1 |
24 |
jeremybenn |
/* hash.c -- hash table routines for BFD
|
2 |
|
|
Copyright 1993, 1994, 1995, 1997, 1999, 2001, 2002, 2003, 2004, 2005,
|
3 |
225 |
jeremybenn |
2006, 2007, 2009 Free Software Foundation, Inc.
|
4 |
24 |
jeremybenn |
Written by Steve Chamberlain <sac@cygnus.com>
|
5 |
|
|
|
6 |
|
|
This file is part of BFD, the Binary File Descriptor library.
|
7 |
|
|
|
8 |
|
|
This program is free software; you can redistribute it and/or modify
|
9 |
|
|
it under the terms of the GNU General Public License as published by
|
10 |
|
|
the Free Software Foundation; either version 3 of the License, or
|
11 |
|
|
(at your option) any later version.
|
12 |
|
|
|
13 |
|
|
This program is distributed in the hope that it will be useful,
|
14 |
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
15 |
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
16 |
|
|
GNU General Public License for more details.
|
17 |
|
|
|
18 |
|
|
You should have received a copy of the GNU General Public License
|
19 |
|
|
along with this program; if not, write to the Free Software
|
20 |
|
|
Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
|
21 |
|
|
MA 02110-1301, USA. */
|
22 |
|
|
|
23 |
|
|
#include "sysdep.h"
|
24 |
|
|
#include "bfd.h"
|
25 |
|
|
#include "libbfd.h"
|
26 |
|
|
#include "objalloc.h"
|
27 |
|
|
#include "libiberty.h"
|
28 |
|
|
|
29 |
|
|
/*
|
30 |
|
|
SECTION
|
31 |
|
|
Hash Tables
|
32 |
|
|
|
33 |
|
|
@cindex Hash tables
|
34 |
|
|
BFD provides a simple set of hash table functions. Routines
|
35 |
|
|
are provided to initialize a hash table, to free a hash table,
|
36 |
|
|
to look up a string in a hash table and optionally create an
|
37 |
|
|
entry for it, and to traverse a hash table. There is
|
38 |
|
|
currently no routine to delete an string from a hash table.
|
39 |
|
|
|
40 |
|
|
The basic hash table does not permit any data to be stored
|
41 |
|
|
with a string. However, a hash table is designed to present a
|
42 |
|
|
base class from which other types of hash tables may be
|
43 |
|
|
derived. These derived types may store additional information
|
44 |
|
|
with the string. Hash tables were implemented in this way,
|
45 |
|
|
rather than simply providing a data pointer in a hash table
|
46 |
|
|
entry, because they were designed for use by the linker back
|
47 |
|
|
ends. The linker may create thousands of hash table entries,
|
48 |
|
|
and the overhead of allocating private data and storing and
|
49 |
|
|
following pointers becomes noticeable.
|
50 |
|
|
|
51 |
|
|
The basic hash table code is in <<hash.c>>.
|
52 |
|
|
|
53 |
|
|
@menu
|
54 |
|
|
@* Creating and Freeing a Hash Table::
|
55 |
|
|
@* Looking Up or Entering a String::
|
56 |
|
|
@* Traversing a Hash Table::
|
57 |
|
|
@* Deriving a New Hash Table Type::
|
58 |
|
|
@end menu
|
59 |
|
|
|
60 |
|
|
INODE
|
61 |
|
|
Creating and Freeing a Hash Table, Looking Up or Entering a String, Hash Tables, Hash Tables
|
62 |
|
|
SUBSECTION
|
63 |
|
|
Creating and freeing a hash table
|
64 |
|
|
|
65 |
|
|
@findex bfd_hash_table_init
|
66 |
|
|
@findex bfd_hash_table_init_n
|
67 |
|
|
To create a hash table, create an instance of a <<struct
|
68 |
|
|
bfd_hash_table>> (defined in <<bfd.h>>) and call
|
69 |
|
|
<<bfd_hash_table_init>> (if you know approximately how many
|
70 |
|
|
entries you will need, the function <<bfd_hash_table_init_n>>,
|
71 |
|
|
which takes a @var{size} argument, may be used).
|
72 |
|
|
<<bfd_hash_table_init>> returns <<FALSE>> if some sort of
|
73 |
|
|
error occurs.
|
74 |
|
|
|
75 |
|
|
@findex bfd_hash_newfunc
|
76 |
|
|
The function <<bfd_hash_table_init>> take as an argument a
|
77 |
|
|
function to use to create new entries. For a basic hash
|
78 |
|
|
table, use the function <<bfd_hash_newfunc>>. @xref{Deriving
|
79 |
|
|
a New Hash Table Type}, for why you would want to use a
|
80 |
|
|
different value for this argument.
|
81 |
|
|
|
82 |
|
|
@findex bfd_hash_allocate
|
83 |
|
|
<<bfd_hash_table_init>> will create an objalloc which will be
|
84 |
|
|
used to allocate new entries. You may allocate memory on this
|
85 |
|
|
objalloc using <<bfd_hash_allocate>>.
|
86 |
|
|
|
87 |
|
|
@findex bfd_hash_table_free
|
88 |
|
|
Use <<bfd_hash_table_free>> to free up all the memory that has
|
89 |
|
|
been allocated for a hash table. This will not free up the
|
90 |
|
|
<<struct bfd_hash_table>> itself, which you must provide.
|
91 |
|
|
|
92 |
|
|
@findex bfd_hash_set_default_size
|
93 |
|
|
Use <<bfd_hash_set_default_size>> to set the default size of
|
94 |
|
|
hash table to use.
