum_t this_group_regnum;
3743
 
3744
                compile_stack.avail--;
3745
                begalt = COMPILED_BUFFER_VAR + COMPILE_STACK_TOP.begalt_offset;
3746
                fixup_alt_jump
3747
                  = COMPILE_STACK_TOP.fixup_alt_jump
3748
                    ? COMPILED_BUFFER_VAR + COMPILE_STACK_TOP.fixup_alt_jump - 1
3749
                    : 0;
3750
                laststart = COMPILED_BUFFER_VAR + COMPILE_STACK_TOP.laststart_offset;
3751
                this_group_regnum = COMPILE_STACK_TOP.regnum;
3752
                /* If we've reached MAX_REGNUM groups, then this open
3753
                   won't actually generate any code, so we'll have to
3754
                   clear pending_exact explicitly.  */
3755
                pending_exact = 0;
3756
 
3757
                /* We're at the end of the group, so now we know how many
3758
                   groups were inside this one.  */
3759
                if (this_group_regnum <= MAX_REGNUM)
3760
                  {
3761
                    UCHAR_T *inner_group_loc
3762
                      = COMPILED_BUFFER_VAR + COMPILE_STACK_TOP.inner_group_offset;
3763
 
3764
                    *inner_group_loc = regnum - this_group_regnum;
3765
                    BUF_PUSH_3 (stop_memory, this_group_regnum,
3766
                                regnum - this_group_regnum);
3767
                  }
3768
              }
3769
              break;
3770
 
3771
 
3772
            case '|':                                   /* `\|'.  */
3773
              if (syntax & RE_LIMITED_OPS || syntax & RE_NO_BK_VBAR)
3774
                goto normal_backslash;
3775
            handle_alt:
3776
              if (syntax & RE_LIMITED_OPS)
3777
                goto normal_char;
3778
 
3779
              /* Insert before the previous alternative a jump which
3780
                 jumps to this alternative if the former fails.  */
3781
              GET_BUFFER_SPACE (1 + OFFSET_ADDRESS_SIZE);
3782
              INSERT_JUMP (on_failure_jump, begalt,
3783
                           b + 2 + 2 * OFFSET_ADDRESS_SIZE);
3784
              pending_exact = 0;
3785
              b += 1 + OFFSET_ADDRESS_SIZE;
3786
 
3787
              /* The alternative before this one has a jump after it
3788
                 which gets executed if it gets matched.  Adjust that
3789
                 jump so it will jump to this alternative's analogous
3790
                 jump (put in below, which in turn will jump to the next
3791
                 (if any) alternative's such jump, etc.).  The last such
3792
                 jump jumps to the correct final destination.  A picture:
3793
                          _____ _____
3794
                          |   | |   |
3795
                          |   v |   v
3796
                         a | b   | c
3797
 
3798
                 If we are at `b', then fixup_alt_jump right now points to a
3799
                 three-byte space after `a'.  We'll put in the jump, set
3800
                 fixup_alt_jump to right after `b', and leave behind three
3801
                 bytes which we'll fill in when we get to after `c'.  */
3802
 
3803
              if (fixup_alt_jump)
3804
                STORE_JUMP (jump_past_alt, fixup_alt_jump, b);
3805
 
3806
              /* Mark and leave space for a jump after this alternative,
3807
                 to be filled in later either by next alternative or
3808
                 when know we're at the end of a series of alternatives.  */
3809
              fixup_alt_jump = b;
3810
              GET_BUFFER_SPACE (1 + OFFSET_ADDRESS_SIZE);
3811
              b += 1 + OFFSET_ADDRESS_SIZE;
3812
 
3813
              laststart = 0;
3814
              begalt = b;
3815
              break;
3816
 
3817
 
3818
            case '{':
3819
              /* If \{ is a literal.  */
3820
              if (!(syntax & RE_INTERVALS)
3821
                     /* If we're at `\{' and it's not the open-interval
3822
                        operator.  */
3823
                  || (syntax & RE_NO_BK_BRACES))
3824
                goto normal_backslash;
3825
 
3826
            handle_interval:
3827
              {
3828
                /* If got here, then the syntax allows intervals.  */
3829
 
3830
                /* At least (most) this many matches must be made.  */
3831
                int lower_bound = -1, upper_bound = -1;
3832
 
3833
                /* Place in the uncompiled pattern (i.e., just after
3834
                   the '{') to go back to if the interval is invalid.  */
3835
                const CHAR_T *beg_interval = p;
3836
 
3837
                if (p == pend)
3838
                  goto invalid_interval;
3839
 
3840
                GET_UNSIGNED_NUMBER (lower_bound);
3841
 
3842
                if (c == ',')
3843
                  {
3844
                    GET_UNSIGNED_NUMBER (upper_bound);
3845
                    if (upper_bound < 0)
3846
                      upper_bound = RE_DUP_MAX;
3847
                  }
3848
                else
3849
                  /* Interval such as `{1}' => match exactly once. */
3850
                  upper_bound = lower_bound;
3851
 
3852
                if (! (0 <= lower_bound && lower_bound <= upper_bound))
3853
                  goto invalid_interval;
3854
 
3855
                if (!(syntax & RE_NO_BK_BRACES))
3856
                  {
3857
                    if (c != '\\' || p == pend)
3858
                      goto invalid_interval;
3859
                    PATFETCH (c);
3860
                  }
3861
 
3862
                if (c != '}')
3863
                  goto invalid_interval;
3864
 
3865
                /* If it's invalid to have no preceding re.  */
3866
                if (!laststart)
3867
                  {
3868
                    if (syntax & RE_CONTEXT_INVALID_OPS
3869
                        && !(syntax & RE_INVALID_INTERVAL_ORD))
3870
                      FREE_STACK_RETURN (REG_BADRPT);
3871
                    else if (syntax & RE_CONTEXT_INDEP_OPS)
3872
                      laststart = b;
3873
                    else
3874
                      goto unfetch_interval;
3875
                  }
3876
 
3877
                /* We just parsed a valid interval.  */
3878
 
3879
                if (RE_DUP_MAX < upper_bound)
3880
                  FREE_STACK_RETURN (REG_BADBR);
3881
 
3882
                /* If the upper bound is zero, don't want to succeed at
3883
                   all; jump from `laststart' to `b + 3', which will be
3884
                   the end of the buffer after we insert the jump.  */
3885
                /* ifdef WCHAR, 'b + 1 + OFFSET_ADDRESS_SIZE'
3886
                   instead of 'b + 3'.  */
3887
                 if (upper_bound == 0)
3888
                   {
3889
                     GET_BUFFER_SPACE (1 + OFFSET_ADDRESS_SIZE);
3890
                     INSERT_JUMP (jump, laststart, b + 1
3891
                                  + OFFSET_ADDRESS_SIZE);
3892
                     b += 1 + OFFSET_ADDRESS_SIZE;
3893
                   }
3894
 
3895
                 /* Otherwise, we have a nontrivial interval.  When
3896
                    we're all done, the pattern will look like:
3897
                      set_number_at <jump count> <upper bound>
3898
                      set_number_at <succeed_n count> <lower bound>
3899
                      succeed_n <after jump addr> <succeed_n count>
3900
                      <body of loop>
3901
                      jump_n <succeed_n addr> <jump count>
3902
                    (The upper bound and `jump_n' are omitted if
3903
                    `upper_bound' is 1, though.)  */
3904
                 else
3905
                   { /* If the upper bound is > 1, we need to insert
3906
                        more at the end of the loop.  */
3907
                     unsigned nbytes = 2 + 4 * OFFSET_ADDRESS_SIZE +
3908
                       (upper_bound > 1) * (2 + 4 * OFFSET_ADDRESS_SIZE);
3909
 
3910
                     GET_BUFFER_SPACE (nbytes);
3911
 
3912
                     /* Initialize lower bound of the `succeed_n', even
3913
                        though it will be set during matching by its
3914
                        attendant `set_number_at' (inserted next),
3915
                        because `re_compile_fastmap' needs to know.
3916
                        Jump to the `jump_n' we might insert below.  */
3917
                     INSERT_JUMP2 (succeed_n, laststart,
3918
                                   b + 1 + 2 * OFFSET_ADDRESS_SIZE
3919
                                   + (upper_bound > 1) * (1 + 2 * OFFSET_ADDRESS_SIZE)
3920
                                   , lower_bound);
3921
                     b += 1 + 2 * OFFSET_ADDRESS_SIZE;
3922
 
3923
                     /* Code to initialize the lower bound.  Insert
3924
                        before the `succeed_n'.  The `5' is the last two
3925
                        bytes of this `set_number_at', plus 3 bytes of
3926
                        the following `succeed_n'.  */
3927
                     /* ifdef WCHAR, The '1+2*OFFSET_ADDRESS_SIZE'
3928
                        is the 'set_number_at', plus '1+OFFSET_ADDRESS_SIZE'
3929
                        of the following `succeed_n'.  */
3930
                     PREFIX(insert_op2) (set_number_at, laststart, 1
3931
                                 + 2 * OFFSET_ADDRESS_SIZE, lower_bound, b);
3932
                     b += 1 + 2 * OFFSET_ADDRESS_SIZE;
3933
 
3934
                     if (upper_bound > 1)
3935
                       { /* More than one repetition is allowed, so
3936
                            append a backward jump to the `succeed_n'
3937
                            that starts this interval.
3938
 
3939
                            When we've reached this during matching,
3940
                            we'll have matched the interval once, so
3941
                            jump back only `upper_bound - 1' times.  */
3942
                         STORE_JUMP2 (jump_n, b, laststart
3943
                                      + 2 * OFFSET_ADDRESS_SIZE + 1,
3944
                                      upper_bound - 1);
3945
                         b += 1 + 2 * OFFSET_ADDRESS_SIZE;
3946
 
3947
                         /* The location we want to set is the second
3948
                            parameter of the `jump_n'; that is `b-2' as
3949
                            an absolute address.  `laststart' will be
3950
                            the `set_number_at' we're about to insert;
3951
                            `laststart+3' the number to set, the source
3952
                            for the relative address.  But we are
3953
                            inserting into the middle of the pattern --
3954
                            so everything is getting moved up by 5.
3955
                            Conclusion: (b - 2) - (laststart + 3) + 5,
3956
                            i.e., b - laststart.
3957
 
3958
                            We insert this at the beginning of the loop
3959
                            so that if we fail during matching, we'll
3960
                            reinitialize the bounds.  */
3961
                         PREFIX(insert_op2) (set_number_at, laststart,
3962
                                             b - laststart,
3963
                                             upper_bound - 1, b);
3964
                         b += 1 + 2 * OFFSET_ADDRESS_SIZE;
3965
                       }
3966
                   }
3967
                pending_exact = 0;
3968
                break;
3969
 
3970
              invalid_interval:
3971
                if (!(syntax & RE_INVALID_INTERVAL_ORD))
3972
                  FREE_STACK_RETURN (p == pend ? REG_EBRACE : REG_BADBR);
3973
              unfetch_interval:
3974
                /* Match the characters as literals.  */
3975
                p = beg_interval;
3976
                c = '{';
3977
                if (syntax & RE_NO_BK_BRACES)
3978
                  goto normal_char;
3979
                else
3980
                  goto normal_backslash;
3981
              }
3982
 
3983
#ifdef emacs
3984
            /* There is no way to specify the before_dot and after_dot
3985
               operators.  rms says this is ok.  --karl  */
3986
            case '=':
3987
              BUF_PUSH (at_dot);
3988
              break;
3989
 
3990
            case 's':
3991
              laststart = b;
3992
              PATFETCH (c);
3993
              BUF_PUSH_2 (syntaxspec, syntax_spec_code[c]);
3994
              break;
3995
 
3996
            case 'S':
3997
              laststart = b;
3998
              PATFETCH (c);
3999
              BUF_PUSH_2 (notsyntaxspec, syntax_spec_code[c]);
4000
              break;
4001
#endif /* emacs */
4002
 
4003
 
4004
            case 'w':
4005
              if (syntax & RE_NO_GNU_OPS)
4006
                goto normal_char;
4007
              laststart = b;
4008
              BUF_PUSH (wordchar);
4009
              break;
4010
 
4011
 
4012
            case 'W':
4013
              if (syntax & RE_NO_GNU_OPS)
4014
                goto normal_char;
4015
              laststart = b;
4016
              BUF_PUSH (notwordchar);
4017
              break;
4018
 
4019
 
4020
            case '<':
4021
              if (syntax & RE_NO_GNU_OPS)
4022
                goto normal_char;
4023
              BUF_PUSH (wordbeg);
4024
              break;
4025
 
4026
            case '>':
4027
              if (syntax & RE_NO_GNU_OPS)
4028
                goto normal_char;
4029
              BUF_PUSH (wordend);
4030
              break;
4031
 
4032
            case 'b':
4033
              if (syntax & RE_NO_GNU_OPS)
4034
                goto normal_char;
4035
              BUF_PUSH (wordbound);
4036
              break;
4037
 
4038
            case 'B':
4039
              if (syntax & RE_NO_GNU_OPS)
4040
                goto normal_char;
4041
              BUF_PUSH (notwordbound);
4042
              break;
4043
 
4044
            case '`':
4045
              if (syntax & RE_NO_GNU_OPS)
4046
                goto normal_char;
4047
              BUF_PUSH (begbuf);
4048
              break;
4049
 
4050
            case '\'':
4051
              if (syntax & RE_NO_GNU_OPS)
4052
                goto normal_char;
4053
              BUF_PUSH (endbuf);
4054
              break;
4055
 
4056
            case '1': case '2': case '3': case '4': case '5':
4057
            case '6': case '7': case '8': case '9':
4058
              if (syntax & RE_NO_BK_REFS)
4059
                goto normal_char;
4060
 
4061
              c1 = c - '0';
4062
 
4063
              if (c1 > regnum)
4064
                FREE_STACK_RETURN (REG_ESUBREG);
4065
 
4066
              /* Can't back reference to a subexpression if inside of it.  */
4067
              if (group_in_compile_stack (compile_stack, (regnum_t) c1))
4068
                goto normal_char;
4069
 
4070
              laststart = b;
4071
              BUF_PUSH_2 (duplicate, c1);
4072
              break;
4073
 
4074
 
4075
            case '+':
4076
            case '?':
4077
              if (syntax & RE_BK_PLUS_QM)
4078
                goto handle_plus;
4079
              else
4080
                goto normal_backslash;
4081
 
4082
            default:
4083
            normal_backslash:
4084
              /* You might think it would be useful for \ to mean
4085
                 not to translate; but if we don't translate it
4086
                 it will never match anything.  */
4087
              c = TRANSLATE (c);
4088
              goto normal_char;
4089
            }
4090
          break;
4091
 
4092
 
4093
        default:
4094
        /* Expects the character in `c'.  */
4095
        normal_char:
4096
              /* If no exactn currently being built.  */
4097
          if (!pending_exact
4098
#ifdef WCHAR
4099
              /* If last exactn handle binary(or character) and
4100
                 new exactn handle character(or binary).  */
4101
              || is_exactn_bin != is_binary[p - 1 - pattern]
4102
#endif /* WCHAR */
4103
 
4104
              /* If last exactn not at current position.  */
4105
              || pending_exact + *pending_exact + 1 != b
4106
 
4107
              /* We have only one byte following the exactn for the count.  */
4108
              || *pending_exact == (1 << BYTEWIDTH) - 1
4109
 
4110
              /* If followed by a repetition operator.  */
4111
              || *p == '*' || *p == '^'
4112
              || ((syntax & RE_BK_PLUS_QM)
4113
                  ? *p == '\\' && (p[1] == '+' || p[1] == '?')
4114
                  : (*p == '+' || *p == '?'))
4115
              || ((syntax & RE_INTERVALS)
4116
                  && ((syntax & RE_NO_BK_BRACES)
4117
                      ? *p == '{'
4118
                      : (p[0] == '\\' && p[1] == '{'))))
4119
            {
4120
              /* Start building a new exactn.  */
4121
 
4122
              laststart = b;
4123
 
4124
#ifdef WCHAR
4125
              /* Is this exactn binary data or character? */
4126
              is_exactn_bin = is_binary[p - 1 - pattern];
4127
              if (is_exactn_bin)
4128
                  BUF_PUSH_2 (exactn_bin, 0);
4129
              else
4130
                  BUF_PUSH_2 (exactn, 0);
4131
#else
4132
              BUF_PUSH_2 (exactn, 0);
4133
#endif /* WCHAR */
4134
              pending_exact = b - 1;
4135
            }
4136
 
4137
          BUF_PUSH (c);
4138
          (*pending_exact)++;
4139
          break;
4140
        } /* switch (c) */
4141
    } /* while p != pend */
4142
 
4143
 
4144
  /* Through the pattern now.  */
4145
 
4146
  if (fixup_alt_jump)
4147
    STORE_JUMP (jump_past_alt, fixup_alt_jump, b);
4148
 
4149
  if (!COMPILE_STACK_EMPTY)
4150
    FREE_STACK_RETURN (REG_EPAREN);
4151
 
4152
  /* If we don't want backtracking, force success
4153
     the first time we reach the end of the compiled pattern.  */
4154
  if (syntax & RE_NO_POSIX_BACKTRACKING)
4155
    BUF_PUSH (succeed);
4156
 
4157
#ifdef WCHAR
4158
  free (pattern);
4159
  free (mbs_offset);
4160
  free (is_binary);
4161
#endif
4162
  free (compile_stack.stack);
4163
 
4164
  /* We have succeeded; set the length of the buffer.  */
4165
#ifdef WCHAR
4166
  bufp->used = (uintptr_t) b - (uintptr_t) COMPILED_BUFFER_VAR;
4167
#else
4168
  bufp->used = b - bufp->buffer;
4169
#endif
4170
 
4171
#ifdef DEBUG
4172
  if (debug)
4173
    {
4174
      DEBUG_PRINT1 ("\nCompiled pattern: \n");
4175
      PREFIX(print_compiled_pattern) (bufp);
4176
    }
4177
#endif /* DEBUG */
4178
 
4179
#ifndef MATCH_MAY_ALLOCATE
4180
  /* Initialize the failure stack to the largest possible stack.  This
4181
     isn't necessary unless we're trying to avoid calling alloca in
4182
     the search and match routines.  */
4183
  {
4184
    int num_regs = bufp->re_nsub + 1;
4185
 
4186
    /* Since DOUBLE_FAIL_STACK refuses to double only if the current size
4187
       is strictly greater than re_max_failures, the largest possible stack
4188
       is 2 * re_max_failures failure points.  */
4189
    if (fail_stack.size < (2 * re_max_failures * MAX_FAILURE_ITEMS))
4190
      {
4191
        fail_stack.size = (2 * re_max_failures * MAX_FAILURE_ITEMS);
4192
 
4193
# ifdef emacs
4194
        if (! fail_stack.stack)
4195
          fail_stack.stack
4196
            = (PREFIX(fail_stack_elt_t) *) xmalloc (fail_stack.size
4197
                                    * sizeof (PREFIX(fail_stack_elt_t)));
4198
        else
4199
          fail_stack.stack
4200
            = (PREFIX(fail_stack_elt_t) *) xrealloc (fail_stack.stack,
4201
                                     (fail_stack.size
4202
                                      * sizeof (PREFIX(fail_stack_elt_t))));
4203
# else /* not emacs */
4204
        if (! fail_stack.stack)
4205
          fail_stack.stack
4206
            = (PREFIX(fail_stack_elt_t) *) malloc (fail_stack.size
4207
                                   * sizeof (PREFIX(fail_stack_elt_t)));
4208
        else
4209
          fail_stack.stack
4210
            = (PREFIX(fail_stack_elt_t) *) realloc (fail_stack.stack,
4211
                                            (fail_stack.size
4212
                                     * sizeof (PREFIX(fail_stack_elt_t))));
4213
# endif /* not emacs */
4214
      }
4215
 
4216
   PREFIX(regex_grow_registers) (num_regs);
4217
  }
4218
#endif /* not MATCH_MAY_ALLOCATE */
4219
 
4220
  return REG_NOERROR;
4221
} /* regex_compile */
4222
 
4223
/* Subroutines for `regex_compile'.  */
4224
 
4225
/* Store OP at LOC followed by two-byte integer parameter ARG.  */
4226
/* ifdef WCHAR, integer parameter is 1 wchar_t.  */
4227
 
4228
static void
4229
PREFIX(store_op1) (re_opcode_t op, UCHAR_T *loc, int arg)
4230
{
4231
  *loc = (UCHAR_T) op;
4232
  STORE_NUMBER (loc + 1, arg);
4233
}
4234
 
4235
 
4236
/* Like `store_op1', but for two two-byte parameters ARG1 and ARG2.  */
4237
/* ifdef WCHAR, integer parameter is 1 wchar_t.  */
4238
 
4239
static void
4240
PREFIX(store_op2) (re_opcode_t op, UCHAR_T *loc, int arg1, int arg2)
4241
{
4242
  *loc = (UCHAR_T) op;
4243
  STORE_NUMBER (loc + 1, arg1);
4244
  STORE_NUMBER (loc + 1 + OFFSET_ADDRESS_SIZE, arg2);
4245
}
4246
 
4247
 
4248
/* Copy the bytes from LOC to END to open up three bytes of space at LOC
4249
   for OP followed by two-byte integer parameter ARG.  */
4250
/* ifdef WCHAR, integer parameter is 1 wchar_t.  */
4251
 
4252
static void
4253
PREFIX(insert_op1) (re_opcode_t op, UCHAR_T *loc, int arg, UCHAR_T *end)
4254
{
4255
  register UCHAR_T *pfrom = end;
4256
  register UCHAR_T *pto = end + 1 + OFFSET_ADDRESS_SIZE;
4257
 
4258
  while (pfrom != loc)
4259
    *--pto = *--pfrom;
4260
 
4261
  PREFIX(store_op1) (op, loc, arg);
4262
}
4263
 
4264
 
4265
/* Like `insert_op1', but for two two-byte parameters ARG1 and ARG2.  */
4266
/* ifdef WCHAR, integer parameter is 1 wchar_t.  */
4267
 
4268
static void
4269
PREFIX(insert_op2) (re_opcode_t op, UCHAR_T *loc, int arg1,
4270
                    int arg2, UCHAR_T *end)
4271
{
4272
  register UCHAR_T *pfrom = end;
4273
  register UCHAR_T *pto = end + 1 + 2 * OFFSET_ADDRESS_SIZE;
4274
 
4275
  while (pfrom != loc)
4276
    *--pto = *--pfrom;
4277
 
4278
  PREFIX(store_op2) (op, loc, arg1, arg2);
4279
}
4280
 
4281
 
4282
/* P points to just after a ^ in PATTERN.  Return true if that ^ comes
4283
   after an alternative or a begin-subexpression.  We assume there is at
4284
   least one character before the ^.  */
4285
 
