1 |
24 |
jeremybenn |
/* GNU/Linux on ARM target support.
|
2 |
|
|
|
3 |
|
|
Copyright (C) 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
|
4 |
|
|
Free Software Foundation, Inc.
|
5 |
|
|
|
6 |
|
|
This file is part of GDB.
|
7 |
|
|
|
8 |
|
|
This program is free software; you can redistribute it and/or modify
|
9 |
|
|
it under the terms of the GNU General Public License as published by
|
10 |
|
|
the Free Software Foundation; either version 3 of the License, or
|
11 |
|
|
(at your option) any later version.
|
12 |
|
|
|
13 |
|
|
This program is distributed in the hope that it will be useful,
|
14 |
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
15 |
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
16 |
|
|
GNU General Public License for more details.
|
17 |
|
|
|
18 |
|
|
You should have received a copy of the GNU General Public License
|
19 |
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>. */
|
20 |
|
|
|
21 |
|
|
#include "defs.h"
|
22 |
|
|
#include "target.h"
|
23 |
|
|
#include "value.h"
|
24 |
|
|
#include "gdbtypes.h"
|
25 |
|
|
#include "floatformat.h"
|
26 |
|
|
#include "gdbcore.h"
|
27 |
|
|
#include "frame.h"
|
28 |
|
|
#include "regcache.h"
|
29 |
|
|
#include "doublest.h"
|
30 |
|
|
#include "solib-svr4.h"
|
31 |
|
|
#include "osabi.h"
|
32 |
|
|
#include "regset.h"
|
33 |
|
|
#include "trad-frame.h"
|
34 |
|
|
#include "tramp-frame.h"
|
35 |
|
|
#include "breakpoint.h"
|
36 |
|
|
|
37 |
|
|
#include "arm-tdep.h"
|
38 |
|
|
#include "arm-linux-tdep.h"
|
39 |
|
|
#include "glibc-tdep.h"
|
40 |
|
|
|
41 |
|
|
#include "gdb_string.h"
|
42 |
|
|
|
43 |
|
|
extern int arm_apcs_32;
|
44 |
|
|
|
45 |
|
|
/* Under ARM GNU/Linux the traditional way of performing a breakpoint
|
46 |
|
|
is to execute a particular software interrupt, rather than use a
|
47 |
|
|
particular undefined instruction to provoke a trap. Upon exection
|
48 |
|
|
of the software interrupt the kernel stops the inferior with a
|
49 |
|
|
SIGTRAP, and wakes the debugger. */
|
50 |
|
|
|
51 |
|
|
static const char arm_linux_arm_le_breakpoint[] = { 0x01, 0x00, 0x9f, 0xef };
|
52 |
|
|
|
53 |
|
|
static const char arm_linux_arm_be_breakpoint[] = { 0xef, 0x9f, 0x00, 0x01 };
|
54 |
|
|
|
55 |
|
|
/* However, the EABI syscall interface (new in Nov. 2005) does not look at
|
56 |
|
|
the operand of the swi if old-ABI compatibility is disabled. Therefore,
|
57 |
|
|
use an undefined instruction instead. This is supported as of kernel
|
58 |
|
|
version 2.5.70 (May 2003), so should be a safe assumption for EABI
|
59 |
|
|
binaries. */
|
60 |
|
|
|
61 |
|
|
static const char eabi_linux_arm_le_breakpoint[] = { 0xf0, 0x01, 0xf0, 0xe7 };
|
62 |
|
|
|
63 |
|
|
static const char eabi_linux_arm_be_breakpoint[] = { 0xe7, 0xf0, 0x01, 0xf0 };
|
64 |
|
|
|
65 |
|
|
/* All the kernels which support Thumb support using a specific undefined
|
66 |
|
|
instruction for the Thumb breakpoint. */
|
67 |
|
|
|
68 |
|
|
static const char arm_linux_thumb_be_breakpoint[] = {0xde, 0x01};
|
69 |
|
|
|
70 |
|
|
static const char arm_linux_thumb_le_breakpoint[] = {0x01, 0xde};
|
71 |
|
|
|
72 |
|
|
/* Description of the longjmp buffer. */
|
73 |
|
|
#define ARM_LINUX_JB_ELEMENT_SIZE INT_REGISTER_SIZE
|
74 |
|
|
#define ARM_LINUX_JB_PC 21
|
75 |
|
|
|
76 |
|
|
/*
|
77 |
|
|
Dynamic Linking on ARM GNU/Linux
|
78 |
|
|
--------------------------------
|
79 |
|
|
|
80 |
|
|
Note: PLT = procedure linkage table
|
81 |
|
|
GOT = global offset table
|
82 |
|
|
|
83 |
|
|
As much as possible, ELF dynamic linking defers the resolution of
|
84 |
|
|
jump/call addresses until the last minute. The technique used is
|
85 |
|
|
inspired by the i386 ELF design, and is based on the following
|
86 |
|
|
constraints.
