1 |
24 |
jeremybenn |
/* Target-dependent code for GNU/Linux i386.
|
2 |
|
|
|
3 |
|
|
Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2007, 2008
|
4 |
|
|
Free Software Foundation, Inc.
|
5 |
|
|
|
6 |
|
|
This file is part of GDB.
|
7 |
|
|
|
8 |
|
|
This program is free software; you can redistribute it and/or modify
|
9 |
|
|
it under the terms of the GNU General Public License as published by
|
10 |
|
|
the Free Software Foundation; either version 3 of the License, or
|
11 |
|
|
(at your option) any later version.
|
12 |
|
|
|
13 |
|
|
This program is distributed in the hope that it will be useful,
|
14 |
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
15 |
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
16 |
|
|
GNU General Public License for more details.
|
17 |
|
|
|
18 |
|
|
You should have received a copy of the GNU General Public License
|
19 |
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>. */
|
20 |
|
|
|
21 |
|
|
#include "defs.h"
|
22 |
|
|
#include "gdbcore.h"
|
23 |
|
|
#include "frame.h"
|
24 |
|
|
#include "value.h"
|
25 |
|
|
#include "regcache.h"
|
26 |
|
|
#include "inferior.h"
|
27 |
|
|
#include "osabi.h"
|
28 |
|
|
#include "reggroups.h"
|
29 |
|
|
#include "dwarf2-frame.h"
|
30 |
|
|
#include "gdb_string.h"
|
31 |
|
|
|
32 |
|
|
#include "i386-tdep.h"
|
33 |
|
|
#include "i386-linux-tdep.h"
|
34 |
|
|
#include "glibc-tdep.h"
|
35 |
|
|
#include "solib-svr4.h"
|
36 |
|
|
#include "symtab.h"
|
37 |
|
|
|
38 |
|
|
/* Return the name of register REG. */
|
39 |
|
|
|
40 |
|
|
static const char *
|
41 |
|
|
i386_linux_register_name (struct gdbarch *gdbarch, int reg)
|
42 |
|
|
{
|
43 |
|
|
/* Deal with the extra "orig_eax" pseudo register. */
|
44 |
|
|
if (reg == I386_LINUX_ORIG_EAX_REGNUM)
|
45 |
|
|
return "orig_eax";
|
46 |
|
|
|
47 |
|
|
return i386_register_name (gdbarch, reg);
|
48 |
|
|
}
|
49 |
|
|
|
50 |
|
|
/* Return non-zero, when the register is in the corresponding register
|
51 |
|
|
group. Put the LINUX_ORIG_EAX register in the system group. */
|
52 |
|
|
static int
|
53 |
|
|
i386_linux_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
|
54 |
|
|
struct reggroup *group)
|
55 |
|
|
{
|
56 |
|
|
if (regnum == I386_LINUX_ORIG_EAX_REGNUM)
|
57 |
|
|
return (group == system_reggroup
|
58 |
|
|
|| group == save_reggroup
|
59 |
|
|
|| group == restore_reggroup);
|
60 |
|
|
return i386_register_reggroup_p (gdbarch, regnum, group);
|
61 |
|
|
}
|
62 |
|
|
|
63 |
|
|
|
64 |
|
|
/* Recognizing signal handler frames. */
|
65 |
|
|
|
66 |
|
|
/* GNU/Linux has two flavors of signals. Normal signal handlers, and
|
67 |
|
|
"realtime" (RT) signals. The RT signals can provide additional
|
68 |
|
|
information to the signal handler if the SA_SIGINFO flag is set
|
69 |
|
|
when establishing a signal handler using `sigaction'. It is not
|
70 |
|
|
unlikely that future versions of GNU/Linux will support SA_SIGINFO
|
71 |
|
|
for normal signals too. */
|
72 |
|
|
|
73 |
|
|
/* When the i386 Linux kernel calls a signal handler and the
|
74 |
|
|
SA_RESTORER flag isn't set, the return address points to a bit of
|
75 |
|
|
code on the stack. This function returns whether the PC appears to
|
76 |
|
|
be within this bit of code.