4286
static boolean
4287
PREFIX(at_begline_loc_p) (const CHAR_T *pattern, const CHAR_T *p,
4288
                          reg_syntax_t syntax)
4289
{
4290
  const CHAR_T *prev = p - 2;
4291
  boolean prev_prev_backslash = prev > pattern && prev[-1] == '\\';
4292
 
4293
  return
4294
       /* After a subexpression?  */
4295
       (*prev == '(' && (syntax & RE_NO_BK_PARENS || prev_prev_backslash))
4296
       /* After an alternative?  */
4297
    || (*prev == '|' && (syntax & RE_NO_BK_VBAR || prev_prev_backslash));
4298
}
4299
 
4300
 
4301
/* The dual of at_begline_loc_p.  This one is for $.  We assume there is
4302
   at least one character after the $, i.e., `P < PEND'.  */
4303
 
4304
static boolean
4305
PREFIX(at_endline_loc_p) (const CHAR_T *p, const CHAR_T *pend,
4306
                          reg_syntax_t syntax)
4307
{
4308
  const CHAR_T *next = p;
4309
  boolean next_backslash = *next == '\\';
4310
  const CHAR_T *next_next = p + 1 < pend ? p + 1 : 0;
4311
 
4312
  return
4313
       /* Before a subexpression?  */
4314
       (syntax & RE_NO_BK_PARENS ? *next == ')'
4315
        : next_backslash && next_next && *next_next == ')')
4316
       /* Before an alternative?  */
4317
    || (syntax & RE_NO_BK_VBAR ? *next == '|'
4318
        : next_backslash && next_next && *next_next == '|');
4319
}
4320
 
4321
#else /* not INSIDE_RECURSION */
4322
 
4323
/* Returns true if REGNUM is in one of COMPILE_STACK's elements and
4324
   false if it's not.  */
4325
 
4326
static boolean
4327
group_in_compile_stack (compile_stack_type compile_stack, regnum_t regnum)
4328
{
4329
  int this_element;
4330
 
4331
  for (this_element = compile_stack.avail - 1;
4332
       this_element >= 0;
4333
       this_element--)
4334
    if (compile_stack.stack[this_element].regnum == regnum)
4335
      return true;
4336
 
4337
  return false;
4338
}
4339
#endif /* not INSIDE_RECURSION */
4340
 
4341
#ifdef INSIDE_RECURSION
4342
 
4343
#ifdef WCHAR
4344
/* This insert space, which size is "num", into the pattern at "loc".
4345
   "end" must point the end of the allocated buffer.  */
4346
static void
4347
insert_space (int num, CHAR_T *loc, CHAR_T *end)
4348
{
4349
  register CHAR_T *pto = end;
4350
  register CHAR_T *pfrom = end - num;
4351
 
4352
  while (pfrom >= loc)
4353
    *pto-- = *pfrom--;
4354
}
4355
#endif /* WCHAR */
4356
 
4357
#ifdef WCHAR
4358
static reg_errcode_t
4359
wcs_compile_range (CHAR_T range_start_char, const CHAR_T **p_ptr,
4360
                   const CHAR_T *pend, RE_TRANSLATE_TYPE translate,
4361
                   reg_syntax_t syntax, CHAR_T *b, CHAR_T *char_set)
4362
{
4363
  const CHAR_T *p = *p_ptr;
4364
  CHAR_T range_start, range_end;
4365
  reg_errcode_t ret;
4366
# ifdef _LIBC
4367
  uint32_t nrules;
4368
  uint32_t start_val, end_val;
4369
# endif
4370
  if (p == pend)
4371
    return REG_ERANGE;
4372
 
4373
# ifdef _LIBC
4374
  nrules = _NL_CURRENT_WORD (LC_COLLATE, _NL_COLLATE_NRULES);
4375
  if (nrules != 0)
4376
    {
4377
      const char *collseq = (const char *) _NL_CURRENT(LC_COLLATE,
4378
                                                       _NL_COLLATE_COLLSEQWC);
4379
      const unsigned char *extra = (const unsigned char *)
4380
        _NL_CURRENT (LC_COLLATE, _NL_COLLATE_SYMB_EXTRAMB);
4381
 
4382
      if (range_start_char < -1)
4383
        {
4384
          /* range_start is a collating symbol.  */
4385
          int32_t *wextra;
4386
          /* Retreive the index and get collation sequence value.  */
4387
          wextra = (int32_t*)(extra + char_set[-range_start_char]);
4388
          start_val = wextra[1 + *wextra];
4389
        }
4390
      else
4391
        start_val = collseq_table_lookup(collseq, TRANSLATE(range_start_char));
4392
 
4393
      end_val = collseq_table_lookup (collseq, TRANSLATE (p[0]));
4394
 
4395
      /* Report an error if the range is empty and the syntax prohibits
4396
         this.  */
4397
      ret = ((syntax & RE_NO_EMPTY_RANGES)
4398
             && (start_val > end_val))? REG_ERANGE : REG_NOERROR;
4399
 
4400
      /* Insert space to the end of the char_ranges.  */
4401
      insert_space(2, b - char_set[5] - 2, b - 1);
4402
      *(b - char_set[5] - 2) = (wchar_t)start_val;
4403
      *(b - char_set[5] - 1) = (wchar_t)end_val;
4404
      char_set[4]++; /* ranges_index */
4405
    }
4406
  else
4407
# endif
4408
    {
4409
      range_start = (range_start_char >= 0)? TRANSLATE (range_start_char):
4410
        range_start_char;
4411
      range_end = TRANSLATE (p[0]);
4412
      /* Report an error if the range is empty and the syntax prohibits
4413
         this.  */
4414
      ret = ((syntax & RE_NO_EMPTY_RANGES)
4415
             && (range_start > range_end))? REG_ERANGE : REG_NOERROR;
4416
 
4417
      /* Insert space to the end of the char_ranges.  */
4418
      insert_space(2, b - char_set[5] - 2, b - 1);
4419
      *(b - char_set[5] - 2) = range_start;
4420
      *(b - char_set[5] - 1) = range_end;
4421
      char_set[4]++; /* ranges_index */
4422
    }
4423
  /* Have to increment the pointer into the pattern string, so the
4424
     caller isn't still at the ending character.  */
4425
  (*p_ptr)++;
4426
 
4427
  return ret;
4428
}
4429
#else /* BYTE */
4430
/* Read the ending character of a range (in a bracket expression) from the
4431
   uncompiled pattern *P_PTR (which ends at PEND).  We assume the
4432
   starting character is in `P[-2]'.  (`P[-1]' is the character `-'.)
4433
   Then we set the translation of all bits between the starting and
4434
   ending characters (inclusive) in the compiled pattern B.
4435
 
4436
   Return an error code.
4437
 
4438
   We use these short variable names so we can use the same macros as
4439
   `regex_compile' itself.  */
4440
 
4441
static reg_errcode_t
4442
byte_compile_range (unsigned int range_start_char, const char **p_ptr,
4443
                    const char *pend, RE_TRANSLATE_TYPE translate,
4444
                    reg_syntax_t syntax, unsigned char *b)
4445
{
4446
  unsigned this_char;
4447
  const char *p = *p_ptr;
4448
  reg_errcode_t ret;
4449
# if _LIBC
4450
  const unsigned char *collseq;
4451
  unsigned int start_colseq;
4452
  unsigned int end_colseq;
4453
# else
4454
  unsigned end_char;
4455
# endif
4456
 
4457
  if (p == pend)
4458
    return REG_ERANGE;
4459
 
4460
  /* Have to increment the pointer into the pattern string, so the
4461
     caller isn't still at the ending character.  */
4462
  (*p_ptr)++;
4463
 
4464
  /* Report an error if the range is empty and the syntax prohibits this.  */
4465
  ret = syntax & RE_NO_EMPTY_RANGES ? REG_ERANGE : REG_NOERROR;
4466
 
4467
# if _LIBC
4468
  collseq = (const unsigned char *) _NL_CURRENT (LC_COLLATE,
4469
                                                 _NL_COLLATE_COLLSEQMB);
4470
 
4471
  start_colseq = collseq[(unsigned char) TRANSLATE (range_start_char)];
4472
  end_colseq = collseq[(unsigned char) TRANSLATE (p[0])];
4473
  for (this_char = 0; this_char <= (unsigned char) -1; ++this_char)
4474
    {
4475
      unsigned int this_colseq = collseq[(unsigned char) TRANSLATE (this_char)];
4476
 
4477
      if (start_colseq <= this_colseq && this_colseq <= end_colseq)
4478
        {
4479
          SET_LIST_BIT (TRANSLATE (this_char));
4480
          ret = REG_NOERROR;
4481
        }
4482
    }
4483
# else
4484
  /* Here we see why `this_char' has to be larger than an `unsigned
4485
     char' -- we would otherwise go into an infinite loop, since all
4486
     characters <= 0xff.  */
4487
  range_start_char = TRANSLATE (range_start_char);
4488
  /* TRANSLATE(p[0]) is casted to char (not unsigned char) in TRANSLATE,
4489
     and some compilers cast it to int implicitly, so following for_loop
4490
     may fall to (almost) infinite loop.
4491
     e.g. If translate[p[0]] = 0xff, end_char may equals to 0xffffffff.
4492
     To avoid this, we cast p[0] to unsigned int and truncate it.  */
4493
  end_char = ((unsigned)TRANSLATE(p[0]) & ((1 << BYTEWIDTH) - 1));
4494
 
4495
  for (this_char = range_start_char; this_char <= end_char; ++this_char)
4496
    {
4497
      SET_LIST_BIT (TRANSLATE (this_char));
4498
      ret = REG_NOERROR;
4499
    }
4500
# endif
4501
 
4502
  return ret;
4503
}
4504
#endif /* WCHAR */
4505
 
4506
/* re_compile_fastmap computes a ``fastmap'' for the compiled pattern in
4507
   BUFP.  A fastmap records which of the (1 << BYTEWIDTH) possible
4508
   characters can start a string that matches the pattern.  This fastmap
4509
   is used by re_search to skip quickly over impossible starting points.
4510
 
4511
   The caller must supply the address of a (1 << BYTEWIDTH)-byte data
4512
   area as BUFP->fastmap.
4513
 
4514
   We set the `fastmap', `fastmap_accurate', and `can_be_null' fields in
4515
   the pattern buffer.
4516
 
4517
   Returns 0 if we succeed, -2 if an internal error.   */
4518
 
4519
#ifdef WCHAR
4520
/* local function for re_compile_fastmap.
4521
   truncate wchar_t character to char.  */
4522
static unsigned char truncate_wchar (CHAR_T c);
4523
 
4524
static unsigned char
4525
truncate_wchar (CHAR_T c)
4526
{
4527
  unsigned char buf[MB_CUR_MAX];
4528
  mbstate_t state;
4529
  int retval;
4530
  memset (&state, '\0', sizeof (state));
4531
# ifdef _LIBC
4532
  retval = __wcrtomb (buf, c, &state);
4533
# else
4534
  retval = wcrtomb (buf, c, &state);
4535
# endif
4536
  return retval > 0 ? buf[0] : (unsigned char) c;
4537
}
4538
#endif /* WCHAR */
4539
 
4540
static int
4541
PREFIX(re_compile_fastmap) (struct re_pattern_buffer *bufp)
4542
{
4543
  int j, k;
4544
#ifdef MATCH_MAY_ALLOCATE
4545
  PREFIX(fail_stack_type) fail_stack;
4546
#endif
4547
#ifndef REGEX_MALLOC
4548
  char *destination;
4549
#endif
4550
 
4551
  register char *fastmap = bufp->fastmap;
4552
 
4553
#ifdef WCHAR
4554
  /* We need to cast pattern to (wchar_t*), because we casted this compiled
4555
     pattern to (char*) in regex_compile.  */
4556
  UCHAR_T *pattern = (UCHAR_T*)bufp->buffer;
4557
  register UCHAR_T *pend = (UCHAR_T*) (bufp->buffer + bufp->used);
4558
#else /* BYTE */
4559
  UCHAR_T *pattern = bufp->buffer;
4560
  register UCHAR_T *pend = pattern + bufp->used;
4561
#endif /* WCHAR */
4562
  UCHAR_T *p = pattern;
4563
 
4564
#ifdef REL_ALLOC
4565
  /* This holds the pointer to the failure stack, when
4566
     it is allocated relocatably.  */
4567
  fail_stack_elt_t *failure_stack_ptr;
4568
#endif
4569
 
4570
  /* Assume that each path through the pattern can be null until
4571
     proven otherwise.  We set this false at the bottom of switch
4572
     statement, to which we get only if a particular path doesn't
4573
     match the empty string.  */
4574
  boolean path_can_be_null = true;
4575
 
4576
  /* We aren't doing a `succeed_n' to begin with.  */
4577
  boolean succeed_n_p = false;
4578
 
4579
  assert (fastmap != NULL && p != NULL);
4580
 
4581
  INIT_FAIL_STACK ();
4582
  bzero (fastmap, 1 << BYTEWIDTH);  /* Assume nothing's valid.  */
4583
  bufp->fastmap_accurate = 1;       /* It will be when we're done.  */
4584
  bufp->can_be_null = 0;
4585
 
4586
  while (1)
4587
    {
4588
      if (p == pend || *p == (UCHAR_T) succeed)
4589
        {
4590
          /* We have reached the (effective) end of pattern.  */
4591
          if (!FAIL_STACK_EMPTY ())
4592
            {
4593
              bufp->can_be_null |= path_can_be_null;
4594
 
4595
              /* Reset for next path.  */
4596
              path_can_be_null = true;
4597
 
4598
              p = fail_stack.stack[--fail_stack.avail].pointer;
4599
 
4600
              continue;
4601
            }
4602
          else
4603
            break;
4604
        }
4605
 
4606
      /* We should never be about to go beyond the end of the pattern.  */
4607
      assert (p < pend);
4608
 
4609
      switch (SWITCH_ENUM_CAST ((re_opcode_t) *p++))
4610
        {
4611
 
4612
        /* I guess the idea here is to simply not bother with a fastmap
4613
           if a backreference is used, since it's too hard to figure out
4614
           the fastmap for the corresponding group.  Setting
4615
           `can_be_null' stops `re_search_2' from using the fastmap, so
4616
           that is all we do.  */
4617
        case duplicate:
4618
          bufp->can_be_null = 1;
4619
          goto done;
4620
 
4621
 
4622
      /* Following are the cases which match a character.  These end
4623
         with `break'.  */
4624
 
4625
#ifdef WCHAR
4626
        case exactn:
4627
          fastmap[truncate_wchar(p[1])] = 1;
4628
          break;
4629
#else /* BYTE */
4630
        case exactn:
4631
          fastmap[p[1]] = 1;
4632
          break;
4633
#endif /* WCHAR */
4634
#ifdef MBS_SUPPORT
4635
        case exactn_bin:
4636
          fastmap[p[1]] = 1;
4637
          break;
4638
#endif
4639
 
4640
#ifdef WCHAR
4641
        /* It is hard to distinguish fastmap from (multi byte) characters
4642
           which depends on current locale.  */
4643
        case charset:
4644
        case charset_not:
4645
        case wordchar:
4646
        case notwordchar:
4647
          bufp->can_be_null = 1;
4648
          goto done;
4649
#else /* BYTE */
4650
        case charset:
4651
          for (j = *p++ * BYTEWIDTH - 1; j >= 0; j--)
4652
            if (p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH)))
4653
              fastmap[j] = 1;
4654
          break;
4655
 
4656
 
4657
        case charset_not:
4658
          /* Chars beyond end of map must be allowed.  */
4659
          for (j = *p * BYTEWIDTH; j < (1 << BYTEWIDTH); j++)
4660
            fastmap[j] = 1;
4661
 
4662
          for (j = *p++ * BYTEWIDTH - 1; j >= 0; j--)
4663
            if (!(p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH))))
4664
              fastmap[j] = 1;
4665
          break;
4666
 
4667
 
4668
        case wordchar:
4669
          for (j = 0; j < (1 << BYTEWIDTH); j++)
4670
            if (SYNTAX (j) == Sword)
4671
              fastmap[j] = 1;
4672
          break;
4673
 
4674
 
4675
        case notwordchar:
4676
          for (j = 0; j < (1 << BYTEWIDTH); j++)
4677
            if (SYNTAX (j) != Sword)
4678
              fastmap[j] = 1;
4679
          break;
4680
#endif /* WCHAR */
4681
 
4682
        case anychar:
4683
          {
4684
            int fastmap_newline = fastmap['\n'];
4685
 
4686
            /* `.' matches anything ...  */
4687
            for (j = 0; j < (1 << BYTEWIDTH); j++)
4688
              fastmap[j] = 1;
4689
 
4690
            /* ... except perhaps newline.  */
4691
            if (!(bufp->syntax & RE_DOT_NEWLINE))
4692
              fastmap['\n'] = fastmap_newline;
4693
 
4694
            /* Return if we have already set `can_be_null'; if we have,
4695
               then the fastmap is irrelevant.  Something's wrong here.  */
4696
            else if (bufp->can_be_null)
4697
              goto done;
4698
 
4699
            /* Otherwise, have to check alternative paths.  */
4700
            break;
4701
          }
4702
 
4703
#ifdef emacs
4704
        case syntaxspec:
4705
          k = *p++;
4706
          for (j = 0; j < (1 << BYTEWIDTH); j++)
4707
            if (SYNTAX (j) == (enum syntaxcode) k)
4708
              fastmap[j] = 1;
4709
          break;
4710
 
4711
 
4712
        case notsyntaxspec:
4713
          k = *p++;
4714
          for (j = 0; j < (1 << BYTEWIDTH); j++)
4715
            if (SYNTAX (j) != (enum syntaxcode) k)
4716
              fastmap[j] = 1;
4717
          break;
4718
 
4719
 
4720
      /* All cases after this match the empty string.  These end with
4721
         `continue'.  */
4722
 
4723
 
4724
        case before_dot:
4725
        case at_dot:
4726
        case after_dot:
4727
          continue;
4728
#endif /* emacs */
4729
 
4730
 
4731
        case no_op:
4732
        case begline:
4733
        case endline:
4734
        case begbuf:
4735
        case endbuf:
4736
        case wordbound:
4737
        case notwordbound:
4738
        case wordbeg:
4739
        case wordend:
4740
        case push_dummy_failure:
4741
          continue;
4742
 
4743
 
4744
        case jump_n:
4745
        case pop_failure_jump:
4746
        case maybe_pop_jump:
4747
        case jump:
4748
        case jump_past_alt:
4749
        case dummy_failure_jump:
4750
          EXTRACT_NUMBER_AND_INCR (j, p);
4751
          p += j;
4752
          if (j > 0)
4753
            continue;
4754
 
4755
          /* Jump backward implies we just went through the body of a
4756
             loop and matched nothing.  Opcode jumped to should be
4757
             `on_failure_jump' or `succeed_n'.  Just treat it like an
4758
             ordinary jump.  For a * loop, it has pushed its failure
4759
             point already; if so, discard that as redundant.  */
4760
          if ((re_opcode_t) *p != on_failure_jump
4761
              && (re_opcode_t) *p != succeed_n)
4762
            continue;
4763
 
4764
          p++;
4765
          EXTRACT_NUMBER_AND_INCR (j, p);
4766
          p += j;
4767
 
4768
          /* If what's on the stack is where we are now, pop it.  */
4769
          if (!FAIL_STACK_EMPTY ()
4770
              && fail_stack.stack[fail_stack.avail - 1].pointer == p)
4771
            fail_stack.avail--;
4772
 
4773
          continue;
4774
 
4775
 
4776
        case on_failure_jump:
4777
        case on_failure_keep_string_jump:
4778
        handle_on_failure_jump:
4779
          EXTRACT_NUMBER_AND_INCR (j, p);
4780
 
4781
          /* For some patterns, e.g., `(a?)?', `p+j' here points to the
4782
             end of the pattern.  We don't want to push such a point,
4783
             since when we restore it above, entering the switch will
4784
             increment `p' past the end of the pattern.  We don't need
4785
             to push such a point since we obviously won't find any more
4786
             fastmap entries beyond `pend'.  Such a pattern can match
4787
             the null string, though.  */
4788
          if (p + j < pend)
4789
            {
4790
              if (!PUSH_PATTERN_OP (p + j, fail_stack))
4791
                {
4792
                  RESET_FAIL_STACK ();
4793
                  return -2;
4794
                }
4795
            }
4796
          else
4797
            bufp->can_be_null = 1;
4798
 
4799
          if (succeed_n_p)
4800
            {
4801
              EXTRACT_NUMBER_AND_INCR (k, p);   /* Skip the n.  */
4802
              succeed_n_p = false;
4803
            }
4804
 
4805
          continue;
4806
 
4807
 
4808
        case succeed_n:
4809
          /* Get to the number of times to succeed.  */
4810
          p += OFFSET_ADDRESS_SIZE;
4811
 
4812
          /* Increment p past the n for when k != 0.  */
4813
          EXTRACT_NUMBER_AND_INCR (k, p);
4814
          if (k == 0)
4815
            {
4816
              p -= 2 * OFFSET_ADDRESS_SIZE;
4817
              succeed_n_p = true;  /* Spaghetti code alert.  */
4818
              goto handle_on_failure_jump;
4819
            }
4820
          continue;
4821
 
4822
 
4823
        case set_number_at:
4824
          p += 2 * OFFSET_ADDRESS_SIZE;
4825
          continue;
4826
 
4827
 
4828
        case start_memory:
4829
        case stop_memory:
4830
          p += 2;
4831
          continue;
4832
 
4833
 
4834
        default:
4835
          abort (); /* We have listed all the cases.  */
4836
        } /* switch *p++ */
4837
 
4838
      /* Getting here means we have found the possible starting
4839
         characters for one path of the pattern -- and that the empty
4840
         string does not match.  We need not follow this path further.
4841
         Instead, look at the next alternative (remembered on the
4842
         stack), or quit if no more.  The test at the top of the loop
4843
         does these things.  */
4844
      path_can_be_null = false;
4845
      p = pend;
4846
    } /* while p */
4847
 
4848
  /* Set `can_be_null' for the last path (also the first path, if the
4849
     pattern is empty).  */
4850
  bufp->can_be_null |= path_can_be_null;
4851
 
4852
 done:
4853
  RESET_FAIL_STACK ();
4854
  return 0;
4855
}
4856
 
4857
#else /* not INSIDE_RECURSION */
4858
 
4859
int
4860
re_compile_fastmap (struct re_pattern_buffer *bufp)
4861
{
4862
# ifdef MBS_SUPPORT
4863
  if (MB_CUR_MAX != 1)
4864
    return wcs_re_compile_fastmap(bufp);
4865
  else
4866
# endif
4867
    return byte_re_compile_fastmap(bufp);
4868
} /* re_compile_fastmap */
4869
#ifdef _LIBC
4870
weak_alias (__re_compile_fastmap, re_compile_fastmap)
4871
#endif
4872
 