|
87 |
|
|
|
88 |
|
|
1) The calling technique should not force a change in the assembly
|
89 |
|
|
code produced for apps; it MAY cause changes in the way assembly
|
90 |
|
|
code is produced for position independent code (i.e. shared
|
91 |
|
|
libraries).
|
92 |
|
|
|
93 |
|
|
2) The technique must be such that all executable areas must not be
|
94 |
|
|
modified; and any modified areas must not be executed.
|
95 |
|
|
|
96 |
|
|
To do this, there are three steps involved in a typical jump:
|
97 |
|
|
|
98 |
|
|
1) in the code
|
99 |
|
|
2) through the PLT
|
100 |
|
|
3) using a pointer from the GOT
|
101 |
|
|
|
102 |
|
|
When the executable or library is first loaded, each GOT entry is
|
103 |
|
|
initialized to point to the code which implements dynamic name
|
104 |
|
|
resolution and code finding. This is normally a function in the
|
105 |
|
|
program interpreter (on ARM GNU/Linux this is usually
|
106 |
|
|
ld-linux.so.2, but it does not have to be). On the first
|
107 |
|
|
invocation, the function is located and the GOT entry is replaced
|
108 |
|
|
with the real function address. Subsequent calls go through steps
|
109 |
|
|
1, 2 and 3 and end up calling the real code.
|
110 |
|
|
|
111 |
|
|
1) In the code:
|
112 |
|
|
|
113 |
|
|
b function_call
|
114 |
|
|
bl function_call
|
115 |
|
|
|
116 |
|
|
This is typical ARM code using the 26 bit relative branch or branch
|
117 |
|
|
and link instructions. The target of the instruction
|
118 |
|
|
(function_call is usually the address of the function to be called.
|
119 |
|
|
In position independent code, the target of the instruction is
|
120 |
|
|
actually an entry in the PLT when calling functions in a shared
|
121 |
|
|
library. Note that this call is identical to a normal function
|
122 |
|
|
call, only the target differs.
|
123 |
|
|
|
124 |
|
|
2) In the PLT:
|
125 |
|
|
|
126 |
|
|
The PLT is a synthetic area, created by the linker. It exists in
|
127 |
|
|
both executables and libraries. It is an array of stubs, one per
|
128 |
|
|
imported function call. It looks like this:
|
129 |
|
|
|
130 |
|
|
PLT[0]:
|
131 |
|
|
str lr, [sp, #-4]! @push the return address (lr)
|
132 |
|
|
ldr lr, [pc, #16] @load from 6 words ahead
|
133 |
|
|
add lr, pc, lr @form an address for GOT[0]
|
134 |
|
|
ldr pc, [lr, #8]! @jump to the contents of that addr
|
135 |
|
|
|
136 |
|
|
The return address (lr) is pushed on the stack and used for
|
137 |
|
|
calculations. The load on the second line loads the lr with
|
138 |
|
|
&GOT[3] - . - 20. The addition on the third leaves:
|
139 |
|
|
|
140 |
|
|
lr = (&GOT[3] - . - 20) + (. + 8)
|
141 |
|
|
lr = (&GOT[3] - 12)
|
142 |
|
|
lr = &GOT[0]
|
143 |
|
|
|
144 |
|
|
On the fourth line, the pc and lr are both updated, so that:
|
145 |
|
|
|
146 |
|
|
pc = GOT[2]
|
147 |
|
|
lr = &GOT[0] + 8
|
148 |
|
|
= &GOT[2]
|
149 |
|
|
|
150 |
|
|
NOTE: PLT[0] borrows an offset .word from PLT[1]. This is a little
|
151 |
|
|
"tight", but allows us to keep all the PLT entries the same size.
|
152 |
|
|
|
153 |
|
|
PLT[n+1]:
|
154 |
|
|
ldr ip, [pc, #4] @load offset from gotoff
|
155 |
|
|
add ip, pc, ip @add the offset to the pc
|
156 |
|
|
ldr pc, [ip] @jump to that address
|
157 |
|
|
gotoff: .word GOT[n+3] - .
|
158 |
|
|
|
159 |
|
|
The load on the first line, gets an offset from the fourth word of
|
160 |
|
|
the PLT entry. The add on the second line makes ip = &GOT[n+3],
|
161 |
|
|
which contains either a pointer to PLT[0] (the fixup trampoline) or
|
162 |
|
|
a pointer to the actual code.
|
163 |
|
|
|
164 |
|
|
3) In the GOT:
|
165 |
|
|
|
166 |
|
|
The GOT contains helper pointers for both code (PLT) fixups and
|
167 |
|
|
data fixups. The first 3 entries of the GOT are special. The next
|
168 |
|
|
M entries (where M is the number of entries in the PLT) belong to
|
169 |
|
|
the PLT fixups. The next D (all remaining) entries belong to
|
170 |
|
|
various data fixups. The actual size of the GOT is 3 + M + D.
|
171 |
|
|
|
172 |
|
|
The GOT is also a synthetic area, created by the linker. It exists
|
173 |
|
|
in both executables and libraries. When the GOT is first
|
174 |
|
|
initialized , all the GOT entries relating to PLT fixups are
|
175 |
|
|
pointing to code back at PLT[0].
