1 |
24 |
jeremybenn |
/* Low level interface to ptrace, for the remote server for GDB.
|
2 |
|
|
Copyright (C) 1995, 1996, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005,
|
3 |
|
|
2006, 2007, 2008 Free Software Foundation, Inc.
|
4 |
|
|
|
5 |
|
|
This file is part of GDB.
|
6 |
|
|
|
7 |
|
|
This program is free software; you can redistribute it and/or modify
|
8 |
|
|
it under the terms of the GNU General Public License as published by
|
9 |
|
|
the Free Software Foundation; either version 3 of the License, or
|
10 |
|
|
(at your option) any later version.
|
11 |
|
|
|
12 |
|
|
This program is distributed in the hope that it will be useful,
|
13 |
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
14 |
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
15 |
|
|
GNU General Public License for more details.
|
16 |
|
|
|
17 |
|
|
You should have received a copy of the GNU General Public License
|
18 |
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>. */
|
19 |
|
|
|
20 |
|
|
#include "server.h"
|
21 |
|
|
#include "linux-low.h"
|
22 |
|
|
|
23 |
|
|
#include <sys/wait.h>
|
24 |
|
|
#include <stdio.h>
|
25 |
|
|
#include <sys/param.h>
|
26 |
|
|
#include <sys/dir.h>
|
27 |
|
|
#include <sys/ptrace.h>
|
28 |
|
|
#include <sys/user.h>
|
29 |
|
|
#include <signal.h>
|
30 |
|
|
#include <sys/ioctl.h>
|
31 |
|
|
#include <fcntl.h>
|
32 |
|
|
#include <string.h>
|
33 |
|
|
#include <stdlib.h>
|
34 |
|
|
#include <unistd.h>
|
35 |
|
|
#include <errno.h>
|
36 |
|
|
#include <sys/syscall.h>
|
37 |
|
|
#include <sched.h>
|
38 |
|
|
|
39 |
|
|
#ifndef PTRACE_GETSIGINFO
|
40 |
|
|
# define PTRACE_GETSIGINFO 0x4202
|
41 |
|
|
# define PTRACE_SETSIGINFO 0x4203
|
42 |
|
|
#endif
|
43 |
|
|
|
44 |
|
|
#ifndef O_LARGEFILE
|
45 |
|
|
#define O_LARGEFILE 0
|
46 |
|
|
#endif
|
47 |
|
|
|
48 |
|
|
/* If the system headers did not provide the constants, hard-code the normal
|
49 |
|
|
values. */
|
50 |
|
|
#ifndef PTRACE_EVENT_FORK
|
51 |
|
|
|
52 |
|
|
#define PTRACE_SETOPTIONS 0x4200
|
53 |
|
|
#define PTRACE_GETEVENTMSG 0x4201
|
54 |
|
|
|
55 |
|
|
/* options set using PTRACE_SETOPTIONS */
|
56 |
|
|
#define PTRACE_O_TRACESYSGOOD 0x00000001
|
57 |
|
|
#define PTRACE_O_TRACEFORK 0x00000002
|
58 |
|
|
#define PTRACE_O_TRACEVFORK 0x00000004
|
59 |
|
|
#define PTRACE_O_TRACECLONE 0x00000008
|
60 |
|
|
#define PTRACE_O_TRACEEXEC 0x00000010
|
61 |
|
|
#define PTRACE_O_TRACEVFORKDONE 0x00000020
|
62 |
|
|
#define PTRACE_O_TRACEEXIT 0x00000040
|
63 |
|
|
|
64 |
|
|
/* Wait extended result codes for the above trace options. */
|
65 |
|
|
#define PTRACE_EVENT_FORK 1
|
66 |
|
|
#define PTRACE_EVENT_VFORK 2
|
67 |
|
|
#define PTRACE_EVENT_CLONE 3
|
68 |
|
|
#define PTRACE_EVENT_EXEC 4
|
69 |
|
|
#define PTRACE_EVENT_VFORK_DONE 5
|
70 |
|
|
#define PTRACE_EVENT_EXIT 6
|
71 |
|
|
|
72 |
|
|
#endif /* PTRACE_EVENT_FORK */
|
73 |
|
|
|
74 |
|
|
/* We can't always assume that this flag is available, but all systems
|
75 |
|
|
with the ptrace event handlers also have __WALL, so it's safe to use
|
76 |
|
|
in some contexts. */
|
77 |
|
|
#ifndef __WALL
|
78 |
|
|
#define __WALL 0x40000000 /* Wait for any child. */
|
79 |
|
|
#endif
|
80 |
|
|
|
81 |
|
|
#ifdef __UCLIBC__
|
82 |
|
|
#if !(defined(__UCLIBC_HAS_MMU__) || defined(__ARCH_HAS_MMU__))
|
83 |
|
|
#define HAS_NOMMU
|
84 |
|
|
#endif
|
85 |
|
|
#endif
|
86 |
|
|
|
87 |
|
|
/* ``all_threads'' is keyed by the LWP ID, which we use as the GDB protocol
|
88 |
|
|
representation of the thread ID.
|
89 |
|
|
|
90 |
|
|
``all_processes'' is keyed by the process ID - which on Linux is (presently)
|
91 |
|
|
the same as the LWP ID. */
|
92 |
|
|
|
93 |
|
|
struct inferior_list all_processes;
|
94 |
|
|
|
95 |
|
|
/* A list of all unknown processes which receive stop signals. Some other
|
96 |
|
|
process will presumably claim each of these as forked children
|
97 |
|
|
momentarily. */
|
98 |
|
|
|
99 |
|
|
struct inferior_list stopped_pids;
|
100 |
|
|
|
101 |
|
|
/* FIXME this is a bit of a hack, and could be removed. */
|
102 |
|
|
int stopping_threads;
|
103 |
|
|
|
104 |
|
|
/* FIXME make into a target method? */
|
105 |
|
|
int using_threads = 1;
|
106 |
|
|
static int thread_db_active;
|
107 |
|
|
|
108 |
|
|
static int must_set_ptrace_flags;
|
109 |
|
|
|
110 |
|
|
static void linux_resume_one_process (struct inferior_list_entry *entry,
|
111 |
|
|
int step, int signal, siginfo_t *info);
|
112 |
|
|
static void linux_resume (struct thread_resume *resume_info);
|
113 |
|
|
static void stop_all_processes (void);
|
114 |
|
|
static int linux_wait_for_event (struct thread_info *child);
|
115 |
|
|
static int check_removed_breakpoint (struct process_info *event_child);
|
116 |
|
|
static void *add_process (unsigned long pid);
|
117 |
|
|
|
118 |
|
|
struct pending_signals
|
119 |
|
|
{
|
120 |
|
|
int signal;
|
121 |
|
|
siginfo_t info;
|
122 |
|
|
struct pending_signals *prev;
|
123 |
|
|
};
|
124 |
|
|
|
125 |
|
|
#define PTRACE_ARG3_TYPE long
|
126 |
|
|
#define PTRACE_XFER_TYPE long
|
127 |
|
|
|
128 |
|
|
#ifdef HAVE_LINUX_REGSETS
|
129 |
|
|
static int use_regsets_p = 1;
|
130 |
|
|
#endif
|
131 |
|
|
|
132 |
|
|
#define pid_of(proc) ((proc)->head.id)
|
133 |
|
|
|
134 |
|
|
/* FIXME: Delete eventually. */
|
135 |
|
|
#define inferior_pid (pid_of (get_thread_process (current_inferior)))
|
136 |
|
|
|
137 |
|
|
static void
|
138 |
|
|
handle_extended_wait (struct process_info *event_child, int wstat)
|
139 |
|
|
{
|
140 |
|
|
int event = wstat >> 16;
|
141 |
|
|
struct process_info *new_process;
|
142 |
|
|
|
143 |
|
|
if (event == PTRACE_EVENT_CLONE)
|
144 |
|
|
{
|
145 |
|
|
unsigned long new_pid;
|
146 |
|
|
int ret, status;
|
147 |
|
|
|
148 |
|
|
ptrace (PTRACE_GETEVENTMSG, inferior_pid, 0, &new_pid);
|
149 |
|
|
|
150 |
|
|
/* If we haven't already seen the new PID stop, wait for it now. */
|
151 |
|
|
if (! pull_pid_from_list (&stopped_pids, new_pid))
|
152 |
|
|
{
|
153 |
|
|
/* The new child has a pending SIGSTOP. We can't affect it until it
|
154 |
|
|
hits the SIGSTOP, but we're already attached. */
|
155 |
|
|
|
156 |
|
|
do {
|
157 |
|
|
ret = waitpid (new_pid, &status, __WALL);
|
158 |
|
|
} while (ret == -1 && errno == EINTR);
|
159 |
|
|
|
160 |
|
|
if (ret == -1)
|
161 |
|
|
perror_with_name ("waiting for new child");
|
162 |
|
|
else if (ret != new_pid)
|
163 |
|
|
warning ("wait returned unexpected PID %d", ret);
|
164 |
|
|
else if (!WIFSTOPPED (status))
|
165 |
|
|
warning ("wait returned unexpected status 0x%x", status);
|
166 |
|
|
}
|
167 |
|
|
|
168 |
|
|
ptrace (PTRACE_SETOPTIONS, new_pid, 0, PTRACE_O_TRACECLONE);
|
169 |
|
|
|
170 |
|
|
new_process = (struct process_info *) add_process (new_pid);
|
171 |
|
|
add_thread (new_pid, new_process, new_pid);
|
172 |
|
|
new_thread_notify (thread_id_to_gdb_id (new_process->lwpid));
|
173 |
|
|
|
174 |
|
|
/* Normally we will get the pending SIGSTOP. But in some cases
|
175 |
|
|
we might get another signal delivered to the group first.
|
176 |
|
|
If we do, be sure not to lose it. */
|
177 |
|
|
if (WSTOPSIG (status) == SIGSTOP)
|
178 |
|
|
{
|
179 |
|
|
if (stopping_threads)
|
180 |
|
|
new_process->stopped = 1;
|
181 |
|
|
else
|
182 |
|
|
ptrace (PTRACE_CONT, new_pid, 0, 0);
|
183 |
|
|
}
|
184 |
|
|
else
|
185 |
|
|
{
|
186 |
|
|
new_process->stop_expected = 1;
|
187 |
|
|
if (stopping_threads)
|
188 |
|
|
{
|
189 |
|
|
new_process->stopped = 1;
|
190 |
|
|
new_process->status_pending_p = 1;
|
191 |
|
|
new_process->status_pending = status;
|
192 |
|
|
}
|
193 |
|
|
else
|
194 |
|
|
/* Pass the signal on. This is what GDB does - except
|
195 |
|
|
shouldn't we really report it instead? */
|
196 |
|
|
ptrace (PTRACE_CONT, new_pid, 0, WSTOPSIG (status));
|
197 |
|
|
}
|
198 |
|
|
|
199 |
|
|
/* Always resume the current thread. If we are stopping
|
200 |
|
|
threads, it will have a pending SIGSTOP; we may as well
|
201 |
|
|
collect it now. */
|
202 |
|
|
linux_resume_one_process (&event_child->head,
|
203 |
|
|
event_child->stepping, 0, NULL);
|
204 |
|
|
}
|
205 |
|
|
}
|
206 |
|
|
|
207 |
|
|
/* This function should only be called if the process got a SIGTRAP.
|
208 |
|
|
The SIGTRAP could mean several things.
|
209 |
|
|
|
210 |
|
|
On i386, where decr_pc_after_break is non-zero:
|
211 |
|
|
If we were single-stepping this process using PTRACE_SINGLESTEP,
|
212 |
|
|
we will get only the one SIGTRAP (even if the instruction we
|
213 |
|
|
stepped over was a breakpoint). The value of $eip will be the
|
214 |
|
|
next instruction.
|
215 |
|
|
If we continue the process using PTRACE_CONT, we will get a
|
216 |
|
|
SIGTRAP when we hit a breakpoint. The value of $eip will be
|
217 |
|
|
the instruction after the breakpoint (i.e. needs to be
|
218 |
|
|
decremented). If we report the SIGTRAP to GDB, we must also
|
219 |
|
|
report the undecremented PC. If we cancel the SIGTRAP, we
|
220 |
|
|
must resume at the decremented PC.
|
221 |
|
|
|
222 |
|
|
(Presumably, not yet tested) On a non-decr_pc_after_break machine
|
223 |
|
|
with hardware or kernel single-step:
|
224 |
|
|
If we single-step over a breakpoint instruction, our PC will
|
225 |
|
|
point at the following instruction. If we continue and hit a
|
226 |
|
|
breakpoint instruction, our PC will point at the breakpoint
|
227 |
|
|
instruction. */
|
228 |
|
|
|
229 |
|
|
static CORE_ADDR
|
230 |
|
|
get_stop_pc (void)
|
231 |
|
|
{
|
232 |
|
|
CORE_ADDR stop_pc = (*the_low_target.get_pc) ();
|
233 |
|
|
|
234 |
|
|
if (get_thread_process (current_inferior)->stepping)
|
235 |
|
|
return stop_pc;
|
236 |
|
|
else
|
237 |
|
|
return stop_pc - the_low_target.decr_pc_after_break;
|
238 |
|
|
}
|
239 |
|
|
|
240 |
|
|
static void *
|
241 |
|
|
add_process (unsigned long pid)
|
242 |
|
|
{
|
243 |
|
|
struct process_info *process;
|
244 |
|
|
|
245 |
|
|
process = (struct process_info *) malloc (sizeof (*process));
|
246 |
|
|
memset (process, 0, sizeof (*process));
|
247 |
|
|
|
248 |
|
|
process->head.id = pid;
|
249 |
|
|
process->lwpid = pid;
|
250 |
|
|
|
251 |
|
|
add_inferior_to_list (&all_processes, &process->head);
|
252 |
|
|
|
253 |
|
|
return process;
|
254 |
|
|
}
|
255 |
|
|
|
256 |
|
|
/* Start an inferior process and returns its pid.