|
77 |
|
|
|
78 |
|
|
The instruction sequence for normal signals is
|
79 |
|
|
pop %eax
|
80 |
|
|
mov $0x77, %eax
|
81 |
|
|
int $0x80
|
82 |
|
|
or 0x58 0xb8 0x77 0x00 0x00 0x00 0xcd 0x80.
|
83 |
|
|
|
84 |
|
|
Checking for the code sequence should be somewhat reliable, because
|
85 |
|
|
the effect is to call the system call sigreturn. This is unlikely
|
86 |
|
|
to occur anywhere other than in a signal trampoline.
|
87 |
|
|
|
88 |
|
|
It kind of sucks that we have to read memory from the process in
|
89 |
|
|
order to identify a signal trampoline, but there doesn't seem to be
|
90 |
|
|
any other way. Therefore we only do the memory reads if no
|
91 |
|
|
function name could be identified, which should be the case since
|
92 |
|
|
the code is on the stack.
|
93 |
|
|
|
94 |
|
|
Detection of signal trampolines for handlers that set the
|
95 |
|
|
SA_RESTORER flag is in general not possible. Unfortunately this is
|
96 |
|
|
what the GNU C Library has been doing for quite some time now.
|
97 |
|
|
However, as of version 2.1.2, the GNU C Library uses signal
|
98 |
|
|
trampolines (named __restore and __restore_rt) that are identical
|
99 |
|
|
to the ones used by the kernel. Therefore, these trampolines are
|
100 |
|
|
supported too. */
|
101 |
|
|
|
102 |
|
|
#define LINUX_SIGTRAMP_INSN0 0x58 /* pop %eax */
|
103 |
|
|
#define LINUX_SIGTRAMP_OFFSET0 0
|
104 |
|
|
#define LINUX_SIGTRAMP_INSN1 0xb8 /* mov $NNNN, %eax */
|
105 |
|
|
#define LINUX_SIGTRAMP_OFFSET1 1
|
106 |
|
|
#define LINUX_SIGTRAMP_INSN2 0xcd /* int */
|
107 |
|
|
#define LINUX_SIGTRAMP_OFFSET2 6
|
108 |
|
|
|
109 |
|
|
static const gdb_byte linux_sigtramp_code[] =
|
110 |
|
|
{
|
111 |
|
|
LINUX_SIGTRAMP_INSN0, /* pop %eax */
|
112 |
|
|
LINUX_SIGTRAMP_INSN1, 0x77, 0x00, 0x00, 0x00, /* mov $0x77, %eax */
|
113 |
|
|
LINUX_SIGTRAMP_INSN2, 0x80 /* int $0x80 */
|
114 |
|
|
};
|
115 |
|
|
|
116 |
|
|
#define LINUX_SIGTRAMP_LEN (sizeof linux_sigtramp_code)
|
117 |
|
|
|
118 |
|
|
/* If NEXT_FRAME unwinds into a sigtramp routine, return the address
|
119 |
|
|
of the start of the routine. Otherwise, return 0. */
|
120 |
|
|
|
121 |
|
|
static CORE_ADDR
|
122 |
|
|
i386_linux_sigtramp_start (struct frame_info *next_frame)
|
123 |
|
|
{
|
124 |
|
|
CORE_ADDR pc = frame_pc_unwind (next_frame);
|
125 |
|
|
gdb_byte buf[LINUX_SIGTRAMP_LEN];
|
126 |
|
|
|
127 |
|
|
/* We only recognize a signal trampoline if PC is at the start of
|
128 |
|
|
one of the three instructions. We optimize for finding the PC at
|
129 |
|
|
the start, as will be the case when the trampoline is not the
|
130 |
|
|
first frame on the stack. We assume that in the case where the
|
131 |
|
|