|
95 |
|
|
|
96 |
|
|
INODE
|
97 |
|
|
Looking Up or Entering a String, Traversing a Hash Table, Creating and Freeing a Hash Table, Hash Tables
|
98 |
|
|
SUBSECTION
|
99 |
|
|
Looking up or entering a string
|
100 |
|
|
|
101 |
|
|
@findex bfd_hash_lookup
|
102 |
|
|
The function <<bfd_hash_lookup>> is used both to look up a
|
103 |
|
|
string in the hash table and to create a new entry.
|
104 |
|
|
|
105 |
|
|
If the @var{create} argument is <<FALSE>>, <<bfd_hash_lookup>>
|
106 |
|
|
will look up a string. If the string is found, it will
|
107 |
|
|
returns a pointer to a <<struct bfd_hash_entry>>. If the
|
108 |
|
|
string is not found in the table <<bfd_hash_lookup>> will
|
109 |
|
|
return <<NULL>>. You should not modify any of the fields in
|
110 |
|
|
the returns <<struct bfd_hash_entry>>.
|
111 |
|
|
|
112 |
|
|
If the @var{create} argument is <<TRUE>>, the string will be
|
113 |
|
|
entered into the hash table if it is not already there.
|
114 |
|
|
Either way a pointer to a <<struct bfd_hash_entry>> will be
|
115 |
|
|
returned, either to the existing structure or to a newly
|
116 |
|
|
created one. In this case, a <<NULL>> return means that an
|
117 |
|
|
error occurred.
|
118 |
|
|
|
119 |
|
|
If the @var{create} argument is <<TRUE>>, and a new entry is
|
120 |
|
|
created, the @var{copy} argument is used to decide whether to
|
121 |
|
|
copy the string onto the hash table objalloc or not. If
|
122 |
|
|
@var{copy} is passed as <<FALSE>>, you must be careful not to
|
123 |
|
|
deallocate or modify the string as long as the hash table
|
124 |
|
|
exists.
|
125 |
|
|
|
126 |
|
|
INODE
|
127 |
|
|
Traversing a Hash Table, Deriving a New Hash Table Type, Looking Up or Entering a String, Hash Tables
|
128 |
|
|
SUBSECTION
|
129 |
|
|
Traversing a hash table
|
130 |
|
|
|
131 |
|
|
@findex bfd_hash_traverse
|
132 |
|
|
The function <<bfd_hash_traverse>> may be used to traverse a
|
133 |
|
|
hash table, calling a function on each element. The traversal
|
134 |
|
|
is done in a random order.
|
135 |
|
|
|
136 |
|
|
<<bfd_hash_traverse>> takes as arguments a function and a
|
137 |
|
|
generic <<void *>> pointer. The function is called with a
|
138 |
|
|
hash table entry (a <<struct bfd_hash_entry *>>) and the
|
139 |
|
|
generic pointer passed to <<bfd_hash_traverse>>. The function
|
140 |
|
|
must return a <<boolean>> value, which indicates whether to
|
141 |
|
|
continue traversing the hash table. If the function returns
|
142 |
|
|
<<FALSE>>, <<bfd_hash_traverse>> will stop the traversal and
|
143 |
|
|
return immediately.
|
144 |
|
|
|
145 |
|
|
INODE
|
146 |
|
|
Deriving a New Hash Table Type, , Traversing a Hash Table, Hash Tables
|
147 |
|
|
SUBSECTION
|
148 |
|
|
Deriving a new hash table type
|
149 |
|
|
|
150 |
|
|
Many uses of hash tables want to store additional information
|
151 |
|
|
which each entry in the hash table. Some also find it
|
152 |
|
|
convenient to store additional information with the hash table
|
153 |
|
|
itself. This may be done using a derived hash table.
|
154 |
|
|
|
155 |
|
|
Since C is not an object oriented language, creating a derived
|
156 |
|
|
hash table requires sticking together some boilerplate
|
157 |
|
|
routines with a few differences specific to the type of hash
|
158 |
|
|
table you want to create.
|
159 |
|
|
|
160 |
|
|
An example of a derived hash table is the linker hash table.
|
161 |
|
|
The structures for this are defined in <<bfdlink.h>>. The
|
162 |
|
|
functions are in <<linker.c>>.
|
163 |
|
|
|
164 |
|
|
You may also derive a hash table from an already derived hash
|
165 |
|
|
table. For example, the a.out linker backend code uses a hash
|
166 |
|
|
table derived from the linker hash table.
|
167 |
|
|
|
168 |
|
|
@menu
|
169 |
|
|
@* Define the Derived Structures::
|
170 |
|
|
@* Write the Derived Creation Routine::
|
171 |
|
|
@* Write Other Derived Routines::
|
172 |
|
|
@end menu
|
173 |
|
|
|
174 |
|
|
INODE
|
175 |
|
|
Define the Derived Structures, Write the Derived Creation Routine, Deriving a New Hash Table Type, Deriving a New Hash Table Type
|
176 |
|
|
SUBSUBSECTION
|
177 |
|
|
Define the derived structures
|
178 |
|
|
|
179 |
|
|
You must define a structure for an entry in the hash table,
|
180 |
|
|
and a structure for the hash table itself.
|
181 |
|
|
|
182 |
|
|
The first field in the structure for an entry in the hash
|
183 |
|
|
table must be of the type used for an entry in the hash table
|
184 |
|
|
you are deriving from. If you are deriving from a basic hash
|
185 |
|
|
table this is <<struct bfd_hash_entry>>, which is defined in
|
186 |
|
|
<<bfd.h>>. The first field in the structure for the hash
|
187 |
|
|
table itself must be of the type of the hash table you are
|
188 |
|
|
deriving from itself. If you are deriving from a basic hash
|
189 |
|
|
table, this is <<struct bfd_hash_table>>.