|
257 |
|
|
ALLARGS is a vector of program-name and args. */
|
258 |
|
|
|
259 |
|
|
static int
|
260 |
|
|
linux_create_inferior (char *program, char **allargs)
|
261 |
|
|
{
|
262 |
|
|
void *new_process;
|
263 |
|
|
int pid;
|
264 |
|
|
|
265 |
|
|
#if defined(__UCLIBC__) && defined(HAS_NOMMU)
|
266 |
|
|
pid = vfork ();
|
267 |
|
|
#else
|
268 |
|
|
pid = fork ();
|
269 |
|
|
#endif
|
270 |
|
|
if (pid < 0)
|
271 |
|
|
perror_with_name ("fork");
|
272 |
|
|
|
273 |
|
|
if (pid == 0)
|
274 |
|
|
{
|
275 |
|
|
ptrace (PTRACE_TRACEME, 0, 0, 0);
|
276 |
|
|
|
277 |
|
|
signal (__SIGRTMIN + 1, SIG_DFL);
|
278 |
|
|
|
279 |
|
|
setpgid (0, 0);
|
280 |
|
|
|
281 |
|
|
execv (program, allargs);
|
282 |
|
|
if (errno == ENOENT)
|
283 |
|
|
execvp (program, allargs);
|
284 |
|
|
|
285 |
|
|
fprintf (stderr, "Cannot exec %s: %s.\n", program,
|
286 |
|
|
strerror (errno));
|
287 |
|
|
fflush (stderr);
|
288 |
|
|
_exit (0177);
|
289 |
|
|
}
|
290 |
|
|
|
291 |
|
|
new_process = add_process (pid);
|
292 |
|
|
add_thread (pid, new_process, pid);
|
293 |
|
|
must_set_ptrace_flags = 1;
|
294 |
|
|
|
295 |
|
|
return pid;
|
296 |
|
|
}
|
297 |
|
|
|
298 |
|
|
/* Attach to an inferior process. */
|
299 |
|
|
|
300 |
|
|
void
|
301 |
|
|
linux_attach_lwp (unsigned long pid)
|
302 |
|
|
{
|
303 |
|
|
struct process_info *new_process;
|
304 |
|
|
|
305 |
|
|
if (ptrace (PTRACE_ATTACH, pid, 0, 0) != 0)
|
306 |
|
|
{
|
307 |
|
|
if (all_threads.head != NULL)
|
308 |
|
|
{
|
309 |
|
|
/* If we fail to attach to an LWP, just warn. */
|
310 |
|
|
fprintf (stderr, "Cannot attach to process %ld: %s (%d)\n", pid,
|
311 |
|
|
strerror (errno), errno);
|
312 |
|
|
fflush (stderr);
|
313 |
|
|
return;
|
314 |
|
|
}
|
315 |
|
|
else
|
316 |
|
|
/* If we fail to attach to a process, report an error. */
|
317 |
|
|
error ("Cannot attach to process %ld: %s (%d)\n", pid,
|
318 |
|
|
strerror (errno), errno);
|
319 |
|
|
}
|
320 |
|
|
|
321 |
|
|
ptrace (PTRACE_SETOPTIONS, pid, 0, PTRACE_O_TRACECLONE);
|
322 |
|
|
|
323 |
|
|
new_process = (struct process_info *) add_process (pid);
|
324 |
|
|
add_thread (pid, new_process, pid);
|
325 |
|
|
new_thread_notify (thread_id_to_gdb_id (new_process->lwpid));
|
326 |
|
|
|
327 |
|
|
/* The next time we wait for this LWP we'll see a SIGSTOP as PTRACE_ATTACH
|
328 |
|
|
brings it to a halt. We should ignore that SIGSTOP and resume the process
|
329 |
|
|
(unless this is the first process, in which case the flag will be cleared
|
330 |
|
|
in linux_attach).
|
331 |
|
|
|
332 |
|
|
On the other hand, if we are currently trying to stop all threads, we
|
333 |
|
|
should treat the new thread as if we had sent it a SIGSTOP. This works
|
334 |
|
|
because we are guaranteed that add_process added us to the end of the
|
335 |
|
|
list, and so the new thread has not yet reached wait_for_sigstop (but
|
336 |
|
|
will). */
|
337 |
|
|
if (! stopping_threads)
|
338 |
|
|
new_process->stop_expected = 1;
|
339 |
|
|
}
|
340 |
|
|
|
341 |
|
|
int
|
342 |
|
|
linux_attach (unsigned long pid)
|
343 |
|
|
{
|
344 |
|
|
struct process_info *process;
|
345 |
|
|
|
346 |
|
|
linux_attach_lwp (pid);
|
347 |
|
|
|
348 |
|
|
/* Don't ignore the initial SIGSTOP if we just attached to this process.
|
349 |
|
|
It will be collected by wait shortly. */
|
350 |
|
|
process = (struct process_info *) find_inferior_id (&all_processes, pid);
|
351 |
|
|
process->stop_expected = 0;
|
352 |
|
|
|
353 |
|
|
return 0;
|
354 |
|
|
}
|
355 |
|
|
|
356 |
|
|
/* Kill the inferior process. Make us have no inferior. */
|
357 |
|
|
|
358 |
|
|
static void
|
359 |
|
|
linux_kill_one_process (struct inferior_list_entry *entry)
|
360 |
|
|
{
|
361 |
|
|
struct thread_info *thread = (struct thread_info *) entry;
|
362 |
|
|
struct process_info *process = get_thread_process (thread);
|
363 |
|
|
int wstat;
|
364 |
|
|
|
365 |
|
|
/* We avoid killing the first thread here, because of a Linux kernel (at
|
366 |
|
|
least 2.6.0-test7 through 2.6.8-rc4) bug; if we kill the parent before
|
367 |
|
|
the children get a chance to be reaped, it will remain a zombie
|
368 |
|
|
forever. */
|
369 |
|
|
if (entry == all_threads.head)
|
370 |
|
|
return;
|
371 |
|
|
|
372 |
|
|
do
|
373 |
|
|
{
|
374 |
|
|
ptrace (PTRACE_KILL, pid_of (process), 0, 0);
|
375 |
|
|
|
376 |
|
|
/* Make sure it died. The loop is most likely unnecessary. */
|
377 |
|
|
wstat = linux_wait_for_event (thread);
|
378 |
|
|
} while (WIFSTOPPED (wstat));
|
379 |
|
|
}
|
380 |
|
|
|
381 |
|
|
static void
|
382 |
|
|
linux_kill (void)
|
383 |
|
|
{
|
384 |
|
|
struct thread_info *thread = (struct thread_info *) all_threads.head;
|
385 |
|
|
struct process_info *process;
|
386 |
|
|
int wstat;
|
387 |
|
|
|
388 |
|
|
if (thread == NULL)
|
389 |
|
|
return;
|
390 |
|
|
|
391 |
|
|
for_each_inferior (&all_threads, linux_kill_one_process);
|
392 |
|
|
|
393 |
|
|
/* See the comment in linux_kill_one_process. We did not kill the first
|
394 |
|
|
thread in the list, so do so now. */
|
395 |
|
|
process = get_thread_process (thread);
|
396 |
|
|
do
|
397 |
|
|
{
|
398 |
|
|
ptrace (PTRACE_KILL, pid_of (process), 0, 0);
|
399 |
|
|
|
400 |
|
|
/* Make sure it died. The loop is most likely unnecessary. */
|
401 |
|
|
wstat = linux_wait_for_event (thread);
|
402 |
|
|
} while (WIFSTOPPED (wstat));
|
403 |
|
|
|
404 |
|
|
clear_inferiors ();
|
405 |
|
|
free (all_processes.head);
|
406 |
|
|
all_processes.head = all_processes.tail = NULL;
|
407 |
|
|
}
|
408 |
|
|
|
409 |
|
|
static void
|
410 |
|
|
linux_detach_one_process (struct inferior_list_entry *entry)
|
411 |
|
|
{
|
412 |
|
|
struct thread_info *thread = (struct thread_info *) entry;
|
413 |
|
|
struct process_info *process = get_thread_process (thread);
|
414 |
|
|
|
415 |
|
|
/* Make sure the process isn't stopped at a breakpoint that's
|
416 |
|
|
no longer there. */
|
417 |
|
|
check_removed_breakpoint (process);
|
418 |
|
|
|
419 |
|
|
/* If this process is stopped but is expecting a SIGSTOP, then make
|
420 |
|
|
sure we take care of that now. This isn't absolutely guaranteed
|
421 |
|
|
to collect the SIGSTOP, but is fairly likely to. */
|
422 |
|
|
if (process->stop_expected)
|
423 |
|
|
{
|
424 |
|
|
/* Clear stop_expected, so that the SIGSTOP will be reported. */
|
425 |
|
|
process->stop_expected = 0;
|
426 |
|
|
if (process->stopped)
|
427 |
|
|
linux_resume_one_process (&process->head, 0, 0, NULL);
|
428 |
|
|
linux_wait_for_event (thread);
|
429 |
|
|
}
|
430 |
|
|
|
431 |
|
|
/* Flush any pending changes to the process's registers. */
|
432 |
|
|
regcache_invalidate_one ((struct inferior_list_entry *)
|
433 |
|
|
get_process_thread (process));
|
434 |
|
|
|
435 |
|
|
/* Finally, let it resume. */
|
436 |
|
|
ptrace (PTRACE_DETACH, pid_of (process), 0, 0);
|
437 |
|
|
}
|
438 |
|
|
|
439 |
|
|
static int
|
440 |
|
|
linux_detach (void)
|
441 |
|
|
{
|
442 |
|
|
delete_all_breakpoints ();
|
443 |
|
|
for_each_inferior (&all_threads, linux_detach_one_process);
|
444 |
|
|
clear_inferiors ();
|
445 |
|
|
free (all_processes.head);
|
446 |
|
|
all_processes.head = all_processes.tail = NULL;
|
447 |
|
|
return 0;
|
448 |
|
|
}
|
449 |
|
|
|
450 |
|
|
static void
|
451 |
|
|
linux_join (void)
|
452 |
|
|
{
|
453 |
|
|
extern unsigned long signal_pid;
|
454 |
|
|
int status, ret;
|
455 |
|
|
|
456 |
|
|
do {
|
457 |
|
|
ret = waitpid (signal_pid, &status, 0);
|
458 |
|
|
if (WIFEXITED (status) || WIFSIGNALED (status))
|
459 |
|
|
break;
|
460 |
|
|
} while (ret != -1 || errno != ECHILD);
|
461 |
|
|
}
|
462 |
|
|
|
463 |
|
|
/* Return nonzero if the given thread is still alive. */
|
464 |
|
|
static int
|
465 |
|
|
linux_thread_alive (unsigned long lwpid)
|
466 |
|
|
{
|
467 |
|
|
if (find_inferior_id (&all_threads, lwpid) != NULL)
|
468 |
|
|
return 1;
|
469 |
|
|
else
|
470 |
|
|
return 0;
|
471 |
|
|
}
|
472 |
|
|
|
473 |
|
|
/* Return nonzero if this process stopped at a breakpoint which
|
474 |
|
|
no longer appears to be inserted. Also adjust the PC
|
475 |
|
|
appropriately to resume where the breakpoint used to be. */
|
476 |
|
|
static int
|
477 |
|
|
check_removed_breakpoint (struct process_info *event_child)
|
478 |
|
|
{
|
479 |
|
|
CORE_ADDR stop_pc;
|
480 |
|
|
struct thread_info *saved_inferior;
|
481 |
|
|
|
482 |
|
|
if (event_child->pending_is_breakpoint == 0)
|
483 |
|
|
return 0;
|
484 |
|
|
|
485 |
|
|
if (debug_threads)
|
486 |
|
|
fprintf (stderr, "Checking for breakpoint in process %ld.\n",
|
487 |
|
|
event_child->lwpid);
|
488 |
|
|
|
489 |
|
|
saved_inferior = current_inferior;
|
490 |
|
|
current_inferior = get_process_thread (event_child);
|
491 |
|
|
|
492 |
|
|
stop_pc = get_stop_pc ();
|
493 |
|
|
|
494 |
|
|
/* If the PC has changed since we stopped, then we shouldn't do
|
495 |
|
|
anything. This happens if, for instance, GDB handled the
|
496 |
|
|
decr_pc_after_break subtraction itself. */
|
497 |
|
|
if (stop_pc != event_child->pending_stop_pc)
|
498 |
|
|
{
|
499 |
|
|
if (debug_threads)
|
500 |
|
|
fprintf (stderr, "Ignoring, PC was changed. Old PC was 0x%08llx\n",
|
501 |
|
|
event_child->pending_stop_pc);
|
502 |
|
|
|
503 |
|
|
event_child->pending_is_breakpoint = 0;
|
504 |
|
|
current_inferior = saved_inferior;
|
505 |
|
|
return 0;
|
506 |
|
|
}
|
507 |
|
|
|
508 |
|
|
/* If the breakpoint is still there, we will report hitting it. */
|
509 |
|
|
if ((*the_low_target.breakpoint_at) (stop_pc))
|
510 |
|
|
{
|
511 |
|
|
if (debug_threads)
|
512 |
|
|
fprintf (stderr, "Ignoring, breakpoint is still present.\n");
|
513 |
|
|
current_inferior = saved_inferior;
|
514 |
|
|
return 0;
|
515 |
|
|
}
|
516 |
|
|
|
517 |
|
|
if (debug_threads)
|
518 |
|
|
fprintf (stderr, "Removed breakpoint.\n");
|
519 |
|
|
|
520 |
|
|
/* For decr_pc_after_break targets, here is where we perform the
|
521 |
|
|
decrement. We go immediately from this function to resuming,
|
522 |
|
|
and can not safely call get_stop_pc () again. */
|
523 |
|
|
if (the_low_target.set_pc != NULL)
|
524 |
|
|
(*the_low_target.set_pc) (stop_pc);
|
525 |
|
|
|
526 |
|
|
/* We consumed the pending SIGTRAP. */
|
527 |
|
|
event_child->pending_is_breakpoint = 0;
|
528 |
|
|
event_child->status_pending_p = 0;
|
529 |
|
|
event_child->status_pending = 0;
|
530 |
|
|
|
531 |
|
|
current_inferior = saved_inferior;
|
532 |
|
|
return 1;
|
533 |
|
|
}
|
534 |
|
|
|
535 |
|
|
/* Return 1 if this process has an interesting status pending. This function
|
536 |
|
|
may silently resume an inferior process. */
|
537 |
|
|
static int
|
538 |
|
|
status_pending_p (struct inferior_list_entry *entry, void *dummy)
|
539 |
|
|
{
|
540 |
|
|
struct process_info *process = (struct process_info *) entry;
|
541 |
|
|
|
542 |
|
|
if (process->status_pending_p)
|
543 |
|
|
if (check_removed_breakpoint (process))
|
544 |
|
|
{
|
545 |
|
|
/* This thread was stopped at a breakpoint, and the breakpoint
|
546 |
|
|
is now gone. We were told to continue (or step...) all threads,
|
547 |
|
|
so GDB isn't trying to single-step past this breakpoint.