PC is not at the start of the instruction sequence, there will be
|
132 |
|
|
a few trailing readable bytes on the stack. */
|
133 |
|
|
|
134 |
|
|
if (!safe_frame_unwind_memory (next_frame, pc, buf, LINUX_SIGTRAMP_LEN))
|
135 |
|
|
return 0;
|
136 |
|
|
|
137 |
|
|
if (buf[0] != LINUX_SIGTRAMP_INSN0)
|
138 |
|
|
{
|
139 |
|
|
int adjust;
|
140 |
|
|
|
141 |
|
|
switch (buf[0])
|
142 |
|
|
{
|
143 |
|
|
case LINUX_SIGTRAMP_INSN1:
|
144 |
|
|
adjust = LINUX_SIGTRAMP_OFFSET1;
|
145 |
|
|
break;
|
146 |
|
|
case LINUX_SIGTRAMP_INSN2:
|
147 |
|
|
adjust = LINUX_SIGTRAMP_OFFSET2;
|
148 |
|
|
break;
|
149 |
|
|
default:
|
150 |
|
|
return 0;
|
151 |
|
|
}
|
152 |
|
|
|
153 |
|
|
pc -= adjust;
|
154 |
|
|
|
155 |
|
|
if (!safe_frame_unwind_memory (next_frame, pc, buf, LINUX_SIGTRAMP_LEN))
|
156 |
|
|
return 0;
|
157 |
|
|
}
|
158 |
|
|
|
159 |
|
|
if (memcmp (buf, linux_sigtramp_code, LINUX_SIGTRAMP_LEN) != 0)
|
160 |
|
|
return 0;
|
161 |
|
|
|
162 |
|
|
return pc;
|
163 |
|
|
}
|
164 |
|
|
|
165 |
|
|
/* This function does the same for RT signals. Here the instruction
|
166 |
|
|
sequence is
|
167 |
|
|
mov $0xad, %eax
|
168 |
|
|
int $0x80
|
169 |
|
|
or 0xb8 0xad 0x00 0x00 0x00 0xcd 0x80.
|
170 |
|
|
|
171 |
|
|
The effect is to call the system call rt_sigreturn. */
|
172 |
|
|
|
173 |
|
|
#define LINUX_RT_SIGTRAMP_INSN0 0xb8 /* mov $NNNN, %eax */
|
174 |
|
|
#define LINUX_RT_SIGTRAMP_OFFSET0 0
|
175 |
|
|
#define LINUX_RT_SIGTRAMP_INSN1 0xcd /* int */
|
176 |
|
|
#define LINUX_RT_SIGTRAMP_OFFSET1 5
|
177 |
|
|
|
178 |
|
|
static const gdb_byte linux_rt_sigtramp_code[] =
|
179 |
|
|
{
|
180 |
|
|
LINUX_RT_SIGTRAMP_INSN0, 0xad, 0x00, 0x00, 0x00, /* mov $0xad, %eax */
|
181 |
|
|
LINUX_RT_SIGTRAMP_INSN1, 0x80 /* int $0x80 */
|
182 |
|
|
};
|
183 |
|
|
|
184 |
|
|
#define LINUX_RT_SIGTRAMP_LEN (sizeof linux_rt_sigtramp_code)
|
185 |
|
|
|
186 |
|
|
/* If NEXT_FRAME unwinds into an RT sigtramp routine, return the
|
187 |
|
|
address of the start of the routine. Otherwise, return 0. */
|
188 |
|
|
|
189 |
|
|
static CORE_ADDR
|
190 |
|
|
i386_linux_rt_sigtramp_start (struct frame_info *next_frame)
|
191 |
|
|
{
|
192 |
|
|
CORE_ADDR pc = frame_pc_unwind (next_frame);
|
193 |
|
|
gdb_byte buf[LINUX_RT_SIGTRAMP_LEN];
|
194 |
|
|
|
195 |
|
|
/* We only recognize a signal trampoline if PC is at the start of
|
196 |
|
|
one of the two instructions. We optimize for finding the PC at
|
197 |
|
|
the start, as will be the case when the trampoline is not the
|
198 |
|
|
first frame on the stack. We assume that in the case where the
|
199 |
|
|
PC is not at the start of the instruction sequence, there will be
|
200 |
|
|
a few trailing readable bytes on the stack. */
