OpenCores
URL https://opencores.org/ocsvn/openrisc/openrisc/trunk

Subversion Repositories openrisc

[/] [openrisc/] [trunk/] [gnu-old/] [gdb-6.8/] [gdb/] [infrun.c] - Blame information for rev 823

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 24 jeremybenn
/* Target-struct-independent code to start (run) and stop an inferior
2
   process.
3
 
4
   Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
5
   1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,
6
   2008 Free Software Foundation, Inc.
7
 
8
   This file is part of GDB.
9
 
10
   This program is free software; you can redistribute it and/or modify
11
   it under the terms of the GNU General Public License as published by
12
   the Free Software Foundation; either version 3 of the License, or
13
   (at your option) any later version.
14
 
15
   This program is distributed in the hope that it will be useful,
16
   but WITHOUT ANY WARRANTY; without even the implied warranty of
17
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18
   GNU General Public License for more details.
19
 
20
   You should have received a copy of the GNU General Public License
21
   along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
22
 
23
#include "defs.h"
24
#include "gdb_string.h"
25
#include <ctype.h>
26
#include "symtab.h"
27
#include "frame.h"
28
#include "inferior.h"
29
#include "exceptions.h"
30
#include "breakpoint.h"
31
#include "gdb_wait.h"
32
#include "gdbcore.h"
33
#include "gdbcmd.h"
34
#include "cli/cli-script.h"
35
#include "target.h"
36
#include "gdbthread.h"
37
#include "annotate.h"
38
#include "symfile.h"
39
#include "top.h"
40
#include <signal.h>
41
#include "inf-loop.h"
42
#include "regcache.h"
43
#include "value.h"
44
#include "observer.h"
45
#include "language.h"
46
#include "solib.h"
47
#include "main.h"
48
 
49
#include "gdb_assert.h"
50
#include "mi/mi-common.h"
51
 
52
/* Prototypes for local functions */
53
 
54
static void signals_info (char *, int);
55
 
56
static void handle_command (char *, int);
57
 
58
static void sig_print_info (enum target_signal);
59
 
60
static void sig_print_header (void);
61
 
62
static void resume_cleanups (void *);
63
 
64
static int hook_stop_stub (void *);
65
 
66
static int restore_selected_frame (void *);
67
 
68
static void build_infrun (void);
69
 
70
static int follow_fork (void);
71
 
72
static void set_schedlock_func (char *args, int from_tty,
73
                                struct cmd_list_element *c);
74
 
75
struct execution_control_state;
76
 
77
static int currently_stepping (struct execution_control_state *ecs);
78
 
79
static void xdb_handle_command (char *args, int from_tty);
80
 
81
static int prepare_to_proceed (int);
82
 
83
void _initialize_infrun (void);
84
 
85
int inferior_ignoring_leading_exec_events = 0;
86
 
87
/* When set, stop the 'step' command if we enter a function which has
88
   no line number information.  The normal behavior is that we step
89
   over such function.  */
90
int step_stop_if_no_debug = 0;
91
static void
92
show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
93
                            struct cmd_list_element *c, const char *value)
94
{
95
  fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
96
}
97
 
98
/* In asynchronous mode, but simulating synchronous execution. */
99
 
100
int sync_execution = 0;
101
 
102
/* wait_for_inferior and normal_stop use this to notify the user
103
   when the inferior stopped in a different thread than it had been
104
   running in.  */
105
 
106
static ptid_t previous_inferior_ptid;
107
 
108
static int debug_infrun = 0;
109
static void
110
show_debug_infrun (struct ui_file *file, int from_tty,
111
                   struct cmd_list_element *c, const char *value)
112
{
113
  fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
114
}
115
 
116
/* If the program uses ELF-style shared libraries, then calls to
117
   functions in shared libraries go through stubs, which live in a
118
   table called the PLT (Procedure Linkage Table).  The first time the
119
   function is called, the stub sends control to the dynamic linker,
120
   which looks up the function's real address, patches the stub so
121
   that future calls will go directly to the function, and then passes
122
   control to the function.
123
 
124
   If we are stepping at the source level, we don't want to see any of
125
   this --- we just want to skip over the stub and the dynamic linker.
126
   The simple approach is to single-step until control leaves the
127
   dynamic linker.
128
 
129
   However, on some systems (e.g., Red Hat's 5.2 distribution) the
130
   dynamic linker calls functions in the shared C library, so you
131
   can't tell from the PC alone whether the dynamic linker is still
132
   running.  In this case, we use a step-resume breakpoint to get us
133
   past the dynamic linker, as if we were using "next" to step over a
134
   function call.
135
 
136
   IN_SOLIB_DYNSYM_RESOLVE_CODE says whether we're in the dynamic
137
   linker code or not.  Normally, this means we single-step.  However,
138
   if SKIP_SOLIB_RESOLVER then returns non-zero, then its value is an
139
   address where we can place a step-resume breakpoint to get past the
140
   linker's symbol resolution function.
141
 
142
   IN_SOLIB_DYNSYM_RESOLVE_CODE can generally be implemented in a
143
   pretty portable way, by comparing the PC against the address ranges
144
   of the dynamic linker's sections.
145
 
146
   SKIP_SOLIB_RESOLVER is generally going to be system-specific, since
147
   it depends on internal details of the dynamic linker.  It's usually
148
   not too hard to figure out where to put a breakpoint, but it
149
   certainly isn't portable.  SKIP_SOLIB_RESOLVER should do plenty of
150
   sanity checking.  If it can't figure things out, returning zero and
151
   getting the (possibly confusing) stepping behavior is better than
152
   signalling an error, which will obscure the change in the
153
   inferior's state.  */
154
 
155
/* This function returns TRUE if pc is the address of an instruction
156
   that lies within the dynamic linker (such as the event hook, or the
157
   dld itself).
158
 
159
   This function must be used only when a dynamic linker event has
160
   been caught, and the inferior is being stepped out of the hook, or
161
   undefined results are guaranteed.  */
162
 
163
#ifndef SOLIB_IN_DYNAMIC_LINKER
164
#define SOLIB_IN_DYNAMIC_LINKER(pid,pc) 0
165
#endif
166
 
167
 
168
/* Convert the #defines into values.  This is temporary until wfi control
169
   flow is completely sorted out.  */
170
 
171
#ifndef CANNOT_STEP_HW_WATCHPOINTS
172
#define CANNOT_STEP_HW_WATCHPOINTS 0
173
#else
174
#undef  CANNOT_STEP_HW_WATCHPOINTS
175
#define CANNOT_STEP_HW_WATCHPOINTS 1
176
#endif
177
 
178
/* Tables of how to react to signals; the user sets them.  */
179
 
180
static unsigned char *signal_stop;
181
static unsigned char *signal_print;
182
static unsigned char *signal_program;
183
 
184
#define SET_SIGS(nsigs,sigs,flags) \
185
  do { \
186
    int signum = (nsigs); \
187
    while (signum-- > 0) \
188
      if ((sigs)[signum]) \
189
        (flags)[signum] = 1; \
190
  } while (0)
191
 
192
#define UNSET_SIGS(nsigs,sigs,flags) \
193
  do { \
194
    int signum = (nsigs); \
195
    while (signum-- > 0) \
196
      if ((sigs)[signum]) \
197
        (flags)[signum] = 0; \
198
  } while (0)
199
 
200
/* Value to pass to target_resume() to cause all threads to resume */
201
 
202
#define RESUME_ALL (pid_to_ptid (-1))
203
 
204
/* Command list pointer for the "stop" placeholder.  */
205
 
206
static struct cmd_list_element *stop_command;
207
 
208
/* Function inferior was in as of last step command.  */
209
 
210
static struct symbol *step_start_function;
211
 
212
/* Nonzero if we are presently stepping over a breakpoint.
213
 
214
   If we hit a breakpoint or watchpoint, and then continue,
215
   we need to single step the current thread with breakpoints
216
   disabled, to avoid hitting the same breakpoint or
217
   watchpoint again.  And we should step just a single
218
   thread and keep other threads stopped, so that
219
   other threads don't miss breakpoints while they are removed.
220
 
221
   So, this variable simultaneously means that we need to single
222
   step the current thread, keep other threads stopped, and that
223
   breakpoints should be removed while we step.
224
 
225
   This variable is set either:
226
   - in proceed, when we resume inferior on user's explicit request
227
   - in keep_going, if handle_inferior_event decides we need to
228
   step over breakpoint.
229
 
230
   The variable is cleared in clear_proceed_status, called every
231
   time before we call proceed.  The proceed calls wait_for_inferior,
232
   which calls handle_inferior_event in a loop, and until
233
   wait_for_inferior exits, this variable is changed only by keep_going.  */
234
 
235
static int stepping_over_breakpoint;
236
 
237
/* Nonzero if we want to give control to the user when we're notified
238
   of shared library events by the dynamic linker.  */
239
static int stop_on_solib_events;
240
static void
241
show_stop_on_solib_events (struct ui_file *file, int from_tty,
242
                           struct cmd_list_element *c, const char *value)
243
{
244
  fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
245
                    value);
246
}
247
 
248
/* Nonzero means expecting a trace trap
249
   and should stop the inferior and return silently when it happens.  */
250
 
251
int stop_after_trap;
252
 
253
/* Nonzero means expecting a trap and caller will handle it themselves.
254
   It is used after attach, due to attaching to a process;
255
   when running in the shell before the child program has been exec'd;
256
   and when running some kinds of remote stuff (FIXME?).  */
257
 
258
enum stop_kind stop_soon;
259
 
260
/* Nonzero if proceed is being used for a "finish" command or a similar
261
   situation when stop_registers should be saved.  */
262
 
263
int proceed_to_finish;
264
 
265
/* Save register contents here when about to pop a stack dummy frame,
266
   if-and-only-if proceed_to_finish is set.
267
   Thus this contains the return value from the called function (assuming
268
   values are returned in a register).  */
269
 
270
struct regcache *stop_registers;
271
 
272
/* Nonzero after stop if current stack frame should be printed.  */
273
 
274
static int stop_print_frame;
275
 
276
static struct breakpoint *step_resume_breakpoint = NULL;
277
 
278
/* This is a cached copy of the pid/waitstatus of the last event
279
   returned by target_wait()/deprecated_target_wait_hook().  This
280
   information is returned by get_last_target_status().  */
281
static ptid_t target_last_wait_ptid;
282
static struct target_waitstatus target_last_waitstatus;
283
 
284
/* This is used to remember when a fork, vfork or exec event
285
   was caught by a catchpoint, and thus the event is to be
286
   followed at the next resume of the inferior, and not
287
   immediately. */
288
static struct
289
{
290
  enum target_waitkind kind;
291
  struct
292
  {
293
    int parent_pid;
294
    int child_pid;
295
  }
296
  fork_event;
297
  char *execd_pathname;
298
}
299
pending_follow;
300
 
301
static const char follow_fork_mode_child[] = "child";
302
static const char follow_fork_mode_parent[] = "parent";
303
 
304
static const char *follow_fork_mode_kind_names[] = {
305
  follow_fork_mode_child,
306
  follow_fork_mode_parent,
307
  NULL
308
};
309
 
310
static const char *follow_fork_mode_string = follow_fork_mode_parent;
311
static void
312
show_follow_fork_mode_string (struct ui_file *file, int from_tty,
313
                              struct cmd_list_element *c, const char *value)
314
{
315
  fprintf_filtered (file, _("\
316
Debugger response to a program call of fork or vfork is \"%s\".\n"),
317
                    value);
318
}
319
 
320
 
321
static int
322
follow_fork (void)
323
{
324
  int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
325
 
326
  return target_follow_fork (follow_child);
327
}
328
 
329
void
330
follow_inferior_reset_breakpoints (void)
331
{
332
  /* Was there a step_resume breakpoint?  (There was if the user
333
     did a "next" at the fork() call.)  If so, explicitly reset its
334
     thread number.
335
 
336
     step_resumes are a form of bp that are made to be per-thread.
337
     Since we created the step_resume bp when the parent process
338
     was being debugged, and now are switching to the child process,
339
     from the breakpoint package's viewpoint, that's a switch of
340
     "threads".  We must update the bp's notion of which thread
341
     it is for, or it'll be ignored when it triggers.  */
342
 
343
  if (step_resume_breakpoint)
344
    breakpoint_re_set_thread (step_resume_breakpoint);
345
 
346
  /* Reinsert all breakpoints in the child.  The user may have set
347
     breakpoints after catching the fork, in which case those
348
     were never set in the child, but only in the parent.  This makes
349
     sure the inserted breakpoints match the breakpoint list.  */
350
 
351
  breakpoint_re_set ();
352
  insert_breakpoints ();
353
}
354
 
355
/* EXECD_PATHNAME is assumed to be non-NULL. */
356
 
357
static void
358
follow_exec (int pid, char *execd_pathname)
359
{
360
  int saved_pid = pid;
361
  struct target_ops *tgt;
362
 
363
  /* This is an exec event that we actually wish to pay attention to.
364
     Refresh our symbol table to the newly exec'd program, remove any
365
     momentary bp's, etc.
366
 
367
     If there are breakpoints, they aren't really inserted now,
368
     since the exec() transformed our inferior into a fresh set
369
     of instructions.
370
 
371
     We want to preserve symbolic breakpoints on the list, since
372
     we have hopes that they can be reset after the new a.out's
373
     symbol table is read.
374
 
375
     However, any "raw" breakpoints must be removed from the list
376
     (e.g., the solib bp's), since their address is probably invalid
377
     now.
378
 
379
     And, we DON'T want to call delete_breakpoints() here, since
380
     that may write the bp's "shadow contents" (the instruction
381
     value that was overwritten witha TRAP instruction).  Since
382
     we now have a new a.out, those shadow contents aren't valid. */
383
  update_breakpoints_after_exec ();
384
 
385
  /* If there was one, it's gone now.  We cannot truly step-to-next
386
     statement through an exec(). */
387
  step_resume_breakpoint = NULL;
388
  step_range_start = 0;
389
  step_range_end = 0;
390
 
391
  /* What is this a.out's name? */
392
  printf_unfiltered (_("Executing new program: %s\n"), execd_pathname);
393
 
394
  /* We've followed the inferior through an exec.  Therefore, the
395
     inferior has essentially been killed & reborn. */
396
 
397
  gdb_flush (gdb_stdout);
398
  generic_mourn_inferior ();
399
  /* Because mourn_inferior resets inferior_ptid. */
400
  inferior_ptid = pid_to_ptid (saved_pid);
401
 
402
  if (gdb_sysroot && *gdb_sysroot)
403
    {
404
      char *name = alloca (strlen (gdb_sysroot)
405
                            + strlen (execd_pathname)
406
                            + 1);
407
      strcpy (name, gdb_sysroot);
408
      strcat (name, execd_pathname);
409
      execd_pathname = name;
410
    }
411
 
412
  /* That a.out is now the one to use. */
413
  exec_file_attach (execd_pathname, 0);
414
 
415
  /* And also is where symbols can be found. */
416
  symbol_file_add_main (execd_pathname, 0);
417
 
418
  /* Reset the shared library package.  This ensures that we get
419
     a shlib event when the child reaches "_start", at which point
420
     the dld will have had a chance to initialize the child. */
421
  no_shared_libraries (NULL, 0);
422
#ifdef SOLIB_CREATE_INFERIOR_HOOK
423
  SOLIB_CREATE_INFERIOR_HOOK (PIDGET (inferior_ptid));
424
#else
425
  solib_create_inferior_hook ();
426
#endif
427
 
428
  /* Reinsert all breakpoints.  (Those which were symbolic have
429
     been reset to the proper address in the new a.out, thanks
430
     to symbol_file_command...) */
431
  insert_breakpoints ();
432
 
433
  /* The next resume of this inferior should bring it to the shlib
434
     startup breakpoints.  (If the user had also set bp's on
435
     "main" from the old (parent) process, then they'll auto-
436
     matically get reset there in the new process.) */
437
}
438
 
439
/* Non-zero if we just simulating a single-step.  This is needed
440
   because we cannot remove the breakpoints in the inferior process
441
   until after the `wait' in `wait_for_inferior'.  */
442
static int singlestep_breakpoints_inserted_p = 0;
443
 
444
/* The thread we inserted single-step breakpoints for.  */
445
static ptid_t singlestep_ptid;
446
 
447
/* PC when we started this single-step.  */
448
static CORE_ADDR singlestep_pc;
449
 
450
/* If another thread hit the singlestep breakpoint, we save the original
451
   thread here so that we can resume single-stepping it later.  */
452
static ptid_t saved_singlestep_ptid;
453
static int stepping_past_singlestep_breakpoint;
454
 
455
/* If not equal to null_ptid, this means that after stepping over breakpoint
456
   is finished, we need to switch to deferred_step_ptid, and step it.
457
 
458
   The use case is when one thread has hit a breakpoint, and then the user
459
   has switched to another thread and issued 'step'. We need to step over
460
   breakpoint in the thread which hit the breakpoint, but then continue
461
   stepping the thread user has selected.  */
462
static ptid_t deferred_step_ptid;
463
 
464
 
465
/* Things to clean up if we QUIT out of resume ().  */
466
static void
467
resume_cleanups (void *ignore)
468
{
469
  normal_stop ();
470
}
471
 
472
static const char schedlock_off[] = "off";
473
static const char schedlock_on[] = "on";
474
static const char schedlock_step[] = "step";
475
static const char *scheduler_enums[] = {
476
  schedlock_off,
477
  schedlock_on,
478
  schedlock_step,
479
  NULL
480
};
481
static const char *scheduler_mode = schedlock_off;
482
static void
483
show_scheduler_mode (struct ui_file *file, int from_tty,
484
                     struct cmd_list_element *c, const char *value)
485
{
486
  fprintf_filtered (file, _("\
487
Mode for locking scheduler during execution is \"%s\".\n"),
488
                    value);
489
}
490
 
491
static void
492
set_schedlock_func (char *args, int from_tty, struct cmd_list_element *c)
493
{
494
  if (!target_can_lock_scheduler)
495
    {
496
      scheduler_mode = schedlock_off;
497
      error (_("Target '%s' cannot support this command."), target_shortname);
498
    }
499
}
500
 
501
 
502
/* Resume the inferior, but allow a QUIT.  This is useful if the user
503
   wants to interrupt some lengthy single-stepping operation
504
   (for child processes, the SIGINT goes to the inferior, and so
505
   we get a SIGINT random_signal, but for remote debugging and perhaps
506
   other targets, that's not true).
507
 
508
   STEP nonzero if we should step (zero to continue instead).
509
   SIG is the signal to give the inferior (zero for none).  */
510
void
511
resume (int step, enum target_signal sig)
512
{
513
  int should_resume = 1;
514
  struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
515
  QUIT;
516
 
517
  if (debug_infrun)
518
    fprintf_unfiltered (gdb_stdlog, "infrun: resume (step=%d, signal=%d)\n",
519
                        step, sig);
520
 
521
  /* FIXME: calling breakpoint_here_p (read_pc ()) three times! */
522
 
523
 
524
  /* Some targets (e.g. Solaris x86) have a kernel bug when stepping
525
     over an instruction that causes a page fault without triggering
526
     a hardware watchpoint. The kernel properly notices that it shouldn't
527
     stop, because the hardware watchpoint is not triggered, but it forgets
528
     the step request and continues the program normally.
529
     Work around the problem by removing hardware watchpoints if a step is
530
     requested, GDB will check for a hardware watchpoint trigger after the
531
     step anyway.  */
532
  if (CANNOT_STEP_HW_WATCHPOINTS && step)
533
    remove_hw_watchpoints ();
534
 
535
 
536
  /* Normally, by the time we reach `resume', the breakpoints are either
537
     removed or inserted, as appropriate.  The exception is if we're sitting
538
     at a permanent breakpoint; we need to step over it, but permanent
539
     breakpoints can't be removed.  So we have to test for it here.  */
540
  if (breakpoint_here_p (read_pc ()) == permanent_breakpoint_here)
541
    {
542
      if (gdbarch_skip_permanent_breakpoint_p (current_gdbarch))
543
        gdbarch_skip_permanent_breakpoint (current_gdbarch,
544
                                           get_current_regcache ());
545
      else
546
        error (_("\
547
The program is stopped at a permanent breakpoint, but GDB does not know\n\
548
how to step past a permanent breakpoint on this architecture.  Try using\n\
549
a command like `return' or `jump' to continue execution."));
550
    }
551
 
