1 |
24 |
jeremybenn |
/* Target-dependent code for GDB, the GNU debugger.
|
2 |
|
|
|
3 |
|
|
Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
|
4 |
|
|
Free Software Foundation, Inc.
|
5 |
|
|
|
6 |
|
|
Contributed by D.J. Barrow (djbarrow@de.ibm.com,barrow_dj@yahoo.com)
|
7 |
|
|
for IBM Deutschland Entwicklung GmbH, IBM Corporation.
|
8 |
|
|
|
9 |
|
|
This file is part of GDB.
|
10 |
|
|
|
11 |
|
|
This program is free software; you can redistribute it and/or modify
|
12 |
|
|
it under the terms of the GNU General Public License as published by
|
13 |
|
|
the Free Software Foundation; either version 3 of the License, or
|
14 |
|
|
(at your option) any later version.
|
15 |
|
|
|
16 |
|
|
This program is distributed in the hope that it will be useful,
|
17 |
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
18 |
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
19 |
|
|
GNU General Public License for more details.
|
20 |
|
|
|
21 |
|
|
You should have received a copy of the GNU General Public License
|
22 |
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>. */
|
23 |
|
|
|
24 |
|
|
#include "defs.h"
|
25 |
|
|
#include "arch-utils.h"
|
26 |
|
|
#include "frame.h"
|
27 |
|
|
#include "inferior.h"
|
28 |
|
|
#include "symtab.h"
|
29 |
|
|
#include "target.h"
|
30 |
|
|
#include "gdbcore.h"
|
31 |
|
|
#include "gdbcmd.h"
|
32 |
|
|
#include "objfiles.h"
|
33 |
|
|
#include "floatformat.h"
|
34 |
|
|
#include "regcache.h"
|
35 |
|
|
#include "trad-frame.h"
|
36 |
|
|
#include "frame-base.h"
|
37 |
|
|
#include "frame-unwind.h"
|
38 |
|
|
#include "dwarf2-frame.h"
|
39 |
|
|
#include "reggroups.h"
|
40 |
|
|
#include "regset.h"
|
41 |
|
|
#include "value.h"
|
42 |
|
|
#include "gdb_assert.h"
|
43 |
|
|
#include "dis-asm.h"
|
44 |
|
|
#include "solib-svr4.h"
|
45 |
|
|
#include "prologue-value.h"
|
46 |
|
|
|
47 |
|
|
#include "s390-tdep.h"
|
48 |
|
|
|
49 |
|
|
|
50 |
|
|
/* The tdep structure. */
|
51 |
|
|
|
52 |
|
|
struct gdbarch_tdep
|
53 |
|
|
{
|
54 |
|
|
/* ABI version. */
|
55 |
|
|
enum { ABI_LINUX_S390, ABI_LINUX_ZSERIES } abi;
|
56 |
|
|
|
57 |
|
|
/* Core file register sets. */
|
58 |
|
|
const struct regset *gregset;
|
59 |
|
|
int sizeof_gregset;
|
60 |
|
|
|
61 |
|
|
const struct regset *fpregset;
|
62 |
|
|
int sizeof_fpregset;
|
63 |
|
|
};
|
64 |
|
|
|
65 |
|
|
|
66 |
|
|
/* Return the name of register REGNUM. */
|
67 |
|
|
static const char *
|
68 |
|
|
s390_register_name (struct gdbarch *gdbarch, int regnum)
|
69 |
|
|
{
|
70 |
|
|
static const char *register_names[S390_NUM_TOTAL_REGS] =
|
71 |
|
|
{
|
72 |
|
|
/* Program Status Word. */
|
73 |
|
|
"pswm", "pswa",
|
74 |
|
|
/* General Purpose Registers. */
|
75 |
|
|
"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
|
76 |
|
|
"r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
|
77 |
|
|
/* Access Registers. */
|
78 |
|
|
"acr0", "acr1", "acr2", "acr3", "acr4", "acr5", "acr6", "acr7",
|
79 |
|
|
"acr8", "acr9", "acr10", "acr11", "acr12", "acr13", "acr14", "acr15",
|
80 |
|
|
/* Floating Point Control Word. */
|
81 |
|
|
"fpc",
|
82 |
|
|
/* Floating Point Registers. */
|
83 |
|
|
"f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
|
84 |
|
|
"f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
|
85 |
|
|
/* Pseudo registers. */
|
86 |
|
|
"pc", "cc",
|
87 |
|
|
};
|
88 |
|
|
|
89 |
|
|
gdb_assert (regnum >= 0 && regnum < S390_NUM_TOTAL_REGS);
|
90 |
|
|
return register_names[regnum];
|
91 |
|
|
}
|
92 |
|
|
|
93 |
|
|
/* Return the GDB type object for the "standard" data type of data in
|
94 |
|
|
register REGNUM. */
|
95 |
|
|
static struct type *
|
96 |
|
|
s390_register_type (struct gdbarch *gdbarch, int regnum)
|
97 |
|
|
{
|
98 |
|
|
if (regnum == S390_PSWM_REGNUM || regnum == S390_PSWA_REGNUM)
|
99 |
|
|
return builtin_type_long;
|
100 |
|
|
if (regnum >= S390_R0_REGNUM && regnum <= S390_R15_REGNUM)
|
101 |
|
|
return builtin_type_long;
|
102 |
|
|
if (regnum >= S390_A0_REGNUM && regnum <= S390_A15_REGNUM)
|
103 |
|
|
return builtin_type_int;
|
104 |
|
|
if (regnum == S390_FPC_REGNUM)
|
105 |
|
|
return builtin_type_int;
|
106 |
|
|
if (regnum >= S390_F0_REGNUM && regnum <= S390_F15_REGNUM)
|
107 |
|
|
return builtin_type_double;
|
108 |
|
|
if (regnum == S390_PC_REGNUM)
|
109 |
|
|
return builtin_type_void_func_ptr;
|
110 |
|
|
if (regnum == S390_CC_REGNUM)
|
111 |
|
|
return builtin_type_int;
|
112 |
|
|
|
113 |
|
|
internal_error (__FILE__, __LINE__, _("invalid regnum"));
|
114 |
|
|
}
|
115 |
|
|
|
116 |
|
|
/* DWARF Register Mapping. */
|
117 |
|
|
|
118 |
|
|
static int s390_dwarf_regmap[] =
|
119 |
|
|
{
|
120 |
|
|
/* General Purpose Registers. */
|
121 |
|
|
S390_R0_REGNUM, S390_R1_REGNUM, S390_R2_REGNUM, S390_R3_REGNUM,
|
122 |
|
|
S390_R4_REGNUM, S390_R5_REGNUM, S390_R6_REGNUM, S390_R7_REGNUM,
|
123 |
|
|
S390_R8_REGNUM, S390_R9_REGNUM, S390_R10_REGNUM, S390_R11_REGNUM,
|
124 |
|
|
S390_R12_REGNUM, S390_R13_REGNUM, S390_R14_REGNUM, S390_R15_REGNUM,
|
125 |
|
|
|
126 |
|
|
/* Floating Point Registers. */
|
127 |
|
|
S390_F0_REGNUM, S390_F2_REGNUM, S390_F4_REGNUM, S390_F6_REGNUM,
|
128 |
|
|
S390_F1_REGNUM, S390_F3_REGNUM, S390_F5_REGNUM, S390_F7_REGNUM,
|
129 |
|
|
S390_F8_REGNUM, S390_F10_REGNUM, S390_F12_REGNUM, S390_F14_REGNUM,
|
130 |
|
|
S390_F9_REGNUM, S390_F11_REGNUM, S390_F13_REGNUM, S390_F15_REGNUM,
|
131 |
|
|
|
132 |
|
|
/* Control Registers (not mapped). */
|
133 |
|
|
-1, -1, -1, -1, -1, -1, -1, -1,
|
134 |
|
|
-1, -1, -1, -1, -1, -1, -1, -1,
|
135 |
|
|
|
136 |
|
|
/* Access Registers. */
|
137 |
|
|
S390_A0_REGNUM, S390_A1_REGNUM, S390_A2_REGNUM, S390_A3_REGNUM,
|
138 |
|
|
S390_A4_REGNUM, S390_A5_REGNUM, S390_A6_REGNUM, S390_A7_REGNUM,
|
139 |
|
|
S390_A8_REGNUM, S390_A9_REGNUM, S390_A10_REGNUM, S390_A11_REGNUM,
|
140 |
|
|
S390_A12_REGNUM, S390_A13_REGNUM, S390_A14_REGNUM, S390_A15_REGNUM,
|
141 |
|
|
|
142 |
|
|
/* Program Status Word. */
|
143 |
|
|
S390_PSWM_REGNUM,
|
144 |
|
|
S390_PSWA_REGNUM
|
145 |
|
|
};
|
146 |
|
|
|
147 |
|
|
/* Convert DWARF register number REG to the appropriate register
|
148 |
|
|
number used by GDB. */
|
149 |
|
|
static int
|
150 |
|
|
s390_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg)
|
151 |
|
|
{
|
152 |
|
|
int regnum = -1;
|
153 |
|
|
|
154 |
|
|
if (reg >= 0 && reg < ARRAY_SIZE (s390_dwarf_regmap))
|
155 |
|
|
regnum = s390_dwarf_regmap[reg];
|
156 |
|
|
|
157 |
|
|
if (regnum == -1)
|
158 |
|
|
warning (_("Unmapped DWARF Register #%d encountered."), reg);
|
159 |
|
|
|
160 |
|
|
return regnum;
|
161 |
|
|
}
|
162 |
|
|
|
163 |
|
|
/* Pseudo registers - PC and condition code. */
|
164 |
|
|
|
165 |
|
|
static void
|
166 |
|
|
s390_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
|
167 |
|
|
int regnum, gdb_byte *buf)
|
168 |
|
|
{
|
169 |
|
|
ULONGEST val;
|
170 |
|
|
|
171 |
|
|
switch (regnum)
|
172 |
|
|
{
|
173 |
|
|
case S390_PC_REGNUM:
|
174 |
|
|
regcache_raw_read_unsigned (regcache, S390_PSWA_REGNUM, &val);
|
175 |
|
|
store_unsigned_integer (buf, 4, val & 0x7fffffff);
|
176 |
|
|
break;
|
177 |
|
|
|
178 |
|
|
case S390_CC_REGNUM:
|
179 |
|
|
regcache_raw_read_unsigned (regcache, S390_PSWM_REGNUM, &val);
|
180 |
|
|
store_unsigned_integer (buf, 4, (val >> 12) & 3);
|
181 |
|
|
break;
|
182 |
|
|
|
183 |
|
|
default:
|
184 |
|
|
internal_error (__FILE__, __LINE__, _("invalid regnum"));
|
185 |
|
|
}
|
186 |
|
|
}
|
187 |
|
|
|
188 |
|
|
static void
|
189 |
|
|
s390_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
|
190 |
|
|
int regnum, const gdb_byte *buf)
|
191 |
|
|
{
|
192 |
|
|
ULONGEST val, psw;
|
193 |
|
|
|
194 |
|
|
switch (regnum)
|
195 |
|
|
{
|
196 |
|
|
case S390_PC_REGNUM:
|
197 |
|
|
val = extract_unsigned_integer (buf, 4);
|
198 |
|
|
regcache_raw_read_unsigned (regcache, S390_PSWA_REGNUM, &psw);
|
199 |
|
|
psw = (psw & 0x80000000) | (val & 0x7fffffff);
|
200 |
|
|
regcache_raw_write_unsigned (regcache, S390_PSWA_REGNUM, psw);
|
201 |
|
|
break;
|
202 |
|
|
|
203 |
|
|
case S390_CC_REGNUM:
|
204 |
|
|
val = extract_unsigned_integer (buf, 4);
|
205 |
|
|
regcache_raw_read_unsigned (regcache, S390_PSWM_REGNUM, &psw);
|
206 |
|
|
psw = (psw & ~((ULONGEST)3 << 12)) | ((val & 3) << 12);
|
207 |
|
|
regcache_raw_write_unsigned (regcache, S390_PSWM_REGNUM, psw);
|
208 |
|
|
break;
|
209 |
|
|
|
210 |
|
|
default:
|
211 |
|
|
internal_error (__FILE__, __LINE__, _("invalid regnum"));
|
212 |
|
|
}
|
213 |
|
|
}
|
214 |
|
|
|
215 |
|
|
static void
|
216 |
|
|
s390x_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
|
217 |
|
|
int regnum, gdb_byte *buf)
|
218 |
|
|
{
|
219 |
|
|
ULONGEST val;
|
220 |
|
|
|
221 |
|
|
switch (regnum)
|
222 |
|
|
{
|
223 |
|
|
case S390_PC_REGNUM:
|
224 |
|
|
regcache_raw_read (regcache, S390_PSWA_REGNUM, buf);
|
225 |
|
|
break;
|
226 |
|
|
|
227 |
|
|
case S390_CC_REGNUM:
|
228 |
|
|
regcache_raw_read_unsigned (regcache, S390_PSWM_REGNUM, &val);
|
229 |
|
|
store_unsigned_integer (buf, 4, (val >> 44) & 3);
|
230 |
|
|
break;
|
231 |
|
|
|
232 |
|
|
default:
|
233 |
|
|
internal_error (__FILE__, __LINE__, _("invalid regnum"));
|
234 |
|
|
}
|
235 |
|
|
}
|
236 |
|
|
|
237 |
|
|
static void
|
238 |
|
|
s390x_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
|
239 |
|
|
int regnum, const gdb_byte *buf)
|
240 |
|
|
{
|
241 |
|
|
ULONGEST val, psw;
|
242 |
|
|
|
243 |
|
|
switch (regnum)
|
244 |
|
|
{
|
245 |
|
|
case S390_PC_REGNUM:
|
246 |
|
|
regcache_raw_write (regcache, S390_PSWA_REGNUM, buf);
|
247 |
|
|
break;
|
248 |
|
|
|
249 |
|
|
case S390_CC_REGNUM:
|
250 |
|
|
val = extract_unsigned_integer (buf, 4);
|
251 |
|
|
regcache_raw_read_unsigned (regcache, S390_PSWM_REGNUM, &psw);
|
252 |
|
|
psw = (psw & ~((ULONGEST)3 << 44)) | ((val & 3) << 44);
|
253 |
|
|
regcache_raw_write_unsigned (regcache, S390_PSWM_REGNUM, psw);
|
254 |
|
|
break;
|
255 |
|
|
|
256 |
|
|
default:
|
257 |
|
|
internal_error (__FILE__, __LINE__, _("invalid regnum"));
|
258 |
|
|
}
|
259 |
|
|
}
|
260 |
|
|
|
261 |
|
|
/* 'float' values are stored in the upper half of floating-point
|
262 |
|
|
registers, even though we are otherwise a big-endian platform. */
|
263 |
|
|
|
264 |
|
|
static struct value *
|
265 |
|
|
s390_value_from_register (struct type *type, int regnum,
|
266 |
|
|
struct frame_info *frame)
|
267 |
|
|
{
|
268 |
|
|
struct value *value = default_value_from_register (type, regnum, frame);
|
269 |
|
|
int len = TYPE_LENGTH (type);
|
270 |
|
|
|
271 |
|
|
if (regnum >= S390_F0_REGNUM && regnum <= S390_F15_REGNUM && len < 8)
|
272 |
|
|
set_value_offset (value, 0);
|
273 |
|
|
|
274 |
|
|
return value;
|
275 |
|
|
}
|
276 |
|
|
|
277 |
|
|
/* Register groups. */
|
278 |
|
|
|
279 |
|
|
static int
|
280 |
|
|
s390_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
|
281 |
|
|
struct reggroup *group)
|
282 |
|
|
{
|
283 |
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
284 |
|
|
|
285 |
|
|
/* Registers displayed via 'info regs'. */
|
286 |
|
|
if (group == general_reggroup)
|
287 |
|
|
return (regnum >= S390_R0_REGNUM && regnum <= S390_R15_REGNUM)
|
288 |
|
|
|| regnum == S390_PC_REGNUM
|
289 |
|
|
|| regnum == S390_CC_REGNUM;
|
290 |
|
|
|
291 |
|
|
/* Registers displayed via 'info float'. */
|
292 |
|
|
if (group == float_reggroup)
|
293 |
|
|
return (regnum >= S390_F0_REGNUM && regnum <= S390_F15_REGNUM)
|
294 |
|
|
|| regnum == S390_FPC_REGNUM;
|
295 |
|
|
|
296 |
|
|
/* Registers that need to be saved/restored in order to
|
297 |
|
|
push or pop frames. */
|
298 |
|
|
if (group == save_reggroup || group == restore_reggroup)
|
299 |
|
|
return regnum != S390_PSWM_REGNUM && regnum != S390_PSWA_REGNUM;
|
300 |
|
|
|
301 |
|
|
return default_register_reggroup_p (gdbarch, regnum, group);
|
302 |
|
|
}
|
303 |
|
|
|
304 |
|
|
|
305 |
|
|
/* Core file register sets. */
|
306 |
|
|
|
307 |
|
|
int s390_regmap_gregset[S390_NUM_REGS] =
|
308 |
|
|
{
|
309 |
|
|
/* Program Status Word. */
|
310 |
|
|
0x00, 0x04,
|
311 |
|
|
/* General Purpose Registers. */
|
312 |
|
|
0x08, 0x0c, 0x10, 0x14,
|
313 |
|
|
0x18, 0x1c, 0x20, 0x24,
|
314 |
|
|
0x28, 0x2c, 0x30, 0x34,
|
315 |
|
|
0x38, 0x3c, 0x40, 0x44,
|
316 |
|
|
/* Access Registers. */
|
317 |
|
|
0x48, 0x4c, 0x50, 0x54,
|
318 |
|
|
0x58, 0x5c, 0x60, 0x64,
|
319 |
|
|
0x68, 0x6c, 0x70, 0x74,
|
320 |
|
|
0x78, 0x7c, 0x80, 0x84,
|
321 |
|
|
/* Floating Point Control Word. */
