1 |
24 |
jeremybenn |
/* Abstraction of GNU v3 abi.
|
2 |
|
|
Contributed by Jim Blandy <jimb@redhat.com>
|
3 |
|
|
|
4 |
|
|
Copyright (C) 2001, 2002, 2003, 2005, 2006, 2007, 2008
|
5 |
|
|
Free Software Foundation, Inc.
|
6 |
|
|
|
7 |
|
|
This file is part of GDB.
|
8 |
|
|
|
9 |
|
|
This program is free software; you can redistribute it and/or modify
|
10 |
|
|
it under the terms of the GNU General Public License as published by
|
11 |
|
|
the Free Software Foundation; either version 3 of the License, or
|
12 |
|
|
(at your option) any later version.
|
13 |
|
|
|
14 |
|
|
This program is distributed in the hope that it will be useful,
|
15 |
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
16 |
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
17 |
|
|
GNU General Public License for more details.
|
18 |
|
|
|
19 |
|
|
You should have received a copy of the GNU General Public License
|
20 |
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>. */
|
21 |
|
|
|
22 |
|
|
#include "defs.h"
|
23 |
|
|
#include "value.h"
|
24 |
|
|
#include "cp-abi.h"
|
25 |
|
|
#include "cp-support.h"
|
26 |
|
|
#include "demangle.h"
|
27 |
|
|
#include "objfiles.h"
|
28 |
|
|
#include "valprint.h"
|
29 |
|
|
|
30 |
|
|
#include "gdb_assert.h"
|
31 |
|
|
#include "gdb_string.h"
|
32 |
|
|
|
33 |
|
|
static struct cp_abi_ops gnu_v3_abi_ops;
|
34 |
|
|
|
35 |
|
|
static int
|
36 |
|
|
gnuv3_is_vtable_name (const char *name)
|
37 |
|
|
{
|
38 |
|
|
return strncmp (name, "_ZTV", 4) == 0;
|
39 |
|
|
}
|
40 |
|
|
|
41 |
|
|
static int
|
42 |
|
|
gnuv3_is_operator_name (const char *name)
|
43 |
|
|
{
|
44 |
|
|
return strncmp (name, "operator", 8) == 0;
|
45 |
|
|
}
|
46 |
|
|
|
47 |
|
|
|
48 |
|
|
/* To help us find the components of a vtable, we build ourselves a
|
49 |
|
|
GDB type object representing the vtable structure. Following the
|
50 |
|
|
V3 ABI, it goes something like this:
|
51 |
|
|
|
52 |
|
|
struct gdb_gnu_v3_abi_vtable {
|
53 |
|
|
|
54 |
|
|
/ * An array of virtual call and virtual base offsets. The real
|
55 |
|
|
length of this array depends on the class hierarchy; we use
|
56 |
|
|
negative subscripts to access the elements. Yucky, but
|
57 |
|
|
better than the alternatives. * /
|
58 |
|
|
ptrdiff_t vcall_and_vbase_offsets[0];
|
59 |
|
|
|
60 |
|
|
/ * The offset from a virtual pointer referring to this table
|
61 |
|
|
to the top of the complete object. * /
|
62 |
|
|
ptrdiff_t offset_to_top;
|
63 |
|
|
|
64 |
|
|
/ * The type_info pointer for this class. This is really a
|
65 |
|
|
std::type_info *, but GDB doesn't really look at the
|
66 |
|
|
type_info object itself, so we don't bother to get the type
|
67 |
|
|
exactly right. * /
|
68 |
|
|
void *type_info;
|
69 |
|
|
|
70 |
|
|
/ * Virtual table pointers in objects point here. * /
|
71 |
|
|
|
72 |
|
|
/ * Virtual function pointers. Like the vcall/vbase array, the
|
73 |
|
|
real length of this table depends on the class hierarchy. * /
|
74 |
|
|
void (*virtual_functions[0]) ();
|
75 |
|
|
|
76 |
|
|
};
|
77 |
|
|
|
78 |
|
|
The catch, of course, is that the exact layout of this table
|
79 |
|
|
depends on the ABI --- word size, endianness, alignment, etc. So
|
80 |
|
|
the GDB type object is actually a per-architecture kind of thing.
|
81 |
|
|
|
82 |
|
|
vtable_type_gdbarch_data is a gdbarch per-architecture data pointer
|
83 |
|
|
which refers to the struct type * for this structure, laid out
|
84 |
|
|
appropriately for the architecture. */
|
85 |
|
|
static struct gdbarch_data *vtable_type_gdbarch_data;
|
86 |
|
|
|
87 |
|
|
|
88 |
|
|
/* Human-readable names for the numbers of the fields above. */
|
89 |
|
|
enum {
|
90 |
|
|
vtable_field_vcall_and_vbase_offsets,
|
91 |
|
|
vtable_field_offset_to_top,
|
92 |
|
|
vtable_field_type_info,
|
93 |
|
|
vtable_field_virtual_functions
|
94 |
|
|
};
|
95 |
|
|
|
96 |
|
|
|
97 |
|
|
/* Return a GDB type representing `struct gdb_gnu_v3_abi_vtable',
|
98 |
|
|
described above, laid out appropriately for ARCH.