|
201 |
|
|
|
202 |
|
|
if (!safe_frame_unwind_memory (next_frame, pc, buf, LINUX_RT_SIGTRAMP_LEN))
|
203 |
|
|
return 0;
|
204 |
|
|
|
205 |
|
|
if (buf[0] != LINUX_RT_SIGTRAMP_INSN0)
|
206 |
|
|
{
|
207 |
|
|
if (buf[0] != LINUX_RT_SIGTRAMP_INSN1)
|
208 |
|
|
return 0;
|
209 |
|
|
|
210 |
|
|
pc -= LINUX_RT_SIGTRAMP_OFFSET1;
|
211 |
|
|
|
212 |
|
|
if (!safe_frame_unwind_memory (next_frame, pc, buf,
|
213 |
|
|
LINUX_RT_SIGTRAMP_LEN))
|
214 |
|
|
return 0;
|
215 |
|
|
}
|
216 |
|
|
|
217 |
|
|
if (memcmp (buf, linux_rt_sigtramp_code, LINUX_RT_SIGTRAMP_LEN) != 0)
|
218 |
|
|
return 0;
|
219 |
|
|
|
220 |
|
|
return pc;
|
221 |
|
|
}
|
222 |
|
|
|
223 |
|
|
/* Return whether the frame preceding NEXT_FRAME corresponds to a
|
224 |
|
|
GNU/Linux sigtramp routine. */
|
225 |
|
|
|
226 |
|
|
static int
|
227 |
|
|
i386_linux_sigtramp_p (struct frame_info *next_frame)
|
228 |
|
|
{
|
229 |
|
|
CORE_ADDR pc = frame_pc_unwind (next_frame);
|
230 |
|
|
char *name;
|
231 |
|
|
|
232 |
|
|
find_pc_partial_function (pc, &name, NULL, NULL);
|
233 |
|
|
|
234 |
|
|
/* If we have NAME, we can optimize the search. The trampolines are
|
235 |
|
|
named __restore and __restore_rt. However, they aren't dynamically
|
236 |
|
|
exported from the shared C library, so the trampoline may appear to
|
237 |
|
|
be part of the preceding function. This should always be sigaction,
|
238 |
|
|
__sigaction, or __libc_sigaction (all aliases to the same function). */
|
239 |
|
|
if (name == NULL || strstr (name, "sigaction") != NULL)
|
240 |
|
|
return (i386_linux_sigtramp_start (next_frame) != 0
|
241 |
|
|
|| i386_linux_rt_sigtramp_start (next_frame) != 0);
|
242 |
|
|
|
243 |
|
|
return (strcmp ("__restore", name) == 0
|
244 |
|
|
|| strcmp ("__restore_rt", name) == 0);
|
245 |
|
|
}
|
246 |
|
|
|
247 |
|
|
/* Return one if the unwound PC from NEXT_FRAME is in a signal trampoline
|
248 |
|
|
which may have DWARF-2 CFI. */
|
249 |
|
|
|
250 |
|
|
static int
|
251 |
|
|
i386_linux_dwarf_signal_frame_p (struct gdbarch *gdbarch,
|
252 |
|
|
struct frame_info *next_frame)
|
253 |
|
|
{
|
254 |
|
|
CORE_ADDR pc = frame_pc_unwind (next_frame);
|
255 |
|
|
char *name;
|
256 |
|
|
|
257 |
|
|
find_pc_partial_function (pc, &name, NULL, NULL);
|
258 |
|
|
|
259 |
|
|
/* If a vsyscall DSO is in use, the signal trampolines may have these
|
260 |
|
|
names. */
|
261 |
|
|
if (name && (strcmp (name, "__kernel_sigreturn") == 0
|
262 |
|
|
|| strcmp (name, "__kernel_rt_sigreturn") == 0))
|
263 |
|
|
return 1;
|
264 |
|
|
|
265 |
|
|
return 0;
|
266 |
|
|
}
|
267 |
|
|
|
268 |
|
|
/* Offset to struct sigcontext in ucontext, from <asm/ucontext.h>. */
|
269 |
|
|