|
322 |
|
|
-1,
|
323 |
|
|
/* Floating Point Registers. */
|
324 |
|
|
-1, -1, -1, -1, -1, -1, -1, -1,
|
325 |
|
|
-1, -1, -1, -1, -1, -1, -1, -1,
|
326 |
|
|
};
|
327 |
|
|
|
328 |
|
|
int s390x_regmap_gregset[S390_NUM_REGS] =
|
329 |
|
|
{
|
330 |
|
|
0x00, 0x08,
|
331 |
|
|
/* General Purpose Registers. */
|
332 |
|
|
0x10, 0x18, 0x20, 0x28,
|
333 |
|
|
0x30, 0x38, 0x40, 0x48,
|
334 |
|
|
0x50, 0x58, 0x60, 0x68,
|
335 |
|
|
0x70, 0x78, 0x80, 0x88,
|
336 |
|
|
/* Access Registers. */
|
337 |
|
|
0x90, 0x94, 0x98, 0x9c,
|
338 |
|
|
0xa0, 0xa4, 0xa8, 0xac,
|
339 |
|
|
0xb0, 0xb4, 0xb8, 0xbc,
|
340 |
|
|
0xc0, 0xc4, 0xc8, 0xcc,
|
341 |
|
|
/* Floating Point Control Word. */
|
342 |
|
|
-1,
|
343 |
|
|
/* Floating Point Registers. */
|
344 |
|
|
-1, -1, -1, -1, -1, -1, -1, -1,
|
345 |
|
|
-1, -1, -1, -1, -1, -1, -1, -1,
|
346 |
|
|
};
|
347 |
|
|
|
348 |
|
|
int s390_regmap_fpregset[S390_NUM_REGS] =
|
349 |
|
|
{
|
350 |
|
|
/* Program Status Word. */
|
351 |
|
|
-1, -1,
|
352 |
|
|
/* General Purpose Registers. */
|
353 |
|
|
-1, -1, -1, -1, -1, -1, -1, -1,
|
354 |
|
|
-1, -1, -1, -1, -1, -1, -1, -1,
|
355 |
|
|
/* Access Registers. */
|
356 |
|
|
-1, -1, -1, -1, -1, -1, -1, -1,
|
357 |
|
|
-1, -1, -1, -1, -1, -1, -1, -1,
|
358 |
|
|
/* Floating Point Control Word. */
|
359 |
|
|
0x00,
|
360 |
|
|
/* Floating Point Registers. */
|
361 |
|
|
0x08, 0x10, 0x18, 0x20,
|
362 |
|
|
0x28, 0x30, 0x38, 0x40,
|
363 |
|
|
0x48, 0x50, 0x58, 0x60,
|
364 |
|
|
0x68, 0x70, 0x78, 0x80,
|
365 |
|
|
};
|
366 |
|
|
|
367 |
|
|
/* Supply register REGNUM from the register set REGSET to register cache
|
368 |
|
|
REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
|
369 |
|
|
static void
|
370 |
|
|
s390_supply_regset (const struct regset *regset, struct regcache *regcache,
|
371 |
|
|
int regnum, const void *regs, size_t len)
|
372 |
|
|
{
|
373 |
|
|
const int *offset = regset->descr;
|
374 |
|
|
int i;
|
375 |
|
|
|
376 |
|
|
for (i = 0; i < S390_NUM_REGS; i++)
|
377 |
|
|
{
|
378 |
|
|
if ((regnum == i || regnum == -1) && offset[i] != -1)
|
379 |
|
|
regcache_raw_supply (regcache, i, (const char *)regs + offset[i]);
|
380 |
|
|
}
|
381 |
|
|
}
|
382 |
|
|
|
383 |
|
|
/* Collect register REGNUM from the register cache REGCACHE and store
|
384 |
|
|
it in the buffer specified by REGS and LEN as described by the
|
385 |
|
|
general-purpose register set REGSET. If REGNUM is -1, do this for
|
386 |
|
|
all registers in REGSET. */
|
387 |
|
|
static void
|
388 |
|
|
s390_collect_regset (const struct regset *regset,
|
389 |
|
|
const struct regcache *regcache,
|
390 |
|
|
int regnum, void *regs, size_t len)
|
391 |
|
|
{
|
392 |
|
|
const int *offset = regset->descr;
|
393 |
|
|
int i;
|
394 |
|
|
|
395 |
|
|
for (i = 0; i < S390_NUM_REGS; i++)
|
396 |
|
|
{
|
397 |
|
|
if ((regnum == i || regnum == -1) && offset[i] != -1)
|
398 |
|
|
regcache_raw_collect (regcache, i, (char *)regs + offset[i]);
|
399 |
|
|
}
|
400 |
|
|
}
|
401 |
|
|
|
402 |
|
|
static const struct regset s390_gregset = {
|
403 |
|
|
s390_regmap_gregset,
|
404 |
|
|
s390_supply_regset,
|
405 |
|
|
s390_collect_regset
|
406 |
|
|
};
|
407 |
|
|
|
408 |
|
|
static const struct regset s390x_gregset = {
|
409 |
|
|
s390x_regmap_gregset,
|
410 |
|
|
s390_supply_regset,
|
411 |
|
|
s390_collect_regset
|
412 |
|
|
};
|
413 |
|
|
|
414 |
|
|
static const struct regset s390_fpregset = {
|
415 |
|
|
s390_regmap_fpregset,
|
416 |
|
|
s390_supply_regset,
|
417 |
|
|
s390_collect_regset
|
418 |
|
|
};
|
419 |
|
|
|
420 |
|
|
/* Return the appropriate register set for the core section identified
|
421 |
|
|
by SECT_NAME and SECT_SIZE. */
|
422 |
|
|
const struct regset *
|
423 |
|
|
s390_regset_from_core_section (struct gdbarch *gdbarch,
|
424 |
|
|
const char *sect_name, size_t sect_size)
|
425 |
|
|
{
|
426 |
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
427 |
|
|
|
428 |
|
|
if (strcmp (sect_name, ".reg") == 0 && sect_size >= tdep->sizeof_gregset)
|
429 |
|
|
return tdep->gregset;
|
430 |
|
|
|
431 |
|
|
if (strcmp (sect_name, ".reg2") == 0 && sect_size >= tdep->sizeof_fpregset)
|
432 |
|
|
return tdep->fpregset;
|
433 |
|
|
|
434 |
|
|
return NULL;
|
435 |
|
|
}
|
436 |
|
|
|
437 |
|
|
|
438 |
|
|
/* Decoding S/390 instructions. */
|
439 |
|
|
|
440 |
|
|
/* Named opcode values for the S/390 instructions we recognize. Some
|
441 |
|
|
instructions have their opcode split across two fields; those are the
|
442 |
|
|
op1_* and op2_* enums. */
|
443 |
|
|
enum
|
444 |
|
|
{
|
445 |
|
|
op1_lhi = 0xa7, op2_lhi = 0x08,
|
446 |
|
|
op1_lghi = 0xa7, op2_lghi = 0x09,
|
447 |
|
|
op1_lgfi = 0xc0, op2_lgfi = 0x01,
|
448 |
|
|
op_lr = 0x18,
|
449 |
|
|
op_lgr = 0xb904,
|
450 |
|
|
op_l = 0x58,
|
451 |
|
|
op1_ly = 0xe3, op2_ly = 0x58,
|
452 |
|
|
op1_lg = 0xe3, op2_lg = 0x04,
|
453 |
|
|
op_lm = 0x98,
|
454 |
|
|
op1_lmy = 0xeb, op2_lmy = 0x98,
|
455 |
|
|
op1_lmg = 0xeb, op2_lmg = 0x04,
|
456 |
|
|
op_st = 0x50,
|
457 |
|
|
op1_sty = 0xe3, op2_sty = 0x50,
|
458 |
|
|
op1_stg = 0xe3, op2_stg = 0x24,
|
459 |
|
|
op_std = 0x60,
|
460 |
|
|
op_stm = 0x90,
|
461 |
|
|
op1_stmy = 0xeb, op2_stmy = 0x90,
|
462 |
|
|
op1_stmg = 0xeb, op2_stmg = 0x24,
|
463 |
|
|
op1_aghi = 0xa7, op2_aghi = 0x0b,
|
464 |
|
|
op1_ahi = 0xa7, op2_ahi = 0x0a,
|
465 |
|
|
op1_agfi = 0xc2, op2_agfi = 0x08,
|
466 |
|
|
op1_afi = 0xc2, op2_afi = 0x09,
|
467 |
|
|
op1_algfi= 0xc2, op2_algfi= 0x0a,
|
468 |
|
|
op1_alfi = 0xc2, op2_alfi = 0x0b,
|
469 |
|
|
op_ar = 0x1a,
|
470 |
|
|
op_agr = 0xb908,
|
471 |
|
|
op_a = 0x5a,
|
472 |
|
|
op1_ay = 0xe3, op2_ay = 0x5a,
|
473 |
|
|
op1_ag = 0xe3, op2_ag = 0x08,
|
474 |
|
|
op1_slgfi= 0xc2, op2_slgfi= 0x04,
|
475 |
|
|
op1_slfi = 0xc2, op2_slfi = 0x05,
|
476 |
|
|
op_sr = 0x1b,
|
477 |
|
|
op_sgr = 0xb909,
|
478 |
|
|
op_s = 0x5b,
|
479 |
|
|
op1_sy = 0xe3, op2_sy = 0x5b,
|
480 |
|
|
op1_sg = 0xe3, op2_sg = 0x09,
|
481 |
|
|
op_nr = 0x14,
|
482 |
|
|
op_ngr = 0xb980,
|
483 |
|
|
op_la = 0x41,
|
484 |
|
|
op1_lay = 0xe3, op2_lay = 0x71,
|
485 |
|
|
op1_larl = 0xc0, op2_larl = 0x00,
|
486 |
|
|
op_basr = 0x0d,
|
487 |
|
|
op_bas = 0x4d,
|
488 |
|
|
op_bcr = 0x07,
|
489 |
|
|
op_bc = 0x0d,
|
490 |
|
|
op1_bras = 0xa7, op2_bras = 0x05,
|
491 |
|
|
op1_brasl= 0xc0, op2_brasl= 0x05,
|
492 |
|
|
op1_brc = 0xa7, op2_brc = 0x04,
|
493 |
|
|
op1_brcl = 0xc0, op2_brcl = 0x04,
|
494 |
|
|
};
|
495 |
|
|
|
496 |
|
|
|
497 |
|
|
/* Read a single instruction from address AT. */
|
498 |
|
|
|
499 |
|
|
#define S390_MAX_INSTR_SIZE 6
|
500 |
|
|
static int
|
501 |
|
|
s390_readinstruction (bfd_byte instr[], CORE_ADDR at)
|
502 |
|
|
{
|
503 |
|
|
static int s390_instrlen[] = { 2, 4, 4, 6 };
|
504 |
|
|
int instrlen;
|
505 |
|
|
|
506 |
|
|
if (read_memory_nobpt (at, &instr[0], 2))
|
507 |
|
|
return -1;
|
508 |
|
|
instrlen = s390_instrlen[instr[0] >> 6];
|
509 |
|
|
if (instrlen > 2)
|
510 |
|
|
{
|
511 |
|
|
if (read_memory_nobpt (at + 2, &instr[2], instrlen - 2))
|
512 |
|
|
return -1;
|
513 |
|
|
}
|
514 |
|
|
return instrlen;
|
515 |
|
|
}
|
516 |
|
|
|
517 |
|
|
|
518 |
|
|
/* The functions below are for recognizing and decoding S/390
|
519 |
|
|
instructions of various formats. Each of them checks whether INSN
|
520 |
|
|
is an instruction of the given format, with the specified opcodes.
|
521 |
|
|
If it is, it sets the remaining arguments to the values of the
|
522 |
|
|
instruction's fields, and returns a non-zero value; otherwise, it
|
523 |
|
|
returns zero.
|
524 |
|
|
|
525 |
|
|
These functions' arguments appear in the order they appear in the
|
526 |
|
|
instruction, not in the machine-language form. So, opcodes always
|
527 |
|
|
come first, even though they're sometimes scattered around the
|
528 |
|
|
instructions. And displacements appear before base and extension
|
529 |
|
|
registers, as they do in the assembly syntax, not at the end, as
|
530 |
|
|
they do in the machine language. */
|
531 |
|
|
static int
|
532 |
|
|
is_ri (bfd_byte *insn, int op1, int op2, unsigned int *r1, int *i2)
|
533 |
|
|
{
|
534 |
|
|
if (insn[0] == op1 && (insn[1] & 0xf) == op2)
|
535 |
|
|
{
|
536 |
|
|
*r1 = (insn[1] >> 4) & 0xf;
|
537 |
|
|
/* i2 is a 16-bit signed quantity. */
|
538 |
|
|
*i2 = (((insn[2] << 8) | insn[3]) ^ 0x8000) - 0x8000;
|
539 |
|
|
return 1;
|
540 |
|
|
}
|
541 |
|
|
else
|
542 |
|
|
return 0;
|
543 |
|
|
}
|
544 |
|
|
|
545 |
|
|
|
546 |
|
|
static int
|
547 |
|
|
is_ril (bfd_byte *insn, int op1, int op2,
|
548 |
|
|
unsigned int *r1, int *i2)
|
549 |
|
|
{
|
550 |
|
|
if (insn[0] == op1 && (insn[1] & 0xf) == op2)
|
551 |
|
|
{
|
552 |
|
|
*r1 = (insn[1] >> 4) & 0xf;
|
553 |
|
|
/* i2 is a signed quantity. If the host 'int' is 32 bits long,
|
554 |
|
|
no sign extension is necessary, but we don't want to assume
|
555 |
|
|
that. */
|
556 |
|
|
*i2 = (((insn[2] << 24)
|
557 |
|
|
| (insn[3] << 16)
|
558 |
|
|
| (insn[4] << 8)
|
559 |
|
|
| (insn[5])) ^ 0x80000000) - 0x80000000;
|
560 |
|
|
return 1;
|
561 |
|
|
}
|
562 |
|
|
else
|
563 |
|
|
return 0;
|
564 |
|
|
}
|
565 |
|
|
|
566 |
|
|
|
567 |
|
|
static int
|
568 |
|
|
is_rr (bfd_byte *insn, int op, unsigned int *r1, unsigned int *r2)
|
569 |
|
|
{
|
570 |
|
|
if (insn[0] == op)
|
571 |
|
|
{
|
572 |
|
|
*r1 = (insn[1] >> 4) & 0xf;
|
573 |
|
|
*r2 = insn[1] & 0xf;
|
574 |
|
|
return 1;
|
575 |
|
|
}
|
576 |
|
|
else
|
577 |
|
|
return 0;
|
578 |
|
|
}
|
579 |
|
|
|
580 |
|
|
|
581 |
|
|
static int
|
582 |
|
|
is_rre (bfd_byte *insn, int op, unsigned int *r1, unsigned int *r2)
|
583 |
|
|
{
|
584 |
|
|
if (((insn[0] << 8) | insn[1]) == op)
|
585 |
|
|
{
|
586 |
|
|
/* Yes, insn[3]. insn[2] is unused in RRE format. */
|
587 |
|
|
*r1 = (insn[3] >> 4) & 0xf;
|
588 |
|
|
*r2 = insn[3] & 0xf;
|
589 |
|
|
return 1;
|
590 |
|
|
}
|
591 |
|
|
else
|
592 |
|
|
return 0;
|
593 |
|
|
}
|
594 |
|
|
|
595 |
|
|
|
596 |
|
|
static int
|
597 |
|
|
is_rs (bfd_byte *insn, int op,
|
598 |
|
|
unsigned int *r1, unsigned int *r3, unsigned int *d2, unsigned int *b2)
|
599 |
|
|
{
|
600 |
|
|
if (insn[0] == op)
|
601 |
|
|
{
|
602 |
|
|
*r1 = (insn[1] >> 4) & 0xf;
|
603 |
|
|
*r3 = insn[1] & 0xf;
|
604 |
|
|
*b2 = (insn[2] >> 4) & 0xf;
|
605 |
|
|
*d2 = ((insn[2] & 0xf) << 8) | insn[3];
|
606 |
|
|
return 1;
|
607 |
|
|
}
|
608 |
|
|
else
|
609 |
|
|
return 0;
|
610 |
|
|
}
|
611 |
|
|
|
612 |
|
|
|
613 |
|
|
static int
|
614 |
|
|
is_rsy (bfd_byte *insn, int op1, int op2,
|
615 |
|
|
unsigned int *r1, unsigned int *r3, unsigned int *d2, unsigned int *b2)
|
616 |
|
|
{
|
617 |
|
|
if (insn[0] == op1
|
618 |
|
|
&& insn[5] == op2)
|
619 |
|
|
{
|
620 |
|
|
*r1 = (insn[1] >> 4) & 0xf;
|
621 |
|
|
*r3 = insn[1] & 0xf;
|
622 |
|
|
*b2 = (insn[2] >> 4) & 0xf;
|
623 |
|
|
/* The 'long displacement' is a 20-bit signed integer. */
|
624 |
|
|
*d2 = ((((insn[2] & 0xf) << 8) | insn[3] | (insn[4] << 12))
|
625 |
|
|
^ 0x80000) - 0x80000;
|
626 |
|
|
return 1;
|
627 |
|
|
}
|
628 |
|
|
else
|
629 |
|
|
return 0;
|
630 |
|
|
}
|
631 |
|
|
|
632 |
|
|
|
633 |
|
|
static int
|
634 |
|
|
is_rx (bfd_byte *insn, int op,
|
635 |
|
|
unsigned int *r1, unsigned int *d2, unsigned int *x2, unsigned int *b2)
|
636 |
|
|
{
|
637 |
|
|
if (insn[0] == op)
|
638 |
|
|
{
|
639 |
|
|
*r1 = (insn[1] >> 4) & 0xf;
|
640 |
|
|
*x2 = insn[1] & 0xf;
|
641 |
|
|
*b2 = (insn[2] >> 4) & 0xf;
|
642 |
|
|
*d2 = ((insn[2] & 0xf) << 8) | insn[3];
|
643 |
|
|
return 1;
|
644 |
|
|
}
|
645 |
|
|
else
|
646 |
|
|
return 0;
|
647 |
|
|
}
|
648 |
|
|
|
649 |
|
|
|
650 |
|
|
static int
|
651 |
|
|
is_rxy (bfd_byte *insn, int op1, int op2,
|
652 |
|
|
unsigned int *r1, unsigned int *d2, unsigned int *x2, unsigned int *b2)
|
653 |
|
|
{
|
654 |
|
|
if (insn[0] == op1
|
655 |
|
|
&& insn[5] == op2)
|
656 |
|
|
{
|
657 |
|
|
*r1 = (insn[1] >> 4) & 0xf;
|
658 |
|
|
*x2 = insn[1] & 0xf;
|
659 |
|
|
*b2 = (insn[2] >> 4) & 0xf;
|
660 |
|
|
/* The 'long displacement' is a 20-bit signed integer. */
|
661 |
|
|
*d2 = ((((insn[2] & 0xf) << 8) | insn[3] | (insn[4] << 12))
|
662 |
|
|
^ 0x80000) - 0x80000;
|
663 |
|
|
return 1;
|
664 |
|
|
}
|
665 |
|
|
else
|
666 |
|
|
return 0;
|
667 |
|
|
}
|
668 |
|
|
|
669 |
|
|
|
670 |
|
|
/* Prologue analysis. */
|
671 |
|
|
|
672 |
|
|
#define S390_NUM_GPRS 16
|
673 |
|
|
#define S390_NUM_FPRS 16
|
674 |
|
|
|
675 |
|
|
struct s390_prologue_data {
|
676 |
|
|
|
677 |
|
|
/* The stack. */
|