|
548 |
|
|
So instead of reporting the old SIGTRAP, pretend we got to
|
549 |
|
|
the breakpoint just after it was removed instead of just
|
550 |
|
|
before; resume the process. */
|
551 |
|
|
linux_resume_one_process (&process->head, 0, 0, NULL);
|
552 |
|
|
return 0;
|
553 |
|
|
}
|
554 |
|
|
|
555 |
|
|
return process->status_pending_p;
|
556 |
|
|
}
|
557 |
|
|
|
558 |
|
|
static void
|
559 |
|
|
linux_wait_for_process (struct process_info **childp, int *wstatp)
|
560 |
|
|
{
|
561 |
|
|
int ret;
|
562 |
|
|
int to_wait_for = -1;
|
563 |
|
|
|
564 |
|
|
if (*childp != NULL)
|
565 |
|
|
to_wait_for = (*childp)->lwpid;
|
566 |
|
|
|
567 |
|
|
retry:
|
568 |
|
|
while (1)
|
569 |
|
|
{
|
570 |
|
|
ret = waitpid (to_wait_for, wstatp, WNOHANG);
|
571 |
|
|
|
572 |
|
|
if (ret == -1)
|
573 |
|
|
{
|
574 |
|
|
if (errno != ECHILD)
|
575 |
|
|
perror_with_name ("waitpid");
|
576 |
|
|
}
|
577 |
|
|
else if (ret > 0)
|
578 |
|
|
break;
|
579 |
|
|
|
580 |
|
|
ret = waitpid (to_wait_for, wstatp, WNOHANG | __WCLONE);
|
581 |
|
|
|
582 |
|
|
if (ret == -1)
|
583 |
|
|
{
|
584 |
|
|
if (errno != ECHILD)
|
585 |
|
|
perror_with_name ("waitpid (WCLONE)");
|
586 |
|
|
}
|
587 |
|
|
else if (ret > 0)
|
588 |
|
|
break;
|
589 |
|
|
|
590 |
|
|
usleep (1000);
|
591 |
|
|
}
|
592 |
|
|
|
593 |
|
|
if (debug_threads
|
594 |
|
|
&& (!WIFSTOPPED (*wstatp)
|
595 |
|
|
|| (WSTOPSIG (*wstatp) != 32
|
596 |
|
|
&& WSTOPSIG (*wstatp) != 33)))
|
597 |
|
|
fprintf (stderr, "Got an event from %d (%x)\n", ret, *wstatp);
|
598 |
|
|
|
599 |
|
|
if (to_wait_for == -1)
|
600 |
|
|
*childp = (struct process_info *) find_inferior_id (&all_processes, ret);
|
601 |
|
|
|
602 |
|
|
/* If we didn't find a process, one of two things presumably happened:
|
603 |
|
|
- A process we started and then detached from has exited. Ignore it.
|
604 |
|
|
- A process we are controlling has forked and the new child's stop
|
605 |
|
|
was reported to us by the kernel. Save its PID. */
|
606 |
|
|
if (*childp == NULL && WIFSTOPPED (*wstatp))
|
607 |
|
|
{
|
608 |
|
|
add_pid_to_list (&stopped_pids, ret);
|
609 |
|
|
goto retry;
|
610 |
|
|
}
|
611 |
|
|
else if (*childp == NULL)
|
612 |
|
|
goto retry;
|
613 |
|
|
|
614 |
|
|
(*childp)->stopped = 1;
|
615 |
|
|
(*childp)->pending_is_breakpoint = 0;
|
616 |
|
|
|
617 |
|
|
(*childp)->last_status = *wstatp;
|
618 |
|
|
|
619 |
|
|
if (debug_threads
|
620 |
|
|
&& WIFSTOPPED (*wstatp))
|
621 |
|
|
{
|
622 |
|
|
current_inferior = (struct thread_info *)
|
623 |
|
|
find_inferior_id (&all_threads, (*childp)->lwpid);
|
624 |
|
|
/* For testing only; i386_stop_pc prints out a diagnostic. */
|
625 |
|
|
if (the_low_target.get_pc != NULL)
|
626 |
|
|
get_stop_pc ();
|
627 |
|
|
}
|
628 |
|
|
}
|
629 |
|
|
|
630 |
|
|
static int
|
631 |
|
|
linux_wait_for_event (struct thread_info *child)
|
632 |
|
|
{
|
633 |
|
|
CORE_ADDR stop_pc;
|
634 |
|
|
struct process_info *event_child;
|
635 |
|
|
int wstat;
|
636 |
|
|
int bp_status;
|
637 |
|
|
|
638 |
|
|
/* Check for a process with a pending status. */
|
639 |
|
|
/* It is possible that the user changed the pending task's registers since
|
640 |
|
|
it stopped. We correctly handle the change of PC if we hit a breakpoint
|
641 |
|
|
(in check_removed_breakpoint); signals should be reported anyway. */
|
642 |
|
|
if (child == NULL)
|
643 |
|
|
{
|
644 |
|
|
event_child = (struct process_info *)
|
645 |
|
|
find_inferior (&all_processes, status_pending_p, NULL);
|
646 |
|
|
if (debug_threads && event_child)
|
647 |
|
|
fprintf (stderr, "Got a pending child %ld\n", event_child->lwpid);
|
648 |
|
|
}
|
649 |
|
|
else
|
650 |
|
|
{
|
651 |
|
|
event_child = get_thread_process (child);
|
652 |
|
|
if (event_child->status_pending_p
|
653 |
|
|
&& check_removed_breakpoint (event_child))
|
654 |
|
|
event_child = NULL;
|
655 |
|
|
}
|
656 |
|
|
|
657 |
|
|
if (event_child != NULL)
|
658 |
|
|
{
|
659 |
|
|
if (event_child->status_pending_p)
|
660 |
|
|
{
|
661 |
|
|
if (debug_threads)
|
662 |
|
|
fprintf (stderr, "Got an event from pending child %ld (%04x)\n",
|
663 |
|
|
event_child->lwpid, event_child->status_pending);
|
664 |
|
|
wstat = event_child->status_pending;
|
665 |
|
|
event_child->status_pending_p = 0;
|
666 |
|
|
event_child->status_pending = 0;
|
667 |
|
|
current_inferior = get_process_thread (event_child);
|
668 |
|
|
return wstat;
|
669 |
|
|
}
|
670 |
|
|
}
|
671 |
|
|
|
672 |
|
|
/* We only enter this loop if no process has a pending wait status. Thus
|
673 |
|
|
any action taken in response to a wait status inside this loop is
|
674 |
|
|
responding as soon as we detect the status, not after any pending
|
675 |
|
|
events. */
|
676 |
|
|
while (1)
|
677 |
|
|
{
|
678 |
|
|
if (child == NULL)
|
679 |
|
|
event_child = NULL;
|
680 |
|
|
else
|
681 |
|
|
event_child = get_thread_process (child);
|
682 |
|
|
|
683 |
|
|
linux_wait_for_process (&event_child, &wstat);
|
684 |
|
|
|
685 |
|
|
if (event_child == NULL)
|
686 |
|
|
error ("event from unknown child");
|
687 |
|
|
|
688 |
|
|
current_inferior = (struct thread_info *)
|
689 |
|
|
find_inferior_id (&all_threads, event_child->lwpid);
|
690 |
|
|
|
691 |
|
|
/* Check for thread exit. */
|
692 |
|
|
if (! WIFSTOPPED (wstat))
|
693 |
|
|
{
|
694 |
|
|
if (debug_threads)
|
695 |
|
|
fprintf (stderr, "LWP %ld exiting\n", event_child->head.id);
|
696 |
|
|
|
697 |
|
|
/* If the last thread is exiting, just return. */
|
698 |
|
|
if (all_threads.head == all_threads.tail)
|
699 |
|
|
return wstat;
|
700 |
|
|
|
701 |
|
|
dead_thread_notify (thread_id_to_gdb_id (event_child->lwpid));
|
702 |
|
|
|
703 |
|
|
remove_inferior (&all_processes, &event_child->head);
|
704 |
|
|
free (event_child);
|
705 |
|
|
remove_thread (current_inferior);
|
706 |
|
|
current_inferior = (struct thread_info *) all_threads.head;
|
707 |
|
|
|
708 |
|
|
/* If we were waiting for this particular child to do something...
|
709 |
|
|
well, it did something. */
|
710 |
|
|
if (child != NULL)
|
711 |
|
|
return wstat;
|
712 |
|
|
|
713 |
|
|
/* Wait for a more interesting event. */
|
714 |
|
|
continue;
|
715 |
|
|
}
|
716 |
|
|
|
717 |
|
|
if (WIFSTOPPED (wstat)
|
718 |
|
|
&& WSTOPSIG (wstat) == SIGSTOP
|
719 |
|
|
&& event_child->stop_expected)
|
720 |
|
|
{
|
721 |
|
|
if (debug_threads)
|
722 |
|
|
fprintf (stderr, "Expected stop.\n");
|
723 |
|
|
event_child->stop_expected = 0;
|
724 |
|
|
linux_resume_one_process (&event_child->head,
|
725 |
|
|
event_child->stepping, 0, NULL);
|
726 |
|
|
continue;
|
727 |
|
|
}
|
728 |
|
|
|
729 |
|
|
if (WIFSTOPPED (wstat) && WSTOPSIG (wstat) == SIGTRAP
|
730 |
|
|
&& wstat >> 16 != 0)
|
731 |
|
|
{
|
732 |
|
|
handle_extended_wait (event_child, wstat);
|
733 |
|
|
continue;
|
734 |
|
|
}
|
735 |
|
|
|
736 |
|
|
/* If GDB is not interested in this signal, don't stop other
|
737 |
|
|
threads, and don't report it to GDB. Just resume the
|
738 |
|
|
inferior right away. We do this for threading-related
|
739 |
|
|
signals as well as any that GDB specifically requested we
|
740 |
|
|
ignore. But never ignore SIGSTOP if we sent it ourselves,
|
741 |
|
|
and do not ignore signals when stepping - they may require
|
742 |
|
|
special handling to skip the signal handler. */
|
743 |
|
|
/* FIXME drow/2002-06-09: Get signal numbers from the inferior's
|
744 |
|
|
thread library? */
|
745 |
|
|
if (WIFSTOPPED (wstat)
|
746 |
|
|
&& !event_child->stepping
|
747 |
|
|
&& (
|
748 |
|
|
#ifdef USE_THREAD_DB
|
749 |
|
|
(thread_db_active && (WSTOPSIG (wstat) == __SIGRTMIN
|
750 |
|
|
|| WSTOPSIG (wstat) == __SIGRTMIN + 1))
|
751 |
|
|
||
|
752 |
|
|
#endif
|
753 |
|
|
(pass_signals[target_signal_from_host (WSTOPSIG (wstat))]
|
754 |
|
|
&& (WSTOPSIG (wstat) != SIGSTOP || !stopping_threads))))
|
755 |
|
|
{
|
756 |
|
|
siginfo_t info, *info_p;
|
757 |
|
|
|
758 |
|
|
if (debug_threads)
|
759 |
|
|
fprintf (stderr, "Ignored signal %d for LWP %ld.\n",
|
760 |
|
|
WSTOPSIG (wstat), event_child->head.id);
|
761 |
|
|
|
762 |
|
|
if (ptrace (PTRACE_GETSIGINFO, event_child->lwpid, 0, &info) == 0)
|
763 |
|
|
info_p = &info;
|
764 |
|
|
else
|
765 |
|
|
info_p = NULL;
|
766 |
|
|
linux_resume_one_process (&event_child->head,
|
767 |
|
|
event_child->stepping,
|
768 |
|
|
WSTOPSIG (wstat), info_p);
|
769 |
|
|
continue;
|
770 |
|
|
}
|
771 |
|
|
|
772 |
|
|
/* If this event was not handled above, and is not a SIGTRAP, report
|
773 |
|
|
it. */
|
774 |
|
|
if (!WIFSTOPPED (wstat) || WSTOPSIG (wstat) != SIGTRAP)
|
775 |
|
|
return wstat;
|
776 |
|
|
|
777 |
|
|
/* If this target does not support breakpoints, we simply report the
|
778 |
|
|
SIGTRAP; it's of no concern to us. */
|
779 |
|
|
if (the_low_target.get_pc == NULL)
|
780 |
|
|
return wstat;
|
781 |
|
|
|
782 |
|
|
stop_pc = get_stop_pc ();
|
783 |
|
|
|
784 |
|
|
/* bp_reinsert will only be set if we were single-stepping.
