1 |
24 |
jeremybenn |
/* Common target dependent code for GDB on ARM systems.
|
2 |
|
|
|
3 |
|
|
Copyright (C) 1988, 1989, 1991, 1992, 1993, 1995, 1996, 1998, 1999, 2000,
|
4 |
|
|
2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
|
5 |
|
|
Free Software Foundation, Inc.
|
6 |
|
|
|
7 |
|
|
This file is part of GDB.
|
8 |
|
|
|
9 |
|
|
This program is free software; you can redistribute it and/or modify
|
10 |
|
|
it under the terms of the GNU General Public License as published by
|
11 |
|
|
the Free Software Foundation; either version 3 of the License, or
|
12 |
|
|
(at your option) any later version.
|
13 |
|
|
|
14 |
|
|
This program is distributed in the hope that it will be useful,
|
15 |
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
16 |
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
17 |
|
|
GNU General Public License for more details.
|
18 |
|
|
|
19 |
|
|
You should have received a copy of the GNU General Public License
|
20 |
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>. */
|
21 |
|
|
|
22 |
|
|
#include <ctype.h> /* XXX for isupper () */
|
23 |
|
|
|
24 |
|
|
#include "defs.h"
|
25 |
|
|
#include "frame.h"
|
26 |
|
|
#include "inferior.h"
|
27 |
|
|
#include "gdbcmd.h"
|
28 |
|
|
#include "gdbcore.h"
|
29 |
|
|
#include "gdb_string.h"
|
30 |
|
|
#include "dis-asm.h" /* For register styles. */
|
31 |
|
|
#include "regcache.h"
|
32 |
|
|
#include "doublest.h"
|
33 |
|
|
#include "value.h"
|
34 |
|
|
#include "arch-utils.h"
|
35 |
|
|
#include "osabi.h"
|
36 |
|
|
#include "frame-unwind.h"
|
37 |
|
|
#include "frame-base.h"
|
38 |
|
|
#include "trad-frame.h"
|
39 |
|
|
#include "objfiles.h"
|
40 |
|
|
#include "dwarf2-frame.h"
|
41 |
|
|
#include "gdbtypes.h"
|
42 |
|
|
#include "prologue-value.h"
|
43 |
|
|
#include "target-descriptions.h"
|
44 |
|
|
#include "user-regs.h"
|
45 |
|
|
|
46 |
|
|
#include "arm-tdep.h"
|
47 |
|
|
#include "gdb/sim-arm.h"
|
48 |
|
|
|
49 |
|
|
#include "elf-bfd.h"
|
50 |
|
|
#include "coff/internal.h"
|
51 |
|
|
#include "elf/arm.h"
|
52 |
|
|
|
53 |
|
|
#include "gdb_assert.h"
|
54 |
|
|
|
55 |
|
|
static int arm_debug;
|
56 |
|
|
|
57 |
|
|
/* Macros for setting and testing a bit in a minimal symbol that marks
|
58 |
|
|
it as Thumb function. The MSB of the minimal symbol's "info" field
|
59 |
|
|
is used for this purpose.
|
60 |
|
|
|
61 |
|
|
MSYMBOL_SET_SPECIAL Actually sets the "special" bit.
|
62 |
|
|
MSYMBOL_IS_SPECIAL Tests the "special" bit in a minimal symbol. */
|
63 |
|
|
|
64 |
|
|
#define MSYMBOL_SET_SPECIAL(msym) \
|
65 |
|
|
MSYMBOL_INFO (msym) = (char *) (((long) MSYMBOL_INFO (msym)) \
|
66 |
|
|
| 0x80000000)
|
67 |
|
|
|
68 |
|
|
#define MSYMBOL_IS_SPECIAL(msym) \
|
69 |
|
|
(((long) MSYMBOL_INFO (msym) & 0x80000000) != 0)
|
70 |
|
|
|
71 |
|
|
/* The list of available "set arm ..." and "show arm ..." commands. */
|
72 |
|
|
static struct cmd_list_element *setarmcmdlist = NULL;
|
73 |
|
|
static struct cmd_list_element *showarmcmdlist = NULL;
|
74 |
|
|
|
75 |
|
|
/* The type of floating-point to use. Keep this in sync with enum
|
76 |
|
|
arm_float_model, and the help string in _initialize_arm_tdep. */
|
77 |
|
|
static const char *fp_model_strings[] =
|
78 |
|
|
{
|
79 |
|
|
"auto",
|
80 |
|
|
"softfpa",
|
81 |
|
|
"fpa",
|
82 |
|
|
"softvfp",
|
83 |
|
|
"vfp",
|
84 |
|
|
NULL
|
85 |
|
|
};
|
86 |
|
|
|
87 |
|
|
/* A variable that can be configured by the user. */
|
88 |
|
|
static enum arm_float_model arm_fp_model = ARM_FLOAT_AUTO;
|
89 |
|
|
static const char *current_fp_model = "auto";
|
90 |
|
|
|
91 |
|
|
/* The ABI to use. Keep this in sync with arm_abi_kind. */
|
92 |
|
|
static const char *arm_abi_strings[] =
|
93 |
|
|
{
|
94 |
|
|
"auto",
|
95 |
|
|
"APCS",
|
96 |
|
|
"AAPCS",
|
97 |
|
|
NULL
|
98 |
|
|
};
|
99 |
|
|
|
100 |
|
|
/* A variable that can be configured by the user. */
|
101 |
|
|
static enum arm_abi_kind arm_abi_global = ARM_ABI_AUTO;
|
102 |
|
|
static const char *arm_abi_string = "auto";
|
103 |
|
|
|
104 |
|
|
/* Number of different reg name sets (options). */
|
105 |
|
|
static int num_disassembly_options;
|
106 |
|
|
|
107 |
|
|
/* The standard register names, and all the valid aliases for them. */
|
108 |
|
|
static const struct
|
109 |
|
|
{
|
110 |
|
|
const char *name;
|
111 |
|
|
int regnum;
|
112 |
|
|
} arm_register_aliases[] = {
|
113 |
|
|
/* Basic register numbers. */
|
114 |
|
|
{ "r0", 0 },
|
115 |
|
|
{ "r1", 1 },
|
116 |
|
|
{ "r2", 2 },
|
117 |
|
|
{ "r3", 3 },
|
118 |
|
|
{ "r4", 4 },
|
119 |
|
|
{ "r5", 5 },
|
120 |
|
|
{ "r6", 6 },
|
121 |
|
|
{ "r7", 7 },
|
122 |
|
|
{ "r8", 8 },
|
123 |
|
|
{ "r9", 9 },
|
124 |
|
|
{ "r10", 10 },
|
125 |
|
|
{ "r11", 11 },
|
126 |
|
|
{ "r12", 12 },
|
127 |
|
|
{ "r13", 13 },
|
128 |
|
|
{ "r14", 14 },
|
129 |
|
|
{ "r15", 15 },
|
130 |
|
|
/* Synonyms (argument and variable registers). */
|
131 |
|
|
{ "a1", 0 },
|
132 |
|
|
{ "a2", 1 },
|
133 |
|
|
{ "a3", 2 },
|
134 |
|
|
{ "a4", 3 },
|
135 |
|
|
{ "v1", 4 },
|
136 |
|
|
{ "v2", 5 },
|
137 |
|
|
{ "v3", 6 },
|
138 |
|
|
{ "v4", 7 },
|
139 |
|
|
{ "v5", 8 },
|
140 |
|
|
{ "v6", 9 },
|
141 |
|
|
{ "v7", 10 },
|
142 |
|
|
{ "v8", 11 },
|
143 |
|
|
/* Other platform-specific names for r9. */
|
144 |
|
|
{ "sb", 9 },
|
145 |
|
|
{ "tr", 9 },
|
146 |
|
|
/* Special names. */
|
147 |
|
|
{ "ip", 12 },
|
148 |
|
|
{ "sp", 13 },
|
149 |
|
|
{ "lr", 14 },
|
150 |
|
|
{ "pc", 15 },
|
151 |
|
|
/* Names used by GCC (not listed in the ARM EABI). */
|
152 |
|
|
{ "sl", 10 },
|
153 |
|
|
{ "fp", 11 },
|
154 |
|
|
/* A special name from the older ATPCS. */
|
155 |
|
|
{ "wr", 7 },
|
156 |
|
|
};
|
157 |
|
|
|
158 |
|
|
static const char *const arm_register_names[] =
|
159 |
|
|
{"r0", "r1", "r2", "r3", /* 0 1 2 3 */
|
160 |
|
|
"r4", "r5", "r6", "r7", /* 4 5 6 7 */
|
161 |
|
|
"r8", "r9", "r10", "r11", /* 8 9 10 11 */
|
162 |
|
|
"r12", "sp", "lr", "pc", /* 12 13 14 15 */
|
163 |
|
|
"f0", "f1", "f2", "f3", /* 16 17 18 19 */
|
164 |
|
|
"f4", "f5", "f6", "f7", /* 20 21 22 23 */
|
165 |
|
|
"fps", "cpsr" }; /* 24 25 */
|
166 |
|
|
|
167 |
|
|
/* Valid register name styles. */
|
168 |
|
|
static const char **valid_disassembly_styles;
|
169 |
|
|
|
170 |
|
|
/* Disassembly style to use. Default to "std" register names. */
|
171 |
|
|
static const char *disassembly_style;
|
172 |
|
|
|
173 |
|
|
/* This is used to keep the bfd arch_info in sync with the disassembly
|
174 |
|
|
style. */
|
175 |
|
|
static void set_disassembly_style_sfunc(char *, int,
|
176 |
|
|
struct cmd_list_element *);
|
177 |
|
|
static void set_disassembly_style (void);
|
178 |
|
|
|
179 |
|
|
static void convert_from_extended (const struct floatformat *, const void *,
|
180 |
|
|
void *, int);
|
181 |
|
|
static void convert_to_extended (const struct floatformat *, void *,
|
182 |
|
|
const void *, int);
|
183 |
|
|
|
184 |
|
|
struct arm_prologue_cache
|
185 |
|
|
{
|
186 |
|
|
/* The stack pointer at the time this frame was created; i.e. the
|
187 |
|
|
caller's stack pointer when this function was called. It is used
|
188 |
|
|
to identify this frame. */
|
189 |
|
|
CORE_ADDR prev_sp;
|
190 |
|
|
|
191 |
|
|
/* The frame base for this frame is just prev_sp - frame size.
|
192 |
|
|
FRAMESIZE is the distance from the frame pointer to the
|
193 |
|
|
initial stack pointer. */
|
194 |
|
|
|
195 |
|
|
int framesize;
|
196 |
|
|
|
197 |
|
|
/* The register used to hold the frame pointer for this frame. */
|
198 |
|
|
int framereg;
|
199 |
|
|
|
200 |
|
|
/* Saved register offsets. */
|
201 |
|
|
struct trad_frame_saved_reg *saved_regs;
|
202 |
|
|
};
|
203 |
|
|
|
204 |
|
|
/* Addresses for calling Thumb functions have the bit 0 set.
|
205 |
|
|
Here are some macros to test, set, or clear bit 0 of addresses. */
|
206 |
|
|
#define IS_THUMB_ADDR(addr) ((addr) & 1)
|
207 |
|
|
#define MAKE_THUMB_ADDR(addr) ((addr) | 1)
|
208 |
|
|
#define UNMAKE_THUMB_ADDR(addr) ((addr) & ~1)
|
209 |
|
|
|
210 |
|
|
/* Set to true if the 32-bit mode is in use. */
|
211 |
|
|
|
212 |
|
|
int arm_apcs_32 = 1;
|
213 |
|
|
|
214 |
|
|
/* Determine if the program counter specified in MEMADDR is in a Thumb
|
215 |
|
|
function. */
|
216 |
|
|
|
217 |
|
|
static int
|
218 |
|
|
arm_pc_is_thumb (CORE_ADDR memaddr)
|
219 |
|
|
{
|
220 |
|
|
struct minimal_symbol *sym;
|
221 |
|
|
|
222 |
|
|
/* If bit 0 of the address is set, assume this is a Thumb address. */
|
223 |
|
|
if (IS_THUMB_ADDR (memaddr))
|
224 |
|
|
return 1;
|
225 |
|
|
|
226 |
|
|
/* Thumb functions have a "special" bit set in minimal symbols. */
|
227 |
|
|
sym = lookup_minimal_symbol_by_pc (memaddr);
|
228 |
|
|
if (sym)
|
229 |
|
|
{
|
230 |
|
|
return (MSYMBOL_IS_SPECIAL (sym));
|
231 |
|
|
}
|
232 |
|
|
else
|
233 |
|
|
{
|
234 |
|
|
return 0;
|
235 |
|
|
}
|
236 |
|
|
}
|
237 |
|
|
|
238 |
|
|
/* Remove useless bits from addresses in a running program. */
|
239 |
|
|
static CORE_ADDR
|
240 |
|
|
arm_addr_bits_remove (CORE_ADDR val)
|
241 |
|
|
{
|
242 |
|
|
if (arm_apcs_32)
|
243 |
|
|
return UNMAKE_THUMB_ADDR (val);
|
244 |
|
|
else
|
245 |
|
|
return (val & 0x03fffffc);
|
246 |
|
|
}
|
247 |
|
|
|
248 |
|
|
/* When reading symbols, we need to zap the low bit of the address,
|
249 |
|
|
which may be set to 1 for Thumb functions. */
|
250 |
|
|
static CORE_ADDR
|
251 |
|
|
arm_smash_text_address (CORE_ADDR val)
|
252 |
|
|
{
|
253 |
|
|
return val & ~1;
|
254 |
|
|
}
|
255 |
|
|
|
256 |
|
|
/* Analyze a Thumb prologue, looking for a recognizable stack frame
|
257 |
|
|
and frame pointer. Scan until we encounter a store that could
|
258 |
|
|
clobber the stack frame unexpectedly, or an unknown instruction. */
|
259 |
|
|
|
260 |
|
|
static CORE_ADDR
|
261 |
|
|
thumb_analyze_prologue (struct gdbarch *gdbarch,
|
262 |
|
|
CORE_ADDR start, CORE_ADDR limit,
|
263 |
|
|
struct arm_prologue_cache *cache)
|
264 |
|
|
{
|
265 |
|
|
int i;
|
266 |
|
|
pv_t regs[16];
|
267 |
|
|
struct pv_area *stack;
|
268 |
|
|
struct cleanup *back_to;
|
269 |
|
|
CORE_ADDR offset;
|
270 |
|
|
|
271 |
|
|
for (i = 0; i < 16; i++)
|
272 |
|
|
regs[i] = pv_register (i, 0);
|
273 |
|
|
stack = make_pv_area (ARM_SP_REGNUM);
|
274 |
|
|
back_to = make_cleanup_free_pv_area (stack);
|
275 |
|
|
|
276 |
|
|
/* The call instruction saved PC in LR, and the current PC is not
|
277 |
|
|
interesting. Due to this file's conventions, we want the value
|
278 |
|
|
of LR at this function's entry, not at the call site, so we do
|
279 |
|
|
not record the save of the PC - when the ARM prologue analyzer
|
280 |
|
|
has also been converted to the pv mechanism, we could record the
|
281 |
|
|
save here and remove the hack in prev_register. */
|
282 |
|
|
regs[ARM_PC_REGNUM] = pv_unknown ();
|
283 |
|
|
|
284 |
|
|
while (start < limit)
|
285 |
|
|
{
|
286 |
|
|
unsigned short insn;
|
287 |
|
|
|
288 |
|
|
insn = read_memory_unsigned_integer (start, 2);
|
289 |
|
|
|
290 |
|
|
if ((insn & 0xfe00) == 0xb400) /* push { rlist } */
|
291 |
|
|
{
|
292 |
|
|
int regno;
|
293 |
|
|
int mask;
|
294 |
|
|
|
295 |
|
|
if (pv_area_store_would_trash (stack, regs[ARM_SP_REGNUM]))
|
296 |
|
|
break;
|
297 |
|
|
|
298 |
|
|
/* Bits 0-7 contain a mask for registers R0-R7. Bit 8 says
|
299 |
|
|
whether to save LR (R14). */
|
300 |
|
|
mask = (insn & 0xff) | ((insn & 0x100) << 6);
|
301 |
|
|
|
302 |
|
|
/* Calculate offsets of saved R0-R7 and LR. */
|
303 |
|
|
for (regno = ARM_LR_REGNUM; regno >= 0; regno--)
|
304 |
|
|
if (mask & (1 << regno))
|
305 |
|
|
{
|
306 |
|
|
regs[ARM_SP_REGNUM] = pv_add_constant (regs[ARM_SP_REGNUM],
|
307 |
|
|
-4);
|
308 |
|
|
pv_area_store (stack, regs[ARM_SP_REGNUM], 4, regs[regno]);
|
309 |
|
|
}
|
310 |
|
|
}
|
311 |
|
|
else if ((insn & 0xff00) == 0xb000) /* add sp, #simm OR
|
312 |
|
|
sub sp, #simm */
|
313 |
|
|
{
|
314 |
|
|
offset = (insn & 0x7f) << 2; /* get scaled offset */
|
315 |
|
|
if (insn & 0x80) /* Check for SUB. */
|
316 |
|
|
regs[ARM_SP_REGNUM] = pv_add_constant (regs[ARM_SP_REGNUM],
|
317 |
|
|
-offset);
|
318 |
|
|
else
|
319 |
|
|
regs[ARM_SP_REGNUM] = pv_add_constant (regs[ARM_SP_REGNUM],
|
320 |
|
|
offset);
|
321 |
|
|
}
|
322 |
|
|
else if ((insn & 0xff00) == 0xaf00) /* add r7, sp, #imm */
|
323 |
|
|
regs[THUMB_FP_REGNUM] = pv_add_constant (regs[ARM_SP_REGNUM],
|
324 |
|
|
(insn & 0xff) << 2);
|
325 |
|
|
else if ((insn & 0xff00) == 0x4600) /* mov hi, lo or mov lo, hi */
|
326 |
|
|
{
|
327 |
|
|
int dst_reg = (insn & 0x7) + ((insn & 0x80) >> 4);
|
328 |
|
|
int src_reg = (insn & 0x78) >> 3;
|
329 |
|
|
regs[dst_reg] = regs[src_reg];
|
330 |
|
|
}
|
331 |
|
|
else if ((insn & 0xf800) == 0x9000) /* str rd, [sp, #off] */
|
332 |
|
|
{
|
333 |
|
|
/* Handle stores to the stack. Normally pushes are used,
|
334 |
|
|
but with GCC -mtpcs-frame, there may be other stores
|
335 |
|
|
in the prologue to create the frame. */
|
336 |
|
|
int regno = (insn >> 8) & 0x7;
|
337 |
|
|
pv_t addr;
|
338 |
|
|
|
339 |
|
|
offset = (insn & 0xff) << 2;
|
340 |
|
|
addr = pv_add_constant (regs[ARM_SP_REGNUM], offset);
|
341 |
|
|
|
342 |
|
|
if (pv_area_store_would_trash (stack, addr))
|
343 |
|
|
break;
|
344 |
|
|
|
345 |
|
|
pv_area_store (stack, addr, 4, regs[regno]);
|
346 |
|
|
}
|
347 |
|
|
else
|
348 |
|
|
{
|
349 |
|
|
/* We don't know what this instruction is. We're finished
|
350 |
|
|
scanning. NOTE: Recognizing more safe-to-ignore
|
351 |
|
|
instructions here will improve support for optimized
|
352 |
|
|
code. */
|
353 |
|
|
break;
|
354 |
|
|
}
|
355 |
|
|
|
356 |
|
|
start += 2;
|
357 |
|
|
}
|
358 |
|
|
|
359 |
|
|
if (cache == NULL)
|
360 |
|
|
{
|
361 |
|
|
do_cleanups (back_to);
|
362 |
|
|
return start;
|
363 |
|
|
}
|
364 |
|
|
|
365 |
|
|
if (pv_is_register (regs[ARM_FP_REGNUM], ARM_SP_REGNUM))
|
366 |
|
|
{
|
367 |
|
|
/* Frame pointer is fp. Frame size is constant. */
|
368 |
|
|
cache->framereg = ARM_FP_REGNUM;
|
369 |
|
|
cache->framesize = -regs[ARM_FP_REGNUM].k;
|
370 |
|
|
}
|
371 |
|
|
else if (pv_is_register (regs[THUMB_FP_REGNUM], ARM_SP_REGNUM))
|
372 |
|
|
{
|
373 |
|
|
/* Frame pointer is r7. Frame size is constant. */
|
374 |
|
|
cache->framereg = THUMB_FP_REGNUM;
|
375 |
|
|
cache->framesize = -regs[THUMB_FP_REGNUM].k;
|
376 |
|
|
}
|
377 |
|
|
else if (pv_is_register (regs[ARM_SP_REGNUM], ARM_SP_REGNUM))
|
378 |
|
|
{
|
379 |
|
|
/* Try the stack pointer... this is a bit desperate. */
|
380 |
|
|
cache->framereg = ARM_SP_REGNUM;
|
381 |
|
|
cache->framesize = -regs[ARM_SP_REGNUM].k;
|
382 |
|
|
}
|
383 |
|
|
else
|
384 |
|
|
{
|
385 |
|
|
/* We're just out of luck. We don't know where the frame is. */
|
386 |
|
|
cache->framereg = -1;
|
387 |
|
|
cache->framesize = 0;
|
388 |
|
|
}
|
389 |
|
|
|
390 |
|
|
for (i = 0; i < 16; i++)
|
391 |
|
|
if (pv_area_find_reg (stack, gdbarch, i, &offset))
|
392 |
|
|
cache->saved_regs[i].addr = offset;
|
393 |
|
|
|
394 |
|
|
do_cleanups (back_to);
|
395 |
|
|
return start;
|
396 |
|
|
}
|
397 |
|
|
|
398 |
|
|
/* Advance the PC across any function entry prologue instructions to
|
399 |
|
|
reach some "real" code.
|
400 |
|
|
|
401 |
|
|
The APCS (ARM Procedure Call Standard) defines the following
|
402 |
|
|
prologue:
|
403 |
|
|
|
404 |
|
|
mov ip, sp
|
405 |
|
|
[stmfd sp!, {a1,a2,a3,a4}]
|
406 |
|
|
stmfd sp!, {...,fp,ip,lr,pc}
|
407 |
|
|
[stfe f7, [sp, #-12]!]
|
408 |
|
|
[stfe f6, [sp, #-12]!]
|
409 |
|
|
[stfe f5, [sp, #-12]!]
|
410 |
|
|
[stfe f4, [sp, #-12]!]