|
176 |
|
|
|
177 |
|
|
The special entries in the GOT are:
|
178 |
|
|
|
179 |
|
|
GOT[0] = linked list pointer used by the dynamic loader
|
180 |
|
|
GOT[1] = pointer to the reloc table for this module
|
181 |
|
|
GOT[2] = pointer to the fixup/resolver code
|
182 |
|
|
|
183 |
|
|
The first invocation of function call comes through and uses the
|
184 |
|
|
fixup/resolver code. On the entry to the fixup/resolver code:
|
185 |
|
|
|
186 |
|
|
ip = &GOT[n+3]
|
187 |
|
|
lr = &GOT[2]
|
188 |
|
|
stack[0] = return address (lr) of the function call
|
189 |
|
|
[r0, r1, r2, r3] are still the arguments to the function call
|
190 |
|
|
|
191 |
|
|
This is enough information for the fixup/resolver code to work
|
192 |
|
|
with. Before the fixup/resolver code returns, it actually calls
|
193 |
|
|
the requested function and repairs &GOT[n+3]. */
|
194 |
|
|
|
195 |
|
|
/* The constants below were determined by examining the following files
|
196 |
|
|
in the linux kernel sources:
|
197 |
|
|
|
198 |
|
|
arch/arm/kernel/signal.c
|
199 |
|
|
- see SWI_SYS_SIGRETURN and SWI_SYS_RT_SIGRETURN
|
200 |
|
|
include/asm-arm/unistd.h
|
201 |
|
|
- see __NR_sigreturn, __NR_rt_sigreturn, and __NR_SYSCALL_BASE */
|
202 |
|
|
|
203 |
|
|
#define ARM_LINUX_SIGRETURN_INSTR 0xef900077
|
204 |
|
|
#define ARM_LINUX_RT_SIGRETURN_INSTR 0xef9000ad
|
205 |
|
|
|
206 |
|
|
/* For ARM EABI, the syscall number is not in the SWI instruction
|
207 |
|
|
(instead it is loaded into r7). We recognize the pattern that
|
208 |
|
|
glibc uses... alternatively, we could arrange to do this by
|
209 |
|
|
function name, but they are not always exported. */
|
210 |
|
|
#define ARM_SET_R7_SIGRETURN 0xe3a07077
|
211 |
|
|
#define ARM_SET_R7_RT_SIGRETURN 0xe3a070ad
|
212 |
|
|
#define ARM_EABI_SYSCALL 0xef000000
|
213 |
|
|
|
214 |
|
|
static void
|
215 |
|
|
arm_linux_sigtramp_cache (struct frame_info *next_frame,
|
216 |
|
|
struct trad_frame_cache *this_cache,
|
217 |
|
|
CORE_ADDR func, int regs_offset)
|
218 |
|
|
{
|
219 |
|
|
CORE_ADDR sp = frame_unwind_register_unsigned (next_frame, ARM_SP_REGNUM);
|
220 |
|
|
CORE_ADDR base = sp + regs_offset;
|
221 |
|
|
int i;
|
222 |
|
|
|
223 |
|
|
for (i = 0; i < 16; i++)
|
224 |
|
|
trad_frame_set_reg_addr (this_cache, i, base + i * 4);
|
225 |
|
|
|
226 |
|
|
trad_frame_set_reg_addr (this_cache, ARM_PS_REGNUM, base + 16 * 4);
|
227 |
|
|
|
228 |
|
|
/* The VFP or iWMMXt registers may be saved on the stack, but there's
|
229 |
|
|
no reliable way to restore them (yet). */
|
230 |
|
|
|
231 |
|
|
/* Save a frame ID. */
|
232 |
|
|
trad_frame_set_id (this_cache, frame_id_build (sp, func));
|
233 |
|
|
}
|
234 |
|
|
|
235 |
|
|
/* There are a couple of different possible stack layouts that
|
236 |
|
|
we need to support.
|
237 |
|
|
|
238 |
|
|
Before version 2.6.18, the kernel used completely independent
|
239 |
|
|
layouts for non-RT and RT signals. For non-RT signals the stack
|
240 |
|
|
began directly with a struct sigcontext. For RT signals the stack
|
241 |
|
|
began with two redundant pointers (to the siginfo and ucontext),
|
242 |
|
|
and then the siginfo and ucontext.
|
243 |
|
|
|
244 |
|
|
As of version 2.6.18, the non-RT signal frame layout starts with
|
245 |
|
|
a ucontext and the RT signal frame starts with a siginfo and then
|
246 |
|
|
a ucontext. Also, the ucontext now has a designated save area
|
247 |
|
|
for coprocessor registers.
|
248 |
|
|
|
249 |
|
|
For RT signals, it's easy to tell the difference: we look for
|
250 |
|
|
pinfo, the pointer to the siginfo. If it has the expected
|
251 |
|
|
value, we have an old layout. If it doesn't, we have the new
|
252 |
|
|
layout.