4873
 
4874
/* Set REGS to hold NUM_REGS registers, storing them in STARTS and
4875
   ENDS.  Subsequent matches using PATTERN_BUFFER and REGS will use
4876
   this memory for recording register information.  STARTS and ENDS
4877
   must be allocated using the malloc library routine, and must each
4878
   be at least NUM_REGS * sizeof (regoff_t) bytes long.
4879
 
4880
   If NUM_REGS == 0, then subsequent matches should allocate their own
4881
   register data.
4882
 
4883
   Unless this function is called, the first search or match using
4884
   PATTERN_BUFFER will allocate its own register data, without
4885
   freeing the old data.  */
4886
 
4887
void
4888
re_set_registers (struct re_pattern_buffer *bufp,
4889
                  struct re_registers *regs, unsigned num_regs,
4890
                  regoff_t *starts, regoff_t *ends)
4891
{
4892
  if (num_regs)
4893
    {
4894
      bufp->regs_allocated = REGS_REALLOCATE;
4895
      regs->num_regs = num_regs;
4896
      regs->start = starts;
4897
      regs->end = ends;
4898
    }
4899
  else
4900
    {
4901
      bufp->regs_allocated = REGS_UNALLOCATED;
4902
      regs->num_regs = 0;
4903
      regs->start = regs->end = (regoff_t *) 0;
4904
    }
4905
}
4906
#ifdef _LIBC
4907
weak_alias (__re_set_registers, re_set_registers)
4908
#endif
4909
 
4910
/* Searching routines.  */
4911
 
4912
/* Like re_search_2, below, but only one string is specified, and
4913
   doesn't let you say where to stop matching.  */
4914
 
4915
int
4916
re_search (struct re_pattern_buffer *bufp, const char *string, int size,
4917
           int startpos, int range, struct re_registers *regs)
4918
{
4919
  return re_search_2 (bufp, NULL, 0, string, size, startpos, range,
4920
                      regs, size);
4921
}
4922
#ifdef _LIBC
4923
weak_alias (__re_search, re_search)
4924
#endif
4925
 
4926
 
4927
/* Using the compiled pattern in BUFP->buffer, first tries to match the
4928
   virtual concatenation of STRING1 and STRING2, starting first at index
4929
   STARTPOS, then at STARTPOS + 1, and so on.
4930
 
4931
   STRING1 and STRING2 have length SIZE1 and SIZE2, respectively.
4932
 
4933
   RANGE is how far to scan while trying to match.  RANGE = 0 means try
4934
   only at STARTPOS; in general, the last start tried is STARTPOS +
4935
   RANGE.
4936
 
4937
   In REGS, return the indices of the virtual concatenation of STRING1
4938
   and STRING2 that matched the entire BUFP->buffer and its contained
4939
   subexpressions.
4940
 
4941
   Do not consider matching one past the index STOP in the virtual
4942
   concatenation of STRING1 and STRING2.
4943
 
4944
   We return either the position in the strings at which the match was
4945
   found, -1 if no match, or -2 if error (such as failure
4946
   stack overflow).  */
4947
 
4948
int
4949
re_search_2 (struct re_pattern_buffer *bufp, const char *string1, int size1,
4950
             const char *string2, int size2, int startpos, int range,
4951
             struct re_registers *regs, int stop)
4952
{
4953
# ifdef MBS_SUPPORT
4954
  if (MB_CUR_MAX != 1)
4955
    return wcs_re_search_2 (bufp, string1, size1, string2, size2, startpos,
4956
                            range, regs, stop);
4957
  else
4958
# endif
4959
    return byte_re_search_2 (bufp, string1, size1, string2, size2, startpos,
4960
                             range, regs, stop);
4961
} /* re_search_2 */
4962
#ifdef _LIBC
4963
weak_alias (__re_search_2, re_search_2)
4964
#endif
4965
 
4966
#endif /* not INSIDE_RECURSION */
4967
 
4968
#ifdef INSIDE_RECURSION
4969
 
4970
#ifdef MATCH_MAY_ALLOCATE
4971
# define FREE_VAR(var) if (var) REGEX_FREE (var); var = NULL
4972
#else
4973
# define FREE_VAR(var) if (var) free (var); var = NULL
4974
#endif
4975
 
4976
#ifdef WCHAR
4977
# define MAX_ALLOCA_SIZE        2000
4978
 
4979
# define FREE_WCS_BUFFERS() \
4980
  do {                                                                        \
4981
    if (size1 > MAX_ALLOCA_SIZE)                                              \
4982
      {                                                                       \
4983
        free (wcs_string1);                                                   \
4984
        free (mbs_offset1);                                                   \
4985
      }                                                                       \
4986
    else                                                                      \
4987
      {                                                                       \
4988
        FREE_VAR (wcs_string1);                                               \
4989
        FREE_VAR (mbs_offset1);                                               \
4990
      }                                                                       \
4991
    if (size2 > MAX_ALLOCA_SIZE)                                              \
4992
      {                                                                       \
4993
        free (wcs_string2);                                                   \
4994
        free (mbs_offset2);                                                   \
4995
      }                                                                       \
4996
    else                                                                      \
4997
      {                                                                       \
4998
        FREE_VAR (wcs_string2);                                               \
4999
        FREE_VAR (mbs_offset2);                                               \
5000
      }                                                                       \
5001
  } while (0)
5002
 
5003
#endif
5004
 
5005
 
5006
static int
5007
PREFIX(re_search_2) (struct re_pattern_buffer *bufp, const char *string1,
5008
                     int size1, const char *string2, int size2,
5009
                     int startpos, int range,
5010
                     struct re_registers *regs, int stop)
5011
{
5012
  int val;
5013
  register char *fastmap = bufp->fastmap;
5014
  register RE_TRANSLATE_TYPE translate = bufp->translate;
5015
  int total_size = size1 + size2;
5016
  int endpos = startpos + range;
5017
#ifdef WCHAR
5018
  /* We need wchar_t* buffers correspond to cstring1, cstring2.  */
5019
  wchar_t *wcs_string1 = NULL, *wcs_string2 = NULL;
5020
  /* We need the size of wchar_t buffers correspond to csize1, csize2.  */
5021
  int wcs_size1 = 0, wcs_size2 = 0;
5022
  /* offset buffer for optimizatoin. See convert_mbs_to_wc.  */
5023
  int *mbs_offset1 = NULL, *mbs_offset2 = NULL;
5024
  /* They hold whether each wchar_t is binary data or not.  */
5025
  char *is_binary = NULL;
5026
#endif /* WCHAR */
5027
 
5028
  /* Check for out-of-range STARTPOS.  */
5029
  if (startpos < 0 || startpos > total_size)
5030
    return -1;
5031
 
5032
  /* Fix up RANGE if it might eventually take us outside
5033
     the virtual concatenation of STRING1 and STRING2.
5034
     Make sure we won't move STARTPOS below 0 or above TOTAL_SIZE.  */
5035
  if (endpos < 0)
5036
    range = 0 - startpos;
5037
  else if (endpos > total_size)
5038
    range = total_size - startpos;
5039
 
5040
  /* If the search isn't to be a backwards one, don't waste time in a
5041
     search for a pattern that must be anchored.  */
5042
  if (bufp->used > 0 && range > 0
5043
      && ((re_opcode_t) bufp->buffer[0] == begbuf
5044
          /* `begline' is like `begbuf' if it cannot match at newlines.  */
5045
          || ((re_opcode_t) bufp->buffer[0] == begline
5046
              && !bufp->newline_anchor)))
5047
    {
5048
      if (startpos > 0)
5049
        return -1;
5050
      else
5051
        range = 1;
5052
    }
5053
 
5054
#ifdef emacs
5055
  /* In a forward search for something that starts with \=.
5056
     don't keep searching past point.  */
5057
  if (bufp->used > 0 && (re_opcode_t) bufp->buffer[0] == at_dot && range > 0)
5058
    {
5059
      range = PT - startpos;
5060
      if (range <= 0)
5061
        return -1;
5062
    }
5063
#endif /* emacs */
5064
 
5065
  /* Update the fastmap now if not correct already.  */
5066
  if (fastmap && !bufp->fastmap_accurate)
5067
    if (re_compile_fastmap (bufp) == -2)
5068
      return -2;
5069
 
5070
#ifdef WCHAR
5071
  /* Allocate wchar_t array for wcs_string1 and wcs_string2 and
5072
     fill them with converted string.  */
5073
  if (size1 != 0)
5074
    {
5075
      if (size1 > MAX_ALLOCA_SIZE)
5076
        {
5077
          wcs_string1 = TALLOC (size1 + 1, CHAR_T);
5078
          mbs_offset1 = TALLOC (size1 + 1, int);
5079
          is_binary = TALLOC (size1 + 1, char);
5080
        }
5081
      else
5082
        {
5083
          wcs_string1 = REGEX_TALLOC (size1 + 1, CHAR_T);
5084
          mbs_offset1 = REGEX_TALLOC (size1 + 1, int);
5085
          is_binary = REGEX_TALLOC (size1 + 1, char);
5086
        }
5087
      if (!wcs_string1 || !mbs_offset1 || !is_binary)
5088
        {
5089
          if (size1 > MAX_ALLOCA_SIZE)
5090
            {
5091
              free (wcs_string1);
5092
              free (mbs_offset1);
5093
              free (is_binary);
5094
            }
5095
          else
5096
            {
5097
              FREE_VAR (wcs_string1);
5098
              FREE_VAR (mbs_offset1);
5099
              FREE_VAR (is_binary);
5100
            }
5101
          return -2;
5102
        }
5103
      wcs_size1 = convert_mbs_to_wcs(wcs_string1, string1, size1,
5104
                                     mbs_offset1, is_binary);
5105
      wcs_string1[wcs_size1] = L'\0'; /* for a sentinel  */
5106
      if (size1 > MAX_ALLOCA_SIZE)
5107
        free (is_binary);
5108
      else
5109
        FREE_VAR (is_binary);
5110
    }
5111
  if (size2 != 0)
5112
    {
5113
      if (size2 > MAX_ALLOCA_SIZE)
5114
        {
5115
          wcs_string2 = TALLOC (size2 + 1, CHAR_T);
5116
          mbs_offset2 = TALLOC (size2 + 1, int);
5117
          is_binary = TALLOC (size2 + 1, char);
5118
        }
5119
      else
5120
        {
5121
          wcs_string2 = REGEX_TALLOC (size2 + 1, CHAR_T);
5122
          mbs_offset2 = REGEX_TALLOC (size2 + 1, int);
5123
          is_binary = REGEX_TALLOC (size2 + 1, char);
5124
        }
5125
      if (!wcs_string2 || !mbs_offset2 || !is_binary)
5126
        {
5127
          FREE_WCS_BUFFERS ();
5128
          if (size2 > MAX_ALLOCA_SIZE)
5129
            free (is_binary);
5130
          else
5131
            FREE_VAR (is_binary);
5132
          return -2;
5133
        }
5134
      wcs_size2 = convert_mbs_to_wcs(wcs_string2, string2, size2,
5135
                                     mbs_offset2, is_binary);
5136
      wcs_string2[wcs_size2] = L'\0'; /* for a sentinel  */
5137
      if (size2 > MAX_ALLOCA_SIZE)
5138
        free (is_binary);
5139
      else
5140
        FREE_VAR (is_binary);
5141
    }
5142
#endif /* WCHAR */
5143
 
5144
 
5145
  /* Loop through the string, looking for a place to start matching.  */
5146
  for (;;)
5147
    {
5148
      /* If a fastmap is supplied, skip quickly over characters that
5149
         cannot be the start of a match.  If the pattern can match the
5150
         null string, however, we don't need to skip characters; we want
5151
         the first null string.  */
5152
      if (fastmap && startpos < total_size && !bufp->can_be_null)
5153
        {
5154
          if (range > 0) /* Searching forwards.  */
5155
            {
5156
              register const char *d;
5157
              register int lim = 0;
5158
              int irange = range;
5159
 
5160
              if (startpos < size1 && startpos + range >= size1)
5161
                lim = range - (size1 - startpos);
5162
 
5163
              d = (startpos >= size1 ? string2 - size1 : string1) + startpos;
5164
 
5165
              /* Written out as an if-else to avoid testing `translate'
5166
                 inside the loop.  */
5167
              if (translate)
5168
                while (range > lim
5169
                       && !fastmap[(unsigned char)
5170
                                   translate[(unsigned char) *d++]])
5171
                  range--;
5172
              else
5173
                while (range > lim && !fastmap[(unsigned char) *d++])
5174
                  range--;
5175
 
5176
              startpos += irange - range;
5177
            }
5178
          else                          /* Searching backwards.  */
5179
            {
5180
              register CHAR_T c = (size1 == 0 || startpos >= size1
5181
                                      ? string2[startpos - size1]
5182
                                      : string1[startpos]);
5183
 
5184
              if (!fastmap[(unsigned char) TRANSLATE (c)])
5185
                goto advance;
5186
            }
5187
        }
5188
 
5189
      /* If can't match the null string, and that's all we have left, fail.  */
5190
      if (range >= 0 && startpos == total_size && fastmap
5191
          && !bufp->can_be_null)
5192
       {
5193
#ifdef WCHAR
5194
         FREE_WCS_BUFFERS ();
5195
#endif
5196
         return -1;
5197
       }
5198
 
5199
#ifdef WCHAR
5200
      val = wcs_re_match_2_internal (bufp, string1, size1, string2,
5201
                                     size2, startpos, regs, stop,
5202
                                     wcs_string1, wcs_size1,
5203
                                     wcs_string2, wcs_size2,
5204
                                     mbs_offset1, mbs_offset2);
5205
#else /* BYTE */
5206
      val = byte_re_match_2_internal (bufp, string1, size1, string2,
5207
                                      size2, startpos, regs, stop);
5208
#endif /* BYTE */
5209
 
5210
#ifndef REGEX_MALLOC
5211
# ifdef C_ALLOCA
5212
      alloca (0);
5213
# endif
5214
#endif
5215
 
5216
      if (val >= 0)
5217
        {
5218
#ifdef WCHAR
5219
          FREE_WCS_BUFFERS ();
5220
#endif
5221
          return startpos;
5222
        }
5223
 
5224
      if (val == -2)
5225
        {
5226
#ifdef WCHAR
5227
          FREE_WCS_BUFFERS ();
5228
#endif
5229
          return -2;
5230
        }
5231
 
5232
    advance:
5233
      if (!range)
5234
        break;
5235
      else if (range > 0)
5236
        {
5237
          range--;
5238
          startpos++;
5239
        }
5240
      else
5241
        {
5242
          range++;
5243
          startpos--;
5244
        }
5245
    }
5246
#ifdef WCHAR
5247
  FREE_WCS_BUFFERS ();
5248
#endif
5249
  return -1;
5250
}
5251
 
5252
#ifdef WCHAR
5253
/* This converts PTR, a pointer into one of the search wchar_t strings
5254
   `string1' and `string2' into an multibyte string offset from the
5255
   beginning of that string. We use mbs_offset to optimize.
5256
   See convert_mbs_to_wcs.  */
5257
# define POINTER_TO_OFFSET(ptr)                                         \
5258
  (FIRST_STRING_P (ptr)                                                 \
5259
   ? ((regoff_t)(mbs_offset1 != NULL? mbs_offset1[(ptr)-string1] : 0))   \
5260
   : ((regoff_t)((mbs_offset2 != NULL? mbs_offset2[(ptr)-string2] : 0)   \
5261
                 + csize1)))
5262
#else /* BYTE */
5263
/* This converts PTR, a pointer into one of the search strings `string1'
5264
   and `string2' into an offset from the beginning of that string.  */
5265
# define POINTER_TO_OFFSET(ptr)                 \
5266
  (FIRST_STRING_P (ptr)                         \
5267
   ? ((regoff_t) ((ptr) - string1))             \
5268
   : ((regoff_t) ((ptr) - string2 + size1)))
5269
#endif /* WCHAR */
5270
 
5271
/* Macros for dealing with the split strings in re_match_2.  */
5272
 
5273
#define MATCHING_IN_FIRST_STRING  (dend == end_match_1)
5274
 
5275
/* Call before fetching a character with *d.  This switches over to
5276
   string2 if necessary.  */
5277
#define PREFETCH()                                                      \
5278
  while (d == dend)                                                     \
5279
    {                                                                   \
5280
      /* End of string2 => fail.  */                                    \
5281
      if (dend == end_match_2)                                          \
5282
        goto fail;                                                      \
5283
      /* End of string1 => advance to string2.  */                      \
5284
      d = string2;                                                      \
5285
      dend = end_match_2;                                               \
5286
    }
5287
 
5288
/* Test if at very beginning or at very end of the virtual concatenation
5289
   of `string1' and `string2'.  If only one string, it's `string2'.  */
5290
#define AT_STRINGS_BEG(d) ((d) == (size1 ? string1 : string2) || !size2)
5291
#define AT_STRINGS_END(d) ((d) == end2)
5292
 
5293
 
5294
/* Test if D points to a character which is word-constituent.  We have
5295
   two special cases to check for: if past the end of string1, look at
5296
   the first character in string2; and if before the beginning of
5297
   string2, look at the last character in string1.  */
5298
#ifdef WCHAR
5299
/* Use internationalized API instead of SYNTAX.  */
5300
# define WORDCHAR_P(d)                                                  \
5301
  (iswalnum ((wint_t)((d) == end1 ? *string2                            \
5302
           : (d) == string2 - 1 ? *(end1 - 1) : *(d))) != 0              \
5303
   || ((d) == end1 ? *string2                                           \
5304
       : (d) == string2 - 1 ? *(end1 - 1) : *(d)) == L'_')
5305
#else /* BYTE */
5306
# define WORDCHAR_P(d)                                                  \
5307
  (SYNTAX ((d) == end1 ? *string2                                       \
5308
           : (d) == string2 - 1 ? *(end1 - 1) : *(d))                   \
5309
   == Sword)
5310
#endif /* WCHAR */
5311
 
5312
/* Disabled due to a compiler bug -- see comment at case wordbound */
5313
#if 0
5314
/* Test if the character before D and the one at D differ with respect
5315
   to being word-constituent.  */
5316
#define AT_WORD_BOUNDARY(d)                                             \
5317
  (AT_STRINGS_BEG (d) || AT_STRINGS_END (d)                             \
5318
   || WORDCHAR_P (d - 1) != WORDCHAR_P (d))
5319
#endif
5320
 
5321
/* Free everything we malloc.  */
5322
#ifdef MATCH_MAY_ALLOCATE
5323
# ifdef WCHAR
5324
#  define FREE_VARIABLES()                                              \
5325
  do {                                                                  \
5326
    REGEX_FREE_STACK (fail_stack.stack);                                \
5327
    FREE_VAR (regstart);                                                \
5328
    FREE_VAR (regend);                                                  \
5329
    FREE_VAR (old_regstart);                                            \
5330
    FREE_VAR (old_regend);                                              \
5331
    FREE_VAR (best_regstart);                                           \
5332
    FREE_VAR (best_regend);                                             \
5333
    FREE_VAR (reg_info);                                                \
5334
    FREE_VAR (reg_dummy);                                               \
5335
    FREE_VAR (reg_info_dummy);                                          \
5336
    if (!cant_free_wcs_buf)                                             \
5337
      {                                                                 \
5338
        FREE_VAR (string1);                                             \
5339
        FREE_VAR (string2);                                             \
5340
        FREE_VAR (mbs_offset1);                                         \
5341
        FREE_VAR (mbs_offset2);                                         \
5342
      }                                                                 \
5343
  } while (0)
5344
# else /* BYTE */
5345
#  define FREE_VARIABLES()                                              \
5346
  do {                                                                  \
5347
    REGEX_FREE_STACK (fail_stack.stack);                                \
5348
    FREE_VAR (regstart);                                                \
5349
    FREE_VAR (regend);                                                  \
5350
    FREE_VAR (old_regstart);                                            \
5351
    FREE_VAR (old_regend);                                              \
5352
    FREE_VAR (best_regstart);                                           \
5353
    FREE_VAR (best_regend);                                             \
5354
    FREE_VAR (reg_info);                                                \
5355
    FREE_VAR (reg_dummy);                                               \
5356
    FREE_VAR (reg_info_dummy);                                          \
5357
  } while (0)
5358
# endif /* WCHAR */
5359
#else
5360
# ifdef WCHAR
5361
#  define FREE_VARIABLES()                                              \
5362
  do {                                                                  \
5363
    if (!cant_free_wcs_buf)                                             \
5364
      {                                                                 \
5365
        FREE_VAR (string1);                                             \
5366
        FREE_VAR (string2);                                             \
5367
        FREE_VAR (mbs_offset1);                                         \
5368
        FREE_VAR (mbs_offset2);                                         \
5369
      }                                                                 \
5370
  } while (0)
5371
# else /* BYTE */
5372
#  define FREE_VARIABLES() ((void)0) /* Do nothing!  But inhibit gcc warning. */
5373
# endif /* WCHAR */
5374
#endif /* not MATCH_MAY_ALLOCATE */
5375
 
5376
/* These values must meet several constraints.  They must not be valid
5377
   register values; since we have a limit of 255 registers (because
5378
   we use only one byte in the pattern for the register number), we can
5379
   use numbers larger than 255.  They must differ by 1, because of
5380
   NUM_FAILURE_ITEMS above.  And the value for the lowest register must
5381
   be larger than the value for the highest register, so we do not try
5382
   to actually save any registers when none are active.  */
5383
#define NO_HIGHEST_ACTIVE_REG (1 << BYTEWIDTH)
5384
#define NO_LOWEST_ACTIVE_REG (NO_HIGHEST_ACTIVE_REG + 1)
5385
 
5386
#else /* not INSIDE_RECURSION */
5387
/* Matching routines.  */
5388
 
5389
#ifndef emacs   /* Emacs never uses this.  */
5390
/* re_match is like re_match_2 except it takes only a single string.  */
5391
 
5392
int
5393
re_match (struct re_pattern_buffer *bufp, const char *string,
5394
          int size, int pos, struct re_registers *regs)
5395
{
5396
  int result;
5397
# ifdef MBS_SUPPORT
5398
  if (MB_CUR_MAX != 1)
5399
    result = wcs_re_match_2_internal (bufp, NULL, 0, string, size,
5400
                                      pos, regs, size,
5401
                                      NULL, 0, NULL, 0, NULL, NULL);
5402
  else
5403
# endif
5404
    result = byte_re_match_2_internal (bufp, NULL, 0, string, size,
5405
                                  pos, regs, size);
5406
# ifndef REGEX_MALLOC
5407
#  ifdef C_ALLOCA
5408
  alloca (0);
5409
#  endif
5410
# endif
5411
  return result;
5412
}
5413
# ifdef _LIBC
5414
weak_alias (__re_match, re_match)
5415
# endif
5416
#endif /* not emacs */
5417
 