|
411 |
|
|
sub fp, ip, #nn @@ nn == 20 or 4 depending on second insn */
|
412 |
|
|
|
413 |
|
|
static CORE_ADDR
|
414 |
|
|
arm_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
|
415 |
|
|
{
|
416 |
|
|
unsigned long inst;
|
417 |
|
|
CORE_ADDR skip_pc;
|
418 |
|
|
CORE_ADDR func_addr, func_end = 0;
|
419 |
|
|
char *func_name;
|
420 |
|
|
struct symtab_and_line sal;
|
421 |
|
|
|
422 |
|
|
/* If we're in a dummy frame, don't even try to skip the prologue. */
|
423 |
|
|
if (deprecated_pc_in_call_dummy (pc))
|
424 |
|
|
return pc;
|
425 |
|
|
|
426 |
|
|
/* See what the symbol table says. */
|
427 |
|
|
|
428 |
|
|
if (find_pc_partial_function (pc, &func_name, &func_addr, &func_end))
|
429 |
|
|
{
|
430 |
|
|
struct symbol *sym;
|
431 |
|
|
|
432 |
|
|
/* Found a function. */
|
433 |
|
|
sym = lookup_symbol (func_name, NULL, VAR_DOMAIN, NULL, NULL);
|
434 |
|
|
if (sym && SYMBOL_LANGUAGE (sym) != language_asm)
|
435 |
|
|
{
|
436 |
|
|
/* Don't use this trick for assembly source files. */
|
437 |
|
|
sal = find_pc_line (func_addr, 0);
|
438 |
|
|
if ((sal.line != 0) && (sal.end < func_end))
|
439 |
|
|
return sal.end;
|
440 |
|
|
}
|
441 |
|
|
}
|
442 |
|
|
|
443 |
|
|
/* Can't find the prologue end in the symbol table, try it the hard way
|
444 |
|
|
by disassembling the instructions. */
|
445 |
|
|
|
446 |
|
|
/* Like arm_scan_prologue, stop no later than pc + 64. */
|
447 |
|
|
if (func_end == 0 || func_end > pc + 64)
|
448 |
|
|
func_end = pc + 64;
|
449 |
|
|
|
450 |
|
|
/* Check if this is Thumb code. */
|
451 |
|
|
if (arm_pc_is_thumb (pc))
|
452 |
|
|
return thumb_analyze_prologue (gdbarch, pc, func_end, NULL);
|
453 |
|
|
|
454 |
|
|
for (skip_pc = pc; skip_pc < func_end; skip_pc += 4)
|
455 |
|
|
{
|
456 |
|
|
inst = read_memory_unsigned_integer (skip_pc, 4);
|
457 |
|
|
|
458 |
|
|
/* "mov ip, sp" is no longer a required part of the prologue. */
|
459 |
|
|
if (inst == 0xe1a0c00d) /* mov ip, sp */
|
460 |
|
|
continue;
|
461 |
|
|
|
462 |
|
|
if ((inst & 0xfffff000) == 0xe28dc000) /* add ip, sp #n */
|
463 |
|
|
continue;
|
464 |
|
|
|
465 |
|
|
if ((inst & 0xfffff000) == 0xe24dc000) /* sub ip, sp #n */
|
466 |
|
|
continue;
|
467 |
|
|
|
468 |
|
|
/* Some prologues begin with "str lr, [sp, #-4]!". */
|
469 |
|
|
if (inst == 0xe52de004) /* str lr, [sp, #-4]! */
|
470 |
|
|
continue;
|
471 |
|
|
|
472 |
|
|
if ((inst & 0xfffffff0) == 0xe92d0000) /* stmfd sp!,{a1,a2,a3,a4} */
|
473 |
|
|
continue;
|
474 |
|
|
|
475 |
|
|
if ((inst & 0xfffff800) == 0xe92dd800) /* stmfd sp!,{fp,ip,lr,pc} */
|
476 |
|
|
continue;
|
477 |
|
|
|
478 |
|
|
/* Any insns after this point may float into the code, if it makes
|
479 |
|
|
for better instruction scheduling, so we skip them only if we
|
480 |
|
|
find them, but still consider the function to be frame-ful. */
|
481 |
|
|
|
482 |
|
|
/* We may have either one sfmfd instruction here, or several stfe
|
483 |
|
|
insns, depending on the version of floating point code we
|
484 |
|
|
support. */
|
485 |
|
|
if ((inst & 0xffbf0fff) == 0xec2d0200) /* sfmfd fn, <cnt>, [sp]! */
|
486 |
|
|
continue;
|
487 |
|
|
|
488 |
|
|
if ((inst & 0xffff8fff) == 0xed6d0103) /* stfe fn, [sp, #-12]! */
|
489 |
|
|
continue;
|
490 |
|
|
|
491 |
|
|
if ((inst & 0xfffff000) == 0xe24cb000) /* sub fp, ip, #nn */
|
492 |
|
|
continue;
|
493 |
|
|
|
494 |
|
|
if ((inst & 0xfffff000) == 0xe24dd000) /* sub sp, sp, #nn */
|
495 |
|
|
continue;
|
496 |
|
|
|
497 |
|
|
if ((inst & 0xffffc000) == 0xe54b0000 || /* strb r(0123),[r11,#-nn] */
|
498 |
|
|
(inst & 0xffffc0f0) == 0xe14b00b0 || /* strh r(0123),[r11,#-nn] */
|
499 |
|
|
(inst & 0xffffc000) == 0xe50b0000) /* str r(0123),[r11,#-nn] */
|
500 |
|
|
continue;
|
501 |
|
|
|
502 |
|
|
if ((inst & 0xffffc000) == 0xe5cd0000 || /* strb r(0123),[sp,#nn] */
|
503 |
|
|
(inst & 0xffffc0f0) == 0xe1cd00b0 || /* strh r(0123),[sp,#nn] */
|
504 |
|
|
(inst & 0xffffc000) == 0xe58d0000) /* str r(0123),[sp,#nn] */
|
505 |
|
|
continue;
|
506 |
|
|
|
507 |
|
|
/* Un-recognized instruction; stop scanning. */
|
508 |
|
|
break;
|
509 |
|
|
}
|
510 |
|
|
|
511 |
|
|
return skip_pc; /* End of prologue */
|
512 |
|
|
}
|
513 |
|
|
|
514 |
|
|
/* *INDENT-OFF* */
|
515 |
|
|
/* Function: thumb_scan_prologue (helper function for arm_scan_prologue)
|
516 |
|
|
This function decodes a Thumb function prologue to determine:
|
517 |
|
|
1) the size of the stack frame
|
518 |
|
|
2) which registers are saved on it
|
519 |
|
|
3) the offsets of saved regs
|
520 |
|
|
4) the offset from the stack pointer to the frame pointer
|
521 |
|
|
|
522 |
|
|
A typical Thumb function prologue would create this stack frame
|
523 |
|
|
(offsets relative to FP)
|
524 |
|
|
old SP -> 24 stack parameters
|
525 |
|
|
20 LR
|
526 |
|
|
16 R7
|
527 |
|
|
R7 -> 0 local variables (16 bytes)
|
528 |
|
|
SP -> -12 additional stack space (12 bytes)
|
529 |
|
|
The frame size would thus be 36 bytes, and the frame offset would be
|
530 |
|
|
12 bytes. The frame register is R7.
|
531 |
|
|
|
532 |
|
|
The comments for thumb_skip_prolog() describe the algorithm we use
|
533 |
|
|
to detect the end of the prolog. */
|
534 |
|
|
/* *INDENT-ON* */
|
535 |
|
|
|
536 |
|
|
static void
|
537 |
|
|
thumb_scan_prologue (struct gdbarch *gdbarch, CORE_ADDR prev_pc,
|
538 |
|
|
struct arm_prologue_cache *cache)
|
539 |
|
|
{
|
540 |
|
|
CORE_ADDR prologue_start;
|
541 |
|
|
CORE_ADDR prologue_end;
|
542 |
|
|
CORE_ADDR current_pc;
|
543 |
|
|
/* Which register has been copied to register n? */
|
544 |
|
|
int saved_reg[16];
|
545 |
|
|
/* findmask:
|
546 |
|
|
bit 0 - push { rlist }
|
547 |
|
|
bit 1 - mov r7, sp OR add r7, sp, #imm (setting of r7)
|
548 |
|
|
bit 2 - sub sp, #simm OR add sp, #simm (adjusting of sp)
|
549 |
|
|
*/
|
550 |
|
|
int findmask = 0;
|
551 |
|
|
int i;
|
552 |
|
|
|
553 |
|
|
if (find_pc_partial_function (prev_pc, NULL, &prologue_start, &prologue_end))
|
554 |
|
|
{
|
555 |
|
|
struct symtab_and_line sal = find_pc_line (prologue_start, 0);
|
556 |
|
|
|
557 |
|
|
if (sal.line == 0) /* no line info, use current PC */
|
558 |
|
|
prologue_end = prev_pc;
|
559 |
|
|
else if (sal.end < prologue_end) /* next line begins after fn end */
|
560 |
|
|
prologue_end = sal.end; /* (probably means no prologue) */
|
561 |
|
|
}
|
562 |
|
|
else
|
563 |
|
|
/* We're in the boondocks: we have no idea where the start of the
|
564 |
|
|
function is. */
|
565 |
|
|
return;
|
566 |
|
|
|
567 |
|
|
prologue_end = min (prologue_end, prev_pc);
|
568 |
|
|
|
569 |
|
|
thumb_analyze_prologue (gdbarch, prologue_start, prologue_end, cache);
|
570 |
|
|
}
|
571 |
|
|
|
572 |
|
|
/* This function decodes an ARM function prologue to determine:
|
573 |
|
|
1) the size of the stack frame
|
574 |
|
|
2) which registers are saved on it
|
575 |
|
|
3) the offsets of saved regs
|
576 |
|
|
4) the offset from the stack pointer to the frame pointer
|
577 |
|
|
This information is stored in the "extra" fields of the frame_info.
|
578 |
|
|
|
579 |
|
|
There are two basic forms for the ARM prologue. The fixed argument
|
580 |
|
|
function call will look like:
|
581 |
|
|
|
582 |
|
|
mov ip, sp
|
583 |
|
|
stmfd sp!, {fp, ip, lr, pc}
|
584 |
|
|
sub fp, ip, #4
|
585 |
|
|
[sub sp, sp, #4]
|
586 |
|
|
|
587 |
|
|
Which would create this stack frame (offsets relative to FP):
|
588 |
|
|
IP -> 4 (caller's stack)
|
589 |
|
|
FP -> 0 PC (points to address of stmfd instruction + 8 in callee)
|
590 |
|
|
-4 LR (return address in caller)
|
591 |
|
|
-8 IP (copy of caller's SP)
|
592 |
|
|
-12 FP (caller's FP)
|
593 |
|
|
SP -> -28 Local variables
|
594 |
|
|
|
595 |
|
|
The frame size would thus be 32 bytes, and the frame offset would be
|
596 |
|
|
28 bytes. The stmfd call can also save any of the vN registers it
|
597 |
|
|
plans to use, which increases the frame size accordingly.
|
598 |
|
|
|
599 |
|
|
Note: The stored PC is 8 off of the STMFD instruction that stored it
|
600 |
|
|
because the ARM Store instructions always store PC + 8 when you read
|
601 |
|
|
the PC register.
|
602 |
|
|
|
603 |
|
|
A variable argument function call will look like:
|
604 |
|
|
|
605 |
|
|
mov ip, sp
|
606 |
|
|
stmfd sp!, {a1, a2, a3, a4}
|
607 |
|
|
stmfd sp!, {fp, ip, lr, pc}
|
608 |
|
|
sub fp, ip, #20
|
609 |
|
|
|
610 |
|
|
Which would create this stack frame (offsets relative to FP):
|
611 |
|
|
IP -> 20 (caller's stack)
|
612 |
|
|
16 A4
|
613 |
|
|
12 A3
|
614 |
|
|
8 A2
|
615 |
|
|
4 A1
|
616 |
|
|
FP -> 0 PC (points to address of stmfd instruction + 8 in callee)
|
617 |
|
|
-4 LR (return address in caller)
|
618 |
|
|
-8 IP (copy of caller's SP)
|
619 |
|
|
-12 FP (caller's FP)
|
620 |
|
|
SP -> -28 Local variables
|
621 |
|
|
|
622 |
|
|
The frame size would thus be 48 bytes, and the frame offset would be
|
623 |
|
|
28 bytes.
|
624 |
|
|
|
625 |
|
|
There is another potential complication, which is that the optimizer
|
626 |
|
|
will try to separate the store of fp in the "stmfd" instruction from
|
627 |
|
|
the "sub fp, ip, #NN" instruction. Almost anything can be there, so
|
628 |
|
|
we just key on the stmfd, and then scan for the "sub fp, ip, #NN"...
|
629 |
|
|
|
630 |
|
|
Also, note, the original version of the ARM toolchain claimed that there
|
631 |
|
|
should be an
|
632 |
|
|
|
633 |
|
|
instruction at the end of the prologue. I have never seen GCC produce
|
634 |
|
|
this, and the ARM docs don't mention it. We still test for it below in
|
635 |
|
|
case it happens...
|
636 |
|
|
|
637 |
|
|
*/
|
638 |
|
|
|
639 |
|
|
static void
|
640 |
|
|
arm_scan_prologue (struct frame_info *next_frame,
|
641 |
|
|
struct arm_prologue_cache *cache)
|
642 |
|
|
{
|
643 |
|
|
struct gdbarch *gdbarch = get_frame_arch (next_frame);
|
644 |
|
|
int regno;
|
645 |
|
|
CORE_ADDR prologue_start, prologue_end, current_pc;
|
646 |
|
|
CORE_ADDR prev_pc = frame_pc_unwind (next_frame);
|
647 |
|
|
pv_t regs[ARM_FPS_REGNUM];
|
648 |
|
|
struct pv_area *stack;
|
649 |
|
|
struct cleanup *back_to;
|
650 |
|
|
CORE_ADDR offset;
|
651 |
|
|
|
652 |
|
|
/* Assume there is no frame until proven otherwise. */
|
653 |
|
|
cache->framereg = ARM_SP_REGNUM;
|
654 |
|
|
cache->framesize = 0;
|
655 |
|
|
|
656 |
|
|
/* Check for Thumb prologue. */
|
657 |
|
|
if (arm_pc_is_thumb (prev_pc))
|
658 |
|
|
{
|
659 |
|
|
thumb_scan_prologue (gdbarch, prev_pc, cache);
|
660 |
|
|
return;
|
661 |
|
|
}
|
662 |
|
|
|
663 |
|
|
/* Find the function prologue. If we can't find the function in
|
664 |
|
|
the symbol table, peek in the stack frame to find the PC. */
|
665 |
|
|
if (find_pc_partial_function (prev_pc, NULL, &prologue_start, &prologue_end))
|
666 |
|
|
{
|
667 |
|
|
/* One way to find the end of the prologue (which works well
|
668 |
|
|
for unoptimized code) is to do the following:
|
669 |
|
|
|
670 |
|
|
struct symtab_and_line sal = find_pc_line (prologue_start, 0);
|
671 |
|
|
|
672 |
|
|
if (sal.line == 0)
|
673 |
|
|
prologue_end = prev_pc;
|
674 |
|
|
else if (sal.end < prologue_end)
|
675 |
|
|
prologue_end = sal.end;
|
676 |
|
|
|
677 |
|
|
This mechanism is very accurate so long as the optimizer
|
678 |
|
|
doesn't move any instructions from the function body into the
|
679 |
|
|
prologue. If this happens, sal.end will be the last
|
680 |
|
|
instruction in the first hunk of prologue code just before
|
681 |
|
|
the first instruction that the scheduler has moved from
|
682 |
|
|
the body to the prologue.
|
683 |
|
|
|
684 |
|
|
In order to make sure that we scan all of the prologue
|
685 |
|
|
instructions, we use a slightly less accurate mechanism which
|
686 |
|
|
may scan more than necessary. To help compensate for this
|
687 |
|
|
lack of accuracy, the prologue scanning loop below contains
|
688 |
|
|
several clauses which'll cause the loop to terminate early if
|
689 |
|
|
an implausible prologue instruction is encountered.
|
690 |
|
|
|
691 |
|
|
The expression
|
692 |
|
|
|
693 |
|
|
prologue_start + 64
|
694 |
|
|
|
695 |
|
|
is a suitable endpoint since it accounts for the largest
|
696 |
|
|
possible prologue plus up to five instructions inserted by
|
697 |
|
|
the scheduler. */
|
698 |
|
|
|
699 |
|
|
if (prologue_end > prologue_start + 64)
|
700 |
|
|
{
|
701 |
|
|
prologue_end = prologue_start + 64; /* See above. */
|
702 |
|
|
}
|
703 |
|
|
}
|
704 |
|
|
else
|
705 |
|
|
{
|
706 |
|
|
/* We have no symbol information. Our only option is to assume this
|
707 |
|
|
function has a standard stack frame and the normal frame register.
|
708 |
|
|
Then, we can find the value of our frame pointer on entrance to
|
709 |
|
|
the callee (or at the present moment if this is the innermost frame).
|
710 |
|
|
The value stored there should be the address of the stmfd + 8. */
|
711 |
|
|
CORE_ADDR frame_loc;
|
712 |
|
|
LONGEST return_value;
|
713 |
|
|
|
714 |
|
|
frame_loc = frame_unwind_register_unsigned (next_frame, ARM_FP_REGNUM);
|
715 |
|
|
if (!safe_read_memory_integer (frame_loc, 4, &return_value))
|
716 |
|
|
return;
|
717 |
|
|
else
|
718 |
|
|
{
|
719 |
|
|
prologue_start = gdbarch_addr_bits_remove
|
720 |
|
|
(gdbarch, return_value) - 8;
|
721 |
|
|
prologue_end = prologue_start + 64; /* See above. */
|
722 |
|
|
}
|
723 |
|
|
}
|
724 |
|
|
|
725 |
|
|
if (prev_pc < prologue_end)
|
726 |
|
|
prologue_end = prev_pc;
|
727 |
|
|
|
728 |
|
|
/* Now search the prologue looking for instructions that set up the
|
729 |
|
|
frame pointer, adjust the stack pointer, and save registers.
|
730 |
|
|
|
731 |
|
|
Be careful, however, and if it doesn't look like a prologue,
|
732 |
|
|
don't try to scan it. If, for instance, a frameless function
|
733 |
|
|
begins with stmfd sp!, then we will tell ourselves there is
|
734 |
|
|
a frame, which will confuse stack traceback, as well as "finish"
|
735 |
|
|
and other operations that rely on a knowledge of the stack
|
736 |
|
|
traceback.
|
737 |
|
|
|
738 |
|
|
In the APCS, the prologue should start with "mov ip, sp" so
|
739 |
|
|
if we don't see this as the first insn, we will stop.