|
253 |
|
|
|
254 |
|
|
For non-RT signals, it's a bit harder. We need something in one
|
255 |
|
|
layout or the other with a recognizable offset and value. We can't
|
256 |
|
|
use the return trampoline, because ARM usually uses SA_RESTORER,
|
257 |
|
|
in which case the stack return trampoline is not filled in.
|
258 |
|
|
We can't use the saved stack pointer, because sigaltstack might
|
259 |
|
|
be in use. So for now we guess the new layout... */
|
260 |
|
|
|
261 |
|
|
/* There are three words (trap_no, error_code, oldmask) in
|
262 |
|
|
struct sigcontext before r0. */
|
263 |
|
|
#define ARM_SIGCONTEXT_R0 0xc
|
264 |
|
|
|
265 |
|
|
/* There are five words (uc_flags, uc_link, and three for uc_stack)
|
266 |
|
|
in the ucontext_t before the sigcontext. */
|
267 |
|
|
#define ARM_UCONTEXT_SIGCONTEXT 0x14
|
268 |
|
|
|
269 |
|
|
/* There are three elements in an rt_sigframe before the ucontext:
|
270 |
|
|
pinfo, puc, and info. The first two are pointers and the third
|
271 |
|
|
is a struct siginfo, with size 128 bytes. We could follow puc
|
272 |
|
|
to the ucontext, but it's simpler to skip the whole thing. */
|
273 |
|
|
#define ARM_OLD_RT_SIGFRAME_SIGINFO 0x8
|
274 |
|
|
#define ARM_OLD_RT_SIGFRAME_UCONTEXT 0x88
|
275 |
|
|
|
276 |
|
|
#define ARM_NEW_RT_SIGFRAME_UCONTEXT 0x80
|
277 |
|
|
|
278 |
|
|
#define ARM_NEW_SIGFRAME_MAGIC 0x5ac3c35a
|
279 |
|
|
|
280 |
|
|
static void
|
281 |
|
|
arm_linux_sigreturn_init (const struct tramp_frame *self,
|
282 |
|
|
struct frame_info *next_frame,
|
283 |
|
|
struct trad_frame_cache *this_cache,
|
284 |
|
|
CORE_ADDR func)
|
285 |
|
|
{
|
286 |
|
|
CORE_ADDR sp = frame_unwind_register_unsigned (next_frame, ARM_SP_REGNUM);
|
287 |
|
|
ULONGEST uc_flags = read_memory_unsigned_integer (sp, 4);
|
288 |
|
|
|
289 |
|
|
if (uc_flags == ARM_NEW_SIGFRAME_MAGIC)
|
290 |
|
|
arm_linux_sigtramp_cache (next_frame, this_cache, func,
|
291 |
|
|
ARM_UCONTEXT_SIGCONTEXT
|
292 |
|
|
+ ARM_SIGCONTEXT_R0);
|
293 |
|
|
else
|
294 |
|
|
arm_linux_sigtramp_cache (next_frame, this_cache, func,
|
295 |
|
|
ARM_SIGCONTEXT_R0);
|
296 |
|
|
}
|
297 |
|
|
|
298 |
|
|
static void
|
299 |
|
|
arm_linux_rt_sigreturn_init (const struct tramp_frame *self,
|
300 |
|
|
struct frame_info *next_frame,
|
301 |
|
|
struct trad_frame_cache *this_cache,
|
302 |
|
|
CORE_ADDR func)
|
303 |
|
|
{
|
304 |
|
|
CORE_ADDR sp = frame_unwind_register_unsigned (next_frame, ARM_SP_REGNUM);
|
305 |
|
|
ULONGEST pinfo = read_memory_unsigned_integer (sp, 4);
|
306 |
|
|
|
307 |
|
|
if (pinfo == sp + ARM_OLD_RT_SIGFRAME_SIGINFO)
|
308 |
|
|
arm_linux_sigtramp_cache (next_frame, this_cache, func,
|
309 |
|
|
ARM_OLD_RT_SIGFRAME_UCONTEXT
|
310 |
|
|
+ ARM_UCONTEXT_SIGCONTEXT
|
311 |
|
|
+ ARM_SIGCONTEXT_R0);
|
312 |
|
|
else
|
313 |
|
|
arm_linux_sigtramp_cache (next_frame, this_cache, func,
|
314 |
|
|
ARM_NEW_RT_SIGFRAME_UCONTEXT
|
315 |
|
|
+ ARM_UCONTEXT_SIGCONTEXT
|
316 |
|
|
+ ARM_SIGCONTEXT_R0);
|
317 |
|
|
}
|
318 |
|
|
|
319 |
|
|
static struct tramp_frame arm_linux_sigreturn_tramp_frame = {
|
320 |
|
|
SIGTRAMP_FRAME,
|
321 |
|
|
4,
|
322 |
|
|
{
|
323 |
|
|