678 |
|
|
struct pv_area *stack;
|
679 |
|
|
|
680 |
|
|
/* The size of a GPR or FPR. */
|
681 |
|
|
int gpr_size;
|
682 |
|
|
int fpr_size;
|
683 |
|
|
|
684 |
|
|
/* The general-purpose registers. */
|
685 |
|
|
pv_t gpr[S390_NUM_GPRS];
|
686 |
|
|
|
687 |
|
|
/* The floating-point registers. */
|
688 |
|
|
pv_t fpr[S390_NUM_FPRS];
|
689 |
|
|
|
690 |
|
|
/* The offset relative to the CFA where the incoming GPR N was saved
|
691 |
|
|
by the function prologue. 0 if not saved or unknown. */
|
692 |
|
|
int gpr_slot[S390_NUM_GPRS];
|
693 |
|
|
|
694 |
|
|
/* Likewise for FPRs. */
|
695 |
|
|
int fpr_slot[S390_NUM_FPRS];
|
696 |
|
|
|
697 |
|
|
/* Nonzero if the backchain was saved. This is assumed to be the
|
698 |
|
|
case when the incoming SP is saved at the current SP location. */
|
699 |
|
|
int back_chain_saved_p;
|
700 |
|
|
};
|
701 |
|
|
|
702 |
|
|
/* Return the effective address for an X-style instruction, like:
|
703 |
|
|
|
704 |
|
|
L R1, D2(X2, B2)
|
705 |
|
|
|
706 |
|
|
Here, X2 and B2 are registers, and D2 is a signed 20-bit
|
707 |
|
|
constant; the effective address is the sum of all three. If either
|
708 |
|
|
X2 or B2 are zero, then it doesn't contribute to the sum --- this
|
709 |
|
|
means that r0 can't be used as either X2 or B2. */
|
710 |
|
|
static pv_t
|
711 |
|
|
s390_addr (struct s390_prologue_data *data,
|
712 |
|
|
int d2, unsigned int x2, unsigned int b2)
|
713 |
|
|
{
|
714 |
|
|
pv_t result;
|
715 |
|
|
|
716 |
|
|
result = pv_constant (d2);
|
717 |
|
|
if (x2)
|
718 |
|
|
result = pv_add (result, data->gpr[x2]);
|
719 |
|
|
if (b2)
|
720 |
|
|
result = pv_add (result, data->gpr[b2]);
|
721 |
|
|
|
722 |
|
|
return result;
|
723 |
|
|
}
|
724 |
|
|
|
725 |
|
|
/* Do a SIZE-byte store of VALUE to D2(X2,B2). */
|
726 |
|
|
static void
|
727 |
|
|
s390_store (struct s390_prologue_data *data,
|
728 |
|
|
int d2, unsigned int x2, unsigned int b2, CORE_ADDR size,
|
729 |
|
|
pv_t value)
|
730 |
|
|
{
|
731 |
|
|
pv_t addr = s390_addr (data, d2, x2, b2);
|
732 |
|
|
pv_t offset;
|
733 |
|
|
|
734 |
|
|
/* Check whether we are storing the backchain. */
|
735 |
|
|
offset = pv_subtract (data->gpr[S390_SP_REGNUM - S390_R0_REGNUM], addr);
|
736 |
|
|
|
737 |
|
|
if (pv_is_constant (offset) && offset.k == 0)
|
738 |
|
|
if (size == data->gpr_size
|
739 |
|
|
&& pv_is_register_k (value, S390_SP_REGNUM, 0))
|
740 |
|
|
{
|
741 |
|
|
data->back_chain_saved_p = 1;
|
742 |
|
|
return;
|
743 |
|
|
}
|
744 |
|
|
|
745 |
|
|
|
746 |
|
|
/* Check whether we are storing a register into the stack. */
|
747 |
|
|
if (!pv_area_store_would_trash (data->stack, addr))
|
748 |
|
|
pv_area_store (data->stack, addr, size, value);
|
749 |
|
|
|
750 |
|
|
|
751 |
|
|
/* Note: If this is some store we cannot identify, you might think we
|
752 |
|
|
should forget our cached values, as any of those might have been hit.
|
753 |
|
|
|
754 |
|
|
However, we make the assumption that the register save areas are only
|
755 |
|
|
ever stored to once in any given function, and we do recognize these
|
756 |
|
|
stores. Thus every store we cannot recognize does not hit our data. */
|
757 |
|
|
}
|
758 |
|
|
|
759 |
|
|
/* Do a SIZE-byte load from D2(X2,B2). */
|
760 |
|
|
static pv_t
|
761 |
|
|
s390_load (struct s390_prologue_data *data,
|
762 |
|
|
int d2, unsigned int x2, unsigned int b2, CORE_ADDR size)
|
763 |
|
|
|
764 |
|
|
{
|
765 |
|
|
pv_t addr = s390_addr (data, d2, x2, b2);
|
766 |
|
|
pv_t offset;
|
767 |
|
|
|
768 |
|
|
/* If it's a load from an in-line constant pool, then we can
|
769 |
|
|
simulate that, under the assumption that the code isn't
|
770 |
|
|
going to change between the time the processor actually
|
771 |
|
|
executed it creating the current frame, and the time when
|
772 |
|
|
we're analyzing the code to unwind past that frame. */
|
773 |
|
|
if (pv_is_constant (addr))
|
774 |
|
|
{
|
775 |
|
|
struct section_table *secp;
|
776 |
|
|
secp = target_section_by_addr (¤t_target, addr.k);
|
777 |
|
|
if (secp != NULL
|
778 |
|
|
&& (bfd_get_section_flags (secp->bfd, secp->the_bfd_section)
|
779 |
|
|
& SEC_READONLY))
|
780 |
|
|
return pv_constant (read_memory_integer (addr.k, size));
|
781 |
|
|
}
|
782 |
|
|
|
783 |
|
|
/* Check whether we are accessing one of our save slots. */
|
784 |
|
|
return pv_area_fetch (data->stack, addr, size);
|
785 |
|
|
}
|
786 |
|
|
|
787 |
|
|
/* Function for finding saved registers in a 'struct pv_area'; we pass
|
788 |
|
|
this to pv_area_scan.
|
789 |
|
|
|
790 |
|
|
If VALUE is a saved register, ADDR says it was saved at a constant
|
791 |
|
|
offset from the frame base, and SIZE indicates that the whole
|
792 |
|
|
register was saved, record its offset in the reg_offset table in
|
793 |
|
|
PROLOGUE_UNTYPED. */
|
794 |
|
|
static void
|
795 |
|
|
s390_check_for_saved (void *data_untyped, pv_t addr, CORE_ADDR size, pv_t value)
|
796 |
|
|
{
|
797 |
|
|
struct s390_prologue_data *data = data_untyped;
|
798 |
|
|
int i, offset;
|
799 |
|
|
|
800 |
|
|
if (!pv_is_register (addr, S390_SP_REGNUM))
|
801 |
|
|
return;
|
802 |
|
|
|
803 |
|
|
offset = 16 * data->gpr_size + 32 - addr.k;
|
804 |
|
|
|
805 |
|
|
/* If we are storing the original value of a register, we want to
|
806 |
|
|
record the CFA offset. If the same register is stored multiple
|
807 |
|
|
times, the stack slot with the highest address counts. */
|
808 |
|
|
|
809 |
|
|
for (i = 0; i < S390_NUM_GPRS; i++)
|
810 |
|
|
if (size == data->gpr_size
|
811 |
|
|
&& pv_is_register_k (value, S390_R0_REGNUM + i, 0))
|
812 |
|
|
if (data->gpr_slot[i] == 0
|
813 |
|
|
|| data->gpr_slot[i] > offset)
|
814 |
|
|
{
|
815 |
|
|
data->gpr_slot[i] = offset;
|
816 |
|
|
return;
|
817 |
|
|
}
|
818 |
|
|
|
819 |
|
|
for (i = 0; i < S390_NUM_FPRS; i++)
|
820 |
|
|
if (size == data->fpr_size
|
821 |
|
|
&& pv_is_register_k (value, S390_F0_REGNUM + i, 0))
|
822 |
|
|
if (data->fpr_slot[i] == 0
|
823 |
|
|
|| data->fpr_slot[i] > offset)
|
824 |
|
|
{
|
825 |
|
|
data->fpr_slot[i] = offset;
|
826 |
|
|
return;
|
827 |
|
|
}
|
828 |
|
|
}
|
829 |
|
|
|
830 |
|
|
/* Analyze the prologue of the function starting at START_PC,
|
831 |
|
|
continuing at most until CURRENT_PC. Initialize DATA to
|
832 |
|
|
hold all information we find out about the state of the registers
|
833 |
|
|
and stack slots. Return the address of the instruction after
|
834 |
|
|
the last one that changed the SP, FP, or back chain; or zero
|
835 |
|
|
on error. */
|
836 |
|
|
static CORE_ADDR
|
837 |
|
|
s390_analyze_prologue (struct gdbarch *gdbarch,
|
838 |
|
|
CORE_ADDR start_pc,
|
839 |
|
|
CORE_ADDR current_pc,
|
840 |
|
|
struct s390_prologue_data *data)
|
841 |
|
|
{
|
842 |
|
|
int word_size = gdbarch_ptr_bit (gdbarch) / 8;
|
843 |
|
|
|
844 |
|
|
/* Our return value:
|
845 |
|
|
The address of the instruction after the last one that changed
|
846 |
|
|
the SP, FP, or back chain; zero if we got an error trying to
|
847 |
|
|
read memory. */
|
848 |
|
|
CORE_ADDR result = start_pc;
|
849 |
|
|
|
850 |
|
|
/* The current PC for our abstract interpretation. */
|
851 |
|
|
CORE_ADDR pc;
|
852 |
|
|
|
853 |
|
|
/* The address of the next instruction after that. */
|
854 |
|
|
CORE_ADDR next_pc;
|
855 |
|
|
|
856 |
|
|
/* Set up everything's initial value. */
|
857 |
|
|
{
|
858 |
|
|
int i;
|
859 |
|
|
|
860 |
|
|
data->stack = make_pv_area (S390_SP_REGNUM);
|
861 |
|
|
|
862 |
|
|
/* For the purpose of prologue tracking, we consider the GPR size to
|
863 |
|
|
be equal to the ABI word size, even if it is actually larger
|
864 |
|
|
(i.e. when running a 32-bit binary under a 64-bit kernel). */
|
865 |
|
|
data->gpr_size = word_size;
|
866 |
|
|
data->fpr_size = 8;
|
867 |
|
|
|
868 |
|
|
for (i = 0; i < S390_NUM_GPRS; i++)
|
869 |
|
|
data->gpr[i] = pv_register (S390_R0_REGNUM + i, 0);
|
870 |
|
|
|
871 |
|
|
for (i = 0; i < S390_NUM_FPRS; i++)
|
872 |
|
|
data->fpr[i] = pv_register (S390_F0_REGNUM + i, 0);
|
873 |
|
|
|
874 |
|
|
for (i = 0; i < S390_NUM_GPRS; i++)
|
875 |
|
|
data->gpr_slot[i] = 0;
|
876 |
|
|
|
877 |
|
|
for (i = 0; i < S390_NUM_FPRS; i++)
|
878 |
|
|
data->fpr_slot[i] = 0;
|
879 |
|
|
|
880 |
|
|
data->back_chain_saved_p = 0;
|
881 |
|
|
}
|
882 |
|
|
|
883 |
|
|
/* Start interpreting instructions, until we hit the frame's
|
884 |
|
|
current PC or the first branch instruction. */
|
885 |
|
|
for (pc = start_pc; pc > 0 && pc < current_pc; pc = next_pc)
|
886 |
|
|
{
|
887 |
|
|
bfd_byte insn[S390_MAX_INSTR_SIZE];
|
888 |
|
|
int insn_len = s390_readinstruction (insn, pc);
|
889 |
|
|
|
890 |
|
|
bfd_byte dummy[S390_MAX_INSTR_SIZE] = { 0 };
|
891 |
|
|
bfd_byte *insn32 = word_size == 4 ? insn : dummy;
|
892 |
|
|
bfd_byte *insn64 = word_size == 8 ? insn : dummy;
|
893 |
|
|
|
894 |
|
|
/* Fields for various kinds of instructions. */
|
895 |
|
|
unsigned int b2, r1, r2, x2, r3;
|
896 |
|
|
int i2, d2;
|
897 |
|
|
|
898 |
|
|
/* The values of SP and FP before this instruction,
|
899 |
|
|
for detecting instructions that change them. */
|
900 |
|
|
pv_t pre_insn_sp, pre_insn_fp;
|
901 |
|
|
/* Likewise for the flag whether the back chain was saved. */
|
902 |
|
|
int pre_insn_back_chain_saved_p;
|
903 |
|
|
|
904 |
|
|
/* If we got an error trying to read the instruction, report it. */
|
905 |
|
|
if (insn_len < 0)
|
906 |
|
|
{
|
907 |
|
|
result = 0;
|
908 |
|
|
break;
|
909 |
|
|
}
|
910 |
|
|
|
911 |
|
|
next_pc = pc + insn_len;
|
912 |
|
|
|
913 |
|
|
pre_insn_sp = data->gpr[S390_SP_REGNUM - S390_R0_REGNUM];
|
914 |
|
|
pre_insn_fp = data->gpr[S390_FRAME_REGNUM - S390_R0_REGNUM];
|
915 |
|
|
pre_insn_back_chain_saved_p = data->back_chain_saved_p;
|
916 |
|
|
|
917 |
|
|
|
918 |
|
|
/* LHI r1, i2 --- load halfword immediate. */
|
919 |
|
|
/* LGHI r1, i2 --- load halfword immediate (64-bit version). */
|
920 |
|
|
/* LGFI r1, i2 --- load fullword immediate. */
|
921 |
|
|
if (is_ri (insn32, op1_lhi, op2_lhi, &r1, &i2)
|
922 |
|
|
|| is_ri (insn64, op1_lghi, op2_lghi, &r1, &i2)
|
923 |
|
|
|| is_ril (insn, op1_lgfi, op2_lgfi, &r1, &i2))
|
924 |
|
|
data->gpr[r1] = pv_constant (i2);
|
925 |
|
|
|
926 |
|
|
/* LR r1, r2 --- load from register. */
|
927 |
|
|
/* LGR r1, r2 --- load from register (64-bit version). */
|
928 |
|
|
else if (is_rr (insn32, op_lr, &r1, &r2)
|
929 |
|
|
|| is_rre (insn64, op_lgr, &r1, &r2))
|
930 |
|
|
data->gpr[r1] = data->gpr[r2];
|
931 |
|
|
|
932 |
|
|
/* L r1, d2(x2, b2) --- load. */
|
933 |
|
|
/* LY r1, d2(x2, b2) --- load (long-displacement version). */
|
934 |
|
|
/* LG r1, d2(x2, b2) --- load (64-bit version). */
|
935 |
|
|
else if (is_rx (insn32, op_l, &r1, &d2, &x2, &b2)
|
936 |
|
|
|| is_rxy (insn32, op1_ly, op2_ly, &r1, &d2, &x2, &b2)
|
937 |
|
|
|| is_rxy (insn64, op1_lg, op2_lg, &r1, &d2, &x2, &b2))
|
938 |
|
|
data->gpr[r1] = s390_load (data, d2, x2, b2, data->gpr_size);
|
939 |
|
|
|
940 |
|
|
/* ST r1, d2(x2, b2) --- store. */
|
941 |
|
|
/* STY r1, d2(x2, b2) --- store (long-displacement version). */
|
942 |
|
|
/* STG r1, d2(x2, b2) --- store (64-bit version). */
|
943 |
|
|
else if (is_rx (insn32, op_st, &r1, &d2, &x2, &b2)
|
944 |
|
|
|| is_rxy (insn32, op1_sty, op2_sty, &r1, &d2, &x2, &b2)
|
945 |
|
|
|| is_rxy (insn64, op1_stg, op2_stg, &r1, &d2, &x2, &b2))
|
946 |
|
|
s390_store (data, d2, x2, b2, data->gpr_size, data->gpr[r1]);
|
947 |
|
|
|
948 |
|
|
/* STD r1, d2(x2,b2) --- store floating-point register. */
|
949 |
|
|
else if (is_rx (insn, op_std, &r1, &d2, &x2, &b2))
|
950 |
|
|
s390_store (data, d2, x2, b2, data->fpr_size, data->fpr[r1]);
|
951 |
|
|
|
952 |
|
|
/* STM r1, r3, d2(b2) --- store multiple. */
|
953 |
|
|
/* STMY r1, r3, d2(b2) --- store multiple (long-displacement version). */
|
954 |
|
|
/* STMG r1, r3, d2(b2) --- store multiple (64-bit version). */
|
955 |
|
|
else if (is_rs (insn32, op_stm, &r1, &r3, &d2, &b2)
|
956 |
|
|
|| is_rsy (insn32, op1_stmy, op2_stmy, &r1, &r3, &d2, &b2)
|
957 |
|
|
|| is_rsy (insn64, op1_stmg, op2_stmg, &r1, &r3, &d2, &b2))
|
958 |
|
|
{
|
959 |
|
|
for (; r1 <= r3; r1++, d2 += data->gpr_size)
|
960 |
|
|
s390_store (data, d2, 0, b2, data->gpr_size, data->gpr[r1]);
|
961 |
|
|
}
|
962 |
|
|
|
963 |
|
|
/* AHI r1, i2 --- add halfword immediate. */
|
964 |
|
|
/* AGHI r1, i2 --- add halfword immediate (64-bit version). */
|
965 |
|
|
/* AFI r1, i2 --- add fullword immediate. */