|
99 |
|
|
|
100 |
|
|
We use this function as the gdbarch per-architecture data
|
101 |
|
|
initialization function. */
|
102 |
|
|
static void *
|
103 |
|
|
build_gdb_vtable_type (struct gdbarch *arch)
|
104 |
|
|
{
|
105 |
|
|
struct type *t;
|
106 |
|
|
struct field *field_list, *field;
|
107 |
|
|
int offset;
|
108 |
|
|
|
109 |
|
|
struct type *void_ptr_type
|
110 |
|
|
= lookup_pointer_type (builtin_type_void);
|
111 |
|
|
struct type *ptr_to_void_fn_type
|
112 |
|
|
= lookup_pointer_type (lookup_function_type (builtin_type_void));
|
113 |
|
|
|
114 |
|
|
/* ARCH can't give us the true ptrdiff_t type, so we guess. */
|
115 |
|
|
struct type *ptrdiff_type
|
116 |
|
|
= init_type (TYPE_CODE_INT,
|
117 |
|
|
gdbarch_ptr_bit (arch) / TARGET_CHAR_BIT, 0,
|
118 |
|
|
"ptrdiff_t", 0);
|
119 |
|
|
|
120 |
|
|
/* We assume no padding is necessary, since GDB doesn't know
|
121 |
|
|
anything about alignment at the moment. If this assumption bites
|
122 |
|
|
us, we should add a gdbarch method which, given a type, returns
|
123 |
|
|
the alignment that type requires, and then use that here. */
|
124 |
|
|
|
125 |
|
|
/* Build the field list. */
|
126 |
|
|
field_list = xmalloc (sizeof (struct field [4]));
|
127 |
|
|
memset (field_list, 0, sizeof (struct field [4]));
|
128 |
|
|
field = &field_list[0];
|
129 |
|
|
offset = 0;
|
130 |
|
|
|
131 |
|
|
/* ptrdiff_t vcall_and_vbase_offsets[0]; */
|
132 |
|
|
FIELD_NAME (*field) = "vcall_and_vbase_offsets";
|
133 |
|
|
FIELD_TYPE (*field)
|
134 |
|
|
= create_array_type (0, ptrdiff_type,
|
135 |
|
|
create_range_type (0, builtin_type_int, 0, -1));
|
136 |
|
|
FIELD_BITPOS (*field) = offset * TARGET_CHAR_BIT;
|
137 |
|
|
offset += TYPE_LENGTH (FIELD_TYPE (*field));
|
138 |
|
|
field++;
|
139 |
|
|
|
140 |
|
|
/* ptrdiff_t offset_to_top; */
|
141 |
|
|
FIELD_NAME (*field) = "offset_to_top";
|
142 |
|
|
FIELD_TYPE (*field) = ptrdiff_type;
|
143 |
|
|
FIELD_BITPOS (*field) = offset * TARGET_CHAR_BIT;
|
144 |
|
|
offset += TYPE_LENGTH (FIELD_TYPE (*field));
|
145 |
|
|
field++;
|
146 |
|
|
|
147 |
|
|
/* void *type_info; */
|
148 |
|
|
FIELD_NAME (*field) = "type_info";
|
149 |
|
|
FIELD_TYPE (*field) = void_ptr_type;
|
150 |
|
|
FIELD_BITPOS (*field) = offset * TARGET_CHAR_BIT;
|
151 |
|
|
offset += TYPE_LENGTH (FIELD_TYPE (*field));
|
152 |
|
|
field++;
|
153 |
|
|
|
154 |
|
|
/* void (*virtual_functions[0]) (); */
|
155 |
|
|
FIELD_NAME (*field) = "virtual_functions";
|
156 |
|
|
FIELD_TYPE (*field)
|
157 |
|
|
= create_array_type (0, ptr_to_void_fn_type,
|
158 |
|
|
create_range_type (0, builtin_type_int, 0, -1));
|
159 |
|
|
FIELD_BITPOS (*field) = offset * TARGET_CHAR_BIT;
|
160 |
|
|
offset += TYPE_LENGTH (FIELD_TYPE (*field));
|
161 |
|
|
field++;
|
162 |
|
|
|
163 |
|
|
/* We assumed in the allocation above that there were four fields. */
|
164 |
|
|
gdb_assert (field == (field_list + 4));
|
165 |
|
|
|
166 |
|
|
t = init_type (TYPE_CODE_STRUCT, offset, 0, 0, 0);
|
167 |
|
|
TYPE_NFIELDS (t) = field - field_list;
|
168 |
|
|
TYPE_FIELDS (t) = field_list;
|
169 |
|
|
TYPE_TAG_NAME (t) = "gdb_gnu_v3_abi_vtable";
|
170 |
|
|
|
171 |
|
|
return t;
|
172 |
|
|
}
|
173 |
|
|
|
174 |
|
|
|
175 |
|
|
/* Return the offset from the start of the imaginary `struct
|
176 |
|
|
gdb_gnu_v3_abi_vtable' object to the vtable's "address point"
|
177 |
|
|
(i.e., where objects' virtual table pointers point). */
|
178 |
|
|
static int
|
179 |
|
|
vtable_address_point_offset (void)
|
180 |
|
|
{
|
181 |
|
|
struct type *vtable_type = gdbarch_data (current_gdbarch,
|
182 |
|
|
vtable_type_gdbarch_data);
|
183 |
|
|
|
184 |
|
|
return (TYPE_FIELD_BITPOS (vtable_type, vtable_field_virtual_functions)
|
185 |
|
|
/ TARGET_CHAR_BIT);
|
186 |
|
|
}
|
187 |
|
|
|
188 |
|
|
|
189 |
|
|
static struct type *
|
190 |
|
|
gnuv3_rtti_type (struct value *value,
|
191 |
|
|
int *full_p, int *top_p, int *using_enc_p)
|
192 |
|
|
{
|
193 |
|
|
struct type *vtable_type = gdbarch_data (current_gdbarch,
|
194 |
|
|
vtable_type_gdbarch_data);
|
195 |
|
|
struct type *values_type = check_typedef (value_type (value));
|
196 |
|
|
CORE_ADDR vtable_address;
|
197 |
|
|
struct value *vtable;
|
198 |
|
|
struct minimal_symbol *vtable_symbol;
|
199 |
|
|
const char *vtable_symbol_name;
|
200 |
|
|
const char *class_name;
|
201 |
|
|
struct type *run_time_type;
|
202 |
|
|
struct type *base_type;
|
203 |
|
|
LONGEST offset_to_top;
|
204 |
|
|
struct type *values_type_vptr_basetype;
|
205 |
|
|
int values_type_vptr_fieldno;
|
206 |
|
|
|
207 |
|
|
/* We only have RTTI for class objects. */
|
208 |
|
|
if (TYPE_CODE (values_type) != TYPE_CODE_CLASS)
|
209 |
|
|
return NULL;
|
210 |
|
|
|
211 |
|
|
/* If we can't find the virtual table pointer for values_type, we
|
212 |
|
|
can't find the RTTI. */
|
213 |
|
|
values_type_vptr_fieldno = get_vptr_fieldno (values_type,
|
214 |
|
|
&values_type_vptr_basetype);
|
215 |
|
|
if (values_type_vptr_fieldno == -1)
|
216 |
|
|
return NULL;
|
217 |
|
|
|
218 |
|
|
if (using_enc_p)
|
219 |
|
|
*using_enc_p = 0;
|
220 |
|
|
|
221 |
|
|
/* Fetch VALUE's virtual table pointer, and tweak it to point at
|
222 |
|
|
an instance of our imaginary gdb_gnu_v3_abi_vtable structure. */
|
223 |
|
|
base_type = check_typedef (values_type_vptr_basetype);
|
224 |
|
|
if (values_type != base_type)
|
225 |
|
|
{
|
226 |
|
|
value = value_cast (base_type, value);
|
227 |
|
|
if (using_enc_p)
|
228 |
|
|
*using_enc_p = 1;
|
229 |
|
|
}
|
230 |
|
|
vtable_address
|
231 |
|
|
= value_as_address (value_field (value, values_type_vptr_fieldno));
|
232 |
|
|
vtable = value_at_lazy (vtable_type,
|
233 |
|
|
vtable_address - vtable_address_point_offset ());
|
234 |
|
|
|
235 |
|
|
/* Find the linker symbol for this vtable. */
|
236 |
|
|
vtable_symbol
|
237 |
|
|
= lookup_minimal_symbol_by_pc (VALUE_ADDRESS (vtable)
|
238 |
|
|
+ value_offset (vtable)
|
239 |
|
|
+ value_embedded_offset (vtable));
|
240 |
|
|
if (! vtable_symbol)
|
241 |
|
|
return NULL;
|
242 |
|
|
|
243 |
|
|
/* The symbol's demangled name should be something like "vtable for
|
244 |
|
|
CLASS", where CLASS is the name of the run-time type of VALUE.