#define I386_LINUX_UCONTEXT_SIGCONTEXT_OFFSET 20
|
270 |
|
|
|
271 |
|
|
/* Assuming NEXT_FRAME is a frame following a GNU/Linux sigtramp
|
272 |
|
|
routine, return the address of the associated sigcontext structure. */
|
273 |
|
|
|
274 |
|
|
static CORE_ADDR
|
275 |
|
|
i386_linux_sigcontext_addr (struct frame_info *next_frame)
|
276 |
|
|
{
|
277 |
|
|
CORE_ADDR pc;
|
278 |
|
|
CORE_ADDR sp;
|
279 |
|
|
gdb_byte buf[4];
|
280 |
|
|
|
281 |
|
|
frame_unwind_register (next_frame, I386_ESP_REGNUM, buf);
|
282 |
|
|
sp = extract_unsigned_integer (buf, 4);
|
283 |
|
|
|
284 |
|
|
pc = i386_linux_sigtramp_start (next_frame);
|
285 |
|
|
if (pc)
|
286 |
|
|
{
|
287 |
|
|
/* The sigcontext structure lives on the stack, right after
|
288 |
|
|
the signum argument. We determine the address of the
|
289 |
|
|
sigcontext structure by looking at the frame's stack
|
290 |
|
|
pointer. Keep in mind that the first instruction of the
|
291 |
|
|
sigtramp code is "pop %eax". If the PC is after this
|
292 |
|
|
instruction, adjust the returned value accordingly. */
|
293 |
|
|
if (pc == frame_pc_unwind (next_frame))
|
294 |
|
|
return sp + 4;
|
295 |
|
|
return sp;
|
296 |
|
|
}
|
297 |
|
|
|
298 |
|
|
pc = i386_linux_rt_sigtramp_start (next_frame);
|
299 |
|
|
if (pc)
|
300 |
|
|
{
|
301 |
|
|
CORE_ADDR ucontext_addr;
|
302 |
|
|
|
303 |
|
|
/* The sigcontext structure is part of the user context. A
|
304 |
|
|
pointer to the user context is passed as the third argument
|
305 |
|
|
to the signal handler. */
|
306 |
|
|
read_memory (sp + 8, buf, 4);
|
307 |
|
|
ucontext_addr = extract_unsigned_integer (buf, 4);
|
308 |
|
|
return ucontext_addr + I386_LINUX_UCONTEXT_SIGCONTEXT_OFFSET;
|
309 |
|
|
}
|
310 |
|
|
|
311 |
|
|
error (_("Couldn't recognize signal trampoline."));
|
312 |
|
|
return 0;
|
313 |
|
|
}
|
314 |
|
|
|
315 |
|
|
/* Set the program counter for process PTID to PC. */
|
316 |
|
|
|
317 |
|
|
static void
|
318 |
|
|
i386_linux_write_pc (struct regcache *regcache, CORE_ADDR pc)
|
319 |
|
|
{
|
320 |
|
|
regcache_cooked_write_unsigned (regcache, I386_EIP_REGNUM, pc);
|
321 |
|
|
|
322 |
|
|
/* We must be careful with modifying the program counter. If we
|
323 |
|
|
just interrupted a system call, the kernel might try to restart
|
324 |
|
|
it when we resume the inferior. On restarting the system call,
|
325 |
|
|
the kernel will try backing up the program counter even though it
|
326 |
|
|
no longer points at the system call. This typically results in a
|
327 |
|
|
SIGSEGV or SIGILL. We can prevent this by writing `-1' in the
|
328 |
|
|
"orig_eax" pseudo-register.
|
329 |
|
|
|
330 |
|
|
Note that "orig_eax" is saved when setting up a dummy call frame.