|
966 |
|
|
/* AGFI r1, i2 --- add fullword immediate (64-bit version). */
|
967 |
|
|
else if (is_ri (insn32, op1_ahi, op2_ahi, &r1, &i2)
|
968 |
|
|
|| is_ri (insn64, op1_aghi, op2_aghi, &r1, &i2)
|
969 |
|
|
|| is_ril (insn32, op1_afi, op2_afi, &r1, &i2)
|
970 |
|
|
|| is_ril (insn64, op1_agfi, op2_agfi, &r1, &i2))
|
971 |
|
|
data->gpr[r1] = pv_add_constant (data->gpr[r1], i2);
|
972 |
|
|
|
973 |
|
|
/* ALFI r1, i2 --- add logical immediate. */
|
974 |
|
|
/* ALGFI r1, i2 --- add logical immediate (64-bit version). */
|
975 |
|
|
else if (is_ril (insn32, op1_alfi, op2_alfi, &r1, &i2)
|
976 |
|
|
|| is_ril (insn64, op1_algfi, op2_algfi, &r1, &i2))
|
977 |
|
|
data->gpr[r1] = pv_add_constant (data->gpr[r1],
|
978 |
|
|
(CORE_ADDR)i2 & 0xffffffff);
|
979 |
|
|
|
980 |
|
|
/* AR r1, r2 -- add register. */
|
981 |
|
|
/* AGR r1, r2 -- add register (64-bit version). */
|
982 |
|
|
else if (is_rr (insn32, op_ar, &r1, &r2)
|
983 |
|
|
|| is_rre (insn64, op_agr, &r1, &r2))
|
984 |
|
|
data->gpr[r1] = pv_add (data->gpr[r1], data->gpr[r2]);
|
985 |
|
|
|
986 |
|
|
/* A r1, d2(x2, b2) -- add. */
|
987 |
|
|
/* AY r1, d2(x2, b2) -- add (long-displacement version). */
|
988 |
|
|
/* AG r1, d2(x2, b2) -- add (64-bit version). */
|
989 |
|
|
else if (is_rx (insn32, op_a, &r1, &d2, &x2, &b2)
|
990 |
|
|
|| is_rxy (insn32, op1_ay, op2_ay, &r1, &d2, &x2, &b2)
|
991 |
|
|
|| is_rxy (insn64, op1_ag, op2_ag, &r1, &d2, &x2, &b2))
|
992 |
|
|
data->gpr[r1] = pv_add (data->gpr[r1],
|
993 |
|
|
s390_load (data, d2, x2, b2, data->gpr_size));
|
994 |
|
|
|
995 |
|
|
/* SLFI r1, i2 --- subtract logical immediate. */
|
996 |
|
|
/* SLGFI r1, i2 --- subtract logical immediate (64-bit version). */
|
997 |
|
|
else if (is_ril (insn32, op1_slfi, op2_slfi, &r1, &i2)
|
998 |
|
|
|| is_ril (insn64, op1_slgfi, op2_slgfi, &r1, &i2))
|
999 |
|
|
data->gpr[r1] = pv_add_constant (data->gpr[r1],
|
1000 |
|
|
-((CORE_ADDR)i2 & 0xffffffff));
|
1001 |
|
|
|
1002 |
|
|
/* SR r1, r2 -- subtract register. */
|
1003 |
|
|
/* SGR r1, r2 -- subtract register (64-bit version). */
|
1004 |
|
|
else if (is_rr (insn32, op_sr, &r1, &r2)
|
1005 |
|
|
|| is_rre (insn64, op_sgr, &r1, &r2))
|
1006 |
|
|
data->gpr[r1] = pv_subtract (data->gpr[r1], data->gpr[r2]);
|
1007 |
|
|
|
1008 |
|
|
/* S r1, d2(x2, b2) -- subtract. */
|
1009 |
|
|
/* SY r1, d2(x2, b2) -- subtract (long-displacement version). */
|
1010 |
|
|
/* SG r1, d2(x2, b2) -- subtract (64-bit version). */
|
1011 |
|
|
else if (is_rx (insn32, op_s, &r1, &d2, &x2, &b2)
|
1012 |
|
|
|| is_rxy (insn32, op1_sy, op2_sy, &r1, &d2, &x2, &b2)
|
1013 |
|
|
|| is_rxy (insn64, op1_sg, op2_sg, &r1, &d2, &x2, &b2))
|
1014 |
|
|
data->gpr[r1] = pv_subtract (data->gpr[r1],
|
1015 |
|
|
s390_load (data, d2, x2, b2, data->gpr_size));
|
1016 |
|
|
|
1017 |
|
|
/* LA r1, d2(x2, b2) --- load address. */
|
1018 |
|
|
/* LAY r1, d2(x2, b2) --- load address (long-displacement version). */
|
1019 |
|
|
else if (is_rx (insn, op_la, &r1, &d2, &x2, &b2)
|
1020 |
|
|
|| is_rxy (insn, op1_lay, op2_lay, &r1, &d2, &x2, &b2))
|
1021 |
|
|
data->gpr[r1] = s390_addr (data, d2, x2, b2);
|
1022 |
|
|
|
1023 |
|
|
/* LARL r1, i2 --- load address relative long. */
|
1024 |
|
|
else if (is_ril (insn, op1_larl, op2_larl, &r1, &i2))
|
1025 |
|
|
data->gpr[r1] = pv_constant (pc + i2 * 2);
|
1026 |
|
|
|
1027 |
|
|
/* BASR r1, 0 --- branch and save.
|
1028 |
|
|
Since r2 is zero, this saves the PC in r1, but doesn't branch. */
|
1029 |
|
|
else if (is_rr (insn, op_basr, &r1, &r2)
|
1030 |
|
|
&& r2 == 0)
|
1031 |
|
|
data->gpr[r1] = pv_constant (next_pc);
|
1032 |
|
|
|
1033 |
|
|
/* BRAS r1, i2 --- branch relative and save. */
|
1034 |
|
|
else if (is_ri (insn, op1_bras, op2_bras, &r1, &i2))
|
1035 |
|
|
{
|
1036 |
|
|
data->gpr[r1] = pv_constant (next_pc);
|
1037 |
|
|
next_pc = pc + i2 * 2;
|
1038 |
|
|
|
1039 |
|
|
/* We'd better not interpret any backward branches. We'll
|
1040 |
|
|
never terminate. */
|
1041 |
|
|
if (next_pc <= pc)
|
1042 |
|
|
break;
|
1043 |
|
|
}
|
1044 |
|
|
|
1045 |
|
|
/* Terminate search when hitting any other branch instruction. */
|
1046 |
|
|
else if (is_rr (insn, op_basr, &r1, &r2)
|
1047 |
|
|
|| is_rx (insn, op_bas, &r1, &d2, &x2, &b2)
|
1048 |
|
|
|| is_rr (insn, op_bcr, &r1, &r2)
|
1049 |
|
|
|| is_rx (insn, op_bc, &r1, &d2, &x2, &b2)
|
1050 |
|
|
|| is_ri (insn, op1_brc, op2_brc, &r1, &i2)
|
1051 |
|
|
|| is_ril (insn, op1_brcl, op2_brcl, &r1, &i2)
|
1052 |
|
|
|| is_ril (insn, op1_brasl, op2_brasl, &r2, &i2))
|
1053 |
|
|
break;
|
1054 |
|
|
|
1055 |
|
|
else
|
1056 |
|
|
/* An instruction we don't know how to simulate. The only
|
1057 |
|
|
safe thing to do would be to set every value we're tracking
|
1058 |
|
|
to 'unknown'. Instead, we'll be optimistic: we assume that
|
1059 |
|
|
we *can* interpret every instruction that the compiler uses
|
1060 |
|
|
to manipulate any of the data we're interested in here --
|
1061 |
|
|
then we can just ignore anything else. */
|
1062 |
|
|
;
|
1063 |
|
|
|
1064 |
|
|
/* Record the address after the last instruction that changed
|
1065 |
|
|
the FP, SP, or backlink. Ignore instructions that changed
|
1066 |
|
|
them back to their original values --- those are probably
|
1067 |
|
|
restore instructions. (The back chain is never restored,
|
1068 |
|
|
just popped.) */
|
1069 |
|
|
{
|
1070 |
|
|
pv_t sp = data->gpr[S390_SP_REGNUM - S390_R0_REGNUM];
|
1071 |
|
|
pv_t fp = data->gpr[S390_FRAME_REGNUM - S390_R0_REGNUM];
|
1072 |
|
|
|
1073 |
|
|
if ((! pv_is_identical (pre_insn_sp, sp)
|
1074 |
|
|
&& ! pv_is_register_k (sp, S390_SP_REGNUM, 0)
|
1075 |
|
|
&& sp.kind != pvk_unknown)
|
1076 |
|
|
|| (! pv_is_identical (pre_insn_fp, fp)
|
1077 |
|
|
&& ! pv_is_register_k (fp, S390_FRAME_REGNUM, 0)
|
1078 |
|
|
&& fp.kind != pvk_unknown)
|
1079 |
|
|
|| pre_insn_back_chain_saved_p != data->back_chain_saved_p)
|
1080 |
|
|
result = next_pc;
|
1081 |
|
|
}
|
1082 |
|
|
}
|
1083 |
|
|
|
1084 |
|
|
/* Record where all the registers were saved. */
|
1085 |
|
|
pv_area_scan (data->stack, s390_check_for_saved, data);
|
1086 |
|
|
|
1087 |
|
|
free_pv_area (data->stack);
|
1088 |
|
|
data->stack = NULL;
|
1089 |
|
|
|
1090 |
|
|
return result;
|
1091 |
|
|
}
|
1092 |
|
|
|
1093 |
|
|
/* Advance PC across any function entry prologue instructions to reach
|
1094 |
|
|
some "real" code. */
|
1095 |
|
|
static CORE_ADDR
|
1096 |
|
|
s390_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
|
1097 |
|
|
{
|
1098 |
|
|
struct s390_prologue_data data;
|
1099 |
|
|
CORE_ADDR skip_pc;
|
1100 |
|
|
skip_pc = s390_analyze_prologue (gdbarch, pc, (CORE_ADDR)-1, &data);
|
1101 |
|
|
return skip_pc ? skip_pc : pc;
|
1102 |
|
|
}
|
1103 |
|
|
|
1104 |
|
|
/* Return true if we are in the functin's epilogue, i.e. after the
|
1105 |
|
|
instruction that destroyed the function's stack frame. */
|
1106 |
|
|
static int
|
1107 |
|
|
s390_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
|
1108 |
|
|
{
|
1109 |
|
|
int word_size = gdbarch_ptr_bit (gdbarch) / 8;
|
1110 |
|
|
|
1111 |
|
|
/* In frameless functions, there's not frame to destroy and thus
|
1112 |
|
|
we don't care about the epilogue.
|
1113 |
|
|
|
1114 |
|
|
In functions with frame, the epilogue sequence is a pair of
|
1115 |
|
|
a LM-type instruction that restores (amongst others) the
|
1116 |
|
|
return register %r14 and the stack pointer %r15, followed
|
1117 |
|
|
by a branch 'br %r14' --or equivalent-- that effects the
|
1118 |
|
|
actual return.
|
1119 |
|
|
|
1120 |
|
|
In that situation, this function needs to return 'true' in
|
1121 |
|
|
exactly one case: when pc points to that branch instruction.
|
1122 |
|
|
|
1123 |
|
|
Thus we try to disassemble the one instructions immediately
|
1124 |
|
|
preceeding pc and check whether it is an LM-type instruction
|
1125 |
|
|
modifying the stack pointer.
|
1126 |
|
|
|
1127 |
|
|
Note that disassembling backwards is not reliable, so there
|
1128 |
|
|
is a slight chance of false positives here ... */
|
1129 |
|
|
|
1130 |
|
|
bfd_byte insn[6];
|
1131 |
|
|
unsigned int r1, r3, b2;
|
1132 |
|
|
int d2;
|
1133 |
|
|
|
1134 |
|
|
if (word_size == 4
|
1135 |
|
|
&& !read_memory_nobpt (pc - 4, insn, 4)
|
1136 |
|
|
&& is_rs (insn, op_lm, &r1, &r3, &d2, &b2)
|
1137 |
|
|
&& r3 == S390_SP_REGNUM - S390_R0_REGNUM)
|
1138 |
|
|
return 1;
|
1139 |
|
|
|
1140 |
|
|
if (word_size == 4
|
1141 |
|
|
&& !read_memory_nobpt (pc - 6, insn, 6)
|
1142 |
|
|
&& is_rsy (insn, op1_lmy, op2_lmy, &r1, &r3, &d2, &b2)
|
1143 |
|
|
&& r3 == S390_SP_REGNUM - S390_R0_REGNUM)
|
1144 |
|
|
return 1;
|
1145 |
|
|
|
1146 |
|
|
if (word_size == 8
|
1147 |
|
|
&& !read_memory_nobpt (pc - 6, insn, 6)
|
1148 |
|
|
&& is_rsy (insn, op1_lmg, op2_lmg, &r1, &r3, &d2, &b2)
|
1149 |
|
|
&& r3 == S390_SP_REGNUM - S390_R0_REGNUM)
|
1150 |
|
|
return 1;
|
1151 |
|
|
|
1152 |
|
|
return 0;
|
1153 |
|
|
}
|
1154 |
|
|
|
1155 |
|
|
|
1156 |
|
|
/* Normal stack frames. */
|
1157 |
|
|
|
1158 |
|
|
struct s390_unwind_cache {
|
1159 |
|
|
|
1160 |
|
|
CORE_ADDR func;
|
1161 |
|
|
CORE_ADDR frame_base;
|
1162 |
|
|
CORE_ADDR local_base;
|
1163 |
|
|
|
1164 |
|
|
struct trad_frame_saved_reg *saved_regs;
|
1165 |
|
|
};
|
1166 |
|
|
|
1167 |
|
|
static int
|
1168 |
|
|
s390_prologue_frame_unwind_cache (struct frame_info *next_frame,
|
1169 |
|
|
struct s390_unwind_cache *info)
|
1170 |
|
|
{
|
1171 |
|
|
struct gdbarch *gdbarch = get_frame_arch (next_frame);
|
1172 |
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
1173 |
|
|
int word_size = gdbarch_ptr_bit (gdbarch) / 8;
|
1174 |
|
|
struct s390_prologue_data data;
|
1175 |
|
|
pv_t *fp = &data.gpr[S390_FRAME_REGNUM - S390_R0_REGNUM];
|
1176 |
|
|
pv_t *sp = &data.gpr[S390_SP_REGNUM - S390_R0_REGNUM];
|
1177 |
|
|
int i;
|
1178 |
|
|
CORE_ADDR cfa;
|
1179 |
|
|
CORE_ADDR func;
|
1180 |
|
|
CORE_ADDR result;
|
1181 |
|
|
ULONGEST reg;
|
1182 |
|
|
CORE_ADDR prev_sp;
|
1183 |
|
|
int frame_pointer;
|
1184 |
|
|
int size;
|
1185 |
|
|
|
1186 |
|
|
/* Try to find the function start address. If we can't find it, we don't
|
1187 |
|
|
bother searching for it -- with modern compilers this would be mostly
|
1188 |
|
|
pointless anyway. Trust that we'll either have valid DWARF-2 CFI data
|
1189 |
|
|
or else a valid backchain ... */
|
1190 |
|
|
func = frame_func_unwind (next_frame, NORMAL_FRAME);
|
1191 |
|
|
if (!func)
|
1192 |
|
|
return 0;
|
1193 |
|
|
|
1194 |
|
|
/* Try to analyze the prologue. */
|
1195 |
|
|
result = s390_analyze_prologue (gdbarch, func,
|
1196 |
|
|
frame_pc_unwind (next_frame), &data);
|
1197 |
|
|
if (!result)
|
1198 |
|
|
return 0;
|
1199 |
|
|
|
1200 |
|
|
/* If this was successful, we should have found the instruction that
|
1201 |
|
|
sets the stack pointer register to the previous value of the stack
|
1202 |
|
|
pointer minus the frame size. */
|
1203 |
|
|
if (!pv_is_register (*sp, S390_SP_REGNUM))
|
1204 |
|
|
return 0;
|
1205 |
|
|
|
1206 |
|
|
/* A frame size of zero at this point can mean either a real
|
1207 |
|
|
frameless function, or else a failure to find the prologue.
|
1208 |
|
|
Perform some sanity checks to verify we really have a
|
1209 |
|
|
frameless function. */
|
1210 |
|
|
if (sp->k == 0)
|
1211 |
|
|
{
|
1212 |
|
|
/* If the next frame is a NORMAL_FRAME, this frame *cannot* have frame
|
1213 |
|
|
size zero. This is only possible if the next frame is a sentinel
|
1214 |
|
|
frame, a dummy frame, or a signal trampoline frame. */
|
1215 |
|
|
/* FIXME: cagney/2004-05-01: This sanity check shouldn't be
|
1216 |
|
|
needed, instead the code should simpliy rely on its
|
1217 |
|
|
analysis. */
|
1218 |
|
|
if (get_frame_type (next_frame) == NORMAL_FRAME)
|
1219 |
|
|
return 0;
|
1220 |
|
|
|
1221 |
|
|
/* If we really have a frameless function, %r14 must be valid
|
1222 |
|
|
-- in particular, it must point to a different function. */
|
1223 |
|
|
reg = frame_unwind_register_unsigned (next_frame, S390_RETADDR_REGNUM);
|
1224 |
|
|
reg = gdbarch_addr_bits_remove (gdbarch, reg) - 1;
|
1225 |
|
|
if (get_pc_function_start (reg) == func)
|
1226 |
|
|
{
|
1227 |
|
|
/* However, there is one case where it *is* valid for %r14
|
1228 |
|
|
to point to the same function -- if this is a recursive
|
1229 |
|
|
call, and we have stopped in the prologue *before* the
|
1230 |
|
|
stack frame was allocated.