552
  if (step && gdbarch_software_single_step_p (current_gdbarch))
553
    {
554
      /* Do it the hard way, w/temp breakpoints */
555
      if (gdbarch_software_single_step (current_gdbarch, get_current_frame ()))
556
        {
557
          /* ...and don't ask hardware to do it.  */
558
          step = 0;
559
          /* and do not pull these breakpoints until after a `wait' in
560
          `wait_for_inferior' */
561
          singlestep_breakpoints_inserted_p = 1;
562
          singlestep_ptid = inferior_ptid;
563
          singlestep_pc = read_pc ();
564
        }
565
    }
566
 
567
  /* If there were any forks/vforks/execs that were caught and are
568
     now to be followed, then do so.  */
569
  switch (pending_follow.kind)
570
    {
571
    case TARGET_WAITKIND_FORKED:
572
    case TARGET_WAITKIND_VFORKED:
573
      pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
574
      if (follow_fork ())
575
        should_resume = 0;
576
      break;
577
 
578
    case TARGET_WAITKIND_EXECD:
579
      /* follow_exec is called as soon as the exec event is seen. */
580
      pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
581
      break;
582
 
583
    default:
584
      break;
585
    }
586
 
587
  /* Install inferior's terminal modes.  */
588
  target_terminal_inferior ();
589
 
590
  if (should_resume)
591
    {
592
      ptid_t resume_ptid;
593
 
594
      resume_ptid = RESUME_ALL; /* Default */
595
 
596
      /* If STEP is set, it's a request to use hardware stepping
597
         facilities.  But in that case, we should never
598
         use singlestep breakpoint.  */
599
      gdb_assert (!(singlestep_breakpoints_inserted_p && step));
600
 
601
      if (singlestep_breakpoints_inserted_p
602
          && stepping_past_singlestep_breakpoint)
603
        {
604
          /* The situation here is as follows.  In thread T1 we wanted to
605
             single-step.  Lacking hardware single-stepping we've
606
             set breakpoint at the PC of the next instruction -- call it
607
             P.  After resuming, we've hit that breakpoint in thread T2.
608
             Now we've removed original breakpoint, inserted breakpoint
609
             at P+1, and try to step to advance T2 past breakpoint.
610
             We need to step only T2, as if T1 is allowed to freely run,
611
             it can run past P, and if other threads are allowed to run,
612
             they can hit breakpoint at P+1, and nested hits of single-step
613
             breakpoints is not something we'd want -- that's complicated
614
             to support, and has no value.  */
615
          resume_ptid = inferior_ptid;
616
        }
617
 
618
      if ((step || singlestep_breakpoints_inserted_p)
619
          && breakpoint_here_p (read_pc ())
620
          && !breakpoint_inserted_here_p (read_pc ()))
621
        {
622
          /* We're stepping, have breakpoint at PC, and it's
623
             not inserted.  Most likely, proceed has noticed that
624
             we have breakpoint and tries to single-step over it,
625
             so that it's not hit.  In which case, we need to
626
             single-step only this thread, and keep others stopped,
627
             as they can miss this breakpoint if allowed to run.
628
 
629
             The current code either has all breakpoints inserted,
630
             or all removed, so if we let other threads run,
631
             we can actually miss any breakpoint, not the one at PC.  */
632
          resume_ptid = inferior_ptid;
633
        }
634
 
635
      if ((scheduler_mode == schedlock_on)
636
          || (scheduler_mode == schedlock_step
637
              && (step || singlestep_breakpoints_inserted_p)))
638
        {
639
          /* User-settable 'scheduler' mode requires solo thread resume. */
640
          resume_ptid = inferior_ptid;
641
        }
642
 
643
      if (gdbarch_cannot_step_breakpoint (current_gdbarch))
644
        {
645
          /* Most targets can step a breakpoint instruction, thus
646
             executing it normally.  But if this one cannot, just
647
             continue and we will hit it anyway.  */
648
          if (step && breakpoint_inserted_here_p (read_pc ()))
649
            step = 0;
650
        }
651
      target_resume (resume_ptid, step, sig);
652
    }
653
 
654
  discard_cleanups (old_cleanups);
655
}
656
 
657
 
658
/* Clear out all variables saying what to do when inferior is continued.
659
   First do this, then set the ones you want, then call `proceed'.  */
660
 
661
void
662
clear_proceed_status (void)
663
{
664
  stepping_over_breakpoint = 0;
665
  step_range_start = 0;
666
  step_range_end = 0;
667
  step_frame_id = null_frame_id;
668
  step_over_calls = STEP_OVER_UNDEBUGGABLE;
669
  stop_after_trap = 0;
670
  stop_soon = NO_STOP_QUIETLY;
671
  proceed_to_finish = 0;
672
  breakpoint_proceeded = 1;     /* We're about to proceed... */
673
 
674
  if (stop_registers)
675
    {
676
      regcache_xfree (stop_registers);
677
      stop_registers = NULL;
678
    }
679
 
680
  /* Discard any remaining commands or status from previous stop.  */
681
  bpstat_clear (&stop_bpstat);
682
}
683
 
684
/* This should be suitable for any targets that support threads. */
685
 
686
static int
687
prepare_to_proceed (int step)
688
{
689
  ptid_t wait_ptid;
690
  struct target_waitstatus wait_status;
691
 
692
  /* Get the last target status returned by target_wait().  */
693
  get_last_target_status (&wait_ptid, &wait_status);
694
 
695
  /* Make sure we were stopped at a breakpoint.  */
696
  if (wait_status.kind != TARGET_WAITKIND_STOPPED
697
      || wait_status.value.sig != TARGET_SIGNAL_TRAP)
698
    {
699
      return 0;
700
    }
701
 
702
  /* Switched over from WAIT_PID.  */
703
  if (!ptid_equal (wait_ptid, minus_one_ptid)
704
      && !ptid_equal (inferior_ptid, wait_ptid)
705
      && breakpoint_here_p (read_pc_pid (wait_ptid)))
706
    {
707
      /* If stepping, remember current thread to switch back to.  */
708
      if (step)
709
        {
710
          deferred_step_ptid = inferior_ptid;
711
        }
712
 
713
      /* Switch back to WAIT_PID thread.  */
714
      switch_to_thread (wait_ptid);
715
 
716
      /* We return 1 to indicate that there is a breakpoint here,
717
         so we need to step over it before continuing to avoid
718
         hitting it straight away. */
719
      return 1;
720
    }
721
 
722
  return 0;
723
}
724
 
725
/* Record the pc of the program the last time it stopped.  This is
726
   just used internally by wait_for_inferior, but need to be preserved
727
   over calls to it and cleared when the inferior is started.  */
728
static CORE_ADDR prev_pc;
729
 
730
/* Basic routine for continuing the program in various fashions.
731
 
732
   ADDR is the address to resume at, or -1 for resume where stopped.
733
   SIGGNAL is the signal to give it, or 0 for none,
734
   or -1 for act according to how it stopped.
735
   STEP is nonzero if should trap after one instruction.
736
   -1 means return after that and print nothing.
737
   You should probably set various step_... variables
738
   before calling here, if you are stepping.
739
 
740
   You should call clear_proceed_status before calling proceed.  */
741
 
742
void
743
proceed (CORE_ADDR addr, enum target_signal siggnal, int step)
744
{
745
  int oneproc = 0;
746
 
747
  if (step > 0)
748
    step_start_function = find_pc_function (read_pc ());
749
  if (step < 0)
750
    stop_after_trap = 1;
751
 
752
  if (addr == (CORE_ADDR) -1)
753
    {
754
      if (read_pc () == stop_pc && breakpoint_here_p (read_pc ()))
755
        /* There is a breakpoint at the address we will resume at,
756
           step one instruction before inserting breakpoints so that
757
           we do not stop right away (and report a second hit at this
758
           breakpoint).  */
759
        oneproc = 1;
760
      else if (gdbarch_single_step_through_delay_p (current_gdbarch)
761
              && gdbarch_single_step_through_delay (current_gdbarch,
762
                                                    get_current_frame ()))
763
        /* We stepped onto an instruction that needs to be stepped
764
           again before re-inserting the breakpoint, do so.  */
765
        oneproc = 1;
766
    }
767
  else
768
    {
769
      write_pc (addr);
770
    }
771
 
772
  if (debug_infrun)
773
    fprintf_unfiltered (gdb_stdlog,
774
                        "infrun: proceed (addr=0x%s, signal=%d, step=%d)\n",
775
                        paddr_nz (addr), siggnal, step);
776
 
777
  /* In a multi-threaded task we may select another thread
778
     and then continue or step.
779
 
780
     But if the old thread was stopped at a breakpoint, it
781
     will immediately cause another breakpoint stop without
782
     any execution (i.e. it will report a breakpoint hit
783
     incorrectly).  So we must step over it first.
784
 
785
     prepare_to_proceed checks the current thread against the thread
786
     that reported the most recent event.  If a step-over is required
787
     it returns TRUE and sets the current thread to the old thread. */
788
  if (prepare_to_proceed (step))
789
    oneproc = 1;
790
 
791
  if (oneproc)
792
    /* We will get a trace trap after one instruction.
793
       Continue it automatically and insert breakpoints then.  */
794
    stepping_over_breakpoint = 1;
795
  else
796
    insert_breakpoints ();
797
 
798
  if (siggnal != TARGET_SIGNAL_DEFAULT)
799
    stop_signal = siggnal;
800
  /* If this signal should not be seen by program,
801
     give it zero.  Used for debugging signals.  */
802
  else if (!signal_program[stop_signal])
803
    stop_signal = TARGET_SIGNAL_0;
804
 
805
  annotate_starting ();
806
 
807
  /* Make sure that output from GDB appears before output from the
808
     inferior.  */
809
  gdb_flush (gdb_stdout);
810
 
811
  /* Refresh prev_pc value just prior to resuming.  This used to be
812
     done in stop_stepping, however, setting prev_pc there did not handle
813
     scenarios such as inferior function calls or returning from
814
     a function via the return command.  In those cases, the prev_pc
815
     value was not set properly for subsequent commands.  The prev_pc value
816
     is used to initialize the starting line number in the ecs.  With an
817
     invalid value, the gdb next command ends up stopping at the position
818
     represented by the next line table entry past our start position.
819
     On platforms that generate one line table entry per line, this
820
     is not a problem.  However, on the ia64, the compiler generates
821
     extraneous line table entries that do not increase the line number.
822
     When we issue the gdb next command on the ia64 after an inferior call
823
     or a return command, we often end up a few instructions forward, still
824
     within the original line we started.
825
 
826
     An attempt was made to have init_execution_control_state () refresh
827
     the prev_pc value before calculating the line number.  This approach
828
     did not work because on platforms that use ptrace, the pc register
829
     cannot be read unless the inferior is stopped.  At that point, we
830
     are not guaranteed the inferior is stopped and so the read_pc ()
831
     call can fail.  Setting the prev_pc value here ensures the value is
832
     updated correctly when the inferior is stopped.  */
833
  prev_pc = read_pc ();
834
 
835
  /* Resume inferior.  */
836
  resume (oneproc || step || bpstat_should_step (), stop_signal);
837
 
838
  /* Wait for it to stop (if not standalone)
839
     and in any case decode why it stopped, and act accordingly.  */
840
  /* Do this only if we are not using the event loop, or if the target
841
     does not support asynchronous execution. */
842
  if (!target_can_async_p ())
843
    {
844
      wait_for_inferior (0);
845
      normal_stop ();
846
    }
847
}
848
 
849
 
850
/* Start remote-debugging of a machine over a serial link.  */
851
 
852
void
853
start_remote (int from_tty)
854
{
855
  init_thread_list ();
856
  init_wait_for_inferior ();
857
  stop_soon = STOP_QUIETLY_REMOTE;
858
  stepping_over_breakpoint = 0;
859
 
860
  /* Always go on waiting for the target, regardless of the mode. */
861
  /* FIXME: cagney/1999-09-23: At present it isn't possible to
862
     indicate to wait_for_inferior that a target should timeout if
863
     nothing is returned (instead of just blocking).  Because of this,
864
     targets expecting an immediate response need to, internally, set
865
     things up so that the target_wait() is forced to eventually
866
     timeout. */
867
  /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
868
     differentiate to its caller what the state of the target is after
869
     the initial open has been performed.  Here we're assuming that
870
     the target has stopped.  It should be possible to eventually have
871
     target_open() return to the caller an indication that the target
872
     is currently running and GDB state should be set to the same as
873
     for an async run. */
874
  wait_for_inferior (0);
875
 
876
  /* Now that the inferior has stopped, do any bookkeeping like
877
     loading shared libraries.  We want to do this before normal_stop,
878
     so that the displayed frame is up to date.  */
879
  post_create_inferior (&current_target, from_tty);
880
 
881
  normal_stop ();
882
}
883
 
884
/* Initialize static vars when a new inferior begins.  */
885
 
886
void
887
init_wait_for_inferior (void)
888
{
889
  /* These are meaningless until the first time through wait_for_inferior.  */
890
  prev_pc = 0;
891
 
892
  breakpoint_init_inferior (inf_starting);
893
 
894
  /* Don't confuse first call to proceed(). */
895
  stop_signal = TARGET_SIGNAL_0;
896
 
897
  /* The first resume is not following a fork/vfork/exec. */
898
  pending_follow.kind = TARGET_WAITKIND_SPURIOUS;       /* I.e., none. */
899
 
900
  clear_proceed_status ();
901
 
902
  stepping_past_singlestep_breakpoint = 0;
903
  deferred_step_ptid = null_ptid;
904
 
905
  target_last_wait_ptid = minus_one_ptid;
906
}
907
 
908
/* This enum encodes possible reasons for doing a target_wait, so that
909
   wfi can call target_wait in one place.  (Ultimately the call will be
910
   moved out of the infinite loop entirely.) */
911
 
912
enum infwait_states
913
{
914
  infwait_normal_state,
915
  infwait_thread_hop_state,
916
  infwait_step_watch_state,
917
  infwait_nonstep_watch_state
918
};
919
 
920
/* Why did the inferior stop? Used to print the appropriate messages
921
   to the interface from within handle_inferior_event(). */
922
enum inferior_stop_reason
923
{
924
  /* Step, next, nexti, stepi finished. */
925
  END_STEPPING_RANGE,
926
  /* Inferior terminated by signal. */
927
  SIGNAL_EXITED,
928
  /* Inferior exited. */
929
  EXITED,
930
  /* Inferior received signal, and user asked to be notified. */
931
  SIGNAL_RECEIVED
932
};
933
 
934
/* This structure contains what used to be local variables in
935
   wait_for_inferior.  Probably many of them can return to being
936
   locals in handle_inferior_event.  */
937
 
938
struct execution_control_state
939
{
940
  struct target_waitstatus ws;
941
  struct target_waitstatus *wp;
942
  /* Should we step over breakpoint next time keep_going
943
     is called?  */
944
  int stepping_over_breakpoint;
945
  int random_signal;
946
  CORE_ADDR stop_func_start;
947
  CORE_ADDR stop_func_end;
948
  char *stop_func_name;
949
  struct symtab_and_line sal;
950
  int current_line;
951
  struct symtab *current_symtab;
952
  int handling_longjmp;         /* FIXME */
953
  ptid_t ptid;
954
  ptid_t saved_inferior_ptid;
955
  int step_after_step_resume_breakpoint;
956
  int stepping_through_solib_after_catch;
957
  bpstat stepping_through_solib_catchpoints;
958
  int new_thread_event;
959
  struct target_waitstatus tmpstatus;
960
  enum infwait_states infwait_state;
961
  ptid_t waiton_ptid;
962
  int wait_some_more;
963
};
964
 
965
void init_execution_control_state (struct execution_control_state *ecs);
966
 
967
void handle_inferior_event (struct execution_control_state *ecs);
968
 
969
static void step_into_function (struct execution_control_state *ecs);
970
static void insert_step_resume_breakpoint_at_frame (struct frame_info *step_frame);
971
static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
972
static void insert_step_resume_breakpoint_at_sal (struct symtab_and_line sr_sal,
973
                                                  struct frame_id sr_id);
974
static void stop_stepping (struct execution_control_state *ecs);
975
static void prepare_to_wait (struct execution_control_state *ecs);
976
static void keep_going (struct execution_control_state *ecs);
977
static void print_stop_reason (enum inferior_stop_reason stop_reason,
978
                               int stop_info);
979
 
980
/* Wait for control to return from inferior to debugger.
981
 
982
   If TREAT_EXEC_AS_SIGTRAP is non-zero, then handle EXEC signals
983
   as if they were SIGTRAP signals.  This can be useful during
984
   the startup sequence on some targets such as HP/UX, where
985
   we receive an EXEC event instead of the expected SIGTRAP.
986
 
987
   If inferior gets a signal, we may decide to start it up again
988
   instead of returning.  That is why there is a loop in this function.
989
   When this function actually returns it means the inferior
990
   should be left stopped and GDB should read more commands.  */
991
 
992
void
993
wait_for_inferior (int treat_exec_as_sigtrap)
994
{
995
  struct cleanup *old_cleanups;
996
  struct execution_control_state ecss;
997
  struct execution_control_state *ecs;
998
 
999
  if (debug_infrun)
1000
    fprintf_unfiltered
1001
      (gdb_stdlog, "infrun: wait_for_inferior (treat_exec_as_sigtrap=%d)\n",
1002
       treat_exec_as_sigtrap);
1003
 
1004
  old_cleanups = make_cleanup (delete_step_resume_breakpoint,
1005
                               &step_resume_breakpoint);
1006
 
1007
  /* wfi still stays in a loop, so it's OK just to take the address of
1008
     a local to get the ecs pointer.  */
1009
  ecs = &ecss;
1010
 
1011
  /* Fill in with reasonable starting values.  */
1012
  init_execution_control_state (ecs);
1013
 
1014
  /* We'll update this if & when we switch to a new thread. */
1015
  previous_inferior_ptid = inferior_ptid;
1016
 
1017
  overlay_cache_invalid = 1;
1018
 
1019
  /* We have to invalidate the registers BEFORE calling target_wait
1020
     because they can be loaded from the target while in target_wait.
1021
     This makes remote debugging a bit more efficient for those
1022
     targets that provide critical registers as part of their normal
1023
     status mechanism. */
1024
 
1025
  registers_changed ();
1026
 
1027
  while (1)
1028
    {
1029
      if (deprecated_target_wait_hook)
1030
        ecs->ptid = deprecated_target_wait_hook (ecs->waiton_ptid, ecs->wp);
1031
      else
1032
        ecs->ptid = target_wait (ecs->waiton_ptid, ecs->wp);
1033
 
1034
      if (treat_exec_as_sigtrap && ecs->ws.kind == TARGET_WAITKIND_EXECD)
1035
        {
1036
          xfree (ecs->ws.value.execd_pathname);
1037
          ecs->ws.kind = TARGET_WAITKIND_STOPPED;
1038
          ecs->ws.value.sig = TARGET_SIGNAL_TRAP;
1039
        }
1040
 
1041
      /* Now figure out what to do with the result of the result.  */
1042
      handle_inferior_event (ecs);
1043
 
1044
      if (!ecs->wait_some_more)
1045
        break;
1046
    }
1047
  do_cleanups (old_cleanups);
1048
}
1049
 
1050
/* Asynchronous version of wait_for_inferior. It is called by the
1051
   event loop whenever a change of state is detected on the file
1052
   descriptor corresponding to the target. It can be called more than
1053
   once to complete a single execution command. In such cases we need
1054
   to keep the state in a global variable ASYNC_ECSS. If it is the
1055
   last time that this function is called for a single execution
1056
   command, then report to the user that the inferior has stopped, and
1057
   do the necessary cleanups. */
1058
 
1059
struct execution_control_state async_ecss;
1060
struct execution_control_state *async_ecs;
1061
 
1062
void
1063
fetch_inferior_event (void *client_data)
1064
{
1065
  static struct cleanup *old_cleanups;
1066
 
1067
  async_ecs = &async_ecss;
1068
 
1069
  if (!async_ecs->wait_some_more)
1070
    {
1071
      old_cleanups = make_exec_cleanup (delete_step_resume_breakpoint,
1072
                                        &step_resume_breakpoint);
1073
 
1074
      /* Fill in with reasonable starting values.  */
1075
      init_execution_control_state (async_ecs);
1076
 
1077
      /* We'll update this if & when we switch to a new thread. */
1078
      previous_inferior_ptid = inferior_ptid;
1079
 
1080
      overlay_cache_invalid = 1;
1081
 
1082
      /* We have to invalidate the registers BEFORE calling target_wait
1083
         because they can be loaded from the target while in target_wait.
1084
         This makes remote debugging a bit more efficient for those
1085
         targets that provide critical registers as part of their normal
1086
         status mechanism. */
1087
 
1088
      registers_changed ();
1089
    }
1090
 
1091
  if (deprecated_target_wait_hook)
1092
    async_ecs->ptid =
1093
      deprecated_target_wait_hook (async_ecs->waiton_ptid, async_ecs->wp);
1094
  else
1095
    async_ecs->ptid = target_wait (async_ecs->waiton_ptid, async_ecs->wp);
1096
 