5418
#endif /* not INSIDE_RECURSION */
5419
 
5420
#ifdef INSIDE_RECURSION
5421
static boolean PREFIX(group_match_null_string_p) (UCHAR_T **p,
5422
                                                  UCHAR_T *end,
5423
                                        PREFIX(register_info_type) *reg_info);
5424
static boolean PREFIX(alt_match_null_string_p) (UCHAR_T *p,
5425
                                                UCHAR_T *end,
5426
                                        PREFIX(register_info_type) *reg_info);
5427
static boolean PREFIX(common_op_match_null_string_p) (UCHAR_T **p,
5428
                                                      UCHAR_T *end,
5429
                                        PREFIX(register_info_type) *reg_info);
5430
static int PREFIX(bcmp_translate) (const CHAR_T *s1, const CHAR_T *s2,
5431
                                   int len, char *translate);
5432
#else /* not INSIDE_RECURSION */
5433
 
5434
/* re_match_2 matches the compiled pattern in BUFP against the
5435
   the (virtual) concatenation of STRING1 and STRING2 (of length SIZE1
5436
   and SIZE2, respectively).  We start matching at POS, and stop
5437
   matching at STOP.
5438
 
5439
   If REGS is non-null and the `no_sub' field of BUFP is nonzero, we
5440
   store offsets for the substring each group matched in REGS.  See the
5441
   documentation for exactly how many groups we fill.
5442
 
5443
   We return -1 if no match, -2 if an internal error (such as the
5444
   failure stack overflowing).  Otherwise, we return the length of the
5445
   matched substring.  */
5446
 
5447
int
5448
re_match_2 (struct re_pattern_buffer *bufp, const char *string1, int size1,
5449
            const char *string2, int size2, int pos,
5450
            struct re_registers *regs, int stop)
5451
{
5452
  int result;
5453
# ifdef MBS_SUPPORT
5454
  if (MB_CUR_MAX != 1)
5455
    result = wcs_re_match_2_internal (bufp, string1, size1, string2, size2,
5456
                                      pos, regs, stop,
5457
                                      NULL, 0, NULL, 0, NULL, NULL);
5458
  else
5459
# endif
5460
    result = byte_re_match_2_internal (bufp, string1, size1, string2, size2,
5461
                                  pos, regs, stop);
5462
 
5463
#ifndef REGEX_MALLOC
5464
# ifdef C_ALLOCA
5465
  alloca (0);
5466
# endif
5467
#endif
5468
  return result;
5469
}
5470
#ifdef _LIBC
5471
weak_alias (__re_match_2, re_match_2)
5472
#endif
5473
 
5474
#endif /* not INSIDE_RECURSION */
5475
 
5476
#ifdef INSIDE_RECURSION
5477
 
5478
#ifdef WCHAR
5479
static int count_mbs_length (int *, int);
5480
 
5481
/* This check the substring (from 0, to length) of the multibyte string,
5482
   to which offset_buffer correspond. And count how many wchar_t_characters
5483
   the substring occupy. We use offset_buffer to optimization.
5484
   See convert_mbs_to_wcs.  */
5485
 
5486
static int
5487
count_mbs_length(int *offset_buffer, int length)
5488
{
5489
  int upper, lower;
5490
 
5491
  /* Check whether the size is valid.  */
5492
  if (length < 0)
5493
    return -1;
5494
 
5495
  if (offset_buffer == NULL)
5496
    return 0;
5497
 
5498
  /* If there are no multibyte character, offset_buffer[i] == i.
5499
   Optmize for this case.  */
5500
  if (offset_buffer[length] == length)
5501
    return length;
5502
 
5503
  /* Set up upper with length. (because for all i, offset_buffer[i] >= i)  */
5504
  upper = length;
5505
  lower = 0;
5506
 
5507
  while (true)
5508
    {
5509
      int middle = (lower + upper) / 2;
5510
      if (middle == lower || middle == upper)
5511
        break;
5512
      if (offset_buffer[middle] > length)
5513
        upper = middle;
5514
      else if (offset_buffer[middle] < length)
5515
        lower = middle;
5516
      else
5517
        return middle;
5518
    }
5519
 
5520
  return -1;
5521
}
5522
#endif /* WCHAR */
5523
 
5524
/* This is a separate function so that we can force an alloca cleanup
5525
   afterwards.  */
5526
#ifdef WCHAR
5527
static int
5528
wcs_re_match_2_internal (struct re_pattern_buffer *bufp,
5529
                         const char *cstring1, int csize1,
5530
                         const char *cstring2, int csize2,
5531
                         int pos,
5532
                         struct re_registers *regs,
5533
                         int stop,
5534
     /* string1 == string2 == NULL means string1/2, size1/2 and
5535
        mbs_offset1/2 need seting up in this function.  */
5536
     /* We need wchar_t* buffers correspond to cstring1, cstring2.  */
5537
                         wchar_t *string1, int size1,
5538
                         wchar_t *string2, int size2,
5539
     /* offset buffer for optimizatoin. See convert_mbs_to_wc.  */
5540
                         int *mbs_offset1, int *mbs_offset2)
5541
#else /* BYTE */
5542
static int
5543
byte_re_match_2_internal (struct re_pattern_buffer *bufp,
5544
                          const char *string1, int size1,
5545
                          const char *string2, int size2,
5546
                          int pos,
5547
                          struct re_registers *regs, int stop)
5548
#endif /* BYTE */
5549
{
5550
  /* General temporaries.  */
5551
  int mcnt;
5552
  UCHAR_T *p1;
5553
#ifdef WCHAR
5554
  /* They hold whether each wchar_t is binary data or not.  */
5555
  char *is_binary = NULL;
5556
  /* If true, we can't free string1/2, mbs_offset1/2.  */
5557
  int cant_free_wcs_buf = 1;
5558
#endif /* WCHAR */
5559
 
5560
  /* Just past the end of the corresponding string.  */
5561
  const CHAR_T *end1, *end2;
5562
 
5563
  /* Pointers into string1 and string2, just past the last characters in
5564
     each to consider matching.  */
5565
  const CHAR_T *end_match_1, *end_match_2;
5566
 
5567
  /* Where we are in the data, and the end of the current string.  */
5568
  const CHAR_T *d, *dend;
5569
 
5570
  /* Where we are in the pattern, and the end of the pattern.  */
5571
#ifdef WCHAR
5572
  UCHAR_T *pattern, *p;
5573
  register UCHAR_T *pend;
5574
#else /* BYTE */
5575
  UCHAR_T *p = bufp->buffer;
5576
  register UCHAR_T *pend = p + bufp->used;
5577
#endif /* WCHAR */
5578
 
5579
  /* Mark the opcode just after a start_memory, so we can test for an
5580
     empty subpattern when we get to the stop_memory.  */
5581
  UCHAR_T *just_past_start_mem = 0;
5582
 
5583
  /* We use this to map every character in the string.  */
5584
  RE_TRANSLATE_TYPE translate = bufp->translate;
5585
 
5586
  /* Failure point stack.  Each place that can handle a failure further
5587
     down the line pushes a failure point on this stack.  It consists of
5588
     restart, regend, and reg_info for all registers corresponding to
5589
     the subexpressions we're currently inside, plus the number of such
5590
     registers, and, finally, two char *'s.  The first char * is where
5591
     to resume scanning the pattern; the second one is where to resume
5592
     scanning the strings.  If the latter is zero, the failure point is
5593
     a ``dummy''; if a failure happens and the failure point is a dummy,
5594
     it gets discarded and the next next one is tried.  */
5595
#ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global.  */
5596
  PREFIX(fail_stack_type) fail_stack;
5597
#endif
5598
#ifdef DEBUG
5599
  static unsigned failure_id;
5600
  unsigned nfailure_points_pushed = 0, nfailure_points_popped = 0;
5601
#endif
5602
 
5603
#ifdef REL_ALLOC
5604
  /* This holds the pointer to the failure stack, when
5605
     it is allocated relocatably.  */
5606
  fail_stack_elt_t *failure_stack_ptr;
5607
#endif
5608
 
5609
  /* We fill all the registers internally, independent of what we
5610
     return, for use in backreferences.  The number here includes
5611
     an element for register zero.  */
5612
  size_t num_regs = bufp->re_nsub + 1;
5613
 
5614
  /* The currently active registers.  */
5615
  active_reg_t lowest_active_reg = NO_LOWEST_ACTIVE_REG;
5616
  active_reg_t highest_active_reg = NO_HIGHEST_ACTIVE_REG;
5617
 
5618
  /* Information on the contents of registers. These are pointers into
5619
     the input strings; they record just what was matched (on this
5620
     attempt) by a subexpression part of the pattern, that is, the
5621
     regnum-th regstart pointer points to where in the pattern we began
5622
     matching and the regnum-th regend points to right after where we
5623
     stopped matching the regnum-th subexpression.  (The zeroth register
5624
     keeps track of what the whole pattern matches.)  */
5625
#ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global.  */
5626
  const CHAR_T **regstart, **regend;
5627
#endif
5628
 
5629
  /* If a group that's operated upon by a repetition operator fails to
5630
     match anything, then the register for its start will need to be
5631
     restored because it will have been set to wherever in the string we
5632
     are when we last see its open-group operator.  Similarly for a
5633
     register's end.  */
5634
#ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global.  */
5635
  const CHAR_T **old_regstart, **old_regend;
5636
#endif
5637
 
5638
  /* The is_active field of reg_info helps us keep track of which (possibly
5639
     nested) subexpressions we are currently in. The matched_something
5640
     field of reg_info[reg_num] helps us tell whether or not we have
5641
     matched any of the pattern so far this time through the reg_num-th
5642
     subexpression.  These two fields get reset each time through any
5643
     loop their register is in.  */
5644
#ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global.  */
5645
  PREFIX(register_info_type) *reg_info;
5646
#endif
5647
 
5648
  /* The following record the register info as found in the above
5649
     variables when we find a match better than any we've seen before.
5650
     This happens as we backtrack through the failure points, which in
5651
     turn happens only if we have not yet matched the entire string. */
5652
  unsigned best_regs_set = false;
5653
#ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global.  */
5654
  const CHAR_T **best_regstart, **best_regend;
5655
#endif
5656
 
5657
  /* Logically, this is `best_regend[0]'.  But we don't want to have to
5658
     allocate space for that if we're not allocating space for anything
5659
     else (see below).  Also, we never need info about register 0 for
5660
     any of the other register vectors, and it seems rather a kludge to
5661
     treat `best_regend' differently than the rest.  So we keep track of
5662
     the end of the best match so far in a separate variable.  We
5663
     initialize this to NULL so that when we backtrack the first time
5664
     and need to test it, it's not garbage.  */
5665
  const CHAR_T *match_end = NULL;
5666
 
5667
  /* This helps SET_REGS_MATCHED avoid doing redundant work.  */
5668
  int set_regs_matched_done = 0;
5669
 
5670
  /* Used when we pop values we don't care about.  */
5671
#ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global.  */
5672
  const CHAR_T **reg_dummy;
5673
  PREFIX(register_info_type) *reg_info_dummy;
5674
#endif
5675
 
5676
#ifdef DEBUG
5677
  /* Counts the total number of registers pushed.  */
5678
  unsigned num_regs_pushed = 0;
5679
#endif
5680
 
5681
  DEBUG_PRINT1 ("\n\nEntering re_match_2.\n");
5682
 
5683
  INIT_FAIL_STACK ();
5684
 
5685
#ifdef MATCH_MAY_ALLOCATE
5686
  /* Do not bother to initialize all the register variables if there are
5687
     no groups in the pattern, as it takes a fair amount of time.  If
5688
     there are groups, we include space for register 0 (the whole
5689
     pattern), even though we never use it, since it simplifies the
5690
     array indexing.  We should fix this.  */
5691
  if (bufp->re_nsub)
5692
    {
5693
      regstart = REGEX_TALLOC (num_regs, const CHAR_T *);
5694
      regend = REGEX_TALLOC (num_regs, const CHAR_T *);
5695
      old_regstart = REGEX_TALLOC (num_regs, const CHAR_T *);
5696
      old_regend = REGEX_TALLOC (num_regs, const CHAR_T *);
5697
      best_regstart = REGEX_TALLOC (num_regs, const CHAR_T *);
5698
      best_regend = REGEX_TALLOC (num_regs, const CHAR_T *);
5699
      reg_info = REGEX_TALLOC (num_regs, PREFIX(register_info_type));
5700
      reg_dummy = REGEX_TALLOC (num_regs, const CHAR_T *);
5701
      reg_info_dummy = REGEX_TALLOC (num_regs, PREFIX(register_info_type));
5702
 
5703
      if (!(regstart && regend && old_regstart && old_regend && reg_info
5704
            && best_regstart && best_regend && reg_dummy && reg_info_dummy))
5705
        {
5706
          FREE_VARIABLES ();
5707
          return -2;
5708
        }
5709
    }
5710
  else
5711
    {
5712
      /* We must initialize all our variables to NULL, so that
5713
         `FREE_VARIABLES' doesn't try to free them.  */
5714
      regstart = regend = old_regstart = old_regend = best_regstart
5715
        = best_regend = reg_dummy = NULL;
5716
      reg_info = reg_info_dummy = (PREFIX(register_info_type) *) NULL;
5717
    }
5718
#endif /* MATCH_MAY_ALLOCATE */
5719
 
5720
  /* The starting position is bogus.  */
5721
#ifdef WCHAR
5722
  if (pos < 0 || pos > csize1 + csize2)
5723
#else /* BYTE */
5724
  if (pos < 0 || pos > size1 + size2)
5725
#endif
5726
    {
5727
      FREE_VARIABLES ();
5728
      return -1;
5729
    }
5730
 
5731
#ifdef WCHAR
5732
  /* Allocate wchar_t array for string1 and string2 and
5733
     fill them with converted string.  */
5734
  if (string1 == NULL && string2 == NULL)
5735
    {
5736
      /* We need seting up buffers here.  */
5737
 
5738
      /* We must free wcs buffers in this function.  */
5739
      cant_free_wcs_buf = 0;
5740
 
5741
      if (csize1 != 0)
5742
        {
5743
          string1 = REGEX_TALLOC (csize1 + 1, CHAR_T);
5744
          mbs_offset1 = REGEX_TALLOC (csize1 + 1, int);
5745
          is_binary = REGEX_TALLOC (csize1 + 1, char);
5746
          if (!string1 || !mbs_offset1 || !is_binary)
5747
            {
5748
              FREE_VAR (string1);
5749
              FREE_VAR (mbs_offset1);
5750
              FREE_VAR (is_binary);
5751
              return -2;
5752
            }
5753
        }
5754
      if (csize2 != 0)
5755
        {
5756
          string2 = REGEX_TALLOC (csize2 + 1, CHAR_T);
5757
          mbs_offset2 = REGEX_TALLOC (csize2 + 1, int);
5758
          is_binary = REGEX_TALLOC (csize2 + 1, char);
5759
          if (!string2 || !mbs_offset2 || !is_binary)
5760
            {
5761
              FREE_VAR (string1);
5762
              FREE_VAR (mbs_offset1);
5763
              FREE_VAR (string2);
5764
              FREE_VAR (mbs_offset2);
5765
              FREE_VAR (is_binary);
5766
              return -2;
5767
            }
5768
          size2 = convert_mbs_to_wcs(string2, cstring2, csize2,
5769
                                     mbs_offset2, is_binary);
5770
          string2[size2] = L'\0'; /* for a sentinel  */
5771
          FREE_VAR (is_binary);
5772
        }
5773
    }
5774
 
5775
  /* We need to cast pattern to (wchar_t*), because we casted this compiled
5776
     pattern to (char*) in regex_compile.  */
5777
  p = pattern = (CHAR_T*)bufp->buffer;
5778
  pend = (CHAR_T*)(bufp->buffer + bufp->used);
5779
 
5780
#endif /* WCHAR */
5781
 
5782
  /* Initialize subexpression text positions to -1 to mark ones that no
5783
     start_memory/stop_memory has been seen for. Also initialize the
5784
     register information struct.  */
5785
  for (mcnt = 1; (unsigned) mcnt < num_regs; mcnt++)
5786
    {
5787
      regstart[mcnt] = regend[mcnt]
5788
        = old_regstart[mcnt] = old_regend[mcnt] = REG_UNSET_VALUE;
5789
 
5790
      REG_MATCH_NULL_STRING_P (reg_info[mcnt]) = MATCH_NULL_UNSET_VALUE;
5791
      IS_ACTIVE (reg_info[mcnt]) = 0;
5792
      MATCHED_SOMETHING (reg_info[mcnt]) = 0;
5793
      EVER_MATCHED_SOMETHING (reg_info[mcnt]) = 0;
5794
    }
5795
 
5796
  /* We move `string1' into `string2' if the latter's empty -- but not if
5797
     `string1' is null.  */
5798
  if (size2 == 0 && string1 != NULL)
5799
    {
5800
      string2 = string1;
5801
      size2 = size1;
5802
      string1 = 0;
5803
      size1 = 0;
5804
#ifdef WCHAR
5805
      mbs_offset2 = mbs_offset1;
5806
      csize2 = csize1;
5807
      mbs_offset1 = NULL;
5808
      csize1 = 0;
5809
#endif
5810
    }
5811
  end1 = string1 + size1;
5812
  end2 = string2 + size2;
5813
 
5814
  /* Compute where to stop matching, within the two strings.  */
5815
#ifdef WCHAR
5816
  if (stop <= csize1)
5817
    {
5818
      mcnt = count_mbs_length(mbs_offset1, stop);
5819
      end_match_1 = string1 + mcnt;
5820
      end_match_2 = string2;
5821
    }
5822
  else
5823
    {
5824
      if (stop > csize1 + csize2)
5825
        stop = csize1 + csize2;
5826
      end_match_1 = end1;
5827
      mcnt = count_mbs_length(mbs_offset2, stop-csize1);
5828
      end_match_2 = string2 + mcnt;
5829
    }
5830
  if (mcnt < 0)
5831
    { /* count_mbs_length return error.  */
5832
      FREE_VARIABLES ();
5833
      return -1;
5834
    }
5835
#else
5836
  if (stop <= size1)
5837
    {
5838
      end_match_1 = string1 + stop;
5839
      end_match_2 = string2;
5840
    }
5841
  else
5842
    {
5843
      end_match_1 = end1;
5844
      end_match_2 = string2 + stop - size1;
5845
    }
5846
#endif /* WCHAR */
5847
 
5848
  /* `p' scans through the pattern as `d' scans through the data.
5849
     `dend' is the end of the input string that `d' points within.  `d'
5850
     is advanced into the following input string whenever necessary, but
5851
     this happens before fetching; therefore, at the beginning of the
5852
     loop, `d' can be pointing at the end of a string, but it cannot
5853
     equal `string2'.  */
5854
#ifdef WCHAR
5855
  if (size1 > 0 && pos <= csize1)
5856
    {
5857
      mcnt = count_mbs_length(mbs_offset1, pos);
5858
      d = string1 + mcnt;
5859
      dend = end_match_1;
5860
    }
5861
  else
5862
    {
5863
      mcnt = count_mbs_length(mbs_offset2, pos-csize1);
5864
      d = string2 + mcnt;
5865
      dend = end_match_2;
5866
    }
5867
 
5868
  if (mcnt < 0)
5869
    { /* count_mbs_length return error.  */
5870
      FREE_VARIABLES ();
5871
      return -1;
5872
    }
5873
#else
5874
  if (size1 > 0 && pos <= size1)
5875
    {
5876
      d = string1 + pos;
5877
      dend = end_match_1;
5878
    }
5879
  else
5880
    {
5881
      d = string2 + pos - size1;
5882
      dend = end_match_2;
5883
    }
5884
#endif /* WCHAR */
5885
 
5886
  DEBUG_PRINT1 ("The compiled pattern is:\n");
5887
  DEBUG_PRINT_COMPILED_PATTERN (bufp, p, pend);
5888
  DEBUG_PRINT1 ("The string to match is: `");
5889
  DEBUG_PRINT_DOUBLE_STRING (d, string1, size1, string2, size2);
5890
  DEBUG_PRINT1 ("'\n");
5891
 
5892
  /* This loops over pattern commands.  It exits by returning from the
5893
     function if the match is complete, or it drops through if the match
5894
     fails at this starting point in the input data.  */
5895
  for (;;)
5896
    {
5897
#ifdef _LIBC
5898
      DEBUG_PRINT2 ("\n%p: ", p);
5899
#else
5900
      DEBUG_PRINT2 ("\n0x%x: ", p);
5901
#endif
5902
 
5903
      if (p == pend)
5904
        { /* End of pattern means we might have succeeded.  */
5905
          DEBUG_PRINT1 ("end of pattern ... ");
5906
 
5907
          /* If we haven't matched the entire string, and we want the
5908
             longest match, try backtracking.  */
5909
          if (d != end_match_2)
5910
            {
5911
              /* 1 if this match ends in the same string (string1 or string2)
5912
                 as the best previous match.  */
5913
              boolean same_str_p = (FIRST_STRING_P (match_end)
5914
                                    == MATCHING_IN_FIRST_STRING);
5915
              /* 1 if this match is the best seen so far.  */
5916
              boolean best_match_p;
5917
 
5918
              /* AIX compiler got confused when this was combined
5919
                 with the previous declaration.  */
5920
              if (same_str_p)
5921
                best_match_p = d > match_end;
5922
              else
5923
                best_match_p = !MATCHING_IN_FIRST_STRING;
5924
 
5925
              DEBUG_PRINT1 ("backtracking.\n");
5926
 
5927
              if (!FAIL_STACK_EMPTY ())
5928
                { /* More failure points to try.  */
5929
 
5930
                  /* If exceeds best match so far, save it.  */
5931
                  if (!best_regs_set || best_match_p)
5932
                    {
5933
                      best_regs_set = true;
5934
                      match_end = d;
5935
 
5936
                      DEBUG_PRINT1 ("\nSAVING match as best so far.\n");
5937
 
5938
                      for (mcnt = 1; (unsigned) mcnt < num_regs; mcnt++)
5939
                        {
5940
                          best_regstart[mcnt] = regstart[mcnt];
5941
                          best_regend[mcnt] = regend[mcnt];
5942
                        }
5943
                    }
5944
                  goto fail;
5945
                }
5946
 
5947
              /* If no failure points, don't restore garbage.  And if
5948
                 last match is real best match, don't restore second
5949
                 best one. */
5950
              else if (best_regs_set && !best_match_p)
5951
                {
5952
                restore_best_regs:
5953
                  /* Restore best match.  It may happen that `dend ==
5954
                     end_match_1' while the restored d is in string2.
5955
                     For example, the pattern `x.*y.*z' against the
5956
                     strings `x-' and `y-z-', if the two strings are
5957
                     not consecutive in memory.  */
5958
                  DEBUG_PRINT1 ("Restoring best registers.\n");
5959
 