|
190 |
|
|
|
191 |
|
|
For example, the linker hash table defines <<struct
|
192 |
|
|
bfd_link_hash_entry>> (in <<bfdlink.h>>). The first field,
|
193 |
|
|
<<root>>, is of type <<struct bfd_hash_entry>>. Similarly,
|
194 |
|
|
the first field in <<struct bfd_link_hash_table>>, <<table>>,
|
195 |
|
|
is of type <<struct bfd_hash_table>>.
|
196 |
|
|
|
197 |
|
|
INODE
|
198 |
|
|
Write the Derived Creation Routine, Write Other Derived Routines, Define the Derived Structures, Deriving a New Hash Table Type
|
199 |
|
|
SUBSUBSECTION
|
200 |
|
|
Write the derived creation routine
|
201 |
|
|
|
202 |
|
|
You must write a routine which will create and initialize an
|
203 |
|
|
entry in the hash table. This routine is passed as the
|
204 |
|
|
function argument to <<bfd_hash_table_init>>.
|
205 |
|
|
|
206 |
|
|
In order to permit other hash tables to be derived from the
|
207 |
|
|
hash table you are creating, this routine must be written in a
|
208 |
|
|
standard way.
|
209 |
|
|
|
210 |
|
|
The first argument to the creation routine is a pointer to a
|
211 |
|
|
hash table entry. This may be <<NULL>>, in which case the
|
212 |
|
|
routine should allocate the right amount of space. Otherwise
|
213 |
|
|
the space has already been allocated by a hash table type
|
214 |
|
|
derived from this one.
|
215 |
|
|
|
216 |
|
|
After allocating space, the creation routine must call the
|
217 |
|
|
creation routine of the hash table type it is derived from,
|
218 |
|
|
passing in a pointer to the space it just allocated. This
|
219 |
|
|
will initialize any fields used by the base hash table.
|
220 |
|
|
|
221 |
|
|
Finally the creation routine must initialize any local fields
|
222 |
|
|
for the new hash table type.
|
223 |
|
|
|
224 |
|
|
Here is a boilerplate example of a creation routine.
|
225 |
|
|
@var{function_name} is the name of the routine.
|
226 |
|
|
@var{entry_type} is the type of an entry in the hash table you
|
227 |
|
|
are creating. @var{base_newfunc} is the name of the creation
|
228 |
|
|
routine of the hash table type your hash table is derived
|
229 |
|
|
from.
|
230 |
|
|
|
231 |
|
|
EXAMPLE
|
232 |
|
|
|
233 |
|
|
.struct bfd_hash_entry *
|
234 |
|
|
.@var{function_name} (struct bfd_hash_entry *entry,
|
235 |
|
|
. struct bfd_hash_table *table,
|
236 |
|
|
. const char *string)
|
237 |
|
|
.{
|
238 |
|
|
. struct @var{entry_type} *ret = (@var{entry_type} *) entry;
|
239 |
|
|
.
|
240 |
|
|
. {* Allocate the structure if it has not already been allocated by a
|
241 |
|
|
. derived class. *}
|
242 |
|
|
. if (ret == NULL)
|
243 |
|
|
. {
|
244 |
|
|
. ret = bfd_hash_allocate (table, sizeof (* ret));
|
245 |
|
|
. if (ret == NULL)
|
246 |
|
|
. return NULL;
|
247 |
|
|
. }
|
248 |
|
|
.
|
249 |
|
|
. {* Call the allocation method of the base class. *}
|
250 |
|
|
. ret = ((@var{entry_type} *)
|
251 |
|
|
. @var{base_newfunc} ((struct bfd_hash_entry *) ret, table, string));
|
252 |
|
|
.
|
253 |
|
|
. {* Initialize the local fields here. *}
|
254 |
|
|
.
|
255 |
|
|
. return (struct bfd_hash_entry *) ret;
|
256 |
|
|
.}
|
257 |
|
|
|
258 |
|
|
DESCRIPTION
|
259 |
|
|
The creation routine for the linker hash table, which is in
|
260 |
|
|
<<linker.c>>, looks just like this example.
|
261 |
|
|
@var{function_name} is <<_bfd_link_hash_newfunc>>.
|
262 |
|
|
@var{entry_type} is <<struct bfd_link_hash_entry>>.
|
263 |
|
|
@var{base_newfunc} is <<bfd_hash_newfunc>>, the creation
|
264 |
|
|
routine for a basic hash table.
|
265 |
|
|
|
266 |
|
|
<<_bfd_link_hash_newfunc>> also initializes the local fields
|
267 |
|
|
in a linker hash table entry: <<type>>, <<written>> and
|
268 |
|
|
<<next>>.
|
269 |
|
|
|
270 |
|
|
INODE
|
271 |
|
|
Write Other Derived Routines, , Write the Derived Creation Routine, Deriving a New Hash Table Type
|
272 |
|
|
SUBSUBSECTION
|
273 |
|
|
Write other derived routines
|
274 |
|
|
|
275 |
|
|
You will want to write other routines for your new hash table,
|
276 |
|
|
as well.
|
277 |
|
|
|
278 |
|
|
You will want an initialization routine which calls the
|
279 |
|
|
initialization routine of the hash table you are deriving from
|
280 |
|
|
and initializes any other local fields. For the linker hash
|
281 |
|
|
table, this is <<_bfd_link_hash_table_init>> in <<linker.c>>.
|
282 |
|
|
|
283 |
|
|
You will want a lookup routine which calls the lookup routine
|
284 |
|
|
of the hash table you are deriving from and casts the result.
|
285 |
|
|
The linker hash table uses <<bfd_link_hash_lookup>> in
|
286 |
|
|
<<linker.c>> (this actually takes an additional argument which
|
287 |
|
|
it uses to decide how to return the looked up value).