|
740 |
|
|
|
741 |
|
|
[Note: This doesn't seem to be true any longer, so it's now an
|
742 |
|
|
optional part of the prologue. - Kevin Buettner, 2001-11-20]
|
743 |
|
|
|
744 |
|
|
[Note further: The "mov ip,sp" only seems to be missing in
|
745 |
|
|
frameless functions at optimization level "-O2" or above,
|
746 |
|
|
in which case it is often (but not always) replaced by
|
747 |
|
|
"str lr, [sp, #-4]!". - Michael Snyder, 2002-04-23] */
|
748 |
|
|
|
749 |
|
|
for (regno = 0; regno < ARM_FPS_REGNUM; regno++)
|
750 |
|
|
regs[regno] = pv_register (regno, 0);
|
751 |
|
|
stack = make_pv_area (ARM_SP_REGNUM);
|
752 |
|
|
back_to = make_cleanup_free_pv_area (stack);
|
753 |
|
|
|
754 |
|
|
regs[ARM_PC_REGNUM] = pv_unknown ();
|
755 |
|
|
|
756 |
|
|
for (current_pc = prologue_start;
|
757 |
|
|
current_pc < prologue_end;
|
758 |
|
|
current_pc += 4)
|
759 |
|
|
{
|
760 |
|
|
unsigned int insn = read_memory_unsigned_integer (current_pc, 4);
|
761 |
|
|
|
762 |
|
|
if (insn == 0xe1a0c00d) /* mov ip, sp */
|
763 |
|
|
{
|
764 |
|
|
regs[ARM_IP_REGNUM] = regs[ARM_SP_REGNUM];
|
765 |
|
|
continue;
|
766 |
|
|
}
|
767 |
|
|
else if ((insn & 0xfffff000) == 0xe28dc000) /* add ip, sp #n */
|
768 |
|
|
{
|
769 |
|
|
unsigned imm = insn & 0xff; /* immediate value */
|
770 |
|
|
unsigned rot = (insn & 0xf00) >> 7; /* rotate amount */
|
771 |
|
|
imm = (imm >> rot) | (imm << (32 - rot));
|
772 |
|
|
regs[ARM_IP_REGNUM] = pv_add_constant (regs[ARM_SP_REGNUM], imm);
|
773 |
|
|
continue;
|
774 |
|
|
}
|
775 |
|
|
else if ((insn & 0xfffff000) == 0xe24dc000) /* sub ip, sp #n */
|
776 |
|
|
{
|
777 |
|
|
unsigned imm = insn & 0xff; /* immediate value */
|
778 |
|
|
unsigned rot = (insn & 0xf00) >> 7; /* rotate amount */
|
779 |
|
|
imm = (imm >> rot) | (imm << (32 - rot));
|
780 |
|
|
regs[ARM_IP_REGNUM] = pv_add_constant (regs[ARM_SP_REGNUM], -imm);
|
781 |
|
|
continue;
|
782 |
|
|
}
|
783 |
|
|
else if (insn == 0xe52de004) /* str lr, [sp, #-4]! */
|
784 |
|
|
{
|
785 |
|
|
if (pv_area_store_would_trash (stack, regs[ARM_SP_REGNUM]))
|
786 |
|
|
break;
|
787 |
|
|
regs[ARM_SP_REGNUM] = pv_add_constant (regs[ARM_SP_REGNUM], -4);
|
788 |
|
|
pv_area_store (stack, regs[ARM_SP_REGNUM], 4, regs[ARM_LR_REGNUM]);
|
789 |
|
|
continue;
|
790 |
|
|
}
|
791 |
|
|
else if ((insn & 0xffff0000) == 0xe92d0000)
|
792 |
|
|
/* stmfd sp!, {..., fp, ip, lr, pc}
|
793 |
|
|
or
|
794 |
|
|
stmfd sp!, {a1, a2, a3, a4} */
|
795 |
|
|
{
|
796 |
|
|
int mask = insn & 0xffff;
|
797 |
|
|
|
798 |
|
|
if (pv_area_store_would_trash (stack, regs[ARM_SP_REGNUM]))
|
799 |
|
|
break;
|
800 |
|
|
|
801 |
|
|
/* Calculate offsets of saved registers. */
|
802 |
|
|
for (regno = ARM_PC_REGNUM; regno >= 0; regno--)
|
803 |
|
|
if (mask & (1 << regno))
|
804 |
|
|
{
|
805 |
|
|
regs[ARM_SP_REGNUM] = pv_add_constant (regs[ARM_SP_REGNUM], -4);
|
806 |
|
|
pv_area_store (stack, regs[ARM_SP_REGNUM], 4, regs[regno]);
|
807 |
|
|
}
|
808 |
|
|
}
|
809 |
|
|
else if ((insn & 0xffffc000) == 0xe54b0000 || /* strb rx,[r11,#-n] */
|
810 |
|
|
(insn & 0xffffc0f0) == 0xe14b00b0 || /* strh rx,[r11,#-n] */
|
811 |
|
|
(insn & 0xffffc000) == 0xe50b0000) /* str rx,[r11,#-n] */
|
812 |
|
|
{
|
813 |
|
|
/* No need to add this to saved_regs -- it's just an arg reg. */
|
814 |
|
|
continue;
|
815 |
|
|
}
|
816 |
|
|
else if ((insn & 0xffffc000) == 0xe5cd0000 || /* strb rx,[sp,#n] */
|
817 |
|
|
(insn & 0xffffc0f0) == 0xe1cd00b0 || /* strh rx,[sp,#n] */
|
818 |
|
|
(insn & 0xffffc000) == 0xe58d0000) /* str rx,[sp,#n] */
|
819 |
|
|
{
|
820 |
|
|
/* No need to add this to saved_regs -- it's just an arg reg. */
|
821 |
|
|
continue;
|
822 |
|
|
}
|
823 |
|
|
else if ((insn & 0xfffff000) == 0xe24cb000) /* sub fp, ip #n */
|
824 |
|
|
{
|
825 |
|
|
unsigned imm = insn & 0xff; /* immediate value */
|
826 |
|
|
unsigned rot = (insn & 0xf00) >> 7; /* rotate amount */
|
827 |
|
|
imm = (imm >> rot) | (imm << (32 - rot));
|
828 |
|
|
regs[ARM_FP_REGNUM] = pv_add_constant (regs[ARM_IP_REGNUM], -imm);
|
829 |
|
|
}
|
830 |
|
|
else if ((insn & 0xfffff000) == 0xe24dd000) /* sub sp, sp #n */
|
831 |
|
|
{
|
832 |
|
|
unsigned imm = insn & 0xff; /* immediate value */
|
833 |
|
|
unsigned rot = (insn & 0xf00) >> 7; /* rotate amount */
|
834 |
|
|
imm = (imm >> rot) | (imm << (32 - rot));
|
835 |
|
|
regs[ARM_SP_REGNUM] = pv_add_constant (regs[ARM_SP_REGNUM], -imm);
|
836 |
|
|
}
|
837 |
|
|
else if ((insn & 0xffff7fff) == 0xed6d0103 /* stfe f?, [sp, -#c]! */
|
838 |
|
|
&& gdbarch_tdep (gdbarch)->have_fpa_registers)
|
839 |
|
|
{
|
840 |
|
|
if (pv_area_store_would_trash (stack, regs[ARM_SP_REGNUM]))
|
841 |
|
|
break;
|
842 |
|
|
|
843 |
|
|
regs[ARM_SP_REGNUM] = pv_add_constant (regs[ARM_SP_REGNUM], -12);
|
844 |
|
|
regno = ARM_F0_REGNUM + ((insn >> 12) & 0x07);
|
845 |
|
|
pv_area_store (stack, regs[ARM_SP_REGNUM], 12, regs[regno]);
|
846 |
|
|
}
|
847 |
|
|
else if ((insn & 0xffbf0fff) == 0xec2d0200 /* sfmfd f0, 4, [sp!] */
|
848 |
|
|
&& gdbarch_tdep (gdbarch)->have_fpa_registers)
|
849 |
|
|
{
|
850 |
|
|
int n_saved_fp_regs;
|
851 |
|
|
unsigned int fp_start_reg, fp_bound_reg;
|
852 |
|
|
|
853 |
|
|
if (pv_area_store_would_trash (stack, regs[ARM_SP_REGNUM]))
|
854 |
|
|
break;
|
855 |
|
|
|
856 |
|
|
if ((insn & 0x800) == 0x800) /* N0 is set */
|
857 |
|
|
{
|
858 |
|
|
if ((insn & 0x40000) == 0x40000) /* N1 is set */
|
859 |
|
|
n_saved_fp_regs = 3;
|
860 |
|
|
else
|
861 |
|
|
n_saved_fp_regs = 1;
|
862 |
|
|
}
|
863 |
|
|
else
|
864 |
|
|
{
|
865 |
|
|
if ((insn & 0x40000) == 0x40000) /* N1 is set */
|
866 |
|
|
n_saved_fp_regs = 2;
|
867 |
|
|
else
|
868 |
|
|
n_saved_fp_regs = 4;
|
869 |
|
|
}
|
870 |
|
|
|
871 |
|
|
fp_start_reg = ARM_F0_REGNUM + ((insn >> 12) & 0x7);
|
872 |
|
|
fp_bound_reg = fp_start_reg + n_saved_fp_regs;
|
873 |
|
|
for (; fp_start_reg < fp_bound_reg; fp_start_reg++)
|
874 |
|
|
{
|
875 |
|
|
regs[ARM_SP_REGNUM] = pv_add_constant (regs[ARM_SP_REGNUM], -12);
|
876 |
|
|
pv_area_store (stack, regs[ARM_SP_REGNUM], 12,
|
877 |
|
|
regs[fp_start_reg++]);
|
878 |
|
|
}
|
879 |
|
|
}
|
880 |
|
|
else if ((insn & 0xf0000000) != 0xe0000000)
|
881 |
|
|
break; /* Condition not true, exit early */
|
882 |
|
|
else if ((insn & 0xfe200000) == 0xe8200000) /* ldm? */
|
883 |
|
|
break; /* Don't scan past a block load */
|
884 |
|
|
else
|
885 |
|
|
/* The optimizer might shove anything into the prologue,
|
886 |
|
|
so we just skip what we don't recognize. */
|
887 |
|
|
continue;
|
888 |
|
|
}
|
889 |
|
|
|
890 |
|
|
/* The frame size is just the distance from the frame register
|
891 |
|
|
to the original stack pointer. */
|
892 |
|
|
if (pv_is_register (regs[ARM_FP_REGNUM], ARM_SP_REGNUM))
|
893 |
|
|
{
|
894 |
|
|
/* Frame pointer is fp. */
|
895 |
|
|
cache->framereg = ARM_FP_REGNUM;
|
896 |
|
|
cache->framesize = -regs[ARM_FP_REGNUM].k;
|
897 |
|
|
}
|
898 |
|
|
else if (pv_is_register (regs[ARM_SP_REGNUM], ARM_SP_REGNUM))
|
899 |
|
|
{
|
900 |
|
|
/* Try the stack pointer... this is a bit desperate. */
|
901 |
|
|
cache->framereg = ARM_SP_REGNUM;
|
902 |
|
|
cache->framesize = -regs[ARM_SP_REGNUM].k;
|
903 |
|
|
}
|
904 |
|
|
else
|
905 |
|
|
{
|
906 |
|
|
/* We're just out of luck. We don't know where the frame is. */
|
907 |
|
|
cache->framereg = -1;
|
908 |
|
|
cache->framesize = 0;
|
909 |
|
|
}
|
910 |
|
|
|
911 |
|
|
for (regno = 0; regno < ARM_FPS_REGNUM; regno++)
|
912 |
|
|
if (pv_area_find_reg (stack, gdbarch, regno, &offset))
|
913 |
|
|
cache->saved_regs[regno].addr = offset;
|
914 |
|
|
|
915 |
|
|
do_cleanups (back_to);
|
916 |
|
|
}
|
917 |
|
|
|
918 |
|
|
static struct arm_prologue_cache *
|
919 |
|
|
arm_make_prologue_cache (struct frame_info *next_frame)
|
920 |
|
|
{
|
921 |
|
|
int reg;
|
922 |
|
|
struct arm_prologue_cache *cache;
|
923 |
|
|
CORE_ADDR unwound_fp;
|
924 |
|
|
|
925 |
|
|
cache = FRAME_OBSTACK_ZALLOC (struct arm_prologue_cache);
|
926 |
|
|
cache->saved_regs = trad_frame_alloc_saved_regs (next_frame);
|
927 |
|
|
|
928 |
|
|
arm_scan_prologue (next_frame, cache);
|
929 |
|
|
|
930 |
|
|
unwound_fp = frame_unwind_register_unsigned (next_frame, cache->framereg);
|
931 |
|
|
if (unwound_fp == 0)
|
932 |
|
|
return cache;
|
933 |
|
|
|
934 |
|
|
cache->prev_sp = unwound_fp + cache->framesize;
|
935 |
|
|
|
936 |
|
|
/* Calculate actual addresses of saved registers using offsets
|
937 |
|
|
determined by arm_scan_prologue. */
|
938 |
|
|
for (reg = 0; reg < gdbarch_num_regs (get_frame_arch (next_frame)); reg++)
|
939 |
|
|
if (trad_frame_addr_p (cache->saved_regs, reg))
|
940 |
|
|
cache->saved_regs[reg].addr += cache->prev_sp;
|
941 |
|
|
|
942 |
|
|
return cache;
|
943 |
|
|
}
|
944 |
|
|
|
945 |
|
|
/* Our frame ID for a normal frame is the current function's starting PC
|
946 |
|
|
and the caller's SP when we were called. */
|
947 |
|
|
|
948 |
|
|
static void
|
949 |
|
|
arm_prologue_this_id (struct frame_info *next_frame,
|
950 |
|
|
void **this_cache,
|
951 |
|
|
struct frame_id *this_id)
|
952 |
|
|
{
|
953 |
|
|
struct arm_prologue_cache *cache;
|
954 |
|
|
struct frame_id id;
|
955 |
|
|
CORE_ADDR func;
|
956 |
|
|
|
957 |
|
|
if (*this_cache == NULL)
|
958 |
|
|
*this_cache = arm_make_prologue_cache (next_frame);
|
959 |
|
|
cache = *this_cache;
|
960 |
|
|
|
961 |
|
|
func = frame_func_unwind (next_frame, NORMAL_FRAME);
|
962 |
|
|
|
963 |
|
|
/* This is meant to halt the backtrace at "_start". Make sure we
|
964 |
|
|
don't halt it at a generic dummy frame. */
|
965 |
|
|
if (func <= gdbarch_tdep (get_frame_arch (next_frame))->lowest_pc)
|
966 |
|
|
return;
|
967 |
|
|
|
968 |
|
|
/* If we've hit a wall, stop. */
|
969 |
|
|
if (cache->prev_sp == 0)
|
970 |
|
|
return;
|
971 |
|
|
|
972 |
|
|
id = frame_id_build (cache->prev_sp, func);
|
973 |
|
|
*this_id = id;
|
974 |
|
|
}
|
975 |
|
|
|
976 |
|
|
static void
|
977 |
|
|
arm_prologue_prev_register (struct frame_info *next_frame,
|
978 |
|
|
void **this_cache,
|
979 |
|
|
int prev_regnum,
|
980 |
|
|
int *optimized,
|
981 |
|
|
enum lval_type *lvalp,
|
982 |
|
|
CORE_ADDR *addrp,
|
983 |
|
|
int *realnump,
|
984 |
|
|
gdb_byte *valuep)
|
985 |
|
|
{
|
986 |
|
|
struct arm_prologue_cache *cache;
|
987 |
|
|
|
988 |
|
|
if (*this_cache == NULL)
|
989 |
|
|
*this_cache = arm_make_prologue_cache (next_frame);
|
990 |
|
|
cache = *this_cache;
|
991 |
|
|
|
992 |
|
|
/* If we are asked to unwind the PC, then we need to return the LR
|
993 |
|
|
instead. The saved value of PC points into this frame's
|
994 |
|
|
prologue, not the next frame's resume location. */
|
995 |
|
|
if (prev_regnum == ARM_PC_REGNUM)
|
996 |
|
|
prev_regnum = ARM_LR_REGNUM;
|
997 |
|
|
|
998 |
|
|
/* SP is generally not saved to the stack, but this frame is
|
999 |
|
|
identified by NEXT_FRAME's stack pointer at the time of the call.
|
1000 |
|
|
The value was already reconstructed into PREV_SP. */
|
1001 |
|
|
if (prev_regnum == ARM_SP_REGNUM)
|
1002 |
|
|
{
|
1003 |
|
|
*lvalp = not_lval;
|
1004 |
|
|
if (valuep)
|
1005 |
|
|
store_unsigned_integer (valuep, 4, cache->prev_sp);
|
1006 |
|
|
return;
|
1007 |
|
|
}
|
1008 |
|
|
|
1009 |
|
|
trad_frame_get_prev_register (next_frame, cache->saved_regs, prev_regnum,
|
1010 |
|
|
optimized, lvalp, addrp, realnump, valuep);
|
1011 |
|
|
}
|
1012 |
|
|
|
1013 |
|
|
struct frame_unwind arm_prologue_unwind = {
|
1014 |
|
|
NORMAL_FRAME,
|
1015 |
|
|
arm_prologue_this_id,
|
1016 |
|
|
arm_prologue_prev_register
|
1017 |
|
|
};
|
1018 |
|
|
|
1019 |
|
|
static const struct frame_unwind *
|
1020 |
|
|
arm_prologue_unwind_sniffer (struct frame_info *next_frame)
|
1021 |
|
|
{
|
1022 |
|
|
return &arm_prologue_unwind;
|
1023 |
|
|
}
|
1024 |
|
|
|
1025 |
|
|
static struct arm_prologue_cache *
|
1026 |
|
|
arm_make_stub_cache (struct frame_info *next_frame)
|
1027 |
|
|
{
|
1028 |
|
|
int reg;
|
1029 |
|
|
struct arm_prologue_cache *cache;
|
1030 |
|
|
CORE_ADDR unwound_fp;
|
1031 |
|
|
|
1032 |
|
|
cache = FRAME_OBSTACK_ZALLOC (struct arm_prologue_cache);
|
1033 |
|
|
cache->saved_regs = trad_frame_alloc_saved_regs (next_frame);
|
1034 |
|
|
|
1035 |
|
|
cache->prev_sp = frame_unwind_register_unsigned (next_frame, ARM_SP_REGNUM);
|
1036 |
|
|
|
1037 |
|
|
return cache;
|
1038 |
|
|
}
|
1039 |
|
|
|
1040 |
|
|
/* Our frame ID for a stub frame is the current SP and LR. */
|
1041 |
|
|
|
1042 |
|
|
static void
|
1043 |
|
|
arm_stub_this_id (struct frame_info *next_frame,
|
1044 |
|
|
void **this_cache,
|
1045 |
|
|
struct frame_id *this_id)
|
1046 |
|
|
{
|
1047 |
|
|
struct arm_prologue_cache *cache;
|
1048 |
|
|
|
1049 |
|
|
if (*this_cache == NULL)
|
1050 |
|
|
*this_cache = arm_make_stub_cache (next_frame);
|
1051 |
|
|
cache = *this_cache;
|
1052 |
|
|
|
1053 |
|
|
*this_id = frame_id_build (cache->prev_sp,
|
1054 |
|
|
frame_pc_unwind (next_frame));
|
1055 |
|
|
}
|
1056 |
|
|
|
1057 |
|
|
struct frame_unwind arm_stub_unwind = {
|
1058 |
|
|
NORMAL_FRAME,
|
1059 |
|
|
arm_stub_this_id,
|
1060 |
|
|
arm_prologue_prev_register
|
1061 |
|
|
};
|
1062 |
|
|
|
1063 |
|
|
static const struct frame_unwind *
|
1064 |
|
|
arm_stub_unwind_sniffer (struct frame_info *next_frame)
|
1065 |
|
|
{
|
1066 |
|
|
CORE_ADDR addr_in_block;
|
1067 |
|
|
char dummy[4];
|
1068 |
|
|
|
1069 |
|
|
addr_in_block = frame_unwind_address_in_block (next_frame, NORMAL_FRAME);
|
1070 |
|
|
if (in_plt_section (addr_in_block, NULL)
|
1071 |
|
|
|| target_read_memory (frame_pc_unwind (next_frame), dummy, 4) != 0)
|
1072 |
|
|
return &arm_stub_unwind;
|
1073 |
|
|
|
1074 |
|
|
return NULL;
|
1075 |
|
|
}
|
1076 |
|
|
|
1077 |
|
|
static CORE_ADDR
|
1078 |
|
|
arm_normal_frame_base (struct frame_info *next_frame, void **this_cache)
|
1079 |
|
|
{
|
1080 |
|
|
struct arm_prologue_cache *cache;
|
1081 |
|
|
|
1082 |
|
|
if (*this_cache == NULL)
|
1083 |
|
|
*this_cache = arm_make_prologue_cache (next_frame);
|
1084 |
|
|
cache = *this_cache;
|
1085 |
|
|
|
1086 |
|
|
return cache->prev_sp - cache->framesize;
|
1087 |
|
|
}
|
1088 |
|
|
|
1089 |
|
|
struct frame_base arm_normal_base = {
|
1090 |
|
|
&arm_prologue_unwind,
|
1091 |
|
|
arm_normal_frame_base,
|
1092 |
|
|
arm_normal_frame_base,
|
1093 |
|
|
arm_normal_frame_base
|
1094 |
|
|
};
|
1095 |
|
|
|
1096 |
|
|
/* Assuming NEXT_FRAME->prev is a dummy, return the frame ID of that
|
1097 |
|
|
dummy frame. The frame ID's base needs to match the TOS value
|
1098 |
|
|
saved by save_dummy_frame_tos() and returned from
|
1099 |
|
|
arm_push_dummy_call, and the PC needs to match the dummy frame's
|
1100 |
|
|
breakpoint. */
|
1101 |
|
|
|
1102 |
|
|
static struct frame_id
|
1103 |
|
|
arm_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
|
1104 |
|
|
{
|
1105 |
|
|
return frame_id_build (frame_unwind_register_unsigned (next_frame, ARM_SP_REGNUM),
|
1106 |
|
|
frame_pc_unwind (next_frame));
|
1107 |
|
|
}
|
1108 |
|
|
|
1109 |
|
|
/* Given THIS_FRAME, find the previous frame's resume PC (which will
|
1110 |
|
|
be used to construct the previous frame's ID, after looking up the
|
1111 |
|
|
containing function). */
|
1112 |
|
|
|
1113 |
|
|
static CORE_ADDR
|
1114 |
|
|
arm_unwind_pc (struct gdbarch *gdbarch, struct frame_info *this_frame)
|
1115 |
|
|
{
|
1116 |
|
|
CORE_ADDR pc;
|
1117 |
|
|
pc = frame_unwind_register_unsigned (this_frame, ARM_PC_REGNUM);
|
1118 |
|
|
return arm_addr_bits_remove (pc);
|
1119 |
|
|
}
|
1120 |
|
|
|
1121 |
|
|
static CORE_ADDR
|
1122 |
|
|
arm_unwind_sp (struct gdbarch *gdbarch, struct frame_info *this_frame)
|
1123 |
|
|
{
|
1124 |
|
|
return frame_unwind_register_unsigned (this_frame, ARM_SP_REGNUM);
|
1125 |
|
|
}
|
1126 |
|
|
|
1127 |
|
|
/* When arguments must be pushed onto the stack, they go on in reverse
|
1128 |
|
|
order. The code below implements a FILO (stack) to do this. */
|
1129 |
|
|
|
1130 |
|
|
struct stack_item
|
1131 |
|
|
{
|
1132 |
|
|
int len;
|
1133 |
|
|
struct stack_item *prev;
|
1134 |
|
|
void *data;
|
1135 |
|
|
};
|
1136 |
|
|
|
1137 |
|
|
static struct stack_item *
|
1138 |
|
|
push_stack_item (struct stack_item *prev, void *contents, int len)
|
1139 |
|
|
{
|
1140 |
|
|
struct stack_item *si;
|
1141 |
|
|
si = xmalloc (sizeof (struct stack_item));
|
1142 |
|
|
si->data = xmalloc (len);
|
1143 |
|
|
si->len = len;
|
1144 |
|
|
si->prev = prev;
|
1145 |
|
|
memcpy (si->data, contents, len);
|
1146 |
|
|
return si;
|
1147 |
|
|
}
|
1148 |
|
|
|
1149 |
|
|
static struct stack_item *
|
1150 |
|
|
pop_stack_item (struct stack_item *si)
|
1151 |
|
|
{
|
1152 |
|
|
struct stack_item *dead = si;
|
1153 |
|
|
si = si->prev;
|
1154 |
|
|
xfree (dead->data);
|
1155 |
|
|
xfree (dead);
|
1156 |
|
|
return si;
|
1157 |
|
|
}
|
1158 |
|
|
|
1159 |
|
|
|
1160 |
|
|
/* Return the alignment (in bytes) of the given type. */