1097
  /* Now figure out what to do with the result of the result.  */
1098
  handle_inferior_event (async_ecs);
1099
 
1100
  if (!async_ecs->wait_some_more)
1101
    {
1102
      /* Do only the cleanups that have been added by this
1103
         function. Let the continuations for the commands do the rest,
1104
         if there are any. */
1105
      do_exec_cleanups (old_cleanups);
1106
      normal_stop ();
1107
      if (step_multi && stop_step)
1108
        inferior_event_handler (INF_EXEC_CONTINUE, NULL);
1109
      else
1110
        inferior_event_handler (INF_EXEC_COMPLETE, NULL);
1111
    }
1112
}
1113
 
1114
/* Prepare an execution control state for looping through a
1115
   wait_for_inferior-type loop.  */
1116
 
1117
void
1118
init_execution_control_state (struct execution_control_state *ecs)
1119
{
1120
  ecs->stepping_over_breakpoint = 0;
1121
  ecs->random_signal = 0;
1122
  ecs->step_after_step_resume_breakpoint = 0;
1123
  ecs->handling_longjmp = 0;     /* FIXME */
1124
  ecs->stepping_through_solib_after_catch = 0;
1125
  ecs->stepping_through_solib_catchpoints = NULL;
1126
  ecs->sal = find_pc_line (prev_pc, 0);
1127
  ecs->current_line = ecs->sal.line;
1128
  ecs->current_symtab = ecs->sal.symtab;
1129
  ecs->infwait_state = infwait_normal_state;
1130
  ecs->waiton_ptid = pid_to_ptid (-1);
1131
  ecs->wp = &(ecs->ws);
1132
}
1133
 
1134
/* Return the cached copy of the last pid/waitstatus returned by
1135
   target_wait()/deprecated_target_wait_hook().  The data is actually
1136
   cached by handle_inferior_event(), which gets called immediately
1137
   after target_wait()/deprecated_target_wait_hook().  */
1138
 
1139
void
1140
get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
1141
{
1142
  *ptidp = target_last_wait_ptid;
1143
  *status = target_last_waitstatus;
1144
}
1145
 
1146
void
1147
nullify_last_target_wait_ptid (void)
1148
{
1149
  target_last_wait_ptid = minus_one_ptid;
1150
}
1151
 
1152
/* Switch thread contexts, maintaining "infrun state". */
1153
 
1154
static void
1155
context_switch (struct execution_control_state *ecs)
1156
{
1157
  /* Caution: it may happen that the new thread (or the old one!)
1158
     is not in the thread list.  In this case we must not attempt
1159
     to "switch context", or we run the risk that our context may
1160
     be lost.  This may happen as a result of the target module
1161
     mishandling thread creation.  */
1162
 
1163
  if (debug_infrun)
1164
    {
1165
      fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ",
1166
                          target_pid_to_str (inferior_ptid));
1167
      fprintf_unfiltered (gdb_stdlog, "to %s\n",
1168
                          target_pid_to_str (ecs->ptid));
1169
    }
1170
 
1171
  if (in_thread_list (inferior_ptid) && in_thread_list (ecs->ptid))
1172
    {                           /* Perform infrun state context switch: */
1173
      /* Save infrun state for the old thread.  */
1174
      save_infrun_state (inferior_ptid, prev_pc,
1175
                         stepping_over_breakpoint, step_resume_breakpoint,
1176
                         step_range_start,
1177
                         step_range_end, &step_frame_id,
1178
                         ecs->handling_longjmp, ecs->stepping_over_breakpoint,
1179
                         ecs->stepping_through_solib_after_catch,
1180
                         ecs->stepping_through_solib_catchpoints,
1181
                         ecs->current_line, ecs->current_symtab);
1182
 
1183
      /* Load infrun state for the new thread.  */
1184
      load_infrun_state (ecs->ptid, &prev_pc,
1185
                         &stepping_over_breakpoint, &step_resume_breakpoint,
1186
                         &step_range_start,
1187
                         &step_range_end, &step_frame_id,
1188
                         &ecs->handling_longjmp, &ecs->stepping_over_breakpoint,
1189
                         &ecs->stepping_through_solib_after_catch,
1190
                         &ecs->stepping_through_solib_catchpoints,
1191
                         &ecs->current_line, &ecs->current_symtab);
1192
    }
1193
 
1194
  switch_to_thread (ecs->ptid);
1195
}
1196
 
1197
static void
1198
adjust_pc_after_break (struct execution_control_state *ecs)
1199
{
1200
  CORE_ADDR breakpoint_pc;
1201
 
1202
  /* If this target does not decrement the PC after breakpoints, then
1203
     we have nothing to do.  */
1204
  if (gdbarch_decr_pc_after_break (current_gdbarch) == 0)
1205
    return;
1206
 
1207
  /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP.  If
1208
     we aren't, just return.
1209
 
1210
     We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
1211
     affected by gdbarch_decr_pc_after_break.  Other waitkinds which are
1212
     implemented by software breakpoints should be handled through the normal
1213
     breakpoint layer.
1214
 
1215
     NOTE drow/2004-01-31: On some targets, breakpoints may generate
1216
     different signals (SIGILL or SIGEMT for instance), but it is less
1217
     clear where the PC is pointing afterwards.  It may not match
1218
     gdbarch_decr_pc_after_break.  I don't know any specific target that
1219
     generates these signals at breakpoints (the code has been in GDB since at
1220
     least 1992) so I can not guess how to handle them here.
1221
 
1222
     In earlier versions of GDB, a target with
1223
     gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
1224
     watchpoint affected by gdbarch_decr_pc_after_break.  I haven't found any
1225
     target with both of these set in GDB history, and it seems unlikely to be
1226
     correct, so gdbarch_have_nonsteppable_watchpoint is not checked here.  */
1227
 
1228
  if (ecs->ws.kind != TARGET_WAITKIND_STOPPED)
1229
    return;
1230
 
1231
  if (ecs->ws.value.sig != TARGET_SIGNAL_TRAP)
1232
    return;
1233
 
1234
  /* Find the location where (if we've hit a breakpoint) the
1235
     breakpoint would be.  */
1236
  breakpoint_pc = read_pc_pid (ecs->ptid) - gdbarch_decr_pc_after_break
1237
                                            (current_gdbarch);
1238
 
1239
  /* Check whether there actually is a software breakpoint inserted
1240
     at that location.  */
1241
  if (software_breakpoint_inserted_here_p (breakpoint_pc))
1242
    {
1243
      /* When using hardware single-step, a SIGTRAP is reported for both
1244
         a completed single-step and a software breakpoint.  Need to
1245
         differentiate between the two, as the latter needs adjusting
1246
         but the former does not.
1247
 
1248
         The SIGTRAP can be due to a completed hardware single-step only if
1249
          - we didn't insert software single-step breakpoints
1250
          - the thread to be examined is still the current thread
1251
          - this thread is currently being stepped
1252
 
1253
         If any of these events did not occur, we must have stopped due
1254
         to hitting a software breakpoint, and have to back up to the
1255
         breakpoint address.
1256
 
1257
         As a special case, we could have hardware single-stepped a
1258
         software breakpoint.  In this case (prev_pc == breakpoint_pc),
1259
         we also need to back up to the breakpoint address.  */
1260
 
1261
      if (singlestep_breakpoints_inserted_p
1262
          || !ptid_equal (ecs->ptid, inferior_ptid)
1263
          || !currently_stepping (ecs)
1264
          || prev_pc == breakpoint_pc)
1265
        write_pc_pid (breakpoint_pc, ecs->ptid);
1266
    }
1267
}
1268
 
1269
/* Given an execution control state that has been freshly filled in
1270
   by an event from the inferior, figure out what it means and take
1271
   appropriate action.  */
1272
 
1273
void
1274
handle_inferior_event (struct execution_control_state *ecs)
1275
{
1276
  int sw_single_step_trap_p = 0;
1277
  int stopped_by_watchpoint;
1278
  int stepped_after_stopped_by_watchpoint = 0;
1279
 
1280
  /* Cache the last pid/waitstatus. */
1281
  target_last_wait_ptid = ecs->ptid;
1282
  target_last_waitstatus = *ecs->wp;
1283
 
1284
  /* Always clear state belonging to the previous time we stopped.  */
1285
  stop_stack_dummy = 0;
1286
 
1287
  adjust_pc_after_break (ecs);
1288
 
1289
  switch (ecs->infwait_state)
1290
    {
1291
    case infwait_thread_hop_state:
1292
      if (debug_infrun)
1293
        fprintf_unfiltered (gdb_stdlog, "infrun: infwait_thread_hop_state\n");
1294
      /* Cancel the waiton_ptid. */
1295
      ecs->waiton_ptid = pid_to_ptid (-1);
1296
      break;
1297
 
1298
    case infwait_normal_state:
1299
      if (debug_infrun)
1300
        fprintf_unfiltered (gdb_stdlog, "infrun: infwait_normal_state\n");
1301
      break;
1302
 
1303
    case infwait_step_watch_state:
1304
      if (debug_infrun)
1305
        fprintf_unfiltered (gdb_stdlog,
1306
                            "infrun: infwait_step_watch_state\n");
1307
 
1308
      stepped_after_stopped_by_watchpoint = 1;
1309
      break;
1310
 
1311
    case infwait_nonstep_watch_state:
1312
      if (debug_infrun)
1313
        fprintf_unfiltered (gdb_stdlog,
1314
                            "infrun: infwait_nonstep_watch_state\n");
1315
      insert_breakpoints ();
1316
 
1317
      /* FIXME-maybe: is this cleaner than setting a flag?  Does it
1318
         handle things like signals arriving and other things happening
1319
         in combination correctly?  */
1320
      stepped_after_stopped_by_watchpoint = 1;
1321
      break;
1322
 
1323
    default:
1324
      internal_error (__FILE__, __LINE__, _("bad switch"));
1325
    }
1326
  ecs->infwait_state = infwait_normal_state;
1327
 
1328
  reinit_frame_cache ();
1329
 
1330
  /* If it's a new process, add it to the thread database */
1331
 
1332
  ecs->new_thread_event = (!ptid_equal (ecs->ptid, inferior_ptid)
1333
                           && !ptid_equal (ecs->ptid, minus_one_ptid)
1334
                           && !in_thread_list (ecs->ptid));
1335
 
1336
  if (ecs->ws.kind != TARGET_WAITKIND_EXITED
1337
      && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED && ecs->new_thread_event)
1338
    add_thread (ecs->ptid);
1339
 
1340
  switch (ecs->ws.kind)
1341
    {
1342
    case TARGET_WAITKIND_LOADED:
1343
      if (debug_infrun)
1344
        fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_LOADED\n");
1345
      /* Ignore gracefully during startup of the inferior, as it might
1346
         be the shell which has just loaded some objects, otherwise
1347
         add the symbols for the newly loaded objects.  Also ignore at
1348
         the beginning of an attach or remote session; we will query
1349
         the full list of libraries once the connection is
1350
         established.  */
1351
      if (stop_soon == NO_STOP_QUIETLY)
1352
        {
1353
          /* Remove breakpoints, SOLIB_ADD might adjust
1354
             breakpoint addresses via breakpoint_re_set.  */
1355
          remove_breakpoints ();
1356
 
1357
          /* Check for any newly added shared libraries if we're
1358
             supposed to be adding them automatically.  Switch
1359
             terminal for any messages produced by
1360
             breakpoint_re_set.  */
1361
          target_terminal_ours_for_output ();
1362
          /* NOTE: cagney/2003-11-25: Make certain that the target
1363
             stack's section table is kept up-to-date.  Architectures,
1364
             (e.g., PPC64), use the section table to perform
1365
             operations such as address => section name and hence
1366
             require the table to contain all sections (including
1367
             those found in shared libraries).  */
1368
          /* NOTE: cagney/2003-11-25: Pass current_target and not
1369
             exec_ops to SOLIB_ADD.  This is because current GDB is
1370
             only tooled to propagate section_table changes out from
1371
             the "current_target" (see target_resize_to_sections), and
1372
             not up from the exec stratum.  This, of course, isn't
1373
             right.  "infrun.c" should only interact with the
1374
             exec/process stratum, instead relying on the target stack
1375
             to propagate relevant changes (stop, section table
1376
             changed, ...) up to other layers.  */
1377
#ifdef SOLIB_ADD
1378
          SOLIB_ADD (NULL, 0, &current_target, auto_solib_add);
1379
#else
1380
          solib_add (NULL, 0, &current_target, auto_solib_add);
1381
#endif
1382
          target_terminal_inferior ();
1383
 
1384
          /* If requested, stop when the dynamic linker notifies
1385
             gdb of events.  This allows the user to get control
1386
             and place breakpoints in initializer routines for
1387
             dynamically loaded objects (among other things).  */
1388
          if (stop_on_solib_events)
1389
            {
1390
              stop_stepping (ecs);
1391
              return;
1392
            }
1393
 
1394
          /* NOTE drow/2007-05-11: This might be a good place to check
1395
             for "catch load".  */
1396
 
1397
          /* Reinsert breakpoints and continue.  */
1398
          insert_breakpoints ();
1399
        }
1400
 
1401
      /* If we are skipping through a shell, or through shared library
1402
         loading that we aren't interested in, resume the program.  If
1403
         we're running the program normally, also resume.  But stop if
1404
         we're attaching or setting up a remote connection.  */
1405
      if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
1406
        {
1407
          resume (0, TARGET_SIGNAL_0);
1408
          prepare_to_wait (ecs);
1409
          return;
1410
        }
1411
 
1412
      break;
1413
 
1414
    case TARGET_WAITKIND_SPURIOUS:
1415
      if (debug_infrun)
1416
        fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SPURIOUS\n");
1417
      resume (0, TARGET_SIGNAL_0);
1418
      prepare_to_wait (ecs);
1419
      return;
1420
 
1421
    case TARGET_WAITKIND_EXITED:
1422
      if (debug_infrun)
1423
        fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXITED\n");
1424
      target_terminal_ours ();  /* Must do this before mourn anyway */
1425
      print_stop_reason (EXITED, ecs->ws.value.integer);
1426
 
1427
      /* Record the exit code in the convenience variable $_exitcode, so
1428
         that the user can inspect this again later.  */
1429
      set_internalvar (lookup_internalvar ("_exitcode"),
1430
                       value_from_longest (builtin_type_int,
1431
                                           (LONGEST) ecs->ws.value.integer));
1432
      gdb_flush (gdb_stdout);
1433
      target_mourn_inferior ();
1434
      singlestep_breakpoints_inserted_p = 0;
1435
      stop_print_frame = 0;
1436
      stop_stepping (ecs);
1437
      return;
1438
 
1439
    case TARGET_WAITKIND_SIGNALLED:
1440
      if (debug_infrun)
1441
        fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SIGNALLED\n");
1442
      stop_print_frame = 0;
1443
      stop_signal = ecs->ws.value.sig;
1444
      target_terminal_ours ();  /* Must do this before mourn anyway */
1445
 
1446
      /* Note: By definition of TARGET_WAITKIND_SIGNALLED, we shouldn't
1447
         reach here unless the inferior is dead.  However, for years
1448
         target_kill() was called here, which hints that fatal signals aren't
1449
         really fatal on some systems.  If that's true, then some changes
1450
         may be needed. */
1451
      target_mourn_inferior ();
1452
 
1453
      print_stop_reason (SIGNAL_EXITED, stop_signal);
1454
      singlestep_breakpoints_inserted_p = 0;
1455
      stop_stepping (ecs);
1456
      return;
1457
 
1458
      /* The following are the only cases in which we keep going;
1459
         the above cases end in a continue or goto. */
1460
    case TARGET_WAITKIND_FORKED:
1461
    case TARGET_WAITKIND_VFORKED:
1462
      if (debug_infrun)
1463
        fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_FORKED\n");
1464
      stop_signal = TARGET_SIGNAL_TRAP;
1465
      pending_follow.kind = ecs->ws.kind;
1466
 
1467
      pending_follow.fork_event.parent_pid = PIDGET (ecs->ptid);
1468
      pending_follow.fork_event.child_pid = ecs->ws.value.related_pid;
1469
 
1470
      if (!ptid_equal (ecs->ptid, inferior_ptid))
1471
        {
1472
          context_switch (ecs);
1473
          reinit_frame_cache ();
1474
        }
1475
 
1476
      stop_pc = read_pc ();
1477
 
1478
      stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid);
1479
 
1480
      ecs->random_signal = !bpstat_explains_signal (stop_bpstat);
1481
 
1482
      /* If no catchpoint triggered for this, then keep going.  */
1483
      if (ecs->random_signal)
1484
        {
1485
          stop_signal = TARGET_SIGNAL_0;
1486
          keep_going (ecs);
1487
          return;
1488
        }
1489
      goto process_event_stop_test;
1490
 
1491
    case TARGET_WAITKIND_EXECD:
1492
      if (debug_infrun)
1493
        fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXECD\n");
1494
      stop_signal = TARGET_SIGNAL_TRAP;
1495
 
1496
      /* NOTE drow/2002-12-05: This code should be pushed down into the
1497
         target_wait function.  Until then following vfork on HP/UX 10.20
1498
         is probably broken by this.  Of course, it's broken anyway.  */
1499
      /* Is this a target which reports multiple exec events per actual
1500
         call to exec()?  (HP-UX using ptrace does, for example.)  If so,
1501
         ignore all but the last one.  Just resume the exec'r, and wait
1502
         for the next exec event. */
1503
      if (inferior_ignoring_leading_exec_events)
1504
        {
1505
          inferior_ignoring_leading_exec_events--;
1506
          target_resume (ecs->ptid, 0, TARGET_SIGNAL_0);
1507
          prepare_to_wait (ecs);
1508
          return;
1509
        }
1510
      inferior_ignoring_leading_exec_events =
1511
        target_reported_exec_events_per_exec_call () - 1;
1512
 
1513
      pending_follow.execd_pathname =
1514
        savestring (ecs->ws.value.execd_pathname,
1515
                    strlen (ecs->ws.value.execd_pathname));
1516
 
1517
      /* This causes the eventpoints and symbol table to be reset.  Must
1518
         do this now, before trying to determine whether to stop. */
1519
      follow_exec (PIDGET (inferior_ptid), pending_follow.execd_pathname);
1520
      xfree (pending_follow.execd_pathname);
1521
 
1522
      stop_pc = read_pc_pid (ecs->ptid);
1523
      ecs->saved_inferior_ptid = inferior_ptid;
1524
      inferior_ptid = ecs->ptid;
1525
 
1526
      stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid);
1527
 
1528
      ecs->random_signal = !bpstat_explains_signal (stop_bpstat);
1529
      inferior_ptid = ecs->saved_inferior_ptid;
1530
 
1531
      if (!ptid_equal (ecs->ptid, inferior_ptid))
1532
        {
1533
          context_switch (ecs);
1534
          reinit_frame_cache ();
1535
        }
1536
 
1537
      /* If no catchpoint triggered for this, then keep going.  */
1538
      if (ecs->random_signal)
1539
        {
1540
          stop_signal = TARGET_SIGNAL_0;
1541
          keep_going (ecs);
1542
          return;
1543
        }
1544
      goto process_event_stop_test;
1545
 
1546
      /* Be careful not to try to gather much state about a thread
1547
         that's in a syscall.  It's frequently a losing proposition.  */
1548
    case TARGET_WAITKIND_SYSCALL_ENTRY:
1549
      if (debug_infrun)
1550
        fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SYSCALL_ENTRY\n");
1551
      resume (0, TARGET_SIGNAL_0);
1552
      prepare_to_wait (ecs);
1553
      return;
1554
 
1555
      /* Before examining the threads further, step this thread to
1556
         get it entirely out of the syscall.  (We get notice of the
1557
         event when the thread is just on the verge of exiting a
1558
         syscall.  Stepping one instruction seems to get it back
1559
         into user code.)  */
1560
    case TARGET_WAITKIND_SYSCALL_RETURN:
1561
      if (debug_infrun)
1562
        fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SYSCALL_RETURN\n");
1563
      target_resume (ecs->ptid, 1, TARGET_SIGNAL_0);
1564
      prepare_to_wait (ecs);
1565
      return;
1566
 
1567
    case TARGET_WAITKIND_STOPPED:
1568
      if (debug_infrun)
1569
        fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_STOPPED\n");
1570
      stop_signal = ecs->ws.value.sig;
1571
      break;
1572
 
1573
      /* We had an event in the inferior, but we are not interested
1574
         in handling it at this level. The lower layers have already
1575
         done what needs to be done, if anything.
1576
 