|
785 |
|
|
Notice that we will resume the process after hitting
|
786 |
|
|
a gdbserver breakpoint; single-stepping to/over one
|
787 |
|
|
is not supported (yet). */
|
788 |
|
|
if (event_child->bp_reinsert != 0)
|
789 |
|
|
{
|
790 |
|
|
if (debug_threads)
|
791 |
|
|
fprintf (stderr, "Reinserted breakpoint.\n");
|
792 |
|
|
reinsert_breakpoint (event_child->bp_reinsert);
|
793 |
|
|
event_child->bp_reinsert = 0;
|
794 |
|
|
|
795 |
|
|
/* Clear the single-stepping flag and SIGTRAP as we resume. */
|
796 |
|
|
linux_resume_one_process (&event_child->head, 0, 0, NULL);
|
797 |
|
|
continue;
|
798 |
|
|
}
|
799 |
|
|
|
800 |
|
|
bp_status = check_breakpoints (stop_pc);
|
801 |
|
|
|
802 |
|
|
if (bp_status != 0)
|
803 |
|
|
{
|
804 |
|
|
if (debug_threads)
|
805 |
|
|
fprintf (stderr, "Hit a gdbserver breakpoint.\n");
|
806 |
|
|
|
807 |
|
|
/* We hit one of our own breakpoints. We mark it as a pending
|
808 |
|
|
breakpoint, so that check_removed_breakpoint () will do the PC
|
809 |
|
|
adjustment for us at the appropriate time. */
|
810 |
|
|
event_child->pending_is_breakpoint = 1;
|
811 |
|
|
event_child->pending_stop_pc = stop_pc;
|
812 |
|
|
|
813 |
|
|
/* We may need to put the breakpoint back. We continue in the event
|
814 |
|
|
loop instead of simply replacing the breakpoint right away,
|
815 |
|
|
in order to not lose signals sent to the thread that hit the
|
816 |
|
|
breakpoint. Unfortunately this increases the window where another
|
817 |
|
|
thread could sneak past the removed breakpoint. For the current
|
818 |
|
|
use of server-side breakpoints (thread creation) this is
|
819 |
|
|
acceptable; but it needs to be considered before this breakpoint
|
820 |
|
|
mechanism can be used in more general ways. For some breakpoints
|
821 |
|
|
it may be necessary to stop all other threads, but that should
|
822 |
|
|
be avoided where possible.
|
823 |
|
|
|
824 |
|
|
If breakpoint_reinsert_addr is NULL, that means that we can
|
825 |
|
|
use PTRACE_SINGLESTEP on this platform. Uninsert the breakpoint,
|
826 |
|
|
mark it for reinsertion, and single-step.
|
827 |
|
|
|
828 |
|
|
Otherwise, call the target function to figure out where we need
|
829 |
|
|
our temporary breakpoint, create it, and continue executing this
|
830 |
|
|
process. */
|
831 |
|
|
if (bp_status == 2)
|
832 |
|
|
/* No need to reinsert. */
|
833 |
|
|
linux_resume_one_process (&event_child->head, 0, 0, NULL);
|
834 |
|
|
else if (the_low_target.breakpoint_reinsert_addr == NULL)
|
835 |
|
|
{
|
836 |
|
|
event_child->bp_reinsert = stop_pc;
|
837 |
|
|
uninsert_breakpoint (stop_pc);
|
838 |
|
|
linux_resume_one_process (&event_child->head, 1, 0, NULL);
|
839 |
|
|
}
|
840 |
|
|
else
|
841 |
|
|
{
|
842 |
|
|
reinsert_breakpoint_by_bp
|
843 |
|
|
(stop_pc, (*the_low_target.breakpoint_reinsert_addr) ());
|
844 |
|
|
linux_resume_one_process (&event_child->head, 0, 0, NULL);
|
845 |
|
|
}
|
846 |
|
|
|
847 |
|
|
continue;
|
848 |
|
|
}
|
849 |
|
|
|
850 |
|
|
if (debug_threads)
|
851 |
|
|
fprintf (stderr, "Hit a non-gdbserver breakpoint.\n");
|
852 |
|
|
|
853 |
|
|
/* If we were single-stepping, we definitely want to report the
|
854 |
|
|
SIGTRAP. The single-step operation has completed, so also
|
855 |
|
|
clear the stepping flag; in general this does not matter,
|
856 |
|
|
because the SIGTRAP will be reported to the client, which
|
857 |
|
|
will give us a new action for this thread, but clear it for
|
858 |
|
|
consistency anyway. It's safe to clear the stepping flag
|
859 |
|
|
because the only consumer of get_stop_pc () after this point
|
860 |
|
|
is check_removed_breakpoint, and pending_is_breakpoint is not
|
861 |
|
|
set. It might be wiser to use a step_completed flag instead. */
|
862 |
|
|
if (event_child->stepping)
|
863 |
|
|
{
|
864 |
|
|
event_child->stepping = 0;
|
865 |
|
|
return wstat;
|
866 |
|
|
}
|
867 |
|
|
|
868 |
|
|
/* A SIGTRAP that we can't explain. It may have been a breakpoint.
|
869 |
|
|
Check if it is a breakpoint, and if so mark the process information
|
870 |
|
|
accordingly. This will handle both the necessary fiddling with the
|
871 |
|
|
PC on decr_pc_after_break targets and suppressing extra threads
|
872 |
|
|
hitting a breakpoint if two hit it at once and then GDB removes it
|
873 |
|
|
after the first is reported. Arguably it would be better to report
|
874 |
|
|
multiple threads hitting breakpoints simultaneously, but the current
|
875 |
|
|
remote protocol does not allow this. */
|
876 |
|
|
if ((*the_low_target.breakpoint_at) (stop_pc))
|
877 |
|
|
{
|
878 |
|
|
event_child->pending_is_breakpoint = 1;
|
879 |
|
|
event_child->pending_stop_pc = stop_pc;
|
880 |
|
|
}
|
881 |
|
|
|
882 |
|
|
return wstat;
|
883 |
|
|
}
|
884 |
|
|
|
885 |
|
|
/* NOTREACHED */
|
886 |
|
|
return 0;
|
887 |
|
|
}
|
888 |
|
|
|
889 |
|
|
/* Wait for process, returns status. */
|
890 |
|
|
|
891 |
|
|
static unsigned char
|
892 |
|
|
linux_wait (char *status)
|
893 |
|
|
{
|
894 |
|
|
int w;
|
895 |
|
|
struct thread_info *child = NULL;
|
896 |
|
|
|
897 |
|
|
retry:
|
898 |
|
|
/* If we were only supposed to resume one thread, only wait for
|
899 |
|
|
that thread - if it's still alive. If it died, however - which
|
900 |
|
|
can happen if we're coming from the thread death case below -
|
901 |
|
|
then we need to make sure we restart the other threads. We could
|
902 |
|
|
pick a thread at random or restart all; restarting all is less
|
903 |
|
|
arbitrary. */
|
904 |
|
|
if (cont_thread != 0 && cont_thread != -1)
|
905 |
|
|
{
|
906 |
|
|
child = (struct thread_info *) find_inferior_id (&all_threads,
|
907 |
|
|
cont_thread);
|
908 |
|
|
|
909 |
|
|
/* No stepping, no signal - unless one is pending already, of course. */
|
910 |
|
|
if (child == NULL)
|
911 |
|
|
{
|
912 |
|
|
struct thread_resume resume_info;
|
913 |
|
|
resume_info.thread = -1;
|
914 |
|
|
resume_info.step = resume_info.sig = resume_info.leave_stopped = 0;
|
915 |
|
|
linux_resume (&resume_info);
|
916 |
|
|
}
|
917 |
|
|
}
|
918 |
|
|
|
919 |
|
|
w = linux_wait_for_event (child);
|
920 |
|
|
stop_all_processes ();
|
921 |
|
|
|
922 |
|
|
if (must_set_ptrace_flags)
|
923 |
|
|
{
|
924 |
|
|
ptrace (PTRACE_SETOPTIONS, inferior_pid, 0, PTRACE_O_TRACECLONE);
|
925 |
|
|
must_set_ptrace_flags = 0;
|
926 |
|
|
}
|
927 |
|
|
|
928 |
|
|
/* If we are waiting for a particular child, and it exited,
|
929 |
|
|
linux_wait_for_event will return its exit status. Similarly if
|
930 |
|
|
the last child exited. If this is not the last child, however,
|
931 |
|
|
do not report it as exited until there is a 'thread exited' response
|
932 |
|
|
available in the remote protocol. Instead, just wait for another event.
|
933 |
|
|
This should be safe, because if the thread crashed we will already
|
934 |
|
|
have reported the termination signal to GDB; that should stop any
|
935 |
|
|
in-progress stepping operations, etc.
|
936 |
|
|
|
937 |
|
|
Report the exit status of the last thread to exit. This matches
|
938 |
|
|
LinuxThreads' behavior. */
|
939 |
|
|
|
940 |
|
|
if (all_threads.head == all_threads.tail)
|
941 |
|
|
{
|
942 |
|
|
if (WIFEXITED (w))
|
943 |
|
|
{
|
944 |
|
|
fprintf (stderr, "\nChild exited with retcode = %x \n", WEXITSTATUS (w));
|
945 |
|
|
*status = 'W';
|
946 |
|
|
clear_inferiors ();
|
947 |
|
|
free (all_processes.head);
|
948 |
|
|
all_processes.head = all_processes.tail = NULL;
|
949 |
|
|
return WEXITSTATUS (w);
|
950 |
|
|
}
|
951 |
|
|
else if (!WIFSTOPPED (w))
|
952 |
|
|
{
|
953 |
|
|
fprintf (stderr, "\nChild terminated with signal = %x \n", WTERMSIG (w));
|
954 |
|
|
*status = 'X';
|
955 |
|
|
clear_inferiors ();
|
956 |
|
|
free (all_processes.head);
|
957 |
|
|
all_processes.head = all_processes.tail = NULL;
|
958 |
|
|
return target_signal_from_host (WTERMSIG (w));
|
959 |
|
|
}
|
960 |
|
|
}
|
961 |
|
|
else
|
962 |
|
|
{
|
963 |
|
|
if (!WIFSTOPPED (w))
|
964 |
|
|
goto retry;
|
965 |
|
|
}
|
966 |
|
|
|
967 |
|
|
*status = 'T';
|
968 |
|
|
return target_signal_from_host (WSTOPSIG (w));
|
969 |
|
|
}
|
970 |
|
|
|
971 |
|
|
/* Send a signal to an LWP. For LinuxThreads, kill is enough; however, if
|
972 |
|
|
thread groups are in use, we need to use tkill. */
|
973 |
|
|
|
974 |
|
|
static int
|
975 |
|
|
kill_lwp (unsigned long lwpid, int signo)
|
976 |
|
|
{
|
977 |
|
|
static int tkill_failed;
|
978 |
|
|
|
979 |
|
|
errno = 0;
|
980 |
|
|
|
981 |
|
|
#ifdef SYS_tkill
|
982 |
|
|
if (!tkill_failed)
|
983 |
|
|
{
|
984 |
|
|
int ret = syscall (SYS_tkill, lwpid, signo);
|
985 |
|
|
if (errno != ENOSYS)
|
986 |
|
|
return ret;
|
987 |
|
|
errno = 0;
|
988 |
|
|
tkill_failed = 1;
|
989 |
|
|
}
|
990 |
|
|
#endif
|
991 |
|
|
|
992 |
|
|
return kill (lwpid, signo);
|
993 |
|
|
}
|
994 |
|
|
|
995 |
|
|
static void
|
996 |
|
|
send_sigstop (struct inferior_list_entry *entry)
|
997 |
|
|
{
|
998 |
|
|
struct process_info *process = (struct process_info *) entry;
|
999 |
|
|
|
1000 |
|
|
if (process->stopped)
|
1001 |
|
|
return;
|
1002 |
|
|
|
1003 |
|
|
/* If we already have a pending stop signal for this process, don't
|
1004 |
|
|
send another. */
|
1005 |
|
|
if (process->stop_expected)
|
1006 |
|
|
{
|
1007 |
|
|
if (debug_threads)
|
1008 |
|
|
fprintf (stderr, "Have pending sigstop for process %ld\n",
|
1009 |
|
|
process->lwpid);
|
1010 |
|
|
|
1011 |
|
|
/* We clear the stop_expected flag so that wait_for_sigstop
|
1012 |
|
|
will receive the SIGSTOP event (instead of silently resuming and
|
1013 |
|
|
waiting again). It'll be reset below. */
|
1014 |
|
|
process->stop_expected = 0;
|
1015 |
|
|
return;
|
1016 |
|
|
}
|
1017 |
|
|
|
1018 |
|
|
if (debug_threads)
|
1019 |
|
|
fprintf (stderr, "Sending sigstop to process %ld\n", process->head.id);
|
1020 |
|
|
|
1021 |
|
|
kill_lwp (process->head.id, SIGSTOP);
|
1022 |
|
|
}
|
1023 |
|
|
|
1024 |
|
|
static void
|
1025 |
|
|
wait_for_sigstop (struct inferior_list_entry *entry)
|
1026 |
|
|
{
|
1027 |
|
|
struct process_info *process = (struct process_info *) entry;
|
1028 |
|
|
struct thread_info *saved_inferior, *thread;
|
1029 |
|
|
int wstat;
|
1030 |
|
|
unsigned long saved_tid;
|
1031 |
|
|
|
1032 |
|
|
if (process->stopped)
|
1033 |
|
|
return;
|
1034 |
|
|
|
1035 |
|
|
saved_inferior = current_inferior;
|
1036 |
|
|
saved_tid = ((struct inferior_list_entry *) saved_inferior)->id;
|
1037 |
|
|
thread = (struct thread_info *) find_inferior_id (&all_threads,
|
1038 |
|
|
process->lwpid);
|
1039 |
|
|
wstat = linux_wait_for_event (thread);
|
1040 |
|
|
|
1041 |
|
|
/* If we stopped with a non-SIGSTOP signal, save it for later
|
1042 |
|
|
and record the pending SIGSTOP. If the process exited, just
|
1043 |
|
|
return. */
|
1044 |
|
|
if (WIFSTOPPED (wstat)
|
1045 |
|
|
&& WSTOPSIG (wstat) != SIGSTOP)
|
1046 |
|
|
{
|
1047 |
|
|
if (debug_threads)
|
1048 |
|
|
fprintf (stderr, "LWP %ld stopped with non-sigstop status %06x\n",
|
1049 |
|
|
process->lwpid, wstat);
|
1050 |
|
|
process->status_pending_p = 1;
|
1051 |
|
|
process->status_pending = wstat;
|
1052 |
|
|
process->stop_expected = 1;
|
1053 |
|
|
}
|
1054 |
|
|
|
1055 |
|
|
if (linux_thread_alive (saved_tid))
|
1056 |
|
|
current_inferior = saved_inferior;
|
1057 |
|
|
else
|
1058 |
|
|
{
|
1059 |
|
|
if (debug_threads)
|
1060 |
|
|
fprintf (stderr, "Previously current thread died.\n");
|
1061 |
|
|
|
1062 |
|
|
/* Set a valid thread as current. */
|
1063 |
|
|
set_desired_inferior (0);
|
1064 |
|
|
}
|
1065 |
|
|
}
|
1066 |
|
|
|
1067 |
|
|
static void
|
1068 |
|
|
stop_all_processes (void)
|
1069 |
|
|
{
|
1070 |
|
|
stopping_threads = 1;
|
1071 |
|
|
for_each_inferior (&all_processes, send_sigstop);
|
1072 |
|
|
for_each_inferior (&all_processes, wait_for_sigstop);
|
1073 |
|
|
stopping_threads = 0;
|
1074 |
|
|
}
|
1075 |
|
|
|
1076 |
|
|
/* Resume execution of the inferior process.