|
245 |
|
|
If we didn't like this approach, we could instead look in the
|
246 |
|
|
type_info object itself to get the class name. But this way
|
247 |
|
|
should work just as well, and doesn't read target memory. */
|
248 |
|
|
vtable_symbol_name = SYMBOL_DEMANGLED_NAME (vtable_symbol);
|
249 |
|
|
if (vtable_symbol_name == NULL
|
250 |
|
|
|| strncmp (vtable_symbol_name, "vtable for ", 11))
|
251 |
|
|
{
|
252 |
|
|
warning (_("can't find linker symbol for virtual table for `%s' value"),
|
253 |
|
|
TYPE_NAME (values_type));
|
254 |
|
|
if (vtable_symbol_name)
|
255 |
|
|
warning (_(" found `%s' instead"), vtable_symbol_name);
|
256 |
|
|
return NULL;
|
257 |
|
|
}
|
258 |
|
|
class_name = vtable_symbol_name + 11;
|
259 |
|
|
|
260 |
|
|
/* Try to look up the class name as a type name. */
|
261 |
|
|
/* FIXME: chastain/2003-11-26: block=NULL is bogus. See pr gdb/1465. */
|
262 |
|
|
run_time_type = cp_lookup_rtti_type (class_name, NULL);
|
263 |
|
|
if (run_time_type == NULL)
|
264 |
|
|
return NULL;
|
265 |
|
|
|
266 |
|
|
/* Get the offset from VALUE to the top of the complete object.
|
267 |
|
|
NOTE: this is the reverse of the meaning of *TOP_P. */
|
268 |
|
|
offset_to_top
|
269 |
|
|
= value_as_long (value_field (vtable, vtable_field_offset_to_top));
|
270 |
|
|
|
271 |
|
|
if (full_p)
|
272 |
|
|
*full_p = (- offset_to_top == value_embedded_offset (value)
|
273 |
|
|
&& (TYPE_LENGTH (value_enclosing_type (value))
|
274 |
|
|
>= TYPE_LENGTH (run_time_type)));
|
275 |
|
|
if (top_p)
|
276 |
|
|
*top_p = - offset_to_top;
|
277 |
|
|
|
278 |
|
|
return run_time_type;
|
279 |
|
|
}
|
280 |
|
|
|
281 |
|
|
/* Find the vtable for CONTAINER and return a value of the correct
|
282 |
|
|
vtable type for this architecture. */
|
283 |
|
|
|
284 |
|
|
static struct value *
|
285 |
|
|
gnuv3_get_vtable (struct value *container)
|
286 |
|
|
{
|
287 |
|
|
struct type *vtable_type = gdbarch_data (current_gdbarch,
|
288 |
|
|
vtable_type_gdbarch_data);
|
289 |
|
|
struct type *vtable_pointer_type;
|
290 |
|
|
struct value *vtable_pointer;
|
291 |
|
|
CORE_ADDR vtable_pointer_address, vtable_address;
|
292 |
|
|
|
293 |
|
|
/* We do not consult the debug information to find the virtual table.
|
294 |
|
|
The ABI specifies that it is always at offset zero in any class,
|
295 |
|
|
and debug information may not represent it. We won't issue an
|
296 |
|
|
error if there's a class with virtual functions but no virtual table
|
297 |
|
|
pointer, but something's already gone seriously wrong if that
|
298 |
|
|
happens.