5960
                  d = match_end;
5961
                  dend = ((d >= string1 && d <= end1)
5962
                           ? end_match_1 : end_match_2);
5963
 
5964
                  for (mcnt = 1; (unsigned) mcnt < num_regs; mcnt++)
5965
                    {
5966
                      regstart[mcnt] = best_regstart[mcnt];
5967
                      regend[mcnt] = best_regend[mcnt];
5968
                    }
5969
                }
5970
            } /* d != end_match_2 */
5971
 
5972
        succeed_label:
5973
          DEBUG_PRINT1 ("Accepting match.\n");
5974
          /* If caller wants register contents data back, do it.  */
5975
          if (regs && !bufp->no_sub)
5976
            {
5977
              /* Have the register data arrays been allocated?  */
5978
              if (bufp->regs_allocated == REGS_UNALLOCATED)
5979
                { /* No.  So allocate them with malloc.  We need one
5980
                     extra element beyond `num_regs' for the `-1' marker
5981
                     GNU code uses.  */
5982
                  regs->num_regs = MAX (RE_NREGS, num_regs + 1);
5983
                  regs->start = TALLOC (regs->num_regs, regoff_t);
5984
                  regs->end = TALLOC (regs->num_regs, regoff_t);
5985
                  if (regs->start == NULL || regs->end == NULL)
5986
                    {
5987
                      FREE_VARIABLES ();
5988
                      return -2;
5989
                    }
5990
                  bufp->regs_allocated = REGS_REALLOCATE;
5991
                }
5992
              else if (bufp->regs_allocated == REGS_REALLOCATE)
5993
                { /* Yes.  If we need more elements than were already
5994
                     allocated, reallocate them.  If we need fewer, just
5995
                     leave it alone.  */
5996
                  if (regs->num_regs < num_regs + 1)
5997
                    {
5998
                      regs->num_regs = num_regs + 1;
5999
                      RETALLOC (regs->start, regs->num_regs, regoff_t);
6000
                      RETALLOC (regs->end, regs->num_regs, regoff_t);
6001
                      if (regs->start == NULL || regs->end == NULL)
6002
                        {
6003
                          FREE_VARIABLES ();
6004
                          return -2;
6005
                        }
6006
                    }
6007
                }
6008
              else
6009
                {
6010
                  /* These braces fend off a "empty body in an else-statement"
6011
                     warning under GCC when assert expands to nothing.  */
6012
                  assert (bufp->regs_allocated == REGS_FIXED);
6013
                }
6014
 
6015
              /* Convert the pointer data in `regstart' and `regend' to
6016
                 indices.  Register zero has to be set differently,
6017
                 since we haven't kept track of any info for it.  */
6018
              if (regs->num_regs > 0)
6019
                {
6020
                  regs->start[0] = pos;
6021
#ifdef WCHAR
6022
                  if (MATCHING_IN_FIRST_STRING)
6023
                    regs->end[0] = mbs_offset1 != NULL ?
6024
                                        mbs_offset1[d-string1] : 0;
6025
                  else
6026
                    regs->end[0] = csize1 + (mbs_offset2 != NULL ?
6027
                                             mbs_offset2[d-string2] : 0);
6028
#else
6029
                  regs->end[0] = (MATCHING_IN_FIRST_STRING
6030
                                  ? ((regoff_t) (d - string1))
6031
                                  : ((regoff_t) (d - string2 + size1)));
6032
#endif /* WCHAR */
6033
                }
6034
 
6035
              /* Go through the first `min (num_regs, regs->num_regs)'
6036
                 registers, since that is all we initialized.  */
6037
              for (mcnt = 1; (unsigned) mcnt < MIN (num_regs, regs->num_regs);
6038
                   mcnt++)
6039
                {
6040
                  if (REG_UNSET (regstart[mcnt]) || REG_UNSET (regend[mcnt]))
6041
                    regs->start[mcnt] = regs->end[mcnt] = -1;
6042
                  else
6043
                    {
6044
                      regs->start[mcnt]
6045
                        = (regoff_t) POINTER_TO_OFFSET (regstart[mcnt]);
6046
                      regs->end[mcnt]
6047
                        = (regoff_t) POINTER_TO_OFFSET (regend[mcnt]);
6048
                    }
6049
                }
6050
 
6051
              /* If the regs structure we return has more elements than
6052
                 were in the pattern, set the extra elements to -1.  If
6053
                 we (re)allocated the registers, this is the case,
6054
                 because we always allocate enough to have at least one
6055
                 -1 at the end.  */
6056
              for (mcnt = num_regs; (unsigned) mcnt < regs->num_regs; mcnt++)
6057
                regs->start[mcnt] = regs->end[mcnt] = -1;
6058
            } /* regs && !bufp->no_sub */
6059
 
6060
          DEBUG_PRINT4 ("%u failure points pushed, %u popped (%u remain).\n",
6061
                        nfailure_points_pushed, nfailure_points_popped,
6062
                        nfailure_points_pushed - nfailure_points_popped);
6063
          DEBUG_PRINT2 ("%u registers pushed.\n", num_regs_pushed);
6064
 
6065
#ifdef WCHAR
6066
          if (MATCHING_IN_FIRST_STRING)
6067
            mcnt = mbs_offset1 != NULL ? mbs_offset1[d-string1] : 0;
6068
          else
6069
            mcnt = (mbs_offset2 != NULL ? mbs_offset2[d-string2] : 0) +
6070
                        csize1;
6071
          mcnt -= pos;
6072
#else
6073
          mcnt = d - pos - (MATCHING_IN_FIRST_STRING
6074
                            ? string1
6075
                            : string2 - size1);
6076
#endif /* WCHAR */
6077
 
6078
          DEBUG_PRINT2 ("Returning %d from re_match_2.\n", mcnt);
6079
 
6080
          FREE_VARIABLES ();
6081
          return mcnt;
6082
        }
6083
 
6084
      /* Otherwise match next pattern command.  */
6085
      switch (SWITCH_ENUM_CAST ((re_opcode_t) *p++))
6086
        {
6087
        /* Ignore these.  Used to ignore the n of succeed_n's which
6088
           currently have n == 0.  */
6089
        case no_op:
6090
          DEBUG_PRINT1 ("EXECUTING no_op.\n");
6091
          break;
6092
 
6093
        case succeed:
6094
          DEBUG_PRINT1 ("EXECUTING succeed.\n");
6095
          goto succeed_label;
6096
 
6097
        /* Match the next n pattern characters exactly.  The following
6098
           byte in the pattern defines n, and the n bytes after that
6099
           are the characters to match.  */
6100
        case exactn:
6101
#ifdef MBS_SUPPORT
6102
        case exactn_bin:
6103
#endif
6104
          mcnt = *p++;
6105
          DEBUG_PRINT2 ("EXECUTING exactn %d.\n", mcnt);
6106
 
6107
          /* This is written out as an if-else so we don't waste time
6108
             testing `translate' inside the loop.  */
6109
          if (translate)
6110
            {
6111
              do
6112
                {
6113
                  PREFETCH ();
6114
#ifdef WCHAR
6115
                  if (*d <= 0xff)
6116
                    {
6117
                      if ((UCHAR_T) translate[(unsigned char) *d++]
6118
                          != (UCHAR_T) *p++)
6119
                        goto fail;
6120
                    }
6121
                  else
6122
                    {
6123
                      if (*d++ != (CHAR_T) *p++)
6124
                        goto fail;
6125
                    }
6126
#else
6127
                  if ((UCHAR_T) translate[(unsigned char) *d++]
6128
                      != (UCHAR_T) *p++)
6129
                    goto fail;
6130
#endif /* WCHAR */
6131
                }
6132
              while (--mcnt);
6133
            }
6134
          else
6135
            {
6136
              do
6137
                {
6138
                  PREFETCH ();
6139
                  if (*d++ != (CHAR_T) *p++) goto fail;
6140
                }
6141
              while (--mcnt);
6142
            }
6143
          SET_REGS_MATCHED ();
6144
          break;
6145
 
6146
 
6147
        /* Match any character except possibly a newline or a null.  */
6148
        case anychar:
6149
          DEBUG_PRINT1 ("EXECUTING anychar.\n");
6150
 
6151
          PREFETCH ();
6152
 
6153
          if ((!(bufp->syntax & RE_DOT_NEWLINE) && TRANSLATE (*d) == '\n')
6154
              || (bufp->syntax & RE_DOT_NOT_NULL && TRANSLATE (*d) == '\000'))
6155
            goto fail;
6156
 
6157
          SET_REGS_MATCHED ();
6158
          DEBUG_PRINT2 ("  Matched `%ld'.\n", (long int) *d);
6159
          d++;
6160
          break;
6161
 
6162
 
6163
        case charset:
6164
        case charset_not:
6165
          {
6166
            register UCHAR_T c;
6167
#ifdef WCHAR
6168
            unsigned int i, char_class_length, coll_symbol_length,
6169
              equiv_class_length, ranges_length, chars_length, length;
6170
            CHAR_T *workp, *workp2, *charset_top;
6171
#define WORK_BUFFER_SIZE 128
6172
            CHAR_T str_buf[WORK_BUFFER_SIZE];
6173
# ifdef _LIBC
6174
            uint32_t nrules;
6175
# endif /* _LIBC */
6176
#endif /* WCHAR */
6177
            boolean negate = (re_opcode_t) *(p - 1) == charset_not;
6178
 
6179
            DEBUG_PRINT2 ("EXECUTING charset%s.\n", negate ? "_not" : "");
6180
            PREFETCH ();
6181
            c = TRANSLATE (*d); /* The character to match.  */
6182
#ifdef WCHAR
6183
# ifdef _LIBC
6184
            nrules = _NL_CURRENT_WORD (LC_COLLATE, _NL_COLLATE_NRULES);
6185
# endif /* _LIBC */
6186
            charset_top = p - 1;
6187
            char_class_length = *p++;
6188
            coll_symbol_length = *p++;
6189
            equiv_class_length = *p++;
6190
            ranges_length = *p++;
6191
            chars_length = *p++;
6192
            /* p points charset[6], so the address of the next instruction
6193
               (charset[l+m+n+2o+k+p']) equals p[l+m+n+2*o+p'],
6194
               where l=length of char_classes, m=length of collating_symbol,
6195
               n=equivalence_class, o=length of char_range,
6196
               p'=length of character.  */
6197
            workp = p;
6198
            /* Update p to indicate the next instruction.  */
6199
            p += char_class_length + coll_symbol_length+ equiv_class_length +
6200
              2*ranges_length + chars_length;
6201
 
6202
            /* match with char_class?  */
6203
            for (i = 0; i < char_class_length ; i += CHAR_CLASS_SIZE)
6204
              {
6205
                wctype_t wctype;
6206
                uintptr_t alignedp = ((uintptr_t)workp
6207
                                      + __alignof__(wctype_t) - 1)
6208
                                      & ~(uintptr_t)(__alignof__(wctype_t) - 1);
6209
                wctype = *((wctype_t*)alignedp);
6210
                workp += CHAR_CLASS_SIZE;
6211
# ifdef _LIBC
6212
                if (__iswctype((wint_t)c, wctype))
6213
                  goto char_set_matched;
6214
# else
6215
                if (iswctype((wint_t)c, wctype))
6216
                  goto char_set_matched;
6217
# endif
6218
              }
6219
 
6220
            /* match with collating_symbol?  */
6221
# ifdef _LIBC
6222
            if (nrules != 0)
6223
              {
6224
                const unsigned char *extra = (const unsigned char *)
6225
                  _NL_CURRENT (LC_COLLATE, _NL_COLLATE_SYMB_EXTRAMB);
6226
 
6227
                for (workp2 = workp + coll_symbol_length ; workp < workp2 ;
6228
                     workp++)
6229
                  {
6230
                    int32_t *wextra;
6231
                    wextra = (int32_t*)(extra + *workp++);
6232
                    for (i = 0; i < *wextra; ++i)
6233
                      if (TRANSLATE(d[i]) != wextra[1 + i])
6234
                        break;
6235
 
6236
                    if (i == *wextra)
6237
                      {
6238
                        /* Update d, however d will be incremented at
6239
                           char_set_matched:, we decrement d here.  */
6240
                        d += i - 1;
6241
                        goto char_set_matched;
6242
                      }
6243
                  }
6244
              }
6245
            else /* (nrules == 0) */
6246
# endif
6247
              /* If we can't look up collation data, we use wcscoll
6248
                 instead.  */
6249
              {
6250
                for (workp2 = workp + coll_symbol_length ; workp < workp2 ;)
6251
                  {
6252
                    const CHAR_T *backup_d = d, *backup_dend = dend;
6253
# ifdef _LIBC
6254
                    length = __wcslen (workp);
6255
# else
6256
                    length = wcslen (workp);
6257
# endif
6258
 
6259
                    /* If wcscoll(the collating symbol, whole string) > 0,
6260
                       any substring of the string never match with the
6261
                       collating symbol.  */
6262
# ifdef _LIBC
6263
                    if (__wcscoll (workp, d) > 0)
6264
# else
6265
                    if (wcscoll (workp, d) > 0)
6266
# endif
6267
                      {
6268
                        workp += length + 1;
6269
                        continue;
6270
                      }
6271
 
6272
                    /* First, we compare the collating symbol with
6273
                       the first character of the string.
6274
                       If it don't match, we add the next character to
6275
                       the compare buffer in turn.  */
6276
                    for (i = 0 ; i < WORK_BUFFER_SIZE-1 ; i++, d++)
6277
                      {
6278
                        int match;
6279
                        if (d == dend)
6280
                          {
6281
                            if (dend == end_match_2)
6282
                              break;
6283
                            d = string2;
6284
                            dend = end_match_2;
6285
                          }
6286
 
6287
                        /* add next character to the compare buffer.  */
6288
                        str_buf[i] = TRANSLATE(*d);
6289
                        str_buf[i+1] = '\0';
6290
 
6291
# ifdef _LIBC
6292
                        match = __wcscoll (workp, str_buf);
6293
# else
6294
                        match = wcscoll (workp, str_buf);
6295
# endif
6296
                        if (match == 0)
6297
                          goto char_set_matched;
6298
 
6299
                        if (match < 0)
6300
                          /* (str_buf > workp) indicate (str_buf + X > workp),
6301
                             because for all X (str_buf + X > str_buf).
6302
                             So we don't need continue this loop.  */
6303
                          break;
6304
 
6305
                        /* Otherwise(str_buf < workp),
6306
                           (str_buf+next_character) may equals (workp).
6307
                           So we continue this loop.  */
6308
                      }
6309
                    /* not matched */
6310
                    d = backup_d;
6311
                    dend = backup_dend;
6312
                    workp += length + 1;
6313
                  }
6314
              }
6315
            /* match with equivalence_class?  */
6316
# ifdef _LIBC
6317
            if (nrules != 0)
6318
              {
6319
                const CHAR_T *backup_d = d, *backup_dend = dend;
6320
                /* Try to match the equivalence class against
6321
                   those known to the collate implementation.  */
6322
                const int32_t *table;
6323
                const int32_t *weights;
6324
                const int32_t *extra;
6325
                const int32_t *indirect;
6326
                int32_t idx, idx2;
6327
                wint_t *cp;
6328
                size_t len;
6329
 
6330
                /* This #include defines a local function!  */
6331
#  include <locale/weightwc.h>
6332
 
6333
                table = (const int32_t *)
6334
                  _NL_CURRENT (LC_COLLATE, _NL_COLLATE_TABLEWC);
6335
                weights = (const wint_t *)
6336
                  _NL_CURRENT (LC_COLLATE, _NL_COLLATE_WEIGHTWC);
6337
                extra = (const wint_t *)
6338
                  _NL_CURRENT (LC_COLLATE, _NL_COLLATE_EXTRAWC);
6339
                indirect = (const int32_t *)
6340
                  _NL_CURRENT (LC_COLLATE, _NL_COLLATE_INDIRECTWC);
6341
 
6342
                /* Write 1 collating element to str_buf, and
6343
                   get its index.  */
6344
                idx2 = 0;
6345
 
6346
                for (i = 0 ; idx2 == 0 && i < WORK_BUFFER_SIZE - 1; i++)
6347
                  {
6348
                    cp = (wint_t*)str_buf;
6349
                    if (d == dend)
6350
                      {
6351
                        if (dend == end_match_2)
6352
                          break;
6353
                        d = string2;
6354
                        dend = end_match_2;
6355
                      }
6356
                    str_buf[i] = TRANSLATE(*(d+i));
6357
                    str_buf[i+1] = '\0'; /* sentinel */
6358
                    idx2 = findidx ((const wint_t**)&cp);
6359
                  }
6360
 
6361
                /* Update d, however d will be incremented at
6362
                   char_set_matched:, we decrement d here.  */
6363
                d = backup_d + ((wchar_t*)cp - (wchar_t*)str_buf - 1);
6364
                if (d >= dend)
6365
                  {
6366
                    if (dend == end_match_2)
6367
                        d = dend;
6368
                    else
6369
                      {
6370
                        d = string2;
6371
                        dend = end_match_2;
6372
                      }
6373
                  }
6374
 
6375
                len = weights[idx2];
6376
 
6377
                for (workp2 = workp + equiv_class_length ; workp < workp2 ;
6378
                     workp++)
6379
                  {
6380
                    idx = (int32_t)*workp;
6381
                    /* We already checked idx != 0 in regex_compile. */
6382
 
6383
                    if (idx2 != 0 && len == weights[idx])
6384
                      {
6385
                        int cnt = 0;
6386
                        while (cnt < len && (weights[idx + 1 + cnt]
6387
                                             == weights[idx2 + 1 + cnt]))
6388
                          ++cnt;
6389
 
6390
                        if (cnt == len)
6391
                          goto char_set_matched;
6392
                      }
6393
                  }
6394
                /* not matched */
6395
                d = backup_d;
6396
                dend = backup_dend;
6397
              }
6398
            else /* (nrules == 0) */
6399
# endif
6400
              /* If we can't look up collation data, we use wcscoll
6401
                 instead.  */
6402
              {
6403
                for (workp2 = workp + equiv_class_length ; workp < workp2 ;)
6404
                  {
6405
                    const CHAR_T *backup_d = d, *backup_dend = dend;
6406
# ifdef _LIBC
6407
                    length = __wcslen (workp);
6408
# else
6409
                    length = wcslen (workp);
6410
# endif
6411
 
6412
                    /* If wcscoll(the collating symbol, whole string) > 0,
6413
                       any substring of the string never match with the
6414
                       collating symbol.  */
6415
# ifdef _LIBC
6416
                    if (__wcscoll (workp, d) > 0)
6417
# else
6418
                    if (wcscoll (workp, d) > 0)
6419
# endif
6420
                      {
6421
                        workp += length + 1;
6422
                        break;
6423
                      }
6424
 
6425
                    /* First, we compare the equivalence class with
6426
                       the first character of the string.
6427
                       If it don't match, we add the next character to
6428
                       the compare buffer in turn.  */
6429
                    for (i = 0 ; i < WORK_BUFFER_SIZE - 1 ; i++, d++)
6430
                      {
6431
                        int match;
6432
                        if (d == dend)
6433
                          {
6434
                            if (dend == end_match_2)
6435
                              break;
6436
                            d = string2;
6437
                            dend = end_match_2;
6438
                          }
6439
 
6440
                        /* add next character to the compare buffer.  */
6441
                        str_buf[i] = TRANSLATE(*d);
6442
                        str_buf[i+1] = '\0';
6443
 
6444
# ifdef _LIBC
6445
                        match = __wcscoll (workp, str_buf);
6446
# else
6447
                        match = wcscoll (workp, str_buf);
6448
# endif
6449
 
6450
                        if (match == 0)
6451
                          goto char_set_matched;
6452
 
6453
                        if (match < 0)
6454
                        /* (str_buf > workp) indicate (str_buf + X > workp),
6455
                           because for all X (str_buf + X > str_buf).
6456
                           So we don't need continue this loop.  */
6457
                          break;
6458
 
6459
                        /* Otherwise(str_buf < workp),
6460
                           (str_buf+next_character) may equals (workp).
6461
                           So we continue this loop.  */
6462
                      }
6463
                    /* not matched */
6464
                    d = backup_d;
6465
                    dend = backup_dend;
6466
                    workp += length + 1;
6467
                  }
6468
              }
6469
 
6470
            /* match with char_range?  */
6471
# ifdef _LIBC
6472
            if (nrules != 0)
6473
              {
6474
                uint32_t collseqval;
6475
                const char *collseq = (const char *)
6476
                  _NL_CURRENT(LC_COLLATE, _NL_COLLATE_COLLSEQWC);
6477
 
6478
                collseqval = collseq_table_lookup (collseq, c);
6479
 
6480
                for (; workp < p - chars_length ;)
6481
                  {
6482
                    uint32_t start_val, end_val;
6483
 
6484
                    /* We already compute the collation sequence value
6485
                       of the characters (or collating symbols).  */
6486
                    start_val = (uint32_t) *workp++; /* range_start */
6487
                    end_val = (uint32_t) *workp++; /* range_end */
6488
 
6489
                    if (start_val <= collseqval && collseqval <= end_val)
6490
                      goto char_set_matched;
6491
                  }
6492
              }
6493
            else
6494
# endif
6495
              {
6496
                /* We set range_start_char at str_buf[0], range_end_char
6497
                   at str_buf[4], and compared char at str_buf[2].  */
6498
                str_buf[1] = 0;
6499
                str_buf[2] = c;
6500
                str_buf[3] = 0;
6501
                str_buf[5] = 0;
6502
                for (; workp < p - chars_length ;)
6503
                  {
6504
                    wchar_t *range_start_char, *range_end_char;
6505
 
6506
                    /* match if (range_start_char <= c <= range_end_char).  */
6507
 
6508
                    /* If range_start(or end) < 0, we assume -range_start(end)
6509
                       is the offset of the collating symbol which is specified
6510
                       as the character of the range start(end).  */
6511
 
6512
                    /* range_start */
6513
                    if (*workp < 0)
6514
                      range_start_char = charset_top - (*workp++);
6515
                    else
6516
                      {
6517
                        str_buf[0] = *workp++;
6518
                        range_start_char = str_buf;
6519
                      }
6520
 
6521
                    /* range_end */
6522
                    if (*workp < 0)
6523
                      range_end_char = charset_top - (*workp++);
6524
                    else
6525
                      {
6526
                        str_buf[4] = *workp++;
6527
                        range_end_char = str_buf + 4;
6528
                      }
6529
 
6530
# ifdef _LIBC
6531
                    if (__wcscoll (range_start_char, str_buf+2) <= 0
6532
                        && __wcscoll (str_buf+2, range_end_char) <= 0)
6533
# else
6534
                    if (wcscoll (range_start_char, str_buf+2) <= 0
6535
                        && wcscoll (str_buf+2, range_end_char) <= 0)
6536
# endif
6537
                      goto char_set_matched;
6538
                  }
6539
              }
6540
 