|
1077 |
|
|
If STEP is nonzero, single-step it.
|
1078 |
|
|
If SIGNAL is nonzero, give it that signal. */
|
1079 |
|
|
|
1080 |
|
|
static void
|
1081 |
|
|
linux_resume_one_process (struct inferior_list_entry *entry,
|
1082 |
|
|
int step, int signal, siginfo_t *info)
|
1083 |
|
|
{
|
1084 |
|
|
struct process_info *process = (struct process_info *) entry;
|
1085 |
|
|
struct thread_info *saved_inferior;
|
1086 |
|
|
|
1087 |
|
|
if (process->stopped == 0)
|
1088 |
|
|
return;
|
1089 |
|
|
|
1090 |
|
|
/* If we have pending signals or status, and a new signal, enqueue the
|
1091 |
|
|
signal. Also enqueue the signal if we are waiting to reinsert a
|
1092 |
|
|
breakpoint; it will be picked up again below. */
|
1093 |
|
|
if (signal != 0
|
1094 |
|
|
&& (process->status_pending_p || process->pending_signals != NULL
|
1095 |
|
|
|| process->bp_reinsert != 0))
|
1096 |
|
|
{
|
1097 |
|
|
struct pending_signals *p_sig;
|
1098 |
|
|
p_sig = malloc (sizeof (*p_sig));
|
1099 |
|
|
p_sig->prev = process->pending_signals;
|
1100 |
|
|
p_sig->signal = signal;
|
1101 |
|
|
if (info == NULL)
|
1102 |
|
|
memset (&p_sig->info, 0, sizeof (siginfo_t));
|
1103 |
|
|
else
|
1104 |
|
|
memcpy (&p_sig->info, info, sizeof (siginfo_t));
|
1105 |
|
|
process->pending_signals = p_sig;
|
1106 |
|
|
}
|
1107 |
|
|
|
1108 |
|
|
if (process->status_pending_p && !check_removed_breakpoint (process))
|
1109 |
|
|
return;
|
1110 |
|
|
|
1111 |
|
|
saved_inferior = current_inferior;
|
1112 |
|
|
current_inferior = get_process_thread (process);
|
1113 |
|
|
|
1114 |
|
|
if (debug_threads)
|
1115 |
|
|
fprintf (stderr, "Resuming process %ld (%s, signal %d, stop %s)\n", inferior_pid,
|
1116 |
|
|
step ? "step" : "continue", signal,
|
1117 |
|
|
process->stop_expected ? "expected" : "not expected");
|
1118 |
|
|
|
1119 |
|
|
/* This bit needs some thinking about. If we get a signal that
|
1120 |
|
|
we must report while a single-step reinsert is still pending,
|
1121 |
|
|
we often end up resuming the thread. It might be better to
|
1122 |
|
|
(ew) allow a stack of pending events; then we could be sure that
|
1123 |
|
|
the reinsert happened right away and not lose any signals.
|
1124 |
|
|
|
1125 |
|
|
Making this stack would also shrink the window in which breakpoints are
|
1126 |
|
|
uninserted (see comment in linux_wait_for_process) but not enough for
|
1127 |
|
|
complete correctness, so it won't solve that problem. It may be
|
1128 |
|
|
worthwhile just to solve this one, however. */
|
1129 |
|
|
if (process->bp_reinsert != 0)
|
1130 |
|
|
{
|
1131 |
|
|
if (debug_threads)
|
1132 |
|
|
fprintf (stderr, " pending reinsert at %08lx", (long)process->bp_reinsert);
|
1133 |
|
|
if (step == 0)
|
1134 |
|
|
fprintf (stderr, "BAD - reinserting but not stepping.\n");
|
1135 |
|
|
step = 1;
|
1136 |
|
|
|
1137 |
|
|
/* Postpone any pending signal. It was enqueued above. */
|
1138 |
|
|
signal = 0;
|
1139 |
|
|
}
|
1140 |
|
|
|
1141 |
|
|
check_removed_breakpoint (process);
|
1142 |
|
|
|
1143 |
|
|
if (debug_threads && the_low_target.get_pc != NULL)
|
1144 |
|
|
{
|
1145 |
|
|
fprintf (stderr, " ");
|
1146 |
|
|
(*the_low_target.get_pc) ();
|
1147 |
|
|
}
|
1148 |
|
|
|
1149 |
|
|
/* If we have pending signals, consume one unless we are trying to reinsert
|
1150 |
|
|
a breakpoint. */
|
1151 |
|
|
if (process->pending_signals != NULL && process->bp_reinsert == 0)
|
1152 |
|
|
{
|
1153 |
|
|
struct pending_signals **p_sig;
|
1154 |
|
|
|
1155 |
|
|
p_sig = &process->pending_signals;
|
1156 |
|
|
while ((*p_sig)->prev != NULL)
|
1157 |
|
|
p_sig = &(*p_sig)->prev;
|
1158 |
|
|
|
1159 |
|
|
signal = (*p_sig)->signal;
|
1160 |
|
|
if ((*p_sig)->info.si_signo != 0)
|
1161 |
|
|
ptrace (PTRACE_SETSIGINFO, process->lwpid, 0, &(*p_sig)->info);
|
1162 |
|
|
|
1163 |
|
|
free (*p_sig);
|
1164 |
|
|
*p_sig = NULL;
|
1165 |
|
|
}
|
1166 |
|
|
|
1167 |
|
|
regcache_invalidate_one ((struct inferior_list_entry *)
|
1168 |
|
|
get_process_thread (process));
|
1169 |
|
|
errno = 0;
|
1170 |
|
|
process->stopped = 0;
|
1171 |
|
|
process->stepping = step;
|
1172 |
|
|
ptrace (step ? PTRACE_SINGLESTEP : PTRACE_CONT, process->lwpid, 0, signal);
|
1173 |
|
|
|
1174 |
|
|
current_inferior = saved_inferior;
|
1175 |
|
|
if (errno)
|
1176 |
|
|
perror_with_name ("ptrace");
|
1177 |
|
|
}
|
1178 |
|
|
|
1179 |
|
|
static struct thread_resume *resume_ptr;
|
1180 |
|
|
|
1181 |
|
|
/* This function is called once per thread. We look up the thread
|
1182 |
|
|
in RESUME_PTR, and mark the thread with a pointer to the appropriate
|
1183 |
|
|
resume request.
|
1184 |
|
|
|
1185 |
|
|
This algorithm is O(threads * resume elements), but resume elements
|
1186 |
|
|
is small (and will remain small at least until GDB supports thread
|
1187 |
|
|
suspension). */
|
1188 |
|
|
static void
|
1189 |
|
|
linux_set_resume_request (struct inferior_list_entry *entry)
|
1190 |
|
|
{
|
1191 |
|
|
struct process_info *process;
|
1192 |
|
|
struct thread_info *thread;
|
1193 |
|
|
int ndx;
|
1194 |
|
|
|
1195 |
|
|
thread = (struct thread_info *) entry;
|
1196 |
|
|
process = get_thread_process (thread);
|
1197 |
|
|
|
1198 |
|
|
ndx = 0;
|
1199 |
|
|
while (resume_ptr[ndx].thread != -1 && resume_ptr[ndx].thread != entry->id)
|
1200 |
|
|
ndx++;
|
1201 |
|
|
|
1202 |
|
|
process->resume = &resume_ptr[ndx];
|
1203 |
|
|
}
|
1204 |
|
|
|
1205 |
|
|
/* This function is called once per thread. We check the thread's resume
|
1206 |
|
|
request, which will tell us whether to resume, step, or leave the thread
|
1207 |
|
|
stopped; and what signal, if any, it should be sent. For threads which
|
1208 |
|
|
we aren't explicitly told otherwise, we preserve the stepping flag; this
|
1209 |
|
|
is used for stepping over gdbserver-placed breakpoints. */
|
1210 |
|
|
|
1211 |
|
|
static void
|
1212 |
|
|
linux_continue_one_thread (struct inferior_list_entry *entry)
|
1213 |
|
|
{
|
1214 |
|
|
struct process_info *process;
|
1215 |
|
|
struct thread_info *thread;
|
1216 |
|
|
int step;
|
1217 |
|
|
|
1218 |
|
|
thread = (struct thread_info *) entry;
|
1219 |
|
|
process = get_thread_process (thread);
|
1220 |
|
|
|
1221 |
|
|
if (process->resume->leave_stopped)
|
1222 |
|
|
return;
|
1223 |
|
|
|
1224 |
|
|
if (process->resume->thread == -1)
|
1225 |
|
|
step = process->stepping || process->resume->step;
|
1226 |
|
|
else
|
1227 |
|
|
step = process->resume->step;
|
1228 |
|
|
|
1229 |
|
|
linux_resume_one_process (&process->head, step, process->resume->sig, NULL);
|
1230 |
|
|
|
1231 |
|
|
process->resume = NULL;
|
1232 |
|
|
}
|
1233 |
|
|
|
1234 |
|
|
/* This function is called once per thread. We check the thread's resume
|
1235 |
|
|
request, which will tell us whether to resume, step, or leave the thread
|
1236 |
|
|
stopped; and what signal, if any, it should be sent. We queue any needed
|
1237 |
|
|
signals, since we won't actually resume. We already have a pending event
|
1238 |
|
|
to report, so we don't need to preserve any step requests; they should
|
1239 |
|
|
be re-issued if necessary. */
|
1240 |
|
|
|
1241 |
|
|
static void
|
1242 |
|
|
linux_queue_one_thread (struct inferior_list_entry *entry)
|
1243 |
|
|
{
|
1244 |
|
|
struct process_info *process;
|
1245 |
|
|
struct thread_info *thread;
|
1246 |
|
|
|
1247 |
|
|
thread = (struct thread_info *) entry;
|
1248 |
|
|
process = get_thread_process (thread);
|
1249 |
|
|
|
1250 |
|
|
if (process->resume->leave_stopped)
|
1251 |
|
|
return;
|
1252 |
|
|
|
1253 |
|
|
/* If we have a new signal, enqueue the signal. */
|
1254 |
|
|
if (process->resume->sig != 0)
|
1255 |
|
|
{
|
1256 |
|
|
struct pending_signals *p_sig;
|
1257 |
|
|
p_sig = malloc (sizeof (*p_sig));
|
1258 |
|
|
p_sig->prev = process->pending_signals;
|
1259 |
|
|
p_sig->signal = process->resume->sig;
|
1260 |
|
|
memset (&p_sig->info, 0, sizeof (siginfo_t));
|
1261 |
|
|
|
1262 |
|
|
/* If this is the same signal we were previously stopped by,
|
1263 |
|
|
make sure to queue its siginfo. We can ignore the return
|
1264 |
|
|
value of ptrace; if it fails, we'll skip
|
1265 |
|
|
PTRACE_SETSIGINFO. */
|
1266 |
|
|
if (WIFSTOPPED (process->last_status)
|
1267 |
|
|
&& WSTOPSIG (process->last_status) == process->resume->sig)
|
1268 |
|
|
ptrace (PTRACE_GETSIGINFO, process->lwpid, 0, &p_sig->info);
|
1269 |
|
|
|
1270 |
|
|
process->pending_signals = p_sig;
|
1271 |
|
|
}
|
1272 |
|
|
|
1273 |
|
|
process->resume = NULL;
|
1274 |
|
|
}
|
1275 |
|
|
|
1276 |
|
|
/* Set DUMMY if this process has an interesting status pending. */
|
1277 |
|
|
static int
|
1278 |
|
|
resume_status_pending_p (struct inferior_list_entry *entry, void *flag_p)
|
1279 |
|
|
{
|
1280 |
|
|
struct process_info *process = (struct process_info *) entry;
|
1281 |
|
|
|
1282 |
|
|
/* Processes which will not be resumed are not interesting, because
|
1283 |
|
|
we might not wait for them next time through linux_wait. */
|
1284 |
|
|
if (process->resume->leave_stopped)
|
1285 |
|
|
return 0;
|
1286 |
|
|
|
1287 |
|
|
/* If this thread has a removed breakpoint, we won't have any
|
1288 |
|
|
events to report later, so check now. check_removed_breakpoint
|
1289 |
|
|
may clear status_pending_p. We avoid calling check_removed_breakpoint
|
1290 |
|
|
for any thread that we are not otherwise going to resume - this
|
1291 |
|
|
lets us preserve stopped status when two threads hit a breakpoint.