|
1161 |
|
|
|
1162 |
|
|
static int
|
1163 |
|
|
arm_type_align (struct type *t)
|
1164 |
|
|
{
|
1165 |
|
|
int n;
|
1166 |
|
|
int align;
|
1167 |
|
|
int falign;
|
1168 |
|
|
|
1169 |
|
|
t = check_typedef (t);
|
1170 |
|
|
switch (TYPE_CODE (t))
|
1171 |
|
|
{
|
1172 |
|
|
default:
|
1173 |
|
|
/* Should never happen. */
|
1174 |
|
|
internal_error (__FILE__, __LINE__, _("unknown type alignment"));
|
1175 |
|
|
return 4;
|
1176 |
|
|
|
1177 |
|
|
case TYPE_CODE_PTR:
|
1178 |
|
|
case TYPE_CODE_ENUM:
|
1179 |
|
|
case TYPE_CODE_INT:
|
1180 |
|
|
case TYPE_CODE_FLT:
|
1181 |
|
|
case TYPE_CODE_SET:
|
1182 |
|
|
case TYPE_CODE_RANGE:
|
1183 |
|
|
case TYPE_CODE_BITSTRING:
|
1184 |
|
|
case TYPE_CODE_REF:
|
1185 |
|
|
case TYPE_CODE_CHAR:
|
1186 |
|
|
case TYPE_CODE_BOOL:
|
1187 |
|
|
return TYPE_LENGTH (t);
|
1188 |
|
|
|
1189 |
|
|
case TYPE_CODE_ARRAY:
|
1190 |
|
|
case TYPE_CODE_COMPLEX:
|
1191 |
|
|
/* TODO: What about vector types? */
|
1192 |
|
|
return arm_type_align (TYPE_TARGET_TYPE (t));
|
1193 |
|
|
|
1194 |
|
|
case TYPE_CODE_STRUCT:
|
1195 |
|
|
case TYPE_CODE_UNION:
|
1196 |
|
|
align = 1;
|
1197 |
|
|
for (n = 0; n < TYPE_NFIELDS (t); n++)
|
1198 |
|
|
{
|
1199 |
|
|
falign = arm_type_align (TYPE_FIELD_TYPE (t, n));
|
1200 |
|
|
if (falign > align)
|
1201 |
|
|
align = falign;
|
1202 |
|
|
}
|
1203 |
|
|
return align;
|
1204 |
|
|
}
|
1205 |
|
|
}
|
1206 |
|
|
|
1207 |
|
|
/* We currently only support passing parameters in integer registers. This
|
1208 |
|
|
conforms with GCC's default model. Several other variants exist and
|
1209 |
|
|
we should probably support some of them based on the selected ABI. */
|
1210 |
|
|
|
1211 |
|
|
static CORE_ADDR
|
1212 |
|
|
arm_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
|
1213 |
|
|
struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
|
1214 |
|
|
struct value **args, CORE_ADDR sp, int struct_return,
|
1215 |
|
|
CORE_ADDR struct_addr)
|
1216 |
|
|
{
|
1217 |
|
|
int argnum;
|
1218 |
|
|
int argreg;
|
1219 |
|
|
int nstack;
|
1220 |
|
|
struct stack_item *si = NULL;
|
1221 |
|
|
|
1222 |
|
|
/* Set the return address. For the ARM, the return breakpoint is
|
1223 |
|
|
always at BP_ADDR. */
|
1224 |
|
|
/* XXX Fix for Thumb. */
|
1225 |
|
|
regcache_cooked_write_unsigned (regcache, ARM_LR_REGNUM, bp_addr);
|
1226 |
|
|
|
1227 |
|
|
/* Walk through the list of args and determine how large a temporary
|
1228 |
|
|
stack is required. Need to take care here as structs may be
|
1229 |
|
|
passed on the stack, and we have to to push them. */
|
1230 |
|
|
nstack = 0;
|
1231 |
|
|
|
1232 |
|
|
argreg = ARM_A1_REGNUM;
|
1233 |
|
|
nstack = 0;
|
1234 |
|
|
|
1235 |
|
|
/* The struct_return pointer occupies the first parameter
|
1236 |
|
|
passing register. */
|
1237 |
|
|
if (struct_return)
|
1238 |
|
|
{
|
1239 |
|
|
if (arm_debug)
|
1240 |
|
|
fprintf_unfiltered (gdb_stdlog, "struct return in %s = 0x%s\n",
|
1241 |
|
|
gdbarch_register_name (gdbarch, argreg),
|
1242 |
|
|
paddr (struct_addr));
|
1243 |
|
|
regcache_cooked_write_unsigned (regcache, argreg, struct_addr);
|
1244 |
|
|
argreg++;
|
1245 |
|
|
}
|
1246 |
|
|
|
1247 |
|
|
for (argnum = 0; argnum < nargs; argnum++)
|
1248 |
|
|
{
|
1249 |
|
|
int len;
|
1250 |
|
|
struct type *arg_type;
|
1251 |
|
|
struct type *target_type;
|
1252 |
|
|
enum type_code typecode;
|
1253 |
|
|
bfd_byte *val;
|
1254 |
|
|
int align;
|
1255 |
|
|
|
1256 |
|
|
arg_type = check_typedef (value_type (args[argnum]));
|
1257 |
|
|
len = TYPE_LENGTH (arg_type);
|
1258 |
|
|
target_type = TYPE_TARGET_TYPE (arg_type);
|
1259 |
|
|
typecode = TYPE_CODE (arg_type);
|
1260 |
|
|
val = value_contents_writeable (args[argnum]);
|
1261 |
|
|
|
1262 |
|
|
align = arm_type_align (arg_type);
|
1263 |
|
|
/* Round alignment up to a whole number of words. */
|
1264 |
|
|
align = (align + INT_REGISTER_SIZE - 1) & ~(INT_REGISTER_SIZE - 1);
|
1265 |
|
|
/* Different ABIs have different maximum alignments. */
|
1266 |
|
|
if (gdbarch_tdep (gdbarch)->arm_abi == ARM_ABI_APCS)
|
1267 |
|
|
{
|
1268 |
|
|
/* The APCS ABI only requires word alignment. */
|
1269 |
|
|
align = INT_REGISTER_SIZE;
|
1270 |
|
|
}
|
1271 |
|
|
else
|
1272 |
|
|
{
|
1273 |
|
|
/* The AAPCS requires at most doubleword alignment. */
|
1274 |
|
|
if (align > INT_REGISTER_SIZE * 2)
|
1275 |
|
|
align = INT_REGISTER_SIZE * 2;
|
1276 |
|
|
}
|
1277 |
|
|
|
1278 |
|
|
/* Push stack padding for dowubleword alignment. */
|
1279 |
|
|
if (nstack & (align - 1))
|
1280 |
|
|
{
|
1281 |
|
|
si = push_stack_item (si, val, INT_REGISTER_SIZE);
|
1282 |
|
|
nstack += INT_REGISTER_SIZE;
|
1283 |
|
|
}
|
1284 |
|
|
|
1285 |
|
|
/* Doubleword aligned quantities must go in even register pairs. */
|
1286 |
|
|
if (argreg <= ARM_LAST_ARG_REGNUM
|
1287 |
|
|
&& align > INT_REGISTER_SIZE
|
1288 |
|
|
&& argreg & 1)
|
1289 |
|
|
argreg++;
|
1290 |
|
|
|
1291 |
|
|
/* If the argument is a pointer to a function, and it is a
|
1292 |
|
|
Thumb function, create a LOCAL copy of the value and set
|
1293 |
|
|
the THUMB bit in it. */
|
1294 |
|
|
if (TYPE_CODE_PTR == typecode
|
1295 |
|
|
&& target_type != NULL
|
1296 |
|
|
&& TYPE_CODE_FUNC == TYPE_CODE (target_type))
|
1297 |
|
|
{
|
1298 |
|
|
CORE_ADDR regval = extract_unsigned_integer (val, len);
|
1299 |
|
|
if (arm_pc_is_thumb (regval))
|
1300 |
|
|
{
|
1301 |
|
|
val = alloca (len);
|
1302 |
|
|
store_unsigned_integer (val, len, MAKE_THUMB_ADDR (regval));
|
1303 |
|
|
}
|
1304 |
|
|
}
|
1305 |
|
|
|
1306 |
|
|
/* Copy the argument to general registers or the stack in
|
1307 |
|
|
register-sized pieces. Large arguments are split between
|
1308 |
|
|
registers and stack. */
|
1309 |
|
|
while (len > 0)
|
1310 |
|
|
{
|
1311 |
|
|
int partial_len = len < INT_REGISTER_SIZE ? len : INT_REGISTER_SIZE;
|
1312 |
|
|
|
1313 |
|
|
if (argreg <= ARM_LAST_ARG_REGNUM)
|
1314 |
|
|
{
|
1315 |
|
|
/* The argument is being passed in a general purpose
|
1316 |
|
|
register. */
|
1317 |
|
|
CORE_ADDR regval = extract_unsigned_integer (val, partial_len);
|
1318 |
|
|
if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
|
1319 |
|
|
regval <<= (INT_REGISTER_SIZE - partial_len) * 8;
|
1320 |
|
|
if (arm_debug)
|
1321 |
|
|
fprintf_unfiltered (gdb_stdlog, "arg %d in %s = 0x%s\n",
|
1322 |
|
|
argnum,
|
1323 |
|
|
gdbarch_register_name
|
1324 |
|
|
(gdbarch, argreg),
|
1325 |
|
|
phex (regval, INT_REGISTER_SIZE));
|
1326 |
|
|
regcache_cooked_write_unsigned (regcache, argreg, regval);
|
1327 |
|
|
argreg++;
|
1328 |
|
|
}
|
1329 |
|
|
else
|
1330 |
|
|
{
|
1331 |
|
|
/* Push the arguments onto the stack. */
|
1332 |
|
|
if (arm_debug)
|
1333 |
|
|
fprintf_unfiltered (gdb_stdlog, "arg %d @ sp + %d\n",
|
1334 |
|
|
argnum, nstack);
|
1335 |
|
|
si = push_stack_item (si, val, INT_REGISTER_SIZE);
|
1336 |
|
|
nstack += INT_REGISTER_SIZE;
|
1337 |
|
|
}
|
1338 |
|
|
|
1339 |
|
|
len -= partial_len;
|
1340 |
|
|
val += partial_len;
|
1341 |
|
|
}
|
1342 |
|
|
}
|
1343 |
|
|
/* If we have an odd number of words to push, then decrement the stack
|
1344 |
|
|
by one word now, so first stack argument will be dword aligned. */
|
1345 |
|
|
if (nstack & 4)
|
1346 |
|
|
sp -= 4;
|
1347 |
|
|
|
1348 |
|
|
while (si)
|
1349 |
|
|
{
|
1350 |
|
|
sp -= si->len;
|
1351 |
|
|
write_memory (sp, si->data, si->len);
|
1352 |
|
|
si = pop_stack_item (si);
|
1353 |
|
|
}
|
1354 |
|
|
|
1355 |
|
|
/* Finally, update teh SP register. */
|
1356 |
|
|
regcache_cooked_write_unsigned (regcache, ARM_SP_REGNUM, sp);
|
1357 |
|
|
|
1358 |
|
|
return sp;
|
1359 |
|
|
}
|
1360 |
|
|
|
1361 |
|
|
|
1362 |
|
|
/* Always align the frame to an 8-byte boundary. This is required on
|
1363 |
|
|
some platforms and harmless on the rest. */
|
1364 |
|
|
|
1365 |
|
|
static CORE_ADDR
|
1366 |
|
|
arm_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
|
1367 |
|
|
{
|
1368 |
|
|
/* Align the stack to eight bytes. */
|
1369 |
|
|
return sp & ~ (CORE_ADDR) 7;
|
1370 |
|
|
}
|
1371 |
|
|
|
1372 |
|
|
static void
|
1373 |
|
|
print_fpu_flags (int flags)
|
1374 |
|
|
{
|
1375 |
|
|
if (flags & (1 << 0))
|
1376 |
|
|
fputs ("IVO ", stdout);
|
1377 |
|
|
if (flags & (1 << 1))
|
1378 |
|
|
fputs ("DVZ ", stdout);
|
1379 |
|
|
if (flags & (1 << 2))
|
1380 |
|
|
fputs ("OFL ", stdout);
|
1381 |
|
|
if (flags & (1 << 3))
|
1382 |
|
|
fputs ("UFL ", stdout);
|
1383 |
|
|
if (flags & (1 << 4))
|
1384 |
|
|
fputs ("INX ", stdout);
|
1385 |
|
|
putchar ('\n');
|
1386 |
|
|
}
|
1387 |
|
|
|
1388 |
|
|
/* Print interesting information about the floating point processor
|
1389 |
|
|
(if present) or emulator. */
|
1390 |
|
|
static void
|
1391 |
|
|
arm_print_float_info (struct gdbarch *gdbarch, struct ui_file *file,
|
1392 |
|
|
struct frame_info *frame, const char *args)
|
1393 |
|
|
{
|
1394 |
|
|
unsigned long status = get_frame_register_unsigned (frame, ARM_FPS_REGNUM);
|
1395 |
|
|
int type;
|
1396 |
|
|
|
1397 |
|
|
type = (status >> 24) & 127;
|
1398 |
|
|
if (status & (1 << 31))
|
1399 |
|
|
printf (_("Hardware FPU type %d\n"), type);
|
1400 |
|
|
else
|
1401 |
|
|
printf (_("Software FPU type %d\n"), type);
|
1402 |
|
|
/* i18n: [floating point unit] mask */
|
1403 |
|
|
fputs (_("mask: "), stdout);
|
1404 |
|
|
print_fpu_flags (status >> 16);
|
1405 |
|
|
/* i18n: [floating point unit] flags */
|
1406 |
|
|
fputs (_("flags: "), stdout);
|
1407 |
|
|
print_fpu_flags (status);
|
1408 |
|
|
}
|
1409 |
|
|
|
1410 |
|
|
/* Return the GDB type object for the "standard" data type of data in
|
1411 |
|
|
register N. */
|
1412 |
|
|
|
1413 |
|
|
static struct type *
|
1414 |
|
|
arm_register_type (struct gdbarch *gdbarch, int regnum)
|
1415 |
|
|
{
|
1416 |
|
|
if (regnum >= ARM_F0_REGNUM && regnum < ARM_F0_REGNUM + NUM_FREGS)
|
1417 |
|
|
return builtin_type_arm_ext;
|
1418 |
|
|
else if (regnum == ARM_SP_REGNUM)
|
1419 |
|
|
return builtin_type_void_data_ptr;
|
1420 |
|
|
else if (regnum == ARM_PC_REGNUM)
|
1421 |
|
|
return builtin_type_void_func_ptr;
|
1422 |
|
|
else if (regnum >= ARRAY_SIZE (arm_register_names))
|
1423 |
|
|
/* These registers are only supported on targets which supply
|
1424 |
|
|
an XML description. */
|
1425 |
|
|
return builtin_type_int0;
|
1426 |
|
|
else
|
1427 |
|
|
return builtin_type_uint32;
|
1428 |
|
|
}
|
1429 |
|
|
|
1430 |
|
|
/* Map a DWARF register REGNUM onto the appropriate GDB register
|
1431 |
|
|
number. */
|
1432 |
|
|
|
1433 |
|
|
static int
|
1434 |
|
|
arm_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg)
|
1435 |
|
|
{
|
1436 |
|
|
/* Core integer regs. */
|
1437 |
|
|
if (reg >= 0 && reg <= 15)
|
1438 |
|
|
return reg;
|
1439 |
|
|
|
1440 |
|
|
/* Legacy FPA encoding. These were once used in a way which
|
1441 |
|
|
overlapped with VFP register numbering, so their use is
|
1442 |
|
|
discouraged, but GDB doesn't support the ARM toolchain
|
1443 |
|
|
which used them for VFP. */
|
1444 |
|
|
if (reg >= 16 && reg <= 23)
|
1445 |
|
|
return ARM_F0_REGNUM + reg - 16;
|
1446 |
|
|
|
1447 |
|
|
/* New assignments for the FPA registers. */
|
1448 |
|
|
if (reg >= 96 && reg <= 103)
|
1449 |
|
|
return ARM_F0_REGNUM + reg - 96;
|
1450 |
|
|
|
1451 |
|
|
/* WMMX register assignments. */
|
1452 |
|
|
if (reg >= 104 && reg <= 111)
|
1453 |
|
|
return ARM_WCGR0_REGNUM + reg - 104;
|
1454 |
|
|
|
1455 |
|
|
if (reg >= 112 && reg <= 127)
|
1456 |
|
|
return ARM_WR0_REGNUM + reg - 112;
|
1457 |
|
|
|
1458 |
|
|
if (reg >= 192 && reg <= 199)
|
1459 |
|
|
return ARM_WC0_REGNUM + reg - 192;
|
1460 |
|
|
|
1461 |
|
|
return -1;
|
1462 |
|
|
}
|
1463 |
|
|
|
1464 |
|
|
/* Map GDB internal REGNUM onto the Arm simulator register numbers. */
|
1465 |
|
|
static int
|
1466 |
|
|
arm_register_sim_regno (struct gdbarch *gdbarch, int regnum)
|
1467 |
|
|
{
|
1468 |
|
|
int reg = regnum;
|
1469 |
|
|
gdb_assert (reg >= 0 && reg < gdbarch_num_regs (gdbarch));
|
1470 |
|
|
|
1471 |
|
|
if (regnum >= ARM_WR0_REGNUM && regnum <= ARM_WR15_REGNUM)
|
1472 |
|
|
return regnum - ARM_WR0_REGNUM + SIM_ARM_IWMMXT_COP0R0_REGNUM;
|
1473 |
|
|
|
1474 |
|
|
if (regnum >= ARM_WC0_REGNUM && regnum <= ARM_WC7_REGNUM)
|
1475 |
|
|
return regnum - ARM_WC0_REGNUM + SIM_ARM_IWMMXT_COP1R0_REGNUM;
|
1476 |
|
|
|
1477 |
|
|
if (regnum >= ARM_WCGR0_REGNUM && regnum <= ARM_WCGR7_REGNUM)
|
1478 |
|
|
return regnum - ARM_WCGR0_REGNUM + SIM_ARM_IWMMXT_COP1R8_REGNUM;
|
1479 |
|
|
|
1480 |
|
|
if (reg < NUM_GREGS)
|
1481 |
|
|
return SIM_ARM_R0_REGNUM + reg;
|
1482 |
|
|
reg -= NUM_GREGS;
|
1483 |
|
|
|
1484 |
|
|
if (reg < NUM_FREGS)
|
1485 |
|
|
return SIM_ARM_FP0_REGNUM + reg;
|
1486 |
|
|
reg -= NUM_FREGS;
|
1487 |
|
|
|
1488 |
|
|
if (reg < NUM_SREGS)
|
1489 |
|
|
return SIM_ARM_FPS_REGNUM + reg;
|
1490 |
|
|
reg -= NUM_SREGS;
|
1491 |
|
|
|
1492 |
|
|
internal_error (__FILE__, __LINE__, _("Bad REGNUM %d"), regnum);
|
1493 |
|
|
}
|
1494 |
|
|
|
1495 |
|
|
/* NOTE: cagney/2001-08-20: Both convert_from_extended() and
|
1496 |
|
|
convert_to_extended() use floatformat_arm_ext_littlebyte_bigword.
|
1497 |
|
|
It is thought that this is is the floating-point register format on
|
1498 |
|
|
little-endian systems. */
|
1499 |
|
|
|
1500 |
|
|
static void
|
1501 |
|
|
convert_from_extended (const struct floatformat *fmt, const void *ptr,
|
1502 |
|
|
void *dbl, int endianess)
|
1503 |
|
|
{
|
1504 |
|
|
DOUBLEST d;
|
1505 |
|
|
|
1506 |
|
|
if (endianess == BFD_ENDIAN_BIG)
|
1507 |
|
|
floatformat_to_doublest (&floatformat_arm_ext_big, ptr, &d);
|
1508 |
|
|
else
|
1509 |
|
|
floatformat_to_doublest (&floatformat_arm_ext_littlebyte_bigword,
|
1510 |
|
|
ptr, &d);
|
1511 |
|
|
floatformat_from_doublest (fmt, &d, dbl);
|
1512 |
|
|
}
|
1513 |
|
|
|
1514 |
|
|
static void
|
1515 |
|
|
convert_to_extended (const struct floatformat *fmt, void *dbl, const void *ptr,
|
1516 |
|
|
int endianess)
|
1517 |
|
|
{
|
1518 |
|
|
DOUBLEST d;
|
1519 |
|
|
|
1520 |
|
|
floatformat_to_doublest (fmt, ptr, &d);
|
1521 |
|
|
if (endianess == BFD_ENDIAN_BIG)
|
1522 |
|
|
floatformat_from_doublest (&floatformat_arm_ext_big, &d, dbl);
|
1523 |
|
|
else
|
1524 |
|
|
floatformat_from_doublest (&floatformat_arm_ext_littlebyte_bigword,
|
1525 |
|
|
&d, dbl);
|
1526 |
|
|
}
|
1527 |
|
|
|
1528 |
|
|
static int
|
1529 |
|
|
condition_true (unsigned long cond, unsigned long status_reg)
|
1530 |
|
|
{
|
1531 |
|
|
if (cond == INST_AL || cond == INST_NV)
|
1532 |
|
|
return 1;
|
1533 |
|
|
|
1534 |
|
|
switch (cond)
|
1535 |
|
|
{
|
1536 |
|
|
case INST_EQ:
|
1537 |
|
|
return ((status_reg & FLAG_Z) != 0);
|
1538 |
|
|
case INST_NE:
|
1539 |
|
|
return ((status_reg & FLAG_Z) == 0);
|
1540 |
|
|
case INST_CS:
|
1541 |
|
|
return ((status_reg & FLAG_C) != 0);
|
1542 |
|
|
case INST_CC:
|
1543 |
|
|
return ((status_reg & FLAG_C) == 0);
|
1544 |
|
|
case INST_MI:
|
1545 |
|
|
return ((status_reg & FLAG_N) != 0);
|
1546 |
|
|
case INST_PL:
|
1547 |
|
|
return ((status_reg & FLAG_N) == 0);
|
1548 |
|
|
case INST_VS:
|
1549 |
|
|
return ((status_reg & FLAG_V) != 0);
|
1550 |
|
|
case INST_VC:
|
1551 |
|
|
return ((status_reg & FLAG_V) == 0);
|
1552 |
|
|
case INST_HI:
|
1553 |
|
|
return ((status_reg & (FLAG_C | FLAG_Z)) == FLAG_C);
|
1554 |
|
|
case INST_LS:
|
1555 |
|
|
return ((status_reg & (FLAG_C | FLAG_Z)) != FLAG_C);
|
1556 |
|
|
case INST_GE:
|
1557 |
|
|
return (((status_reg & FLAG_N) == 0) == ((status_reg & FLAG_V) == 0));
|
1558 |
|
|
case INST_LT:
|
1559 |
|
|
return (((status_reg & FLAG_N) == 0) != ((status_reg & FLAG_V) == 0));
|
1560 |
|
|
case INST_GT:
|
1561 |
|
|
return (((status_reg & FLAG_Z) == 0) &&
|
1562 |
|
|
(((status_reg & FLAG_N) == 0) == ((status_reg & FLAG_V) == 0)));
|
1563 |
|
|
case INST_LE:
|
1564 |
|
|
return (((status_reg & FLAG_Z) != 0) ||
|
1565 |
|
|
(((status_reg & FLAG_N) == 0) != ((status_reg & FLAG_V) == 0)));
|
1566 |
|
|
}
|
1567 |
|
|
return 1;
|
1568 |
|
|
}
|
1569 |
|
|
|
1570 |
|
|
/* Support routines for single stepping. Calculate the next PC value. */
|
1571 |
|
|
#define submask(x) ((1L << ((x) + 1)) - 1)
|
1572 |
|
|
#define bit(obj,st) (((obj) >> (st)) & 1)
|
1573 |
|
|
#define bits(obj,st,fn) (((obj) >> (st)) & submask ((fn) - (st)))
|
1574 |
|
|
#define sbits(obj,st,fn) \
|
1575 |
|
|
((long) (bits(obj,st,fn) | ((long) bit(obj,fn) * ~ submask (fn - st))))
|
1576 |
|
|
#define BranchDest(addr,instr) \
|
1577 |
|
|
((CORE_ADDR) (((long) (addr)) + 8 + (sbits (instr, 0, 23) << 2)))
|
1578 |
|
|
#define ARM_PC_32 1
|
1579 |
|
|
|
1580 |
|
|
static unsigned long
|
1581 |
|
|
shifted_reg_val (struct frame_info *frame, unsigned long inst, int carry,
|
1582 |
|
|
unsigned long pc_val, unsigned long status_reg)
|
1583 |
|
|
{
|
1584 |
|
|
unsigned long res, shift;
|
1585 |
|
|
int rm = bits (inst, 0, 3);
|
1586 |
|
|