1577
         One of the possible circumstances for this is when the
1578
         inferior produces output for the console. The inferior has
1579
         not stopped, and we are ignoring the event.  Another possible
1580
         circumstance is any event which the lower level knows will be
1581
         reported multiple times without an intervening resume.  */
1582
    case TARGET_WAITKIND_IGNORE:
1583
      if (debug_infrun)
1584
        fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_IGNORE\n");
1585
      prepare_to_wait (ecs);
1586
      return;
1587
    }
1588
 
1589
  /* We may want to consider not doing a resume here in order to give
1590
     the user a chance to play with the new thread.  It might be good
1591
     to make that a user-settable option.  */
1592
 
1593
  /* At this point, all threads are stopped (happens automatically in
1594
     either the OS or the native code).  Therefore we need to continue
1595
     all threads in order to make progress.  */
1596
  if (ecs->new_thread_event)
1597
    {
1598
      target_resume (RESUME_ALL, 0, TARGET_SIGNAL_0);
1599
      prepare_to_wait (ecs);
1600
      return;
1601
    }
1602
 
1603
  stop_pc = read_pc_pid (ecs->ptid);
1604
 
1605
  if (debug_infrun)
1606
    fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = 0x%s\n", paddr_nz (stop_pc));
1607
 
1608
  if (stepping_past_singlestep_breakpoint)
1609
    {
1610
      gdb_assert (singlestep_breakpoints_inserted_p);
1611
      gdb_assert (ptid_equal (singlestep_ptid, ecs->ptid));
1612
      gdb_assert (!ptid_equal (singlestep_ptid, saved_singlestep_ptid));
1613
 
1614
      stepping_past_singlestep_breakpoint = 0;
1615
 
1616
      /* We've either finished single-stepping past the single-step
1617
         breakpoint, or stopped for some other reason.  It would be nice if
1618
         we could tell, but we can't reliably.  */
1619
      if (stop_signal == TARGET_SIGNAL_TRAP)
1620
        {
1621
          if (debug_infrun)
1622
            fprintf_unfiltered (gdb_stdlog, "infrun: stepping_past_singlestep_breakpoint\n");
1623
          /* Pull the single step breakpoints out of the target.  */
1624
          remove_single_step_breakpoints ();
1625
          singlestep_breakpoints_inserted_p = 0;
1626
 
1627
          ecs->random_signal = 0;
1628
 
1629
          ecs->ptid = saved_singlestep_ptid;
1630
          context_switch (ecs);
1631
          if (deprecated_context_hook)
1632
            deprecated_context_hook (pid_to_thread_id (ecs->ptid));
1633
 
1634
          resume (1, TARGET_SIGNAL_0);
1635
          prepare_to_wait (ecs);
1636
          return;
1637
        }
1638
    }
1639
 
1640
  stepping_past_singlestep_breakpoint = 0;
1641
 
1642
  if (!ptid_equal (deferred_step_ptid, null_ptid))
1643
    {
1644
      /* If we stopped for some other reason than single-stepping, ignore
1645
         the fact that we were supposed to switch back.  */
1646
      if (stop_signal == TARGET_SIGNAL_TRAP)
1647
        {
1648
          if (debug_infrun)
1649
            fprintf_unfiltered (gdb_stdlog,
1650
                                "infrun: handling deferred step\n");
1651
 
1652
          /* Pull the single step breakpoints out of the target.  */
1653
          if (singlestep_breakpoints_inserted_p)
1654
            {
1655
              remove_single_step_breakpoints ();
1656
              singlestep_breakpoints_inserted_p = 0;
1657
            }
1658
 
1659
          /* Note: We do not call context_switch at this point, as the
1660
             context is already set up for stepping the original thread.  */
1661
          switch_to_thread (deferred_step_ptid);
1662
          deferred_step_ptid = null_ptid;
1663
          /* Suppress spurious "Switching to ..." message.  */
1664
          previous_inferior_ptid = inferior_ptid;
1665
 
1666
          resume (1, TARGET_SIGNAL_0);
1667
          prepare_to_wait (ecs);
1668
          return;
1669
        }
1670
 
1671
      deferred_step_ptid = null_ptid;
1672
    }
1673
 
1674
  /* See if a thread hit a thread-specific breakpoint that was meant for
1675
     another thread.  If so, then step that thread past the breakpoint,
1676
     and continue it.  */
1677
 
1678
  if (stop_signal == TARGET_SIGNAL_TRAP)
1679
    {
1680
      int thread_hop_needed = 0;
1681
 
1682
      /* Check if a regular breakpoint has been hit before checking
1683
         for a potential single step breakpoint. Otherwise, GDB will
1684
         not see this breakpoint hit when stepping onto breakpoints.  */
1685
      if (regular_breakpoint_inserted_here_p (stop_pc))
1686
        {
1687
          ecs->random_signal = 0;
1688
          if (!breakpoint_thread_match (stop_pc, ecs->ptid))
1689
            thread_hop_needed = 1;
1690
        }
1691
      else if (singlestep_breakpoints_inserted_p)
1692
        {
1693
          /* We have not context switched yet, so this should be true
1694
             no matter which thread hit the singlestep breakpoint.  */
1695
          gdb_assert (ptid_equal (inferior_ptid, singlestep_ptid));
1696
          if (debug_infrun)
1697
            fprintf_unfiltered (gdb_stdlog, "infrun: software single step "
1698
                                "trap for %s\n",
1699
                                target_pid_to_str (ecs->ptid));
1700
 
1701
          ecs->random_signal = 0;
1702
          /* The call to in_thread_list is necessary because PTIDs sometimes
1703
             change when we go from single-threaded to multi-threaded.  If
1704
             the singlestep_ptid is still in the list, assume that it is
1705
             really different from ecs->ptid.  */
1706
          if (!ptid_equal (singlestep_ptid, ecs->ptid)
1707
              && in_thread_list (singlestep_ptid))
1708
            {
1709
              /* If the PC of the thread we were trying to single-step
1710
                 has changed, discard this event (which we were going
1711
                 to ignore anyway), and pretend we saw that thread
1712
                 trap.  This prevents us continuously moving the
1713
                 single-step breakpoint forward, one instruction at a
1714
                 time.  If the PC has changed, then the thread we were
1715
                 trying to single-step has trapped or been signalled,
1716
                 but the event has not been reported to GDB yet.
1717
 
1718
                 There might be some cases where this loses signal
1719
                 information, if a signal has arrived at exactly the
1720
                 same time that the PC changed, but this is the best
1721
                 we can do with the information available.  Perhaps we
1722
                 should arrange to report all events for all threads
1723
                 when they stop, or to re-poll the remote looking for
1724
                 this particular thread (i.e. temporarily enable
1725
                 schedlock).  */
1726
             if (read_pc_pid (singlestep_ptid) != singlestep_pc)
1727
               {
1728
                 if (debug_infrun)
1729
                   fprintf_unfiltered (gdb_stdlog, "infrun: unexpected thread,"
1730
                                       " but expected thread advanced also\n");
1731
 
1732
                 /* The current context still belongs to
1733
                    singlestep_ptid.  Don't swap here, since that's
1734
                    the context we want to use.  Just fudge our
1735
                    state and continue.  */
1736
                 ecs->ptid = singlestep_ptid;
1737
                 stop_pc = read_pc_pid (ecs->ptid);
1738
               }
1739
             else
1740
               {
1741
                 if (debug_infrun)
1742
                   fprintf_unfiltered (gdb_stdlog,
1743
                                       "infrun: unexpected thread\n");
1744
 
1745
                 thread_hop_needed = 1;
1746
                 stepping_past_singlestep_breakpoint = 1;
1747
                 saved_singlestep_ptid = singlestep_ptid;
1748
               }
1749
            }
1750
        }
1751
 
1752
      if (thread_hop_needed)
1753
        {
1754
          int remove_status;
1755
 
1756
          if (debug_infrun)
1757
            fprintf_unfiltered (gdb_stdlog, "infrun: thread_hop_needed\n");
1758
 
1759
          /* Saw a breakpoint, but it was hit by the wrong thread.
1760
             Just continue. */
1761
 
1762
          if (singlestep_breakpoints_inserted_p)
1763
            {
1764
              /* Pull the single step breakpoints out of the target. */
1765
              remove_single_step_breakpoints ();
1766
              singlestep_breakpoints_inserted_p = 0;
1767
            }
1768
 
1769
          remove_status = remove_breakpoints ();
1770
          /* Did we fail to remove breakpoints?  If so, try
1771
             to set the PC past the bp.  (There's at least
1772
             one situation in which we can fail to remove
1773
             the bp's: On HP-UX's that use ttrace, we can't
1774
             change the address space of a vforking child
1775
             process until the child exits (well, okay, not
1776
             then either :-) or execs. */
1777
          if (remove_status != 0)
1778
            error (_("Cannot step over breakpoint hit in wrong thread"));
1779
          else
1780
            {                   /* Single step */
1781
              if (!ptid_equal (inferior_ptid, ecs->ptid))
1782
                context_switch (ecs);
1783
              ecs->waiton_ptid = ecs->ptid;
1784
              ecs->wp = &(ecs->ws);
1785
              ecs->stepping_over_breakpoint = 1;
1786
 
1787
              ecs->infwait_state = infwait_thread_hop_state;
1788
              keep_going (ecs);
1789
              registers_changed ();
1790
              return;
1791
            }
1792
        }
1793
      else if (singlestep_breakpoints_inserted_p)
1794
        {
1795
          sw_single_step_trap_p = 1;
1796
          ecs->random_signal = 0;
1797
        }
1798
    }
1799
  else
1800
    ecs->random_signal = 1;
1801
 
1802
  /* See if something interesting happened to the non-current thread.  If
1803
     so, then switch to that thread.  */
1804
  if (!ptid_equal (ecs->ptid, inferior_ptid))
1805
    {
1806
      if (debug_infrun)
1807
        fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
1808
 
1809
      context_switch (ecs);
1810
 
1811
      if (deprecated_context_hook)
1812
        deprecated_context_hook (pid_to_thread_id (ecs->ptid));
1813
    }
1814
 
1815
  if (singlestep_breakpoints_inserted_p)
1816
    {
1817
      /* Pull the single step breakpoints out of the target. */
1818
      remove_single_step_breakpoints ();
1819
      singlestep_breakpoints_inserted_p = 0;
1820
    }
1821
 
1822
  if (stepped_after_stopped_by_watchpoint)
1823
    stopped_by_watchpoint = 0;
1824
  else
1825
    stopped_by_watchpoint = watchpoints_triggered (&ecs->ws);
1826
 
1827
  /* If necessary, step over this watchpoint.  We'll be back to display
1828
     it in a moment.  */
1829
  if (stopped_by_watchpoint
1830
      && (HAVE_STEPPABLE_WATCHPOINT
1831
          || gdbarch_have_nonsteppable_watchpoint (current_gdbarch)))
1832
    {
1833
      if (debug_infrun)
1834
        fprintf_unfiltered (gdb_stdlog, "infrun: STOPPED_BY_WATCHPOINT\n");
1835
 
1836
      /* At this point, we are stopped at an instruction which has
1837
         attempted to write to a piece of memory under control of
1838
         a watchpoint.  The instruction hasn't actually executed
1839
         yet.  If we were to evaluate the watchpoint expression
1840
         now, we would get the old value, and therefore no change
1841
         would seem to have occurred.
1842
 
1843
         In order to make watchpoints work `right', we really need
1844
         to complete the memory write, and then evaluate the
1845
         watchpoint expression.  We do this by single-stepping the
1846
         target.
1847
 
1848
         It may not be necessary to disable the watchpoint to stop over
1849
         it.  For example, the PA can (with some kernel cooperation)
1850
         single step over a watchpoint without disabling the watchpoint.
1851
 
1852
         It is far more common to need to disable a watchpoint to step
1853
         the inferior over it.  If we have non-steppable watchpoints,
1854
         we must disable the current watchpoint; it's simplest to
1855
         disable all watchpoints and breakpoints.  */
1856
 
1857
      if (!HAVE_STEPPABLE_WATCHPOINT)
1858
        remove_breakpoints ();
1859
      registers_changed ();
1860
      target_resume (ecs->ptid, 1, TARGET_SIGNAL_0);    /* Single step */
1861
      ecs->waiton_ptid = ecs->ptid;
1862
      if (HAVE_STEPPABLE_WATCHPOINT)
1863
        ecs->infwait_state = infwait_step_watch_state;
1864
      else
1865
        ecs->infwait_state = infwait_nonstep_watch_state;
1866
      prepare_to_wait (ecs);
1867
      return;
1868
    }
1869
 
1870
  ecs->stop_func_start = 0;
1871
  ecs->stop_func_end = 0;
1872
  ecs->stop_func_name = 0;
1873
  /* Don't care about return value; stop_func_start and stop_func_name
1874
     will both be 0 if it doesn't work.  */
1875
  find_pc_partial_function (stop_pc, &ecs->stop_func_name,
1876
                            &ecs->stop_func_start, &ecs->stop_func_end);
1877
  ecs->stop_func_start
1878
    += gdbarch_deprecated_function_start_offset (current_gdbarch);
1879
  ecs->stepping_over_breakpoint = 0;
1880
  bpstat_clear (&stop_bpstat);
1881
  stop_step = 0;
1882
  stop_print_frame = 1;
1883
  ecs->random_signal = 0;
1884
  stopped_by_random_signal = 0;
1885
 
1886
  if (stop_signal == TARGET_SIGNAL_TRAP
1887
      && stepping_over_breakpoint
1888
      && gdbarch_single_step_through_delay_p (current_gdbarch)
1889
      && currently_stepping (ecs))
1890
    {
1891
      /* We're trying to step off a breakpoint.  Turns out that we're
1892
         also on an instruction that needs to be stepped multiple
1893
         times before it's been fully executing. E.g., architectures
1894
         with a delay slot.  It needs to be stepped twice, once for
1895
         the instruction and once for the delay slot.  */
1896
      int step_through_delay
1897
        = gdbarch_single_step_through_delay (current_gdbarch,
1898
                                             get_current_frame ());
1899
      if (debug_infrun && step_through_delay)
1900
        fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
1901
      if (step_range_end == 0 && step_through_delay)
1902
        {
1903
          /* The user issued a continue when stopped at a breakpoint.
1904
             Set up for another trap and get out of here.  */
1905
         ecs->stepping_over_breakpoint = 1;
1906
         keep_going (ecs);
1907
         return;
1908
        }
1909
      else if (step_through_delay)
1910
        {
1911
          /* The user issued a step when stopped at a breakpoint.
1912
             Maybe we should stop, maybe we should not - the delay
1913
             slot *might* correspond to a line of source.  In any
1914
             case, don't decide that here, just set
1915
             ecs->stepping_over_breakpoint, making sure we
1916
             single-step again before breakpoints are re-inserted.  */
1917
          ecs->stepping_over_breakpoint = 1;
1918
        }
1919
    }
1920
 
1921
  /* Look at the cause of the stop, and decide what to do.
1922
     The alternatives are:
1923
     1) break; to really stop and return to the debugger,
1924
     2) drop through to start up again
1925
     (set ecs->stepping_over_breakpoint to 1 to single step once)
1926
     3) set ecs->random_signal to 1, and the decision between 1 and 2
1927
     will be made according to the signal handling tables.  */
1928
 
1929
  /* First, distinguish signals caused by the debugger from signals
1930
     that have to do with the program's own actions.  Note that
1931
     breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
1932
     on the operating system version.  Here we detect when a SIGILL or
1933
     SIGEMT is really a breakpoint and change it to SIGTRAP.  We do
1934
     something similar for SIGSEGV, since a SIGSEGV will be generated
1935
     when we're trying to execute a breakpoint instruction on a
1936
     non-executable stack.  This happens for call dummy breakpoints
1937
     for architectures like SPARC that place call dummies on the
1938
     stack.  */
1939
 
1940
  if (stop_signal == TARGET_SIGNAL_TRAP
1941
      || (breakpoint_inserted_here_p (stop_pc)
1942
          && (stop_signal == TARGET_SIGNAL_ILL
1943
              || stop_signal == TARGET_SIGNAL_SEGV
1944
              || stop_signal == TARGET_SIGNAL_EMT))
1945
      || stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_NO_SIGSTOP
1946
      || stop_soon == STOP_QUIETLY_REMOTE)
1947
    {
1948
      if (stop_signal == TARGET_SIGNAL_TRAP && stop_after_trap)
1949
        {
1950
          if (debug_infrun)
1951
            fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
1952
          stop_print_frame = 0;
1953
          stop_stepping (ecs);
1954
          return;
1955
        }
1956
 
1957
      /* This is originated from start_remote(), start_inferior() and
1958
         shared libraries hook functions.  */
1959
      if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
1960
        {
1961
          if (debug_infrun)
1962
            fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
1963
          stop_stepping (ecs);
1964
          return;
1965
        }
1966
 
1967
      /* This originates from attach_command().  We need to overwrite
1968
         the stop_signal here, because some kernels don't ignore a
1969
         SIGSTOP in a subsequent ptrace(PTRACE_SONT,SOGSTOP) call.
1970
         See more comments in inferior.h.  */
1971
      if (stop_soon == STOP_QUIETLY_NO_SIGSTOP)
1972
        {
1973
          stop_stepping (ecs);
1974
          if (stop_signal == TARGET_SIGNAL_STOP)
1975
            stop_signal = TARGET_SIGNAL_0;
1976
          return;
1977
        }
1978
 
1979
      /* See if there is a breakpoint at the current PC.  */
1980
      stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid);
1981
 
1982
      /* Following in case break condition called a
1983
         function.  */
1984
      stop_print_frame = 1;
1985
 
1986
      /* NOTE: cagney/2003-03-29: These two checks for a random signal
1987
         at one stage in the past included checks for an inferior
1988
         function call's call dummy's return breakpoint.  The original
1989
         comment, that went with the test, read:
1990
 
1991
         ``End of a stack dummy.  Some systems (e.g. Sony news) give
1992
         another signal besides SIGTRAP, so check here as well as
1993
         above.''
1994
 
1995
         If someone ever tries to get get call dummys on a
1996
         non-executable stack to work (where the target would stop
1997
         with something like a SIGSEGV), then those tests might need
1998
         to be re-instated.  Given, however, that the tests were only
1999
         enabled when momentary breakpoints were not being used, I
2000
         suspect that it won't be the case.
2001
 
2002
         NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
2003
         be necessary for call dummies on a non-executable stack on
2004
         SPARC.  */
2005
 
2006
      if (stop_signal == TARGET_SIGNAL_TRAP)
2007
        ecs->random_signal
2008
          = !(bpstat_explains_signal (stop_bpstat)
2009
              || stepping_over_breakpoint
2010
              || (step_range_end && step_resume_breakpoint == NULL));
2011
      else
2012
        {
2013
          ecs->random_signal = !bpstat_explains_signal (stop_bpstat);
2014
          if (!ecs->random_signal)
2015
            stop_signal = TARGET_SIGNAL_TRAP;
2016
        }
2017
    }
2018
 
2019
  /* When we reach this point, we've pretty much decided
2020
     that the reason for stopping must've been a random
2021
     (unexpected) signal. */
2022
 
2023
  else
2024
    ecs->random_signal = 1;
2025
 
2026
process_event_stop_test:
2027
  /* For the program's own signals, act according to
2028
     the signal handling tables.  */
2029
 
2030
  if (ecs->random_signal)
2031
    {
2032
      /* Signal not for debugging purposes.  */
2033
      int printed = 0;
2034
 
2035
      if (debug_infrun)
2036
         fprintf_unfiltered (gdb_stdlog, "infrun: random signal %d\n", stop_signal);
2037
 
2038
      stopped_by_random_signal = 1;
2039
 
2040
      if (signal_print[stop_signal])
2041
        {
2042
          printed = 1;
2043
          target_terminal_ours_for_output ();
2044
          print_stop_reason (SIGNAL_RECEIVED, stop_signal);
2045
        }
2046
      if (signal_stop[stop_signal])
2047
        {
2048
          stop_stepping (ecs);
2049
          return;
2050
        }
2051
      /* If not going to stop, give terminal back
2052
         if we took it away.  */
2053
      else if (printed)
2054
        target_terminal_inferior ();
2055
 
2056
      /* Clear the signal if it should not be passed.  */
2057
      if (signal_program[stop_signal] == 0)
2058
        stop_signal = TARGET_SIGNAL_0;
2059
 