|
1292 |
|
|
GDB removes the breakpoint to single-step a particular thread
|
1293 |
|
|
past it, then re-inserts it and resumes all threads. We want
|
1294 |
|
|
to report the second thread without resuming it in the interim. */
|
1295 |
|
|
if (process->status_pending_p)
|
1296 |
|
|
check_removed_breakpoint (process);
|
1297 |
|
|
|
1298 |
|
|
if (process->status_pending_p)
|
1299 |
|
|
* (int *) flag_p = 1;
|
1300 |
|
|
|
1301 |
|
|
return 0;
|
1302 |
|
|
}
|
1303 |
|
|
|
1304 |
|
|
static void
|
1305 |
|
|
linux_resume (struct thread_resume *resume_info)
|
1306 |
|
|
{
|
1307 |
|
|
int pending_flag;
|
1308 |
|
|
|
1309 |
|
|
/* Yes, the use of a global here is rather ugly. */
|
1310 |
|
|
resume_ptr = resume_info;
|
1311 |
|
|
|
1312 |
|
|
for_each_inferior (&all_threads, linux_set_resume_request);
|
1313 |
|
|
|
1314 |
|
|
/* If there is a thread which would otherwise be resumed, which
|
1315 |
|
|
has a pending status, then don't resume any threads - we can just
|
1316 |
|
|
report the pending status. Make sure to queue any signals
|
1317 |
|
|
that would otherwise be sent. */
|
1318 |
|
|
pending_flag = 0;
|
1319 |
|
|
find_inferior (&all_processes, resume_status_pending_p, &pending_flag);
|
1320 |
|
|
|
1321 |
|
|
if (debug_threads)
|
1322 |
|
|
{
|
1323 |
|
|
if (pending_flag)
|
1324 |
|
|
fprintf (stderr, "Not resuming, pending status\n");
|
1325 |
|
|
else
|
1326 |
|
|
fprintf (stderr, "Resuming, no pending status\n");
|
1327 |
|
|
}
|
1328 |
|
|
|
1329 |
|
|
if (pending_flag)
|
1330 |
|
|
for_each_inferior (&all_threads, linux_queue_one_thread);
|
1331 |
|
|
else
|
1332 |
|
|
for_each_inferior (&all_threads, linux_continue_one_thread);
|
1333 |
|
|
}
|
1334 |
|
|
|
1335 |
|
|
#ifdef HAVE_LINUX_USRREGS
|
1336 |
|
|
|
1337 |
|
|
int
|
1338 |
|
|
register_addr (int regnum)
|
1339 |
|
|
{
|
1340 |
|
|
int addr;
|
1341 |
|
|
|
1342 |
|
|
if (regnum < 0 || regnum >= the_low_target.num_regs)
|
1343 |
|
|
error ("Invalid register number %d.", regnum);
|
1344 |
|
|
|
1345 |
|
|
addr = the_low_target.regmap[regnum];
|
1346 |
|
|
|
1347 |
|
|
return addr;
|
1348 |
|
|
}
|
1349 |
|
|
|
1350 |
|
|
/* Fetch one register. */
|
1351 |
|
|
static void
|
1352 |
|
|
fetch_register (int regno)
|
1353 |
|
|
{
|
1354 |
|
|
CORE_ADDR regaddr;
|
1355 |
|
|
int i, size;
|
1356 |
|
|
char *buf;
|
1357 |
|
|
|
1358 |
|
|
if (regno >= the_low_target.num_regs)
|
1359 |
|
|
return;
|
1360 |
|
|
if ((*the_low_target.cannot_fetch_register) (regno))
|
1361 |
|
|
return;
|
1362 |
|
|
|
1363 |
|
|
regaddr = register_addr (regno);
|
1364 |
|
|
if (regaddr == -1)
|
1365 |
|
|
return;
|
1366 |
|
|
size = (register_size (regno) + sizeof (PTRACE_XFER_TYPE) - 1)
|
1367 |
|
|
& - sizeof (PTRACE_XFER_TYPE);
|
1368 |
|
|
buf = alloca (size);
|
1369 |
|
|
for (i = 0; i < size; i += sizeof (PTRACE_XFER_TYPE))
|
1370 |
|
|
{
|
1371 |
|
|
errno = 0;
|
1372 |
|
|
*(PTRACE_XFER_TYPE *) (buf + i) =
|
1373 |
|
|
ptrace (PTRACE_PEEKUSER, inferior_pid, (PTRACE_ARG3_TYPE) regaddr, 0);
|
1374 |
|
|
regaddr += sizeof (PTRACE_XFER_TYPE);
|
1375 |
|
|
if (errno != 0)
|
1376 |
|
|
{
|
1377 |
|
|
/* Warning, not error, in case we are attached; sometimes the
|
1378 |
|
|
kernel doesn't let us at the registers. */
|
1379 |
|
|
char *err = strerror (errno);
|
1380 |
|
|
char *msg = alloca (strlen (err) + 128);
|
1381 |
|
|
sprintf (msg, "reading register %d: %s", regno, err);
|
1382 |
|
|
error (msg);
|
1383 |
|
|
goto error_exit;
|
1384 |
|
|
}
|
1385 |
|
|
}
|
1386 |
|
|
if (the_low_target.left_pad_xfer
|
1387 |
|
|
&& register_size (regno) < sizeof (PTRACE_XFER_TYPE))
|
1388 |
|
|
supply_register (regno, (buf + sizeof (PTRACE_XFER_TYPE)
|
1389 |
|
|
- register_size (regno)));
|
1390 |
|
|
else
|
1391 |
|
|
supply_register (regno, buf);
|
1392 |
|
|
|
1393 |
|
|
error_exit:;
|
1394 |
|
|
}
|
1395 |
|
|
|
1396 |
|
|
/* Fetch all registers, or just one, from the child process. */
|
1397 |
|
|
static void
|
1398 |
|
|
usr_fetch_inferior_registers (int regno)
|
1399 |
|
|
{
|
1400 |
|
|
if (regno == -1 || regno == 0)
|
1401 |
|
|
for (regno = 0; regno < the_low_target.num_regs; regno++)
|
1402 |
|
|
fetch_register (regno);
|
1403 |
|
|
else
|
1404 |
|
|
fetch_register (regno);
|
1405 |
|
|
}
|
1406 |
|
|
|
1407 |
|
|
/* Store our register values back into the inferior.
|
1408 |
|
|
If REGNO is -1, do this for all registers.
|
1409 |
|
|
Otherwise, REGNO specifies which register (so we can save time). */
|
1410 |
|
|
static void
|
1411 |
|
|
usr_store_inferior_registers (int regno)
|
1412 |
|
|
{
|
1413 |
|
|
CORE_ADDR regaddr;
|
1414 |
|
|
int i, size;
|
1415 |
|
|
char *buf;
|
1416 |
|
|
|
1417 |
|
|
if (regno >= 0)
|
1418 |
|
|
{
|
1419 |
|
|
if (regno >= the_low_target.num_regs)
|
1420 |
|
|
return;
|
1421 |
|
|
|
1422 |
|
|
if ((*the_low_target.cannot_store_register) (regno) == 1)
|
1423 |
|
|
return;
|
1424 |
|
|
|
1425 |
|
|
regaddr = register_addr (regno);
|
1426 |
|
|
if (regaddr == -1)
|
1427 |
|
|
return;
|
1428 |
|
|
errno = 0;
|
1429 |
|
|
size = (register_size (regno) + sizeof (PTRACE_XFER_TYPE) - 1)
|
1430 |
|
|
& - sizeof (PTRACE_XFER_TYPE);
|
1431 |
|
|
buf = alloca (size);
|
1432 |
|
|
memset (buf, 0, size);
|
1433 |
|
|
if (the_low_target.left_pad_xfer
|
1434 |
|
|
&& register_size (regno) < sizeof (PTRACE_XFER_TYPE))
|
1435 |
|
|
collect_register (regno, (buf + sizeof (PTRACE_XFER_TYPE)
|
1436 |
|
|
- register_size (regno)));
|
1437 |
|
|
else
|
1438 |
|
|
collect_register (regno, buf);
|
1439 |
|
|
for (i = 0; i < size; i += sizeof (PTRACE_XFER_TYPE))
|
1440 |
|
|
{
|
1441 |
|
|
errno = 0;
|
1442 |
|
|
ptrace (PTRACE_POKEUSER, inferior_pid, (PTRACE_ARG3_TYPE) regaddr,
|
1443 |
|
|
*(PTRACE_XFER_TYPE *) (buf + i));
|
1444 |
|
|
if (errno != 0)
|
1445 |
|
|
{
|
1446 |
|
|
if ((*the_low_target.cannot_store_register) (regno) == 0)
|
1447 |
|
|
{
|
1448 |
|
|
char *err = strerror (errno);
|
1449 |
|
|
char *msg = alloca (strlen (err) + 128);
|
1450 |
|
|
sprintf (msg, "writing register %d: %s",
|
1451 |
|
|
regno, err);
|
1452 |
|
|
error (msg);
|
1453 |
|
|
return;
|
1454 |
|
|
}
|
1455 |
|
|
}
|
1456 |
|
|
regaddr += sizeof (PTRACE_XFER_TYPE);
|
1457 |
|
|
}
|
1458 |
|
|
}
|
1459 |
|
|
else
|
1460 |
|
|
for (regno = 0; regno < the_low_target.num_regs; regno++)
|
1461 |
|
|
usr_store_inferior_registers (regno);
|
1462 |
|
|
}
|
1463 |
|
|
#endif /* HAVE_LINUX_USRREGS */
|
1464 |
|
|
|
1465 |
|
|
|
1466 |
|
|
|
1467 |
|
|
#ifdef HAVE_LINUX_REGSETS
|
1468 |
|
|
|
1469 |
|
|
static int
|
1470 |
|
|
regsets_fetch_inferior_registers ()
|
1471 |
|
|
{
|
1472 |
|
|
struct regset_info *regset;
|
1473 |
|
|
int saw_general_regs = 0;
|
1474 |
|
|
|
1475 |
|
|
regset = target_regsets;
|
1476 |
|
|
|
1477 |
|
|
while (regset->size >= 0)
|
1478 |
|
|
{
|
1479 |
|
|
void *buf;
|
1480 |
|
|
int res;
|
1481 |
|
|
|
1482 |
|
|
if (regset->size == 0)
|
1483 |
|
|
{
|
1484 |
|
|
regset ++;
|
1485 |
|
|
continue;
|
1486 |
|
|
}
|
1487 |
|
|
|
1488 |
|
|
buf = malloc (regset->size);
|
1489 |
|
|
res = ptrace (regset->get_request, inferior_pid, 0, buf);
|
1490 |
|
|
if (res < 0)
|
1491 |
|
|
{
|
1492 |
|
|
if (errno == EIO)
|
1493 |
|
|
{
|
1494 |
|
|
/* If we get EIO on the first regset, do not try regsets again.
|
1495 |
|
|
If we get EIO on a later regset, disable that regset. */
|
1496 |
|
|
if (regset == target_regsets)
|
1497 |
|
|
{
|
1498 |
|
|
use_regsets_p = 0;
|
1499 |
|
|
return -1;
|
1500 |
|
|
}
|
1501 |
|
|
else
|
1502 |
|
|
{
|
1503 |
|
|
regset->size = 0;
|
1504 |
|
|
continue;
|
1505 |
|
|
}
|
1506 |
|
|
}
|
1507 |
|
|
else
|
1508 |
|
|
{
|
1509 |
|
|
char s[256];
|
1510 |
|
|
sprintf (s, "ptrace(regsets_fetch_inferior_registers) PID=%ld",
|
1511 |
|
|
inferior_pid);
|
1512 |
|
|
perror (s);
|
1513 |
|
|
}
|
1514 |
|
|
}
|
1515 |
|
|
else if (regset->type == GENERAL_REGS)
|
1516 |
|
|
saw_general_regs = 1;
|
1517 |
|
|
regset->store_function (buf);
|
1518 |
|
|
regset ++;
|
1519 |
|
|
}
|
1520 |
|
|
if (saw_general_regs)
|
1521 |
|
|
return 0;
|
1522 |
|
|
else
|
1523 |
|
|
return 1;
|
1524 |
|
|
}
|
1525 |
|
|
|
1526 |
|
|
static int
|
1527 |
|
|
regsets_store_inferior_registers ()
|
1528 |
|
|
{
|
1529 |
|
|
struct regset_info *regset;
|
1530 |
|
|
int saw_general_regs = 0;
|
1531 |
|
|
|
1532 |
|
|
regset = target_regsets;
|
1533 |
|
|
|
1534 |
|
|
while (regset->size >= 0)
|
1535 |
|
|
{
|
1536 |
|
|
void *buf;
|
1537 |
|
|
int res;
|
1538 |
|
|
|
1539 |
|
|
if (regset->size == 0)
|
1540 |
|
|
{
|
1541 |
|
|
regset ++;
|
1542 |
|
|
continue;
|
1543 |
|
|
}
|
1544 |
|
|
|
1545 |
|
|
buf = malloc (regset->size);
|
1546 |
|
|
|
1547 |
|
|
/* First fill the buffer with the current register set contents,
|
1548 |
|
|
in case there are any items in the kernel's regset that are
|
1549 |
|
|
not in gdbserver's regcache. */
|
1550 |
|
|
res = ptrace (regset->get_request, inferior_pid, 0, buf);
|
1551 |
|
|
|
1552 |
|
|
if (res == 0)
|
1553 |
|
|
{
|
1554 |
|
|
/* Then overlay our cached registers on that. */
|
1555 |
|
|
regset->fill_function (buf);
|
1556 |
|
|
|
1557 |
|
|
/* Only now do we write the register set. */
|
1558 |
|
|
res = ptrace (regset->set_request, inferior_pid, 0, buf);
|
1559 |
|
|
}
|
1560 |
|
|
|
1561 |
|
|
if (res < 0)
|
1562 |
|
|
{
|
1563 |
|
|
if (errno == EIO)
|
1564 |
|
|
{
|
1565 |
|
|
/* If we get EIO on the first regset, do not try regsets again.