unsigned long shifttype = bits (inst, 5, 6);
|
1587 |
|
|
|
1588 |
|
|
if (bit (inst, 4))
|
1589 |
|
|
{
|
1590 |
|
|
int rs = bits (inst, 8, 11);
|
1591 |
|
|
shift = (rs == 15 ? pc_val + 8
|
1592 |
|
|
: get_frame_register_unsigned (frame, rs)) & 0xFF;
|
1593 |
|
|
}
|
1594 |
|
|
else
|
1595 |
|
|
shift = bits (inst, 7, 11);
|
1596 |
|
|
|
1597 |
|
|
res = (rm == 15
|
1598 |
|
|
? ((pc_val | (ARM_PC_32 ? 0 : status_reg))
|
1599 |
|
|
+ (bit (inst, 4) ? 12 : 8))
|
1600 |
|
|
: get_frame_register_unsigned (frame, rm));
|
1601 |
|
|
|
1602 |
|
|
switch (shifttype)
|
1603 |
|
|
{
|
1604 |
|
|
case 0: /* LSL */
|
1605 |
|
|
res = shift >= 32 ? 0 : res << shift;
|
1606 |
|
|
break;
|
1607 |
|
|
|
1608 |
|
|
case 1: /* LSR */
|
1609 |
|
|
res = shift >= 32 ? 0 : res >> shift;
|
1610 |
|
|
break;
|
1611 |
|
|
|
1612 |
|
|
case 2: /* ASR */
|
1613 |
|
|
if (shift >= 32)
|
1614 |
|
|
shift = 31;
|
1615 |
|
|
res = ((res & 0x80000000L)
|
1616 |
|
|
? ~((~res) >> shift) : res >> shift);
|
1617 |
|
|
break;
|
1618 |
|
|
|
1619 |
|
|
case 3: /* ROR/RRX */
|
1620 |
|
|
shift &= 31;
|
1621 |
|
|
if (shift == 0)
|
1622 |
|
|
res = (res >> 1) | (carry ? 0x80000000L : 0);
|
1623 |
|
|
else
|
1624 |
|
|
res = (res >> shift) | (res << (32 - shift));
|
1625 |
|
|
break;
|
1626 |
|
|
}
|
1627 |
|
|
|
1628 |
|
|
return res & 0xffffffff;
|
1629 |
|
|
}
|
1630 |
|
|
|
1631 |
|
|
/* Return number of 1-bits in VAL. */
|
1632 |
|
|
|
1633 |
|
|
static int
|
1634 |
|
|
bitcount (unsigned long val)
|
1635 |
|
|
{
|
1636 |
|
|
int nbits;
|
1637 |
|
|
for (nbits = 0; val != 0; nbits++)
|
1638 |
|
|
val &= val - 1; /* delete rightmost 1-bit in val */
|
1639 |
|
|
return nbits;
|
1640 |
|
|
}
|
1641 |
|
|
|
1642 |
|
|
static CORE_ADDR
|
1643 |
|
|
thumb_get_next_pc (struct frame_info *frame, CORE_ADDR pc)
|
1644 |
|
|
{
|
1645 |
|
|
struct gdbarch *gdbarch = get_frame_arch (frame);
|
1646 |
|
|
unsigned long pc_val = ((unsigned long) pc) + 4; /* PC after prefetch */
|
1647 |
|
|
unsigned short inst1 = read_memory_unsigned_integer (pc, 2);
|
1648 |
|
|
CORE_ADDR nextpc = pc + 2; /* default is next instruction */
|
1649 |
|
|
unsigned long offset;
|
1650 |
|
|
|
1651 |
|
|
if ((inst1 & 0xff00) == 0xbd00) /* pop {rlist, pc} */
|
1652 |
|
|
{
|
1653 |
|
|
CORE_ADDR sp;
|
1654 |
|
|
|
1655 |
|
|
/* Fetch the saved PC from the stack. It's stored above
|
1656 |
|
|
all of the other registers. */
|
1657 |
|
|
offset = bitcount (bits (inst1, 0, 7)) * INT_REGISTER_SIZE;
|
1658 |
|
|
sp = get_frame_register_unsigned (frame, ARM_SP_REGNUM);
|
1659 |
|
|
nextpc = (CORE_ADDR) read_memory_unsigned_integer (sp + offset, 4);
|
1660 |
|
|
nextpc = gdbarch_addr_bits_remove (gdbarch, nextpc);
|
1661 |
|
|
if (nextpc == pc)
|
1662 |
|
|
error (_("Infinite loop detected"));
|
1663 |
|
|
}
|
1664 |
|
|
else if ((inst1 & 0xf000) == 0xd000) /* conditional branch */
|
1665 |
|
|
{
|
1666 |
|
|
unsigned long status = get_frame_register_unsigned (frame, ARM_PS_REGNUM);
|
1667 |
|
|
unsigned long cond = bits (inst1, 8, 11);
|
1668 |
|
|
if (cond != 0x0f && condition_true (cond, status)) /* 0x0f = SWI */
|
1669 |
|
|
nextpc = pc_val + (sbits (inst1, 0, 7) << 1);
|
1670 |
|
|
}
|
1671 |
|
|
else if ((inst1 & 0xf800) == 0xe000) /* unconditional branch */
|
1672 |
|
|
{
|
1673 |
|
|
nextpc = pc_val + (sbits (inst1, 0, 10) << 1);
|
1674 |
|
|
}
|
1675 |
|
|
else if ((inst1 & 0xf800) == 0xf000) /* long branch with link, and blx */
|
1676 |
|
|
{
|
1677 |
|
|
unsigned short inst2 = read_memory_unsigned_integer (pc + 2, 2);
|
1678 |
|
|
offset = (sbits (inst1, 0, 10) << 12) + (bits (inst2, 0, 10) << 1);
|
1679 |
|
|
nextpc = pc_val + offset;
|
1680 |
|
|
/* For BLX make sure to clear the low bits. */
|
1681 |
|
|
if (bits (inst2, 11, 12) == 1)
|
1682 |
|
|
nextpc = nextpc & 0xfffffffc;
|
1683 |
|
|
}
|
1684 |
|
|
else if ((inst1 & 0xff00) == 0x4700) /* bx REG, blx REG */
|
1685 |
|
|
{
|
1686 |
|
|
if (bits (inst1, 3, 6) == 0x0f)
|
1687 |
|
|
nextpc = pc_val;
|
1688 |
|
|
else
|
1689 |
|
|
nextpc = get_frame_register_unsigned (frame, bits (inst1, 3, 6));
|
1690 |
|
|
|
1691 |
|
|
nextpc = gdbarch_addr_bits_remove (gdbarch, nextpc);
|
1692 |
|
|
if (nextpc == pc)
|
1693 |
|
|
error (_("Infinite loop detected"));
|
1694 |
|
|
}
|
1695 |
|
|
|
1696 |
|
|
return nextpc;
|
1697 |
|
|
}
|
1698 |
|
|
|
1699 |
|
|
CORE_ADDR
|
1700 |
|
|
arm_get_next_pc (struct frame_info *frame, CORE_ADDR pc)
|
1701 |
|
|
{
|
1702 |
|
|
struct gdbarch *gdbarch = get_frame_arch (frame);
|
1703 |
|
|
unsigned long pc_val;
|
1704 |
|
|
unsigned long this_instr;
|
1705 |
|
|
unsigned long status;
|
1706 |
|
|
CORE_ADDR nextpc;
|
1707 |
|
|
|
1708 |
|
|
if (arm_pc_is_thumb (pc))
|
1709 |
|
|
return thumb_get_next_pc (frame, pc);
|
1710 |
|
|
|
1711 |
|
|
pc_val = (unsigned long) pc;
|
1712 |
|
|
this_instr = read_memory_unsigned_integer (pc, 4);
|
1713 |
|
|
status = get_frame_register_unsigned (frame, ARM_PS_REGNUM);
|
1714 |
|
|
nextpc = (CORE_ADDR) (pc_val + 4); /* Default case */
|
1715 |
|
|
|
1716 |
|
|
if (bits (this_instr, 28, 31) == INST_NV)
|
1717 |
|
|
switch (bits (this_instr, 24, 27))
|
1718 |
|
|
{
|
1719 |
|
|
case 0xa:
|
1720 |
|
|
case 0xb:
|
1721 |
|
|
{
|
1722 |
|
|
/* Branch with Link and change to Thumb. */
|
1723 |
|
|
nextpc = BranchDest (pc, this_instr);
|
1724 |
|
|
nextpc |= bit (this_instr, 24) << 1;
|
1725 |
|
|
|
1726 |
|
|
nextpc = gdbarch_addr_bits_remove (gdbarch, nextpc);
|
1727 |
|
|
if (nextpc == pc)
|
1728 |
|
|
error (_("Infinite loop detected"));
|
1729 |
|
|
break;
|
1730 |
|
|
}
|
1731 |
|
|
case 0xc:
|
1732 |
|
|
case 0xd:
|
1733 |
|
|
case 0xe:
|
1734 |
|
|
/* Coprocessor register transfer. */
|
1735 |
|
|
if (bits (this_instr, 12, 15) == 15)
|
1736 |
|
|
error (_("Invalid update to pc in instruction"));
|
1737 |
|
|
break;
|
1738 |
|
|
}
|
1739 |
|
|
else if (condition_true (bits (this_instr, 28, 31), status))
|
1740 |
|
|
{
|
1741 |
|
|
switch (bits (this_instr, 24, 27))
|
1742 |
|
|
{
|
1743 |
|
|
case 0x0:
|
1744 |
|
|
case 0x1: /* data processing */
|
1745 |
|
|
case 0x2:
|
1746 |
|
|
case 0x3:
|
1747 |
|
|
{
|
1748 |
|
|
unsigned long operand1, operand2, result = 0;
|
1749 |
|
|
unsigned long rn;
|
1750 |
|
|
int c;
|
1751 |
|
|
|
1752 |
|
|
if (bits (this_instr, 12, 15) != 15)
|
1753 |
|
|
break;
|
1754 |
|
|
|
1755 |
|
|
if (bits (this_instr, 22, 25) == 0
|
1756 |
|
|
&& bits (this_instr, 4, 7) == 9) /* multiply */
|
1757 |
|
|
error (_("Invalid update to pc in instruction"));
|
1758 |
|
|
|
1759 |
|
|
/* BX <reg>, BLX <reg> */
|
1760 |
|
|
if (bits (this_instr, 4, 27) == 0x12fff1
|
1761 |
|
|
|| bits (this_instr, 4, 27) == 0x12fff3)
|
1762 |
|
|
{
|
1763 |
|
|
rn = bits (this_instr, 0, 3);
|
1764 |
|
|
result = (rn == 15) ? pc_val + 8
|
1765 |
|
|
: get_frame_register_unsigned (frame, rn);
|
1766 |
|
|
nextpc = (CORE_ADDR) gdbarch_addr_bits_remove
|
1767 |
|
|
(gdbarch, result);
|
1768 |
|
|
|
1769 |
|
|
if (nextpc == pc)
|
1770 |
|
|
error (_("Infinite loop detected"));
|
1771 |
|
|
|
1772 |
|
|
return nextpc;
|
1773 |
|
|
}
|
1774 |
|
|
|
1775 |
|
|
/* Multiply into PC */
|
1776 |
|
|
c = (status & FLAG_C) ? 1 : 0;
|
1777 |
|
|
rn = bits (this_instr, 16, 19);
|
1778 |
|
|
operand1 = (rn == 15) ? pc_val + 8
|
1779 |
|
|
: get_frame_register_unsigned (frame, rn);
|
1780 |
|
|
|
1781 |
|
|
if (bit (this_instr, 25))
|
1782 |
|
|
{
|
1783 |
|
|
unsigned long immval = bits (this_instr, 0, 7);
|
1784 |
|
|
unsigned long rotate = 2 * bits (this_instr, 8, 11);
|
1785 |
|
|
operand2 = ((immval >> rotate) | (immval << (32 - rotate)))
|
1786 |
|
|
& 0xffffffff;
|
1787 |
|
|
}
|
1788 |
|
|
else /* operand 2 is a shifted register */
|
1789 |
|
|
operand2 = shifted_reg_val (frame, this_instr, c, pc_val, status);
|
1790 |
|
|
|
1791 |
|
|
switch (bits (this_instr, 21, 24))
|
1792 |
|
|
{
|
1793 |
|
|
case 0x0: /*and */
|
1794 |
|
|
result = operand1 & operand2;
|
1795 |
|
|
break;
|
1796 |
|
|
|
1797 |
|
|
case 0x1: /*eor */
|
1798 |
|
|
result = operand1 ^ operand2;
|
1799 |
|
|
break;
|
1800 |
|
|
|
1801 |
|
|
case 0x2: /*sub */
|
1802 |
|
|
result = operand1 - operand2;
|
1803 |
|
|
break;
|
1804 |
|
|
|
1805 |
|
|
case 0x3: /*rsb */
|
1806 |
|
|
result = operand2 - operand1;
|
1807 |
|
|
break;
|
1808 |
|
|
|
1809 |
|
|
case 0x4: /*add */
|
1810 |
|
|
result = operand1 + operand2;
|
1811 |
|
|
break;
|
1812 |
|
|
|
1813 |
|
|
case 0x5: /*adc */
|
1814 |
|
|
result = operand1 + operand2 + c;
|
1815 |
|
|
break;
|
1816 |
|
|
|
1817 |
|
|
case 0x6: /*sbc */
|
1818 |
|
|
result = operand1 - operand2 + c;
|
1819 |
|
|
break;
|
1820 |
|
|
|
1821 |
|
|
case 0x7: /*rsc */
|
1822 |
|
|
result = operand2 - operand1 + c;
|
1823 |
|
|
break;
|
1824 |
|
|
|
1825 |
|
|
case 0x8:
|
1826 |
|
|
case 0x9:
|
1827 |
|
|
case 0xa:
|
1828 |
|
|
case 0xb: /* tst, teq, cmp, cmn */
|
1829 |
|
|
result = (unsigned long) nextpc;
|
1830 |
|
|
break;
|
1831 |
|
|
|
1832 |
|
|
case 0xc: /*orr */
|
1833 |
|
|
result = operand1 | operand2;
|
1834 |
|
|
break;
|
1835 |
|
|
|
1836 |
|
|
case 0xd: /*mov */
|
1837 |
|
|
/* Always step into a function. */
|
1838 |
|
|
result = operand2;
|
1839 |
|
|
break;
|
1840 |
|
|
|
1841 |
|
|
case 0xe: /*bic */
|
1842 |
|
|
result = operand1 & ~operand2;
|
1843 |
|
|
break;
|
1844 |
|
|
|
1845 |
|
|
case 0xf: /*mvn */
|
1846 |
|
|
result = ~operand2;
|
1847 |
|
|
break;
|
1848 |
|
|
}
|
1849 |
|
|
nextpc = (CORE_ADDR) gdbarch_addr_bits_remove
|
1850 |
|
|
(gdbarch, result);
|
1851 |
|
|
|
1852 |
|
|
if (nextpc == pc)
|
1853 |
|
|
error (_("Infinite loop detected"));
|
1854 |
|
|
break;
|
1855 |
|
|
}
|
1856 |
|
|
|
1857 |
|
|
case 0x4:
|
1858 |
|
|
case 0x5: /* data transfer */
|
1859 |
|
|
case 0x6:
|
1860 |
|
|
case 0x7:
|
1861 |
|
|
if (bit (this_instr, 20))
|
1862 |
|
|
{
|
1863 |
|
|
/* load */
|
1864 |
|
|
if (bits (this_instr, 12, 15) == 15)
|
1865 |
|
|
{
|
1866 |
|
|
/* rd == pc */
|
1867 |
|
|
unsigned long rn;
|
1868 |
|
|
unsigned long base;
|
1869 |
|
|
|
1870 |
|
|
if (bit (this_instr, 22))
|
1871 |
|
|
error (_("Invalid update to pc in instruction"));
|
1872 |
|
|
|
1873 |
|
|
/* byte write to PC */
|
1874 |
|
|
rn = bits (this_instr, 16, 19);
|
1875 |
|
|
base = (rn == 15) ? pc_val + 8
|
1876 |
|
|
: get_frame_register_unsigned (frame, rn);
|
1877 |
|
|
if (bit (this_instr, 24))
|
1878 |
|
|
{
|
1879 |
|
|
/* pre-indexed */
|
1880 |
|
|
int c = (status & FLAG_C) ? 1 : 0;
|
1881 |
|
|
unsigned long offset =
|
1882 |
|
|
(bit (this_instr, 25)
|
1883 |
|
|
? shifted_reg_val (frame, this_instr, c, pc_val, status)
|
1884 |
|
|
: bits (this_instr, 0, 11));
|
1885 |
|
|
|
1886 |
|
|
if (bit (this_instr, 23))
|
1887 |
|
|
base += offset;
|
1888 |
|
|
else
|
1889 |
|
|
base -= offset;
|
1890 |
|
|
}
|
1891 |
|
|
nextpc = (CORE_ADDR) read_memory_integer ((CORE_ADDR) base,
|
1892 |
|
|
4);
|
1893 |
|
|
|
1894 |
|
|
nextpc = gdbarch_addr_bits_remove (gdbarch, nextpc);
|
1895 |
|
|
|
1896 |
|
|
if (nextpc == pc)
|
1897 |
|
|
error (_("Infinite loop detected"));
|
1898 |
|
|
}
|
1899 |
|
|
}
|
1900 |
|
|
break;
|
1901 |
|
|
|
1902 |
|
|
case 0x8:
|
1903 |
|
|
case 0x9: /* block transfer */
|
1904 |
|
|
if (bit (this_instr, 20))
|
1905 |
|
|
{
|
1906 |
|
|
/* LDM */
|
1907 |
|
|
if (bit (this_instr, 15))
|
1908 |
|
|
{
|
1909 |
|
|
/* loading pc */
|
1910 |
|
|
int offset = 0;
|
1911 |
|
|
|
1912 |
|
|
if (bit (this_instr, 23))
|
1913 |
|
|
{
|
1914 |
|
|
/* up */
|
1915 |
|
|
unsigned long reglist = bits (this_instr, 0, 14);
|
1916 |
|
|
offset = bitcount (reglist) * 4;
|
1917 |
|
|
if (bit (this_instr, 24)) /* pre */
|
1918 |
|
|
offset += 4;
|
1919 |
|
|
}
|
1920 |
|
|
else if (bit (this_instr, 24))
|
1921 |
|
|
offset = -4;
|
1922 |
|
|
|
1923 |
|
|
{
|
1924 |
|
|
unsigned long rn_val =
|
1925 |
|
|
get_frame_register_unsigned (frame,
|
1926 |
|
|
bits (this_instr, 16, 19));
|
1927 |
|
|
nextpc =
|
1928 |
|
|
(CORE_ADDR) read_memory_integer ((CORE_ADDR) (rn_val
|
1929 |
|
|
+ offset),
|
1930 |
|
|
4);
|
1931 |
|
|
}
|
1932 |
|
|
nextpc = gdbarch_addr_bits_remove
|
1933 |
|
|
(gdbarch, nextpc);
|
1934 |
|
|
if (nextpc == pc)
|
1935 |
|
|
error (_("Infinite loop detected"));
|
1936 |
|
|
}
|
1937 |
|
|
}
|
1938 |
|
|
break;
|
1939 |
|
|
|
1940 |
|
|
case 0xb: /* branch & link */
|
1941 |
|
|
case 0xa: /* branch */
|
1942 |
|
|
{
|
1943 |
|
|
nextpc = BranchDest (pc, this_instr);
|
1944 |
|
|
|
1945 |
|
|
nextpc = gdbarch_addr_bits_remove (gdbarch, nextpc);
|
1946 |
|
|
if (nextpc == pc)
|
1947 |
|
|
error (_("Infinite loop detected"));
|
1948 |
|
|
break;
|
1949 |
|
|
}
|
1950 |
|
|
|
1951 |
|
|
case 0xc:
|
1952 |
|
|
case 0xd:
|
1953 |
|
|
case 0xe: /* coproc ops */
|
1954 |
|
|
case 0xf: /* SWI */
|
1955 |
|
|
break;
|
1956 |
|
|
|
1957 |
|
|
default:
|
1958 |
|
|
fprintf_filtered (gdb_stderr, _("Bad bit-field extraction\n"));
|
1959 |
|
|
return (pc);
|
1960 |
|
|
}
|
1961 |
|
|
}
|
1962 |
|
|
|
1963 |
|
|
return nextpc;
|
1964 |
|
|
}
|
1965 |
|
|
|
1966 |
|
|
/* single_step() is called just before we want to resume the inferior,
|
1967 |
|
|
if we want to single-step it but there is no hardware or kernel
|
1968 |
|
|
single-step support. We find the target of the coming instruction
|
1969 |
|
|
and breakpoint it. */
|
1970 |
|
|
|
1971 |
|
|
int
|
1972 |
|
|
arm_software_single_step (struct frame_info *frame)
|
1973 |
|
|
{
|
1974 |
|
|
/* NOTE: This may insert the wrong breakpoint instruction when
|
1975 |
|
|
single-stepping over a mode-changing instruction, if the
|
1976 |
|
|
CPSR heuristics are used. */
|
1977 |
|
|
|
1978 |
|
|
CORE_ADDR next_pc = arm_get_next_pc (frame, get_frame_pc (frame));
|
1979 |
|
|
insert_single_step_breakpoint (next_pc);
|
1980 |
|
|
|
1981 |
|
|
return 1;
|
1982 |
|
|
}
|
1983 |
|
|
|
1984 |
|
|
#include "bfd-in2.h"
|
1985 |
|
|
#include "libcoff.h"
|
1986 |
|
|
|
1987 |
|
|
static int
|
1988 |
|
|
gdb_print_insn_arm (bfd_vma memaddr, disassemble_info *info)
|
1989 |
|
|
{
|
1990 |
|
|
if (arm_pc_is_thumb (memaddr))
|
1991 |
|
|
{
|
1992 |
|
|
static asymbol *asym;
|
1993 |
|
|
static combined_entry_type ce;
|
1994 |
|
|
static struct coff_symbol_struct csym;
|
1995 |
|
|
static struct bfd fake_bfd;
|
1996 |
|
|
static bfd_target fake_target;
|
1997 |
|
|
|
1998 |
|
|
if (csym.native == NULL)
|
1999 |
|
|
{
|
2000 |
|
|
/* Create a fake symbol vector containing a Thumb symbol.
|
2001 |
|
|
This is solely so that the code in print_insn_little_arm()
|
2002 |
|
|
and print_insn_big_arm() in opcodes/arm-dis.c will detect
|
2003 |
|
|
the presence of a Thumb symbol and switch to decoding
|
2004 |
|
|
Thumb instructions. */
|
2005 |
|
|
|
2006 |
|
|
fake_target.flavour = bfd_target_coff_flavour;
|
2007 |
|
|
fake_bfd.xvec = &fake_target;
|
2008 |
|
|
ce.u.syment.n_sclass = C_THUMBEXTFUNC;
|
2009 |
|
|
csym.native = &ce;
|
2010 |
|
|
csym.symbol.the_bfd = &fake_bfd;
|
2011 |
|
|
csym.symbol.name = "fake";
|
2012 |
|
|
asym = (asymbol *) & csym;
|
2013 |
|
|
}
|
2014 |
|
|
|
2015 |
|
|
memaddr = UNMAKE_THUMB_ADDR (memaddr);
|
2016 |
|
|
info->symbols = &asym;
|
2017 |
|
|
}
|
2018 |
|
|
else
|
2019 |
|
|
info->symbols = NULL;
|
2020 |
|
|
|
2021 |
|
|
if (info->endian == BFD_ENDIAN_BIG)
|
2022 |
|
|
return print_insn_big_arm (memaddr, info);
|
2023 |
|
|
else
|
2024 |
|
|
return print_insn_little_arm (memaddr, info);
|
2025 |
|
|
}
|
2026 |
|
|
|
2027 |
|
|
/* The following define instruction sequences that will cause ARM
|
2028 |
|
|
cpu's to take an undefined instruction trap. These are used to
|
2029 |
|
|
signal a breakpoint to GDB.
|
2030 |
|
|
|
2031 |
|
|
The newer ARMv4T cpu's are capable of operating in ARM or Thumb
|
2032 |
|
|
modes. A different instruction is required for each mode. The ARM
|
2033 |
|
|
cpu's can also be big or little endian. Thus four different
|
2034 |
|
|
instructions are needed to support all cases.
|
2035 |
|
|
|
2036 |
|
|
Note: ARMv4 defines several new instructions that will take the
|
2037 |
|
|
undefined instruction trap. ARM7TDMI is nominally ARMv4T, but does
|
2038 |
|
|
not in fact add the new instructions. The new undefined
|
2039 |
|
|
instructions in ARMv4 are all instructions that had no defined
|
2040 |
|
|
behaviour in earlier chips. There is no guarantee that they will
|
2041 |
|
|
raise an exception, but may be treated as NOP's. In practice, it
|
2042 |
|
|
may only safe to rely on instructions matching:
|
2043 |
|
|
|
2044 |
|
|
3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1
|
2045 |
|
|
1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
|
2046 |
|
|
C C C C 0 1 1 x x x x x x x x x x x x x x x x x x x x 1 x x x x
|
2047 |
|
|
|
2048 |
|
|
Even this may only true if the condition predicate is true. The
|
2049 |
|
|
following use a condition predicate of ALWAYS so it is always TRUE.