|
1231 |
|
|
|
1232 |
|
|
Recognize this case by looking ahead a bit ... */
|
1233 |
|
|
|
1234 |
|
|
struct s390_prologue_data data2;
|
1235 |
|
|
pv_t *sp = &data2.gpr[S390_SP_REGNUM - S390_R0_REGNUM];
|
1236 |
|
|
|
1237 |
|
|
if (!(s390_analyze_prologue (gdbarch, func, (CORE_ADDR)-1, &data2)
|
1238 |
|
|
&& pv_is_register (*sp, S390_SP_REGNUM)
|
1239 |
|
|
&& sp->k != 0))
|
1240 |
|
|
return 0;
|
1241 |
|
|
}
|
1242 |
|
|
}
|
1243 |
|
|
|
1244 |
|
|
|
1245 |
|
|
/* OK, we've found valid prologue data. */
|
1246 |
|
|
size = -sp->k;
|
1247 |
|
|
|
1248 |
|
|
/* If the frame pointer originally also holds the same value
|
1249 |
|
|
as the stack pointer, we're probably using it. If it holds
|
1250 |
|
|
some other value -- even a constant offset -- it is most
|
1251 |
|
|
likely used as temp register. */
|
1252 |
|
|
if (pv_is_identical (*sp, *fp))
|
1253 |
|
|
frame_pointer = S390_FRAME_REGNUM;
|
1254 |
|
|
else
|
1255 |
|
|
frame_pointer = S390_SP_REGNUM;
|
1256 |
|
|
|
1257 |
|
|
/* If we've detected a function with stack frame, we'll still have to
|
1258 |
|
|
treat it as frameless if we're currently within the function epilog
|
1259 |
|
|
code at a point where the frame pointer has already been restored.
|
1260 |
|
|
This can only happen in an innermost frame. */
|
1261 |
|
|
/* FIXME: cagney/2004-05-01: This sanity check shouldn't be needed,
|
1262 |
|
|
instead the code should simpliy rely on its analysis. */
|
1263 |
|
|
if (size > 0 && get_frame_type (next_frame) != NORMAL_FRAME)
|
1264 |
|
|
{
|
1265 |
|
|
/* See the comment in s390_in_function_epilogue_p on why this is
|
1266 |
|
|
not completely reliable ... */
|
1267 |
|
|
if (s390_in_function_epilogue_p (gdbarch, frame_pc_unwind (next_frame)))
|
1268 |
|
|
{
|
1269 |
|
|
memset (&data, 0, sizeof (data));
|
1270 |
|
|
size = 0;
|
1271 |
|
|
frame_pointer = S390_SP_REGNUM;
|
1272 |
|
|
}
|
1273 |
|
|
}
|
1274 |
|
|
|
1275 |
|
|
/* Once we know the frame register and the frame size, we can unwind
|
1276 |
|
|
the current value of the frame register from the next frame, and
|
1277 |
|
|
add back the frame size to arrive that the previous frame's
|
1278 |
|
|
stack pointer value. */
|
1279 |
|
|
prev_sp = frame_unwind_register_unsigned (next_frame, frame_pointer) + size;
|
1280 |
|
|
cfa = prev_sp + 16*word_size + 32;
|
1281 |
|
|
|
1282 |
|
|
/* Record the addresses of all register spill slots the prologue parser
|
1283 |
|
|
has recognized. Consider only registers defined as call-saved by the
|
1284 |
|
|
ABI; for call-clobbered registers the parser may have recognized
|
1285 |
|
|
spurious stores. */
|
1286 |
|
|
|
1287 |
|
|
for (i = 6; i <= 15; i++)
|
1288 |
|
|
if (data.gpr_slot[i] != 0)
|
1289 |
|
|
info->saved_regs[S390_R0_REGNUM + i].addr = cfa - data.gpr_slot[i];
|
1290 |
|
|
|
1291 |
|
|
switch (tdep->abi)
|
1292 |
|
|
{
|
1293 |
|
|
case ABI_LINUX_S390:
|
1294 |
|
|
if (data.fpr_slot[4] != 0)
|
1295 |
|
|
info->saved_regs[S390_F4_REGNUM].addr = cfa - data.fpr_slot[4];
|
1296 |
|
|
if (data.fpr_slot[6] != 0)
|
1297 |
|
|
info->saved_regs[S390_F6_REGNUM].addr = cfa - data.fpr_slot[6];
|
1298 |
|
|
break;
|
1299 |
|
|
|
1300 |
|
|
case ABI_LINUX_ZSERIES:
|
1301 |
|
|
for (i = 8; i <= 15; i++)
|
1302 |
|
|
if (data.fpr_slot[i] != 0)
|
1303 |
|
|
info->saved_regs[S390_F0_REGNUM + i].addr = cfa - data.fpr_slot[i];
|
1304 |
|
|
break;
|
1305 |
|
|
}
|
1306 |
|
|
|
1307 |
|
|
/* Function return will set PC to %r14. */
|
1308 |
|
|
info->saved_regs[S390_PC_REGNUM] = info->saved_regs[S390_RETADDR_REGNUM];
|
1309 |
|
|
|
1310 |
|
|
/* In frameless functions, we unwind simply by moving the return
|
1311 |
|
|
address to the PC. However, if we actually stored to the
|
1312 |
|
|
save area, use that -- we might only think the function frameless
|
1313 |
|
|
because we're in the middle of the prologue ... */
|
1314 |
|
|
if (size == 0
|
1315 |
|
|
&& !trad_frame_addr_p (info->saved_regs, S390_PC_REGNUM))
|
1316 |
|
|
{
|
1317 |
|
|
info->saved_regs[S390_PC_REGNUM].realreg = S390_RETADDR_REGNUM;
|
1318 |
|
|
}
|
1319 |
|
|
|
1320 |
|
|
/* Another sanity check: unless this is a frameless function,
|
1321 |
|
|
we should have found spill slots for SP and PC.
|
1322 |
|
|
If not, we cannot unwind further -- this happens e.g. in
|
1323 |
|
|
libc's thread_start routine. */
|
1324 |
|
|
if (size > 0)
|
1325 |
|
|
{
|
1326 |
|
|
if (!trad_frame_addr_p (info->saved_regs, S390_SP_REGNUM)
|
1327 |
|
|
|| !trad_frame_addr_p (info->saved_regs, S390_PC_REGNUM))
|
1328 |
|
|
prev_sp = -1;
|
1329 |
|
|
}
|
1330 |
|
|
|
1331 |
|
|
/* We use the current value of the frame register as local_base,
|
1332 |
|
|
and the top of the register save area as frame_base. */
|
1333 |
|
|
if (prev_sp != -1)
|
1334 |
|
|
{
|
1335 |
|
|
info->frame_base = prev_sp + 16*word_size + 32;
|
1336 |
|
|
info->local_base = prev_sp - size;
|
1337 |
|
|
}
|
1338 |
|
|
|
1339 |
|
|
info->func = func;
|
1340 |
|
|
return 1;
|
1341 |
|
|
}
|
1342 |
|
|
|
1343 |
|
|
static void
|
1344 |
|
|
s390_backchain_frame_unwind_cache (struct frame_info *next_frame,
|
1345 |
|
|
struct s390_unwind_cache *info)
|
1346 |
|
|
{
|
1347 |
|
|
struct gdbarch *gdbarch = get_frame_arch (next_frame);
|
1348 |
|
|
int word_size = gdbarch_ptr_bit (gdbarch) / 8;
|
1349 |
|
|
CORE_ADDR backchain;
|
1350 |
|
|
ULONGEST reg;
|
1351 |
|
|
LONGEST sp;
|
1352 |
|
|
|
1353 |
|
|
/* Get the backchain. */
|
1354 |
|
|
reg = frame_unwind_register_unsigned (next_frame, S390_SP_REGNUM);
|
1355 |
|
|
backchain = read_memory_unsigned_integer (reg, word_size);
|
1356 |
|
|
|
1357 |
|
|
/* A zero backchain terminates the frame chain. As additional
|
1358 |
|
|
sanity check, let's verify that the spill slot for SP in the
|
1359 |
|
|
save area pointed to by the backchain in fact links back to
|
1360 |
|
|
the save area. */
|
1361 |
|
|
if (backchain != 0
|
1362 |
|
|
&& safe_read_memory_integer (backchain + 15*word_size, word_size, &sp)
|
1363 |
|
|
&& (CORE_ADDR)sp == backchain)
|
1364 |
|
|
{
|
1365 |
|
|
/* We don't know which registers were saved, but it will have
|
1366 |
|
|
to be at least %r14 and %r15. This will allow us to continue
|
1367 |
|
|
unwinding, but other prev-frame registers may be incorrect ... */
|
1368 |
|
|
info->saved_regs[S390_SP_REGNUM].addr = backchain + 15*word_size;
|
1369 |
|
|
info->saved_regs[S390_RETADDR_REGNUM].addr = backchain + 14*word_size;
|
1370 |
|
|
|
1371 |
|
|
/* Function return will set PC to %r14. */
|
1372 |
|
|
info->saved_regs[S390_PC_REGNUM] = info->saved_regs[S390_RETADDR_REGNUM];
|
1373 |
|
|
|
1374 |
|
|
/* We use the current value of the frame register as local_base,
|
1375 |
|
|
and the top of the register save area as frame_base. */
|
1376 |
|
|
info->frame_base = backchain + 16*word_size + 32;
|
1377 |
|
|
info->local_base = reg;
|
1378 |
|
|
}
|
1379 |
|
|
|
1380 |
|
|
info->func = frame_pc_unwind (next_frame);
|
1381 |
|
|
}
|
1382 |
|
|
|
1383 |
|
|
static struct s390_unwind_cache *
|
1384 |
|
|
s390_frame_unwind_cache (struct frame_info *next_frame,
|
1385 |
|
|
void **this_prologue_cache)
|
1386 |
|
|
{
|
1387 |
|
|
struct s390_unwind_cache *info;
|
1388 |
|
|
if (*this_prologue_cache)
|
1389 |
|
|
return *this_prologue_cache;
|
1390 |
|
|
|
1391 |
|
|
info = FRAME_OBSTACK_ZALLOC (struct s390_unwind_cache);
|
1392 |
|
|
*this_prologue_cache = info;
|
1393 |
|
|
info->saved_regs = trad_frame_alloc_saved_regs (next_frame);
|
1394 |
|
|
info->func = -1;
|
1395 |
|
|
info->frame_base = -1;
|
1396 |
|
|
info->local_base = -1;
|
1397 |
|
|
|
1398 |
|
|
/* Try to use prologue analysis to fill the unwind cache.
|
1399 |
|
|
If this fails, fall back to reading the stack backchain. */
|
1400 |
|
|
if (!s390_prologue_frame_unwind_cache (next_frame, info))
|
1401 |
|
|
s390_backchain_frame_unwind_cache (next_frame, info);
|
1402 |
|
|
|
1403 |
|
|
return info;
|
1404 |
|
|
}
|
1405 |
|
|
|
1406 |
|
|
static void
|
1407 |
|
|
s390_frame_this_id (struct frame_info *next_frame,
|
1408 |
|
|
void **this_prologue_cache,
|
1409 |
|
|
struct frame_id *this_id)
|
1410 |
|
|
{
|
1411 |
|
|
struct s390_unwind_cache *info
|
1412 |
|
|
= s390_frame_unwind_cache (next_frame, this_prologue_cache);
|
1413 |
|
|
|
1414 |
|
|
if (info->frame_base == -1)
|
1415 |
|
|
return;
|
1416 |
|
|
|
1417 |
|
|
*this_id = frame_id_build (info->frame_base, info->func);
|
1418 |
|
|
}
|
1419 |
|
|
|
1420 |
|
|
static void
|
1421 |
|
|
s390_frame_prev_register (struct frame_info *next_frame,
|
1422 |
|
|
void **this_prologue_cache,
|
1423 |
|
|
int regnum, int *optimizedp,
|
1424 |
|
|
enum lval_type *lvalp, CORE_ADDR *addrp,
|
1425 |
|
|
int *realnump, gdb_byte *bufferp)
|
1426 |
|
|
{
|
1427 |
|
|
struct s390_unwind_cache *info
|
1428 |
|
|
= s390_frame_unwind_cache (next_frame, this_prologue_cache);
|
1429 |
|
|
trad_frame_get_prev_register (next_frame, info->saved_regs, regnum,
|
1430 |
|
|
optimizedp, lvalp, addrp, realnump, bufferp);
|
1431 |
|
|
}
|
1432 |
|
|
|
1433 |
|
|
static const struct frame_unwind s390_frame_unwind = {
|
1434 |
|
|
NORMAL_FRAME,
|
1435 |
|
|
s390_frame_this_id,
|
1436 |
|
|
s390_frame_prev_register
|
1437 |
|
|
};
|
1438 |
|
|
|
1439 |
|
|
static const struct frame_unwind *
|
1440 |
|
|
s390_frame_sniffer (struct frame_info *next_frame)
|
1441 |
|
|
{
|
1442 |
|
|
return &s390_frame_unwind;
|
1443 |
|
|
}
|
1444 |
|
|
|
1445 |
|
|
|
1446 |
|
|
/* Code stubs and their stack frames. For things like PLTs and NULL
|
1447 |
|
|
function calls (where there is no true frame and the return address
|
1448 |
|
|
is in the RETADDR register). */
|
1449 |
|
|
|
1450 |
|
|
struct s390_stub_unwind_cache
|
1451 |
|
|
{
|
1452 |
|
|
CORE_ADDR frame_base;
|
1453 |
|
|
struct trad_frame_saved_reg *saved_regs;
|
1454 |
|
|
};
|
1455 |
|
|
|
1456 |
|
|
static struct s390_stub_unwind_cache *
|
1457 |
|
|
s390_stub_frame_unwind_cache (struct frame_info *next_frame,
|
1458 |
|
|
void **this_prologue_cache)
|
1459 |
|
|
{
|
1460 |
|
|
struct gdbarch *gdbarch = get_frame_arch (next_frame);
|
1461 |
|
|
int word_size = gdbarch_ptr_bit (gdbarch) / 8;
|
1462 |
|
|
struct s390_stub_unwind_cache *info;
|
1463 |
|
|
ULONGEST reg;
|
1464 |
|
|
|
1465 |
|
|
if (*this_prologue_cache)
|
1466 |
|
|
return *this_prologue_cache;
|
1467 |
|
|
|
1468 |
|
|
info = FRAME_OBSTACK_ZALLOC (struct s390_stub_unwind_cache);
|
1469 |
|
|
*this_prologue_cache = info;
|
1470 |
|
|
info->saved_regs = trad_frame_alloc_saved_regs (next_frame);
|
1471 |
|
|
|
1472 |
|
|
/* The return address is in register %r14. */
|
1473 |
|
|
info->saved_regs[S390_PC_REGNUM].realreg = S390_RETADDR_REGNUM;
|
1474 |
|
|
|
1475 |
|
|
/* Retrieve stack pointer and determine our frame base. */
|
1476 |
|
|
reg = frame_unwind_register_unsigned (next_frame, S390_SP_REGNUM);
|
1477 |
|
|
info->frame_base = reg + 16*word_size + 32;
|
1478 |
|
|
|
1479 |
|
|
return info;
|
1480 |
|
|
}
|
1481 |
|
|
|
1482 |
|
|
static void
|
1483 |
|
|
s390_stub_frame_this_id (struct frame_info *next_frame,
|
1484 |
|
|
void **this_prologue_cache,
|
1485 |
|
|
struct frame_id *this_id)
|
1486 |
|
|
{
|
1487 |
|
|
struct s390_stub_unwind_cache *info
|
1488 |
|
|
= s390_stub_frame_unwind_cache (next_frame, this_prologue_cache);
|
1489 |
|
|
*this_id = frame_id_build (info->frame_base, frame_pc_unwind (next_frame));
|
1490 |
|
|
}
|
1491 |
|
|
|
1492 |
|
|
static void
|
1493 |
|
|
s390_stub_frame_prev_register (struct frame_info *next_frame,
|
1494 |
|
|
void **this_prologue_cache,
|
1495 |
|
|
int regnum, int *optimizedp,
|
1496 |
|
|
enum lval_type *lvalp, CORE_ADDR *addrp,
|
1497 |
|
|
int *realnump, gdb_byte *bufferp)
|
1498 |
|
|
{
|
1499 |
|
|
struct s390_stub_unwind_cache *info
|
1500 |
|
|
= s390_stub_frame_unwind_cache (next_frame, this_prologue_cache);
|
1501 |
|
|
trad_frame_get_prev_register (next_frame, info->saved_regs, regnum,
|
1502 |
|
|
optimizedp, lvalp, addrp, realnump, bufferp);
|
1503 |
|
|
}
|
1504 |
|
|
|
1505 |
|
|
static const struct frame_unwind s390_stub_frame_unwind = {
|
1506 |
|
|
NORMAL_FRAME,
|
1507 |
|
|
s390_stub_frame_this_id,
|
1508 |
|
|
s390_stub_frame_prev_register
|
1509 |
|
|
};
|
1510 |
|
|
|
1511 |
|
|
static const struct frame_unwind *
|
1512 |
|
|
s390_stub_frame_sniffer (struct frame_info *next_frame)
|
1513 |
|
|
{
|
1514 |
|