2060
      if (prev_pc == read_pc ()
2061
          && breakpoint_here_p (read_pc ())
2062
          && !breakpoint_inserted_here_p (read_pc ())
2063
          && step_resume_breakpoint == NULL)
2064
        {
2065
          /* We were just starting a new sequence, attempting to
2066
             single-step off of a breakpoint and expecting a SIGTRAP.
2067
             Intead this signal arrives.  This signal will take us out
2068
             of the stepping range so GDB needs to remember to, when
2069
             the signal handler returns, resume stepping off that
2070
             breakpoint.  */
2071
          /* To simplify things, "continue" is forced to use the same
2072
             code paths as single-step - set a breakpoint at the
2073
             signal return address and then, once hit, step off that
2074
             breakpoint.  */
2075
 
2076
          insert_step_resume_breakpoint_at_frame (get_current_frame ());
2077
          ecs->step_after_step_resume_breakpoint = 1;
2078
          keep_going (ecs);
2079
          return;
2080
        }
2081
 
2082
      if (step_range_end != 0
2083
          && stop_signal != TARGET_SIGNAL_0
2084
          && stop_pc >= step_range_start && stop_pc < step_range_end
2085
          && frame_id_eq (get_frame_id (get_current_frame ()),
2086
                          step_frame_id)
2087
          && step_resume_breakpoint == NULL)
2088
        {
2089
          /* The inferior is about to take a signal that will take it
2090
             out of the single step range.  Set a breakpoint at the
2091
             current PC (which is presumably where the signal handler
2092
             will eventually return) and then allow the inferior to
2093
             run free.
2094
 
2095
             Note that this is only needed for a signal delivered
2096
             while in the single-step range.  Nested signals aren't a
2097
             problem as they eventually all return.  */
2098
          insert_step_resume_breakpoint_at_frame (get_current_frame ());
2099
          keep_going (ecs);
2100
          return;
2101
        }
2102
 
2103
      /* Note: step_resume_breakpoint may be non-NULL.  This occures
2104
         when either there's a nested signal, or when there's a
2105
         pending signal enabled just as the signal handler returns
2106
         (leaving the inferior at the step-resume-breakpoint without
2107
         actually executing it).  Either way continue until the
2108
         breakpoint is really hit.  */
2109
      keep_going (ecs);
2110
      return;
2111
    }
2112
 
2113
  /* Handle cases caused by hitting a breakpoint.  */
2114
  {
2115
    CORE_ADDR jmp_buf_pc;
2116
    struct bpstat_what what;
2117
 
2118
    what = bpstat_what (stop_bpstat);
2119
 
2120
    if (what.call_dummy)
2121
      {
2122
        stop_stack_dummy = 1;
2123
      }
2124
 
2125
    switch (what.main_action)
2126
      {
2127
      case BPSTAT_WHAT_SET_LONGJMP_RESUME:
2128
        /* If we hit the breakpoint at longjmp, disable it for the
2129
           duration of this command.  Then, install a temporary
2130
           breakpoint at the target of the jmp_buf. */
2131
        if (debug_infrun)
2132
          fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n");
2133
        disable_longjmp_breakpoint ();
2134
        if (!gdbarch_get_longjmp_target_p (current_gdbarch)
2135
            || !gdbarch_get_longjmp_target (current_gdbarch,
2136
                                            get_current_frame (), &jmp_buf_pc))
2137
          {
2138
            keep_going (ecs);
2139
            return;
2140
          }
2141
 
2142
        /* Need to blow away step-resume breakpoint, as it
2143
           interferes with us */
2144
        if (step_resume_breakpoint != NULL)
2145
          {
2146
            delete_step_resume_breakpoint (&step_resume_breakpoint);
2147
          }
2148
 
2149
        set_longjmp_resume_breakpoint (jmp_buf_pc, null_frame_id);
2150
        ecs->handling_longjmp = 1;      /* FIXME */
2151
        keep_going (ecs);
2152
        return;
2153
 
2154
      case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
2155
      case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME_SINGLE:
2156
        if (debug_infrun)
2157
          fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n");
2158
        disable_longjmp_breakpoint ();
2159
        ecs->handling_longjmp = 0;       /* FIXME */
2160
        if (what.main_action == BPSTAT_WHAT_CLEAR_LONGJMP_RESUME)
2161
          break;
2162
        /* else fallthrough */
2163
 
2164
      case BPSTAT_WHAT_SINGLE:
2165
        if (debug_infrun)
2166
          fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n");
2167
        ecs->stepping_over_breakpoint = 1;
2168
        /* Still need to check other stuff, at least the case
2169
           where we are stepping and step out of the right range.  */
2170
        break;
2171
 
2172
      case BPSTAT_WHAT_STOP_NOISY:
2173
        if (debug_infrun)
2174
          fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n");
2175
        stop_print_frame = 1;
2176
 
2177
        /* We are about to nuke the step_resume_breakpointt via the
2178
           cleanup chain, so no need to worry about it here.  */
2179
 
2180
        stop_stepping (ecs);
2181
        return;
2182
 
2183
      case BPSTAT_WHAT_STOP_SILENT:
2184
        if (debug_infrun)
2185
          fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n");
2186
        stop_print_frame = 0;
2187
 
2188
        /* We are about to nuke the step_resume_breakpoin via the
2189
           cleanup chain, so no need to worry about it here.  */
2190
 
2191
        stop_stepping (ecs);
2192
        return;
2193
 
2194
      case BPSTAT_WHAT_STEP_RESUME:
2195
        /* This proably demands a more elegant solution, but, yeah
2196
           right...
2197
 
2198
           This function's use of the simple variable
2199
           step_resume_breakpoint doesn't seem to accomodate
2200
           simultaneously active step-resume bp's, although the
2201
           breakpoint list certainly can.
2202
 
2203
           If we reach here and step_resume_breakpoint is already
2204
           NULL, then apparently we have multiple active
2205
           step-resume bp's.  We'll just delete the breakpoint we
2206
           stopped at, and carry on.
2207
 
2208
           Correction: what the code currently does is delete a
2209
           step-resume bp, but it makes no effort to ensure that
2210
           the one deleted is the one currently stopped at.  MVS  */
2211
 
2212
        if (debug_infrun)
2213
          fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n");
2214
 
2215
        if (step_resume_breakpoint == NULL)
2216
          {
2217
            step_resume_breakpoint =
2218
              bpstat_find_step_resume_breakpoint (stop_bpstat);
2219
          }
2220
        delete_step_resume_breakpoint (&step_resume_breakpoint);
2221
        if (ecs->step_after_step_resume_breakpoint)
2222
          {
2223
            /* Back when the step-resume breakpoint was inserted, we
2224
               were trying to single-step off a breakpoint.  Go back
2225
               to doing that.  */
2226
            ecs->step_after_step_resume_breakpoint = 0;
2227
            ecs->stepping_over_breakpoint = 1;
2228
            keep_going (ecs);
2229
            return;
2230
          }
2231
        break;
2232
 
2233
      case BPSTAT_WHAT_CHECK_SHLIBS:
2234
      case BPSTAT_WHAT_CHECK_SHLIBS_RESUME_FROM_HOOK:
2235
        {
2236
          if (debug_infrun)
2237
            fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_CHECK_SHLIBS\n");
2238
          /* Remove breakpoints, we eventually want to step over the
2239
             shlib event breakpoint, and SOLIB_ADD might adjust
2240
             breakpoint addresses via breakpoint_re_set.  */
2241
          remove_breakpoints ();
2242
 
2243
          /* Check for any newly added shared libraries if we're
2244
             supposed to be adding them automatically.  Switch
2245
             terminal for any messages produced by
2246
             breakpoint_re_set.  */
2247
          target_terminal_ours_for_output ();
2248
          /* NOTE: cagney/2003-11-25: Make certain that the target
2249
             stack's section table is kept up-to-date.  Architectures,
2250
             (e.g., PPC64), use the section table to perform
2251
             operations such as address => section name and hence
2252
             require the table to contain all sections (including
2253
             those found in shared libraries).  */
2254
          /* NOTE: cagney/2003-11-25: Pass current_target and not
2255
             exec_ops to SOLIB_ADD.  This is because current GDB is
2256
             only tooled to propagate section_table changes out from
2257
             the "current_target" (see target_resize_to_sections), and
2258
             not up from the exec stratum.  This, of course, isn't
2259
             right.  "infrun.c" should only interact with the
2260
             exec/process stratum, instead relying on the target stack
2261
             to propagate relevant changes (stop, section table
2262
             changed, ...) up to other layers.  */
2263
#ifdef SOLIB_ADD
2264
          SOLIB_ADD (NULL, 0, &current_target, auto_solib_add);
2265
#else
2266
          solib_add (NULL, 0, &current_target, auto_solib_add);
2267
#endif
2268
          target_terminal_inferior ();
2269
 
2270
          /* If requested, stop when the dynamic linker notifies
2271
             gdb of events.  This allows the user to get control
2272
             and place breakpoints in initializer routines for
2273
             dynamically loaded objects (among other things).  */
2274
          if (stop_on_solib_events || stop_stack_dummy)
2275
            {
2276
              stop_stepping (ecs);
2277
              return;
2278
            }
2279
 
2280
          /* If we stopped due to an explicit catchpoint, then the
2281
             (see above) call to SOLIB_ADD pulled in any symbols
2282
             from a newly-loaded library, if appropriate.
2283
 
2284
             We do want the inferior to stop, but not where it is
2285
             now, which is in the dynamic linker callback.  Rather,
2286
             we would like it stop in the user's program, just after
2287
             the call that caused this catchpoint to trigger.  That
2288
             gives the user a more useful vantage from which to
2289
             examine their program's state. */
2290
          else if (what.main_action
2291
                   == BPSTAT_WHAT_CHECK_SHLIBS_RESUME_FROM_HOOK)
2292
            {
2293
              /* ??rehrauer: If I could figure out how to get the
2294
                 right return PC from here, we could just set a temp
2295
                 breakpoint and resume.  I'm not sure we can without
2296
                 cracking open the dld's shared libraries and sniffing
2297
                 their unwind tables and text/data ranges, and that's
2298
                 not a terribly portable notion.
2299
 
2300
                 Until that time, we must step the inferior out of the
2301
                 dld callback, and also out of the dld itself (and any
2302
                 code or stubs in libdld.sl, such as "shl_load" and
2303
                 friends) until we reach non-dld code.  At that point,
2304
                 we can stop stepping. */
2305
              bpstat_get_triggered_catchpoints (stop_bpstat,
2306
                                                &ecs->
2307
                                                stepping_through_solib_catchpoints);
2308
              ecs->stepping_through_solib_after_catch = 1;
2309
 
2310
              /* Be sure to lift all breakpoints, so the inferior does
2311
                 actually step past this point... */
2312
              ecs->stepping_over_breakpoint = 1;
2313
              break;
2314
            }
2315
          else
2316
            {
2317
              /* We want to step over this breakpoint, then keep going.  */
2318
              ecs->stepping_over_breakpoint = 1;
2319
              break;
2320
            }
2321
        }
2322
        break;
2323
 
2324
      case BPSTAT_WHAT_LAST:
2325
        /* Not a real code, but listed here to shut up gcc -Wall.  */
2326
 
2327
      case BPSTAT_WHAT_KEEP_CHECKING:
2328
        break;
2329
      }
2330
  }
2331
 
2332
  /* We come here if we hit a breakpoint but should not
2333
     stop for it.  Possibly we also were stepping
2334
     and should stop for that.  So fall through and
2335
     test for stepping.  But, if not stepping,
2336
     do not stop.  */
2337
 
2338
  /* Are we stepping to get the inferior out of the dynamic linker's
2339
     hook (and possibly the dld itself) after catching a shlib
2340
     event?  */
2341
  if (ecs->stepping_through_solib_after_catch)
2342
    {
2343
#if defined(SOLIB_ADD)
2344
      /* Have we reached our destination?  If not, keep going. */
2345
      if (SOLIB_IN_DYNAMIC_LINKER (PIDGET (ecs->ptid), stop_pc))
2346
        {
2347
          if (debug_infrun)
2348
            fprintf_unfiltered (gdb_stdlog, "infrun: stepping in dynamic linker\n");
2349
          ecs->stepping_over_breakpoint = 1;
2350
          keep_going (ecs);
2351
          return;
2352
        }
2353
#endif
2354
      if (debug_infrun)
2355
         fprintf_unfiltered (gdb_stdlog, "infrun: step past dynamic linker\n");
2356
      /* Else, stop and report the catchpoint(s) whose triggering
2357
         caused us to begin stepping. */
2358
      ecs->stepping_through_solib_after_catch = 0;
2359
      bpstat_clear (&stop_bpstat);
2360
      stop_bpstat = bpstat_copy (ecs->stepping_through_solib_catchpoints);
2361
      bpstat_clear (&ecs->stepping_through_solib_catchpoints);
2362
      stop_print_frame = 1;
2363
      stop_stepping (ecs);
2364
      return;
2365
    }
2366
 
2367
  if (step_resume_breakpoint)
2368
    {
2369
      if (debug_infrun)
2370
         fprintf_unfiltered (gdb_stdlog,
2371
                             "infrun: step-resume breakpoint is inserted\n");
2372
 
2373
      /* Having a step-resume breakpoint overrides anything
2374
         else having to do with stepping commands until
2375
         that breakpoint is reached.  */
2376
      keep_going (ecs);
2377
      return;
2378
    }
2379
 
2380
  if (step_range_end == 0)
2381
    {
2382
      if (debug_infrun)
2383
         fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
2384
      /* Likewise if we aren't even stepping.  */
2385
      keep_going (ecs);
2386
      return;
2387
    }
2388
 
2389
  /* If stepping through a line, keep going if still within it.
2390
 
2391
     Note that step_range_end is the address of the first instruction
2392
     beyond the step range, and NOT the address of the last instruction
2393
     within it! */
2394
  if (stop_pc >= step_range_start && stop_pc < step_range_end)
2395
    {
2396
      if (debug_infrun)
2397
         fprintf_unfiltered (gdb_stdlog, "infrun: stepping inside range [0x%s-0x%s]\n",
2398
                            paddr_nz (step_range_start),
2399
                            paddr_nz (step_range_end));
2400
      keep_going (ecs);
2401
      return;
2402
    }
2403
 
2404
  /* We stepped out of the stepping range.  */
2405
 
2406
  /* If we are stepping at the source level and entered the runtime
2407
     loader dynamic symbol resolution code, we keep on single stepping
2408
     until we exit the run time loader code and reach the callee's
2409
     address.  */
2410
  if (step_over_calls == STEP_OVER_UNDEBUGGABLE
2411
#ifdef IN_SOLIB_DYNSYM_RESOLVE_CODE
2412
      && IN_SOLIB_DYNSYM_RESOLVE_CODE (stop_pc)
2413
#else
2414
      && in_solib_dynsym_resolve_code (stop_pc)
2415
#endif
2416
      )
2417
    {
2418
      CORE_ADDR pc_after_resolver =
2419
        gdbarch_skip_solib_resolver (current_gdbarch, stop_pc);
2420
 
2421
      if (debug_infrun)
2422
         fprintf_unfiltered (gdb_stdlog, "infrun: stepped into dynsym resolve code\n");
2423
 
2424
      if (pc_after_resolver)
2425
        {
2426
          /* Set up a step-resume breakpoint at the address
2427
             indicated by SKIP_SOLIB_RESOLVER.  */
2428
          struct symtab_and_line sr_sal;
2429
          init_sal (&sr_sal);
2430
          sr_sal.pc = pc_after_resolver;
2431
 
2432
          insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
2433
        }
2434
 
2435
      keep_going (ecs);
2436
      return;
2437
    }
2438
 
2439
  if (step_range_end != 1
2440
      && (step_over_calls == STEP_OVER_UNDEBUGGABLE
2441
          || step_over_calls == STEP_OVER_ALL)
2442
      && get_frame_type (get_current_frame ()) == SIGTRAMP_FRAME)
2443
    {
2444
      if (debug_infrun)
2445
         fprintf_unfiltered (gdb_stdlog, "infrun: stepped into signal trampoline\n");
2446
      /* The inferior, while doing a "step" or "next", has ended up in
2447
         a signal trampoline (either by a signal being delivered or by
2448
         the signal handler returning).  Just single-step until the
2449
         inferior leaves the trampoline (either by calling the handler
2450
         or returning).  */
2451
      keep_going (ecs);
2452
      return;
2453
    }
2454
 
2455
  /* Check for subroutine calls.  The check for the current frame
2456
     equalling the step ID is not necessary - the check of the
2457
     previous frame's ID is sufficient - but it is a common case and
2458
     cheaper than checking the previous frame's ID.
2459
 
2460
     NOTE: frame_id_eq will never report two invalid frame IDs as
2461
     being equal, so to get into this block, both the current and
2462
     previous frame must have valid frame IDs.  */
2463
  if (!frame_id_eq (get_frame_id (get_current_frame ()), step_frame_id)
2464
      && frame_id_eq (frame_unwind_id (get_current_frame ()), step_frame_id))
2465
    {
2466
      CORE_ADDR real_stop_pc;
2467
 
2468
      if (debug_infrun)
2469
         fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
2470
 
2471
      if ((step_over_calls == STEP_OVER_NONE)
2472
          || ((step_range_end == 1)
2473
              && in_prologue (prev_pc, ecs->stop_func_start)))
2474
        {
2475
          /* I presume that step_over_calls is only 0 when we're
2476
             supposed to be stepping at the assembly language level
2477
             ("stepi").  Just stop.  */
2478
          /* Also, maybe we just did a "nexti" inside a prolog, so we
2479
             thought it was a subroutine call but it was not.  Stop as
2480
             well.  FENN */
2481
          stop_step = 1;
2482
          print_stop_reason (END_STEPPING_RANGE, 0);
2483
          stop_stepping (ecs);
2484
          return;
2485
        }
2486
 
2487
      if (step_over_calls == STEP_OVER_ALL)
2488
        {
2489
          /* We're doing a "next", set a breakpoint at callee's return
2490
             address (the address at which the caller will
2491
             resume).  */
2492
          insert_step_resume_breakpoint_at_caller (get_current_frame ());
2493
          keep_going (ecs);
2494
          return;
2495
        }
2496
 
2497
      /* If we are in a function call trampoline (a stub between the
2498
         calling routine and the real function), locate the real
2499
         function.  That's what tells us (a) whether we want to step
2500
         into it at all, and (b) what prologue we want to run to the
2501
         end of, if we do step into it.  */
2502
      real_stop_pc = skip_language_trampoline (get_current_frame (), stop_pc);
2503
      if (real_stop_pc == 0)
2504
        real_stop_pc = gdbarch_skip_trampoline_code
2505
                         (current_gdbarch, get_current_frame (), stop_pc);
2506
      if (real_stop_pc != 0)
2507
        ecs->stop_func_start = real_stop_pc;
2508
 
2509
      if (
2510
#ifdef IN_SOLIB_DYNSYM_RESOLVE_CODE
2511
          IN_SOLIB_DYNSYM_RESOLVE_CODE (ecs->stop_func_start)
2512
#else
2513
          in_solib_dynsym_resolve_code (ecs->stop_func_start)
2514
#endif
2515
)
2516
        {
2517
          struct symtab_and_line sr_sal;
2518
          init_sal (&sr_sal);
2519
          sr_sal.pc = ecs->stop_func_start;
2520
 
2521
          insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
2522
          keep_going (ecs);
2523
          return;
2524
        }
2525
 
2526
      /* If we have line number information for the function we are
2527
         thinking of stepping into, step into it.
2528
 
2529
         If there are several symtabs at that PC (e.g. with include
2530
         files), just want to know whether *any* of them have line
2531
         numbers.  find_pc_line handles this.  */
2532
      {
2533
        struct symtab_and_line tmp_sal;
2534
 
2535
        tmp_sal = find_pc_line (ecs->stop_func_start, 0);
2536
        if (tmp_sal.line != 0)
2537
          {
2538
            step_into_function (ecs);
2539
            return;
2540
          }
2541
      }
2542
 
2543
      /* If we have no line number and the step-stop-if-no-debug is
2544
         set, we stop the step so that the user has a chance to switch
2545
         in assembly mode.  */
2546
      if (step_over_calls == STEP_OVER_UNDEBUGGABLE && step_stop_if_no_debug)
2547
        {
2548
          stop_step = 1;
2549
          print_stop_reason (END_STEPPING_RANGE, 0);
2550
          stop_stepping (ecs);
2551
          return;
2552
        }
2553
 
2554
      /* Set a breakpoint at callee's return address (the address at
2555
         which the caller will resume).  */
2556
      insert_step_resume_breakpoint_at_caller (get_current_frame ());
2557
      keep_going (ecs);
2558
      return;
2559
    }
2560
 