|
2050 |
|
|
|
2051 |
|
|
There are other ways of forcing a breakpoint. GNU/Linux, RISC iX,
|
2052 |
|
|
and NetBSD all use a software interrupt rather than an undefined
|
2053 |
|
|
instruction to force a trap. This can be handled by by the
|
2054 |
|
|
abi-specific code during establishment of the gdbarch vector. */
|
2055 |
|
|
|
2056 |
|
|
#define ARM_LE_BREAKPOINT {0xFE,0xDE,0xFF,0xE7}
|
2057 |
|
|
#define ARM_BE_BREAKPOINT {0xE7,0xFF,0xDE,0xFE}
|
2058 |
|
|
#define THUMB_LE_BREAKPOINT {0xbe,0xbe}
|
2059 |
|
|
#define THUMB_BE_BREAKPOINT {0xbe,0xbe}
|
2060 |
|
|
|
2061 |
|
|
static const char arm_default_arm_le_breakpoint[] = ARM_LE_BREAKPOINT;
|
2062 |
|
|
static const char arm_default_arm_be_breakpoint[] = ARM_BE_BREAKPOINT;
|
2063 |
|
|
static const char arm_default_thumb_le_breakpoint[] = THUMB_LE_BREAKPOINT;
|
2064 |
|
|
static const char arm_default_thumb_be_breakpoint[] = THUMB_BE_BREAKPOINT;
|
2065 |
|
|
|
2066 |
|
|
/* Determine the type and size of breakpoint to insert at PCPTR. Uses
|
2067 |
|
|
the program counter value to determine whether a 16-bit or 32-bit
|
2068 |
|
|
breakpoint should be used. It returns a pointer to a string of
|
2069 |
|
|
bytes that encode a breakpoint instruction, stores the length of
|
2070 |
|
|
the string to *lenptr, and adjusts the program counter (if
|
2071 |
|
|
necessary) to point to the actual memory location where the
|
2072 |
|
|
breakpoint should be inserted. */
|
2073 |
|
|
|
2074 |
|
|
static const unsigned char *
|
2075 |
|
|
arm_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr, int *lenptr)
|
2076 |
|
|
{
|
2077 |
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
2078 |
|
|
|
2079 |
|
|
if (arm_pc_is_thumb (*pcptr))
|
2080 |
|
|
{
|
2081 |
|
|
*pcptr = UNMAKE_THUMB_ADDR (*pcptr);
|
2082 |
|
|
*lenptr = tdep->thumb_breakpoint_size;
|
2083 |
|
|
return tdep->thumb_breakpoint;
|
2084 |
|
|
}
|
2085 |
|
|
else
|
2086 |
|
|
{
|
2087 |
|
|
*lenptr = tdep->arm_breakpoint_size;
|
2088 |
|
|
return tdep->arm_breakpoint;
|
2089 |
|
|
}
|
2090 |
|
|
}
|
2091 |
|
|
|
2092 |
|
|
/* Extract from an array REGBUF containing the (raw) register state a
|
2093 |
|
|
function return value of type TYPE, and copy that, in virtual
|
2094 |
|
|
format, into VALBUF. */
|
2095 |
|
|
|
2096 |
|
|
static void
|
2097 |
|
|
arm_extract_return_value (struct type *type, struct regcache *regs,
|
2098 |
|
|
gdb_byte *valbuf)
|
2099 |
|
|
{
|
2100 |
|
|
struct gdbarch *gdbarch = get_regcache_arch (regs);
|
2101 |
|
|
|
2102 |
|
|
if (TYPE_CODE_FLT == TYPE_CODE (type))
|
2103 |
|
|
{
|
2104 |
|
|
switch (gdbarch_tdep (gdbarch)->fp_model)
|
2105 |
|
|
{
|
2106 |
|
|
case ARM_FLOAT_FPA:
|
2107 |
|
|
{
|
2108 |
|
|
/* The value is in register F0 in internal format. We need to
|
2109 |
|
|
extract the raw value and then convert it to the desired
|
2110 |
|
|
internal type. */
|
2111 |
|
|
bfd_byte tmpbuf[FP_REGISTER_SIZE];
|
2112 |
|
|
|
2113 |
|
|
regcache_cooked_read (regs, ARM_F0_REGNUM, tmpbuf);
|
2114 |
|
|
convert_from_extended (floatformat_from_type (type), tmpbuf,
|
2115 |
|
|
valbuf, gdbarch_byte_order (gdbarch));
|
2116 |
|
|
}
|
2117 |
|
|
break;
|
2118 |
|
|
|
2119 |
|
|
case ARM_FLOAT_SOFT_FPA:
|
2120 |
|
|
case ARM_FLOAT_SOFT_VFP:
|
2121 |
|
|
regcache_cooked_read (regs, ARM_A1_REGNUM, valbuf);
|
2122 |
|
|
if (TYPE_LENGTH (type) > 4)
|
2123 |
|
|
regcache_cooked_read (regs, ARM_A1_REGNUM + 1,
|
2124 |
|
|
valbuf + INT_REGISTER_SIZE);
|
2125 |
|
|
break;
|
2126 |
|
|
|
2127 |
|
|
default:
|
2128 |
|
|
internal_error
|
2129 |
|
|
(__FILE__, __LINE__,
|
2130 |
|
|
_("arm_extract_return_value: Floating point model not supported"));
|
2131 |
|
|
break;
|
2132 |
|
|
}
|
2133 |
|
|
}
|
2134 |
|
|
else if (TYPE_CODE (type) == TYPE_CODE_INT
|
2135 |
|
|
|| TYPE_CODE (type) == TYPE_CODE_CHAR
|
2136 |
|
|
|| TYPE_CODE (type) == TYPE_CODE_BOOL
|
2137 |
|
|
|| TYPE_CODE (type) == TYPE_CODE_PTR
|
2138 |
|
|
|| TYPE_CODE (type) == TYPE_CODE_REF
|
2139 |
|
|
|| TYPE_CODE (type) == TYPE_CODE_ENUM)
|
2140 |
|
|
{
|
2141 |
|
|
/* If the the type is a plain integer, then the access is
|
2142 |
|
|
straight-forward. Otherwise we have to play around a bit more. */
|
2143 |
|
|
int len = TYPE_LENGTH (type);
|
2144 |
|
|
int regno = ARM_A1_REGNUM;
|
2145 |
|
|
ULONGEST tmp;
|
2146 |
|
|
|
2147 |
|
|
while (len > 0)
|
2148 |
|
|
{
|
2149 |
|
|
/* By using store_unsigned_integer we avoid having to do
|
2150 |
|
|
anything special for small big-endian values. */
|
2151 |
|
|
regcache_cooked_read_unsigned (regs, regno++, &tmp);
|
2152 |
|
|
store_unsigned_integer (valbuf,
|
2153 |
|
|
(len > INT_REGISTER_SIZE
|
2154 |
|
|
? INT_REGISTER_SIZE : len),
|
2155 |
|
|
tmp);
|
2156 |
|
|
len -= INT_REGISTER_SIZE;
|
2157 |
|
|
valbuf += INT_REGISTER_SIZE;
|
2158 |
|
|
}
|
2159 |
|
|
}
|
2160 |
|
|
else
|
2161 |
|
|
{
|
2162 |
|
|
/* For a structure or union the behaviour is as if the value had
|
2163 |
|
|
been stored to word-aligned memory and then loaded into
|
2164 |
|
|
registers with 32-bit load instruction(s). */
|
2165 |
|
|
int len = TYPE_LENGTH (type);
|
2166 |
|
|
int regno = ARM_A1_REGNUM;
|
2167 |
|
|
bfd_byte tmpbuf[INT_REGISTER_SIZE];
|
2168 |
|
|
|
2169 |
|
|
while (len > 0)
|
2170 |
|
|
{
|
2171 |
|
|
regcache_cooked_read (regs, regno++, tmpbuf);
|
2172 |
|
|
memcpy (valbuf, tmpbuf,
|
2173 |
|
|
len > INT_REGISTER_SIZE ? INT_REGISTER_SIZE : len);
|
2174 |
|
|
len -= INT_REGISTER_SIZE;
|
2175 |
|
|
valbuf += INT_REGISTER_SIZE;
|
2176 |
|
|
}
|
2177 |
|
|
}
|
2178 |
|
|
}
|
2179 |
|
|
|
2180 |
|
|
|
2181 |
|
|
/* Will a function return an aggregate type in memory or in a
|
2182 |
|
|
register? Return 0 if an aggregate type can be returned in a
|
2183 |
|
|
register, 1 if it must be returned in memory. */
|
2184 |
|
|
|
2185 |
|
|
static int
|
2186 |
|
|
arm_return_in_memory (struct gdbarch *gdbarch, struct type *type)
|
2187 |
|
|
{
|
2188 |
|
|
int nRc;
|
2189 |
|
|
enum type_code code;
|
2190 |
|
|
|
2191 |
|
|
CHECK_TYPEDEF (type);
|
2192 |
|
|
|
2193 |
|
|
/* In the ARM ABI, "integer" like aggregate types are returned in
|
2194 |
|
|
registers. For an aggregate type to be integer like, its size
|
2195 |
|
|
must be less than or equal to INT_REGISTER_SIZE and the
|
2196 |
|
|
offset of each addressable subfield must be zero. Note that bit
|
2197 |
|
|
fields are not addressable, and all addressable subfields of
|
2198 |
|
|
unions always start at offset zero.
|
2199 |
|
|
|
2200 |
|
|
This function is based on the behaviour of GCC 2.95.1.
|
2201 |
|
|
See: gcc/arm.c: arm_return_in_memory() for details.
|
2202 |
|
|
|
2203 |
|
|
Note: All versions of GCC before GCC 2.95.2 do not set up the
|
2204 |
|
|
parameters correctly for a function returning the following
|
2205 |
|
|
structure: struct { float f;}; This should be returned in memory,
|
2206 |
|
|
not a register. Richard Earnshaw sent me a patch, but I do not
|
2207 |
|
|
know of any way to detect if a function like the above has been
|
2208 |
|
|
compiled with the correct calling convention. */
|
2209 |
|
|
|
2210 |
|
|
/* All aggregate types that won't fit in a register must be returned
|
2211 |
|
|
in memory. */
|
2212 |
|
|
if (TYPE_LENGTH (type) > INT_REGISTER_SIZE)
|
2213 |
|
|
{
|
2214 |
|
|
return 1;
|
2215 |
|
|
}
|
2216 |
|
|
|
2217 |
|
|
/* The AAPCS says all aggregates not larger than a word are returned
|
2218 |
|
|
in a register. */
|
2219 |
|
|
if (gdbarch_tdep (gdbarch)->arm_abi != ARM_ABI_APCS)
|
2220 |
|
|
return 0;
|
2221 |
|
|
|
2222 |
|
|
/* The only aggregate types that can be returned in a register are
|
2223 |
|
|
structs and unions. Arrays must be returned in memory. */
|
2224 |
|
|
code = TYPE_CODE (type);
|
2225 |
|
|
if ((TYPE_CODE_STRUCT != code) && (TYPE_CODE_UNION != code))
|
2226 |
|
|
{
|
2227 |
|
|
return 1;
|
2228 |
|
|
}
|
2229 |
|
|
|
2230 |
|
|
/* Assume all other aggregate types can be returned in a register.
|
2231 |
|
|
Run a check for structures, unions and arrays. */
|
2232 |
|
|
nRc = 0;
|
2233 |
|
|
|
2234 |
|
|
if ((TYPE_CODE_STRUCT == code) || (TYPE_CODE_UNION == code))
|
2235 |
|
|
{
|
2236 |
|
|
int i;
|
2237 |
|
|
/* Need to check if this struct/union is "integer" like. For
|
2238 |
|
|
this to be true, its size must be less than or equal to
|
2239 |
|
|
INT_REGISTER_SIZE and the offset of each addressable
|
2240 |
|
|
subfield must be zero. Note that bit fields are not
|
2241 |
|
|
addressable, and unions always start at offset zero. If any
|
2242 |
|
|
of the subfields is a floating point type, the struct/union
|
2243 |
|
|
cannot be an integer type. */
|
2244 |
|
|
|
2245 |
|
|
/* For each field in the object, check:
|
2246 |
|
|
1) Is it FP? --> yes, nRc = 1;
|
2247 |
|
|
2) Is it addressable (bitpos != 0) and
|
2248 |
|
|
not packed (bitsize == 0)?
|
2249 |
|
|
--> yes, nRc = 1
|
2250 |
|
|
*/
|
2251 |
|
|
|
2252 |
|
|
for (i = 0; i < TYPE_NFIELDS (type); i++)
|
2253 |
|
|
{
|
2254 |
|
|
enum type_code field_type_code;
|
2255 |
|
|
field_type_code = TYPE_CODE (check_typedef (TYPE_FIELD_TYPE (type, i)));
|
2256 |
|
|
|
2257 |
|
|
/* Is it a floating point type field? */
|
2258 |
|
|
if (field_type_code == TYPE_CODE_FLT)
|
2259 |
|
|
{
|
2260 |
|
|
nRc = 1;
|
2261 |
|
|
break;
|
2262 |
|
|
}
|
2263 |
|
|
|
2264 |
|
|
/* If bitpos != 0, then we have to care about it. */
|
2265 |
|
|
if (TYPE_FIELD_BITPOS (type, i) != 0)
|
2266 |
|
|
{
|
2267 |
|
|
/* Bitfields are not addressable. If the field bitsize is
|
2268 |
|
|
zero, then the field is not packed. Hence it cannot be
|
2269 |
|
|
a bitfield or any other packed type. */
|
2270 |
|
|
if (TYPE_FIELD_BITSIZE (type, i) == 0)
|
2271 |
|
|
{
|
2272 |
|
|
nRc = 1;
|
2273 |
|
|
break;
|
2274 |
|
|
}
|
2275 |
|
|
}
|
2276 |
|
|
}
|
2277 |
|
|
}
|
2278 |
|
|
|
2279 |
|
|
return nRc;
|
2280 |
|
|
}
|
2281 |
|
|
|
2282 |
|
|
/* Write into appropriate registers a function return value of type
|
2283 |
|
|
TYPE, given in virtual format. */
|
2284 |
|
|
|
2285 |
|
|
static void
|
2286 |
|
|
arm_store_return_value (struct type *type, struct regcache *regs,
|
2287 |
|
|
const gdb_byte *valbuf)
|
2288 |
|
|
{
|
2289 |
|
|
struct gdbarch *gdbarch = get_regcache_arch (regs);
|
2290 |
|
|
|
2291 |
|
|
if (TYPE_CODE (type) == TYPE_CODE_FLT)
|
2292 |
|
|
{
|
2293 |
|
|
char buf[MAX_REGISTER_SIZE];
|
2294 |
|
|
|
2295 |
|
|
switch (gdbarch_tdep (gdbarch)->fp_model)
|
2296 |
|
|
{
|
2297 |
|
|
case ARM_FLOAT_FPA:
|
2298 |
|
|
|
2299 |
|
|
convert_to_extended (floatformat_from_type (type), buf, valbuf,
|
2300 |
|
|
gdbarch_byte_order (gdbarch));
|
2301 |
|
|
regcache_cooked_write (regs, ARM_F0_REGNUM, buf);
|
2302 |
|
|
break;
|
2303 |
|
|
|
2304 |
|
|
case ARM_FLOAT_SOFT_FPA:
|
2305 |
|
|
case ARM_FLOAT_SOFT_VFP:
|
2306 |
|
|
regcache_cooked_write (regs, ARM_A1_REGNUM, valbuf);
|
2307 |
|
|
if (TYPE_LENGTH (type) > 4)
|
2308 |
|
|
regcache_cooked_write (regs, ARM_A1_REGNUM + 1,
|
2309 |
|
|
valbuf + INT_REGISTER_SIZE);
|
2310 |
|
|
break;
|
2311 |
|
|
|
2312 |
|
|
default:
|
2313 |
|
|
internal_error
|
2314 |
|
|
(__FILE__, __LINE__,
|
2315 |
|
|
_("arm_store_return_value: Floating point model not supported"));
|
2316 |
|
|
break;
|
2317 |
|
|
}
|
2318 |
|
|
}
|
2319 |
|
|
else if (TYPE_CODE (type) == TYPE_CODE_INT
|
2320 |
|
|
|| TYPE_CODE (type) == TYPE_CODE_CHAR
|
2321 |
|
|
|| TYPE_CODE (type) == TYPE_CODE_BOOL
|
2322 |
|
|
|| TYPE_CODE (type) == TYPE_CODE_PTR
|
2323 |
|
|
|| TYPE_CODE (type) == TYPE_CODE_REF
|
2324 |
|
|
|| TYPE_CODE (type) == TYPE_CODE_ENUM)
|
2325 |
|
|
{
|
2326 |
|
|
if (TYPE_LENGTH (type) <= 4)
|
2327 |
|
|
{
|
2328 |
|
|
/* Values of one word or less are zero/sign-extended and
|
2329 |
|
|
returned in r0. */
|
2330 |
|
|
bfd_byte tmpbuf[INT_REGISTER_SIZE];
|
2331 |
|
|
LONGEST val = unpack_long (type, valbuf);
|
2332 |
|
|
|
2333 |
|
|
store_signed_integer (tmpbuf, INT_REGISTER_SIZE, val);
|
2334 |
|
|
regcache_cooked_write (regs, ARM_A1_REGNUM, tmpbuf);
|
2335 |
|
|
}
|
2336 |
|
|
else
|
2337 |
|
|
{
|
2338 |
|
|
/* Integral values greater than one word are stored in consecutive
|
2339 |
|
|
registers starting with r0. This will always be a multiple of
|
2340 |
|
|
the regiser size. */
|
2341 |
|
|
int len = TYPE_LENGTH (type);
|
2342 |
|
|
int regno = ARM_A1_REGNUM;
|
2343 |
|
|
|
2344 |
|
|
while (len > 0)
|
2345 |
|
|
{
|
2346 |
|
|
regcache_cooked_write (regs, regno++, valbuf);
|
2347 |
|
|
len -= INT_REGISTER_SIZE;
|
2348 |
|
|
valbuf += INT_REGISTER_SIZE;
|
2349 |
|
|
}
|
2350 |
|
|
}
|
2351 |
|
|
}
|
2352 |
|
|
else
|
2353 |
|
|
{
|
2354 |
|
|
/* For a structure or union the behaviour is as if the value had
|
2355 |
|
|
been stored to word-aligned memory and then loaded into
|
2356 |
|
|
registers with 32-bit load instruction(s). */
|
2357 |
|
|
int len = TYPE_LENGTH (type);
|
2358 |
|
|
int regno = ARM_A1_REGNUM;
|
2359 |
|
|
bfd_byte tmpbuf[INT_REGISTER_SIZE];
|
2360 |
|
|
|
2361 |
|
|
while (len > 0)
|
2362 |
|
|
{
|
2363 |
|
|
memcpy (tmpbuf, valbuf,
|
2364 |
|
|
len > INT_REGISTER_SIZE ? INT_REGISTER_SIZE : len);
|
2365 |
|
|
regcache_cooked_write (regs, regno++, tmpbuf);
|
2366 |
|
|
len -= INT_REGISTER_SIZE;
|
2367 |
|
|
valbuf += INT_REGISTER_SIZE;
|
2368 |
|
|
}
|
2369 |
|
|
}
|
2370 |
|
|
}
|
2371 |
|
|
|
2372 |
|
|
|
2373 |
|
|
/* Handle function return values. */
|
2374 |
|
|
|
2375 |
|
|
static enum return_value_convention
|
2376 |
|
|
arm_return_value (struct gdbarch *gdbarch, struct type *valtype,
|
2377 |
|
|
struct regcache *regcache, gdb_byte *readbuf,
|
2378 |
|
|
const gdb_byte *writebuf)
|
2379 |
|
|
{
|
2380 |
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
2381 |
|
|
|
2382 |
|
|
if (TYPE_CODE (valtype) == TYPE_CODE_STRUCT
|
2383 |
|
|
|| TYPE_CODE (valtype) == TYPE_CODE_UNION
|
2384 |
|
|
|| TYPE_CODE (valtype) == TYPE_CODE_ARRAY)
|
2385 |
|
|
{
|
2386 |
|
|
if (tdep->struct_return == pcc_struct_return
|
2387 |
|
|
|| arm_return_in_memory (gdbarch, valtype))
|
2388 |
|
|
return RETURN_VALUE_STRUCT_CONVENTION;
|
2389 |
|
|
}
|
2390 |
|
|
|
2391 |
|
|
if (writebuf)
|
2392 |
|
|
arm_store_return_value (valtype, regcache, writebuf);
|
2393 |
|
|
|
2394 |
|
|
if (readbuf)
|
2395 |
|
|
arm_extract_return_value (valtype, regcache, readbuf);
|
2396 |
|
|
|
2397 |
|
|
return RETURN_VALUE_REGISTER_CONVENTION;
|
2398 |
|
|
}
|
2399 |
|
|
|
2400 |
|
|
|
2401 |
|
|
static int
|
2402 |
|
|
arm_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
|
2403 |
|
|
{
|
2404 |
|
|
CORE_ADDR jb_addr;
|
2405 |
|
|
char buf[INT_REGISTER_SIZE];
|
2406 |
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (frame));
|
2407 |
|
|
|
2408 |
|
|
jb_addr = get_frame_register_unsigned (frame, ARM_A1_REGNUM);
|
2409 |
|
|
|
2410 |
|
|
if (target_read_memory (jb_addr + tdep->jb_pc * tdep->jb_elt_size, buf,
|
2411 |
|
|
INT_REGISTER_SIZE))
|
2412 |
|
|
return 0;
|
2413 |
|
|
|
2414 |
|
|
*pc = extract_unsigned_integer (buf, INT_REGISTER_SIZE);
|
2415 |
|
|
return 1;
|
2416 |
|
|
}
|
2417 |
|
|
|
2418 |
|
|
/* Recognize GCC and GNU ld's trampolines. If we are in a trampoline,
|
2419 |
|
|
return the target PC. Otherwise return 0. */
|
2420 |
|
|
|
2421 |
|
|
CORE_ADDR
|
2422 |
|
|
arm_skip_stub (struct frame_info *frame, CORE_ADDR pc)
|
2423 |
|
|
{
|
2424 |
|
|
char *name;
|
2425 |
|
|
int namelen;
|
2426 |
|
|
CORE_ADDR start_addr;
|
2427 |
|
|
|
2428 |
|
|
/* Find the starting address and name of the function containing the PC. */
|
2429 |
|
|
if (find_pc_partial_function (pc, &name, &start_addr, NULL) == 0)
|
2430 |
|
|
return 0;
|
2431 |
|
|
|
2432 |
|
|
/* If PC is in a Thumb call or return stub, return the address of the
|
2433 |
|
|
target PC, which is in a register. The thunk functions are called
|
2434 |
|
|
_call_via_xx, where x is the register name. The possible names
|
2435 |
|
|
are r0-r9, sl, fp, ip, sp, and lr. */
|
2436 |
|
|
if (strncmp (name, "_call_via_", 10) == 0)
|
2437 |
|
|
{
|
2438 |
|
|
/* Use the name suffix to determine which register contains the
|
2439 |
|
|
target PC. */
|
2440 |
|
|
static char *table[15] =
|
2441 |
|
|
{"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
|
2442 |
|
|
"r8", "r9", "sl", "fp", "ip", "sp", "lr"
|
2443 |
|
|
};
|
2444 |
|
|
int regno;
|
2445 |
|
|
int offset = strlen (name) - 2;
|
2446 |
|
|
|
2447 |
|
|
for (regno = 0; regno <= 14; regno++)
|
2448 |
|
|
if (strcmp (&name[offset], table[regno]) == 0)
|
2449 |
|
|
return get_frame_register_unsigned (frame, regno);
|
2450 |
|
|
}
|
2451 |
|
|
|
2452 |
|
|
/* GNU ld generates __foo_from_arm or __foo_from_thumb for
|
2453 |
|
|
non-interworking calls to foo. We could decode the stubs
|
2454 |
|
|
to find the target but it's easier to use the symbol table. */
|
2455 |
|
|
namelen = strlen (name);
|
2456 |
|
|
if (name[0] == '_' && name[1] == '_'
|
2457 |
|
|
&& ((namelen > 2 + strlen ("_from_thumb")
|
2458 |
|
|
&& strncmp (name + namelen - strlen ("_from_thumb"), "_from_thumb",
|
2459 |
|
|
strlen ("_from_thumb")) == 0)
|
2460 |
|
|
|| (namelen > 2 + strlen ("_from_arm")
|
2461 |
|
|
&& strncmp (name + namelen - strlen ("_from_arm"), "_from_arm",
|
2462 |
|
|
strlen ("_from_arm")) == 0)))
|
2463 |
|
|
{
|
2464 |
|
|
char *target_name;
|
2465 |
|
|
int target_len = namelen - 2;
|
2466 |
|
|
struct minimal_symbol *minsym;
|
2467 |
|
|
struct objfile *objfile;
|
2468 |
|
|
struct obj_section *sec;
|
2469 |
|
|
|
2470 |
|
|
if (name[namelen - 1] == 'b')
|
2471 |
|
|
target_len -= strlen ("_from_thumb");
|
2472 |
|
|
else
|
2473 |
|
|
target_len -= strlen ("_from_arm");
|
2474 |
|
|
|
2475 |
|
|
target_name = alloca (target_len + 1);
|
2476 |
|
|
memcpy (target_name, name + 2, target_len);