|
CORE_ADDR addr_in_block;
|
1515 |
|
|
bfd_byte insn[S390_MAX_INSTR_SIZE];
|
1516 |
|
|
|
1517 |
|
|
/* If the current PC points to non-readable memory, we assume we
|
1518 |
|
|
have trapped due to an invalid function pointer call. We handle
|
1519 |
|
|
the non-existing current function like a PLT stub. */
|
1520 |
|
|
addr_in_block = frame_unwind_address_in_block (next_frame, NORMAL_FRAME);
|
1521 |
|
|
if (in_plt_section (addr_in_block, NULL)
|
1522 |
|
|
|| s390_readinstruction (insn, frame_pc_unwind (next_frame)) < 0)
|
1523 |
|
|
return &s390_stub_frame_unwind;
|
1524 |
|
|
return NULL;
|
1525 |
|
|
}
|
1526 |
|
|
|
1527 |
|
|
|
1528 |
|
|
/* Signal trampoline stack frames. */
|
1529 |
|
|
|
1530 |
|
|
struct s390_sigtramp_unwind_cache {
|
1531 |
|
|
CORE_ADDR frame_base;
|
1532 |
|
|
struct trad_frame_saved_reg *saved_regs;
|
1533 |
|
|
};
|
1534 |
|
|
|
1535 |
|
|
static struct s390_sigtramp_unwind_cache *
|
1536 |
|
|
s390_sigtramp_frame_unwind_cache (struct frame_info *next_frame,
|
1537 |
|
|
void **this_prologue_cache)
|
1538 |
|
|
{
|
1539 |
|
|
struct gdbarch *gdbarch = get_frame_arch (next_frame);
|
1540 |
|
|
int word_size = gdbarch_ptr_bit (gdbarch) / 8;
|
1541 |
|
|
struct s390_sigtramp_unwind_cache *info;
|
1542 |
|
|
ULONGEST this_sp, prev_sp;
|
1543 |
|
|
CORE_ADDR next_ra, next_cfa, sigreg_ptr;
|
1544 |
|
|
int i;
|
1545 |
|
|
|
1546 |
|
|
if (*this_prologue_cache)
|
1547 |
|
|
return *this_prologue_cache;
|
1548 |
|
|
|
1549 |
|
|
info = FRAME_OBSTACK_ZALLOC (struct s390_sigtramp_unwind_cache);
|
1550 |
|
|
*this_prologue_cache = info;
|
1551 |
|
|
info->saved_regs = trad_frame_alloc_saved_regs (next_frame);
|
1552 |
|
|
|
1553 |
|
|
this_sp = frame_unwind_register_unsigned (next_frame, S390_SP_REGNUM);
|
1554 |
|
|
next_ra = frame_pc_unwind (next_frame);
|
1555 |
|
|
next_cfa = this_sp + 16*word_size + 32;
|
1556 |
|
|
|
1557 |
|
|
/* New-style RT frame:
|
1558 |
|
|
retcode + alignment (8 bytes)
|
1559 |
|
|
siginfo (128 bytes)
|
1560 |
|
|
ucontext (contains sigregs at offset 5 words) */
|
1561 |
|
|
if (next_ra == next_cfa)
|
1562 |
|
|
{
|
1563 |
|
|
sigreg_ptr = next_cfa + 8 + 128 + align_up (5*word_size, 8);
|
1564 |
|
|
}
|
1565 |
|
|
|
1566 |
|
|
/* Old-style RT frame and all non-RT frames:
|
1567 |
|
|
old signal mask (8 bytes)
|
1568 |
|
|
pointer to sigregs */
|
1569 |
|
|
else
|
1570 |
|
|
{
|
1571 |
|
|
sigreg_ptr = read_memory_unsigned_integer (next_cfa + 8, word_size);
|
1572 |
|
|
}
|
1573 |
|
|
|
1574 |
|
|
/* The sigregs structure looks like this:
|
1575 |
|
|
long psw_mask;
|
1576 |
|
|
long psw_addr;
|
1577 |
|
|
long gprs[16];
|
1578 |
|
|
int acrs[16];
|
1579 |
|
|
int fpc;
|
1580 |
|
|
int __pad;
|
1581 |
|
|
double fprs[16]; */
|
1582 |
|
|
|
1583 |
|
|
/* Let's ignore the PSW mask, it will not be restored anyway. */
|
1584 |
|
|
sigreg_ptr += word_size;
|
1585 |
|
|
|
1586 |
|
|
/* Next comes the PSW address. */
|
1587 |
|
|
info->saved_regs[S390_PC_REGNUM].addr = sigreg_ptr;
|
1588 |
|
|
sigreg_ptr += word_size;
|
1589 |
|
|
|
1590 |
|
|
/* Then the GPRs. */
|
1591 |
|
|
for (i = 0; i < 16; i++)
|
1592 |
|
|
{
|
1593 |
|
|
info->saved_regs[S390_R0_REGNUM + i].addr = sigreg_ptr;
|
1594 |
|
|
sigreg_ptr += word_size;
|
1595 |
|
|
}
|
1596 |
|
|
|
1597 |
|
|
/* Then the ACRs. */
|
1598 |
|
|
for (i = 0; i < 16; i++)
|
1599 |
|
|
{
|
1600 |
|
|
info->saved_regs[S390_A0_REGNUM + i].addr = sigreg_ptr;
|
1601 |
|
|
sigreg_ptr += 4;
|
1602 |
|
|
}
|
1603 |
|
|
|
1604 |
|
|
/* The floating-point control word. */
|
1605 |
|
|
info->saved_regs[S390_FPC_REGNUM].addr = sigreg_ptr;
|
1606 |
|
|
sigreg_ptr += 8;
|
1607 |
|
|
|
1608 |
|
|
/* And finally the FPRs. */
|
1609 |
|
|
for (i = 0; i < 16; i++)
|
1610 |
|
|
{
|
1611 |
|
|
info->saved_regs[S390_F0_REGNUM + i].addr = sigreg_ptr;
|
1612 |
|
|
sigreg_ptr += 8;
|
1613 |
|
|
}
|
1614 |
|
|
|
1615 |
|
|
/* Restore the previous frame's SP. */
|
1616 |
|
|
prev_sp = read_memory_unsigned_integer (
|
1617 |
|
|
info->saved_regs[S390_SP_REGNUM].addr,
|
1618 |
|
|
word_size);
|
1619 |
|
|
|
1620 |
|
|
/* Determine our frame base. */
|
1621 |
|
|
info->frame_base = prev_sp + 16*word_size + 32;
|
1622 |
|
|
|
1623 |
|
|
return info;
|
1624 |
|
|
}
|
1625 |
|
|
|
1626 |
|
|
static void
|
1627 |
|
|
s390_sigtramp_frame_this_id (struct frame_info *next_frame,
|
1628 |
|
|
void **this_prologue_cache,
|
1629 |
|
|
struct frame_id *this_id)
|
1630 |
|
|
{
|
1631 |
|
|
struct s390_sigtramp_unwind_cache *info
|
1632 |
|
|
= s390_sigtramp_frame_unwind_cache (next_frame, this_prologue_cache);
|
1633 |
|
|
*this_id = frame_id_build (info->frame_base, frame_pc_unwind (next_frame));
|
1634 |
|
|
}
|
1635 |
|
|
|
1636 |
|
|
static void
|
1637 |
|
|
s390_sigtramp_frame_prev_register (struct frame_info *next_frame,
|
1638 |
|
|
void **this_prologue_cache,
|
1639 |
|
|
int regnum, int *optimizedp,
|
1640 |
|
|
enum lval_type *lvalp, CORE_ADDR *addrp,
|
1641 |
|
|
int *realnump, gdb_byte *bufferp)
|
1642 |
|
|
{
|
1643 |
|
|
struct s390_sigtramp_unwind_cache *info
|
1644 |
|
|
= s390_sigtramp_frame_unwind_cache (next_frame, this_prologue_cache);
|
1645 |
|
|
trad_frame_get_prev_register (next_frame, info->saved_regs, regnum,
|
1646 |
|
|
optimizedp, lvalp, addrp, realnump, bufferp);
|
1647 |
|
|
}
|
1648 |
|
|
|
1649 |
|
|
static const struct frame_unwind s390_sigtramp_frame_unwind = {
|
1650 |
|
|
SIGTRAMP_FRAME,
|
1651 |
|
|
s390_sigtramp_frame_this_id,
|
1652 |
|
|
s390_sigtramp_frame_prev_register
|
1653 |
|
|
};
|
1654 |
|
|
|
1655 |
|
|
static const struct frame_unwind *
|
1656 |
|
|
s390_sigtramp_frame_sniffer (struct frame_info *next_frame)
|
1657 |
|
|
{
|
1658 |
|
|
CORE_ADDR pc = frame_pc_unwind (next_frame);
|
1659 |
|
|
bfd_byte sigreturn[2];
|
1660 |
|
|
|
1661 |
|
|
if (read_memory_nobpt (pc, sigreturn, 2))
|
1662 |
|
|
return NULL;
|
1663 |
|
|
|
1664 |
|
|
if (sigreturn[0] != 0x0a /* svc */)
|
1665 |
|
|
return NULL;
|
1666 |
|
|
|
1667 |
|
|
if (sigreturn[1] != 119 /* sigreturn */
|
1668 |
|
|
&& sigreturn[1] != 173 /* rt_sigreturn */)
|
1669 |
|
|
return NULL;
|
1670 |
|
|
|
1671 |
|
|
return &s390_sigtramp_frame_unwind;
|
1672 |
|
|
}
|
1673 |
|
|
|
1674 |
|
|
|
1675 |
|
|
/* Frame base handling. */
|
1676 |
|
|
|
1677 |
|
|
static CORE_ADDR
|
1678 |
|
|
s390_frame_base_address (struct frame_info *next_frame, void **this_cache)
|
1679 |
|
|
{
|
1680 |
|
|
struct s390_unwind_cache *info
|
1681 |
|
|
= s390_frame_unwind_cache (next_frame, this_cache);
|
1682 |
|
|
return info->frame_base;
|
1683 |
|
|
}
|
1684 |
|
|
|
1685 |
|
|
static CORE_ADDR
|
1686 |
|
|
s390_local_base_address (struct frame_info *next_frame, void **this_cache)
|
1687 |
|
|
{
|
1688 |
|
|
struct s390_unwind_cache *info
|
1689 |
|
|
= s390_frame_unwind_cache (next_frame, this_cache);
|
1690 |
|
|
return info->local_base;
|
1691 |
|
|
}
|
1692 |
|
|
|
1693 |
|
|
static const struct frame_base s390_frame_base = {
|
1694 |
|
|
&s390_frame_unwind,
|
1695 |
|
|
s390_frame_base_address,
|
1696 |
|
|
s390_local_base_address,
|
1697 |
|
|
s390_local_base_address
|
1698 |
|
|
};
|
1699 |
|
|
|
1700 |
|
|
static CORE_ADDR
|
1701 |
|
|
s390_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
|
1702 |
|
|
{
|
1703 |
|
|
ULONGEST pc;
|
1704 |
|
|
pc = frame_unwind_register_unsigned (next_frame, S390_PC_REGNUM);
|
1705 |
|
|
return gdbarch_addr_bits_remove (gdbarch, pc);
|
1706 |
|
|
}
|
1707 |
|
|
|
1708 |
|
|
static CORE_ADDR
|
1709 |
|
|
s390_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
|
1710 |
|
|
{
|
1711 |
|
|
ULONGEST sp;
|
1712 |
|
|
sp = frame_unwind_register_unsigned (next_frame, S390_SP_REGNUM);
|
1713 |
|
|
return gdbarch_addr_bits_remove (gdbarch, sp);
|
1714 |
|
|
}
|
1715 |
|
|
|
1716 |
|
|
|
1717 |
|
|
/* DWARF-2 frame support. */
|
1718 |
|
|
|
1719 |
|
|
static void
|
1720 |
|
|
s390_dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
|
1721 |
|
|
struct dwarf2_frame_state_reg *reg,
|
1722 |
|
|
struct frame_info *next_frame)
|
1723 |
|
|
{
|
1724 |
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
1725 |
|
|
|
1726 |
|
|
switch (tdep->abi)
|
1727 |
|
|
{
|
1728 |
|
|
case ABI_LINUX_S390:
|
1729 |
|
|
/* Call-saved registers. */
|
1730 |
|
|
if ((regnum >= S390_R6_REGNUM && regnum <= S390_R15_REGNUM)
|
1731 |
|
|
|| regnum == S390_F4_REGNUM
|
1732 |
|
|
|| regnum == S390_F6_REGNUM)
|
1733 |
|
|
reg->how = DWARF2_FRAME_REG_SAME_VALUE;
|
1734 |
|
|
|
1735 |
|
|
/* Call-clobbered registers. */
|
1736 |
|
|
else if ((regnum >= S390_R0_REGNUM && regnum <= S390_R5_REGNUM)
|
1737 |
|
|
|| (regnum >= S390_F0_REGNUM && regnum <= S390_F15_REGNUM
|
1738 |
|
|
&& regnum != S390_F4_REGNUM && regnum != S390_F6_REGNUM))
|
1739 |
|
|
reg->how = DWARF2_FRAME_REG_UNDEFINED;
|
1740 |
|
|
|
1741 |
|
|
/* The return address column. */
|
1742 |
|
|
else if (regnum == S390_PC_REGNUM)
|
1743 |
|
|
reg->how = DWARF2_FRAME_REG_RA;
|
1744 |
|
|
break;
|
1745 |
|
|
|
1746 |
|
|
case ABI_LINUX_ZSERIES:
|
1747 |
|
|
/* Call-saved registers. */
|
1748 |
|
|
if ((regnum >= S390_R6_REGNUM && regnum <= S390_R15_REGNUM)
|
1749 |
|
|
|| (regnum >= S390_F8_REGNUM && regnum <= S390_F15_REGNUM))
|
1750 |
|
|
reg->how = DWARF2_FRAME_REG_SAME_VALUE;
|
1751 |
|
|
|
1752 |
|
|
/* Call-clobbered registers. */
|
1753 |
|
|
else if ((regnum >= S390_R0_REGNUM && regnum <= S390_R5_REGNUM)
|
1754 |
|
|
|| (regnum >= S390_F0_REGNUM && regnum <= S390_F7_REGNUM))
|
1755 |
|
|
reg->how = DWARF2_FRAME_REG_UNDEFINED;
|
1756 |
|
|
|
1757 |
|
|
/* The return address column. */
|
1758 |
|
|
else if (regnum == S390_PC_REGNUM)
|
1759 |
|
|
reg->how = DWARF2_FRAME_REG_RA;
|
1760 |
|
|
break;
|
1761 |
|
|
}
|
1762 |
|
|
}
|
1763 |
|
|
|
1764 |
|
|
|
1765 |
|
|
/* Dummy function calls. */
|
1766 |
|
|
|
1767 |
|
|
/* Return non-zero if TYPE is an integer-like type, zero otherwise.
|
1768 |
|
|
"Integer-like" types are those that should be passed the way
|
1769 |
|
|
integers are: integers, enums, ranges, characters, and booleans. */
|
1770 |
|
|
static int
|
1771 |
|
|
is_integer_like (struct type *type)
|
1772 |
|
|
{
|
1773 |
|
|
enum type_code code = TYPE_CODE (type);
|
1774 |
|
|
|
1775 |
|
|
return (code == TYPE_CODE_INT
|
1776 |
|
|
|| code == TYPE_CODE_ENUM
|
1777 |
|
|
|| code == TYPE_CODE_RANGE
|
1778 |
|
|
|| code == TYPE_CODE_CHAR
|
1779 |
|
|
|| code == TYPE_CODE_BOOL);
|
1780 |
|
|
}
|
1781 |
|
|
|
1782 |
|
|
/* Return non-zero if TYPE is a pointer-like type, zero otherwise.
|
1783 |
|
|
"Pointer-like" types are those that should be passed the way
|
1784 |
|
|
pointers are: pointers and references. */
|
1785 |
|
|
static int
|
1786 |
|
|
is_pointer_like (struct type *type)
|
1787 |
|
|
{
|
1788 |
|
|
enum type_code code = TYPE_CODE (type);
|
1789 |
|
|
|
1790 |
|
|
return (code == TYPE_CODE_PTR
|
1791 |
|
|
|| code == TYPE_CODE_REF);
|
1792 |
|
|
}
|
1793 |
|
|
|
1794 |
|
|
|
1795 |
|
|
/* Return non-zero if TYPE is a `float singleton' or `double
|
1796 |
|
|
singleton', zero otherwise.
|
1797 |
|
|
|
1798 |
|
|
A `T singleton' is a struct type with one member, whose type is
|
1799 |
|
|
either T or a `T singleton'. So, the following are all float
|
1800 |
|
|
singletons:
|
1801 |
|
|
|
1802 |
|
|
struct { float x };
|
1803 |
|
|
struct { struct { float x; } x; };
|
1804 |
|
|
struct { struct { struct { float x; } x; } x; };
|
1805 |
|
|
|
1806 |
|
|
... and so on.
|
1807 |
|
|
|
1808 |
|
|
All such structures are passed as if they were floats or doubles,
|
1809 |
|
|
as the (revised) ABI says. */
|
1810 |
|
|
static int
|
1811 |
|
|
is_float_singleton (struct type *type)
|
1812 |
|
|
{
|
1813 |
|
|
if (TYPE_CODE (type) == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
|
1814 |
|
|
{
|
1815 |
|
|
struct type *singleton_type = TYPE_FIELD_TYPE (type, 0);
|
1816 |
|
|
CHECK_TYPEDEF (singleton_type);
|
1817 |
|
|
|
1818 |
|
|
return (TYPE_CODE (singleton_type) == TYPE_CODE_FLT
|
1819 |
|
|
|| TYPE_CODE (singleton_type) == TYPE_CODE_DECFLOAT
|
1820 |
|
|
|| is_float_singleton (singleton_type));
|
1821 |
|
|
}
|
1822 |
|
|
|
1823 |
|
|
return 0;
|
1824 |
|
|
}
|
1825 |
|
|
|
1826 |
|
|
|
1827 |
|
|
/* Return non-zero if TYPE is a struct-like type, zero otherwise.
|
1828 |
|
|
"Struct-like" types are those that should be passed as structs are:
|
1829 |
|
|
structs and unions.