|
288 |
|
|
|
289 |
|
|
You may want a traversal routine. This should just call the
|
290 |
|
|
traversal routine of the hash table you are deriving from with
|
291 |
|
|
appropriate casts. The linker hash table uses
|
292 |
|
|
<<bfd_link_hash_traverse>> in <<linker.c>>.
|
293 |
|
|
|
294 |
|
|
These routines may simply be defined as macros. For example,
|
295 |
|
|
the a.out backend linker hash table, which is derived from the
|
296 |
|
|
linker hash table, uses macros for the lookup and traversal
|
297 |
|
|
routines. These are <<aout_link_hash_lookup>> and
|
298 |
|
|
<<aout_link_hash_traverse>> in aoutx.h.
|
299 |
|
|
*/
|
300 |
|
|
|
301 |
|
|
/* The default number of entries to use when creating a hash table. */
|
302 |
|
|
#define DEFAULT_SIZE 4051
|
303 |
|
|
|
304 |
|
|
/* The following function returns a nearest prime number which is
|
305 |
|
|
greater than N, and near a power of two. Copied from libiberty.
|
306 |
|
|
Returns zero for ridiculously large N to signify an error. */
|
307 |
|
|
|
308 |
|
|
static unsigned long
|
309 |
|
|
higher_prime_number (unsigned long n)
|
310 |
|
|
{
|
311 |
|
|
/* These are primes that are near, but slightly smaller than, a
|
312 |
|
|
power of two. */
|
313 |
|
|
static const unsigned long primes[] = {
|
314 |
|
|
(unsigned long) 127,
|
315 |
|
|
(unsigned long) 2039,
|
316 |
|
|
(unsigned long) 32749,
|
317 |
|
|
(unsigned long) 65521,
|
318 |
|
|
(unsigned long) 131071,
|
319 |
|
|
(unsigned long) 262139,
|
320 |
|
|
(unsigned long) 524287,
|
321 |
|
|
(unsigned long) 1048573,
|
322 |
|
|
(unsigned long) 2097143,
|
323 |
|
|
(unsigned long) 4194301,
|
324 |
|
|
(unsigned long) 8388593,
|
325 |
|
|
(unsigned long) 16777213,
|
326 |
|
|
(unsigned long) 33554393,
|
327 |
|
|
(unsigned long) 67108859,
|
328 |
|
|
(unsigned long) 134217689,
|
329 |
|
|
(unsigned long) 268435399,
|
330 |
|
|
(unsigned long) 536870909,
|
331 |
|
|
(unsigned long) 1073741789,
|
332 |
|
|
(unsigned long) 2147483647,
|
333 |
|
|
/* 4294967291L */
|
334 |
|
|
((unsigned long) 2147483647) + ((unsigned long) 2147483644),
|
335 |
|
|
};
|
336 |
|
|
|
337 |
|
|
const unsigned long *low = &primes[0];
|
338 |
|
|
const unsigned long *high = &primes[sizeof (primes) / sizeof (primes[0])];
|
339 |
|
|
|
340 |
|
|
while (low != high)
|
341 |
|
|
{
|
342 |
|
|
const unsigned long *mid = low + (high - low) / 2;
|
343 |
|
|
if (n >= *mid)
|
344 |
|
|
low = mid + 1;
|
345 |
|
|
else
|
346 |
|
|
high = mid;
|
347 |
|
|
}
|
348 |
|
|
|
349 |
|
|
if (n >= *low)
|
350 |
|
|
return 0;
|
351 |
|
|
|
352 |
|
|
return *low;
|
353 |
|
|
}
|
354 |
|
|
|
355 |
|
|
static size_t bfd_default_hash_table_size = DEFAULT_SIZE;
|
356 |
|
|
|
357 |
|
|
/* Create a new hash table, given a number of entries. */
|
358 |
|
|
|
359 |
|
|
bfd_boolean
|
360 |
|
|
bfd_hash_table_init_n (struct bfd_hash_table *table,
|
361 |
|
|
struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
|
362 |
|
|
struct bfd_hash_table *,
|
363 |
|
|
const char *),
|
364 |
|
|
unsigned int entsize,
|
365 |
|
|
unsigned int size)
|
366 |
|
|
{
|
367 |
|
|
unsigned int alloc;
|
368 |
|
|
|
369 |
|
|
alloc = size * sizeof (struct bfd_hash_entry *);
|
370 |
|
|
|
371 |
|
|
table->memory = (void *) objalloc_create ();
|
372 |
|
|
if (table->memory == NULL)
|
373 |
|
|
{
|
374 |
|
|
bfd_set_error (bfd_error_no_memory);
|
375 |
|
|
return FALSE;
|
376 |
|
|
}
|
377 |
225 |
jeremybenn |
table->table = (struct bfd_hash_entry **)
|
378 |
|
|
objalloc_alloc ((struct objalloc *) table->memory, alloc);
|
379 |
24 |
jeremybenn |
if (table->table == NULL)
|
380 |
|
|
{
|
381 |
|
|
bfd_set_error (bfd_error_no_memory);
|
382 |
|
|
return FALSE;
|
383 |
|
|
}
|
384 |
|
|
memset ((void *) table->table, 0, alloc);
|
385 |
|
|
table->size = size;
|
386 |
|
|
table->entsize = entsize;
|
387 |
|
|
table->count = 0;
|
388 |
|
|
table->frozen = 0;
|
389 |
|
|
table->newfunc = newfunc;
|
390 |
|
|
return TRUE;
|
391 |
|
|
}
|
392 |
|
|
|
393 |
|
|
/* Create a new hash table with the default number of entries. */