|
2477 |
|
|
target_name[target_len] = '\0';
|
2478 |
|
|
|
2479 |
|
|
sec = find_pc_section (pc);
|
2480 |
|
|
objfile = (sec == NULL) ? NULL : sec->objfile;
|
2481 |
|
|
minsym = lookup_minimal_symbol (target_name, NULL, objfile);
|
2482 |
|
|
if (minsym != NULL)
|
2483 |
|
|
return SYMBOL_VALUE_ADDRESS (minsym);
|
2484 |
|
|
else
|
2485 |
|
|
return 0;
|
2486 |
|
|
}
|
2487 |
|
|
|
2488 |
|
|
return 0; /* not a stub */
|
2489 |
|
|
}
|
2490 |
|
|
|
2491 |
|
|
static void
|
2492 |
|
|
set_arm_command (char *args, int from_tty)
|
2493 |
|
|
{
|
2494 |
|
|
printf_unfiltered (_("\
|
2495 |
|
|
\"set arm\" must be followed by an apporpriate subcommand.\n"));
|
2496 |
|
|
help_list (setarmcmdlist, "set arm ", all_commands, gdb_stdout);
|
2497 |
|
|
}
|
2498 |
|
|
|
2499 |
|
|
static void
|
2500 |
|
|
show_arm_command (char *args, int from_tty)
|
2501 |
|
|
{
|
2502 |
|
|
cmd_show_list (showarmcmdlist, from_tty, "");
|
2503 |
|
|
}
|
2504 |
|
|
|
2505 |
|
|
static void
|
2506 |
|
|
arm_update_current_architecture (void)
|
2507 |
|
|
{
|
2508 |
|
|
struct gdbarch_info info;
|
2509 |
|
|
|
2510 |
|
|
/* If the current architecture is not ARM, we have nothing to do. */
|
2511 |
|
|
if (gdbarch_bfd_arch_info (current_gdbarch)->arch != bfd_arch_arm)
|
2512 |
|
|
return;
|
2513 |
|
|
|
2514 |
|
|
/* Update the architecture. */
|
2515 |
|
|
gdbarch_info_init (&info);
|
2516 |
|
|
|
2517 |
|
|
if (!gdbarch_update_p (info))
|
2518 |
|
|
internal_error (__FILE__, __LINE__, "could not update architecture");
|
2519 |
|
|
}
|
2520 |
|
|
|
2521 |
|
|
static void
|
2522 |
|
|
set_fp_model_sfunc (char *args, int from_tty,
|
2523 |
|
|
struct cmd_list_element *c)
|
2524 |
|
|
{
|
2525 |
|
|
enum arm_float_model fp_model;
|
2526 |
|
|
|
2527 |
|
|
for (fp_model = ARM_FLOAT_AUTO; fp_model != ARM_FLOAT_LAST; fp_model++)
|
2528 |
|
|
if (strcmp (current_fp_model, fp_model_strings[fp_model]) == 0)
|
2529 |
|
|
{
|
2530 |
|
|
arm_fp_model = fp_model;
|
2531 |
|
|
break;
|
2532 |
|
|
}
|
2533 |
|
|
|
2534 |
|
|
if (fp_model == ARM_FLOAT_LAST)
|
2535 |
|
|
internal_error (__FILE__, __LINE__, _("Invalid fp model accepted: %s."),
|
2536 |
|
|
current_fp_model);
|
2537 |
|
|
|
2538 |
|
|
arm_update_current_architecture ();
|
2539 |
|
|
}
|
2540 |
|
|
|
2541 |
|
|
static void
|
2542 |
|
|
show_fp_model (struct ui_file *file, int from_tty,
|
2543 |
|
|
struct cmd_list_element *c, const char *value)
|
2544 |
|
|
{
|
2545 |
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
|
2546 |
|
|
|
2547 |
|
|
if (arm_fp_model == ARM_FLOAT_AUTO
|
2548 |
|
|
&& gdbarch_bfd_arch_info (current_gdbarch)->arch == bfd_arch_arm)
|
2549 |
|
|
fprintf_filtered (file, _("\
|
2550 |
|
|
The current ARM floating point model is \"auto\" (currently \"%s\").\n"),
|
2551 |
|
|
fp_model_strings[tdep->fp_model]);
|
2552 |
|
|
else
|
2553 |
|
|
fprintf_filtered (file, _("\
|
2554 |
|
|
The current ARM floating point model is \"%s\".\n"),
|
2555 |
|
|
fp_model_strings[arm_fp_model]);
|
2556 |
|
|
}
|
2557 |
|
|
|
2558 |
|
|
static void
|
2559 |
|
|
arm_set_abi (char *args, int from_tty,
|
2560 |
|
|
struct cmd_list_element *c)
|
2561 |
|
|
{
|
2562 |
|
|
enum arm_abi_kind arm_abi;
|
2563 |
|
|
|
2564 |
|
|
for (arm_abi = ARM_ABI_AUTO; arm_abi != ARM_ABI_LAST; arm_abi++)
|
2565 |
|
|
if (strcmp (arm_abi_string, arm_abi_strings[arm_abi]) == 0)
|
2566 |
|
|
{
|
2567 |
|
|
arm_abi_global = arm_abi;
|
2568 |
|
|
break;
|
2569 |
|
|
}
|
2570 |
|
|
|
2571 |
|
|
if (arm_abi == ARM_ABI_LAST)
|
2572 |
|
|
internal_error (__FILE__, __LINE__, _("Invalid ABI accepted: %s."),
|
2573 |
|
|
arm_abi_string);
|
2574 |
|
|
|
2575 |
|
|
arm_update_current_architecture ();
|
2576 |
|
|
}
|
2577 |
|
|
|
2578 |
|
|
static void
|
2579 |
|
|
arm_show_abi (struct ui_file *file, int from_tty,
|
2580 |
|
|
struct cmd_list_element *c, const char *value)
|
2581 |
|
|
{
|
2582 |
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
|
2583 |
|
|
|
2584 |
|
|
if (arm_abi_global == ARM_ABI_AUTO
|
2585 |
|
|
&& gdbarch_bfd_arch_info (current_gdbarch)->arch == bfd_arch_arm)
|
2586 |
|
|
fprintf_filtered (file, _("\
|
2587 |
|
|
The current ARM ABI is \"auto\" (currently \"%s\").\n"),
|
2588 |
|
|
arm_abi_strings[tdep->arm_abi]);
|
2589 |
|
|
else
|
2590 |
|
|
fprintf_filtered (file, _("The current ARM ABI is \"%s\".\n"),
|
2591 |
|
|
arm_abi_string);
|
2592 |
|
|
}
|
2593 |
|
|
|
2594 |
|
|
/* If the user changes the register disassembly style used for info
|
2595 |
|
|
register and other commands, we have to also switch the style used
|
2596 |
|
|
in opcodes for disassembly output. This function is run in the "set
|
2597 |
|
|
arm disassembly" command, and does that. */
|
2598 |
|
|
|
2599 |
|
|
static void
|
2600 |
|
|
set_disassembly_style_sfunc (char *args, int from_tty,
|
2601 |
|
|
struct cmd_list_element *c)
|
2602 |
|
|
{
|
2603 |
|
|
set_disassembly_style ();
|
2604 |
|
|
}
|
2605 |
|
|
|
2606 |
|
|
/* Return the ARM register name corresponding to register I. */
|
2607 |
|
|
static const char *
|
2608 |
|
|
arm_register_name (struct gdbarch *gdbarch, int i)
|
2609 |
|
|
{
|
2610 |
|
|
if (i >= ARRAY_SIZE (arm_register_names))
|
2611 |
|
|
/* These registers are only supported on targets which supply
|
2612 |
|
|
an XML description. */
|
2613 |
|
|
return "";
|
2614 |
|
|
|
2615 |
|
|
return arm_register_names[i];
|
2616 |
|
|
}
|
2617 |
|
|
|
2618 |
|
|
static void
|
2619 |
|
|
set_disassembly_style (void)
|
2620 |
|
|
{
|
2621 |
|
|
int current;
|
2622 |
|
|
|
2623 |
|
|
/* Find the style that the user wants. */
|
2624 |
|
|
for (current = 0; current < num_disassembly_options; current++)
|
2625 |
|
|
if (disassembly_style == valid_disassembly_styles[current])
|
2626 |
|
|
break;
|
2627 |
|
|
gdb_assert (current < num_disassembly_options);
|
2628 |
|
|
|
2629 |
|
|
/* Synchronize the disassembler. */
|
2630 |
|
|
set_arm_regname_option (current);
|
2631 |
|
|
}
|
2632 |
|
|
|
2633 |
|
|
/* Test whether the coff symbol specific value corresponds to a Thumb
|
2634 |
|
|
function. */
|
2635 |
|
|
|
2636 |
|
|
static int
|
2637 |
|
|
coff_sym_is_thumb (int val)
|
2638 |
|
|
{
|
2639 |
|
|
return (val == C_THUMBEXT ||
|
2640 |
|
|
val == C_THUMBSTAT ||
|
2641 |
|
|
val == C_THUMBEXTFUNC ||
|
2642 |
|
|
val == C_THUMBSTATFUNC ||
|
2643 |
|
|
val == C_THUMBLABEL);
|
2644 |
|
|
}
|
2645 |
|
|
|
2646 |
|
|
/* arm_coff_make_msymbol_special()
|
2647 |
|
|
arm_elf_make_msymbol_special()
|
2648 |
|
|
|
2649 |
|
|
These functions test whether the COFF or ELF symbol corresponds to
|
2650 |
|
|
an address in thumb code, and set a "special" bit in a minimal
|
2651 |
|
|
symbol to indicate that it does. */
|
2652 |
|
|
|
2653 |
|
|
static void
|
2654 |
|
|
arm_elf_make_msymbol_special(asymbol *sym, struct minimal_symbol *msym)
|
2655 |
|
|
{
|
2656 |
|
|
/* Thumb symbols are of type STT_LOPROC, (synonymous with
|
2657 |
|
|
STT_ARM_TFUNC). */
|
2658 |
|
|
if (ELF_ST_TYPE (((elf_symbol_type *)sym)->internal_elf_sym.st_info)
|
2659 |
|
|
== STT_LOPROC)
|
2660 |
|
|
MSYMBOL_SET_SPECIAL (msym);
|
2661 |
|
|
}
|
2662 |
|
|
|
2663 |
|
|
static void
|
2664 |
|
|
arm_coff_make_msymbol_special(int val, struct minimal_symbol *msym)
|
2665 |
|
|
{
|
2666 |
|
|
if (coff_sym_is_thumb (val))
|
2667 |
|
|
MSYMBOL_SET_SPECIAL (msym);
|
2668 |
|
|
}
|
2669 |
|
|
|
2670 |
|
|
static void
|
2671 |
|
|
arm_write_pc (struct regcache *regcache, CORE_ADDR pc)
|
2672 |
|
|
{
|
2673 |
|
|
regcache_cooked_write_unsigned (regcache, ARM_PC_REGNUM, pc);
|
2674 |
|
|
|
2675 |
|
|
/* If necessary, set the T bit. */
|
2676 |
|
|
if (arm_apcs_32)
|
2677 |
|
|
{
|
2678 |
|
|
ULONGEST val;
|
2679 |
|
|
regcache_cooked_read_unsigned (regcache, ARM_PS_REGNUM, &val);
|
2680 |
|
|
if (arm_pc_is_thumb (pc))
|
2681 |
|
|
regcache_cooked_write_unsigned (regcache, ARM_PS_REGNUM, val | 0x20);
|
2682 |
|
|
else
|
2683 |
|
|
regcache_cooked_write_unsigned (regcache, ARM_PS_REGNUM,
|
2684 |
|
|
val & ~(ULONGEST) 0x20);
|
2685 |
|
|
}
|
2686 |
|
|
}
|
2687 |
|
|
|
2688 |
|
|
static struct value *
|
2689 |
|
|
value_of_arm_user_reg (struct frame_info *frame, const void *baton)
|
2690 |
|
|
{
|
2691 |
|
|
const int *reg_p = baton;
|
2692 |
|
|
return value_of_register (*reg_p, frame);
|
2693 |
|
|
}
|
2694 |
|
|
|
2695 |
|
|
static enum gdb_osabi
|
2696 |
|
|
arm_elf_osabi_sniffer (bfd *abfd)
|
2697 |
|
|
{
|
2698 |
|
|
unsigned int elfosabi;
|
2699 |
|
|
enum gdb_osabi osabi = GDB_OSABI_UNKNOWN;
|
2700 |
|
|
|
2701 |
|
|
elfosabi = elf_elfheader (abfd)->e_ident[EI_OSABI];
|
2702 |
|
|
|
2703 |
|
|
if (elfosabi == ELFOSABI_ARM)
|
2704 |
|
|
/* GNU tools use this value. Check note sections in this case,
|
2705 |
|
|
as well. */
|
2706 |
|
|
bfd_map_over_sections (abfd,
|
2707 |
|
|
generic_elf_osabi_sniff_abi_tag_sections,
|
2708 |
|
|
&osabi);
|
2709 |
|
|
|
2710 |
|
|
/* Anything else will be handled by the generic ELF sniffer. */
|
2711 |
|
|
return osabi;
|
2712 |
|
|
}
|
2713 |
|
|
|
2714 |
|
|
|
2715 |
|
|
/* Initialize the current architecture based on INFO. If possible,
|
2716 |
|
|
re-use an architecture from ARCHES, which is a list of
|
2717 |
|
|
architectures already created during this debugging session.
|
2718 |
|
|
|
2719 |
|
|
Called e.g. at program startup, when reading a core file, and when
|
2720 |
|
|
reading a binary file. */
|
2721 |
|
|
|
2722 |
|
|
static struct gdbarch *
|
2723 |
|
|
arm_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
|
2724 |
|
|
{
|
2725 |
|
|
struct gdbarch_tdep *tdep;
|
2726 |
|
|
struct gdbarch *gdbarch;
|
2727 |
|
|
struct gdbarch_list *best_arch;
|
2728 |
|
|
enum arm_abi_kind arm_abi = arm_abi_global;
|
2729 |
|
|
enum arm_float_model fp_model = arm_fp_model;
|
2730 |
|
|
struct tdesc_arch_data *tdesc_data = NULL;
|
2731 |
|
|
int i;
|
2732 |
|
|
int have_fpa_registers = 1;
|
2733 |
|
|
|
2734 |
|
|
/* Check any target description for validity. */
|
2735 |
|
|
if (tdesc_has_registers (info.target_desc))
|
2736 |
|
|
{
|
2737 |
|
|
/* For most registers we require GDB's default names; but also allow
|
2738 |
|
|
the numeric names for sp / lr / pc, as a convenience. */
|
2739 |
|
|
static const char *const arm_sp_names[] = { "r13", "sp", NULL };
|
2740 |
|
|
static const char *const arm_lr_names[] = { "r14", "lr", NULL };
|
2741 |
|
|
static const char *const arm_pc_names[] = { "r15", "pc", NULL };
|
2742 |
|
|
|
2743 |
|
|
const struct tdesc_feature *feature;
|
2744 |
|
|
int i, valid_p;
|
2745 |
|
|
|
2746 |
|
|
feature = tdesc_find_feature (info.target_desc,
|
2747 |
|
|
"org.gnu.gdb.arm.core");
|
2748 |
|
|
if (feature == NULL)
|
2749 |
|
|
return NULL;
|
2750 |
|
|
|
2751 |
|
|
tdesc_data = tdesc_data_alloc ();
|
2752 |
|
|
|
2753 |
|
|
valid_p = 1;
|
2754 |
|
|
for (i = 0; i < ARM_SP_REGNUM; i++)
|
2755 |
|
|
valid_p &= tdesc_numbered_register (feature, tdesc_data, i,
|
2756 |
|
|
arm_register_names[i]);
|
2757 |
|
|
valid_p &= tdesc_numbered_register_choices (feature, tdesc_data,
|
2758 |
|
|
ARM_SP_REGNUM,
|
2759 |
|
|
arm_sp_names);
|
2760 |
|
|
valid_p &= tdesc_numbered_register_choices (feature, tdesc_data,
|
2761 |
|
|
ARM_LR_REGNUM,
|
2762 |
|
|
arm_lr_names);
|
2763 |
|
|
valid_p &= tdesc_numbered_register_choices (feature, tdesc_data,
|
2764 |
|
|
ARM_PC_REGNUM,
|
2765 |
|
|
arm_pc_names);
|
2766 |
|
|
valid_p &= tdesc_numbered_register (feature, tdesc_data,
|
2767 |
|
|
ARM_PS_REGNUM, "cpsr");
|
2768 |
|
|
|
2769 |
|
|
if (!valid_p)
|
2770 |
|
|
{
|
2771 |
|
|
tdesc_data_cleanup (tdesc_data);
|
2772 |
|
|
return NULL;
|
2773 |
|
|
}
|
2774 |
|
|
|
2775 |
|
|
feature = tdesc_find_feature (info.target_desc,
|
2776 |
|
|
"org.gnu.gdb.arm.fpa");
|
2777 |
|
|
if (feature != NULL)
|
2778 |
|
|
{
|
2779 |
|
|
valid_p = 1;
|
2780 |
|
|
for (i = ARM_F0_REGNUM; i <= ARM_FPS_REGNUM; i++)
|
2781 |
|
|
valid_p &= tdesc_numbered_register (feature, tdesc_data, i,
|
2782 |
|
|
arm_register_names[i]);
|
2783 |
|
|
if (!valid_p)
|
2784 |
|
|
{
|
2785 |
|
|
tdesc_data_cleanup (tdesc_data);
|
2786 |
|
|
return NULL;
|
2787 |
|
|
}
|
2788 |
|
|
}
|
2789 |
|
|
else
|
2790 |
|
|
have_fpa_registers = 0;
|
2791 |
|
|
|
2792 |
|
|
feature = tdesc_find_feature (info.target_desc,
|
2793 |
|
|
"org.gnu.gdb.xscale.iwmmxt");
|
2794 |
|
|
if (feature != NULL)
|
2795 |
|
|
{
|
2796 |
|
|
static const char *const iwmmxt_names[] = {
|
2797 |
|
|
"wR0", "wR1", "wR2", "wR3", "wR4", "wR5", "wR6", "wR7",
|
2798 |
|
|
"wR8", "wR9", "wR10", "wR11", "wR12", "wR13", "wR14", "wR15",
|
2799 |
|
|
"wCID", "wCon", "wCSSF", "wCASF", "", "", "", "",
|
2800 |
|
|
"wCGR0", "wCGR1", "wCGR2", "wCGR3", "", "", "", "",
|
2801 |
|
|
};
|
2802 |
|
|
|
2803 |
|
|
valid_p = 1;
|
2804 |
|
|
for (i = ARM_WR0_REGNUM; i <= ARM_WR15_REGNUM; i++)
|
2805 |
|
|
valid_p
|
2806 |
|
|
&= tdesc_numbered_register (feature, tdesc_data, i,
|
2807 |
|
|
iwmmxt_names[i - ARM_WR0_REGNUM]);
|
2808 |
|
|
|
2809 |
|
|
/* Check for the control registers, but do not fail if they
|
2810 |
|
|
are missing. */
|
2811 |
|
|
for (i = ARM_WC0_REGNUM; i <= ARM_WCASF_REGNUM; i++)
|
2812 |
|
|
tdesc_numbered_register (feature, tdesc_data, i,
|
2813 |
|
|
iwmmxt_names[i - ARM_WR0_REGNUM]);
|
2814 |
|
|
|
2815 |
|
|
for (i = ARM_WCGR0_REGNUM; i <= ARM_WCGR3_REGNUM; i++)
|
2816 |
|
|
valid_p
|
2817 |
|
|
&= tdesc_numbered_register (feature, tdesc_data, i,
|
2818 |
|
|
iwmmxt_names[i - ARM_WR0_REGNUM]);
|
2819 |
|
|
|
2820 |
|
|
if (!valid_p)
|
2821 |
|
|
{
|
2822 |
|
|
tdesc_data_cleanup (tdesc_data);
|
2823 |
|
|
return NULL;
|
2824 |
|
|
}
|
2825 |
|
|
}
|
2826 |
|
|
}
|
2827 |
|
|
|
2828 |
|
|
/* If we have an object to base this architecture on, try to determine
|
2829 |
|
|
its ABI. */
|
2830 |
|
|
|
2831 |
|
|
if (arm_abi == ARM_ABI_AUTO && info.abfd != NULL)
|
2832 |
|
|
{
|
2833 |
|
|
int ei_osabi, e_flags;
|
2834 |
|
|
|
2835 |
|
|
switch (bfd_get_flavour (info.abfd))
|
2836 |
|
|
{
|
2837 |
|
|
case bfd_target_aout_flavour:
|
2838 |
|
|
/* Assume it's an old APCS-style ABI. */
|
2839 |
|
|
arm_abi = ARM_ABI_APCS;
|
2840 |
|
|
break;
|
2841 |
|
|
|
2842 |
|
|
case bfd_target_coff_flavour:
|
2843 |
|
|
/* Assume it's an old APCS-style ABI. */
|
2844 |
|
|
/* XXX WinCE? */
|
2845 |
|
|
arm_abi = ARM_ABI_APCS;
|
2846 |
|
|
break;
|
2847 |
|
|
|
2848 |
|
|
case bfd_target_elf_flavour:
|
2849 |
|
|
ei_osabi = elf_elfheader (info.abfd)->e_ident[EI_OSABI];
|
2850 |
|
|
e_flags = elf_elfheader (info.abfd)->e_flags;
|
2851 |
|
|
|
2852 |
|
|
if (ei_osabi == ELFOSABI_ARM)
|
2853 |
|
|
{
|
2854 |
|
|
/* GNU tools used to use this value, but do not for EABI
|
2855 |
|
|
objects. There's nowhere to tag an EABI version
|
2856 |
|
|
anyway, so assume APCS. */
|
2857 |
|
|
arm_abi = ARM_ABI_APCS;
|
2858 |
|
|
}
|
2859 |
|
|
else if (ei_osabi == ELFOSABI_NONE)
|
2860 |
|
|
{
|
2861 |
|
|
int eabi_ver = EF_ARM_EABI_VERSION (e_flags);
|
2862 |
|
|
|
2863 |
|
|
switch (eabi_ver)
|
2864 |
|
|
{
|
2865 |
|
|
case EF_ARM_EABI_UNKNOWN:
|
2866 |
|
|
/* Assume GNU tools. */
|
2867 |
|
|
arm_abi = ARM_ABI_APCS;
|
2868 |
|
|
break;
|
2869 |
|
|
|
2870 |
|
|
case EF_ARM_EABI_VER4:
|
2871 |
|
|
case EF_ARM_EABI_VER5:
|
2872 |
|
|
arm_abi = ARM_ABI_AAPCS;
|
2873 |
|
|
/* EABI binaries default to VFP float ordering. */
|
2874 |
|
|
if (fp_model == ARM_FLOAT_AUTO)
|
2875 |
|
|
fp_model = ARM_FLOAT_SOFT_VFP;
|
2876 |
|
|
break;
|
2877 |
|
|
|
2878 |
|
|
default:
|
2879 |
|
|
/* Leave it as "auto". */
|
2880 |
|
|
warning (_("unknown ARM EABI version 0x%x"), eabi_ver);
|
2881 |
|
|
break;
|
2882 |
|
|
}
|
2883 |
|
|
}
|
2884 |
|
|
|
2885 |
|
|
if (fp_model == ARM_FLOAT_AUTO)
|
2886 |
|
|
{
|
2887 |
|
|
int e_flags = elf_elfheader (info.abfd)->e_flags;
|
2888 |
|
|
|
2889 |
|
|
switch (e_flags & (EF_ARM_SOFT_FLOAT | EF_ARM_VFP_FLOAT))
|
2890 |
|
|
{
|
2891 |
|
|
case 0:
|
2892 |
|
|
/* Leave it as "auto". Strictly speaking this case
|
2893 |
|
|
means FPA, but almost nobody uses that now, and
|
2894 |
|
|
many toolchains fail to set the appropriate bits
|
2895 |
|
|
for the floating-point model they use. */
|
2896 |
|
|
break;
|
2897 |
|
|
case EF_ARM_SOFT_FLOAT:
|
2898 |
|
|
fp_model = ARM_FLOAT_SOFT_FPA;
|
2899 |
|
|
break;
|
2900 |
|
|
case EF_ARM_VFP_FLOAT:
|
2901 |
|
|
fp_model = ARM_FLOAT_VFP;
|
2902 |
|
|
break;
|
2903 |
|
|
case EF_ARM_SOFT_FLOAT | EF_ARM_VFP_FLOAT:
|
2904 |
|
|
fp_model = ARM_FLOAT_SOFT_VFP;
|
2905 |
|
|
break;
|
2906 |
|
|
}
|
2907 |
|
|
}
|
2908 |
|
|
break;
|
2909 |
|
|
|
2910 |
|
|
default:
|
2911 |
|
|
/* Leave it as "auto". */
|
2912 |
|
|
break;
|
2913 |
|
|
}
|
2914 |
|
|
}
|
2915 |
|
|
|
2916 |
|
|
/* If there is already a candidate, use it. */
|
2917 |
|
|
for (best_arch = gdbarch_list_lookup_by_info (arches, &info);
|
2918 |
|
|
best_arch != NULL;
|
2919 |
|
|
best_arch = gdbarch_list_lookup_by_info (best_arch->next, &info))
|
2920 |
|
|
{
|
2921 |
|
|
if (arm_abi != ARM_ABI_AUTO
|
2922 |
|
|
&& arm_abi != gdbarch_tdep (best_arch->gdbarch)->arm_abi)
|
2923 |
|
|
continue;
|
2924 |
|
|
|
2925 |
|
|
if (fp_model != ARM_FLOAT_AUTO
|
2926 |
|
|
&& fp_model != gdbarch_tdep (best_arch->gdbarch)->fp_model)
|
2927 |
|
|
continue;
|
2928 |
|
|
|
2929 |
|
|
/* Found a match. */
|
2930 |
|
|
break;
|
2931 |
|
|
}
|
2932 |
|
|
|
2933 |
|
|
if (best_arch != NULL)
|
2934 |
|
|
{
|
2935 |
|
|
if (tdesc_data != NULL)
|
2936 |
|
|
tdesc_data_cleanup (tdesc_data);
|
2937 |
|
|
return best_arch->gdbarch;
|
2938 |
|
|
}
|
2939 |
|
|
|
2940 |
|
|
tdep = xcalloc (1, sizeof (struct gdbarch_tdep));
|
2941 |
|
|
gdbarch = gdbarch_alloc (&info, tdep);
|
2942 |
|
|
|
2943 |
|
|
/* Record additional information about the architecture we are defining.