6541
            /* match with char?  */
6542
            for (; workp < p ; workp++)
6543
              if (c == *workp)
6544
                goto char_set_matched;
6545
 
6546
            negate = !negate;
6547
 
6548
          char_set_matched:
6549
            if (negate) goto fail;
6550
#else
6551
            /* Cast to `unsigned' instead of `unsigned char' in case the
6552
               bit list is a full 32 bytes long.  */
6553
            if (c < (unsigned) (*p * BYTEWIDTH)
6554
                && p[1 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
6555
              negate = !negate;
6556
 
6557
            p += 1 + *p;
6558
 
6559
            if (!negate) goto fail;
6560
#undef WORK_BUFFER_SIZE
6561
#endif /* WCHAR */
6562
            SET_REGS_MATCHED ();
6563
            d++;
6564
            break;
6565
          }
6566
 
6567
 
6568
        /* The beginning of a group is represented by start_memory.
6569
           The arguments are the register number in the next byte, and the
6570
           number of groups inner to this one in the next.  The text
6571
           matched within the group is recorded (in the internal
6572
           registers data structure) under the register number.  */
6573
        case start_memory:
6574
          DEBUG_PRINT3 ("EXECUTING start_memory %ld (%ld):\n",
6575
                        (long int) *p, (long int) p[1]);
6576
 
6577
          /* Find out if this group can match the empty string.  */
6578
          p1 = p;               /* To send to group_match_null_string_p.  */
6579
 
6580
          if (REG_MATCH_NULL_STRING_P (reg_info[*p]) == MATCH_NULL_UNSET_VALUE)
6581
            REG_MATCH_NULL_STRING_P (reg_info[*p])
6582
              = PREFIX(group_match_null_string_p) (&p1, pend, reg_info);
6583
 
6584
          /* Save the position in the string where we were the last time
6585
             we were at this open-group operator in case the group is
6586
             operated upon by a repetition operator, e.g., with `(a*)*b'
6587
             against `ab'; then we want to ignore where we are now in
6588
             the string in case this attempt to match fails.  */
6589
          old_regstart[*p] = REG_MATCH_NULL_STRING_P (reg_info[*p])
6590
                             ? REG_UNSET (regstart[*p]) ? d : regstart[*p]
6591
                             : regstart[*p];
6592
          DEBUG_PRINT2 ("  old_regstart: %d\n",
6593
                         POINTER_TO_OFFSET (old_regstart[*p]));
6594
 
6595
          regstart[*p] = d;
6596
          DEBUG_PRINT2 ("  regstart: %d\n", POINTER_TO_OFFSET (regstart[*p]));
6597
 
6598
          IS_ACTIVE (reg_info[*p]) = 1;
6599
          MATCHED_SOMETHING (reg_info[*p]) = 0;
6600
 
6601
          /* Clear this whenever we change the register activity status.  */
6602
          set_regs_matched_done = 0;
6603
 
6604
          /* This is the new highest active register.  */
6605
          highest_active_reg = *p;
6606
 
6607
          /* If nothing was active before, this is the new lowest active
6608
             register.  */
6609
          if (lowest_active_reg == NO_LOWEST_ACTIVE_REG)
6610
            lowest_active_reg = *p;
6611
 
6612
          /* Move past the register number and inner group count.  */
6613
          p += 2;
6614
          just_past_start_mem = p;
6615
 
6616
          break;
6617
 
6618
 
6619
        /* The stop_memory opcode represents the end of a group.  Its
6620
           arguments are the same as start_memory's: the register
6621
           number, and the number of inner groups.  */
6622
        case stop_memory:
6623
          DEBUG_PRINT3 ("EXECUTING stop_memory %ld (%ld):\n",
6624
                        (long int) *p, (long int) p[1]);
6625
 
6626
          /* We need to save the string position the last time we were at
6627
             this close-group operator in case the group is operated
6628
             upon by a repetition operator, e.g., with `((a*)*(b*)*)*'
6629
             against `aba'; then we want to ignore where we are now in
6630
             the string in case this attempt to match fails.  */
6631
          old_regend[*p] = REG_MATCH_NULL_STRING_P (reg_info[*p])
6632
                           ? REG_UNSET (regend[*p]) ? d : regend[*p]
6633
                           : regend[*p];
6634
          DEBUG_PRINT2 ("      old_regend: %d\n",
6635
                         POINTER_TO_OFFSET (old_regend[*p]));
6636
 
6637
          regend[*p] = d;
6638
          DEBUG_PRINT2 ("      regend: %d\n", POINTER_TO_OFFSET (regend[*p]));
6639
 
6640
          /* This register isn't active anymore.  */
6641
          IS_ACTIVE (reg_info[*p]) = 0;
6642
 
6643
          /* Clear this whenever we change the register activity status.  */
6644
          set_regs_matched_done = 0;
6645
 
6646
          /* If this was the only register active, nothing is active
6647
             anymore.  */
6648
          if (lowest_active_reg == highest_active_reg)
6649
            {
6650
              lowest_active_reg = NO_LOWEST_ACTIVE_REG;
6651
              highest_active_reg = NO_HIGHEST_ACTIVE_REG;
6652
            }
6653
          else
6654
            { /* We must scan for the new highest active register, since
6655
                 it isn't necessarily one less than now: consider
6656
                 (a(b)c(d(e)f)g).  When group 3 ends, after the f), the
6657
                 new highest active register is 1.  */
6658
              UCHAR_T r = *p - 1;
6659
              while (r > 0 && !IS_ACTIVE (reg_info[r]))
6660
                r--;
6661
 
6662
              /* If we end up at register zero, that means that we saved
6663
                 the registers as the result of an `on_failure_jump', not
6664
                 a `start_memory', and we jumped to past the innermost
6665
                 `stop_memory'.  For example, in ((.)*) we save
6666
                 registers 1 and 2 as a result of the *, but when we pop
6667
                 back to the second ), we are at the stop_memory 1.
6668
                 Thus, nothing is active.  */
6669
              if (r == 0)
6670
                {
6671
                  lowest_active_reg = NO_LOWEST_ACTIVE_REG;
6672
                  highest_active_reg = NO_HIGHEST_ACTIVE_REG;
6673
                }
6674
              else
6675
                highest_active_reg = r;
6676
            }
6677
 
6678
          /* If just failed to match something this time around with a
6679
             group that's operated on by a repetition operator, try to
6680
             force exit from the ``loop'', and restore the register
6681
             information for this group that we had before trying this
6682
             last match.  */
6683
          if ((!MATCHED_SOMETHING (reg_info[*p])
6684
               || just_past_start_mem == p - 1)
6685
              && (p + 2) < pend)
6686
            {
6687
              boolean is_a_jump_n = false;
6688
 
6689
              p1 = p + 2;
6690
              mcnt = 0;
6691
              switch ((re_opcode_t) *p1++)
6692
                {
6693
                  case jump_n:
6694
                    is_a_jump_n = true;
6695
                  case pop_failure_jump:
6696
                  case maybe_pop_jump:
6697
                  case jump:
6698
                  case dummy_failure_jump:
6699
                    EXTRACT_NUMBER_AND_INCR (mcnt, p1);
6700
                    if (is_a_jump_n)
6701
                      p1 += OFFSET_ADDRESS_SIZE;
6702
                    break;
6703
 
6704
                  default:
6705
                    /* do nothing */ ;
6706
                }
6707
              p1 += mcnt;
6708
 
6709
              /* If the next operation is a jump backwards in the pattern
6710
                 to an on_failure_jump right before the start_memory
6711
                 corresponding to this stop_memory, exit from the loop
6712
                 by forcing a failure after pushing on the stack the
6713
                 on_failure_jump's jump in the pattern, and d.  */
6714
              if (mcnt < 0 && (re_opcode_t) *p1 == on_failure_jump
6715
                  && (re_opcode_t) p1[1+OFFSET_ADDRESS_SIZE] == start_memory
6716
                  && p1[2+OFFSET_ADDRESS_SIZE] == *p)
6717
                {
6718
                  /* If this group ever matched anything, then restore
6719
                     what its registers were before trying this last
6720
                     failed match, e.g., with `(a*)*b' against `ab' for
6721
                     regstart[1], and, e.g., with `((a*)*(b*)*)*'
6722
                     against `aba' for regend[3].
6723
 
6724
                     Also restore the registers for inner groups for,
6725
                     e.g., `((a*)(b*))*' against `aba' (register 3 would
6726
                     otherwise get trashed).  */
6727
 
6728
                  if (EVER_MATCHED_SOMETHING (reg_info[*p]))
6729
                    {
6730
                      unsigned r;
6731
 
6732
                      EVER_MATCHED_SOMETHING (reg_info[*p]) = 0;
6733
 
6734
                      /* Restore this and inner groups' (if any) registers.  */
6735
                      for (r = *p; r < (unsigned) *p + (unsigned) *(p + 1);
6736
                           r++)
6737
                        {
6738
                          regstart[r] = old_regstart[r];
6739
 
6740
                          /* xx why this test?  */
6741
                          if (old_regend[r] >= regstart[r])
6742
                            regend[r] = old_regend[r];
6743
                        }
6744
                    }
6745
                  p1++;
6746
                  EXTRACT_NUMBER_AND_INCR (mcnt, p1);
6747
                  PUSH_FAILURE_POINT (p1 + mcnt, d, -2);
6748
 
6749
                  goto fail;
6750
                }
6751
            }
6752
 
6753
          /* Move past the register number and the inner group count.  */
6754
          p += 2;
6755
          break;
6756
 
6757
 
6758
        /* \<digit> has been turned into a `duplicate' command which is
6759
           followed by the numeric value of <digit> as the register number.  */
6760
        case duplicate:
6761
          {
6762
            register const CHAR_T *d2, *dend2;
6763
            int regno = *p++;   /* Get which register to match against.  */
6764
            DEBUG_PRINT2 ("EXECUTING duplicate %d.\n", regno);
6765
 
6766
            /* Can't back reference a group which we've never matched.  */
6767
            if (REG_UNSET (regstart[regno]) || REG_UNSET (regend[regno]))
6768
              goto fail;
6769
 
6770
            /* Where in input to try to start matching.  */
6771
            d2 = regstart[regno];
6772
 
6773
            /* Where to stop matching; if both the place to start and
6774
               the place to stop matching are in the same string, then
6775
               set to the place to stop, otherwise, for now have to use
6776
               the end of the first string.  */
6777
 
6778
            dend2 = ((FIRST_STRING_P (regstart[regno])
6779
                      == FIRST_STRING_P (regend[regno]))
6780
                     ? regend[regno] : end_match_1);
6781
            for (;;)
6782
              {
6783
                /* If necessary, advance to next segment in register
6784
                   contents.  */
6785
                while (d2 == dend2)
6786
                  {
6787
                    if (dend2 == end_match_2) break;
6788
                    if (dend2 == regend[regno]) break;
6789
 
6790
                    /* End of string1 => advance to string2. */
6791
                    d2 = string2;
6792
                    dend2 = regend[regno];
6793
                  }
6794
                /* At end of register contents => success */
6795
                if (d2 == dend2) break;
6796
 
6797
                /* If necessary, advance to next segment in data.  */
6798
                PREFETCH ();
6799
 
6800
                /* How many characters left in this segment to match.  */
6801
                mcnt = dend - d;
6802
 
6803
                /* Want how many consecutive characters we can match in
6804
                   one shot, so, if necessary, adjust the count.  */
6805
                if (mcnt > dend2 - d2)
6806
                  mcnt = dend2 - d2;
6807
 
6808
                /* Compare that many; failure if mismatch, else move
6809
                   past them.  */
6810
                if (translate
6811
                    ? PREFIX(bcmp_translate) (d, d2, mcnt, translate)
6812
                    : memcmp (d, d2, mcnt*sizeof(UCHAR_T)))
6813
                  goto fail;
6814
                d += mcnt, d2 += mcnt;
6815
 
6816
                /* Do this because we've match some characters.  */
6817
                SET_REGS_MATCHED ();
6818
              }
6819
          }
6820
          break;
6821
 
6822
 
6823
        /* begline matches the empty string at the beginning of the string
6824
           (unless `not_bol' is set in `bufp'), and, if
6825
           `newline_anchor' is set, after newlines.  */
6826
        case begline:
6827
          DEBUG_PRINT1 ("EXECUTING begline.\n");
6828
 
6829
          if (AT_STRINGS_BEG (d))
6830
            {
6831
              if (!bufp->not_bol) break;
6832
            }
6833
          else if (d[-1] == '\n' && bufp->newline_anchor)
6834
            {
6835
              break;
6836
            }
6837
          /* In all other cases, we fail.  */
6838
          goto fail;
6839
 
6840
 
6841
        /* endline is the dual of begline.  */
6842
        case endline:
6843
          DEBUG_PRINT1 ("EXECUTING endline.\n");
6844
 
6845
          if (AT_STRINGS_END (d))
6846
            {
6847
              if (!bufp->not_eol) break;
6848
            }
6849
 
6850
          /* We have to ``prefetch'' the next character.  */
6851
          else if ((d == end1 ? *string2 : *d) == '\n'
6852
                   && bufp->newline_anchor)
6853
            {
6854
              break;
6855
            }
6856
          goto fail;
6857
 
6858
 
6859
        /* Match at the very beginning of the data.  */
6860
        case begbuf:
6861
          DEBUG_PRINT1 ("EXECUTING begbuf.\n");
6862
          if (AT_STRINGS_BEG (d))
6863
            break;
6864
          goto fail;
6865
 
6866
 
6867
        /* Match at the very end of the data.  */
6868
        case endbuf:
6869
          DEBUG_PRINT1 ("EXECUTING endbuf.\n");
6870
          if (AT_STRINGS_END (d))
6871
            break;
6872
          goto fail;
6873
 
6874
 
6875
        /* on_failure_keep_string_jump is used to optimize `.*\n'.  It
6876
           pushes NULL as the value for the string on the stack.  Then
6877
           `pop_failure_point' will keep the current value for the
6878
           string, instead of restoring it.  To see why, consider
6879
           matching `foo\nbar' against `.*\n'.  The .* matches the foo;
6880
           then the . fails against the \n.  But the next thing we want
6881
           to do is match the \n against the \n; if we restored the
6882
           string value, we would be back at the foo.
6883
 
6884
           Because this is used only in specific cases, we don't need to
6885
           check all the things that `on_failure_jump' does, to make
6886
           sure the right things get saved on the stack.  Hence we don't
6887
           share its code.  The only reason to push anything on the
6888
           stack at all is that otherwise we would have to change
6889
           `anychar's code to do something besides goto fail in this
6890
           case; that seems worse than this.  */
6891
        case on_failure_keep_string_jump:
6892
          DEBUG_PRINT1 ("EXECUTING on_failure_keep_string_jump");
6893
 
6894
          EXTRACT_NUMBER_AND_INCR (mcnt, p);
6895
#ifdef _LIBC
6896
          DEBUG_PRINT3 (" %d (to %p):\n", mcnt, p + mcnt);
6897
#else
6898
          DEBUG_PRINT3 (" %d (to 0x%x):\n", mcnt, p + mcnt);
6899
#endif
6900
 
6901
          PUSH_FAILURE_POINT (p + mcnt, NULL, -2);
6902
          break;
6903
 
6904
 
6905
        /* Uses of on_failure_jump:
6906
 
6907
           Each alternative starts with an on_failure_jump that points
6908
           to the beginning of the next alternative.  Each alternative
6909
           except the last ends with a jump that in effect jumps past
6910
           the rest of the alternatives.  (They really jump to the
6911
           ending jump of the following alternative, because tensioning
6912
           these jumps is a hassle.)
6913
 
6914
           Repeats start with an on_failure_jump that points past both
6915
           the repetition text and either the following jump or
6916
           pop_failure_jump back to this on_failure_jump.  */
6917
        case on_failure_jump:
6918
        on_failure:
6919
          DEBUG_PRINT1 ("EXECUTING on_failure_jump");
6920
 
6921
          EXTRACT_NUMBER_AND_INCR (mcnt, p);
6922
#ifdef _LIBC
6923
          DEBUG_PRINT3 (" %d (to %p)", mcnt, p + mcnt);
6924
#else
6925
          DEBUG_PRINT3 (" %d (to 0x%x)", mcnt, p + mcnt);
6926
#endif
6927
 
6928
          /* If this on_failure_jump comes right before a group (i.e.,
6929
             the original * applied to a group), save the information
6930
             for that group and all inner ones, so that if we fail back
6931
             to this point, the group's information will be correct.
6932
             For example, in \(a*\)*\1, we need the preceding group,
6933
             and in \(zz\(a*\)b*\)\2, we need the inner group.  */
6934
 
6935
          /* We can't use `p' to check ahead because we push
6936
             a failure point to `p + mcnt' after we do this.  */
6937
          p1 = p;
6938
 
6939
          /* We need to skip no_op's before we look for the
6940
             start_memory in case this on_failure_jump is happening as
6941
             the result of a completed succeed_n, as in \(a\)\{1,3\}b\1
6942
             against aba.  */
6943
          while (p1 < pend && (re_opcode_t) *p1 == no_op)
6944
            p1++;
6945
 
6946
          if (p1 < pend && (re_opcode_t) *p1 == start_memory)
6947
            {
6948
              /* We have a new highest active register now.  This will
6949
                 get reset at the start_memory we are about to get to,
6950
                 but we will have saved all the registers relevant to
6951
                 this repetition op, as described above.  */
6952
              highest_active_reg = *(p1 + 1) + *(p1 + 2);
6953
              if (lowest_active_reg == NO_LOWEST_ACTIVE_REG)
6954
                lowest_active_reg = *(p1 + 1);
6955
            }
6956
 
6957
          DEBUG_PRINT1 (":\n");
6958
          PUSH_FAILURE_POINT (p + mcnt, d, -2);
6959
          break;
6960
 
6961
 
6962
        /* A smart repeat ends with `maybe_pop_jump'.
6963
           We change it to either `pop_failure_jump' or `jump'.  */
6964
        case maybe_pop_jump:
6965
          EXTRACT_NUMBER_AND_INCR (mcnt, p);
6966
          DEBUG_PRINT2 ("EXECUTING maybe_pop_jump %d.\n", mcnt);
6967
          {
6968
            register UCHAR_T *p2 = p;
6969
 
6970
            /* Compare the beginning of the repeat with what in the
6971
               pattern follows its end. If we can establish that there
6972
               is nothing that they would both match, i.e., that we
6973
               would have to backtrack because of (as in, e.g., `a*a')
6974
               then we can change to pop_failure_jump, because we'll
6975
               never have to backtrack.
6976
 
6977
               This is not true in the case of alternatives: in
6978
               `(a|ab)*' we do need to backtrack to the `ab' alternative
6979
               (e.g., if the string was `ab').  But instead of trying to
6980
               detect that here, the alternative has put on a dummy
6981
               failure point which is what we will end up popping.  */
6982
 
6983
            /* Skip over open/close-group commands.
6984
               If what follows this loop is a ...+ construct,
6985
               look at what begins its body, since we will have to
6986
               match at least one of that.  */
6987
            while (1)
6988
              {
6989
                if (p2 + 2 < pend
6990
                    && ((re_opcode_t) *p2 == stop_memory
6991
                        || (re_opcode_t) *p2 == start_memory))
6992
                  p2 += 3;
6993
                else if (p2 + 2 + 2 * OFFSET_ADDRESS_SIZE < pend
6994
                         && (re_opcode_t) *p2 == dummy_failure_jump)
6995
                  p2 += 2 + 2 * OFFSET_ADDRESS_SIZE;
6996
                else
6997
                  break;
6998
              }
6999
 
7000
            p1 = p + mcnt;
7001
            /* p1[0] ... p1[2] are the `on_failure_jump' corresponding
7002
               to the `maybe_finalize_jump' of this case.  Examine what
7003
               follows.  */
7004
 
7005
            /* If we're at the end of the pattern, we can change.  */
7006
            if (p2 == pend)
7007
              {
7008
                /* Consider what happens when matching ":\(.*\)"
7009
                   against ":/".  I don't really understand this code
7010
                   yet.  */
7011
                p[-(1+OFFSET_ADDRESS_SIZE)] = (UCHAR_T)
7012
                  pop_failure_jump;
7013
                DEBUG_PRINT1
7014
                  ("  End of pattern: change to `pop_failure_jump'.\n");
7015
              }
7016
 
7017
            else if ((re_opcode_t) *p2 == exactn
7018
#ifdef MBS_SUPPORT
7019
                     || (re_opcode_t) *p2 == exactn_bin
7020
#endif
7021
                     || (bufp->newline_anchor && (re_opcode_t) *p2 == endline))
7022
              {
7023
                register UCHAR_T c
7024
                  = *p2 == (UCHAR_T) endline ? '\n' : p2[2];
7025
 
7026
                if (((re_opcode_t) p1[1+OFFSET_ADDRESS_SIZE] == exactn
7027
#ifdef MBS_SUPPORT
7028
                     || (re_opcode_t) p1[1+OFFSET_ADDRESS_SIZE] == exactn_bin
7029
#endif
7030
                    ) && p1[3+OFFSET_ADDRESS_SIZE] != c)
7031
                  {
7032
                    p[-(1+OFFSET_ADDRESS_SIZE)] = (UCHAR_T)
7033
                      pop_failure_jump;
7034
#ifdef WCHAR
7035
                      DEBUG_PRINT3 ("  %C != %C => pop_failure_jump.\n",
7036
                                    (wint_t) c,
7037
                                    (wint_t) p1[3+OFFSET_ADDRESS_SIZE]);
7038
#else
7039
                      DEBUG_PRINT3 ("  %c != %c => pop_failure_jump.\n",
7040
                                    (char) c,
7041
                                    (char) p1[3+OFFSET_ADDRESS_SIZE]);
7042
#endif
7043
                  }
7044
 
7045
#ifndef WCHAR
7046
                else if ((re_opcode_t) p1[3] == charset
7047
                         || (re_opcode_t) p1[3] == charset_not)
7048
                  {
7049
                    int negate = (re_opcode_t) p1[3] == charset_not;
7050
 
7051
                    if (c < (unsigned) (p1[4] * BYTEWIDTH)
7052
                        && p1[5 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
7053
                      negate = !negate;
7054
 