|
394 |
|
|
|
395 |
|
|
bfd_boolean
|
396 |
|
|
bfd_hash_table_init (struct bfd_hash_table *table,
|
397 |
|
|
struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
|
398 |
|
|
struct bfd_hash_table *,
|
399 |
|
|
const char *),
|
400 |
|
|
unsigned int entsize)
|
401 |
|
|
{
|
402 |
|
|
return bfd_hash_table_init_n (table, newfunc, entsize,
|
403 |
|
|
bfd_default_hash_table_size);
|
404 |
|
|
}
|
405 |
|
|
|
406 |
|
|
/* Free a hash table. */
|
407 |
|
|
|
408 |
|
|
void
|
409 |
|
|
bfd_hash_table_free (struct bfd_hash_table *table)
|
410 |
|
|
{
|
411 |
225 |
jeremybenn |
objalloc_free ((struct objalloc *) table->memory);
|
412 |
24 |
jeremybenn |
table->memory = NULL;
|
413 |
|
|
}
|
414 |
|
|
|
415 |
|
|
/* Look up a string in a hash table. */
|
416 |
|
|
|
417 |
|
|
struct bfd_hash_entry *
|
418 |
|
|
bfd_hash_lookup (struct bfd_hash_table *table,
|
419 |
|
|
const char *string,
|
420 |
|
|
bfd_boolean create,
|
421 |
|
|
bfd_boolean copy)
|
422 |
|
|
{
|
423 |
|
|
const unsigned char *s;
|
424 |
|
|
unsigned long hash;
|
425 |
|
|
unsigned int c;
|
426 |
|
|
struct bfd_hash_entry *hashp;
|
427 |
|
|
unsigned int len;
|
428 |
|
|
unsigned int index;
|
429 |
|
|
|
430 |
|
|
hash = 0;
|
431 |
|
|
len = 0;
|
432 |
|
|
s = (const unsigned char *) string;
|
433 |
|
|
while ((c = *s++) != '\0')
|
434 |
|
|
{
|
435 |
|
|
hash += c + (c << 17);
|
436 |
|
|
hash ^= hash >> 2;
|
437 |
|
|
}
|
438 |
|
|
len = (s - (const unsigned char *) string) - 1;
|
439 |
|
|
hash += len + (len << 17);
|
440 |
|
|
hash ^= hash >> 2;
|
441 |
|
|
|
442 |
|
|
index = hash % table->size;
|
443 |
|
|
for (hashp = table->table[index];
|
444 |
|
|
hashp != NULL;
|
445 |
|
|
hashp = hashp->next)
|
446 |
|
|
{
|
447 |
|
|
if (hashp->hash == hash
|
448 |
|
|
&& strcmp (hashp->string, string) == 0)
|
449 |
|
|
return hashp;
|
450 |
|
|
}
|
451 |
|
|
|
452 |
|
|
if (! create)
|
453 |
|
|
return NULL;
|
454 |
|
|
|
455 |
|
|
if (copy)
|
456 |
|
|
{
|
457 |
225 |
jeremybenn |
char *new_string;
|
458 |
24 |
jeremybenn |
|
459 |
225 |
jeremybenn |
new_string = (char *) objalloc_alloc ((struct objalloc *) table->memory,
|
460 |
|
|
len + 1);
|
461 |
|
|
if (!new_string)
|
462 |
24 |
jeremybenn |
{
|
463 |
|
|
bfd_set_error (bfd_error_no_memory);
|
464 |
|
|
return NULL;
|
465 |
|
|
}
|
466 |
225 |
jeremybenn |
memcpy (new_string, string, len + 1);
|
467 |
|
|
string = new_string;
|
468 |
24 |
jeremybenn |
}
|
469 |
|
|
|
470 |
|
|
return bfd_hash_insert (table, string, hash);
|
471 |
|
|
}
|
472 |
|
|
|
473 |
|
|
/* Insert an entry in a hash table. */
|
474 |
|
|
|
475 |
|
|
struct bfd_hash_entry *
|
476 |
|
|
bfd_hash_insert (struct bfd_hash_table *table,
|
477 |
|
|
const char *string,
|
478 |
|
|
unsigned long hash)
|
479 |
|
|
{
|
480 |
|
|
struct bfd_hash_entry *hashp;
|
481 |
|
|
unsigned int index;
|
482 |
|
|
|
483 |
|
|
hashp = (*table->newfunc) (NULL, table, string);
|
484 |
|
|
if (hashp == NULL)
|
485 |
|
|
return NULL;
|
486 |
|
|
hashp->string = string;
|
487 |
|
|
hashp->hash = hash;
|
488 |
|
|
index = hash % table->size;
|
489 |
|
|
hashp->next = table->table[index];
|
490 |
|
|
table->table[index] = hashp;
|
491 |
|
|
table->count++;
|
492 |
|
|
|
493 |
|
|
if (!table->frozen && table->count > table->size * 3 / 4)
|
494 |
|
|
{
|
495 |
|
|
unsigned long newsize = higher_prime_number (table->size);
|
496 |
|
|
struct bfd_hash_entry **newtable;
|
497 |
|
|
unsigned int hi;
|
498 |
|
|
unsigned long alloc = newsize * sizeof (struct bfd_hash_entry *);
|
499 |
|
|
|
500 |
|
|
/* If we can't find a higher prime, or we can't possibly alloc
|
501 |
|
|
that much memory, don't try to grow the table. */
|
502 |
|
|
if (newsize == 0 || alloc / sizeof (struct bfd_hash_entry *) != newsize)
|
503 |
|
|
{
|
504 |
|
|
table->frozen = 1;
|
505 |
|
|
return hashp;
|
506 |
|
|
}
|
507 |
|
|
|
508 |
|
|
newtable = ((struct bfd_hash_entry **)
|
509 |
|
|
objalloc_alloc ((struct objalloc *) table->memory, alloc));
|
510 |
|
|