|
1566 |
|
|
If we get EIO on a later regset, disable that regset. */
|
1567 |
|
|
if (regset == target_regsets)
|
1568 |
|
|
{
|
1569 |
|
|
use_regsets_p = 0;
|
1570 |
|
|
return -1;
|
1571 |
|
|
}
|
1572 |
|
|
else
|
1573 |
|
|
{
|
1574 |
|
|
regset->size = 0;
|
1575 |
|
|
continue;
|
1576 |
|
|
}
|
1577 |
|
|
}
|
1578 |
|
|
else
|
1579 |
|
|
{
|
1580 |
|
|
perror ("Warning: ptrace(regsets_store_inferior_registers)");
|
1581 |
|
|
}
|
1582 |
|
|
}
|
1583 |
|
|
else if (regset->type == GENERAL_REGS)
|
1584 |
|
|
saw_general_regs = 1;
|
1585 |
|
|
regset ++;
|
1586 |
|
|
free (buf);
|
1587 |
|
|
}
|
1588 |
|
|
if (saw_general_regs)
|
1589 |
|
|
return 0;
|
1590 |
|
|
else
|
1591 |
|
|
return 1;
|
1592 |
|
|
return 0;
|
1593 |
|
|
}
|
1594 |
|
|
|
1595 |
|
|
#endif /* HAVE_LINUX_REGSETS */
|
1596 |
|
|
|
1597 |
|
|
|
1598 |
|
|
void
|
1599 |
|
|
linux_fetch_registers (int regno)
|
1600 |
|
|
{
|
1601 |
|
|
#ifdef HAVE_LINUX_REGSETS
|
1602 |
|
|
if (use_regsets_p)
|
1603 |
|
|
{
|
1604 |
|
|
if (regsets_fetch_inferior_registers () == 0)
|
1605 |
|
|
return;
|
1606 |
|
|
}
|
1607 |
|
|
#endif
|
1608 |
|
|
#ifdef HAVE_LINUX_USRREGS
|
1609 |
|
|
usr_fetch_inferior_registers (regno);
|
1610 |
|
|
#endif
|
1611 |
|
|
}
|
1612 |
|
|
|
1613 |
|
|
void
|
1614 |
|
|
linux_store_registers (int regno)
|
1615 |
|
|
{
|
1616 |
|
|
#ifdef HAVE_LINUX_REGSETS
|
1617 |
|
|
if (use_regsets_p)
|
1618 |
|
|
{
|
1619 |
|
|
if (regsets_store_inferior_registers () == 0)
|
1620 |
|
|
return;
|
1621 |
|
|
}
|
1622 |
|
|
#endif
|
1623 |
|
|
#ifdef HAVE_LINUX_USRREGS
|
1624 |
|
|
usr_store_inferior_registers (regno);
|
1625 |
|
|
#endif
|
1626 |
|
|
}
|
1627 |
|
|
|
1628 |
|
|
|
1629 |
|
|
/* Copy LEN bytes from inferior's memory starting at MEMADDR
|
1630 |
|
|
to debugger memory starting at MYADDR. */
|
1631 |
|
|
|
1632 |
|
|
static int
|
1633 |
|
|
linux_read_memory (CORE_ADDR memaddr, unsigned char *myaddr, int len)
|
1634 |
|
|
{
|
1635 |
|
|
register int i;
|
1636 |
|
|
/* Round starting address down to longword boundary. */
|
1637 |
|
|
register CORE_ADDR addr = memaddr & -(CORE_ADDR) sizeof (PTRACE_XFER_TYPE);
|
1638 |
|
|
/* Round ending address up; get number of longwords that makes. */
|
1639 |
|
|
register int count
|
1640 |
|
|
= (((memaddr + len) - addr) + sizeof (PTRACE_XFER_TYPE) - 1)
|
1641 |
|
|
/ sizeof (PTRACE_XFER_TYPE);
|
1642 |
|
|
/* Allocate buffer of that many longwords. */
|
1643 |
|
|
register PTRACE_XFER_TYPE *buffer
|
1644 |
|
|
= (PTRACE_XFER_TYPE *) alloca (count * sizeof (PTRACE_XFER_TYPE));
|
1645 |
|
|
int fd;
|
1646 |
|
|
char filename[64];
|
1647 |
|
|
|
1648 |
|
|
/* Try using /proc. Don't bother for one word. */
|
1649 |
|
|
if (len >= 3 * sizeof (long))
|
1650 |
|
|
{
|
1651 |
|
|
/* We could keep this file open and cache it - possibly one per
|
1652 |
|
|
thread. That requires some juggling, but is even faster. */
|
1653 |
|
|
sprintf (filename, "/proc/%ld/mem", inferior_pid);
|
1654 |
|
|
fd = open (filename, O_RDONLY | O_LARGEFILE);
|
1655 |
|
|
if (fd == -1)
|
1656 |
|
|
goto no_proc;
|
1657 |
|
|
|
1658 |
|
|
/* If pread64 is available, use it. It's faster if the kernel
|
1659 |
|
|
supports it (only one syscall), and it's 64-bit safe even on
|
1660 |
|
|
32-bit platforms (for instance, SPARC debugging a SPARC64
|
1661 |
|
|
application). */
|
1662 |
|
|
#ifdef HAVE_PREAD64
|
1663 |
|
|
if (pread64 (fd, myaddr, len, memaddr) != len)
|
1664 |
|
|
#else
|
1665 |
|
|
if (lseek (fd, memaddr, SEEK_SET) == -1 || read (fd, memaddr, len) != len)
|
1666 |
|
|
#endif
|
1667 |
|
|
{
|
1668 |
|
|
close (fd);
|
1669 |
|
|
goto no_proc;
|
1670 |
|
|
}
|
1671 |
|
|
|
1672 |
|
|
close (fd);
|
1673 |
|
|
return 0;
|
1674 |
|
|
}
|
1675 |
|
|
|
1676 |
|
|
no_proc:
|
1677 |
|
|
/* Read all the longwords */
|
1678 |
|
|
for (i = 0; i < count; i++, addr += sizeof (PTRACE_XFER_TYPE))
|
1679 |
|
|
{
|
1680 |
|
|
errno = 0;
|
1681 |
|
|
buffer[i] = ptrace (PTRACE_PEEKTEXT, inferior_pid, (PTRACE_ARG3_TYPE) addr, 0);
|
1682 |
|
|
if (errno)
|
1683 |
|
|
return errno;
|
1684 |
|
|
}
|
1685 |
|
|
|
1686 |
|
|
/* Copy appropriate bytes out of the buffer. */
|
1687 |
|
|
memcpy (myaddr, (char *) buffer + (memaddr & (sizeof (PTRACE_XFER_TYPE) - 1)), len);
|
1688 |
|
|
|
1689 |
|
|
return 0;
|
1690 |
|
|
}
|
1691 |
|
|
|
1692 |
|
|
/* Copy LEN bytes of data from debugger memory at MYADDR
|
1693 |
|
|
to inferior's memory at MEMADDR.
|
1694 |
|
|
On failure (cannot write the inferior)
|
1695 |
|
|
returns the value of errno. */
|
1696 |
|
|
|
1697 |
|
|
static int
|
1698 |
|
|
linux_write_memory (CORE_ADDR memaddr, const unsigned char *myaddr, int len)
|
1699 |
|
|
{
|
1700 |
|
|
register int i;
|
1701 |
|
|
/* Round starting address down to longword boundary. */
|
1702 |
|
|
register CORE_ADDR addr = memaddr & -(CORE_ADDR) sizeof (PTRACE_XFER_TYPE);
|
1703 |
|
|
/* Round ending address up; get number of longwords that makes. */
|
1704 |
|
|
register int count
|
1705 |
|
|
= (((memaddr + len) - addr) + sizeof (PTRACE_XFER_TYPE) - 1) / sizeof (PTRACE_XFER_TYPE);
|
1706 |
|
|
/* Allocate buffer of that many longwords. */
|
1707 |
|
|
register PTRACE_XFER_TYPE *buffer = (PTRACE_XFER_TYPE *) alloca (count * sizeof (PTRACE_XFER_TYPE));
|
1708 |
|
|
extern int errno;
|
1709 |
|
|
|
1710 |
|
|
if (debug_threads)
|
1711 |
|
|
{
|
1712 |
|
|
fprintf (stderr, "Writing %02x to %08lx\n", (unsigned)myaddr[0], (long)memaddr);
|
1713 |
|
|
}
|
1714 |
|
|
|
1715 |
|
|
/* Fill start and end extra bytes of buffer with existing memory data. */
|
1716 |
|
|
|
1717 |
|
|
buffer[0] = ptrace (PTRACE_PEEKTEXT, inferior_pid,
|
1718 |
|
|
(PTRACE_ARG3_TYPE) addr, 0);
|
1719 |
|
|
|
1720 |
|
|
if (count > 1)
|
1721 |
|
|
{
|
1722 |
|
|
buffer[count - 1]
|
1723 |
|
|
= ptrace (PTRACE_PEEKTEXT, inferior_pid,
|
1724 |
|
|
(PTRACE_ARG3_TYPE) (addr + (count - 1)
|
1725 |
|
|
* sizeof (PTRACE_XFER_TYPE)),
|
1726 |
|
|
0);
|
1727 |
|
|
}
|
1728 |
|
|
|
1729 |
|
|
/* Copy data to be written over corresponding part of buffer */
|
1730 |
|
|
|
1731 |
|
|
memcpy ((char *) buffer + (memaddr & (sizeof (PTRACE_XFER_TYPE) - 1)), myaddr, len);
|
1732 |
|
|
|
1733 |
|
|
/* Write the entire buffer. */
|
1734 |
|
|
|
1735 |
|
|
for (i = 0; i < count; i++, addr += sizeof (PTRACE_XFER_TYPE))
|
1736 |
|
|
{
|
1737 |
|
|
errno = 0;
|
1738 |
|
|
ptrace (PTRACE_POKETEXT, inferior_pid, (PTRACE_ARG3_TYPE) addr, buffer[i]);
|
1739 |
|
|
if (errno)
|
1740 |
|
|
return errno;
|
1741 |
|
|
}
|
1742 |
|
|
|
1743 |
|
|
return 0;
|
1744 |
|
|
}
|
1745 |
|
|
|
1746 |
|
|
static int linux_supports_tracefork_flag;
|
1747 |
|
|
|
1748 |
|
|
/* Helper functions for linux_test_for_tracefork, called via clone (). */
|
1749 |
|
|
|
1750 |
|
|
static int
|
1751 |
|
|
linux_tracefork_grandchild (void *arg)
|
1752 |
|
|
{
|
1753 |
|
|
_exit (0);
|
1754 |
|
|
}
|
1755 |
|
|
|
1756 |
|
|
#define STACK_SIZE 4096
|
1757 |
|
|
|
1758 |
|
|
static int
|
1759 |
|
|
linux_tracefork_child (void *arg)
|
1760 |
|
|
{
|
1761 |
|
|
ptrace (PTRACE_TRACEME, 0, 0, 0);
|
1762 |
|
|
kill (getpid (), SIGSTOP);
|
1763 |
|
|
#ifdef __ia64__
|
1764 |
|
|
__clone2 (linux_tracefork_grandchild, arg, STACK_SIZE,
|
1765 |
|
|
CLONE_VM | SIGCHLD, NULL);
|
1766 |
|
|
#else
|
1767 |
|
|
clone (linux_tracefork_grandchild, arg + STACK_SIZE,
|
1768 |
|
|
CLONE_VM | SIGCHLD, NULL);
|
1769 |
|
|
#endif
|
1770 |
|
|
_exit (0);
|
1771 |
|
|
}
|
1772 |
|
|
|
1773 |
|
|
/* Wrapper function for waitpid which handles EINTR. */
|
1774 |
|
|
|
1775 |
|
|
static int
|
1776 |
|
|
my_waitpid (int pid, int *status, int flags)
|
1777 |
|
|
{
|
1778 |
|
|
int ret;
|
1779 |
|
|
do
|
1780 |
|
|
{
|
1781 |
|
|
ret = waitpid (pid, status, flags);
|
1782 |
|
|
}
|
1783 |
|
|
while (ret == -1 && errno == EINTR);
|
1784 |
|
|
|
1785 |
|
|
return ret;
|
1786 |
|
|
}
|
1787 |
|
|
|
1788 |
|
|
/* Determine if PTRACE_O_TRACEFORK can be used to follow fork events. Make
|
1789 |
|
|
sure that we can enable the option, and that it had the desired
|
1790 |
|
|
effect. */
|
1791 |
|
|
|
1792 |
|
|
static void
|
1793 |
|
|
linux_test_for_tracefork (void)
|
1794 |
|
|
{
|
1795 |
|
|
int child_pid, ret, status;
|
1796 |
|
|
long second_pid;
|
1797 |
|
|
char *stack = malloc (STACK_SIZE * 4);
|
1798 |
|
|
|
1799 |
|
|
linux_supports_tracefork_flag = 0;
|
1800 |
|
|
|
1801 |
|
|
/* Use CLONE_VM instead of fork, to support uClinux (no MMU). */
|
1802 |
|
|
#ifdef __ia64__
|
1803 |
|
|
child_pid = __clone2 (linux_tracefork_child, stack, STACK_SIZE,
|
1804 |
|
|
CLONE_VM | SIGCHLD, stack + STACK_SIZE * 2);
|
1805 |
|
|
#else
|
1806 |
|
|
child_pid = clone (linux_tracefork_child, stack + STACK_SIZE,
|
1807 |
|
|
CLONE_VM | SIGCHLD, stack + STACK_SIZE * 2);
|
1808 |
|
|
#endif
|
1809 |
|
|
if (child_pid == -1)
|
1810 |
|
|
perror_with_name ("clone");
|
1811 |
|
|
|
1812 |
|
|
ret = my_waitpid (child_pid, &status, 0);
|
1813 |
|
|
if (ret == -1)
|
1814 |
|
|
perror_with_name ("waitpid");
|
1815 |
|
|
else if (ret != child_pid)
|
1816 |
|
|
error ("linux_test_for_tracefork: waitpid: unexpected result %d.", ret);
|
1817 |
|
|
if (! WIFSTOPPED (status))
|
1818 |
|
|
error ("linux_test_for_tracefork: waitpid: unexpected status %d.", status);
|
1819 |
|
|
|
1820 |
|
|