{ ARM_LINUX_SIGRETURN_INSTR, -1 },
|
324 |
|
|
{ TRAMP_SENTINEL_INSN }
|
325 |
|
|
},
|
326 |
|
|
arm_linux_sigreturn_init
|
327 |
|
|
};
|
328 |
|
|
|
329 |
|
|
static struct tramp_frame arm_linux_rt_sigreturn_tramp_frame = {
|
330 |
|
|
SIGTRAMP_FRAME,
|
331 |
|
|
4,
|
332 |
|
|
{
|
333 |
|
|
{ ARM_LINUX_RT_SIGRETURN_INSTR, -1 },
|
334 |
|
|
{ TRAMP_SENTINEL_INSN }
|
335 |
|
|
},
|
336 |
|
|
arm_linux_rt_sigreturn_init
|
337 |
|
|
};
|
338 |
|
|
|
339 |
|
|
static struct tramp_frame arm_eabi_linux_sigreturn_tramp_frame = {
|
340 |
|
|
SIGTRAMP_FRAME,
|
341 |
|
|
4,
|
342 |
|
|
{
|
343 |
|
|
{ ARM_SET_R7_SIGRETURN, -1 },
|
344 |
|
|
{ ARM_EABI_SYSCALL, -1 },
|
345 |
|
|
{ TRAMP_SENTINEL_INSN }
|
346 |
|
|
},
|
347 |
|
|
arm_linux_sigreturn_init
|
348 |
|
|
};
|
349 |
|
|
|
350 |
|
|
static struct tramp_frame arm_eabi_linux_rt_sigreturn_tramp_frame = {
|
351 |
|
|
SIGTRAMP_FRAME,
|
352 |
|
|
4,
|
353 |
|
|
{
|
354 |
|
|
{ ARM_SET_R7_RT_SIGRETURN, -1 },
|
355 |
|
|
{ ARM_EABI_SYSCALL, -1 },
|
356 |
|
|
{ TRAMP_SENTINEL_INSN }
|
357 |
|
|
},
|
358 |
|
|
arm_linux_rt_sigreturn_init
|
359 |
|
|
};
|
360 |
|
|
|
361 |
|
|
/* Core file and register set support. */
|
362 |
|
|
|
363 |
|
|
#define ARM_LINUX_SIZEOF_GREGSET (18 * INT_REGISTER_SIZE)
|
364 |
|
|
|
365 |
|
|
void
|
366 |
|
|
arm_linux_supply_gregset (const struct regset *regset,
|
367 |
|
|
struct regcache *regcache,
|
368 |
|
|
int regnum, const void *gregs_buf, size_t len)
|
369 |
|
|
{
|
370 |
|
|
const gdb_byte *gregs = gregs_buf;
|
371 |
|
|
int regno;
|
372 |
|
|
CORE_ADDR reg_pc;
|
373 |
|
|
gdb_byte pc_buf[INT_REGISTER_SIZE];
|
374 |
|
|
|
375 |
|
|
for (regno = ARM_A1_REGNUM; regno < ARM_PC_REGNUM; regno++)
|
376 |
|
|
if (regnum == -1 || regnum == regno)
|
377 |
|
|
regcache_raw_supply (regcache, regno,
|
378 |
|
|
gregs + INT_REGISTER_SIZE * regno);
|
379 |
|
|
|
380 |
|
|
if (regnum == ARM_PS_REGNUM || regnum == -1)
|
381 |
|
|
{
|
382 |
|
|
if (arm_apcs_32)
|
383 |
|
|
regcache_raw_supply (regcache, ARM_PS_REGNUM,
|
384 |
|
|
gregs + INT_REGISTER_SIZE * ARM_CPSR_REGNUM);
|
385 |
|
|
else
|
386 |
|
|
regcache_raw_supply (regcache, ARM_PS_REGNUM,
|
387 |
|
|
gregs + INT_REGISTER_SIZE * ARM_PC_REGNUM);
|
388 |
|
|
}
|
389 |
|
|
|
390 |
|
|
if (regnum == ARM_PC_REGNUM || regnum == -1)
|
391 |
|
|
{
|
392 |
|
|
reg_pc = extract_unsigned_integer (gregs
|
393 |
|
|
+ INT_REGISTER_SIZE * ARM_PC_REGNUM,
|
394 |
|
|
INT_REGISTER_SIZE);
|
395 |
|
|
reg_pc = gdbarch_addr_bits_remove (get_regcache_arch (regcache), reg_pc);
|
396 |
|
|
store_unsigned_integer (pc_buf, INT_REGISTER_SIZE, reg_pc);
|
397 |
|
|
regcache_raw_supply (regcache, ARM_PC_REGNUM, pc_buf);
|
398 |
|
|
}
|
399 |
|
|
}
|
400 |
|
|
|
401 |
|
|
void
|
402 |
|
|
arm_linux_collect_gregset (const struct regset *regset,
|
403 |
|
|
const struct regcache *regcache,
|
404 |
|
|
int regnum, void *gregs_buf, size_t len)
|
405 |
|
|
{
|
406 |
|
|
gdb_byte *gregs = gregs_buf;
|
407 |
|
|
int regno;
|
408 |
|
|
|
409 |
|
|
for (regno = ARM_A1_REGNUM; regno < ARM_PC_REGNUM; regno++)
|
410 |
|
|
if (regnum == -1 || regnum == regno)
|
411 |
|
|
regcache_raw_collect (regcache, regno,