2561
  /* If we're in the return path from a shared library trampoline,
2562
     we want to proceed through the trampoline when stepping.  */
2563
  if (gdbarch_in_solib_return_trampoline (current_gdbarch,
2564
                                          stop_pc, ecs->stop_func_name))
2565
    {
2566
      /* Determine where this trampoline returns.  */
2567
      CORE_ADDR real_stop_pc;
2568
      real_stop_pc = gdbarch_skip_trampoline_code
2569
                       (current_gdbarch, get_current_frame (), stop_pc);
2570
 
2571
      if (debug_infrun)
2572
         fprintf_unfiltered (gdb_stdlog, "infrun: stepped into solib return tramp\n");
2573
 
2574
      /* Only proceed through if we know where it's going.  */
2575
      if (real_stop_pc)
2576
        {
2577
          /* And put the step-breakpoint there and go until there. */
2578
          struct symtab_and_line sr_sal;
2579
 
2580
          init_sal (&sr_sal);   /* initialize to zeroes */
2581
          sr_sal.pc = real_stop_pc;
2582
          sr_sal.section = find_pc_overlay (sr_sal.pc);
2583
 
2584
          /* Do not specify what the fp should be when we stop since
2585
             on some machines the prologue is where the new fp value
2586
             is established.  */
2587
          insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
2588
 
2589
          /* Restart without fiddling with the step ranges or
2590
             other state.  */
2591
          keep_going (ecs);
2592
          return;
2593
        }
2594
    }
2595
 
2596
  ecs->sal = find_pc_line (stop_pc, 0);
2597
 
2598
  /* NOTE: tausq/2004-05-24: This if block used to be done before all
2599
     the trampoline processing logic, however, there are some trampolines
2600
     that have no names, so we should do trampoline handling first.  */
2601
  if (step_over_calls == STEP_OVER_UNDEBUGGABLE
2602
      && ecs->stop_func_name == NULL
2603
      && ecs->sal.line == 0)
2604
    {
2605
      if (debug_infrun)
2606
         fprintf_unfiltered (gdb_stdlog, "infrun: stepped into undebuggable function\n");
2607
 
2608
      /* The inferior just stepped into, or returned to, an
2609
         undebuggable function (where there is no debugging information
2610
         and no line number corresponding to the address where the
2611
         inferior stopped).  Since we want to skip this kind of code,
2612
         we keep going until the inferior returns from this
2613
         function - unless the user has asked us not to (via
2614
         set step-mode) or we no longer know how to get back
2615
         to the call site.  */
2616
      if (step_stop_if_no_debug
2617
          || !frame_id_p (frame_unwind_id (get_current_frame ())))
2618
        {
2619
          /* If we have no line number and the step-stop-if-no-debug
2620
             is set, we stop the step so that the user has a chance to
2621
             switch in assembly mode.  */
2622
          stop_step = 1;
2623
          print_stop_reason (END_STEPPING_RANGE, 0);
2624
          stop_stepping (ecs);
2625
          return;
2626
        }
2627
      else
2628
        {
2629
          /* Set a breakpoint at callee's return address (the address
2630
             at which the caller will resume).  */
2631
          insert_step_resume_breakpoint_at_caller (get_current_frame ());
2632
          keep_going (ecs);
2633
          return;
2634
        }
2635
    }
2636
 
2637
  if (step_range_end == 1)
2638
    {
2639
      /* It is stepi or nexti.  We always want to stop stepping after
2640
         one instruction.  */
2641
      if (debug_infrun)
2642
         fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
2643
      stop_step = 1;
2644
      print_stop_reason (END_STEPPING_RANGE, 0);
2645
      stop_stepping (ecs);
2646
      return;
2647
    }
2648
 
2649
  if (ecs->sal.line == 0)
2650
    {
2651
      /* We have no line number information.  That means to stop
2652
         stepping (does this always happen right after one instruction,
2653
         when we do "s" in a function with no line numbers,
2654
         or can this happen as a result of a return or longjmp?).  */
2655
      if (debug_infrun)
2656
         fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
2657
      stop_step = 1;
2658
      print_stop_reason (END_STEPPING_RANGE, 0);
2659
      stop_stepping (ecs);
2660
      return;
2661
    }
2662
 
2663
  if ((stop_pc == ecs->sal.pc)
2664
      && (ecs->current_line != ecs->sal.line
2665
          || ecs->current_symtab != ecs->sal.symtab))
2666
    {
2667
      /* We are at the start of a different line.  So stop.  Note that
2668
         we don't stop if we step into the middle of a different line.
2669
         That is said to make things like for (;;) statements work
2670
         better.  */
2671
      if (debug_infrun)
2672
         fprintf_unfiltered (gdb_stdlog, "infrun: stepped to a different line\n");
2673
      stop_step = 1;
2674
      print_stop_reason (END_STEPPING_RANGE, 0);
2675
      stop_stepping (ecs);
2676
      return;
2677
    }
2678
 
2679
  /* We aren't done stepping.
2680
 
2681
     Optimize by setting the stepping range to the line.
2682
     (We might not be in the original line, but if we entered a
2683
     new line in mid-statement, we continue stepping.  This makes
2684
     things like for(;;) statements work better.)  */
2685
 
2686
  step_range_start = ecs->sal.pc;
2687
  step_range_end = ecs->sal.end;
2688
  step_frame_id = get_frame_id (get_current_frame ());
2689
  ecs->current_line = ecs->sal.line;
2690
  ecs->current_symtab = ecs->sal.symtab;
2691
 
2692
  /* In the case where we just stepped out of a function into the
2693
     middle of a line of the caller, continue stepping, but
2694
     step_frame_id must be modified to current frame */
2695
#if 0
2696
  /* NOTE: cagney/2003-10-16: I think this frame ID inner test is too
2697
     generous.  It will trigger on things like a step into a frameless
2698
     stackless leaf function.  I think the logic should instead look
2699
     at the unwound frame ID has that should give a more robust
2700
     indication of what happened.  */
2701
  if (step - ID == current - ID)
2702
    still stepping in same function;
2703
  else if (step - ID == unwind (current - ID))
2704
    stepped into a function;
2705
  else
2706
    stepped out of a function;
2707
  /* Of course this assumes that the frame ID unwind code is robust
2708
     and we're willing to introduce frame unwind logic into this
2709
     function.  Fortunately, those days are nearly upon us.  */
2710
#endif
2711
  {
2712
    struct frame_info *frame = get_current_frame ();
2713
    struct frame_id current_frame = get_frame_id (frame);
2714
    if (!(frame_id_inner (get_frame_arch (frame), current_frame,
2715
                          step_frame_id)))
2716
      step_frame_id = current_frame;
2717
  }
2718
 
2719
  if (debug_infrun)
2720
     fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
2721
  keep_going (ecs);
2722
}
2723
 
2724
/* Are we in the middle of stepping?  */
2725
 
2726
static int
2727
currently_stepping (struct execution_control_state *ecs)
2728
{
2729
  return ((!ecs->handling_longjmp
2730
           && ((step_range_end && step_resume_breakpoint == NULL)
2731
               || stepping_over_breakpoint))
2732
          || ecs->stepping_through_solib_after_catch
2733
          || bpstat_should_step ());
2734
}
2735
 
2736
/* Subroutine call with source code we should not step over.  Do step
2737
   to the first line of code in it.  */
2738
 
2739
static void
2740
step_into_function (struct execution_control_state *ecs)
2741
{
2742
  struct symtab *s;
2743
  struct symtab_and_line sr_sal;
2744
 
2745
  s = find_pc_symtab (stop_pc);
2746
  if (s && s->language != language_asm)
2747
    ecs->stop_func_start = gdbarch_skip_prologue
2748
                             (current_gdbarch, ecs->stop_func_start);
2749
 
2750
  ecs->sal = find_pc_line (ecs->stop_func_start, 0);
2751
  /* Use the step_resume_break to step until the end of the prologue,
2752
     even if that involves jumps (as it seems to on the vax under
2753
     4.2).  */
2754
  /* If the prologue ends in the middle of a source line, continue to
2755
     the end of that source line (if it is still within the function).
2756
     Otherwise, just go to end of prologue.  */
2757
  if (ecs->sal.end
2758
      && ecs->sal.pc != ecs->stop_func_start
2759
      && ecs->sal.end < ecs->stop_func_end)
2760
    ecs->stop_func_start = ecs->sal.end;
2761
 
2762
  /* Architectures which require breakpoint adjustment might not be able
2763
     to place a breakpoint at the computed address.  If so, the test
2764
     ``ecs->stop_func_start == stop_pc'' will never succeed.  Adjust
2765
     ecs->stop_func_start to an address at which a breakpoint may be
2766
     legitimately placed.
2767
 
2768
     Note:  kevinb/2004-01-19:  On FR-V, if this adjustment is not
2769
     made, GDB will enter an infinite loop when stepping through
2770
     optimized code consisting of VLIW instructions which contain
2771
     subinstructions corresponding to different source lines.  On
2772
     FR-V, it's not permitted to place a breakpoint on any but the
2773
     first subinstruction of a VLIW instruction.  When a breakpoint is
2774
     set, GDB will adjust the breakpoint address to the beginning of
2775
     the VLIW instruction.  Thus, we need to make the corresponding
2776
     adjustment here when computing the stop address.  */
2777
 
2778
  if (gdbarch_adjust_breakpoint_address_p (current_gdbarch))
2779
    {
2780
      ecs->stop_func_start
2781
        = gdbarch_adjust_breakpoint_address (current_gdbarch,
2782
                                             ecs->stop_func_start);
2783
    }
2784
 
2785
  if (ecs->stop_func_start == stop_pc)
2786
    {
2787
      /* We are already there: stop now.  */
2788
      stop_step = 1;
2789
      print_stop_reason (END_STEPPING_RANGE, 0);
2790
      stop_stepping (ecs);
2791
      return;
2792
    }
2793
  else
2794
    {
2795
      /* Put the step-breakpoint there and go until there.  */
2796
      init_sal (&sr_sal);       /* initialize to zeroes */
2797
      sr_sal.pc = ecs->stop_func_start;
2798
      sr_sal.section = find_pc_overlay (ecs->stop_func_start);
2799
 
2800
      /* Do not specify what the fp should be when we stop since on
2801
         some machines the prologue is where the new fp value is
2802
         established.  */
2803
      insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
2804
 
2805
      /* And make sure stepping stops right away then.  */
2806
      step_range_end = step_range_start;
2807
    }
2808
  keep_going (ecs);
2809
}
2810
 
2811
/* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
2812
   This is used to both functions and to skip over code.  */
2813
 
2814
static void
2815
insert_step_resume_breakpoint_at_sal (struct symtab_and_line sr_sal,
2816
                                      struct frame_id sr_id)
2817
{
2818
  /* There should never be more than one step-resume breakpoint per
2819
     thread, so we should never be setting a new
2820
     step_resume_breakpoint when one is already active.  */
2821
  gdb_assert (step_resume_breakpoint == NULL);
2822
 
2823
  if (debug_infrun)
2824
    fprintf_unfiltered (gdb_stdlog,
2825
                        "infrun: inserting step-resume breakpoint at 0x%s\n",
2826
                        paddr_nz (sr_sal.pc));
2827
 
2828
  step_resume_breakpoint = set_momentary_breakpoint (sr_sal, sr_id,
2829
                                                     bp_step_resume);
2830
}
2831
 
2832
/* Insert a "step-resume breakpoint" at RETURN_FRAME.pc.  This is used
2833
   to skip a potential signal handler.
2834
 
2835
   This is called with the interrupted function's frame.  The signal
2836
   handler, when it returns, will resume the interrupted function at
2837
   RETURN_FRAME.pc.  */
2838
 
2839
static void
2840
insert_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
2841
{
2842
  struct symtab_and_line sr_sal;
2843
 
2844
  gdb_assert (return_frame != NULL);
2845
  init_sal (&sr_sal);           /* initialize to zeros */
2846
 
2847
  sr_sal.pc = gdbarch_addr_bits_remove
2848
                (current_gdbarch, get_frame_pc (return_frame));
2849
  sr_sal.section = find_pc_overlay (sr_sal.pc);
2850
 
2851
  insert_step_resume_breakpoint_at_sal (sr_sal, get_frame_id (return_frame));
2852
}
2853
 
2854
/* Similar to insert_step_resume_breakpoint_at_frame, except
2855
   but a breakpoint at the previous frame's PC.  This is used to
2856
   skip a function after stepping into it (for "next" or if the called
2857
   function has no debugging information).
2858
 
2859
   The current function has almost always been reached by single
2860
   stepping a call or return instruction.  NEXT_FRAME belongs to the
2861
   current function, and the breakpoint will be set at the caller's
2862
   resume address.
2863
 
2864
   This is a separate function rather than reusing
2865
   insert_step_resume_breakpoint_at_frame in order to avoid
2866
   get_prev_frame, which may stop prematurely (see the implementation
2867
   of frame_unwind_id for an example).  */
2868
 
2869
static void
2870
insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
2871
{
2872
  struct symtab_and_line sr_sal;
2873
 
2874
  /* We shouldn't have gotten here if we don't know where the call site
2875
     is.  */
2876
  gdb_assert (frame_id_p (frame_unwind_id (next_frame)));
2877
 
2878
  init_sal (&sr_sal);           /* initialize to zeros */
2879
 
2880
  sr_sal.pc = gdbarch_addr_bits_remove
2881
                (current_gdbarch, frame_pc_unwind (next_frame));
2882
  sr_sal.section = find_pc_overlay (sr_sal.pc);
2883
 
2884
  insert_step_resume_breakpoint_at_sal (sr_sal, frame_unwind_id (next_frame));
2885
}
2886
 
2887
static void
2888
stop_stepping (struct execution_control_state *ecs)
2889
{
2890
  if (debug_infrun)
2891
    fprintf_unfiltered (gdb_stdlog, "infrun: stop_stepping\n");
2892
 
2893
  /* Let callers know we don't want to wait for the inferior anymore.  */
2894
  ecs->wait_some_more = 0;
2895
}
2896
 
2897
/* This function handles various cases where we need to continue
2898
   waiting for the inferior.  */
2899
/* (Used to be the keep_going: label in the old wait_for_inferior) */
2900
 
2901
static void
2902
keep_going (struct execution_control_state *ecs)
2903
{
2904
  /* Save the pc before execution, to compare with pc after stop.  */
2905
  prev_pc = read_pc ();         /* Might have been DECR_AFTER_BREAK */
2906
 
2907
  /* If we did not do break;, it means we should keep running the
2908
     inferior and not return to debugger.  */
2909
 
2910
  if (stepping_over_breakpoint && stop_signal != TARGET_SIGNAL_TRAP)
2911
    {
2912
      /* We took a signal (which we are supposed to pass through to
2913
         the inferior, else we'd have done a break above) and we
2914
         haven't yet gotten our trap.  Simply continue.  */
2915
      resume (currently_stepping (ecs), stop_signal);
2916
    }
2917
  else
2918
    {
2919
      /* Either the trap was not expected, but we are continuing
2920
         anyway (the user asked that this signal be passed to the
2921
         child)
2922
         -- or --
2923
         The signal was SIGTRAP, e.g. it was our signal, but we
2924
         decided we should resume from it.
2925
 
2926
         We're going to run this baby now!
2927
 
2928
         Note that insert_breakpoints won't try to re-insert
2929
         already inserted breakpoints.  Therefore, we don't
2930
         care if breakpoints were already inserted, or not.  */
2931
 
2932
      if (ecs->stepping_over_breakpoint)
2933
        {
2934
          remove_breakpoints ();
2935
        }
2936
      else
2937
        {
2938
          struct gdb_exception e;
2939
          /* Stop stepping when inserting breakpoints
2940
             has failed.  */
2941
          TRY_CATCH (e, RETURN_MASK_ERROR)
2942
            {
2943
              insert_breakpoints ();
2944
            }
2945
          if (e.reason < 0)
2946
            {
2947
              stop_stepping (ecs);
2948
              return;
2949
            }
2950
        }
2951
 
2952
      stepping_over_breakpoint = ecs->stepping_over_breakpoint;
2953
 
2954
      /* Do not deliver SIGNAL_TRAP (except when the user explicitly
2955
         specifies that such a signal should be delivered to the
2956
         target program).
2957
 
2958
         Typically, this would occure when a user is debugging a
2959
         target monitor on a simulator: the target monitor sets a
2960
         breakpoint; the simulator encounters this break-point and
2961
         halts the simulation handing control to GDB; GDB, noteing
2962
         that the break-point isn't valid, returns control back to the
2963
         simulator; the simulator then delivers the hardware
2964
         equivalent of a SIGNAL_TRAP to the program being debugged. */
2965
 
2966
      if (stop_signal == TARGET_SIGNAL_TRAP && !signal_program[stop_signal])
2967
        stop_signal = TARGET_SIGNAL_0;
2968
 
2969
 
2970
      resume (currently_stepping (ecs), stop_signal);
2971
    }
2972
 
2973
  prepare_to_wait (ecs);
2974
}
2975
 
2976
/* This function normally comes after a resume, before
2977
   handle_inferior_event exits.  It takes care of any last bits of
2978
   housekeeping, and sets the all-important wait_some_more flag.  */
2979
 
2980
static void
2981
prepare_to_wait (struct execution_control_state *ecs)
2982
{
2983
  if (debug_infrun)
2984
    fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
2985
  if (ecs->infwait_state == infwait_normal_state)
2986
    {
2987
      overlay_cache_invalid = 1;
2988
 
2989
      /* We have to invalidate the registers BEFORE calling
2990
         target_wait because they can be loaded from the target while
2991
         in target_wait.  This makes remote debugging a bit more
2992
         efficient for those targets that provide critical registers
2993
         as part of their normal status mechanism. */
2994
 
2995
      registers_changed ();
2996
      ecs->waiton_ptid = pid_to_ptid (-1);
2997
      ecs->wp = &(ecs->ws);
2998
    }
2999
  /* This is the old end of the while loop.  Let everybody know we
3000
     want to wait for the inferior some more and get called again
3001
     soon.  */
3002
  ecs->wait_some_more = 1;
3003
}
3004
 
3005
/* Print why the inferior has stopped. We always print something when
3006
   the inferior exits, or receives a signal. The rest of the cases are
3007
   dealt with later on in normal_stop() and print_it_typical().  Ideally
3008
   there should be a call to this function from handle_inferior_event()
3009
   each time stop_stepping() is called.*/
3010
static void
3011
print_stop_reason (enum inferior_stop_reason stop_reason, int stop_info)
3012
{
3013
  switch (stop_reason)
3014
    {
3015
    case END_STEPPING_RANGE:
3016
      /* We are done with a step/next/si/ni command. */
3017
      /* For now print nothing. */
3018
      /* Print a message only if not in the middle of doing a "step n"
3019
         operation for n > 1 */
3020
      if (!step_multi || !stop_step)
3021
        if (ui_out_is_mi_like_p (uiout))
3022
          ui_out_field_string
3023
            (uiout, "reason",
3024
             async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
3025
      break;
3026
    case SIGNAL_EXITED:
3027
      /* The inferior was terminated by a signal. */
3028
      annotate_signalled ();
3029
      if (ui_out_is_mi_like_p (uiout))
3030
        ui_out_field_string
3031
          (uiout, "reason",
3032
           async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
3033
      ui_out_text (uiout, "\nProgram terminated with signal ");
3034
      annotate_signal_name ();
3035
      ui_out_field_string (uiout, "signal-name",
3036
                           target_signal_to_name (stop_info));
3037
      annotate_signal_name_end ();
3038
      ui_out_text (uiout, ", ");
3039
      annotate_signal_string ();
3040
      ui_out_field_string (uiout, "signal-meaning",
3041
                           target_signal_to_string (stop_info));
3042
      annotate_signal_string_end ();
3043
      ui_out_text (uiout, ".\n");
3044
      ui_out_text (uiout, "The program no longer exists.\n");
3045
      break;
3046
    case EXITED:
3047
      /* The inferior program is finished. */
3048
      annotate_exited (stop_info);
3049
      if (stop_info)
3050
        {
3051
          if (ui_out_is_mi_like_p (uiout))
3052
            ui_out_field_string (uiout, "reason",
3053
                                 async_reason_lookup (EXEC_ASYNC_EXITED));
3054
          ui_out_text (uiout, "\nProgram exited with code ");
3055
          ui_out_field_fmt (uiout, "exit-code", "0%o",
3056
                            (unsigned int) stop_info);
3057
          ui_out_text (uiout, ".\n");
3058
        }
3059
      else
3060
        {
3061
          if (ui_out_is_mi_like_p (uiout))
3062
            ui_out_field_string
3063
              (uiout, "reason",
3064
               async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
3065
          ui_out_text (uiout, "\nProgram exited normally.\n");
3066
        }
3067
      /* Support the --return-child-result option.  */
3068
      return_child_result_value = stop_info;
3069
      break;
3070
    case SIGNAL_RECEIVED:
3071
      /* Signal received. The signal table tells us to print about
3072
         it. */
3073
      annotate_signal ();
3074
      ui_out_text (uiout, "\nProgram received signal ");
3075
      annotate_signal_name ();
3076
      if (ui_out_is_mi_like_p (uiout))
3077
        ui_out_field_string
3078
          (uiout, "reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
3079
      ui_out_field_string (uiout, "signal-name",
3080
                           target_signal_to_name (stop_info));
3081
      annotate_signal_name_end ();
3082
      ui_out_text (uiout, ", ");
3083
      annotate_signal_string ();
3084
      ui_out_field_string (uiout, "signal-meaning",
3085
                           target_signal_to_string (stop_info));
3086
      annotate_signal_string_end ();
3087
      ui_out_text (uiout, ".\n");
3088
      break;
3089
    default:
3090
      internal_error (__FILE__, __LINE__,
3091
                      _("print_stop_reason: unrecognized enum value"));
3092
      break;
3093
    }
3094
}
3095
 