ret = ptrace (PTRACE_SETOPTIONS, child_pid, 0, PTRACE_O_TRACEFORK);
|
1821 |
|
|
if (ret != 0)
|
1822 |
|
|
{
|
1823 |
|
|
ret = ptrace (PTRACE_KILL, child_pid, 0, 0);
|
1824 |
|
|
if (ret != 0)
|
1825 |
|
|
{
|
1826 |
|
|
warning ("linux_test_for_tracefork: failed to kill child");
|
1827 |
|
|
return;
|
1828 |
|
|
}
|
1829 |
|
|
|
1830 |
|
|
ret = my_waitpid (child_pid, &status, 0);
|
1831 |
|
|
if (ret != child_pid)
|
1832 |
|
|
warning ("linux_test_for_tracefork: failed to wait for killed child");
|
1833 |
|
|
else if (!WIFSIGNALED (status))
|
1834 |
|
|
warning ("linux_test_for_tracefork: unexpected wait status 0x%x from "
|
1835 |
|
|
"killed child", status);
|
1836 |
|
|
|
1837 |
|
|
return;
|
1838 |
|
|
}
|
1839 |
|
|
|
1840 |
|
|
ret = ptrace (PTRACE_CONT, child_pid, 0, 0);
|
1841 |
|
|
if (ret != 0)
|
1842 |
|
|
warning ("linux_test_for_tracefork: failed to resume child");
|
1843 |
|
|
|
1844 |
|
|
ret = my_waitpid (child_pid, &status, 0);
|
1845 |
|
|
|
1846 |
|
|
if (ret == child_pid && WIFSTOPPED (status)
|
1847 |
|
|
&& status >> 16 == PTRACE_EVENT_FORK)
|
1848 |
|
|
{
|
1849 |
|
|
second_pid = 0;
|
1850 |
|
|
ret = ptrace (PTRACE_GETEVENTMSG, child_pid, 0, &second_pid);
|
1851 |
|
|
if (ret == 0 && second_pid != 0)
|
1852 |
|
|
{
|
1853 |
|
|
int second_status;
|
1854 |
|
|
|
1855 |
|
|
linux_supports_tracefork_flag = 1;
|
1856 |
|
|
my_waitpid (second_pid, &second_status, 0);
|
1857 |
|
|
ret = ptrace (PTRACE_KILL, second_pid, 0, 0);
|
1858 |
|
|
if (ret != 0)
|
1859 |
|
|
warning ("linux_test_for_tracefork: failed to kill second child");
|
1860 |
|
|
my_waitpid (second_pid, &status, 0);
|
1861 |
|
|
}
|
1862 |
|
|
}
|
1863 |
|
|
else
|
1864 |
|
|
warning ("linux_test_for_tracefork: unexpected result from waitpid "
|
1865 |
|
|
"(%d, status 0x%x)", ret, status);
|
1866 |
|
|
|
1867 |
|
|
do
|
1868 |
|
|
{
|
1869 |
|
|
ret = ptrace (PTRACE_KILL, child_pid, 0, 0);
|
1870 |
|
|
if (ret != 0)
|
1871 |
|
|
warning ("linux_test_for_tracefork: failed to kill child");
|
1872 |
|
|
my_waitpid (child_pid, &status, 0);
|
1873 |
|
|
}
|
1874 |
|
|
while (WIFSTOPPED (status));
|
1875 |
|
|
|
1876 |
|
|
free (stack);
|
1877 |
|
|
}
|
1878 |
|
|
|
1879 |
|
|
|
1880 |
|
|
static void
|
1881 |
|
|
linux_look_up_symbols (void)
|
1882 |
|
|
{
|
1883 |
|
|
#ifdef USE_THREAD_DB
|
1884 |
|
|
if (thread_db_active)
|
1885 |
|
|
return;
|
1886 |
|
|
|
1887 |
|
|
thread_db_active = thread_db_init (!linux_supports_tracefork_flag);
|
1888 |
|
|
#endif
|
1889 |
|
|
}
|
1890 |
|
|
|
1891 |
|
|
static void
|
1892 |
|
|
linux_request_interrupt (void)
|
1893 |
|
|
{
|
1894 |
|
|
extern unsigned long signal_pid;
|
1895 |
|
|
|
1896 |
|
|
if (cont_thread != 0 && cont_thread != -1)
|
1897 |
|
|
{
|
1898 |
|
|
struct process_info *process;
|
1899 |
|
|
|
1900 |
|
|
process = get_thread_process (current_inferior);
|
1901 |
|
|
kill_lwp (process->lwpid, SIGINT);
|
1902 |
|
|
}
|
1903 |
|
|
else
|
1904 |
|
|
kill_lwp (signal_pid, SIGINT);
|
1905 |
|
|
}
|
1906 |
|
|
|
1907 |
|
|
/* Copy LEN bytes from inferior's auxiliary vector starting at OFFSET
|
1908 |
|
|
to debugger memory starting at MYADDR. */
|
1909 |
|
|
|
1910 |
|
|
static int
|
1911 |
|
|
linux_read_auxv (CORE_ADDR offset, unsigned char *myaddr, unsigned int len)
|
1912 |
|
|
{
|
1913 |
|
|
char filename[PATH_MAX];
|
1914 |
|
|
int fd, n;
|
1915 |
|
|
|
1916 |
|
|
snprintf (filename, sizeof filename, "/proc/%ld/auxv", inferior_pid);
|
1917 |
|
|
|
1918 |
|
|
fd = open (filename, O_RDONLY);
|
1919 |
|
|
if (fd < 0)
|
1920 |
|
|
return -1;
|
1921 |
|
|
|
1922 |
|
|
if (offset != (CORE_ADDR) 0
|
1923 |
|
|
&& lseek (fd, (off_t) offset, SEEK_SET) != (off_t) offset)
|
1924 |
|
|
n = -1;
|
1925 |
|
|
else
|
1926 |
|
|
n = read (fd, myaddr, len);
|
1927 |
|
|
|
1928 |
|
|
close (fd);
|
1929 |
|
|
|
1930 |
|
|
return n;
|
1931 |
|
|
}
|
1932 |
|
|
|
1933 |
|
|
/* These watchpoint related wrapper functions simply pass on the function call
|
1934 |
|
|
if the target has registered a corresponding function. */
|
1935 |
|
|
|
1936 |
|
|
static int
|
1937 |
|
|
linux_insert_watchpoint (char type, CORE_ADDR addr, int len)
|
1938 |
|
|
{
|
1939 |
|
|
if (the_low_target.insert_watchpoint != NULL)
|
1940 |
|
|
return the_low_target.insert_watchpoint (type, addr, len);
|
1941 |
|
|
else
|
1942 |
|
|
/* Unsupported (see target.h). */
|
1943 |
|
|
return 1;
|
1944 |
|
|
}
|
1945 |
|
|
|
1946 |
|
|
static int
|
1947 |
|
|
linux_remove_watchpoint (char type, CORE_ADDR addr, int len)
|
1948 |
|
|
{
|
1949 |
|
|
if (the_low_target.remove_watchpoint != NULL)
|
1950 |
|
|
return the_low_target.remove_watchpoint (type, addr, len);
|
1951 |
|
|
else
|
1952 |
|
|
/* Unsupported (see target.h). */
|
1953 |
|
|
return 1;
|
1954 |
|
|
}
|
1955 |
|
|
|
1956 |
|
|
static int
|
1957 |
|
|
linux_stopped_by_watchpoint (void)
|
1958 |
|
|
{
|
1959 |
|
|
if (the_low_target.stopped_by_watchpoint != NULL)
|
1960 |
|
|
return the_low_target.stopped_by_watchpoint ();
|
1961 |
|
|
else
|
1962 |
|
|
return 0;
|
1963 |
|
|
}
|
1964 |
|
|
|
1965 |
|
|
static CORE_ADDR
|
1966 |
|
|
linux_stopped_data_address (void)
|
1967 |
|
|
{
|
1968 |
|
|
if (the_low_target.stopped_data_address != NULL)
|
1969 |
|
|
return the_low_target.stopped_data_address ();
|
1970 |
|
|
else
|
1971 |
|
|
return 0;
|
1972 |
|
|
}
|
1973 |
|
|
|
1974 |
|
|
#if defined(__UCLIBC__) && defined(HAS_NOMMU)
|
1975 |
|
|
#if defined(__mcoldfire__)
|
1976 |
|
|
/* These should really be defined in the kernel's ptrace.h header. */
|
1977 |
|
|
#define PT_TEXT_ADDR 49*4
|
1978 |
|
|
#define PT_DATA_ADDR 50*4
|
1979 |
|
|
#define PT_TEXT_END_ADDR 51*4
|
1980 |
|
|
#endif
|
1981 |
|
|
|
1982 |
|
|
/* Under uClinux, programs are loaded at non-zero offsets, which we need
|
1983 |
|
|
to tell gdb about. */
|
1984 |
|
|
|
1985 |
|
|
static int
|
1986 |
|
|
linux_read_offsets (CORE_ADDR *text_p, CORE_ADDR *data_p)
|
1987 |
|
|
{
|
1988 |
|
|
#if defined(PT_TEXT_ADDR) && defined(PT_DATA_ADDR) && defined(PT_TEXT_END_ADDR)
|
1989 |
|
|
unsigned long text, text_end, data;
|
1990 |
|
|
int pid = get_thread_process (current_inferior)->head.id;
|
1991 |
|
|
|
1992 |
|
|
errno = 0;
|
1993 |
|
|
|
1994 |
|
|
text = ptrace (PTRACE_PEEKUSER, pid, (long)PT_TEXT_ADDR, 0);
|
1995 |
|
|
text_end = ptrace (PTRACE_PEEKUSER, pid, (long)PT_TEXT_END_ADDR, 0);
|
1996 |
|
|
data = ptrace (PTRACE_PEEKUSER, pid, (long)PT_DATA_ADDR, 0);
|
1997 |
|
|
|
1998 |
|
|
if (errno == 0)
|
1999 |
|
|
{
|
2000 |
|
|
/* Both text and data offsets produced at compile-time (and so
|
2001 |
|
|
used by gdb) are relative to the beginning of the program,
|
2002 |
|
|
with the data segment immediately following the text segment.
|
2003 |
|
|
However, the actual runtime layout in memory may put the data
|
2004 |
|
|
somewhere else, so when we send gdb a data base-address, we
|
2005 |
|
|
use the real data base address and subtract the compile-time
|
2006 |
|
|
data base-address from it (which is just the length of the
|
2007 |
|
|
text segment). BSS immediately follows data in both
|
2008 |
|
|
cases. */
|
2009 |
|
|
*text_p = text;
|
2010 |
|
|
*data_p = data - (text_end - text);
|
2011 |
|
|
|
2012 |
|
|
return 1;
|
2013 |
|
|
}
|
2014 |
|
|
#endif
|
2015 |
|
|
return 0;
|
2016 |
|
|
}
|
2017 |
|
|
#endif
|
2018 |
|
|
|
2019 |
|
|
static const char *
|
2020 |
|
|
linux_arch_string (void)
|
2021 |
|
|
{
|
2022 |
|
|
return the_low_target.arch_string;
|
2023 |
|
|
}
|
2024 |
|
|
|
2025 |
|
|
static struct target_ops linux_target_ops = {
|
2026 |
|
|
linux_create_inferior,
|
2027 |
|
|
linux_attach,
|
2028 |
|
|
linux_kill,
|
2029 |
|
|
linux_detach,
|
2030 |
|
|
linux_join,
|
2031 |
|
|
linux_thread_alive,
|
2032 |
|
|
linux_resume,
|
2033 |
|
|
linux_wait,
|
2034 |
|
|
linux_fetch_registers,
|
2035 |
|
|
linux_store_registers,
|
2036 |
|
|
linux_read_memory,
|
2037 |
|
|
linux_write_memory,
|
2038 |
|
|
linux_look_up_symbols,
|
2039 |
|
|
linux_request_interrupt,
|
2040 |
|
|
linux_read_auxv,
|
2041 |
|
|
linux_insert_watchpoint,
|
2042 |
|
|
linux_remove_watchpoint,
|
2043 |
|
|
linux_stopped_by_watchpoint,
|
2044 |
|
|
linux_stopped_data_address,
|
2045 |
|
|
#if defined(__UCLIBC__) && defined(HAS_NOMMU)
|
2046 |
|
|
linux_read_offsets,
|
2047 |
|
|
#else
|
2048 |
|
|
NULL,
|
2049 |
|
|
#endif
|
2050 |
|
|
#ifdef USE_THREAD_DB
|
2051 |
|
|
thread_db_get_tls_address,
|
2052 |
|
|
#else
|
2053 |
|
|
NULL,
|
2054 |
|
|
#endif
|
2055 |
|
|
linux_arch_string,
|
2056 |
|
|
NULL,
|
2057 |
|
|
hostio_last_error_from_errno,
|
2058 |
|
|
};
|
2059 |
|
|
|
2060 |
|
|
static void
|
2061 |
|
|
linux_init_signals ()
|
2062 |
|
|
{
|
2063 |
|
|
/* FIXME drow/2002-06-09: As above, we should check with LinuxThreads
|
2064 |
|
|
to find what the cancel signal actually is. */
|
2065 |
|
|
signal (__SIGRTMIN+1, SIG_IGN);
|
2066 |
|
|
}
|
2067 |
|
|
|
2068 |
|
|
void
|
2069 |
|
|
initialize_low (void)
|
2070 |
|
|
{
|
2071 |
|
|
thread_db_active = 0;
|
2072 |
|
|
set_target_ops (&linux_target_ops);
|
2073 |
|
|
set_breakpoint_data (the_low_target.breakpoint,
|
2074 |
|
|
the_low_target.breakpoint_len);
|
2075 |
|
|
init_registers ();
|
2076 |
|
|
linux_init_signals ();
|
2077 |
|
|
linux_test_for_tracefork ();
|
2078 |
|
|
}
|