|
1830 |
|
|
|
1831 |
|
|
As an odd quirk, not mentioned in the ABI, GCC passes float and
|
1832 |
|
|
double singletons as if they were a plain float, double, etc. (The
|
1833 |
|
|
corresponding union types are handled normally.) So we exclude
|
1834 |
|
|
those types here. *shrug* */
|
1835 |
|
|
static int
|
1836 |
|
|
is_struct_like (struct type *type)
|
1837 |
|
|
{
|
1838 |
|
|
enum type_code code = TYPE_CODE (type);
|
1839 |
|
|
|
1840 |
|
|
return (code == TYPE_CODE_UNION
|
1841 |
|
|
|| (code == TYPE_CODE_STRUCT && ! is_float_singleton (type)));
|
1842 |
|
|
}
|
1843 |
|
|
|
1844 |
|
|
|
1845 |
|
|
/* Return non-zero if TYPE is a float-like type, zero otherwise.
|
1846 |
|
|
"Float-like" types are those that should be passed as
|
1847 |
|
|
floating-point values are.
|
1848 |
|
|
|
1849 |
|
|
You'd think this would just be floats, doubles, long doubles, etc.
|
1850 |
|
|
But as an odd quirk, not mentioned in the ABI, GCC passes float and
|
1851 |
|
|
double singletons as if they were a plain float, double, etc. (The
|
1852 |
|
|
corresponding union types are handled normally.) So we include
|
1853 |
|
|
those types here. *shrug* */
|
1854 |
|
|
static int
|
1855 |
|
|
is_float_like (struct type *type)
|
1856 |
|
|
{
|
1857 |
|
|
return (TYPE_CODE (type) == TYPE_CODE_FLT
|
1858 |
|
|
|| TYPE_CODE (type) == TYPE_CODE_DECFLOAT
|
1859 |
|
|
|| is_float_singleton (type));
|
1860 |
|
|
}
|
1861 |
|
|
|
1862 |
|
|
|
1863 |
|
|
static int
|
1864 |
|
|
is_power_of_two (unsigned int n)
|
1865 |
|
|
{
|
1866 |
|
|
return ((n & (n - 1)) == 0);
|
1867 |
|
|
}
|
1868 |
|
|
|
1869 |
|
|
/* Return non-zero if TYPE should be passed as a pointer to a copy,
|
1870 |
|
|
zero otherwise. */
|
1871 |
|
|
static int
|
1872 |
|
|
s390_function_arg_pass_by_reference (struct type *type)
|
1873 |
|
|
{
|
1874 |
|
|
unsigned length = TYPE_LENGTH (type);
|
1875 |
|
|
if (length > 8)
|
1876 |
|
|
return 1;
|
1877 |
|
|
|
1878 |
|
|
/* FIXME: All complex and vector types are also returned by reference. */
|
1879 |
|
|
return is_struct_like (type) && !is_power_of_two (length);
|
1880 |
|
|
}
|
1881 |
|
|
|
1882 |
|
|
/* Return non-zero if TYPE should be passed in a float register
|
1883 |
|
|
if possible. */
|
1884 |
|
|
static int
|
1885 |
|
|
s390_function_arg_float (struct type *type)
|
1886 |
|
|
{
|
1887 |
|
|
unsigned length = TYPE_LENGTH (type);
|
1888 |
|
|
if (length > 8)
|
1889 |
|
|
return 0;
|
1890 |
|
|
|
1891 |
|
|
return is_float_like (type);
|
1892 |
|
|
}
|
1893 |
|
|
|
1894 |
|
|
/* Return non-zero if TYPE should be passed in an integer register
|
1895 |
|
|
(or a pair of integer registers) if possible. */
|
1896 |
|
|
static int
|
1897 |
|
|
s390_function_arg_integer (struct type *type)
|
1898 |
|
|
{
|
1899 |
|
|
unsigned length = TYPE_LENGTH (type);
|
1900 |
|
|
if (length > 8)
|
1901 |
|
|
return 0;
|
1902 |
|
|
|
1903 |
|
|
return is_integer_like (type)
|
1904 |
|
|
|| is_pointer_like (type)
|
1905 |
|
|
|| (is_struct_like (type) && is_power_of_two (length));
|
1906 |
|
|
}
|
1907 |
|
|
|
1908 |
|
|
/* Return ARG, a `SIMPLE_ARG', sign-extended or zero-extended to a full
|
1909 |
|
|
word as required for the ABI. */
|
1910 |
|
|
static LONGEST
|
1911 |
|
|
extend_simple_arg (struct value *arg)
|
1912 |
|
|
{
|
1913 |
|
|
struct type *type = value_type (arg);
|
1914 |
|
|
|
1915 |
|
|
/* Even structs get passed in the least significant bits of the
|
1916 |
|
|
register / memory word. It's not really right to extract them as
|
1917 |
|
|
an integer, but it does take care of the extension. */
|
1918 |
|
|
if (TYPE_UNSIGNED (type))
|
1919 |
|
|
return extract_unsigned_integer (value_contents (arg),
|
1920 |
|
|
TYPE_LENGTH (type));
|
1921 |
|
|
else
|
1922 |
|
|
return extract_signed_integer (value_contents (arg),
|
1923 |
|
|
TYPE_LENGTH (type));
|
1924 |
|
|
}
|
1925 |
|
|
|
1926 |
|
|
|
1927 |
|
|
/* Return the alignment required by TYPE. */
|
1928 |
|
|
static int
|
1929 |
|
|
alignment_of (struct type *type)
|
1930 |
|
|
{
|
1931 |
|
|
int alignment;
|
1932 |
|
|
|
1933 |
|
|
if (is_integer_like (type)
|
1934 |
|
|
|| is_pointer_like (type)
|
1935 |
|
|
|| TYPE_CODE (type) == TYPE_CODE_FLT
|
1936 |
|
|
|| TYPE_CODE (type) == TYPE_CODE_DECFLOAT)
|
1937 |
|
|
alignment = TYPE_LENGTH (type);
|
1938 |
|
|
else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
|
1939 |
|
|
|| TYPE_CODE (type) == TYPE_CODE_UNION)
|
1940 |
|
|
{
|
1941 |
|
|
int i;
|
1942 |
|
|
|
1943 |
|
|
alignment = 1;
|
1944 |
|
|
for (i = 0; i < TYPE_NFIELDS (type); i++)
|
1945 |
|
|
{
|
1946 |
|
|
int field_alignment = alignment_of (TYPE_FIELD_TYPE (type, i));
|
1947 |
|
|
|
1948 |
|
|
if (field_alignment > alignment)
|
1949 |
|
|
alignment = field_alignment;
|
1950 |
|
|
}
|
1951 |
|
|
}
|
1952 |
|
|
else
|
1953 |
|
|
alignment = 1;
|
1954 |
|
|
|
1955 |
|
|
/* Check that everything we ever return is a power of two. Lots of
|
1956 |
|
|
code doesn't want to deal with aligning things to arbitrary
|
1957 |
|
|
boundaries. */
|
1958 |
|
|
gdb_assert ((alignment & (alignment - 1)) == 0);
|
1959 |
|
|
|
1960 |
|
|
return alignment;
|
1961 |
|
|
}
|
1962 |
|
|
|
1963 |
|
|
|
1964 |
|
|
/* Put the actual parameter values pointed to by ARGS[0..NARGS-1] in
|
1965 |
|
|
place to be passed to a function, as specified by the "GNU/Linux
|
1966 |
|
|
for S/390 ELF Application Binary Interface Supplement".
|
1967 |
|
|
|
1968 |
|
|
SP is the current stack pointer. We must put arguments, links,
|
1969 |
|
|
padding, etc. whereever they belong, and return the new stack
|
1970 |
|
|
pointer value.
|
1971 |
|
|
|
1972 |
|
|
If STRUCT_RETURN is non-zero, then the function we're calling is
|
1973 |
|
|
going to return a structure by value; STRUCT_ADDR is the address of
|
1974 |
|
|
a block we've allocated for it on the stack.
|
1975 |
|
|
|
1976 |
|
|
Our caller has taken care of any type promotions needed to satisfy
|
1977 |
|
|
prototypes or the old K&R argument-passing rules. */
|
1978 |
|
|
static CORE_ADDR
|
1979 |
|
|
s390_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
|
1980 |
|
|
struct regcache *regcache, CORE_ADDR bp_addr,
|
1981 |
|
|
int nargs, struct value **args, CORE_ADDR sp,
|
1982 |
|
|
int struct_return, CORE_ADDR struct_addr)
|
1983 |
|
|
{
|
1984 |
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
1985 |
|
|
int word_size = gdbarch_ptr_bit (gdbarch) / 8;
|
1986 |
|
|
ULONGEST orig_sp;
|
1987 |
|
|
int i;
|
1988 |
|
|
|
1989 |
|
|
/* If the i'th argument is passed as a reference to a copy, then
|
1990 |
|
|
copy_addr[i] is the address of the copy we made. */
|
1991 |
|
|
CORE_ADDR *copy_addr = alloca (nargs * sizeof (CORE_ADDR));
|
1992 |
|
|
|
1993 |
|
|
/* Build the reference-to-copy area. */
|
1994 |
|
|
for (i = 0; i < nargs; i++)
|
1995 |
|
|
{
|
1996 |
|
|
struct value *arg = args[i];
|
1997 |
|
|
struct type *type = value_type (arg);
|
1998 |
|
|
unsigned length = TYPE_LENGTH (type);
|
1999 |
|
|
|
2000 |
|
|
if (s390_function_arg_pass_by_reference (type))
|
2001 |
|
|
{
|
2002 |
|
|
sp -= length;
|
2003 |
|
|
sp = align_down (sp, alignment_of (type));
|
2004 |
|
|
write_memory (sp, value_contents (arg), length);
|
2005 |
|
|
copy_addr[i] = sp;
|
2006 |
|
|
}
|
2007 |
|
|
}
|
2008 |
|
|
|
2009 |
|
|
/* Reserve space for the parameter area. As a conservative
|
2010 |
|
|
simplification, we assume that everything will be passed on the
|
2011 |
|
|
stack. Since every argument larger than 8 bytes will be
|
2012 |
|
|
passed by reference, we use this simple upper bound. */
|
2013 |
|
|
sp -= nargs * 8;
|
2014 |
|
|
|
2015 |
|
|
/* After all that, make sure it's still aligned on an eight-byte
|
2016 |
|
|
boundary. */
|
2017 |
|
|
sp = align_down (sp, 8);
|
2018 |
|
|
|
2019 |
|
|
/* Finally, place the actual parameters, working from SP towards
|
2020 |
|
|
higher addresses. The code above is supposed to reserve enough
|
2021 |
|
|
space for this. */
|
2022 |
|
|
{
|
2023 |
|
|
int fr = 0;
|
2024 |
|
|
int gr = 2;
|
2025 |
|
|
CORE_ADDR starg = sp;
|
2026 |
|
|
|
2027 |
|
|
/* A struct is returned using general register 2. */
|
2028 |
|
|
if (struct_return)
|
2029 |
|
|
{
|
2030 |
|
|
regcache_cooked_write_unsigned (regcache, S390_R0_REGNUM + gr,
|
2031 |
|
|
struct_addr);
|
2032 |
|
|
gr++;
|
2033 |
|
|
}
|
2034 |
|
|
|
2035 |
|
|
for (i = 0; i < nargs; i++)
|
2036 |
|
|
{
|
2037 |
|
|
struct value *arg = args[i];
|
2038 |
|
|
struct type *type = value_type (arg);
|
2039 |
|
|
unsigned length = TYPE_LENGTH (type);
|
2040 |
|
|
|
2041 |
|
|
if (s390_function_arg_pass_by_reference (type))
|
2042 |
|
|
{
|
2043 |
|
|
if (gr <= 6)
|
2044 |
|
|
{
|
2045 |
|
|
regcache_cooked_write_unsigned (regcache, S390_R0_REGNUM + gr,
|
2046 |
|
|
copy_addr[i]);
|
2047 |
|
|
gr++;
|
2048 |
|
|
}
|
2049 |
|
|
else
|
2050 |
|
|
{
|
2051 |
|
|
write_memory_unsigned_integer (starg, word_size, copy_addr[i]);
|
2052 |
|
|
starg += word_size;
|
2053 |
|
|
}
|
2054 |
|
|
}
|
2055 |
|
|
else if (s390_function_arg_float (type))
|
2056 |
|
|
{
|
2057 |
|
|
/* The GNU/Linux for S/390 ABI uses FPRs 0 and 2 to pass arguments,
|
2058 |
|
|
the GNU/Linux for zSeries ABI uses 0, 2, 4, and 6. */
|
2059 |
|
|
if (fr <= (tdep->abi == ABI_LINUX_S390 ? 2 : 6))
|
2060 |
|
|
{
|
2061 |
|
|
/* When we store a single-precision value in an FP register,
|
2062 |
|
|
it occupies the leftmost bits. */
|
2063 |
|
|
regcache_cooked_write_part (regcache, S390_F0_REGNUM + fr,
|
2064 |
|
|
0, length, value_contents (arg));
|
2065 |
|
|
fr += 2;
|
2066 |
|
|
}
|
2067 |
|
|
else
|
2068 |
|
|
{
|
2069 |
|
|
/* When we store a single-precision value in a stack slot,
|
2070 |
|
|
it occupies the rightmost bits. */
|
2071 |
|
|
starg = align_up (starg + length, word_size);
|
2072 |
|
|
write_memory (starg - length, value_contents (arg), length);
|
2073 |
|
|
}
|
2074 |
|
|
}
|
2075 |
|
|
else if (s390_function_arg_integer (type) && length <= word_size)
|
2076 |
|
|
{
|
2077 |
|
|
if (gr <= 6)
|
2078 |
|
|
{
|
2079 |
|
|
/* Integer arguments are always extended to word size. */
|
2080 |
|
|
regcache_cooked_write_signed (regcache, S390_R0_REGNUM + gr,
|
2081 |
|
|
extend_simple_arg (arg));
|
2082 |
|
|
gr++;
|
2083 |
|
|
}
|
2084 |
|
|
else
|
2085 |
|
|
{
|
2086 |
|
|
/* Integer arguments are always extended to word size. */
|
2087 |
|
|
write_memory_signed_integer (starg, word_size,
|
2088 |
|
|
extend_simple_arg (arg));
|
2089 |
|
|
starg += word_size;
|
2090 |
|
|
}
|
2091 |
|
|
}
|
2092 |
|
|
else if (s390_function_arg_integer (type) && length == 2*word_size)
|
2093 |
|
|
{
|
2094 |
|
|
if (gr <= 5)
|
2095 |
|
|
{
|
2096 |
|
|
regcache_cooked_write (regcache, S390_R0_REGNUM + gr,
|
2097 |
|
|
value_contents (arg));
|
2098 |
|
|
regcache_cooked_write (regcache, S390_R0_REGNUM + gr + 1,
|
2099 |
|
|
value_contents (arg) + word_size);
|
2100 |
|
|
gr += 2;
|
2101 |
|
|
}
|
2102 |
|
|
else
|
2103 |
|
|
{
|
2104 |
|
|
/* If we skipped r6 because we couldn't fit a DOUBLE_ARG
|
2105 |
|
|
in it, then don't go back and use it again later. */
|
2106 |
|
|
gr = 7;
|
2107 |
|
|
|
2108 |
|
|
write_memory (starg, value_contents (arg), length);
|
2109 |
|
|
starg += length;
|
2110 |
|
|
}
|
2111 |
|
|
}
|
2112 |
|
|
else
|
2113 |
|
|
internal_error (__FILE__, __LINE__, _("unknown argument type"));
|
2114 |
|
|
}
|
2115 |
|
|
}
|
2116 |
|
|
|
2117 |
|
|
/* Allocate the standard frame areas: the register save area, the
|
2118 |
|
|
word reserved for the compiler (which seems kind of meaningless),
|
2119 |
|
|
and the back chain pointer. */
|
2120 |
|
|
sp -= 16*word_size + 32;
|
2121 |
|
|
|
2122 |
|
|
/* Store return address. */
|
2123 |
|
|
regcache_cooked_write_unsigned (regcache, S390_RETADDR_REGNUM, bp_addr);
|
2124 |
|
|
|
2125 |
|
|
/* Store updated stack pointer. */
|
2126 |
|
|
regcache_cooked_write_unsigned (regcache, S390_SP_REGNUM, sp);
|
2127 |
|
|
|
2128 |
|
|
/* We need to return the 'stack part' of the frame ID,
|
2129 |
|
|
which is actually the top of the register save area. */
|
2130 |
|
|
return sp + 16*word_size + 32;
|
2131 |
|
|
}
|
2132 |
|
|
|
2133 |
|
|
/* Assuming NEXT_FRAME->prev is a dummy, return the frame ID of that
|
2134 |
|
|
dummy frame. The frame ID's base needs to match the TOS value
|
2135 |
|
|
returned by push_dummy_call, and the PC match the dummy frame's
|
2136 |
|
|
breakpoint. */
|
2137 |
|
|
static struct frame_id
|
2138 |
|
|
s390_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
|
2139 |
|
|
{
|
2140 |
|
|
int word_size = gdbarch_ptr_bit (gdbarch) / 8;
|
2141 |
|
|
CORE_ADDR sp = s390_unwind_sp (gdbarch, next_frame);
|
2142 |
|
|
|
2143 |
|
|