3096
 
3097
/* Here to return control to GDB when the inferior stops for real.
3098
   Print appropriate messages, remove breakpoints, give terminal our modes.
3099
 
3100
   STOP_PRINT_FRAME nonzero means print the executing frame
3101
   (pc, function, args, file, line number and line text).
3102
   BREAKPOINTS_FAILED nonzero means stop was due to error
3103
   attempting to insert breakpoints.  */
3104
 
3105
void
3106
normal_stop (void)
3107
{
3108
  struct target_waitstatus last;
3109
  ptid_t last_ptid;
3110
 
3111
  get_last_target_status (&last_ptid, &last);
3112
 
3113
  /* As with the notification of thread events, we want to delay
3114
     notifying the user that we've switched thread context until
3115
     the inferior actually stops.
3116
 
3117
     There's no point in saying anything if the inferior has exited.
3118
     Note that SIGNALLED here means "exited with a signal", not
3119
     "received a signal".  */
3120
  if (!ptid_equal (previous_inferior_ptid, inferior_ptid)
3121
      && target_has_execution
3122
      && last.kind != TARGET_WAITKIND_SIGNALLED
3123
      && last.kind != TARGET_WAITKIND_EXITED)
3124
    {
3125
      target_terminal_ours_for_output ();
3126
      printf_filtered (_("[Switching to %s]\n"),
3127
                       target_pid_to_str (inferior_ptid));
3128
      previous_inferior_ptid = inferior_ptid;
3129
    }
3130
 
3131
  /* NOTE drow/2004-01-17: Is this still necessary?  */
3132
  /* Make sure that the current_frame's pc is correct.  This
3133
     is a correction for setting up the frame info before doing
3134
     gdbarch_decr_pc_after_break */
3135
  if (target_has_execution)
3136
    /* FIXME: cagney/2002-12-06: Has the PC changed?  Thanks to
3137
       gdbarch_decr_pc_after_break, the program counter can change.  Ask the
3138
       frame code to check for this and sort out any resultant mess.
3139
       gdbarch_decr_pc_after_break needs to just go away.  */
3140
    deprecated_update_frame_pc_hack (get_current_frame (), read_pc ());
3141
 
3142
  if (target_has_execution)
3143
    {
3144
      if (remove_breakpoints ())
3145
        {
3146
          target_terminal_ours_for_output ();
3147
          printf_filtered (_("\
3148
Cannot remove breakpoints because program is no longer writable.\n\
3149
It might be running in another process.\n\
3150
Further execution is probably impossible.\n"));
3151
        }
3152
    }
3153
 
3154
  /* Delete the breakpoint we stopped at, if it wants to be deleted.
3155
     Delete any breakpoint that is to be deleted at the next stop.  */
3156
 
3157
  breakpoint_auto_delete (stop_bpstat);
3158
 
3159
  /* If an auto-display called a function and that got a signal,
3160
     delete that auto-display to avoid an infinite recursion.  */
3161
 
3162
  if (stopped_by_random_signal)
3163
    disable_current_display ();
3164
 
3165
  /* Don't print a message if in the middle of doing a "step n"
3166
     operation for n > 1 */
3167
  if (step_multi && stop_step)
3168
    goto done;
3169
 
3170
  target_terminal_ours ();
3171
 
3172
  /* Set the current source location.  This will also happen if we
3173
     display the frame below, but the current SAL will be incorrect
3174
     during a user hook-stop function.  */
3175
  if (target_has_stack && !stop_stack_dummy)
3176
    set_current_sal_from_frame (get_current_frame (), 1);
3177
 
3178
  /* Look up the hook_stop and run it (CLI internally handles problem
3179
     of stop_command's pre-hook not existing).  */
3180
  if (stop_command)
3181
    catch_errors (hook_stop_stub, stop_command,
3182
                  "Error while running hook_stop:\n", RETURN_MASK_ALL);
3183
 
3184
  if (!target_has_stack)
3185
    {
3186
 
3187
      goto done;
3188
    }
3189
 
3190
  /* Select innermost stack frame - i.e., current frame is frame 0,
3191
     and current location is based on that.
3192
     Don't do this on return from a stack dummy routine,
3193
     or if the program has exited. */
3194
 
3195
  if (!stop_stack_dummy)
3196
    {
3197
      select_frame (get_current_frame ());
3198
 
3199
      /* Print current location without a level number, if
3200
         we have changed functions or hit a breakpoint.
3201
         Print source line if we have one.
3202
         bpstat_print() contains the logic deciding in detail
3203
         what to print, based on the event(s) that just occurred. */
3204
 
3205
      if (stop_print_frame)
3206
        {
3207
          int bpstat_ret;
3208
          int source_flag;
3209
          int do_frame_printing = 1;
3210
 
3211
          bpstat_ret = bpstat_print (stop_bpstat);
3212
          switch (bpstat_ret)
3213
            {
3214
            case PRINT_UNKNOWN:
3215
              /* If we had hit a shared library event breakpoint,
3216
                 bpstat_print would print out this message.  If we hit
3217
                 an OS-level shared library event, do the same
3218
                 thing.  */
3219
              if (last.kind == TARGET_WAITKIND_LOADED)
3220
                {
3221
                  printf_filtered (_("Stopped due to shared library event\n"));
3222
                  source_flag = SRC_LINE;       /* something bogus */
3223
                  do_frame_printing = 0;
3224
                  break;
3225
                }
3226
 
3227
              /* FIXME: cagney/2002-12-01: Given that a frame ID does
3228
                 (or should) carry around the function and does (or
3229
                 should) use that when doing a frame comparison.  */
3230
              if (stop_step
3231
                  && frame_id_eq (step_frame_id,
3232
                                  get_frame_id (get_current_frame ()))
3233
                  && step_start_function == find_pc_function (stop_pc))
3234
                source_flag = SRC_LINE; /* finished step, just print source line */
3235
              else
3236
                source_flag = SRC_AND_LOC;      /* print location and source line */
3237
              break;
3238
            case PRINT_SRC_AND_LOC:
3239
              source_flag = SRC_AND_LOC;        /* print location and source line */
3240
              break;
3241
            case PRINT_SRC_ONLY:
3242
              source_flag = SRC_LINE;
3243
              break;
3244
            case PRINT_NOTHING:
3245
              source_flag = SRC_LINE;   /* something bogus */
3246
              do_frame_printing = 0;
3247
              break;
3248
            default:
3249
              internal_error (__FILE__, __LINE__, _("Unknown value."));
3250
            }
3251
 
3252
          if (ui_out_is_mi_like_p (uiout))
3253
            ui_out_field_int (uiout, "thread-id",
3254
                              pid_to_thread_id (inferior_ptid));
3255
          /* The behavior of this routine with respect to the source
3256
             flag is:
3257
             SRC_LINE: Print only source line
3258
             LOCATION: Print only location
3259
             SRC_AND_LOC: Print location and source line */
3260
          if (do_frame_printing)
3261
            print_stack_frame (get_selected_frame (NULL), 0, source_flag);
3262
 
3263
          /* Display the auto-display expressions.  */
3264
          do_displays ();
3265
        }
3266
    }
3267
 
3268
  /* Save the function value return registers, if we care.
3269
     We might be about to restore their previous contents.  */
3270
  if (proceed_to_finish)
3271
    {
3272
      /* This should not be necessary.  */
3273
      if (stop_registers)
3274
        regcache_xfree (stop_registers);
3275
 
3276
      /* NB: The copy goes through to the target picking up the value of
3277
         all the registers.  */
3278
      stop_registers = regcache_dup (get_current_regcache ());
3279
    }
3280
 
3281
  if (stop_stack_dummy)
3282
    {
3283
      /* Pop the empty frame that contains the stack dummy.  POP_FRAME
3284
         ends with a setting of the current frame, so we can use that
3285
         next. */
3286
      frame_pop (get_current_frame ());
3287
      /* Set stop_pc to what it was before we called the function.
3288
         Can't rely on restore_inferior_status because that only gets
3289
         called if we don't stop in the called function.  */
3290
      stop_pc = read_pc ();
3291
      select_frame (get_current_frame ());
3292
    }
3293
 
3294
done:
3295
  annotate_stopped ();
3296
  observer_notify_normal_stop (stop_bpstat);
3297
}
3298
 
3299
static int
3300
hook_stop_stub (void *cmd)
3301
{
3302
  execute_cmd_pre_hook ((struct cmd_list_element *) cmd);
3303
  return (0);
3304
}
3305
 
3306
int
3307
signal_stop_state (int signo)
3308
{
3309
  return signal_stop[signo];
3310
}
3311
 
3312
int
3313
signal_print_state (int signo)
3314
{
3315
  return signal_print[signo];
3316
}
3317
 
3318
int
3319
signal_pass_state (int signo)
3320
{
3321
  return signal_program[signo];
3322
}
3323
 
3324
int
3325
signal_stop_update (int signo, int state)
3326
{
3327
  int ret = signal_stop[signo];
3328
  signal_stop[signo] = state;
3329
  return ret;
3330
}
3331
 
3332
int
3333
signal_print_update (int signo, int state)
3334
{
3335
  int ret = signal_print[signo];
3336
  signal_print[signo] = state;
3337
  return ret;
3338
}
3339
 
3340
int
3341
signal_pass_update (int signo, int state)
3342
{
3343
  int ret = signal_program[signo];
3344
  signal_program[signo] = state;
3345
  return ret;
3346
}
3347
 
3348
static void
3349
sig_print_header (void)
3350
{
3351
  printf_filtered (_("\
3352
Signal        Stop\tPrint\tPass to program\tDescription\n"));
3353
}
3354
 
3355
static void
3356
sig_print_info (enum target_signal oursig)
3357
{
3358
  char *name = target_signal_to_name (oursig);
3359
  int name_padding = 13 - strlen (name);
3360
 
3361
  if (name_padding <= 0)
3362
    name_padding = 0;
3363
 
3364
  printf_filtered ("%s", name);
3365
  printf_filtered ("%*.*s ", name_padding, name_padding, "                 ");
3366
  printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
3367
  printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
3368
  printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
3369
  printf_filtered ("%s\n", target_signal_to_string (oursig));
3370
}
3371
 
3372
/* Specify how various signals in the inferior should be handled.  */
3373
 
3374
static void
3375
handle_command (char *args, int from_tty)
3376
{
3377
  char **argv;
3378
  int digits, wordlen;
3379
  int sigfirst, signum, siglast;
3380
  enum target_signal oursig;
3381
  int allsigs;
3382
  int nsigs;
3383
  unsigned char *sigs;
3384
  struct cleanup *old_chain;
3385
 
3386
  if (args == NULL)
3387
    {
3388
      error_no_arg (_("signal to handle"));
3389
    }
3390
 
3391
  /* Allocate and zero an array of flags for which signals to handle. */
3392
 
3393
  nsigs = (int) TARGET_SIGNAL_LAST;
3394
  sigs = (unsigned char *) alloca (nsigs);
3395
  memset (sigs, 0, nsigs);
3396
 
3397
  /* Break the command line up into args. */
3398
 
3399
  argv = buildargv (args);
3400
  if (argv == NULL)
3401
    {
3402
      nomem (0);
3403
    }
3404
  old_chain = make_cleanup_freeargv (argv);
3405
 
3406
  /* Walk through the args, looking for signal oursigs, signal names, and
3407
     actions.  Signal numbers and signal names may be interspersed with
3408
     actions, with the actions being performed for all signals cumulatively
3409
     specified.  Signal ranges can be specified as <LOW>-<HIGH>. */
3410
 
3411
  while (*argv != NULL)
3412
    {
3413
      wordlen = strlen (*argv);
3414
      for (digits = 0; isdigit ((*argv)[digits]); digits++)
3415
        {;
3416
        }
3417
      allsigs = 0;
3418
      sigfirst = siglast = -1;
3419
 
3420
      if (wordlen >= 1 && !strncmp (*argv, "all", wordlen))
3421
        {
3422
          /* Apply action to all signals except those used by the
3423
             debugger.  Silently skip those. */
3424
          allsigs = 1;
3425
          sigfirst = 0;
3426
          siglast = nsigs - 1;
3427
        }
3428
      else if (wordlen >= 1 && !strncmp (*argv, "stop", wordlen))
3429
        {
3430
          SET_SIGS (nsigs, sigs, signal_stop);
3431
          SET_SIGS (nsigs, sigs, signal_print);
3432
        }
3433
      else if (wordlen >= 1 && !strncmp (*argv, "ignore", wordlen))
3434
        {
3435
          UNSET_SIGS (nsigs, sigs, signal_program);
3436
        }
3437
      else if (wordlen >= 2 && !strncmp (*argv, "print", wordlen))
3438
        {
3439
          SET_SIGS (nsigs, sigs, signal_print);
3440
        }
3441
      else if (wordlen >= 2 && !strncmp (*argv, "pass", wordlen))
3442
        {
3443
          SET_SIGS (nsigs, sigs, signal_program);
3444
        }
3445
      else if (wordlen >= 3 && !strncmp (*argv, "nostop", wordlen))
3446
        {
3447
          UNSET_SIGS (nsigs, sigs, signal_stop);
3448
        }
3449
      else if (wordlen >= 3 && !strncmp (*argv, "noignore", wordlen))
3450
        {
3451
          SET_SIGS (nsigs, sigs, signal_program);
3452
        }
3453
      else if (wordlen >= 4 && !strncmp (*argv, "noprint", wordlen))
3454
        {
3455
          UNSET_SIGS (nsigs, sigs, signal_print);
3456
          UNSET_SIGS (nsigs, sigs, signal_stop);
3457
        }
3458
      else if (wordlen >= 4 && !strncmp (*argv, "nopass", wordlen))
3459
        {
3460
          UNSET_SIGS (nsigs, sigs, signal_program);
3461
        }
3462
      else if (digits > 0)
3463
        {
3464
          /* It is numeric.  The numeric signal refers to our own
3465
             internal signal numbering from target.h, not to host/target
3466
             signal  number.  This is a feature; users really should be
3467
             using symbolic names anyway, and the common ones like
3468
             SIGHUP, SIGINT, SIGALRM, etc. will work right anyway.  */
3469
 
3470
          sigfirst = siglast = (int)
3471
            target_signal_from_command (atoi (*argv));
3472
          if ((*argv)[digits] == '-')
3473
            {
3474
              siglast = (int)
3475
                target_signal_from_command (atoi ((*argv) + digits + 1));
3476
            }
3477
          if (sigfirst > siglast)
3478
            {
3479
              /* Bet he didn't figure we'd think of this case... */
3480
              signum = sigfirst;
3481
              sigfirst = siglast;
3482
              siglast = signum;
3483
            }
3484
        }
3485
      else
3486
        {
3487
          oursig = target_signal_from_name (*argv);
3488
          if (oursig != TARGET_SIGNAL_UNKNOWN)
3489
            {
3490
              sigfirst = siglast = (int) oursig;
3491
            }
3492
          else
3493
            {
3494
              /* Not a number and not a recognized flag word => complain.  */
3495
              error (_("Unrecognized or ambiguous flag word: \"%s\"."), *argv);
3496
            }
3497
        }
3498
 
3499
      /* If any signal numbers or symbol names were found, set flags for
3500
         which signals to apply actions to. */
3501
 
3502
      for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
3503
        {
3504
          switch ((enum target_signal) signum)
3505
            {
3506
            case TARGET_SIGNAL_TRAP:
3507
            case TARGET_SIGNAL_INT:
3508
              if (!allsigs && !sigs[signum])
3509
                {
3510
                  if (query ("%s is used by the debugger.\n\
3511
Are you sure you want to change it? ", target_signal_to_name ((enum target_signal) signum)))
3512
                    {
3513
                      sigs[signum] = 1;
3514
                    }
3515
                  else
3516
                    {
3517
                      printf_unfiltered (_("Not confirmed, unchanged.\n"));
3518
                      gdb_flush (gdb_stdout);
3519
                    }
3520
                }
3521
              break;
3522
            case TARGET_SIGNAL_0:
3523
            case TARGET_SIGNAL_DEFAULT:
3524
            case TARGET_SIGNAL_UNKNOWN:
3525
              /* Make sure that "all" doesn't print these.  */
3526
              break;
3527
            default:
3528
              sigs[signum] = 1;
3529
              break;
3530
            }
3531
        }
3532
 
3533
      argv++;
3534
    }
3535
 
3536
  target_notice_signals (inferior_ptid);
3537
 
3538
  if (from_tty)
3539
    {
3540
      /* Show the results.  */
3541
      sig_print_header ();
3542
      for (signum = 0; signum < nsigs; signum++)
3543
        {
3544
          if (sigs[signum])
3545
            {
3546
              sig_print_info (signum);
3547
            }
3548
        }
3549
    }
3550
 
3551
  do_cleanups (old_chain);
3552
}
3553
 
3554
static void
3555
xdb_handle_command (char *args, int from_tty)
3556
{
3557
  char **argv;
3558
  struct cleanup *old_chain;
3559
 
3560
  /* Break the command line up into args. */
3561
 
3562
  argv = buildargv (args);
3563
  if (argv == NULL)
3564
    {
3565
      nomem (0);
3566
    }
3567
  old_chain = make_cleanup_freeargv (argv);
3568
  if (argv[1] != (char *) NULL)
3569
    {
3570
      char *argBuf;
3571
      int bufLen;
3572
 
3573
      bufLen = strlen (argv[0]) + 20;
3574
      argBuf = (char *) xmalloc (bufLen);
3575
      if (argBuf)
3576
        {
3577
          int validFlag = 1;
3578
          enum target_signal oursig;
3579
 
3580
          oursig = target_signal_from_name (argv[0]);
3581
          memset (argBuf, 0, bufLen);
3582
          if (strcmp (argv[1], "Q") == 0)
3583
            sprintf (argBuf, "%s %s", argv[0], "noprint");
3584
          else
3585
            {
3586
              if (strcmp (argv[1], "s") == 0)
3587
                {
3588
                  if (!signal_stop[oursig])
3589
                    sprintf (argBuf, "%s %s", argv[0], "stop");
3590
                  else
3591
                    sprintf (argBuf, "%s %s", argv[0], "nostop");
3592
                }
3593
              else if (strcmp (argv[1], "i") == 0)
3594
                {
3595
                  if (!signal_program[oursig])
3596
                    sprintf (argBuf, "%s %s", argv[0], "pass");
3597
                  else
3598
                    sprintf (argBuf, "%s %s", argv[0], "nopass");
3599
                }
3600
              else if (strcmp (argv[1], "r") == 0)
3601
                {
3602
                  if (!signal_print[oursig])
3603
                    sprintf (argBuf, "%s %s", argv[0], "print");
3604
                  else
3605
                    sprintf (argBuf, "%s %s", argv[0], "noprint");
3606
                }
3607
              else
3608
                validFlag = 0;
3609
            }
3610
          if (validFlag)
3611
            handle_command (argBuf, from_tty);
3612
          else
3613
            printf_filtered (_("Invalid signal handling flag.\n"));
3614
          if (argBuf)
3615
            xfree (argBuf);
3616
        }
3617
    }
3618
  do_cleanups (old_chain);
3619
}
3620
 
3621
/* Print current contents of the tables set by the handle command.
3622
   It is possible we should just be printing signals actually used
3623
   by the current target (but for things to work right when switching
3624
   targets, all signals should be in the signal tables).  */
3625
 
3626
static void
3627
signals_info (char *signum_exp, int from_tty)
3628
{
3629
  enum target_signal oursig;
3630
  sig_print_header ();
3631
 