|
299 |
|
|
|
300 |
|
|
We avoid using value_contents on principle, because the object might
|
301 |
|
|
be large. */
|
302 |
|
|
|
303 |
|
|
/* Find the type "pointer to virtual table". */
|
304 |
|
|
vtable_pointer_type = lookup_pointer_type (vtable_type);
|
305 |
|
|
|
306 |
|
|
/* Load it from the start of the class. */
|
307 |
|
|
vtable_pointer_address = value_as_address (value_addr (container));
|
308 |
|
|
vtable_pointer = value_at (vtable_pointer_type, vtable_pointer_address);
|
309 |
|
|
vtable_address = value_as_address (vtable_pointer);
|
310 |
|
|
|
311 |
|
|
/* Correct it to point at the start of the virtual table, rather
|
312 |
|
|
than the address point. */
|
313 |
|
|
return value_at_lazy (vtable_type,
|
314 |
|
|
vtable_address - vtable_address_point_offset ());
|
315 |
|
|
}
|
316 |
|
|
|
317 |
|
|
/* Return a function pointer for CONTAINER's VTABLE_INDEX'th virtual
|
318 |
|
|
function, of type FNTYPE. */
|
319 |
|
|
|
320 |
|
|
static struct value *
|
321 |
|
|
gnuv3_get_virtual_fn (struct value *container, struct type *fntype,
|
322 |
|
|
int vtable_index)
|
323 |
|
|
{
|
324 |
|
|
struct value *vtable = gnuv3_get_vtable (container);
|
325 |
|
|
struct value *vfn;
|
326 |
|
|
|
327 |
|
|
/* Fetch the appropriate function pointer from the vtable. */
|
328 |
|
|
vfn = value_subscript (value_field (vtable, vtable_field_virtual_functions),
|
329 |
|
|
value_from_longest (builtin_type_int, vtable_index));
|
330 |
|
|
|
331 |
|
|
/* If this architecture uses function descriptors directly in the vtable,
|
332 |
|
|
then the address of the vtable entry is actually a "function pointer"
|
333 |
|
|
(i.e. points to the descriptor). We don't need to scale the index
|
334 |
|
|
by the size of a function descriptor; GCC does that before outputing
|
335 |
|
|
debug information. */
|
336 |
|
|
if (gdbarch_vtable_function_descriptors (current_gdbarch))
|
337 |
|
|
vfn = value_addr (vfn);
|
338 |
|
|
|
339 |
|
|
/* Cast the function pointer to the appropriate type. */
|
340 |
|
|
vfn = value_cast (lookup_pointer_type (fntype), vfn);
|
341 |
|
|
|
342 |
|
|
return vfn;
|
343 |
|
|
}
|
344 |
|
|
|
345 |
|
|
/* GNU v3 implementation of value_virtual_fn_field. See cp-abi.h
|
346 |
|
|
for a description of the arguments. */
|
347 |
|
|
|
348 |
|
|
static struct value *
|
349 |
|
|
gnuv3_virtual_fn_field (struct value **value_p,
|
350 |
|
|
struct fn_field *f, int j,
|
351 |
|
|
struct type *vfn_base, int offset)
|
352 |
|
|
{
|
353 |
|
|
struct type *values_type = check_typedef (value_type (*value_p));
|
354 |
|
|
|
355 |
|
|
/* Some simple sanity checks. */
|
356 |
|
|
if (TYPE_CODE (values_type) != TYPE_CODE_CLASS)
|
357 |
|
|
error (_("Only classes can have virtual functions."));
|
358 |
|
|
|
359 |
|
|
/* Cast our value to the base class which defines this virtual
|
360 |
|
|
function. This takes care of any necessary `this'
|
361 |
|
|
adjustments. */
|
362 |
|
|
if (vfn_base != values_type)
|
363 |
|
|
*value_p = value_cast (vfn_base, *value_p);
|
364 |
|
|
|
365 |
|
|
return gnuv3_get_virtual_fn (*value_p, TYPE_FN_FIELD_TYPE (f, j),
|
366 |
|
|
TYPE_FN_FIELD_VOFFSET (f, j));
|
367 |
|
|
}
|
368 |
|
|
|
369 |
|
|
/* Compute the offset of the baseclass which is
|
370 |
|
|
the INDEXth baseclass of class TYPE,
|
371 |
|
|
for value at VALADDR (in host) at ADDRESS (in target).
|
372 |
|
|
The result is the offset of the baseclass value relative
|
373 |
|
|
to (the address of)(ARG) + OFFSET.
|
374 |
|
|
|
375 |
|
|
-1 is returned on error. */
|
376 |
|
|
static int
|
377 |
|
|
gnuv3_baseclass_offset (struct type *type, int index, const bfd_byte *valaddr,
|
378 |
|
|
CORE_ADDR address)
|
379 |
|
|
{
|
380 |
|
|
struct type *vtable_type = gdbarch_data (current_gdbarch,
|
381 |
|
|
vtable_type_gdbarch_data);
|
382 |
|
|
struct value *vtable;
|
383 |
|
|
struct type *vbasetype;
|
384 |
|
|
struct value *offset_val, *vbase_array;
|
385 |
|
|
CORE_ADDR vtable_address;
|
386 |
|
|
long int cur_base_offset, base_offset;
|
387 |
|
|
int vbasetype_vptr_fieldno;
|
388 |
|
|
|
389 |
|
|
/* If it isn't a virtual base, this is easy. The offset is in the
|
390 |
|
|
type definition. */
|
391 |
|
|
if (!BASETYPE_VIA_VIRTUAL (type, index))
|
392 |
|
|
return TYPE_BASECLASS_BITPOS (type, index) / 8;
|
393 |
|
|
|
394 |
|
|
/* To access a virtual base, we need to use the vbase offset stored in
|
395 |
|
|
our vtable. Recent GCC versions provide this information. If it isn't
|
396 |
|
|
available, we could get what we needed from RTTI, or from drawing the
|
397 |
|
|
complete inheritance graph based on the debug info. Neither is
|
398 |
|
|
worthwhile. */
|
399 |
|
|
cur_base_offset = TYPE_BASECLASS_BITPOS (type, index) / 8;
|
400 |
|
|
if (cur_base_offset >= - vtable_address_point_offset ())
|
401 |
|
|
error (_("Expected a negative vbase offset (old compiler?)"));
|
402 |
|
|
|
403 |
|
|
cur_base_offset = cur_base_offset + vtable_address_point_offset ();
|
404 |
|
|
if ((- cur_base_offset) % TYPE_LENGTH (builtin_type_void_data_ptr) != 0)
|
405 |
|
|