if (newtable == NULL)
|
511 |
|
|
{
|
512 |
|
|
table->frozen = 1;
|
513 |
|
|
return hashp;
|
514 |
|
|
}
|
515 |
|
|
memset ((PTR) newtable, 0, alloc);
|
516 |
|
|
|
517 |
|
|
for (hi = 0; hi < table->size; hi ++)
|
518 |
|
|
while (table->table[hi])
|
519 |
|
|
{
|
520 |
|
|
struct bfd_hash_entry *chain = table->table[hi];
|
521 |
|
|
struct bfd_hash_entry *chain_end = chain;
|
522 |
|
|
|
523 |
|
|
while (chain_end->next && chain_end->next->hash == chain->hash)
|
524 |
|
|
chain_end = chain_end->next;
|
525 |
|
|
|
526 |
|
|
table->table[hi] = chain_end->next;
|
527 |
|
|
index = chain->hash % newsize;
|
528 |
|
|
chain_end->next = newtable[index];
|
529 |
|
|
newtable[index] = chain;
|
530 |
|
|
}
|
531 |
|
|
table->table = newtable;
|
532 |
|
|
table->size = newsize;
|
533 |
|
|
}
|
534 |
|
|
|
535 |
|
|
return hashp;
|
536 |
|
|
}
|
537 |
|
|
|
538 |
|
|
/* Replace an entry in a hash table. */
|
539 |
|
|
|
540 |
|
|
void
|
541 |
|
|
bfd_hash_replace (struct bfd_hash_table *table,
|
542 |
|
|
struct bfd_hash_entry *old,
|
543 |
|
|
struct bfd_hash_entry *nw)
|
544 |
|
|
{
|
545 |
|
|
unsigned int index;
|
546 |
|
|
struct bfd_hash_entry **pph;
|
547 |
|
|
|
548 |
|
|
index = old->hash % table->size;
|
549 |
|
|
for (pph = &table->table[index];
|
550 |
|
|
(*pph) != NULL;
|
551 |
|
|
pph = &(*pph)->next)
|
552 |
|
|
{
|
553 |
|
|
if (*pph == old)
|
554 |
|
|
{
|
555 |
|
|
*pph = nw;
|
556 |
|
|
return;
|
557 |
|
|
}
|
558 |
|
|
}
|
559 |
|
|
|
560 |
|
|
abort ();
|
561 |
|
|
}
|
562 |
|
|
|
563 |
|
|
/* Allocate space in a hash table. */
|
564 |
|
|
|
565 |
|
|
void *
|
566 |
|
|
bfd_hash_allocate (struct bfd_hash_table *table,
|
567 |
|
|
unsigned int size)
|
568 |
|
|
{
|
569 |
|
|
void * ret;
|
570 |
|
|
|
571 |
|
|
ret = objalloc_alloc ((struct objalloc *) table->memory, size);
|
572 |
|
|
if (ret == NULL && size != 0)
|
573 |
|
|
bfd_set_error (bfd_error_no_memory);
|
574 |
|
|
return ret;
|
575 |
|
|
}
|
576 |
|
|
|
577 |
|
|
/* Base method for creating a new hash table entry. */
|
578 |
|
|
|
579 |
|
|
struct bfd_hash_entry *
|
580 |
|
|
bfd_hash_newfunc (struct bfd_hash_entry *entry,
|
581 |
|
|
struct bfd_hash_table *table,
|
582 |
|
|
const char *string ATTRIBUTE_UNUSED)
|
583 |
|
|
{
|
584 |
|
|
if (entry == NULL)
|
585 |
225 |
jeremybenn |
entry = (struct bfd_hash_entry *) bfd_hash_allocate (table,
|
586 |
|
|
sizeof (* entry));
|
587 |
24 |
jeremybenn |
return entry;
|
588 |
|
|
}
|
589 |
|
|
|
590 |
|
|
/* Traverse a hash table. */
|
591 |
|
|
|
592 |
|
|
void
|
593 |
|
|
bfd_hash_traverse (struct bfd_hash_table *table,
|
594 |
|
|
bfd_boolean (*func) (struct bfd_hash_entry *, void *),
|
595 |
|
|
void * info)
|
596 |
|
|
{
|
597 |
|
|
unsigned int i;
|
598 |
|
|
|
599 |
|
|
table->frozen = 1;
|
600 |
|
|
for (i = 0; i < table->size; i++)
|
601 |
|
|
{
|
602 |
|
|
struct bfd_hash_entry *p;
|
603 |
|
|
|
604 |
|
|
for (p = table->table[i]; p != NULL; p = p->next)
|
605 |
|
|
if (! (*func) (p, info))
|
606 |
|
|
goto out;
|
607 |
|
|
}
|
608 |
|
|
out:
|
609 |
|
|
table->frozen = 0;
|
610 |
|
|
}
|
611 |
|
|
|
612 |
|
|
void
|
613 |
|
|
bfd_hash_set_default_size (bfd_size_type hash_size)
|
614 |
|
|
{
|
615 |
|
|
/* Extend this prime list if you want more granularity of hash table size. */
|
616 |
|
|
static const bfd_size_type hash_size_primes[] =
|
617 |
|
|
{
|
618 |
|
|
251, 509, 1021, 2039, 4051, 8599, 16699, 32749
|
619 |
|
|
};
|
620 |
|
|
size_t index;
|
621 |
|
|
|
622 |
|
|
/* Work out best prime number near the hash_size. */
|
623 |
|
|
for (index = 0; index < ARRAY_SIZE (hash_size_primes) - 1; ++index)
|
624 |
|
|
if (hash_size <= hash_size_primes[index])
|
625 |
|
|
break;
|
626 |
|
|
|
627 |
|
|
bfd_default_hash_table_size = hash_size_primes[index];
|
628 |
|
|
}
|
629 |
|
|
|
630 |
|
|
/* A few different object file formats (a.out, COFF, ELF) use a string
|
631 |
|
|
table. These functions support adding strings to a string table,
|
632 |
|
|
returning the byte offset, and writing out the table.