|
331 |
|
|
This means that it is properly restored when that frame is
|
332 |
|
|
popped, and that the interrupted system call will be restarted
|
333 |
|
|
when we resume the inferior on return from a function call from
|
334 |
|
|
within GDB. In all other cases the system call will not be
|
335 |
|
|
restarted. */
|
336 |
|
|
regcache_cooked_write_unsigned (regcache, I386_LINUX_ORIG_EAX_REGNUM, -1);
|
337 |
|
|
}
|
338 |
|
|
|
339 |
|
|
|
340 |
|
|
/* The register sets used in GNU/Linux ELF core-dumps are identical to
|
341 |
|
|
the register sets in `struct user' that are used for a.out
|
342 |
|
|
core-dumps. These are also used by ptrace(2). The corresponding
|
343 |
|
|
types are `elf_gregset_t' for the general-purpose registers (with
|
344 |
|
|
`elf_greg_t' the type of a single GP register) and `elf_fpregset_t'
|
345 |
|
|
for the floating-point registers.
|
346 |
|
|
|
347 |
|
|
Those types used to be available under the names `gregset_t' and
|
348 |
|
|
`fpregset_t' too, and GDB used those names in the past. But those
|
349 |
|
|
names are now used for the register sets used in the `mcontext_t'
|
350 |
|
|
type, which have a different size and layout. */
|
351 |
|
|
|
352 |
|
|
/* Mapping between the general-purpose registers in `struct user'
|
353 |
|
|
format and GDB's register cache layout. */
|
354 |
|
|
|
355 |
|
|
/* From <sys/reg.h>. */
|
356 |
|
|
static int i386_linux_gregset_reg_offset[] =
|
357 |
|
|
{
|
358 |
|
|
6 * 4, /* %eax */
|
359 |
|
|
1 * 4, /* %ecx */
|
360 |
|
|
2 * 4, /* %edx */
|
361 |
|
|
|
362 |
|
|
15 * 4, /* %esp */
|
363 |
|
|
5 * 4, /* %ebp */
|
364 |
|
|
3 * 4, /* %esi */
|
365 |
|
|
4 * 4, /* %edi */
|
366 |
|
|
12 * 4, /* %eip */
|
367 |
|
|
14 * 4, /* %eflags */
|
368 |
|
|
13 * 4, /* %cs */
|
369 |
|
|
16 * 4, /* %ss */
|
370 |
|
|
7 * 4, /* %ds */
|
371 |
|
|
8 * 4, /* %es */
|
372 |
|
|
9 * 4, /* %fs */
|
373 |
|
|
10 * 4, /* %gs */
|
374 |
|
|
-1, -1, -1, -1, -1, -1, -1, -1,
|
375 |
|
|
-1, -1, -1, -1, -1, -1, -1, -1,
|
376 |
|
|
-1, -1, -1, -1, -1, -1, -1, -1,
|
377 |
|
|
-1,
|
378 |
|
|
11 * 4 /* "orig_eax" */
|
379 |
|
|
};
|
380 |
|
|
|
381 |
|
|
/* Mapping between the general-purpose registers in `struct
|
382 |
|
|
sigcontext' format and GDB's register cache layout. */
|
383 |
|
|
|
384 |
|
|
/* From <asm/sigcontext.h>. */
|
385 |
|
|
static int i386_linux_sc_reg_offset[] =
|
386 |
|
|
{
|
387 |
|
|
11 * 4, /* %eax */
|
388 |
|
|
10 * 4, /* %ecx */
|
389 |
|
|
9 * 4, /* %edx */
|
390 |
|
|
8 * 4, /* %ebx */
|
391 |
|
|
7 * 4, /* %esp */
|
392 |
|
|
6 * 4, /* %ebp */
|
393 |
|
|
5 * 4, /* %esi */
|
394 |
|
|
4 * 4, /* %edi */
|
395 |
|
|
14 * 4, /* %eip */
|
396 |
|
|
16 * 4, /* %eflags */