error (_("Misaligned vbase offset."));
|
406 |
|
|
cur_base_offset = cur_base_offset
|
407 |
|
|
/ ((int) TYPE_LENGTH (builtin_type_void_data_ptr));
|
408 |
|
|
|
409 |
|
|
/* We're now looking for the cur_base_offset'th entry (negative index)
|
410 |
|
|
in the vcall_and_vbase_offsets array. We used to cast the object to
|
411 |
|
|
its TYPE_VPTR_BASETYPE, and reference the vtable as TYPE_VPTR_FIELDNO;
|
412 |
|
|
however, that cast can not be done without calling baseclass_offset again
|
413 |
|
|
if the TYPE_VPTR_BASETYPE is a virtual base class, as described in the
|
414 |
|
|
v3 C++ ABI Section 2.4.I.2.b. Fortunately the ABI guarantees that the
|
415 |
|
|
vtable pointer will be located at the beginning of the object, so we can
|
416 |
|
|
bypass the casting. Verify that the TYPE_VPTR_FIELDNO is in fact at the
|
417 |
|
|
start of whichever baseclass it resides in, as a sanity measure - iff
|
418 |
|
|
we have debugging information for that baseclass. */
|
419 |
|
|
|
420 |
|
|
vbasetype = TYPE_VPTR_BASETYPE (type);
|
421 |
|
|
vbasetype_vptr_fieldno = get_vptr_fieldno (vbasetype, NULL);
|
422 |
|
|
|
423 |
|
|
if (vbasetype_vptr_fieldno >= 0
|
424 |
|
|
&& TYPE_FIELD_BITPOS (vbasetype, vbasetype_vptr_fieldno) != 0)
|
425 |
|
|
error (_("Illegal vptr offset in class %s"),
|
426 |
|
|
TYPE_NAME (vbasetype) ? TYPE_NAME (vbasetype) : "<unknown>");
|
427 |
|
|
|
428 |
|
|
vtable_address = value_as_address (value_at_lazy (builtin_type_void_data_ptr,
|
429 |
|
|
address));
|
430 |
|
|
vtable = value_at_lazy (vtable_type,
|
431 |
|
|
vtable_address - vtable_address_point_offset ());
|
432 |
|
|
offset_val = value_from_longest(builtin_type_int, cur_base_offset);
|
433 |
|
|
vbase_array = value_field (vtable, vtable_field_vcall_and_vbase_offsets);
|
434 |
|
|
base_offset = value_as_long (value_subscript (vbase_array, offset_val));
|
435 |
|
|
return base_offset;
|
436 |
|
|
}
|
437 |
|
|
|
438 |
|
|
/* Locate a virtual method in DOMAIN or its non-virtual base classes
|
439 |
|
|
which has virtual table index VOFFSET. The method has an associated
|
440 |
|
|
"this" adjustment of ADJUSTMENT bytes. */
|
441 |
|
|
|
442 |
|
|
const char *
|
443 |
|
|
gnuv3_find_method_in (struct type *domain, CORE_ADDR voffset,
|
444 |
|
|
LONGEST adjustment)
|
445 |
|
|
{
|
446 |
|
|
int i;
|
447 |
|
|
const char *physname;
|
448 |
|
|
|
449 |
|
|
/* Search this class first. */
|
450 |
|
|
physname = NULL;
|
451 |
|
|
if (adjustment == 0)
|
452 |
|
|
{
|
453 |
|
|
int len;
|
454 |
|
|
|
455 |
|
|
len = TYPE_NFN_FIELDS (domain);
|
456 |
|
|
for (i = 0; i < len; i++)
|
457 |
|
|
{
|
458 |
|
|
int len2, j;
|
459 |
|
|
struct fn_field *f;
|
460 |
|
|
|
461 |
|
|
f = TYPE_FN_FIELDLIST1 (domain, i);
|
462 |
|
|
len2 = TYPE_FN_FIELDLIST_LENGTH (domain, i);
|
463 |
|
|
|
464 |
|
|
check_stub_method_group (domain, i);
|
465 |
|
|
for (j = 0; j < len2; j++)
|
466 |
|
|
if (TYPE_FN_FIELD_VOFFSET (f, j) == voffset)
|
467 |
|
|
return TYPE_FN_FIELD_PHYSNAME (f, j);
|
468 |
|
|
}
|
469 |
|
|
}
|
470 |
|
|
|
471 |
|
|
/* Next search non-virtual bases. If it's in a virtual base,
|
472 |
|
|
we're out of luck. */
|
473 |
|
|
for (i = 0; i < TYPE_N_BASECLASSES (domain); i++)
|
474 |
|
|
{
|
475 |
|
|
int pos;
|
476 |
|
|
struct type *basetype;
|
477 |
|
|
|
478 |
|
|
if (BASETYPE_VIA_VIRTUAL (domain, i))
|
479 |
|
|
continue;
|
480 |
|
|
|
481 |
|
|
pos = TYPE_BASECLASS_BITPOS (domain, i) / 8;
|
482 |
|
|
basetype = TYPE_FIELD_TYPE (domain, i);
|
483 |
|
|
/* Recurse with a modified adjustment. We don't need to adjust
|
484 |
|
|
voffset. */
|
485 |
|
|
if (adjustment >= pos && adjustment < pos + TYPE_LENGTH (basetype))
|
486 |
|
|
return gnuv3_find_method_in (basetype, voffset, adjustment - pos);
|
487 |
|
|
}
|
488 |
|
|
|
489 |
|
|
return NULL;
|
490 |
|
|
}
|
491 |
|
|
|
492 |
|
|
/* GNU v3 implementation of cplus_print_method_ptr. */
|
493 |
|
|
|
494 |
|
|
static void
|
495 |
|
|
gnuv3_print_method_ptr (const gdb_byte *contents,
|
496 |
|
|
struct type *type,
|
497 |
|
|
struct ui_file *stream)
|
498 |
|
|
{
|
499 |
|
|
CORE_ADDR ptr_value;
|
500 |
|
|
LONGEST adjustment;
|
501 |
|
|
struct type *domain;
|
502 |
|
|
int vbit;
|
503 |
|
|
|
504 |
|
|
domain = TYPE_DOMAIN_TYPE (type);
|
505 |
|
|
|
506 |
|
|
/* Extract the pointer to member. */
|
507 |
|
|
ptr_value = extract_typed_address (contents, builtin_type_void_func_ptr);
|
508 |
|
|
contents += TYPE_LENGTH (builtin_type_void_func_ptr);
|
509 |
|
|
adjustment = extract_signed_integer (contents,
|
510 |
|
|
TYPE_LENGTH (builtin_type_long));
|
511 |
|
|
|
512 |
|
|
if (!gdbarch_vbit_in_delta (current_gdbarch))
|
513 |
|
|
{
|
514 |
|
|
vbit = ptr_value & 1;
|
515 |
|
|
ptr_value = ptr_value ^ vbit;
|
516 |
|
|
}
|
517 |
|
|
else
|
518 |
|
|
{
|
519 |
|
|
vbit = adjustment & 1;
|
520 |
|
|
adjustment = adjustment >> 1;
|
521 |
|
|
}
|
522 |
|
|
|
523 |
|
|
/* Check for NULL. */
|
524 |
|
|
if (ptr_value == 0 && vbit == 0)
|
525 |
|
|
{
|
526 |
|
|
fprintf_filtered (stream, "NULL");
|
527 |
|
|
return;
|
528 |
|
|
}
|
529 |
|
|
|
530 |
|
|