7055
                    /* `negate' is equal to 1 if c would match, which means
7056
                        that we can't change to pop_failure_jump.  */
7057
                    if (!negate)
7058
                      {
7059
                        p[-3] = (unsigned char) pop_failure_jump;
7060
                        DEBUG_PRINT1 ("  No match => pop_failure_jump.\n");
7061
                      }
7062
                  }
7063
#endif /* not WCHAR */
7064
              }
7065
#ifndef WCHAR
7066
            else if ((re_opcode_t) *p2 == charset)
7067
              {
7068
                /* We win if the first character of the loop is not part
7069
                   of the charset.  */
7070
                if ((re_opcode_t) p1[3] == exactn
7071
                    && ! ((int) p2[1] * BYTEWIDTH > (int) p1[5]
7072
                          && (p2[2 + p1[5] / BYTEWIDTH]
7073
                              & (1 << (p1[5] % BYTEWIDTH)))))
7074
                  {
7075
                    p[-3] = (unsigned char) pop_failure_jump;
7076
                    DEBUG_PRINT1 ("  No match => pop_failure_jump.\n");
7077
                  }
7078
 
7079
                else if ((re_opcode_t) p1[3] == charset_not)
7080
                  {
7081
                    int idx;
7082
                    /* We win if the charset_not inside the loop
7083
                       lists every character listed in the charset after.  */
7084
                    for (idx = 0; idx < (int) p2[1]; idx++)
7085
                      if (! (p2[2 + idx] == 0
7086
                             || (idx < (int) p1[4]
7087
                                 && ((p2[2 + idx] & ~ p1[5 + idx]) == 0))))
7088
                        break;
7089
 
7090
                    if (idx == p2[1])
7091
                      {
7092
                        p[-3] = (unsigned char) pop_failure_jump;
7093
                        DEBUG_PRINT1 ("  No match => pop_failure_jump.\n");
7094
                      }
7095
                  }
7096
                else if ((re_opcode_t) p1[3] == charset)
7097
                  {
7098
                    int idx;
7099
                    /* We win if the charset inside the loop
7100
                       has no overlap with the one after the loop.  */
7101
                    for (idx = 0;
7102
                         idx < (int) p2[1] && idx < (int) p1[4];
7103
                         idx++)
7104
                      if ((p2[2 + idx] & p1[5 + idx]) != 0)
7105
                        break;
7106
 
7107
                    if (idx == p2[1] || idx == p1[4])
7108
                      {
7109
                        p[-3] = (unsigned char) pop_failure_jump;
7110
                        DEBUG_PRINT1 ("  No match => pop_failure_jump.\n");
7111
                      }
7112
                  }
7113
              }
7114
#endif /* not WCHAR */
7115
          }
7116
          p -= OFFSET_ADDRESS_SIZE;     /* Point at relative address again.  */
7117
          if ((re_opcode_t) p[-1] != pop_failure_jump)
7118
            {
7119
              p[-1] = (UCHAR_T) jump;
7120
              DEBUG_PRINT1 ("  Match => jump.\n");
7121
              goto unconditional_jump;
7122
            }
7123
        /* Note fall through.  */
7124
 
7125
 
7126
        /* The end of a simple repeat has a pop_failure_jump back to
7127
           its matching on_failure_jump, where the latter will push a
7128
           failure point.  The pop_failure_jump takes off failure
7129
           points put on by this pop_failure_jump's matching
7130
           on_failure_jump; we got through the pattern to here from the
7131
           matching on_failure_jump, so didn't fail.  */
7132
        case pop_failure_jump:
7133
          {
7134
            /* We need to pass separate storage for the lowest and
7135
               highest registers, even though we don't care about the
7136
               actual values.  Otherwise, we will restore only one
7137
               register from the stack, since lowest will == highest in
7138
               `pop_failure_point'.  */
7139
            active_reg_t dummy_low_reg, dummy_high_reg;
7140
            UCHAR_T *pdummy = NULL;
7141
            const CHAR_T *sdummy = NULL;
7142
 
7143
            DEBUG_PRINT1 ("EXECUTING pop_failure_jump.\n");
7144
            POP_FAILURE_POINT (sdummy, pdummy,
7145
                               dummy_low_reg, dummy_high_reg,
7146
                               reg_dummy, reg_dummy, reg_info_dummy);
7147
          }
7148
          /* Note fall through.  */
7149
 
7150
        unconditional_jump:
7151
#ifdef _LIBC
7152
          DEBUG_PRINT2 ("\n%p: ", p);
7153
#else
7154
          DEBUG_PRINT2 ("\n0x%x: ", p);
7155
#endif
7156
          /* Note fall through.  */
7157
 
7158
        /* Unconditionally jump (without popping any failure points).  */
7159
        case jump:
7160
          EXTRACT_NUMBER_AND_INCR (mcnt, p);    /* Get the amount to jump.  */
7161
          DEBUG_PRINT2 ("EXECUTING jump %d ", mcnt);
7162
          p += mcnt;                            /* Do the jump.  */
7163
#ifdef _LIBC
7164
          DEBUG_PRINT2 ("(to %p).\n", p);
7165
#else
7166
          DEBUG_PRINT2 ("(to 0x%x).\n", p);
7167
#endif
7168
          break;
7169
 
7170
 
7171
        /* We need this opcode so we can detect where alternatives end
7172
           in `group_match_null_string_p' et al.  */
7173
        case jump_past_alt:
7174
          DEBUG_PRINT1 ("EXECUTING jump_past_alt.\n");
7175
          goto unconditional_jump;
7176
 
7177
 
7178
        /* Normally, the on_failure_jump pushes a failure point, which
7179
           then gets popped at pop_failure_jump.  We will end up at
7180
           pop_failure_jump, also, and with a pattern of, say, `a+', we
7181
           are skipping over the on_failure_jump, so we have to push
7182
           something meaningless for pop_failure_jump to pop.  */
7183
        case dummy_failure_jump:
7184
          DEBUG_PRINT1 ("EXECUTING dummy_failure_jump.\n");
7185
          /* It doesn't matter what we push for the string here.  What
7186
             the code at `fail' tests is the value for the pattern.  */
7187
          PUSH_FAILURE_POINT (NULL, NULL, -2);
7188
          goto unconditional_jump;
7189
 
7190
 
7191
        /* At the end of an alternative, we need to push a dummy failure
7192
           point in case we are followed by a `pop_failure_jump', because
7193
           we don't want the failure point for the alternative to be
7194
           popped.  For example, matching `(a|ab)*' against `aab'
7195
           requires that we match the `ab' alternative.  */
7196
        case push_dummy_failure:
7197
          DEBUG_PRINT1 ("EXECUTING push_dummy_failure.\n");
7198
          /* See comments just above at `dummy_failure_jump' about the
7199
             two zeroes.  */
7200
          PUSH_FAILURE_POINT (NULL, NULL, -2);
7201
          break;
7202
 
7203
        /* Have to succeed matching what follows at least n times.
7204
           After that, handle like `on_failure_jump'.  */
7205
        case succeed_n:
7206
          EXTRACT_NUMBER (mcnt, p + OFFSET_ADDRESS_SIZE);
7207
          DEBUG_PRINT2 ("EXECUTING succeed_n %d.\n", mcnt);
7208
 
7209
          assert (mcnt >= 0);
7210
          /* Originally, this is how many times we HAVE to succeed.  */
7211
          if (mcnt > 0)
7212
            {
7213
               mcnt--;
7214
               p += OFFSET_ADDRESS_SIZE;
7215
               STORE_NUMBER_AND_INCR (p, mcnt);
7216
#ifdef _LIBC
7217
               DEBUG_PRINT3 ("  Setting %p to %d.\n", p - OFFSET_ADDRESS_SIZE
7218
                             , mcnt);
7219
#else
7220
               DEBUG_PRINT3 ("  Setting 0x%x to %d.\n", p - OFFSET_ADDRESS_SIZE
7221
                             , mcnt);
7222
#endif
7223
            }
7224
          else if (mcnt == 0)
7225
            {
7226
#ifdef _LIBC
7227
              DEBUG_PRINT2 ("  Setting two bytes from %p to no_op.\n",
7228
                            p + OFFSET_ADDRESS_SIZE);
7229
#else
7230
              DEBUG_PRINT2 ("  Setting two bytes from 0x%x to no_op.\n",
7231
                            p + OFFSET_ADDRESS_SIZE);
7232
#endif /* _LIBC */
7233
 
7234
#ifdef WCHAR
7235
              p[1] = (UCHAR_T) no_op;
7236
#else
7237
              p[2] = (UCHAR_T) no_op;
7238
              p[3] = (UCHAR_T) no_op;
7239
#endif /* WCHAR */
7240
              goto on_failure;
7241
            }
7242
          break;
7243
 
7244
        case jump_n:
7245
          EXTRACT_NUMBER (mcnt, p + OFFSET_ADDRESS_SIZE);
7246
          DEBUG_PRINT2 ("EXECUTING jump_n %d.\n", mcnt);
7247
 
7248
          /* Originally, this is how many times we CAN jump.  */
7249
          if (mcnt)
7250
            {
7251
               mcnt--;
7252
               STORE_NUMBER (p + OFFSET_ADDRESS_SIZE, mcnt);
7253
 
7254
#ifdef _LIBC
7255
               DEBUG_PRINT3 ("  Setting %p to %d.\n", p + OFFSET_ADDRESS_SIZE,
7256
                             mcnt);
7257
#else
7258
               DEBUG_PRINT3 ("  Setting 0x%x to %d.\n", p + OFFSET_ADDRESS_SIZE,
7259
                             mcnt);
7260
#endif /* _LIBC */
7261
               goto unconditional_jump;
7262
            }
7263
          /* If don't have to jump any more, skip over the rest of command.  */
7264
          else
7265
            p += 2 * OFFSET_ADDRESS_SIZE;
7266
          break;
7267
 
7268
        case set_number_at:
7269
          {
7270
            DEBUG_PRINT1 ("EXECUTING set_number_at.\n");
7271
 
7272
            EXTRACT_NUMBER_AND_INCR (mcnt, p);
7273
            p1 = p + mcnt;
7274
            EXTRACT_NUMBER_AND_INCR (mcnt, p);
7275
#ifdef _LIBC
7276
            DEBUG_PRINT3 ("  Setting %p to %d.\n", p1, mcnt);
7277
#else
7278
            DEBUG_PRINT3 ("  Setting 0x%x to %d.\n", p1, mcnt);
7279
#endif
7280
            STORE_NUMBER (p1, mcnt);
7281
            break;
7282
          }
7283
 
7284
#if 0
7285
        /* The DEC Alpha C compiler 3.x generates incorrect code for the
7286
           test  WORDCHAR_P (d - 1) != WORDCHAR_P (d)  in the expansion of
7287
           AT_WORD_BOUNDARY, so this code is disabled.  Expanding the
7288
           macro and introducing temporary variables works around the bug.  */
7289
 
7290
        case wordbound:
7291
          DEBUG_PRINT1 ("EXECUTING wordbound.\n");
7292
          if (AT_WORD_BOUNDARY (d))
7293
            break;
7294
          goto fail;
7295
 
7296
        case notwordbound:
7297
          DEBUG_PRINT1 ("EXECUTING notwordbound.\n");
7298
          if (AT_WORD_BOUNDARY (d))
7299
            goto fail;
7300
          break;
7301
#else
7302
        case wordbound:
7303
        {
7304
          boolean prevchar, thischar;
7305
 
7306
          DEBUG_PRINT1 ("EXECUTING wordbound.\n");
7307
          if (AT_STRINGS_BEG (d) || AT_STRINGS_END (d))
7308
            break;
7309
 
7310
          prevchar = WORDCHAR_P (d - 1);
7311
          thischar = WORDCHAR_P (d);
7312
          if (prevchar != thischar)
7313
            break;
7314
          goto fail;
7315
        }
7316
 
7317
      case notwordbound:
7318
        {
7319
          boolean prevchar, thischar;
7320
 
7321
          DEBUG_PRINT1 ("EXECUTING notwordbound.\n");
7322
          if (AT_STRINGS_BEG (d) || AT_STRINGS_END (d))
7323
            goto fail;
7324
 
7325
          prevchar = WORDCHAR_P (d - 1);
7326
          thischar = WORDCHAR_P (d);
7327
          if (prevchar != thischar)
7328
            goto fail;
7329
          break;
7330
        }
7331
#endif
7332
 
7333
        case wordbeg:
7334
          DEBUG_PRINT1 ("EXECUTING wordbeg.\n");
7335
          if (!AT_STRINGS_END (d) && WORDCHAR_P (d)
7336
              && (AT_STRINGS_BEG (d) || !WORDCHAR_P (d - 1)))
7337
            break;
7338
          goto fail;
7339
 
7340
        case wordend:
7341
          DEBUG_PRINT1 ("EXECUTING wordend.\n");
7342
          if (!AT_STRINGS_BEG (d) && WORDCHAR_P (d - 1)
7343
              && (AT_STRINGS_END (d) || !WORDCHAR_P (d)))
7344
            break;
7345
          goto fail;
7346
 
7347
#ifdef emacs
7348
        case before_dot:
7349
          DEBUG_PRINT1 ("EXECUTING before_dot.\n");
7350
          if (PTR_CHAR_POS ((unsigned char *) d) >= point)
7351
            goto fail;
7352
          break;
7353
 
7354
        case at_dot:
7355
          DEBUG_PRINT1 ("EXECUTING at_dot.\n");
7356
          if (PTR_CHAR_POS ((unsigned char *) d) != point)
7357
            goto fail;
7358
          break;
7359
 
7360
        case after_dot:
7361
          DEBUG_PRINT1 ("EXECUTING after_dot.\n");
7362
          if (PTR_CHAR_POS ((unsigned char *) d) <= point)
7363
            goto fail;
7364
          break;
7365
 
7366
        case syntaxspec:
7367
          DEBUG_PRINT2 ("EXECUTING syntaxspec %d.\n", mcnt);
7368
          mcnt = *p++;
7369
          goto matchsyntax;
7370
 
7371
        case wordchar:
7372
          DEBUG_PRINT1 ("EXECUTING Emacs wordchar.\n");
7373
          mcnt = (int) Sword;
7374
        matchsyntax:
7375
          PREFETCH ();
7376
          /* Can't use *d++ here; SYNTAX may be an unsafe macro.  */
7377
          d++;
7378
          if (SYNTAX (d[-1]) != (enum syntaxcode) mcnt)
7379
            goto fail;
7380
          SET_REGS_MATCHED ();
7381
          break;
7382
 
7383
        case notsyntaxspec:
7384
          DEBUG_PRINT2 ("EXECUTING notsyntaxspec %d.\n", mcnt);
7385
          mcnt = *p++;
7386
          goto matchnotsyntax;
7387
 
7388
        case notwordchar:
7389
          DEBUG_PRINT1 ("EXECUTING Emacs notwordchar.\n");
7390
          mcnt = (int) Sword;
7391
        matchnotsyntax:
7392
          PREFETCH ();
7393
          /* Can't use *d++ here; SYNTAX may be an unsafe macro.  */
7394
          d++;
7395
          if (SYNTAX (d[-1]) == (enum syntaxcode) mcnt)
7396
            goto fail;
7397
          SET_REGS_MATCHED ();
7398
          break;
7399
 
7400
#else /* not emacs */
7401
        case wordchar:
7402
          DEBUG_PRINT1 ("EXECUTING non-Emacs wordchar.\n");
7403
          PREFETCH ();
7404
          if (!WORDCHAR_P (d))
7405
            goto fail;
7406
          SET_REGS_MATCHED ();
7407
          d++;
7408
          break;
7409
 
7410
        case notwordchar:
7411
          DEBUG_PRINT1 ("EXECUTING non-Emacs notwordchar.\n");
7412
          PREFETCH ();
7413
          if (WORDCHAR_P (d))
7414
            goto fail;
7415
          SET_REGS_MATCHED ();
7416
          d++;
7417
          break;
7418
#endif /* not emacs */
7419
 
7420
        default:
7421
          abort ();
7422
        }
7423
      continue;  /* Successfully executed one pattern command; keep going.  */
7424
 
7425
 
7426
    /* We goto here if a matching operation fails. */
7427
    fail:
7428
      if (!FAIL_STACK_EMPTY ())
7429
        { /* A restart point is known.  Restore to that state.  */
7430
          DEBUG_PRINT1 ("\nFAIL:\n");
7431
          POP_FAILURE_POINT (d, p,
7432
                             lowest_active_reg, highest_active_reg,
7433
                             regstart, regend, reg_info);
7434
 
7435
          /* If this failure point is a dummy, try the next one.  */
7436
          if (!p)
7437
            goto fail;
7438
 
7439
          /* If we failed to the end of the pattern, don't examine *p.  */
7440
          assert (p <= pend);
7441
          if (p < pend)
7442
            {
7443
              boolean is_a_jump_n = false;
7444
 
7445
              /* If failed to a backwards jump that's part of a repetition
7446
                 loop, need to pop this failure point and use the next one.  */
7447
              switch ((re_opcode_t) *p)
7448
                {
7449
                case jump_n:
7450
                  is_a_jump_n = true;
7451
                case maybe_pop_jump:
7452
                case pop_failure_jump:
7453
                case jump:
7454
                  p1 = p + 1;
7455
                  EXTRACT_NUMBER_AND_INCR (mcnt, p1);
7456
                  p1 += mcnt;
7457
 
7458
                  if ((is_a_jump_n && (re_opcode_t) *p1 == succeed_n)
7459
                      || (!is_a_jump_n
7460
                          && (re_opcode_t) *p1 == on_failure_jump))
7461
                    goto fail;
7462
                  break;
7463
                default:
7464
                  /* do nothing */ ;
7465
                }
7466
            }
7467
 
7468
          if (d >= string1 && d <= end1)
7469
            dend = end_match_1;
7470
        }
7471
      else
7472
        break;   /* Matching at this starting point really fails.  */
7473
    } /* for (;;) */
7474
 
7475
  if (best_regs_set)
7476
    goto restore_best_regs;
7477
 
7478
  FREE_VARIABLES ();
7479
 
7480
  return -1;                            /* Failure to match.  */
7481
} /* re_match_2 */
7482
 
7483
/* Subroutine definitions for re_match_2.  */
7484
 
7485
 
7486
/* We are passed P pointing to a register number after a start_memory.
7487
 
7488
   Return true if the pattern up to the corresponding stop_memory can
7489
   match the empty string, and false otherwise.
7490
 
7491
   If we find the matching stop_memory, sets P to point to one past its number.
7492
   Otherwise, sets P to an undefined byte less than or equal to END.
7493
 
7494
   We don't handle duplicates properly (yet).  */
7495
 
7496
static boolean
7497
PREFIX(group_match_null_string_p) (UCHAR_T **p, UCHAR_T *end,
7498
                                   PREFIX(register_info_type) *reg_info)
7499
{
7500
  int mcnt;
7501
  /* Point to after the args to the start_memory.  */
7502
  UCHAR_T *p1 = *p + 2;
7503
 
7504
  while (p1 < end)
7505
    {
7506
      /* Skip over opcodes that can match nothing, and return true or
7507
         false, as appropriate, when we get to one that can't, or to the
7508
         matching stop_memory.  */
7509
 
7510
      switch ((re_opcode_t) *p1)
7511
        {
7512
        /* Could be either a loop or a series of alternatives.  */
7513
        case on_failure_jump:
7514
          p1++;
7515
          EXTRACT_NUMBER_AND_INCR (mcnt, p1);
7516
 
7517
          /* If the next operation is not a jump backwards in the
7518
             pattern.  */
7519
 
7520
          if (mcnt >= 0)
7521
            {
7522
              /* Go through the on_failure_jumps of the alternatives,
7523
                 seeing if any of the alternatives cannot match nothing.
7524
                 The last alternative starts with only a jump,
7525
                 whereas the rest start with on_failure_jump and end
7526
                 with a jump, e.g., here is the pattern for `a|b|c':
7527
 
7528
                 /on_failure_jump/0/6/exactn/1/a/jump_past_alt/0/6
7529
                 /on_failure_jump/0/6/exactn/1/b/jump_past_alt/0/3
7530
                 /exactn/1/c
7531
 
7532
                 So, we have to first go through the first (n-1)
7533
                 alternatives and then deal with the last one separately.  */
7534
 
7535
 
7536
              /* Deal with the first (n-1) alternatives, which start
7537
                 with an on_failure_jump (see above) that jumps to right
7538
                 past a jump_past_alt.  */
7539
 
7540
              while ((re_opcode_t) p1[mcnt-(1+OFFSET_ADDRESS_SIZE)] ==
7541
                     jump_past_alt)
7542
                {
7543
                  /* `mcnt' holds how many bytes long the alternative
7544
                     is, including the ending `jump_past_alt' and
7545
                     its number.  */
7546
 
7547
                  if (!PREFIX(alt_match_null_string_p) (p1, p1 + mcnt -
7548
                                                (1 + OFFSET_ADDRESS_SIZE),
7549
                                                reg_info))
7550
                    return false;
7551
 
7552
                  /* Move to right after this alternative, including the
7553
                     jump_past_alt.  */
7554
                  p1 += mcnt;
7555
 
7556
                  /* Break if it's the beginning of an n-th alternative
7557
                     that doesn't begin with an on_failure_jump.  */
7558
                  if ((re_opcode_t) *p1 != on_failure_jump)
7559
                    break;
7560
 
7561
                  /* Still have to check that it's not an n-th
7562
                     alternative that starts with an on_failure_jump.  */
7563
                  p1++;
7564
                  EXTRACT_NUMBER_AND_INCR (mcnt, p1);
7565
                  if ((re_opcode_t) p1[mcnt-(1+OFFSET_ADDRESS_SIZE)] !=
7566
                      jump_past_alt)
7567
                    {
7568
                      /* Get to the beginning of the n-th alternative.  */
7569
                      p1 -= 1 + OFFSET_ADDRESS_SIZE;
7570
                      break;
7571
                    }
7572
                }
7573
 
7574
              /* Deal with the last alternative: go back and get number
7575
                 of the `jump_past_alt' just before it.  `mcnt' contains
7576
                 the length of the alternative.  */
7577
              EXTRACT_NUMBER (mcnt, p1 - OFFSET_ADDRESS_SIZE);
7578
 
7579
              if (!PREFIX(alt_match_null_string_p) (p1, p1 + mcnt, reg_info))
7580
                return false;
7581
 
7582
              p1 += mcnt;       /* Get past the n-th alternative.  */
7583
            } /* if mcnt > 0 */
7584
          break;
7585
 
7586
 
7587
        case stop_memory:
7588
          assert (p1[1] == **p);
7589
          *p = p1 + 2;
7590
          return true;
7591
 
7592
 
7593
        default:
7594
          if (!PREFIX(common_op_match_null_string_p) (&p1, end, reg_info))
7595
            return false;
7596
        }
7597
    } /* while p1 < end */
7598
 
7599
  return false;
7600
} /* group_match_null_string_p */
7601
 
7602
 
7603
/* Similar to group_match_null_string_p, but doesn't deal with alternatives:
7604
   It expects P to be the first byte of a single alternative and END one
7605
   byte past the last. The alternative can contain groups.  */
7606
 