|
397 |
|
|
15 * 4, /* %cs */
|
398 |
|
|
18 * 4, /* %ss */
|
399 |
|
|
3 * 4, /* %ds */
|
400 |
|
|
2 * 4, /* %es */
|
401 |
|
|
1 * 4, /* %fs */
|
402 |
|
|
|
403 |
|
|
};
|
404 |
|
|
|
405 |
|
|
static void
|
406 |
|
|
i386_linux_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
|
407 |
|
|
{
|
408 |
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
409 |
|
|
|
410 |
|
|
/* GNU/Linux uses ELF. */
|
411 |
|
|
i386_elf_init_abi (info, gdbarch);
|
412 |
|
|
|
413 |
|
|
/* Since we have the extra "orig_eax" register on GNU/Linux, we have
|
414 |
|
|
to adjust a few things. */
|
415 |
|
|
|
416 |
|
|
set_gdbarch_write_pc (gdbarch, i386_linux_write_pc);
|
417 |
|
|
set_gdbarch_num_regs (gdbarch, I386_LINUX_NUM_REGS);
|
418 |
|
|
set_gdbarch_register_name (gdbarch, i386_linux_register_name);
|
419 |
|
|
set_gdbarch_register_reggroup_p (gdbarch, i386_linux_register_reggroup_p);
|
420 |
|
|
|
421 |
|
|
tdep->gregset_reg_offset = i386_linux_gregset_reg_offset;
|
422 |
|
|
tdep->gregset_num_regs = ARRAY_SIZE (i386_linux_gregset_reg_offset);
|
423 |
|
|
tdep->sizeof_gregset = 17 * 4;
|
424 |
|
|
|
425 |
|
|
tdep->jb_pc_offset = 20; /* From <bits/setjmp.h>. */
|
426 |
|
|
|
427 |
|
|
tdep->sigtramp_p = i386_linux_sigtramp_p;
|
428 |
|
|
tdep->sigcontext_addr = i386_linux_sigcontext_addr;
|
429 |
|
|
tdep->sc_reg_offset = i386_linux_sc_reg_offset;
|
430 |
|
|
tdep->sc_num_regs = ARRAY_SIZE (i386_linux_sc_reg_offset);
|
431 |
|
|
|
432 |
|
|
/* N_FUN symbols in shared libaries have 0 for their values and need
|
433 |
|
|
to be relocated. */
|
434 |
|
|
set_gdbarch_sofun_address_maybe_missing (gdbarch, 1);
|
435 |
|
|
|
436 |
|
|
/* GNU/Linux uses SVR4-style shared libraries. */
|
437 |
|
|
set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
|
438 |
|
|
set_solib_svr4_fetch_link_map_offsets
|
439 |
|
|
(gdbarch, svr4_ilp32_fetch_link_map_offsets);
|
440 |
|
|
|
441 |
|
|
/* GNU/Linux uses the dynamic linker included in the GNU C Library. */
|
442 |
|
|
set_gdbarch_skip_solib_resolver (gdbarch, glibc_skip_solib_resolver);
|
443 |
|
|
|
444 |
|
|
dwarf2_frame_set_signal_frame_p (gdbarch, i386_linux_dwarf_signal_frame_p);
|
445 |
|
|
|
446 |
|
|
/* Enable TLS support. */
|
447 |
|
|
set_gdbarch_fetch_tls_load_module_address (gdbarch,
|
448 |
|
|
svr4_fetch_objfile_link_map);
|
449 |
|
|
}
|
450 |
|
|
|
451 |
|
|
/* Provide a prototype to silence -Wmissing-prototypes. */
|
452 |
|
|
extern void _initialize_i386_linux_tdep (void);
|
453 |
|
|
|
454 |
|
|
void
|
455 |
|
|
_initialize_i386_linux_tdep (void)
|
456 |
|
|
{
|
457 |
|
|
gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_LINUX,
|
458 |
|
|
i386_linux_init_abi);
|
459 |
|
|
}
|