/* Search for a virtual method. */
|
531 |
|
|
if (vbit)
|
532 |
|
|
{
|
533 |
|
|
CORE_ADDR voffset;
|
534 |
|
|
const char *physname;
|
535 |
|
|
|
536 |
|
|
/* It's a virtual table offset, maybe in this class. Search
|
537 |
|
|
for a field with the correct vtable offset. First convert it
|
538 |
|
|
to an index, as used in TYPE_FN_FIELD_VOFFSET. */
|
539 |
|
|
voffset = ptr_value / TYPE_LENGTH (builtin_type_long);
|
540 |
|
|
|
541 |
|
|
physname = gnuv3_find_method_in (domain, voffset, adjustment);
|
542 |
|
|
|
543 |
|
|
/* If we found a method, print that. We don't bother to disambiguate
|
544 |
|
|
possible paths to the method based on the adjustment. */
|
545 |
|
|
if (physname)
|
546 |
|
|
{
|
547 |
|
|
char *demangled_name = cplus_demangle (physname,
|
548 |
|
|
DMGL_ANSI | DMGL_PARAMS);
|
549 |
|
|
if (demangled_name != NULL)
|
550 |
|
|
{
|
551 |
|
|
fprintf_filtered (stream, "&virtual ");
|
552 |
|
|
fputs_filtered (demangled_name, stream);
|
553 |
|
|
xfree (demangled_name);
|
554 |
|
|
return;
|
555 |
|
|
}
|
556 |
|
|
}
|
557 |
|
|
}
|
558 |
|
|
|
559 |
|
|
/* We didn't find it; print the raw data. */
|
560 |
|
|
if (vbit)
|
561 |
|
|
{
|
562 |
|
|
fprintf_filtered (stream, "&virtual table offset ");
|
563 |
|
|
print_longest (stream, 'd', 1, ptr_value);
|
564 |
|
|
}
|
565 |
|
|
else
|
566 |
|
|
print_address_demangle (ptr_value, stream, demangle);
|
567 |
|
|
|
568 |
|
|
if (adjustment)
|
569 |
|
|
{
|
570 |
|
|
fprintf_filtered (stream, ", this adjustment ");
|
571 |
|
|
print_longest (stream, 'd', 1, adjustment);
|
572 |
|
|
}
|
573 |
|
|
}
|
574 |
|
|
|
575 |
|
|
/* GNU v3 implementation of cplus_method_ptr_size. */
|
576 |
|
|
|
577 |
|
|
static int
|
578 |
|
|
gnuv3_method_ptr_size (void)
|
579 |
|
|
{
|
580 |
|
|
return 2 * TYPE_LENGTH (builtin_type_void_data_ptr);
|
581 |
|
|
}
|
582 |
|
|
|
583 |
|
|
/* GNU v3 implementation of cplus_make_method_ptr. */
|
584 |
|
|
|
585 |
|
|
static void
|
586 |
|
|
gnuv3_make_method_ptr (gdb_byte *contents, CORE_ADDR value, int is_virtual)
|
587 |
|
|
{
|
588 |
|
|
int size = TYPE_LENGTH (builtin_type_void_data_ptr);
|
589 |
|
|
|
590 |
|
|
/* FIXME drow/2006-12-24: The adjustment of "this" is currently
|
591 |
|
|
always zero, since the method pointer is of the correct type.
|
592 |
|
|
But if the method pointer came from a base class, this is
|
593 |
|
|
incorrect - it should be the offset to the base. The best
|
594 |
|
|
fix might be to create the pointer to member pointing at the
|
595 |
|
|
base class and cast it to the derived class, but that requires
|
596 |
|
|
support for adjusting pointers to members when casting them -
|
597 |
|
|
not currently supported by GDB. */
|
598 |
|
|
|
599 |
|
|
if (!gdbarch_vbit_in_delta (current_gdbarch))
|
600 |
|
|
{
|
601 |
|
|
store_unsigned_integer (contents, size, value | is_virtual);
|
602 |
|
|
store_unsigned_integer (contents + size, size, 0);
|
603 |
|
|
}
|
604 |
|
|
else
|
605 |
|
|
{
|
606 |
|
|
store_unsigned_integer (contents, size, value);
|
607 |
|
|
store_unsigned_integer (contents + size, size, is_virtual);
|
608 |
|
|
}
|
609 |
|
|
}
|
610 |
|
|
|
611 |
|
|
/* GNU v3 implementation of cplus_method_ptr_to_value. */
|
612 |
|
|
|
613 |
|
|
static struct value *
|
614 |
|
|
gnuv3_method_ptr_to_value (struct value **this_p, struct value *method_ptr)
|
615 |
|
|
{
|
616 |
|
|
const gdb_byte *contents = value_contents (method_ptr);
|
617 |
|
|
CORE_ADDR ptr_value;
|
618 |
|
|
struct type *final_type, *method_type;
|
619 |
|
|
LONGEST adjustment;
|
620 |
|
|
struct value *adjval;
|
621 |
|
|
int vbit;
|
622 |
|
|
|
623 |
|
|
final_type = TYPE_DOMAIN_TYPE (check_typedef (value_type (method_ptr)));
|
624 |
|
|
final_type = lookup_pointer_type (final_type);
|
625 |
|
|
|
626 |
|
|
method_type = TYPE_TARGET_TYPE (check_typedef (value_type (method_ptr)));
|
627 |
|
|
|
628 |
|
|
ptr_value = extract_typed_address (contents, builtin_type_void_func_ptr);
|
629 |
|
|
contents += TYPE_LENGTH (builtin_type_void_func_ptr);
|
630 |
|
|
adjustment = extract_signed_integer (contents,
|
631 |
|
|
TYPE_LENGTH (builtin_type_long));
|
632 |
|
|
|
633 |
|
|
if (!gdbarch_vbit_in_delta (current_gdbarch))
|
634 |
|
|
{
|
635 |
|
|
vbit = ptr_value & 1;
|
636 |
|
|
ptr_value = ptr_value ^ vbit;
|
637 |
|
|
}
|
638 |
|
|
else
|
639 |
|
|
{
|
640 |
|
|
vbit = adjustment & 1;
|
641 |
|
|
adjustment = adjustment >> 1;
|
642 |
|
|
}
|
643 |
|
|
|
644 |
|
|
/* First convert THIS to match the containing type of the pointer to
|
645 |
|
|
member. This cast may adjust the value of THIS. */
|
646 |
|
|
*this_p = value_cast (final_type, *this_p);
|
647 |
|
|
|
648 |
|
|
/* Then apply whatever adjustment is necessary. This creates a somewhat
|
649 |
|
|
strange pointer: it claims to have type FINAL_TYPE, but in fact it
|
650 |
|
|
might not be a valid FINAL_TYPE. For instance, it might be a
|
651 |
|
|
base class of FINAL_TYPE. And if it's not the primary base class,
|
652 |
|
|
then printing it out as a FINAL_TYPE object would produce some pretty
|
653 |
|
|
garbage.