|
633 |
|
|
|
634 |
|
|
Possible improvements:
|
635 |
|
|
+ look for strings matching trailing substrings of other strings
|
636 |
|
|
+ better data structures? balanced trees?
|
637 |
|
|
+ look at reducing memory use elsewhere -- maybe if we didn't have
|
638 |
|
|
to construct the entire symbol table at once, we could get by
|
639 |
|
|
with smaller amounts of VM? (What effect does that have on the
|
640 |
|
|
string table reductions?) */
|
641 |
|
|
|
642 |
|
|
/* An entry in the strtab hash table. */
|
643 |
|
|
|
644 |
|
|
struct strtab_hash_entry
|
645 |
|
|
{
|
646 |
|
|
struct bfd_hash_entry root;
|
647 |
|
|
/* Index in string table. */
|
648 |
|
|
bfd_size_type index;
|
649 |
|
|
/* Next string in strtab. */
|
650 |
|
|
struct strtab_hash_entry *next;
|
651 |
|
|
};
|
652 |
|
|
|
653 |
|
|
/* The strtab hash table. */
|
654 |
|
|
|
655 |
|
|
struct bfd_strtab_hash
|
656 |
|
|
{
|
657 |
|
|
struct bfd_hash_table table;
|
658 |
|
|
/* Size of strtab--also next available index. */
|
659 |
|
|
bfd_size_type size;
|
660 |
|
|
/* First string in strtab. */
|
661 |
|
|
struct strtab_hash_entry *first;
|
662 |
|
|
/* Last string in strtab. */
|
663 |
|
|
struct strtab_hash_entry *last;
|
664 |
|
|
/* Whether to precede strings with a two byte length, as in the
|
665 |
|
|
XCOFF .debug section. */
|
666 |
|
|
bfd_boolean xcoff;
|
667 |
|
|
};
|
668 |
|
|
|
669 |
|
|
/* Routine to create an entry in a strtab. */
|
670 |
|
|
|
671 |
|
|
static struct bfd_hash_entry *
|
672 |
|
|
strtab_hash_newfunc (struct bfd_hash_entry *entry,
|
673 |
|
|
struct bfd_hash_table *table,
|
674 |
|
|
const char *string)
|
675 |
|
|
{
|
676 |
|
|
struct strtab_hash_entry *ret = (struct strtab_hash_entry *) entry;
|
677 |
|
|
|
678 |
|
|
/* Allocate the structure if it has not already been allocated by a
|
679 |
|
|
subclass. */
|
680 |
|
|
if (ret == NULL)
|
681 |
225 |
jeremybenn |
ret = (struct strtab_hash_entry *) bfd_hash_allocate (table,
|
682 |
|
|
sizeof (* ret));
|
683 |
24 |
jeremybenn |
if (ret == NULL)
|
684 |
|
|
return NULL;
|
685 |
|
|
|
686 |
|
|
/* Call the allocation method of the superclass. */
|
687 |
|
|
ret = (struct strtab_hash_entry *)
|
688 |
|
|
bfd_hash_newfunc ((struct bfd_hash_entry *) ret, table, string);
|
689 |
|
|
|
690 |
|
|
if (ret)
|
691 |
|
|
{
|
692 |
|
|
/* Initialize the local fields. */
|
693 |
|
|
ret->index = (bfd_size_type) -1;
|
694 |
|
|
ret->next = NULL;
|
695 |
|
|
}
|
696 |
|
|
|
697 |
|
|
return (struct bfd_hash_entry *) ret;
|
698 |
|
|
}
|
699 |
|
|
|
700 |
|
|
/* Look up an entry in an strtab. */
|
701 |
|
|
|
702 |
|
|
#define strtab_hash_lookup(t, string, create, copy) \
|
703 |
|
|
((struct strtab_hash_entry *) \
|
704 |
|
|
bfd_hash_lookup (&(t)->table, (string), (create), (copy)))
|
705 |
|
|
|
706 |
|
|
/* Create a new strtab. */
|
707 |
|
|
|
708 |
|
|
struct bfd_strtab_hash *
|
709 |
|
|
_bfd_stringtab_init (void)
|
710 |
|
|
{
|
711 |
|
|
struct bfd_strtab_hash *table;
|
712 |
|
|
bfd_size_type amt = sizeof (* table);
|
713 |
|
|
|
714 |
225 |
jeremybenn |
table = (struct bfd_strtab_hash *) bfd_malloc (amt);
|
715 |
24 |
jeremybenn |
if (table == NULL)
|
716 |
|
|
return NULL;
|
717 |
|
|
|
718 |
|
|
if (!bfd_hash_table_init (&table->table, strtab_hash_newfunc,
|
719 |
|
|
sizeof (struct strtab_hash_entry)))
|
720 |
|
|
{
|
721 |
|
|
free (table);
|
722 |
|
|
return NULL;
|
723 |
|
|
}
|
724 |
|
|
|
725 |
|
|
table->size = 0;
|
726 |
|
|
table->first = NULL;
|
727 |
|
|
table->last = NULL;
|
728 |
|
|
table->xcoff = FALSE;
|
729 |
|
|
|
730 |
|
|
return table;
|
731 |
|
|
}
|
732 |
|
|
|
733 |
|
|
/* Create a new strtab in which the strings are output in the format
|
734 |
|
|
used in the XCOFF .debug section: a two byte length precedes each