|
412 |
|
|
gregs + INT_REGISTER_SIZE * regno);
|
413 |
|
|
|
414 |
|
|
if (regnum == ARM_PS_REGNUM || regnum == -1)
|
415 |
|
|
{
|
416 |
|
|
if (arm_apcs_32)
|
417 |
|
|
regcache_raw_collect (regcache, ARM_PS_REGNUM,
|
418 |
|
|
gregs + INT_REGISTER_SIZE * ARM_CPSR_REGNUM);
|
419 |
|
|
else
|
420 |
|
|
regcache_raw_collect (regcache, ARM_PS_REGNUM,
|
421 |
|
|
gregs + INT_REGISTER_SIZE * ARM_PC_REGNUM);
|
422 |
|
|
}
|
423 |
|
|
|
424 |
|
|
if (regnum == ARM_PC_REGNUM || regnum == -1)
|
425 |
|
|
regcache_raw_collect (regcache, ARM_PC_REGNUM,
|
426 |
|
|
gregs + INT_REGISTER_SIZE * ARM_PC_REGNUM);
|
427 |
|
|
}
|
428 |
|
|
|
429 |
|
|
/* Support for register format used by the NWFPE FPA emulator. */
|
430 |
|
|
|
431 |
|
|
#define typeNone 0x00
|
432 |
|
|
#define typeSingle 0x01
|
433 |
|
|
#define typeDouble 0x02
|
434 |
|
|
#define typeExtended 0x03
|
435 |
|
|
|
436 |
|
|
void
|
437 |
|
|
supply_nwfpe_register (struct regcache *regcache, int regno,
|
438 |
|
|
const gdb_byte *regs)
|
439 |
|
|
{
|
440 |
|
|
const gdb_byte *reg_data;
|
441 |
|
|
gdb_byte reg_tag;
|
442 |
|
|
gdb_byte buf[FP_REGISTER_SIZE];
|
443 |
|
|
|
444 |
|
|
reg_data = regs + (regno - ARM_F0_REGNUM) * FP_REGISTER_SIZE;
|
445 |
|
|
reg_tag = regs[(regno - ARM_F0_REGNUM) + NWFPE_TAGS_OFFSET];
|
446 |
|
|
memset (buf, 0, FP_REGISTER_SIZE);
|
447 |
|
|
|
448 |
|
|
switch (reg_tag)
|
449 |
|
|
{
|
450 |
|
|
case typeSingle:
|
451 |
|
|
memcpy (buf, reg_data, 4);
|
452 |
|
|
break;
|
453 |
|
|
case typeDouble:
|
454 |
|
|
memcpy (buf, reg_data + 4, 4);
|
455 |
|
|
memcpy (buf + 4, reg_data, 4);
|
456 |
|
|
break;
|
457 |
|
|
case typeExtended:
|
458 |
|
|
/* We want sign and exponent, then least significant bits,
|
459 |
|
|
then most significant. NWFPE does sign, most, least. */
|
460 |
|
|
memcpy (buf, reg_data, 4);
|
461 |
|
|
memcpy (buf + 4, reg_data + 8, 4);
|
462 |
|
|
memcpy (buf + 8, reg_data + 4, 4);
|
463 |
|
|
break;
|
464 |
|
|
default:
|
465 |
|
|
break;
|
466 |
|
|
}
|
467 |
|
|
|
468 |
|
|
regcache_raw_supply (regcache, regno, buf);
|
469 |
|
|
}
|
470 |
|
|
|
471 |
|
|
void
|
472 |
|
|
collect_nwfpe_register (const struct regcache *regcache, int regno,
|
473 |
|
|
gdb_byte *regs)
|
474 |
|
|
{
|
475 |
|
|
gdb_byte *reg_data;
|
476 |
|
|
gdb_byte reg_tag;
|
477 |
|
|
gdb_byte buf[FP_REGISTER_SIZE];
|
478 |
|
|
|
479 |
|
|
regcache_raw_collect (regcache, regno, buf);
|
480 |
|
|
|
481 |
|
|
/* NOTE drow/2006-06-07: This code uses the tag already in the
|
482 |
|
|
register buffer. I've preserved that when moving the code
|
483 |
|
|
from the native file to the target file. But this doesn't
|
484 |
|
|
always make sense. */
|
485 |
|
|
|
486 |
|
|
reg_data = regs + (regno - ARM_F0_REGNUM) * FP_REGISTER_SIZE;
|
487 |
|
|
reg_tag = regs[(regno - ARM_F0_REGNUM) + NWFPE_TAGS_OFFSET];
|
488 |
|
|
|
489 |
|
|
switch (reg_tag)
|
490 |
|
|
{
|
491 |
|
|
case typeSingle:
|
492 |
|
|
memcpy (reg_data, buf, 4);
|
493 |
|
|
break;
|
494 |
|
|
case typeDouble:
|
495 |
|
|
memcpy (reg_data, buf + 4, 4);
|
496 |
|
|
memcpy (reg_data + 4, buf, 4);
|
497 |
|
|
break;
|
498 |
|
|
case typeExtended:
|
499 |
|
|
memcpy (reg_data, buf, 4);
|
500 |
|
|
memcpy (reg_data + 4, buf + 8, 4);
|
501 |
|
|
memcpy (reg_data + 8, buf + 4, 4);
|
502 |
|
|
break;
|
503 |
|
|
default:
|
504 |
|
|
break;
|
505 |
|
|
}
|
506 |
|
|
}
|
507 |
|
|
|
508 |
|
|
void
|
509 |
|
|
arm_linux_supply_nwfpe (const struct regset *regset,
|
510 |
|
|
struct regcache *regcache,
|
511 |
|
|
int regnum, const void *regs_buf, size_t len)
|
512 |
|
|
{
|
513 |
|
|
const gdb_byte *regs = regs_buf;
|
514 |
|
|
int regno;
|
515 |
|
|
|
516 |
|
|
if (regnum == ARM_FPS_REGNUM || regnum == -1)
|
517 |
|
|
regcache_raw_supply (regcache, ARM_FPS_REGNUM,
|
518 |
|
|
regs + NWFPE_FPSR_OFFSET);
|
519 |
|
|
|
520 |
|
|
for (regno = ARM_F0_REGNUM; regno <= ARM_F7_REGNUM; regno++)
|
521 |
|
|
if (regnum == -1 || regnum == regno)
|
522 |
|
|
supply_nwfpe_register (regcache, regno, regs);
|
523 |
|
|
}
|
524 |
|
|
|
525 |
|
|
void
|
526 |
|
|
arm_linux_collect_nwfpe (const struct regset *regset,
|
527 |
|
|
const struct regcache *regcache,
|
528 |
|
|
int regnum, void *regs_buf, size_t len)
|
529 |
|
|
{
|
530 |
|
|
gdb_byte *regs = regs_buf;
|
531 |
|
|
int regno;
|
532 |
|
|
|
533 |
|
|
for (regno = ARM_F0_REGNUM; regno <= ARM_F7_REGNUM; regno++)
|
534 |
|
|
if (regnum == -1 || regnum == regno)
|
535 |
|
|
collect_nwfpe_register (regcache, regno, regs);
|
536 |
|
|
|
537 |
|
|
if (regnum == ARM_FPS_REGNUM || regnum == -1)
|
538 |
|
|
regcache_raw_collect (regcache, ARM_FPS_REGNUM,
|
539 |
|
|
regs + INT_REGISTER_SIZE * ARM_FPS_REGNUM);
|
540 |
|
|
}
|
541 |
|
|
|
542 |
|
|
/* Return the appropriate register set for the core section identified
|
543 |
|
|
by SECT_NAME and SECT_SIZE. */
|
544 |
|
|
|
545 |
|
|
static const struct regset *
|
546 |
|
|
arm_linux_regset_from_core_section (struct gdbarch *gdbarch,
|
547 |
|
|
const char *sect_name, size_t sect_size)
|
548 |
|
|
{
|
549 |
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
550 |
|
|
|
551 |
|
|
if (strcmp (sect_name, ".reg") == 0
|
552 |
|
|
&& sect_size == ARM_LINUX_SIZEOF_GREGSET)
|
553 |
|
|
{
|
554 |
|
|
if (tdep->gregset == NULL)
|
555 |
|
|
tdep->gregset = regset_alloc (gdbarch, arm_linux_supply_gregset,
|
556 |
|
|
arm_linux_collect_gregset);
|
557 |
|
|
return tdep->gregset;
|
558 |
|
|
}
|
559 |
|
|
|
560 |
|
|
if (strcmp (sect_name, ".reg2") == 0
|
561 |
|
|
&& sect_size == ARM_LINUX_SIZEOF_NWFPE)
|
562 |
|
|
{
|
563 |
|
|
if (tdep->fpregset == NULL)
|
564 |
|
|
tdep->fpregset = regset_alloc (gdbarch, arm_linux_supply_nwfpe,
|
565 |
|
|
arm_linux_collect_nwfpe);
|
566 |
|
|
return tdep->fpregset;
|
567 |
|
|
}
|
568 |
|
|
|
569 |
|
|
return NULL;
|
570 |
|
|
}
|
571 |
|
|
|
572 |
|
|
/* Insert a single step breakpoint at the next executed instruction. */
|
573 |
|
|
|
574 |
|
|
int
|
575 |
|
|
arm_linux_software_single_step (struct frame_info *frame)
|
576 |
|
|
{
|
577 |
|
|
CORE_ADDR next_pc = arm_get_next_pc (frame, get_frame_pc (frame));
|
578 |
|
|
|
579 |
|
|
/* The Linux kernel offers some user-mode helpers in a high page. We can
|
580 |
|
|
not read this page (as of 2.6.23), and even if we could then we couldn't
|
581 |
|
|