|
654 |
|
|
|
655 |
|
|
But we don't really know the type of the first argument in
|
656 |
|
|
METHOD_TYPE either, which is why this happens. We can't
|
657 |
|
|
dereference this later as a FINAL_TYPE, but once we arrive in the
|
658 |
|
|
called method we'll have debugging information for the type of
|
659 |
|
|
"this" - and that'll match the value we produce here.
|
660 |
|
|
|
661 |
|
|
You can provoke this case by casting a Base::* to a Derived::*, for
|
662 |
|
|
instance. */
|
663 |
|
|
*this_p = value_cast (builtin_type_void_data_ptr, *this_p);
|
664 |
|
|
adjval = value_from_longest (builtin_type_long, adjustment);
|
665 |
|
|
*this_p = value_add (*this_p, adjval);
|
666 |
|
|
*this_p = value_cast (final_type, *this_p);
|
667 |
|
|
|
668 |
|
|
if (vbit)
|
669 |
|
|
{
|
670 |
|
|
LONGEST voffset = ptr_value / TYPE_LENGTH (builtin_type_long);
|
671 |
|
|
return gnuv3_get_virtual_fn (value_ind (*this_p), method_type, voffset);
|
672 |
|
|
}
|
673 |
|
|
else
|
674 |
|
|
return value_from_pointer (lookup_pointer_type (method_type), ptr_value);
|
675 |
|
|
}
|
676 |
|
|
|
677 |
|
|
/* Determine if we are currently in a C++ thunk. If so, get the address
|
678 |
|
|
of the routine we are thunking to and continue to there instead. */
|
679 |
|
|
|
680 |
|
|
static CORE_ADDR
|
681 |
|
|
gnuv3_skip_trampoline (struct frame_info *frame, CORE_ADDR stop_pc)
|
682 |
|
|
{
|
683 |
|
|
CORE_ADDR real_stop_pc, method_stop_pc;
|
684 |
|
|
struct gdbarch *gdbarch = get_frame_arch (frame);
|
685 |
|
|
struct minimal_symbol *thunk_sym, *fn_sym;
|
686 |
|
|
struct obj_section *section;
|
687 |
|
|
char *thunk_name, *fn_name;
|
688 |
|
|
|
689 |
|
|
real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
|
690 |
|
|
if (real_stop_pc == 0)
|
691 |
|
|
real_stop_pc = stop_pc;
|
692 |
|
|
|
693 |
|
|
/* Find the linker symbol for this potential thunk. */
|
694 |
|
|
thunk_sym = lookup_minimal_symbol_by_pc (real_stop_pc);
|
695 |
|
|
section = find_pc_section (real_stop_pc);
|
696 |
|
|
if (thunk_sym == NULL || section == NULL)
|
697 |
|
|
return 0;
|
698 |
|
|
|
699 |
|
|
/* The symbol's demangled name should be something like "virtual
|
700 |
|
|
thunk to FUNCTION", where FUNCTION is the name of the function
|
701 |
|
|
being thunked to. */
|
702 |
|
|
thunk_name = SYMBOL_DEMANGLED_NAME (thunk_sym);
|
703 |
|
|
if (thunk_name == NULL || strstr (thunk_name, " thunk to ") == NULL)
|
704 |
|
|
return 0;
|
705 |
|
|
|
706 |
|
|
fn_name = strstr (thunk_name, " thunk to ") + strlen (" thunk to ");
|
707 |
|
|
fn_sym = lookup_minimal_symbol (fn_name, NULL, section->objfile);
|
708 |
|
|
if (fn_sym == NULL)
|
709 |
|
|
return 0;
|
710 |
|
|
|
711 |
|
|
method_stop_pc = SYMBOL_VALUE_ADDRESS (fn_sym);
|
712 |
|
|
real_stop_pc = gdbarch_skip_trampoline_code
|
713 |
|
|
(gdbarch, frame, method_stop_pc);
|
714 |
|
|
if (real_stop_pc == 0)
|
715 |
|
|
real_stop_pc = method_stop_pc;
|
716 |
|
|
|
717 |
|
|
return real_stop_pc;
|
718 |
|
|
}
|
719 |
|
|
|
720 |
|
|
/* Return nonzero if a type should be passed by reference.
|
721 |
|
|
|
722 |
|
|
The rule in the v3 ABI document comes from section 3.1.1. If the
|
723 |
|
|
type has a non-trivial copy constructor or destructor, then the
|
724 |
|
|
caller must make a copy (by calling the copy constructor if there
|
725 |
|
|
is one or perform the copy itself otherwise), pass the address of
|
726 |
|
|
the copy, and then destroy the temporary (if necessary).
|
727 |
|
|
|
728 |
|
|
For return values with non-trivial copy constructors or
|
729 |
|
|
destructors, space will be allocated in the caller, and a pointer
|
730 |
|
|
will be passed as the first argument (preceding "this").
|
731 |
|
|
|
732 |
|
|
We don't have a bulletproof mechanism for determining whether a
|
733 |
|
|
constructor or destructor is trivial. For GCC and DWARF2 debug
|
734 |
|
|
information, we can check the artificial flag.