|
735 |
|
|
string. */
|
736 |
|
|
|
737 |
|
|
struct bfd_strtab_hash *
|
738 |
|
|
_bfd_xcoff_stringtab_init (void)
|
739 |
|
|
{
|
740 |
|
|
struct bfd_strtab_hash *ret;
|
741 |
|
|
|
742 |
|
|
ret = _bfd_stringtab_init ();
|
743 |
|
|
if (ret != NULL)
|
744 |
|
|
ret->xcoff = TRUE;
|
745 |
|
|
return ret;
|
746 |
|
|
}
|
747 |
|
|
|
748 |
|
|
/* Free a strtab. */
|
749 |
|
|
|
750 |
|
|
void
|
751 |
|
|
_bfd_stringtab_free (struct bfd_strtab_hash *table)
|
752 |
|
|
{
|
753 |
|
|
bfd_hash_table_free (&table->table);
|
754 |
|
|
free (table);
|
755 |
|
|
}
|
756 |
|
|
|
757 |
|
|
/* Get the index of a string in a strtab, adding it if it is not
|
758 |
|
|
already present. If HASH is FALSE, we don't really use the hash
|
759 |
|
|
table, and we don't eliminate duplicate strings. */
|
760 |
|
|
|
761 |
|
|
bfd_size_type
|
762 |
|
|
_bfd_stringtab_add (struct bfd_strtab_hash *tab,
|
763 |
|
|
const char *str,
|
764 |
|
|
bfd_boolean hash,
|
765 |
|
|
bfd_boolean copy)
|
766 |
|
|
{
|
767 |
|
|
struct strtab_hash_entry *entry;
|
768 |
|
|
|
769 |
|
|
if (hash)
|
770 |
|
|
{
|
771 |
|
|
entry = strtab_hash_lookup (tab, str, TRUE, copy);
|
772 |
|
|
if (entry == NULL)
|
773 |
|
|
return (bfd_size_type) -1;
|
774 |
|
|
}
|
775 |
|
|
else
|
776 |
|
|
{
|
777 |
225 |
jeremybenn |
entry = (struct strtab_hash_entry *) bfd_hash_allocate (&tab->table,
|
778 |
|
|
sizeof (* entry));
|
779 |
24 |
jeremybenn |
if (entry == NULL)
|
780 |
|
|
return (bfd_size_type) -1;
|
781 |
|
|
if (! copy)
|
782 |
|
|
entry->root.string = str;
|
783 |
|
|
else
|
784 |
|
|
{
|
785 |
|
|
char *n;
|
786 |
|
|
|
787 |
225 |
jeremybenn |
n = (char *) bfd_hash_allocate (&tab->table, strlen (str) + 1);
|
788 |
24 |
jeremybenn |
if (n == NULL)
|
789 |
|
|
return (bfd_size_type) -1;
|
790 |
|
|
entry->root.string = n;
|
791 |
|
|
}
|
792 |
|
|
entry->index = (bfd_size_type) -1;
|
793 |
|
|
entry->next = NULL;
|
794 |
|
|
}
|
795 |
|
|
|
796 |
|
|
if (entry->index == (bfd_size_type) -1)
|
797 |
|
|
{
|
798 |
|
|
entry->index = tab->size;
|
799 |
|
|
tab->size += strlen (str) + 1;
|
800 |
|
|
if (tab->xcoff)
|
801 |
|
|
{
|
802 |
|
|
entry->index += 2;
|
803 |
|
|
tab->size += 2;
|
804 |
|
|
}
|
805 |
|
|
if (tab->first == NULL)
|
806 |
|
|
tab->first = entry;
|
807 |
|
|
else
|
808 |
|
|
tab->last->next = entry;
|
809 |
|
|
tab->last = entry;
|
810 |
|
|
}
|
811 |
|
|
|
812 |
|
|
return entry->index;
|
813 |
|
|
}
|
814 |
|
|
|
815 |
|
|
/* Get the number of bytes in a strtab. */
|
816 |
|
|
|
817 |
|
|
bfd_size_type
|
818 |
|
|
_bfd_stringtab_size (struct bfd_strtab_hash *tab)
|
819 |
|
|
{
|
820 |
|
|
return tab->size;
|
821 |
|
|
}
|
822 |
|
|
|
823 |
|
|
/* Write out a strtab. ABFD must already be at the right location in
|
824 |
|
|
the file. */
|
825 |
|
|
|
826 |
|
|
bfd_boolean
|
827 |
|
|
_bfd_stringtab_emit (bfd *abfd, struct bfd_strtab_hash *tab)
|
828 |
|
|
{
|
829 |
|
|
bfd_boolean xcoff;
|
830 |
|
|
struct strtab_hash_entry *entry;
|
831 |
|
|
|
832 |
|
|
xcoff = tab->xcoff;
|
833 |
|
|
|
834 |
|
|
for (entry = tab->first; entry != NULL; entry = entry->next)
|
835 |
|
|
{
|
836 |
|
|
const char *str;
|
837 |
|
|
size_t len;
|
838 |
|
|
|
839 |
|
|
str = entry->root.string;
|
840 |
|
|
len = strlen (str) + 1;
|
841 |
|
|
|
842 |
|
|
if (xcoff)
|
843 |
|
|
{
|
844 |
|
|
bfd_byte buf[2];
|
845 |
|
|
|
846 |
|
|
/* The output length includes the null byte. */
|
847 |
|
|
bfd_put_16 (abfd, (bfd_vma) len, buf);
|
848 |
|
|
if (bfd_bwrite ((void *) buf, (bfd_size_type) 2, abfd) != 2)
|
849 |
|
|
return FALSE;
|
850 |
|
|
}
|
851 |
|
|
|
852 |
|
|
if (bfd_bwrite ((void *) str, (bfd_size_type) len, abfd) != len)
|
853 |
|
|
return FALSE;
|
854 |
|
|
}
|
855 |
|
|
|
856 |
|
|
return TRUE;
|
857 |
|
|
}
|