|
2944 |
|
|
These are gdbarch discriminators, like the OSABI. */
|
2945 |
|
|
tdep->arm_abi = arm_abi;
|
2946 |
|
|
tdep->fp_model = fp_model;
|
2947 |
|
|
tdep->have_fpa_registers = have_fpa_registers;
|
2948 |
|
|
|
2949 |
|
|
/* Breakpoints. */
|
2950 |
|
|
switch (info.byte_order)
|
2951 |
|
|
{
|
2952 |
|
|
case BFD_ENDIAN_BIG:
|
2953 |
|
|
tdep->arm_breakpoint = arm_default_arm_be_breakpoint;
|
2954 |
|
|
tdep->arm_breakpoint_size = sizeof (arm_default_arm_be_breakpoint);
|
2955 |
|
|
tdep->thumb_breakpoint = arm_default_thumb_be_breakpoint;
|
2956 |
|
|
tdep->thumb_breakpoint_size = sizeof (arm_default_thumb_be_breakpoint);
|
2957 |
|
|
|
2958 |
|
|
break;
|
2959 |
|
|
|
2960 |
|
|
case BFD_ENDIAN_LITTLE:
|
2961 |
|
|
tdep->arm_breakpoint = arm_default_arm_le_breakpoint;
|
2962 |
|
|
tdep->arm_breakpoint_size = sizeof (arm_default_arm_le_breakpoint);
|
2963 |
|
|
tdep->thumb_breakpoint = arm_default_thumb_le_breakpoint;
|
2964 |
|
|
tdep->thumb_breakpoint_size = sizeof (arm_default_thumb_le_breakpoint);
|
2965 |
|
|
|
2966 |
|
|
break;
|
2967 |
|
|
|
2968 |
|
|
default:
|
2969 |
|
|
internal_error (__FILE__, __LINE__,
|
2970 |
|
|
_("arm_gdbarch_init: bad byte order for float format"));
|
2971 |
|
|
}
|
2972 |
|
|
|
2973 |
|
|
/* On ARM targets char defaults to unsigned. */
|
2974 |
|
|
set_gdbarch_char_signed (gdbarch, 0);
|
2975 |
|
|
|
2976 |
|
|
/* This should be low enough for everything. */
|
2977 |
|
|
tdep->lowest_pc = 0x20;
|
2978 |
|
|
tdep->jb_pc = -1; /* Longjump support not enabled by default. */
|
2979 |
|
|
|
2980 |
|
|
/* The default, for both APCS and AAPCS, is to return small
|
2981 |
|
|
structures in registers. */
|
2982 |
|
|
tdep->struct_return = reg_struct_return;
|
2983 |
|
|
|
2984 |
|
|
set_gdbarch_push_dummy_call (gdbarch, arm_push_dummy_call);
|
2985 |
|
|
set_gdbarch_frame_align (gdbarch, arm_frame_align);
|
2986 |
|
|
|
2987 |
|
|
set_gdbarch_write_pc (gdbarch, arm_write_pc);
|
2988 |
|
|
|
2989 |
|
|
/* Frame handling. */
|
2990 |
|
|
set_gdbarch_unwind_dummy_id (gdbarch, arm_unwind_dummy_id);
|
2991 |
|
|
set_gdbarch_unwind_pc (gdbarch, arm_unwind_pc);
|
2992 |
|
|
set_gdbarch_unwind_sp (gdbarch, arm_unwind_sp);
|
2993 |
|
|
|
2994 |
|
|
frame_base_set_default (gdbarch, &arm_normal_base);
|
2995 |
|
|
|
2996 |
|
|
/* Address manipulation. */
|
2997 |
|
|
set_gdbarch_smash_text_address (gdbarch, arm_smash_text_address);
|
2998 |
|
|
set_gdbarch_addr_bits_remove (gdbarch, arm_addr_bits_remove);
|
2999 |
|
|
|
3000 |
|
|
/* Advance PC across function entry code. */
|
3001 |
|
|
set_gdbarch_skip_prologue (gdbarch, arm_skip_prologue);
|
3002 |
|
|
|
3003 |
|
|
/* Skip trampolines. */
|
3004 |
|
|
set_gdbarch_skip_trampoline_code (gdbarch, arm_skip_stub);
|
3005 |
|
|
|
3006 |
|
|
/* The stack grows downward. */
|
3007 |
|
|
set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
|
3008 |
|
|
|
3009 |
|
|
/* Breakpoint manipulation. */
|
3010 |
|
|
set_gdbarch_breakpoint_from_pc (gdbarch, arm_breakpoint_from_pc);
|
3011 |
|
|
|
3012 |
|
|
/* Information about registers, etc. */
|
3013 |
|
|
set_gdbarch_deprecated_fp_regnum (gdbarch, ARM_FP_REGNUM); /* ??? */
|
3014 |
|
|
set_gdbarch_sp_regnum (gdbarch, ARM_SP_REGNUM);
|
3015 |
|
|
set_gdbarch_pc_regnum (gdbarch, ARM_PC_REGNUM);
|
3016 |
|
|
set_gdbarch_num_regs (gdbarch, ARM_NUM_REGS);
|
3017 |
|
|
set_gdbarch_register_type (gdbarch, arm_register_type);
|
3018 |
|
|
|
3019 |
|
|
/* This "info float" is FPA-specific. Use the generic version if we
|
3020 |
|
|
do not have FPA. */
|
3021 |
|
|
if (gdbarch_tdep (gdbarch)->have_fpa_registers)
|
3022 |
|
|
set_gdbarch_print_float_info (gdbarch, arm_print_float_info);
|
3023 |
|
|
|
3024 |
|
|
/* Internal <-> external register number maps. */
|
3025 |
|
|
set_gdbarch_dwarf_reg_to_regnum (gdbarch, arm_dwarf_reg_to_regnum);
|
3026 |
|
|
set_gdbarch_dwarf2_reg_to_regnum (gdbarch, arm_dwarf_reg_to_regnum);
|
3027 |
|
|
set_gdbarch_register_sim_regno (gdbarch, arm_register_sim_regno);
|
3028 |
|
|
|
3029 |
|
|
set_gdbarch_register_name (gdbarch, arm_register_name);
|
3030 |
|
|
|
3031 |
|
|
/* Returning results. */
|
3032 |
|
|
set_gdbarch_return_value (gdbarch, arm_return_value);
|
3033 |
|
|
|
3034 |
|
|
/* Disassembly. */
|
3035 |
|
|
set_gdbarch_print_insn (gdbarch, gdb_print_insn_arm);
|
3036 |
|
|
|
3037 |
|
|
/* Minsymbol frobbing. */
|
3038 |
|
|
set_gdbarch_elf_make_msymbol_special (gdbarch, arm_elf_make_msymbol_special);
|
3039 |
|
|
set_gdbarch_coff_make_msymbol_special (gdbarch,
|
3040 |
|
|
arm_coff_make_msymbol_special);
|
3041 |
|
|
|
3042 |
|
|
/* Virtual tables. */
|
3043 |
|
|
set_gdbarch_vbit_in_delta (gdbarch, 1);
|
3044 |
|
|
|
3045 |
|
|
/* Hook in the ABI-specific overrides, if they have been registered. */
|
3046 |
|
|
gdbarch_init_osabi (info, gdbarch);
|
3047 |
|
|
|
3048 |
|
|
/* Add some default predicates. */
|
3049 |
|
|
frame_unwind_append_sniffer (gdbarch, arm_stub_unwind_sniffer);
|
3050 |
|
|
frame_unwind_append_sniffer (gdbarch, dwarf2_frame_sniffer);
|
3051 |
|
|
frame_unwind_append_sniffer (gdbarch, arm_prologue_unwind_sniffer);
|
3052 |
|
|
|
3053 |
|
|
/* Now we have tuned the configuration, set a few final things,
|
3054 |
|
|
based on what the OS ABI has told us. */
|
3055 |
|
|
|
3056 |
|
|
/* If the ABI is not otherwise marked, assume the old GNU APCS. EABI
|
3057 |
|
|
binaries are always marked. */
|
3058 |
|
|
if (tdep->arm_abi == ARM_ABI_AUTO)
|
3059 |
|
|
tdep->arm_abi = ARM_ABI_APCS;
|
3060 |
|
|
|
3061 |
|
|
/* We used to default to FPA for generic ARM, but almost nobody
|
3062 |
|
|
uses that now, and we now provide a way for the user to force
|
3063 |
|
|
the model. So default to the most useful variant. */
|
3064 |
|
|
if (tdep->fp_model == ARM_FLOAT_AUTO)
|
3065 |
|
|
tdep->fp_model = ARM_FLOAT_SOFT_FPA;
|
3066 |
|
|
|
3067 |
|
|
if (tdep->jb_pc >= 0)
|
3068 |
|
|
set_gdbarch_get_longjmp_target (gdbarch, arm_get_longjmp_target);
|
3069 |
|
|
|
3070 |
|
|
/* Floating point sizes and format. */
|
3071 |
|
|
set_gdbarch_float_format (gdbarch, floatformats_ieee_single);
|
3072 |
|
|
if (tdep->fp_model == ARM_FLOAT_SOFT_FPA || tdep->fp_model == ARM_FLOAT_FPA)
|
3073 |
|
|
{
|
3074 |
|
|
set_gdbarch_double_format
|
3075 |
|
|
(gdbarch, floatformats_ieee_double_littlebyte_bigword);
|
3076 |
|
|
set_gdbarch_long_double_format
|
3077 |
|
|
(gdbarch, floatformats_ieee_double_littlebyte_bigword);
|
3078 |
|
|
}
|
3079 |
|
|
else
|
3080 |
|
|
{
|
3081 |
|
|
set_gdbarch_double_format (gdbarch, floatformats_ieee_double);
|
3082 |
|
|
set_gdbarch_long_double_format (gdbarch, floatformats_ieee_double);
|
3083 |
|
|
}
|
3084 |
|
|
|
3085 |
|
|
if (tdesc_data)
|
3086 |
|
|
tdesc_use_registers (gdbarch, info.target_desc, tdesc_data);
|
3087 |
|
|
|
3088 |
|
|
/* Add standard register aliases. We add aliases even for those
|
3089 |
|
|
nanes which are used by the current architecture - it's simpler,
|
3090 |
|
|
and does no harm, since nothing ever lists user registers. */
|
3091 |
|
|
for (i = 0; i < ARRAY_SIZE (arm_register_aliases); i++)
|
3092 |
|
|
user_reg_add (gdbarch, arm_register_aliases[i].name,
|
3093 |
|
|
value_of_arm_user_reg, &arm_register_aliases[i].regnum);
|
3094 |
|
|
|
3095 |
|
|
return gdbarch;
|
3096 |
|
|
}
|
3097 |
|
|
|
3098 |
|
|
static void
|
3099 |
|
|
arm_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file)
|
3100 |
|
|
{
|
3101 |
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
3102 |
|
|
|
3103 |
|
|
if (tdep == NULL)
|
3104 |
|
|
return;
|
3105 |
|
|
|
3106 |
|
|
fprintf_unfiltered (file, _("arm_dump_tdep: Lowest pc = 0x%lx"),
|
3107 |
|
|
(unsigned long) tdep->lowest_pc);
|
3108 |
|
|
}
|
3109 |
|
|
|
3110 |
|
|
extern initialize_file_ftype _initialize_arm_tdep; /* -Wmissing-prototypes */
|
3111 |
|
|
|
3112 |
|
|
void
|
3113 |
|
|
_initialize_arm_tdep (void)
|
3114 |
|
|
{
|
3115 |
|
|
struct ui_file *stb;
|
3116 |
|
|
long length;
|
3117 |
|
|
struct cmd_list_element *new_set, *new_show;
|
3118 |
|
|
const char *setname;
|
3119 |
|
|
const char *setdesc;
|
3120 |
|
|
const char *const *regnames;
|
3121 |
|
|
int numregs, i, j;
|
3122 |
|
|
static char *helptext;
|
3123 |
|
|
char regdesc[1024], *rdptr = regdesc;
|
3124 |
|
|
size_t rest = sizeof (regdesc);
|
3125 |
|
|
|
3126 |
|
|
gdbarch_register (bfd_arch_arm, arm_gdbarch_init, arm_dump_tdep);
|
3127 |
|
|
|
3128 |
|
|
/* Register an ELF OS ABI sniffer for ARM binaries. */
|
3129 |
|
|
gdbarch_register_osabi_sniffer (bfd_arch_arm,
|
3130 |
|
|
bfd_target_elf_flavour,
|
3131 |
|
|
arm_elf_osabi_sniffer);
|
3132 |
|
|
|
3133 |
|
|
/* Get the number of possible sets of register names defined in opcodes. */
|
3134 |
|
|
num_disassembly_options = get_arm_regname_num_options ();
|
3135 |
|
|
|
3136 |
|
|
/* Add root prefix command for all "set arm"/"show arm" commands. */
|
3137 |
|
|
add_prefix_cmd ("arm", no_class, set_arm_command,
|
3138 |
|
|
_("Various ARM-specific commands."),
|
3139 |
|
|
&setarmcmdlist, "set arm ", 0, &setlist);
|
3140 |
|
|
|
3141 |
|
|
add_prefix_cmd ("arm", no_class, show_arm_command,
|
3142 |
|
|
_("Various ARM-specific commands."),
|
3143 |
|
|
&showarmcmdlist, "show arm ", 0, &showlist);
|
3144 |
|
|
|
3145 |
|
|
/* Sync the opcode insn printer with our register viewer. */
|
3146 |
|
|
parse_arm_disassembler_option ("reg-names-std");
|
3147 |
|
|
|
3148 |
|
|
/* Initialize the array that will be passed to
|
3149 |
|
|
add_setshow_enum_cmd(). */
|
3150 |
|
|
valid_disassembly_styles
|
3151 |
|
|
= xmalloc ((num_disassembly_options + 1) * sizeof (char *));
|
3152 |
|
|
for (i = 0; i < num_disassembly_options; i++)
|
3153 |
|
|
{
|
3154 |
|
|
numregs = get_arm_regnames (i, &setname, &setdesc, ®names);
|
3155 |
|
|
valid_disassembly_styles[i] = setname;
|
3156 |
|
|
length = snprintf (rdptr, rest, "%s - %s\n", setname, setdesc);
|
3157 |
|
|
rdptr += length;
|
3158 |
|
|
rest -= length;
|
3159 |
|
|
/* When we find the default names, tell the disassembler to use
|
3160 |
|
|
them. */
|
3161 |
|
|
if (!strcmp (setname, "std"))
|
3162 |
|
|
{
|
3163 |
|
|
disassembly_style = setname;
|
3164 |
|
|
set_arm_regname_option (i);
|
3165 |
|
|
}
|
3166 |
|
|
}
|
3167 |
|
|
/* Mark the end of valid options. */
|
3168 |
|
|
valid_disassembly_styles[num_disassembly_options] = NULL;
|
3169 |
|
|
|
3170 |
|
|
/* Create the help text. */
|
3171 |
|
|
stb = mem_fileopen ();
|
3172 |
|
|
fprintf_unfiltered (stb, "%s%s%s",
|
3173 |
|
|
_("The valid values are:\n"),
|
3174 |
|
|
regdesc,
|
3175 |
|
|
_("The default is \"std\"."));
|
3176 |
|
|
helptext = ui_file_xstrdup (stb, &length);
|
3177 |
|
|
ui_file_delete (stb);
|
3178 |
|
|
|
3179 |
|
|
add_setshow_enum_cmd("disassembler", no_class,
|
3180 |
|
|
valid_disassembly_styles, &disassembly_style,
|
3181 |
|
|
_("Set the disassembly style."),
|
3182 |
|
|
_("Show the disassembly style."),
|
3183 |
|
|
helptext,
|
3184 |
|
|
set_disassembly_style_sfunc,
|
3185 |
|
|
NULL, /* FIXME: i18n: The disassembly style is \"%s\". */
|
3186 |
|
|
&setarmcmdlist, &showarmcmdlist);
|
3187 |
|
|
|
3188 |
|
|
add_setshow_boolean_cmd ("apcs32", no_class, &arm_apcs_32,
|
3189 |
|
|
_("Set usage of ARM 32-bit mode."),
|
3190 |
|
|
_("Show usage of ARM 32-bit mode."),
|
3191 |
|
|
_("When off, a 26-bit PC will be used."),
|
3192 |
|
|
NULL,
|
3193 |
|
|
NULL, /* FIXME: i18n: Usage of ARM 32-bit mode is %s. */
|
3194 |
|
|
&setarmcmdlist, &showarmcmdlist);
|
3195 |
|
|
|
3196 |
|
|
/* Add a command to allow the user to force the FPU model. */
|
3197 |
|
|
add_setshow_enum_cmd ("fpu", no_class, fp_model_strings, ¤t_fp_model,
|
3198 |
|
|
_("Set the floating point type."),
|
3199 |
|
|
_("Show the floating point type."),
|
3200 |
|
|
_("auto - Determine the FP typefrom the OS-ABI.\n\
|
3201 |
|
|
softfpa - Software FP, mixed-endian doubles on little-endian ARMs.\n\
|
3202 |
|
|
fpa - FPA co-processor (GCC compiled).\n\
|
3203 |
|
|
softvfp - Software FP with pure-endian doubles.\n\
|
3204 |
|
|
vfp - VFP co-processor."),
|
3205 |
|
|
set_fp_model_sfunc, show_fp_model,
|
3206 |
|
|
&setarmcmdlist, &showarmcmdlist);
|
3207 |
|
|
|
3208 |
|
|
/* Add a command to allow the user to force the ABI. */
|
3209 |
|
|
add_setshow_enum_cmd ("abi", class_support, arm_abi_strings, &arm_abi_string,
|
3210 |
|
|
_("Set the ABI."),
|
3211 |
|
|
_("Show the ABI."),
|
3212 |
|
|
NULL, arm_set_abi, arm_show_abi,
|
3213 |
|
|
&setarmcmdlist, &showarmcmdlist);
|
3214 |
|
|
|
3215 |
|
|
/* Debugging flag. */
|
3216 |
|
|
add_setshow_boolean_cmd ("arm", class_maintenance, &arm_debug,
|
3217 |
|
|
_("Set ARM debugging."),
|
3218 |
|
|
_("Show ARM debugging."),
|
3219 |
|
|
_("When on, arm-specific debugging is enabled."),
|
3220 |
|
|
NULL,
|
3221 |
|
|
NULL, /* FIXME: i18n: "ARM debugging is %s. */
|
3222 |
|
|
&setdebuglist, &showdebuglist);
|
3223 |
|
|
}
|