7607
static boolean
7608
PREFIX(alt_match_null_string_p) (UCHAR_T *p, UCHAR_T *end,
7609
                                 PREFIX(register_info_type) *reg_info)
7610
{
7611
  int mcnt;
7612
  UCHAR_T *p1 = p;
7613
 
7614
  while (p1 < end)
7615
    {
7616
      /* Skip over opcodes that can match nothing, and break when we get
7617
         to one that can't.  */
7618
 
7619
      switch ((re_opcode_t) *p1)
7620
        {
7621
        /* It's a loop.  */
7622
        case on_failure_jump:
7623
          p1++;
7624
          EXTRACT_NUMBER_AND_INCR (mcnt, p1);
7625
          p1 += mcnt;
7626
          break;
7627
 
7628
        default:
7629
          if (!PREFIX(common_op_match_null_string_p) (&p1, end, reg_info))
7630
            return false;
7631
        }
7632
    }  /* while p1 < end */
7633
 
7634
  return true;
7635
} /* alt_match_null_string_p */
7636
 
7637
 
7638
/* Deals with the ops common to group_match_null_string_p and
7639
   alt_match_null_string_p.
7640
 
7641
   Sets P to one after the op and its arguments, if any.  */
7642
 
7643
static boolean
7644
PREFIX(common_op_match_null_string_p) (UCHAR_T **p, UCHAR_T *end,
7645
                                       PREFIX(register_info_type) *reg_info)
7646
{
7647
  int mcnt;
7648
  boolean ret;
7649
  int reg_no;
7650
  UCHAR_T *p1 = *p;
7651
 
7652
  switch ((re_opcode_t) *p1++)
7653
    {
7654
    case no_op:
7655
    case begline:
7656
    case endline:
7657
    case begbuf:
7658
    case endbuf:
7659
    case wordbeg:
7660
    case wordend:
7661
    case wordbound:
7662
    case notwordbound:
7663
#ifdef emacs
7664
    case before_dot:
7665
    case at_dot:
7666
    case after_dot:
7667
#endif
7668
      break;
7669
 
7670
    case start_memory:
7671
      reg_no = *p1;
7672
      assert (reg_no > 0 && reg_no <= MAX_REGNUM);
7673
      ret = PREFIX(group_match_null_string_p) (&p1, end, reg_info);
7674
 
7675
      /* Have to set this here in case we're checking a group which
7676
         contains a group and a back reference to it.  */
7677
 
7678
      if (REG_MATCH_NULL_STRING_P (reg_info[reg_no]) == MATCH_NULL_UNSET_VALUE)
7679
        REG_MATCH_NULL_STRING_P (reg_info[reg_no]) = ret;
7680
 
7681
      if (!ret)
7682
        return false;
7683
      break;
7684
 
7685
    /* If this is an optimized succeed_n for zero times, make the jump.  */
7686
    case jump:
7687
      EXTRACT_NUMBER_AND_INCR (mcnt, p1);
7688
      if (mcnt >= 0)
7689
        p1 += mcnt;
7690
      else
7691
        return false;
7692
      break;
7693
 
7694
    case succeed_n:
7695
      /* Get to the number of times to succeed.  */
7696
      p1 += OFFSET_ADDRESS_SIZE;
7697
      EXTRACT_NUMBER_AND_INCR (mcnt, p1);
7698
 
7699
      if (mcnt == 0)
7700
        {
7701
          p1 -= 2 * OFFSET_ADDRESS_SIZE;
7702
          EXTRACT_NUMBER_AND_INCR (mcnt, p1);
7703
          p1 += mcnt;
7704
        }
7705
      else
7706
        return false;
7707
      break;
7708
 
7709
    case duplicate:
7710
      if (!REG_MATCH_NULL_STRING_P (reg_info[*p1]))
7711
        return false;
7712
      break;
7713
 
7714
    case set_number_at:
7715
      p1 += 2 * OFFSET_ADDRESS_SIZE;
7716
 
7717
    default:
7718
      /* All other opcodes mean we cannot match the empty string.  */
7719
      return false;
7720
  }
7721
 
7722
  *p = p1;
7723
  return true;
7724
} /* common_op_match_null_string_p */
7725
 
7726
 
7727
/* Return zero if TRANSLATE[S1] and TRANSLATE[S2] are identical for LEN
7728
   bytes; nonzero otherwise.  */
7729
 
7730
static int
7731
PREFIX(bcmp_translate) (const CHAR_T *s1, const CHAR_T *s2, register int len,
7732
                        RE_TRANSLATE_TYPE translate)
7733
{
7734
  register const UCHAR_T *p1 = (const UCHAR_T *) s1;
7735
  register const UCHAR_T *p2 = (const UCHAR_T *) s2;
7736
  while (len)
7737
    {
7738
#ifdef WCHAR
7739
      if (((*p1<=0xff)?translate[*p1++]:*p1++)
7740
          != ((*p2<=0xff)?translate[*p2++]:*p2++))
7741
        return 1;
7742
#else /* BYTE */
7743
      if (translate[*p1++] != translate[*p2++]) return 1;
7744
#endif /* WCHAR */
7745
      len--;
7746
    }
7747
  return 0;
7748
}
7749
 
7750
 
7751
#else /* not INSIDE_RECURSION */
7752
 
7753
/* Entry points for GNU code.  */
7754
 
7755
/* re_compile_pattern is the GNU regular expression compiler: it
7756
   compiles PATTERN (of length SIZE) and puts the result in BUFP.
7757
   Returns 0 if the pattern was valid, otherwise an error string.
7758
 
7759
   Assumes the `allocated' (and perhaps `buffer') and `translate' fields
7760
   are set in BUFP on entry.
7761
 
7762
   We call regex_compile to do the actual compilation.  */
7763
 
7764
const char *
7765
re_compile_pattern (const char *pattern, size_t length,
7766
                    struct re_pattern_buffer *bufp)
7767
{
7768
  reg_errcode_t ret;
7769
 
7770
  /* GNU code is written to assume at least RE_NREGS registers will be set
7771
     (and at least one extra will be -1).  */
7772
  bufp->regs_allocated = REGS_UNALLOCATED;
7773
 
7774
  /* And GNU code determines whether or not to get register information
7775
     by passing null for the REGS argument to re_match, etc., not by
7776
     setting no_sub.  */
7777
  bufp->no_sub = 0;
7778
 
7779
  /* Match anchors at newline.  */
7780
  bufp->newline_anchor = 1;
7781
 
7782
# ifdef MBS_SUPPORT
7783
  if (MB_CUR_MAX != 1)
7784
    ret = wcs_regex_compile (pattern, length, re_syntax_options, bufp);
7785
  else
7786
# endif
7787
    ret = byte_regex_compile (pattern, length, re_syntax_options, bufp);
7788
 
7789
  if (!ret)
7790
    return NULL;
7791
  return gettext (re_error_msgid[(int) ret]);
7792
}
7793
#ifdef _LIBC
7794
weak_alias (__re_compile_pattern, re_compile_pattern)
7795
#endif
7796
 
7797
/* Entry points compatible with 4.2 BSD regex library.  We don't define
7798
   them unless specifically requested.  */
7799
 
7800
#if defined _REGEX_RE_COMP || defined _LIBC
7801
 
7802
/* BSD has one and only one pattern buffer.  */
7803
static struct re_pattern_buffer re_comp_buf;
7804
 
7805
char *
7806
#ifdef _LIBC
7807
/* Make these definitions weak in libc, so POSIX programs can redefine
7808
   these names if they don't use our functions, and still use
7809
   regcomp/regexec below without link errors.  */
7810
weak_function
7811
#endif
7812
re_comp (const char *s)
7813
{
7814
  reg_errcode_t ret;
7815
 
7816
  if (!s)
7817
    {
7818
      if (!re_comp_buf.buffer)
7819
        return (char *) gettext ("No previous regular expression");
7820
      return 0;
7821
    }
7822
 
7823
  if (!re_comp_buf.buffer)
7824
    {
7825
      re_comp_buf.buffer = (unsigned char *) malloc (200);
7826
      if (re_comp_buf.buffer == NULL)
7827
        return (char *) gettext (re_error_msgid[(int) REG_ESPACE]);
7828
      re_comp_buf.allocated = 200;
7829
 
7830
      re_comp_buf.fastmap = (char *) malloc (1 << BYTEWIDTH);
7831
      if (re_comp_buf.fastmap == NULL)
7832
        return (char *) gettext (re_error_msgid[(int) REG_ESPACE]);
7833
    }
7834
 
7835
  /* Since `re_exec' always passes NULL for the `regs' argument, we
7836
     don't need to initialize the pattern buffer fields which affect it.  */
7837
 
7838
  /* Match anchors at newlines.  */
7839
  re_comp_buf.newline_anchor = 1;
7840
 
7841
# ifdef MBS_SUPPORT
7842
  if (MB_CUR_MAX != 1)
7843
    ret = wcs_regex_compile (s, strlen (s), re_syntax_options, &re_comp_buf);
7844
  else
7845
# endif
7846
    ret = byte_regex_compile (s, strlen (s), re_syntax_options, &re_comp_buf);
7847
 
7848
  if (!ret)
7849
    return NULL;
7850
 
7851
  /* Yes, we're discarding `const' here if !HAVE_LIBINTL.  */
7852
  return (char *) gettext (re_error_msgid[(int) ret]);
7853
}
7854
 
7855
 
7856
int
7857
#ifdef _LIBC
7858
weak_function
7859
#endif
7860
re_exec (const char *s)
7861
{
7862
  const int len = strlen (s);
7863
  return
7864
 
7865
}
7866
 
7867
#endif /* _REGEX_RE_COMP */
7868
 
7869
/* POSIX.2 functions.  Don't define these for Emacs.  */
7870
 
7871
#ifndef emacs
7872
 
7873
/* regcomp takes a regular expression as a string and compiles it.
7874
 
7875
   PREG is a regex_t *.  We do not expect any fields to be initialized,
7876
   since POSIX says we shouldn't.  Thus, we set
7877
 
7878
     `buffer' to the compiled pattern;
7879
     `used' to the length of the compiled pattern;
7880
     `syntax' to RE_SYNTAX_POSIX_EXTENDED if the
7881
       REG_EXTENDED bit in CFLAGS is set; otherwise, to
7882
       RE_SYNTAX_POSIX_BASIC;
7883
     `newline_anchor' to REG_NEWLINE being set in CFLAGS;
7884
     `fastmap' to an allocated space for the fastmap;
7885
     `fastmap_accurate' to zero;
7886
     `re_nsub' to the number of subexpressions in PATTERN.
7887
 
7888
   PATTERN is the address of the pattern string.
7889
 
7890
   CFLAGS is a series of bits which affect compilation.
7891
 
7892
     If REG_EXTENDED is set, we use POSIX extended syntax; otherwise, we
7893
     use POSIX basic syntax.
7894
 
7895
     If REG_NEWLINE is set, then . and [^...] don't match newline.
7896
     Also, regexec will try a match beginning after every newline.
7897
 
7898
     If REG_ICASE is set, then we considers upper- and lowercase
7899
     versions of letters to be equivalent when matching.
7900
 
7901
     If REG_NOSUB is set, then when PREG is passed to regexec, that
7902
     routine will report only success or failure, and nothing about the
7903
     registers.
7904
 
7905
   It returns 0 if it succeeds, nonzero if it doesn't.  (See regex.h for
7906
   the return codes and their meanings.)  */
7907
 
7908
int
7909
regcomp (regex_t *preg, const char *pattern, int cflags)
7910
{
7911
  reg_errcode_t ret;
7912
  reg_syntax_t syntax
7913
    = (cflags & REG_EXTENDED) ?
7914
      RE_SYNTAX_POSIX_EXTENDED : RE_SYNTAX_POSIX_BASIC;
7915
 
7916
  /* regex_compile will allocate the space for the compiled pattern.  */
7917
  preg->buffer = 0;
7918
  preg->allocated = 0;
7919
  preg->used = 0;
7920
 
7921
  /* Try to allocate space for the fastmap.  */
7922
  preg->fastmap = (char *) malloc (1 << BYTEWIDTH);
7923
 
7924
  if (cflags & REG_ICASE)
7925
    {
7926
      int i;
7927
 
7928
      preg->translate
7929
        = (RE_TRANSLATE_TYPE) malloc (CHAR_SET_SIZE
7930
                                      * sizeof (*(RE_TRANSLATE_TYPE)0));
7931
      if (preg->translate == NULL)
7932
        return (int) REG_ESPACE;
7933
 
7934
      /* Map uppercase characters to corresponding lowercase ones.  */
7935
      for (i = 0; i < CHAR_SET_SIZE; i++)
7936
        preg->translate[i] = ISUPPER (i) ? TOLOWER (i) : i;
7937
    }
7938
  else
7939
    preg->translate = NULL;
7940
 
7941
  /* If REG_NEWLINE is set, newlines are treated differently.  */
7942
  if (cflags & REG_NEWLINE)
7943
    { /* REG_NEWLINE implies neither . nor [^...] match newline.  */
7944
      syntax &= ~RE_DOT_NEWLINE;
7945
      syntax |= RE_HAT_LISTS_NOT_NEWLINE;
7946
      /* It also changes the matching behavior.  */
7947
      preg->newline_anchor = 1;
7948
    }
7949
  else
7950
    preg->newline_anchor = 0;
7951
 
7952
  preg->no_sub = !!(cflags & REG_NOSUB);
7953
 
7954
  /* POSIX says a null character in the pattern terminates it, so we
7955
     can use strlen here in compiling the pattern.  */
7956
# ifdef MBS_SUPPORT
7957
  if (MB_CUR_MAX != 1)
7958
    ret = wcs_regex_compile (pattern, strlen (pattern), syntax, preg);
7959
  else
7960
# endif
7961
    ret = byte_regex_compile (pattern, strlen (pattern), syntax, preg);
7962
 
7963
  /* POSIX doesn't distinguish between an unmatched open-group and an
7964
     unmatched close-group: both are REG_EPAREN.  */
7965
  if (ret == REG_ERPAREN) ret = REG_EPAREN;
7966
 
7967
  if (ret == REG_NOERROR && preg->fastmap)
7968
    {
7969
      /* Compute the fastmap now, since regexec cannot modify the pattern
7970
         buffer.  */
7971
      if (re_compile_fastmap (preg) == -2)
7972
        {
7973
          /* Some error occurred while computing the fastmap, just forget
7974
             about it.  */
7975
          free (preg->fastmap);
7976
          preg->fastmap = NULL;
7977
        }
7978
    }
7979
 
7980
  return (int) ret;
7981
}
7982
#ifdef _LIBC
7983
weak_alias (__regcomp, regcomp)
7984
#endif
7985
 
7986
 
7987
/* regexec searches for a given pattern, specified by PREG, in the
7988
   string STRING.
7989
 
7990
   If NMATCH is zero or REG_NOSUB was set in the cflags argument to
7991
   `regcomp', we ignore PMATCH.  Otherwise, we assume PMATCH has at
7992
   least NMATCH elements, and we set them to the offsets of the
7993
   corresponding matched substrings.
7994
 
7995
   EFLAGS specifies `execution flags' which affect matching: if
7996
   REG_NOTBOL is set, then ^ does not match at the beginning of the
7997
   string; if REG_NOTEOL is set, then $ does not match at the end.
7998
 
7999
   We return 0 if we find a match and REG_NOMATCH if not.  */
8000
 
8001
int
8002
regexec (const regex_t *preg, const char *string, size_t nmatch,
8003
         regmatch_t pmatch[], int eflags)
8004
{
8005
  int ret;
8006
  struct re_registers regs;
8007
  regex_t private_preg;
8008
  int len = strlen (string);
8009
  boolean want_reg_info = !preg->no_sub && nmatch > 0;
8010
 
8011
  private_preg = *preg;
8012
 
8013
  private_preg.not_bol = !!(eflags & REG_NOTBOL);
8014
  private_preg.not_eol = !!(eflags & REG_NOTEOL);
8015
 
8016
  /* The user has told us exactly how many registers to return
8017
     information about, via `nmatch'.  We have to pass that on to the
8018
     matching routines.  */
8019
  private_preg.regs_allocated = REGS_FIXED;
8020
 
8021
  if (want_reg_info)
8022
    {
8023
      regs.num_regs = nmatch;
8024
      regs.start = TALLOC (nmatch * 2, regoff_t);
8025
      if (regs.start == NULL)
8026
        return (int) REG_NOMATCH;
8027
      regs.end = regs.start + nmatch;
8028
    }
8029
 
8030
  /* Perform the searching operation.  */
8031
  ret = re_search (&private_preg, string, len,
8032
                   /* start: */ 0, /* range: */ len,
8033
                   want_reg_info ? &regs : (struct re_registers *) 0);
8034
 
8035
  /* Copy the register information to the POSIX structure.  */
8036
  if (want_reg_info)
8037
    {
8038
      if (ret >= 0)
8039
        {
8040
          unsigned r;
8041
 
8042
          for (r = 0; r < nmatch; r++)
8043
            {
8044
              pmatch[r].rm_so = regs.start[r];
8045
              pmatch[r].rm_eo = regs.end[r];
8046
            }
8047
        }
8048
 
8049
      /* If we needed the temporary register info, free the space now.  */
8050
      free (regs.start);
8051
    }
8052
 
8053
  /* We want zero return to mean success, unlike `re_search'.  */
8054
  return ret >= 0 ? (int) REG_NOERROR : (int) REG_NOMATCH;
8055
}
8056
#ifdef _LIBC
8057
weak_alias (__regexec, regexec)
8058
#endif
8059
 
8060
 
8061
/* Returns a message corresponding to an error code, ERRCODE, returned
8062
   from either regcomp or regexec.   We don't use PREG here.  */
8063
 
8064
size_t
8065
regerror (int errcode, const regex_t *preg ATTRIBUTE_UNUSED,
8066
          char *errbuf, size_t errbuf_size)
8067
{
8068
  const char *msg;
8069
  size_t msg_size;
8070
 
8071
  if (errcode < 0
8072
      || errcode >= (int) (sizeof (re_error_msgid)
8073
                           / sizeof (re_error_msgid[0])))
8074
    /* Only error codes returned by the rest of the code should be passed
8075
       to this routine.  If we are given anything else, or if other regex
8076
       code generates an invalid error code, then the program has a bug.
8077
       Dump core so we can fix it.  */
8078
    abort ();
8079
 
8080
  msg = gettext (re_error_msgid[errcode]);
8081
 
8082
  msg_size = strlen (msg) + 1; /* Includes the null.  */
8083
 
8084
  if (errbuf_size != 0)
8085
    {
8086
      if (msg_size > errbuf_size)
8087
        {
8088
#if defined HAVE_MEMPCPY || defined _LIBC
8089
          *((char *) mempcpy (errbuf, msg, errbuf_size - 1)) = '\0';
8090
#else
8091
          memcpy (errbuf, msg, errbuf_size - 1);
8092
          errbuf[errbuf_size - 1] = 0;
8093
#endif
8094
        }
8095
      else
8096
        memcpy (errbuf, msg, msg_size);
8097
    }
8098
 
8099
  return msg_size;
8100
}
8101
#ifdef _LIBC
8102
weak_alias (__regerror, regerror)
8103
#endif
8104
 
8105
 
8106
/* Free dynamically allocated space used by PREG.  */
8107
 
8108
void
8109
regfree (regex_t *preg)
8110
{
8111
  if (preg->buffer != NULL)
8112
    free (preg->buffer);
8113
  preg->buffer = NULL;
8114
 
8115
  preg->allocated = 0;
8116
  preg->used = 0;
8117
 
8118
  if (preg->fastmap != NULL)
8119
    free (preg->fastmap);
8120
  preg->fastmap = NULL;
8121
  preg->fastmap_accurate = 0;
8122
 
8123
  if (preg->translate != NULL)
8124
    free (preg->translate);
8125
  preg->translate = NULL;
8126
}
8127
#ifdef _LIBC
8128
weak_alias (__regfree, regfree)
8129
#endif
8130
 
8131
#endif /* not emacs  */
8132
 
8133
#endif /* not INSIDE_RECURSION */
8134
 
8135
 
8136
#undef STORE_NUMBER
8137
#undef STORE_NUMBER_AND_INCR
8138
#undef EXTRACT_NUMBER
8139
#undef EXTRACT_NUMBER_AND_INCR
8140
 
8141
#undef DEBUG_PRINT_COMPILED_PATTERN
8142
#undef DEBUG_PRINT_DOUBLE_STRING
8143
 
8144
#undef INIT_FAIL_STACK
8145
#undef RESET_FAIL_STACK
8146
#undef DOUBLE_FAIL_STACK
8147
#undef PUSH_PATTERN_OP
8148
#undef PUSH_FAILURE_POINTER
8149
#undef PUSH_FAILURE_INT
8150
#undef PUSH_FAILURE_ELT
8151
#undef POP_FAILURE_POINTER
8152
#undef POP_FAILURE_INT
8153
#undef POP_FAILURE_ELT
8154
#undef DEBUG_PUSH
8155
#undef DEBUG_POP
8156
#undef PUSH_FAILURE_POINT
8157
#undef POP_FAILURE_POINT
8158
 
8159
#undef REG_UNSET_VALUE
8160
#undef REG_UNSET
8161
 
8162
#undef PATFETCH
8163
#undef PATFETCH_RAW
8164
#undef PATUNFETCH
8165
#undef TRANSLATE
8166
 
8167
#undef INIT_BUF_SIZE
8168
#undef GET_BUFFER_SPACE
8169
#undef BUF_PUSH
8170
#undef BUF_PUSH_2
8171
#undef BUF_PUSH_3
8172
#undef STORE_JUMP
8173
#undef STORE_JUMP2
8174
#undef INSERT_JUMP
8175
#undef INSERT_JUMP2
8176
#undef EXTEND_BUFFER
8177
#undef GET_UNSIGNED_NUMBER
8178
#undef FREE_STACK_RETURN
8179
 
8180
# undef POINTER_TO_OFFSET
8181
# undef MATCHING_IN_FRST_STRING
8182
# undef PREFETCH
8183
# undef AT_STRINGS_BEG
8184
# undef AT_STRINGS_END
8185
# undef WORDCHAR_P
8186
# undef FREE_VAR
8187
# undef FREE_VARIABLES
8188
# undef NO_HIGHEST_ACTIVE_REG
8189
# undef NO_LOWEST_ACTIVE_REG
8190
 
8191
# undef CHAR_T
8192
# undef UCHAR_T
8193
# undef COMPILED_BUFFER_VAR
8194
# undef OFFSET_ADDRESS_SIZE
8195
# undef CHAR_CLASS_SIZE
8196
# undef PREFIX
8197
# undef ARG_PREFIX
8198
# undef PUT_CHAR
8199
# undef BYTE
8200
# undef WCHAR
8201
 
8202
# define DEFINED_ONCE

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.