set breakpoints in it, and even if we could then the atomic operations
|
582 |
|
|
would fail when interrupted. They are all called as functions and return
|
583 |
|
|
to the address in LR, so step to there instead. */
|
584 |
|
|
if (next_pc > 0xffff0000)
|
585 |
|
|
next_pc = get_frame_register_unsigned (frame, ARM_LR_REGNUM);
|
586 |
|
|
|
587 |
|
|
insert_single_step_breakpoint (next_pc);
|
588 |
|
|
|
589 |
|
|
return 1;
|
590 |
|
|
}
|
591 |
|
|
|
592 |
|
|
static void
|
593 |
|
|
arm_linux_init_abi (struct gdbarch_info info,
|
594 |
|
|
struct gdbarch *gdbarch)
|
595 |
|
|
{
|
596 |
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
597 |
|
|
|
598 |
|
|
tdep->lowest_pc = 0x8000;
|
599 |
|
|
if (info.byte_order == BFD_ENDIAN_BIG)
|
600 |
|
|
{
|
601 |
|
|
if (tdep->arm_abi == ARM_ABI_AAPCS)
|
602 |
|
|
tdep->arm_breakpoint = eabi_linux_arm_be_breakpoint;
|
603 |
|
|
else
|
604 |
|
|
tdep->arm_breakpoint = arm_linux_arm_be_breakpoint;
|
605 |
|
|
tdep->thumb_breakpoint = arm_linux_thumb_be_breakpoint;
|
606 |
|
|
}
|
607 |
|
|
else
|
608 |
|
|
{
|
609 |
|
|
if (tdep->arm_abi == ARM_ABI_AAPCS)
|
610 |
|
|
tdep->arm_breakpoint = eabi_linux_arm_le_breakpoint;
|
611 |
|
|
else
|
612 |
|
|
tdep->arm_breakpoint = arm_linux_arm_le_breakpoint;
|
613 |
|
|
tdep->thumb_breakpoint = arm_linux_thumb_le_breakpoint;
|
614 |
|
|
}
|
615 |
|
|
tdep->arm_breakpoint_size = sizeof (arm_linux_arm_le_breakpoint);
|
616 |
|
|
tdep->thumb_breakpoint_size = sizeof (arm_linux_thumb_le_breakpoint);
|
617 |
|
|
|
618 |
|
|
if (tdep->fp_model == ARM_FLOAT_AUTO)
|
619 |
|
|
tdep->fp_model = ARM_FLOAT_FPA;
|
620 |
|
|
|
621 |
|
|
tdep->jb_pc = ARM_LINUX_JB_PC;
|
622 |
|
|
tdep->jb_elt_size = ARM_LINUX_JB_ELEMENT_SIZE;
|
623 |
|
|
|
624 |
|
|
set_solib_svr4_fetch_link_map_offsets
|
625 |
|
|
(gdbarch, svr4_ilp32_fetch_link_map_offsets);
|
626 |
|
|
|
627 |
|
|
/* Single stepping. */
|
628 |
|
|
set_gdbarch_software_single_step (gdbarch, arm_linux_software_single_step);
|
629 |
|
|
|
630 |
|
|
/* Shared library handling. */
|
631 |
|
|
set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
|
632 |
|
|
set_gdbarch_skip_solib_resolver (gdbarch, glibc_skip_solib_resolver);
|
633 |
|
|
|
634 |
|
|
/* Enable TLS support. */
|
635 |
|
|
set_gdbarch_fetch_tls_load_module_address (gdbarch,
|
636 |
|
|
svr4_fetch_objfile_link_map);
|
637 |
|
|
|
638 |
|
|
tramp_frame_prepend_unwinder (gdbarch,
|
639 |
|
|
&arm_linux_sigreturn_tramp_frame);
|
640 |
|
|
tramp_frame_prepend_unwinder (gdbarch,
|
641 |
|
|
&arm_linux_rt_sigreturn_tramp_frame);
|
642 |
|
|
tramp_frame_prepend_unwinder (gdbarch,
|
643 |
|
|
&arm_eabi_linux_sigreturn_tramp_frame);
|
644 |
|
|
tramp_frame_prepend_unwinder (gdbarch,
|
645 |
|
|
&arm_eabi_linux_rt_sigreturn_tramp_frame);
|
646 |
|
|
|
647 |
|
|
/* Core file support. */
|
648 |
|
|
set_gdbarch_regset_from_core_section (gdbarch,
|
649 |
|
|
arm_linux_regset_from_core_section);
|
650 |
|
|
}
|
651 |
|
|
|
652 |
|
|
void
|
653 |
|
|
_initialize_arm_linux_tdep (void)
|
654 |
|
|
{
|
655 |
|
|
gdbarch_register_osabi (bfd_arch_arm, 0, GDB_OSABI_LINUX,
|
656 |
|
|
arm_linux_init_abi);
|
657 |
|
|
}
|