|
735 |
|
|
|
736 |
|
|
We don't do anything with the constructors or destructors,
|
737 |
|
|
but we have to get the argument passing right anyway. */
|
738 |
|
|
static int
|
739 |
|
|
gnuv3_pass_by_reference (struct type *type)
|
740 |
|
|
{
|
741 |
|
|
int fieldnum, fieldelem;
|
742 |
|
|
|
743 |
|
|
CHECK_TYPEDEF (type);
|
744 |
|
|
|
745 |
|
|
/* We're only interested in things that can have methods. */
|
746 |
|
|
if (TYPE_CODE (type) != TYPE_CODE_STRUCT
|
747 |
|
|
&& TYPE_CODE (type) != TYPE_CODE_CLASS
|
748 |
|
|
&& TYPE_CODE (type) != TYPE_CODE_UNION)
|
749 |
|
|
return 0;
|
750 |
|
|
|
751 |
|
|
for (fieldnum = 0; fieldnum < TYPE_NFN_FIELDS (type); fieldnum++)
|
752 |
|
|
for (fieldelem = 0; fieldelem < TYPE_FN_FIELDLIST_LENGTH (type, fieldnum);
|
753 |
|
|
fieldelem++)
|
754 |
|
|
{
|
755 |
|
|
struct fn_field *fn = TYPE_FN_FIELDLIST1 (type, fieldnum);
|
756 |
|
|
char *name = TYPE_FN_FIELDLIST_NAME (type, fieldnum);
|
757 |
|
|
struct type *fieldtype = TYPE_FN_FIELD_TYPE (fn, fieldelem);
|
758 |
|
|
|
759 |
|
|
/* If this function is marked as artificial, it is compiler-generated,
|
760 |
|
|
and we assume it is trivial. */
|
761 |
|
|
if (TYPE_FN_FIELD_ARTIFICIAL (fn, fieldelem))
|
762 |
|
|
continue;
|
763 |
|
|
|
764 |
|
|
/* If we've found a destructor, we must pass this by reference. */
|
765 |
|
|
if (name[0] == '~')
|
766 |
|
|
return 1;
|
767 |
|
|
|
768 |
|
|
/* If the mangled name of this method doesn't indicate that it
|
769 |
|
|
is a constructor, we're not interested.
|
770 |
|
|
|
771 |
|
|
FIXME drow/2007-09-23: We could do this using the name of
|
772 |
|
|
the method and the name of the class instead of dealing
|
773 |
|
|
with the mangled name. We don't have a convenient function
|
774 |
|
|
to strip off both leading scope qualifiers and trailing
|
775 |
|
|
template arguments yet. */
|
776 |
|
|
if (!is_constructor_name (TYPE_FN_FIELD_PHYSNAME (fn, fieldelem)))
|
777 |
|
|
continue;
|
778 |
|
|
|
779 |
|
|
/* If this method takes two arguments, and the second argument is
|
780 |
|
|
a reference to this class, then it is a copy constructor. */
|
781 |
|
|
if (TYPE_NFIELDS (fieldtype) == 2
|
782 |
|
|
&& TYPE_CODE (TYPE_FIELD_TYPE (fieldtype, 1)) == TYPE_CODE_REF
|
783 |
|
|
&& check_typedef (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (fieldtype, 1))) == type)
|
784 |
|
|
return 1;
|
785 |
|
|
}
|
786 |
|
|
|
787 |
|
|
/* Even if all the constructors and destructors were artificial, one
|
788 |
|
|
of them may have invoked a non-artificial constructor or
|
789 |
|
|
destructor in a base class. If any base class needs to be passed
|
790 |
|
|
by reference, so does this class. Similarly for members, which
|
791 |
|
|
are constructed whenever this class is. We do not need to worry
|
792 |
|
|
about recursive loops here, since we are only looking at members
|
793 |
|
|
of complete class type. */
|
794 |
|
|
for (fieldnum = 0; fieldnum < TYPE_NFIELDS (type); fieldnum++)
|
795 |
|
|
if (gnuv3_pass_by_reference (TYPE_FIELD_TYPE (type, fieldnum)))
|
796 |
|
|
return 1;
|
797 |
|
|
|
798 |
|
|
return 0;
|
799 |
|
|
}
|
800 |
|
|
|
801 |
|
|
static void
|
802 |
|
|
init_gnuv3_ops (void)
|
803 |
|
|
{
|
804 |
|
|
vtable_type_gdbarch_data = gdbarch_data_register_post_init (build_gdb_vtable_type);
|
805 |
|
|
|
806 |
|
|
gnu_v3_abi_ops.shortname = "gnu-v3";
|
807 |
|
|
gnu_v3_abi_ops.longname = "GNU G++ Version 3 ABI";
|
808 |
|
|
gnu_v3_abi_ops.doc = "G++ Version 3 ABI";
|
809 |
|
|
gnu_v3_abi_ops.is_destructor_name =
|
810 |
|
|
(enum dtor_kinds (*) (const char *))is_gnu_v3_mangled_dtor;
|
811 |
|
|
gnu_v3_abi_ops.is_constructor_name =
|
812 |
|
|
(enum ctor_kinds (*) (const char *))is_gnu_v3_mangled_ctor;
|
813 |
|
|
gnu_v3_abi_ops.is_vtable_name = gnuv3_is_vtable_name;
|
814 |
|
|
gnu_v3_abi_ops.is_operator_name = gnuv3_is_operator_name;
|
815 |
|
|
gnu_v3_abi_ops.rtti_type = gnuv3_rtti_type;
|
816 |
|
|
gnu_v3_abi_ops.virtual_fn_field = gnuv3_virtual_fn_field;
|
817 |
|
|
gnu_v3_abi_ops.baseclass_offset = gnuv3_baseclass_offset;
|
818 |
|
|
gnu_v3_abi_ops.print_method_ptr = gnuv3_print_method_ptr;
|
819 |
|
|
gnu_v3_abi_ops.method_ptr_size = gnuv3_method_ptr_size;
|
820 |
|
|
gnu_v3_abi_ops.make_method_ptr = gnuv3_make_method_ptr;
|
821 |
|
|
gnu_v3_abi_ops.method_ptr_to_value = gnuv3_method_ptr_to_value;
|
822 |
|
|
gnu_v3_abi_ops.skip_trampoline = gnuv3_skip_trampoline;
|
823 |
|
|
gnu_v3_abi_ops.pass_by_reference = gnuv3_pass_by_reference;
|
824 |
|
|
}
|
825 |
|
|
|
826 |
|
|
extern initialize_file_ftype _initialize_gnu_v3_abi; /* -Wmissing-prototypes */
|
827 |
|
|
|
828 |
|
|
void
|
829 |
|
|
_initialize_gnu_v3_abi (void)
|
830 |
|
|
{
|
831 |
|
|
init_gnuv3_ops ();
|
832 |
|
|
|
833 |
|
|
register_cp_abi (&gnu_v3_abi_ops);
|
834 |
|
|
}
|