return frame_id_build (sp + 16*word_size + 32,
|
2144 |
|
|
frame_pc_unwind (next_frame));
|
2145 |
|
|
}
|
2146 |
|
|
|
2147 |
|
|
static CORE_ADDR
|
2148 |
|
|
s390_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
|
2149 |
|
|
{
|
2150 |
|
|
/* Both the 32- and 64-bit ABI's say that the stack pointer should
|
2151 |
|
|
always be aligned on an eight-byte boundary. */
|
2152 |
|
|
return (addr & -8);
|
2153 |
|
|
}
|
2154 |
|
|
|
2155 |
|
|
|
2156 |
|
|
/* Function return value access. */
|
2157 |
|
|
|
2158 |
|
|
static enum return_value_convention
|
2159 |
|
|
s390_return_value_convention (struct gdbarch *gdbarch, struct type *type)
|
2160 |
|
|
{
|
2161 |
|
|
int length = TYPE_LENGTH (type);
|
2162 |
|
|
if (length > 8)
|
2163 |
|
|
return RETURN_VALUE_STRUCT_CONVENTION;
|
2164 |
|
|
|
2165 |
|
|
switch (TYPE_CODE (type))
|
2166 |
|
|
{
|
2167 |
|
|
case TYPE_CODE_STRUCT:
|
2168 |
|
|
case TYPE_CODE_UNION:
|
2169 |
|
|
case TYPE_CODE_ARRAY:
|
2170 |
|
|
return RETURN_VALUE_STRUCT_CONVENTION;
|
2171 |
|
|
|
2172 |
|
|
default:
|
2173 |
|
|
return RETURN_VALUE_REGISTER_CONVENTION;
|
2174 |
|
|
}
|
2175 |
|
|
}
|
2176 |
|
|
|
2177 |
|
|
static enum return_value_convention
|
2178 |
|
|
s390_return_value (struct gdbarch *gdbarch, struct type *type,
|
2179 |
|
|
struct regcache *regcache, gdb_byte *out,
|
2180 |
|
|
const gdb_byte *in)
|
2181 |
|
|
{
|
2182 |
|
|
int word_size = gdbarch_ptr_bit (gdbarch) / 8;
|
2183 |
|
|
int length = TYPE_LENGTH (type);
|
2184 |
|
|
enum return_value_convention rvc =
|
2185 |
|
|
s390_return_value_convention (gdbarch, type);
|
2186 |
|
|
if (in)
|
2187 |
|
|
{
|
2188 |
|
|
switch (rvc)
|
2189 |
|
|
{
|
2190 |
|
|
case RETURN_VALUE_REGISTER_CONVENTION:
|
2191 |
|
|
if (TYPE_CODE (type) == TYPE_CODE_FLT
|
2192 |
|
|
|| TYPE_CODE (type) == TYPE_CODE_DECFLOAT)
|
2193 |
|
|
{
|
2194 |
|
|
/* When we store a single-precision value in an FP register,
|
2195 |
|
|
it occupies the leftmost bits. */
|
2196 |
|
|
regcache_cooked_write_part (regcache, S390_F0_REGNUM,
|
2197 |
|
|
0, length, in);
|
2198 |
|
|
}
|
2199 |
|
|
else if (length <= word_size)
|
2200 |
|
|
{
|
2201 |
|
|
/* Integer arguments are always extended to word size. */
|
2202 |
|
|
if (TYPE_UNSIGNED (type))
|
2203 |
|
|
regcache_cooked_write_unsigned (regcache, S390_R2_REGNUM,
|
2204 |
|
|
extract_unsigned_integer (in, length));
|
2205 |
|
|
else
|
2206 |
|
|
regcache_cooked_write_signed (regcache, S390_R2_REGNUM,
|
2207 |
|
|
extract_signed_integer (in, length));
|
2208 |
|
|
}
|
2209 |
|
|
else if (length == 2*word_size)
|
2210 |
|
|
{
|
2211 |
|
|
regcache_cooked_write (regcache, S390_R2_REGNUM, in);
|
2212 |
|
|
regcache_cooked_write (regcache, S390_R3_REGNUM, in + word_size);
|
2213 |
|
|
}
|
2214 |
|
|
else
|
2215 |
|
|
internal_error (__FILE__, __LINE__, _("invalid return type"));
|
2216 |
|
|
break;
|
2217 |
|
|
|
2218 |
|
|
case RETURN_VALUE_STRUCT_CONVENTION:
|
2219 |
|
|
error (_("Cannot set function return value."));
|
2220 |
|
|
break;
|
2221 |
|
|
}
|
2222 |
|
|
}
|
2223 |
|
|
else if (out)
|
2224 |
|
|
{
|
2225 |
|
|
switch (rvc)
|
2226 |
|
|
{
|
2227 |
|
|
case RETURN_VALUE_REGISTER_CONVENTION:
|
2228 |
|
|
if (TYPE_CODE (type) == TYPE_CODE_FLT
|
2229 |
|
|
|| TYPE_CODE (type) == TYPE_CODE_DECFLOAT)
|
2230 |
|
|
{
|
2231 |
|
|
/* When we store a single-precision value in an FP register,
|
2232 |
|
|
it occupies the leftmost bits. */
|
2233 |
|
|
regcache_cooked_read_part (regcache, S390_F0_REGNUM,
|
2234 |
|
|
0, length, out);
|
2235 |
|
|
}
|
2236 |
|
|
else if (length <= word_size)
|
2237 |
|
|
{
|
2238 |
|
|
/* Integer arguments occupy the rightmost bits. */
|
2239 |
|
|
regcache_cooked_read_part (regcache, S390_R2_REGNUM,
|
2240 |
|
|
word_size - length, length, out);
|
2241 |
|
|
}
|
2242 |
|
|
else if (length == 2*word_size)
|
2243 |
|
|
{
|
2244 |
|
|
regcache_cooked_read (regcache, S390_R2_REGNUM, out);
|
2245 |
|
|
regcache_cooked_read (regcache, S390_R3_REGNUM, out + word_size);
|
2246 |
|
|
}
|
2247 |
|
|
else
|
2248 |
|
|
internal_error (__FILE__, __LINE__, _("invalid return type"));
|
2249 |
|
|
break;
|
2250 |
|
|
|
2251 |
|
|
case RETURN_VALUE_STRUCT_CONVENTION:
|
2252 |
|
|
error (_("Function return value unknown."));
|
2253 |
|
|
break;
|
2254 |
|
|
}
|
2255 |
|
|
}
|
2256 |
|
|
|
2257 |
|
|
return rvc;
|
2258 |
|
|
}
|
2259 |
|
|
|
2260 |
|
|
|
2261 |
|
|
/* Breakpoints. */
|
2262 |
|
|
|
2263 |
|
|
static const gdb_byte *
|
2264 |
|
|
s390_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr, int *lenptr)
|
2265 |
|
|
{
|
2266 |
|
|
static const gdb_byte breakpoint[] = { 0x0, 0x1 };
|
2267 |
|
|
|
2268 |
|
|
*lenptr = sizeof (breakpoint);
|
2269 |
|
|
return breakpoint;
|
2270 |
|
|
}
|
2271 |
|
|
|
2272 |
|
|
|
2273 |
|
|
/* Address handling. */
|
2274 |
|
|
|
2275 |
|
|
static CORE_ADDR
|
2276 |
|
|
s390_addr_bits_remove (CORE_ADDR addr)
|
2277 |
|
|
{
|
2278 |
|
|
return addr & 0x7fffffff;
|
2279 |
|
|
}
|
2280 |
|
|
|
2281 |
|
|
static int
|
2282 |
|
|
s390_address_class_type_flags (int byte_size, int dwarf2_addr_class)
|
2283 |
|
|
{
|
2284 |
|
|
if (byte_size == 4)
|
2285 |
|
|
return TYPE_FLAG_ADDRESS_CLASS_1;
|
2286 |
|
|
else
|
2287 |
|
|
return 0;
|
2288 |
|
|
}
|
2289 |
|
|
|
2290 |
|
|
static const char *
|
2291 |
|
|
s390_address_class_type_flags_to_name (struct gdbarch *gdbarch, int type_flags)
|
2292 |
|
|
{
|
2293 |
|
|
if (type_flags & TYPE_FLAG_ADDRESS_CLASS_1)
|
2294 |
|
|
return "mode32";
|
2295 |
|
|
else
|
2296 |
|
|
return NULL;
|
2297 |
|
|
}
|
2298 |
|
|
|
2299 |
|
|
static int
|
2300 |
|
|
s390_address_class_name_to_type_flags (struct gdbarch *gdbarch, const char *name,
|
2301 |
|
|
int *type_flags_ptr)
|
2302 |
|
|
{
|
2303 |
|
|
if (strcmp (name, "mode32") == 0)
|
2304 |
|
|
{
|
2305 |
|
|
*type_flags_ptr = TYPE_FLAG_ADDRESS_CLASS_1;
|
2306 |
|
|
return 1;
|
2307 |
|
|
}
|
2308 |
|
|
else
|
2309 |
|
|
return 0;
|
2310 |
|
|
}
|
2311 |
|
|
|
2312 |
|
|
/* Set up gdbarch struct. */
|
2313 |
|
|
|
2314 |
|
|
static struct gdbarch *
|
2315 |
|
|
s390_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
|
2316 |
|
|
{
|
2317 |
|
|
struct gdbarch *gdbarch;
|
2318 |
|
|
struct gdbarch_tdep *tdep;
|
2319 |
|
|
|
2320 |
|
|
/* First see if there is already a gdbarch that can satisfy the request. */
|
2321 |
|
|
arches = gdbarch_list_lookup_by_info (arches, &info);
|
2322 |
|
|
if (arches != NULL)
|
2323 |
|
|
return arches->gdbarch;
|
2324 |
|
|
|
2325 |
|
|
/* None found: is the request for a s390 architecture? */
|
2326 |
|
|
if (info.bfd_arch_info->arch != bfd_arch_s390)
|
2327 |
|
|
return NULL; /* No; then it's not for us. */
|
2328 |
|
|
|
2329 |
|
|
/* Yes: create a new gdbarch for the specified machine type. */
|
2330 |
|
|
tdep = XCALLOC (1, struct gdbarch_tdep);
|
2331 |
|
|
gdbarch = gdbarch_alloc (&info, tdep);
|
2332 |
|
|
|
2333 |
|
|
set_gdbarch_believe_pcc_promotion (gdbarch, 0);
|
2334 |
|
|
set_gdbarch_char_signed (gdbarch, 0);
|
2335 |
|
|
|
2336 |
|
|
/* S/390 GNU/Linux uses either 64-bit or 128-bit long doubles.
|
2337 |
|
|
We can safely let them default to 128-bit, since the debug info
|
2338 |
|
|
will give the size of type actually used in each case. */
|
2339 |
|
|
set_gdbarch_long_double_bit (gdbarch, 128);
|
2340 |
|
|
set_gdbarch_long_double_format (gdbarch, floatformats_ia64_quad);
|
2341 |
|
|
|
2342 |
|
|
/* Amount PC must be decremented by after a breakpoint. This is
|
2343 |
|
|
often the number of bytes returned by gdbarch_breakpoint_from_pc but not
|
2344 |
|
|
always. */
|
2345 |
|
|
set_gdbarch_decr_pc_after_break (gdbarch, 2);
|
2346 |
|
|
/* Stack grows downward. */
|
2347 |
|
|
set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
|
2348 |
|
|
set_gdbarch_breakpoint_from_pc (gdbarch, s390_breakpoint_from_pc);
|
2349 |
|
|
set_gdbarch_skip_prologue (gdbarch, s390_skip_prologue);
|
2350 |
|
|
set_gdbarch_in_function_epilogue_p (gdbarch, s390_in_function_epilogue_p);
|
2351 |
|
|
|
2352 |
|
|
set_gdbarch_pc_regnum (gdbarch, S390_PC_REGNUM);
|
2353 |
|
|
set_gdbarch_sp_regnum (gdbarch, S390_SP_REGNUM);
|
2354 |
|
|
set_gdbarch_fp0_regnum (gdbarch, S390_F0_REGNUM);
|
2355 |
|
|
set_gdbarch_num_regs (gdbarch, S390_NUM_REGS);
|
2356 |
|
|
set_gdbarch_num_pseudo_regs (gdbarch, S390_NUM_PSEUDO_REGS);
|
2357 |
|
|
set_gdbarch_register_name (gdbarch, s390_register_name);
|
2358 |
|
|
set_gdbarch_register_type (gdbarch, s390_register_type);
|
2359 |
|
|
set_gdbarch_stab_reg_to_regnum (gdbarch, s390_dwarf_reg_to_regnum);
|
2360 |
|
|
set_gdbarch_dwarf_reg_to_regnum (gdbarch, s390_dwarf_reg_to_regnum);
|
2361 |
|
|
set_gdbarch_dwarf2_reg_to_regnum (gdbarch, s390_dwarf_reg_to_regnum);
|
2362 |
|
|
set_gdbarch_value_from_register (gdbarch, s390_value_from_register);
|
2363 |
|
|
set_gdbarch_register_reggroup_p (gdbarch, s390_register_reggroup_p);
|
2364 |
|
|
set_gdbarch_regset_from_core_section (gdbarch,
|
2365 |
|
|
s390_regset_from_core_section);
|
2366 |
|
|
|
2367 |
|
|
/* Inferior function calls. */
|
2368 |
|
|
set_gdbarch_push_dummy_call (gdbarch, s390_push_dummy_call);
|
2369 |
|
|
set_gdbarch_unwind_dummy_id (gdbarch, s390_unwind_dummy_id);
|
2370 |
|
|
set_gdbarch_frame_align (gdbarch, s390_frame_align);
|
2371 |
|
|
set_gdbarch_return_value (gdbarch, s390_return_value);
|
2372 |
|
|
|
2373 |
|
|
/* Frame handling. */
|
2374 |
|
|
dwarf2_frame_set_init_reg (gdbarch, s390_dwarf2_frame_init_reg);
|
2375 |
|
|
frame_unwind_append_sniffer (gdbarch, dwarf2_frame_sniffer);
|
2376 |
|
|
frame_base_append_sniffer (gdbarch, dwarf2_frame_base_sniffer);
|
2377 |
|
|
frame_unwind_append_sniffer (gdbarch, s390_stub_frame_sniffer);
|
2378 |
|
|
frame_unwind_append_sniffer (gdbarch, s390_sigtramp_frame_sniffer);
|
2379 |
|
|
frame_unwind_append_sniffer (gdbarch, s390_frame_sniffer);
|
2380 |
|
|
frame_base_set_default (gdbarch, &s390_frame_base);
|
2381 |
|
|
set_gdbarch_unwind_pc (gdbarch, s390_unwind_pc);
|
2382 |
|
|
set_gdbarch_unwind_sp (gdbarch, s390_unwind_sp);
|
2383 |
|
|
|
2384 |
|
|
switch (info.bfd_arch_info->mach)
|
2385 |
|
|
{
|
2386 |
|
|
case bfd_mach_s390_31:
|
2387 |
|
|
tdep->abi = ABI_LINUX_S390;
|
2388 |
|
|
|
2389 |
|
|
tdep->gregset = &s390_gregset;
|
2390 |
|
|
tdep->sizeof_gregset = s390_sizeof_gregset;
|
2391 |
|
|
tdep->fpregset = &s390_fpregset;
|
2392 |
|
|
tdep->sizeof_fpregset = s390_sizeof_fpregset;
|
2393 |
|
|
|
2394 |
|
|
set_gdbarch_addr_bits_remove (gdbarch, s390_addr_bits_remove);
|
2395 |
|
|
set_gdbarch_pseudo_register_read (gdbarch, s390_pseudo_register_read);
|
2396 |
|
|
set_gdbarch_pseudo_register_write (gdbarch, s390_pseudo_register_write);
|
2397 |
|
|
set_solib_svr4_fetch_link_map_offsets
|
2398 |
|
|
(gdbarch, svr4_ilp32_fetch_link_map_offsets);
|
2399 |
|
|
|
2400 |
|
|
break;
|
2401 |
|
|
case bfd_mach_s390_64:
|
2402 |
|
|
tdep->abi = ABI_LINUX_ZSERIES;
|
2403 |
|
|
|
2404 |
|
|
tdep->gregset = &s390x_gregset;
|
2405 |
|
|
tdep->sizeof_gregset = s390x_sizeof_gregset;
|
2406 |
|
|
tdep->fpregset = &s390_fpregset;
|
2407 |
|
|
tdep->sizeof_fpregset = s390_sizeof_fpregset;
|
2408 |
|
|
|
2409 |
|
|
set_gdbarch_long_bit (gdbarch, 64);
|
2410 |
|
|
set_gdbarch_long_long_bit (gdbarch, 64);
|
2411 |
|
|
set_gdbarch_ptr_bit (gdbarch, 64);
|
2412 |
|
|
set_gdbarch_pseudo_register_read (gdbarch, s390x_pseudo_register_read);
|
2413 |
|
|
set_gdbarch_pseudo_register_write (gdbarch, s390x_pseudo_register_write);
|
2414 |
|
|
set_solib_svr4_fetch_link_map_offsets
|
2415 |
|
|
(gdbarch, svr4_lp64_fetch_link_map_offsets);
|
2416 |
|
|
set_gdbarch_address_class_type_flags (gdbarch,
|
2417 |
|
|
s390_address_class_type_flags);
|
2418 |
|
|
set_gdbarch_address_class_type_flags_to_name (gdbarch,
|
2419 |
|
|
s390_address_class_type_flags_to_name);
|
2420 |
|
|
set_gdbarch_address_class_name_to_type_flags (gdbarch,
|
2421 |
|
|
s390_address_class_name_to_type_flags);
|
2422 |
|
|
break;
|
2423 |
|
|
}
|
2424 |
|
|
|
2425 |
|
|
set_gdbarch_print_insn (gdbarch, print_insn_s390);
|
2426 |
|
|
|
2427 |
|
|
set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
|
2428 |
|
|
|
2429 |
|
|
/* Enable TLS support. */
|
2430 |
|
|
set_gdbarch_fetch_tls_load_module_address (gdbarch,
|
2431 |
|
|
svr4_fetch_objfile_link_map);
|
2432 |
|
|
|
2433 |
|
|
return gdbarch;
|
2434 |
|
|
}
|
2435 |
|
|
|
2436 |
|
|
|
2437 |
|
|
|
2438 |
|
|
extern initialize_file_ftype _initialize_s390_tdep; /* -Wmissing-prototypes */
|
2439 |
|
|
|
2440 |
|
|
void
|
2441 |
|
|
_initialize_s390_tdep (void)
|
2442 |
|
|
{
|
2443 |
|
|
|
2444 |
|
|
/* Hook us into the gdbarch mechanism. */
|
2445 |
|
|
register_gdbarch_init (bfd_arch_s390, s390_gdbarch_init);
|
2446 |
|
|
}
|