3632
  if (signum_exp)
3633
    {
3634
      /* First see if this is a symbol name.  */
3635
      oursig = target_signal_from_name (signum_exp);
3636
      if (oursig == TARGET_SIGNAL_UNKNOWN)
3637
        {
3638
          /* No, try numeric.  */
3639
          oursig =
3640
            target_signal_from_command (parse_and_eval_long (signum_exp));
3641
        }
3642
      sig_print_info (oursig);
3643
      return;
3644
    }
3645
 
3646
  printf_filtered ("\n");
3647
  /* These ugly casts brought to you by the native VAX compiler.  */
3648
  for (oursig = TARGET_SIGNAL_FIRST;
3649
       (int) oursig < (int) TARGET_SIGNAL_LAST;
3650
       oursig = (enum target_signal) ((int) oursig + 1))
3651
    {
3652
      QUIT;
3653
 
3654
      if (oursig != TARGET_SIGNAL_UNKNOWN
3655
          && oursig != TARGET_SIGNAL_DEFAULT && oursig != TARGET_SIGNAL_0)
3656
        sig_print_info (oursig);
3657
    }
3658
 
3659
  printf_filtered (_("\nUse the \"handle\" command to change these tables.\n"));
3660
}
3661
 
3662
struct inferior_status
3663
{
3664
  enum target_signal stop_signal;
3665
  CORE_ADDR stop_pc;
3666
  bpstat stop_bpstat;
3667
  int stop_step;
3668
  int stop_stack_dummy;
3669
  int stopped_by_random_signal;
3670
  int stepping_over_breakpoint;
3671
  CORE_ADDR step_range_start;
3672
  CORE_ADDR step_range_end;
3673
  struct frame_id step_frame_id;
3674
  enum step_over_calls_kind step_over_calls;
3675
  CORE_ADDR step_resume_break_address;
3676
  int stop_after_trap;
3677
  int stop_soon;
3678
 
3679
  /* These are here because if call_function_by_hand has written some
3680
     registers and then decides to call error(), we better not have changed
3681
     any registers.  */
3682
  struct regcache *registers;
3683
 
3684
  /* A frame unique identifier.  */
3685
  struct frame_id selected_frame_id;
3686
 
3687
  int breakpoint_proceeded;
3688
  int restore_stack_info;
3689
  int proceed_to_finish;
3690
};
3691
 
3692
void
3693
write_inferior_status_register (struct inferior_status *inf_status, int regno,
3694
                                LONGEST val)
3695
{
3696
  int size = register_size (current_gdbarch, regno);
3697
  void *buf = alloca (size);
3698
  store_signed_integer (buf, size, val);
3699
  regcache_raw_write (inf_status->registers, regno, buf);
3700
}
3701
 
3702
/* Save all of the information associated with the inferior<==>gdb
3703
   connection.  INF_STATUS is a pointer to a "struct inferior_status"
3704
   (defined in inferior.h).  */
3705
 
3706
struct inferior_status *
3707
save_inferior_status (int restore_stack_info)
3708
{
3709
  struct inferior_status *inf_status = XMALLOC (struct inferior_status);
3710
 
3711
  inf_status->stop_signal = stop_signal;
3712
  inf_status->stop_pc = stop_pc;
3713
  inf_status->stop_step = stop_step;
3714
  inf_status->stop_stack_dummy = stop_stack_dummy;
3715
  inf_status->stopped_by_random_signal = stopped_by_random_signal;
3716
  inf_status->stepping_over_breakpoint = stepping_over_breakpoint;
3717
  inf_status->step_range_start = step_range_start;
3718
  inf_status->step_range_end = step_range_end;
3719
  inf_status->step_frame_id = step_frame_id;
3720
  inf_status->step_over_calls = step_over_calls;
3721
  inf_status->stop_after_trap = stop_after_trap;
3722
  inf_status->stop_soon = stop_soon;
3723
  /* Save original bpstat chain here; replace it with copy of chain.
3724
     If caller's caller is walking the chain, they'll be happier if we
3725
     hand them back the original chain when restore_inferior_status is
3726
     called.  */
3727
  inf_status->stop_bpstat = stop_bpstat;
3728
  stop_bpstat = bpstat_copy (stop_bpstat);
3729
  inf_status->breakpoint_proceeded = breakpoint_proceeded;
3730
  inf_status->restore_stack_info = restore_stack_info;
3731
  inf_status->proceed_to_finish = proceed_to_finish;
3732
 
3733
  inf_status->registers = regcache_dup (get_current_regcache ());
3734
 
3735
  inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL));
3736
  return inf_status;
3737
}
3738
 
3739
static int
3740
restore_selected_frame (void *args)
3741
{
3742
  struct frame_id *fid = (struct frame_id *) args;
3743
  struct frame_info *frame;
3744
 
3745
  frame = frame_find_by_id (*fid);
3746
 
3747
  /* If inf_status->selected_frame_id is NULL, there was no previously
3748
     selected frame.  */
3749
  if (frame == NULL)
3750
    {
3751
      warning (_("Unable to restore previously selected frame."));
3752
      return 0;
3753
    }
3754
 
3755
  select_frame (frame);
3756
 
3757
  return (1);
3758
}
3759
 
3760
void
3761
restore_inferior_status (struct inferior_status *inf_status)
3762
{
3763
  stop_signal = inf_status->stop_signal;
3764
  stop_pc = inf_status->stop_pc;
3765
  stop_step = inf_status->stop_step;
3766
  stop_stack_dummy = inf_status->stop_stack_dummy;
3767
  stopped_by_random_signal = inf_status->stopped_by_random_signal;
3768
  stepping_over_breakpoint = inf_status->stepping_over_breakpoint;
3769
  step_range_start = inf_status->step_range_start;
3770
  step_range_end = inf_status->step_range_end;
3771
  step_frame_id = inf_status->step_frame_id;
3772
  step_over_calls = inf_status->step_over_calls;
3773
  stop_after_trap = inf_status->stop_after_trap;
3774
  stop_soon = inf_status->stop_soon;
3775
  bpstat_clear (&stop_bpstat);
3776
  stop_bpstat = inf_status->stop_bpstat;
3777
  breakpoint_proceeded = inf_status->breakpoint_proceeded;
3778
  proceed_to_finish = inf_status->proceed_to_finish;
3779
 
3780
  /* The inferior can be gone if the user types "print exit(0)"
3781
     (and perhaps other times).  */
3782
  if (target_has_execution)
3783
    /* NB: The register write goes through to the target.  */
3784
    regcache_cpy (get_current_regcache (), inf_status->registers);
3785
  regcache_xfree (inf_status->registers);
3786
 
3787
  /* FIXME: If we are being called after stopping in a function which
3788
     is called from gdb, we should not be trying to restore the
3789
     selected frame; it just prints a spurious error message (The
3790
     message is useful, however, in detecting bugs in gdb (like if gdb
3791
     clobbers the stack)).  In fact, should we be restoring the
3792
     inferior status at all in that case?  .  */
3793
 
3794
  if (target_has_stack && inf_status->restore_stack_info)
3795
    {
3796
      /* The point of catch_errors is that if the stack is clobbered,
3797
         walking the stack might encounter a garbage pointer and
3798
         error() trying to dereference it.  */
3799
      if (catch_errors
3800
          (restore_selected_frame, &inf_status->selected_frame_id,
3801
           "Unable to restore previously selected frame:\n",
3802
           RETURN_MASK_ERROR) == 0)
3803
        /* Error in restoring the selected frame.  Select the innermost
3804
           frame.  */
3805
        select_frame (get_current_frame ());
3806
 
3807
    }
3808
 
3809
  xfree (inf_status);
3810
}
3811
 
3812
static void
3813
do_restore_inferior_status_cleanup (void *sts)
3814
{
3815
  restore_inferior_status (sts);
3816
}
3817
 
3818
struct cleanup *
3819
make_cleanup_restore_inferior_status (struct inferior_status *inf_status)
3820
{
3821
  return make_cleanup (do_restore_inferior_status_cleanup, inf_status);
3822
}
3823
 
3824
void
3825
discard_inferior_status (struct inferior_status *inf_status)
3826
{
3827
  /* See save_inferior_status for info on stop_bpstat. */
3828
  bpstat_clear (&inf_status->stop_bpstat);
3829
  regcache_xfree (inf_status->registers);
3830
  xfree (inf_status);
3831
}
3832
 
3833
int
3834
inferior_has_forked (int pid, int *child_pid)
3835
{
3836
  struct target_waitstatus last;
3837
  ptid_t last_ptid;
3838
 
3839
  get_last_target_status (&last_ptid, &last);
3840
 
3841
  if (last.kind != TARGET_WAITKIND_FORKED)
3842
    return 0;
3843
 
3844
  if (ptid_get_pid (last_ptid) != pid)
3845
    return 0;
3846
 
3847
  *child_pid = last.value.related_pid;
3848
  return 1;
3849
}
3850
 
3851
int
3852
inferior_has_vforked (int pid, int *child_pid)
3853
{
3854
  struct target_waitstatus last;
3855
  ptid_t last_ptid;
3856
 
3857
  get_last_target_status (&last_ptid, &last);
3858
 
3859
  if (last.kind != TARGET_WAITKIND_VFORKED)
3860
    return 0;
3861
 
3862
  if (ptid_get_pid (last_ptid) != pid)
3863
    return 0;
3864
 
3865
  *child_pid = last.value.related_pid;
3866
  return 1;
3867
}
3868
 
3869
int
3870
inferior_has_execd (int pid, char **execd_pathname)
3871
{
3872
  struct target_waitstatus last;
3873
  ptid_t last_ptid;
3874
 
3875
  get_last_target_status (&last_ptid, &last);
3876
 
3877
  if (last.kind != TARGET_WAITKIND_EXECD)
3878
    return 0;
3879
 
3880
  if (ptid_get_pid (last_ptid) != pid)
3881
    return 0;
3882
 
3883
  *execd_pathname = xstrdup (last.value.execd_pathname);
3884
  return 1;
3885
}
3886
 
3887
/* Oft used ptids */
3888
ptid_t null_ptid;
3889
ptid_t minus_one_ptid;
3890
 
3891
/* Create a ptid given the necessary PID, LWP, and TID components.  */
3892
 
3893
ptid_t
3894
ptid_build (int pid, long lwp, long tid)
3895
{
3896
  ptid_t ptid;
3897
 
3898
  ptid.pid = pid;
3899
  ptid.lwp = lwp;
3900
  ptid.tid = tid;
3901
  return ptid;
3902
}
3903
 
3904
/* Create a ptid from just a pid.  */
3905
 
3906
ptid_t
3907
pid_to_ptid (int pid)
3908
{
3909
  return ptid_build (pid, 0, 0);
3910
}
3911
 
3912
/* Fetch the pid (process id) component from a ptid.  */
3913
 
3914
int
3915
ptid_get_pid (ptid_t ptid)
3916
{
3917
  return ptid.pid;
3918
}
3919
 
3920
/* Fetch the lwp (lightweight process) component from a ptid.  */
3921
 
3922
long
3923
ptid_get_lwp (ptid_t ptid)
3924
{
3925
  return ptid.lwp;
3926
}
3927
 
3928
/* Fetch the tid (thread id) component from a ptid.  */
3929
 
3930
long
3931
ptid_get_tid (ptid_t ptid)
3932
{
3933
  return ptid.tid;
3934
}
3935
 
3936
/* ptid_equal() is used to test equality of two ptids.  */
3937
 
3938
int
3939
ptid_equal (ptid_t ptid1, ptid_t ptid2)
3940
{
3941
  return (ptid1.pid == ptid2.pid && ptid1.lwp == ptid2.lwp
3942
          && ptid1.tid == ptid2.tid);
3943
}
3944
 
3945
/* restore_inferior_ptid() will be used by the cleanup machinery
3946
   to restore the inferior_ptid value saved in a call to
3947
   save_inferior_ptid().  */
3948
 
3949
static void
3950
restore_inferior_ptid (void *arg)
3951
{
3952
  ptid_t *saved_ptid_ptr = arg;
3953
  inferior_ptid = *saved_ptid_ptr;
3954
  xfree (arg);
3955
}
3956
 
3957
/* Save the value of inferior_ptid so that it may be restored by a
3958
   later call to do_cleanups().  Returns the struct cleanup pointer
3959
   needed for later doing the cleanup.  */
3960
 
3961
struct cleanup *
3962
save_inferior_ptid (void)
3963
{
3964
  ptid_t *saved_ptid_ptr;
3965
 
3966
  saved_ptid_ptr = xmalloc (sizeof (ptid_t));
3967
  *saved_ptid_ptr = inferior_ptid;
3968
  return make_cleanup (restore_inferior_ptid, saved_ptid_ptr);
3969
}
3970
 
3971
 
3972
void
3973
_initialize_infrun (void)
3974
{
3975
  int i;
3976
  int numsigs;
3977
  struct cmd_list_element *c;
3978
 
3979
  add_info ("signals", signals_info, _("\
3980
What debugger does when program gets various signals.\n\
3981
Specify a signal as argument to print info on that signal only."));
3982
  add_info_alias ("handle", "signals", 0);
3983
 
3984
  add_com ("handle", class_run, handle_command, _("\
3985
Specify how to handle a signal.\n\
3986
Args are signals and actions to apply to those signals.\n\
3987
Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
3988
from 1-15 are allowed for compatibility with old versions of GDB.\n\
3989
Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
3990
The special arg \"all\" is recognized to mean all signals except those\n\
3991
used by the debugger, typically SIGTRAP and SIGINT.\n\
3992
Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
3993
\"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
3994
Stop means reenter debugger if this signal happens (implies print).\n\
3995
Print means print a message if this signal happens.\n\
3996
Pass means let program see this signal; otherwise program doesn't know.\n\
3997
Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
3998
Pass and Stop may be combined."));
3999
  if (xdb_commands)
4000
    {
4001
      add_com ("lz", class_info, signals_info, _("\
4002
What debugger does when program gets various signals.\n\
4003
Specify a signal as argument to print info on that signal only."));
4004
      add_com ("z", class_run, xdb_handle_command, _("\
4005
Specify how to handle a signal.\n\
4006
Args are signals and actions to apply to those signals.\n\
4007
Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
4008
from 1-15 are allowed for compatibility with old versions of GDB.\n\
4009
Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
4010
The special arg \"all\" is recognized to mean all signals except those\n\
4011
used by the debugger, typically SIGTRAP and SIGINT.\n\
4012
Recognized actions include \"s\" (toggles between stop and nostop), \n\
4013
\"r\" (toggles between print and noprint), \"i\" (toggles between pass and \
4014
nopass), \"Q\" (noprint)\n\
4015
Stop means reenter debugger if this signal happens (implies print).\n\
4016
Print means print a message if this signal happens.\n\
4017
Pass means let program see this signal; otherwise program doesn't know.\n\
4018
Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
4019
Pass and Stop may be combined."));
4020
    }
4021
 
4022
  if (!dbx_commands)
4023
    stop_command = add_cmd ("stop", class_obscure,
4024
                            not_just_help_class_command, _("\
4025
There is no `stop' command, but you can set a hook on `stop'.\n\
4026
This allows you to set a list of commands to be run each time execution\n\
4027
of the program stops."), &cmdlist);
4028
 
4029
  add_setshow_zinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
4030
Set inferior debugging."), _("\
4031
Show inferior debugging."), _("\
4032
When non-zero, inferior specific debugging is enabled."),
4033
                            NULL,
4034
                            show_debug_infrun,
4035
                            &setdebuglist, &showdebuglist);
4036
 
4037
  numsigs = (int) TARGET_SIGNAL_LAST;
4038
  signal_stop = (unsigned char *) xmalloc (sizeof (signal_stop[0]) * numsigs);
4039
  signal_print = (unsigned char *)
4040
    xmalloc (sizeof (signal_print[0]) * numsigs);
4041
  signal_program = (unsigned char *)
4042
    xmalloc (sizeof (signal_program[0]) * numsigs);
4043
  for (i = 0; i < numsigs; i++)
4044
    {
4045
      signal_stop[i] = 1;
4046
      signal_print[i] = 1;
4047
      signal_program[i] = 1;
4048
    }
4049
 
4050
  /* Signals caused by debugger's own actions
4051
     should not be given to the program afterwards.  */
4052
  signal_program[TARGET_SIGNAL_TRAP] = 0;
4053
  signal_program[TARGET_SIGNAL_INT] = 0;
4054
 
4055
  /* Signals that are not errors should not normally enter the debugger.  */
4056
  signal_stop[TARGET_SIGNAL_ALRM] = 0;
4057
  signal_print[TARGET_SIGNAL_ALRM] = 0;
4058
  signal_stop[TARGET_SIGNAL_VTALRM] = 0;
4059
  signal_print[TARGET_SIGNAL_VTALRM] = 0;
4060
  signal_stop[TARGET_SIGNAL_PROF] = 0;
4061
  signal_print[TARGET_SIGNAL_PROF] = 0;
4062
  signal_stop[TARGET_SIGNAL_CHLD] = 0;
4063
  signal_print[TARGET_SIGNAL_CHLD] = 0;
4064
  signal_stop[TARGET_SIGNAL_IO] = 0;
4065
  signal_print[TARGET_SIGNAL_IO] = 0;
4066
  signal_stop[TARGET_SIGNAL_POLL] = 0;
4067
  signal_print[TARGET_SIGNAL_POLL] = 0;
4068
  signal_stop[TARGET_SIGNAL_URG] = 0;
4069
  signal_print[TARGET_SIGNAL_URG] = 0;
4070
  signal_stop[TARGET_SIGNAL_WINCH] = 0;
4071
  signal_print[TARGET_SIGNAL_WINCH] = 0;
4072
 
4073
  /* These signals are used internally by user-level thread
4074
     implementations.  (See signal(5) on Solaris.)  Like the above
4075
     signals, a healthy program receives and handles them as part of
4076
     its normal operation.  */
4077
  signal_stop[TARGET_SIGNAL_LWP] = 0;
4078
  signal_print[TARGET_SIGNAL_LWP] = 0;
4079
  signal_stop[TARGET_SIGNAL_WAITING] = 0;
4080
  signal_print[TARGET_SIGNAL_WAITING] = 0;
4081
  signal_stop[TARGET_SIGNAL_CANCEL] = 0;
4082
  signal_print[TARGET_SIGNAL_CANCEL] = 0;
4083
 
4084
  add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
4085
                            &stop_on_solib_events, _("\
4086
Set stopping for shared library events."), _("\
4087
Show stopping for shared library events."), _("\
4088
If nonzero, gdb will give control to the user when the dynamic linker\n\
4089
notifies gdb of shared library events.  The most common event of interest\n\
4090
to the user would be loading/unloading of a new library."),
4091
                            NULL,
4092
                            show_stop_on_solib_events,
4093
                            &setlist, &showlist);
4094
 
4095
  add_setshow_enum_cmd ("follow-fork-mode", class_run,
4096
                        follow_fork_mode_kind_names,
4097
                        &follow_fork_mode_string, _("\
4098
Set debugger response to a program call of fork or vfork."), _("\
4099
Show debugger response to a program call of fork or vfork."), _("\
4100
A fork or vfork creates a new process.  follow-fork-mode can be:\n\
4101
  parent  - the original process is debugged after a fork\n\
4102
  child   - the new process is debugged after a fork\n\
4103
The unfollowed process will continue to run.\n\
4104
By default, the debugger will follow the parent process."),
4105
                        NULL,
4106
                        show_follow_fork_mode_string,
4107
                        &setlist, &showlist);
4108
 
4109
  add_setshow_enum_cmd ("scheduler-locking", class_run,
4110
                        scheduler_enums, &scheduler_mode, _("\
4111
Set mode for locking scheduler during execution."), _("\
4112
Show mode for locking scheduler during execution."), _("\
4113
off  == no locking (threads may preempt at any time)\n\
4114
on   == full locking (no thread except the current thread may run)\n\
4115
step == scheduler locked during every single-step operation.\n\
4116
        In this mode, no other thread may run during a step command.\n\
4117
        Other threads may run while stepping over a function call ('next')."),
4118
                        set_schedlock_func,     /* traps on target vector */
4119
                        show_scheduler_mode,
4120
                        &setlist, &showlist);
4121
 
4122
  add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
4123
Set mode of the step operation."), _("\
4124
Show mode of the step operation."), _("\
4125
When set, doing a step over a function without debug line information\n\
4126
will stop at the first instruction of that function. Otherwise, the\n\
4127
function is skipped and the step command stops at a different source line."),
4128
                           NULL,
4129
                           show_step_stop_if_no_debug,
4130
                           &setlist, &showlist);
4131
 
4132
  /* ptid initializations */
4133
  null_ptid = ptid_build (0, 0, 0);
4134
  minus_one_ptid = ptid_build (-1, 0, 0);
4135
  inferior_ptid = null_ptid;
4136
  target_last_wait_ptid = minus_one_ptid;
4137
}

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.