1 |
24 |
jeremybenn |
/* Decimal number arithmetic module for the decNumber C Library.
|
2 |
|
|
Copyright (C) 2005, 2007 Free Software Foundation, Inc.
|
3 |
|
|
Contributed by IBM Corporation. Author Mike Cowlishaw.
|
4 |
|
|
|
5 |
|
|
This file is part of GCC.
|
6 |
|
|
|
7 |
|
|
GCC is free software; you can redistribute it and/or modify it under
|
8 |
|
|
the terms of the GNU General Public License as published by the Free
|
9 |
|
|
Software Foundation; either version 2, or (at your option) any later
|
10 |
|
|
version.
|
11 |
|
|
|
12 |
|
|
In addition to the permissions in the GNU General Public License,
|
13 |
|
|
the Free Software Foundation gives you unlimited permission to link
|
14 |
|
|
the compiled version of this file into combinations with other
|
15 |
|
|
programs, and to distribute those combinations without any
|
16 |
|
|
restriction coming from the use of this file. (The General Public
|
17 |
|
|
License restrictions do apply in other respects; for example, they
|
18 |
|
|
cover modification of the file, and distribution when not linked
|
19 |
|
|
into a combine executable.)
|
20 |
|
|
|
21 |
|
|
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
|
22 |
|
|
WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
23 |
|
|
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
24 |
|
|
for more details.
|
25 |
|
|
|
26 |
|
|
You should have received a copy of the GNU General Public License
|
27 |
|
|
along with GCC; see the file COPYING. If not, write to the Free
|
28 |
|
|
Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
|
29 |
|
|
02110-1301, USA. */
|
30 |
|
|
|
31 |
|
|
/* ------------------------------------------------------------------ */
|
32 |
|
|
/* Decimal Number arithmetic module */
|
33 |
|
|
/* ------------------------------------------------------------------ */
|
34 |
|
|
/* This module comprises the routines for General Decimal Arithmetic */
|
35 |
|
|
/* as defined in the specification which may be found on the */
|
36 |
|
|
/* http://www2.hursley.ibm.com/decimal web pages. It implements both */
|
37 |
|
|
/* the full ('extended') arithmetic and the simpler ('subset') */
|
38 |
|
|
/* arithmetic. */
|
39 |
|
|
/* */
|
40 |
|
|
/* Usage notes: */
|
41 |
|
|
/* */
|
42 |
|
|
/* 1. This code is ANSI C89 except: */
|
43 |
|
|
/* */
|
44 |
|
|
/* If DECDPUN>4 or DECUSE64=1, the C99 64-bit int64_t and */
|
45 |
|
|
/* uint64_t types may be used. To avoid these, set DECUSE64=0 */
|
46 |
|
|
/* and DECDPUN<=4 (see documentation). */
|
47 |
|
|
/* */
|
48 |
|
|
/* 2. The decNumber format which this library uses is optimized for */
|
49 |
|
|
/* efficient processing of relatively short numbers; in particular */
|
50 |
|
|
/* it allows the use of fixed sized structures and minimizes copy */
|
51 |
|
|
/* and move operations. It does, however, support arbitrary */
|
52 |
|
|
/* precision (up to 999,999,999 digits) and arbitrary exponent */
|
53 |
|
|
/* range (Emax in the range 0 through 999,999,999 and Emin in the */
|
54 |
|
|
/* range -999,999,999 through 0). Mathematical functions (for */
|
55 |
|
|
/* example decNumberExp) as identified below are restricted more */
|
56 |
|
|
/* tightly: digits, emax, and -emin in the context must be <= */
|
57 |
|
|
/* DEC_MAX_MATH (999999), and their operand(s) must be within */
|
58 |
|
|
/* these bounds. */
|
59 |
|
|
/* */
|
60 |
|
|
/* 3. Logical functions are further restricted; their operands must */
|
61 |
|
|
/* be finite, positive, have an exponent of zero, and all digits */
|
62 |
|
|
/* must be either 0 or 1. The result will only contain digits */
|
63 |
|
|
/* which are 0 or 1 (and will have exponent=0 and a sign of 0). */
|
64 |
|
|
/* */
|
65 |
|
|
/* 4. Operands to operator functions are never modified unless they */
|
66 |
|
|
/* are also specified to be the result number (which is always */
|
67 |
|
|
/* permitted). Other than that case, operands must not overlap. */
|
68 |
|
|
/* */
|
69 |
|
|
/* 5. Error handling: the type of the error is ORed into the status */
|
70 |
|
|
/* flags in the current context (decContext structure). The */
|
71 |
|
|
/* SIGFPE signal is then raised if the corresponding trap-enabler */
|
72 |
|
|
/* flag in the decContext is set (is 1). */
|
73 |
|
|
/* */
|
74 |
|
|
/* It is the responsibility of the caller to clear the status */
|
75 |
|
|
/* flags as required. */
|
76 |
|
|
/* */
|
77 |
|
|
/* The result of any routine which returns a number will always */
|
78 |
|
|
/* be a valid number (which may be a special value, such as an */
|
79 |
|
|
/* Infinity or NaN). */
|
80 |
|
|
/* */
|
81 |
|
|
/* 6. The decNumber format is not an exchangeable concrete */
|
82 |
|
|
/* representation as it comprises fields which may be machine- */
|
83 |
|
|
/* dependent (packed or unpacked, or special length, for example). */
|
84 |
|
|
/* Canonical conversions to and from strings are provided; other */
|
85 |
|
|
/* conversions are available in separate modules. */
|
86 |
|
|
/* */
|
87 |
|
|
/* 7. Normally, input operands are assumed to be valid. Set DECCHECK */
|
88 |
|
|
/* to 1 for extended operand checking (including NULL operands). */
|
89 |
|
|
/* Results are undefined if a badly-formed structure (or a NULL */
|
90 |
|
|
/* pointer to a structure) is provided, though with DECCHECK */
|
91 |
|
|
/* enabled the operator routines are protected against exceptions. */
|
92 |
|
|
/* (Except if the result pointer is NULL, which is unrecoverable.) */
|
93 |
|
|
/* */
|
94 |
|
|
/* However, the routines will never cause exceptions if they are */
|
95 |
|
|
/* given well-formed operands, even if the value of the operands */
|
96 |
|
|
/* is inappropriate for the operation and DECCHECK is not set. */
|
97 |
|
|
/* (Except for SIGFPE, as and where documented.) */
|
98 |
|
|
/* */
|
99 |
|
|
/* 8. Subset arithmetic is available only if DECSUBSET is set to 1. */
|
100 |
|
|
/* ------------------------------------------------------------------ */
|
101 |
|
|
/* Implementation notes for maintenance of this module: */
|
102 |
|
|
/* */
|
103 |
|
|
/* 1. Storage leak protection: Routines which use malloc are not */
|
104 |
|
|
/* permitted to use return for fastpath or error exits (i.e., */
|
105 |
|
|
/* they follow strict structured programming conventions). */
|
106 |
|
|
/* Instead they have a do{}while(0); construct surrounding the */
|
107 |
|
|
/* code which is protected -- break may be used to exit this. */
|
108 |
|
|
/* Other routines can safely use the return statement inline. */
|
109 |
|
|
/* */
|
110 |
|
|
/* Storage leak accounting can be enabled using DECALLOC. */
|
111 |
|
|
/* */
|
112 |
|
|
/* 2. All loops use the for(;;) construct. Any do construct does */
|
113 |
|
|
/* not loop; it is for allocation protection as just described. */
|
114 |
|
|
/* */
|
115 |
|
|
/* 3. Setting status in the context must always be the very last */
|
116 |
|
|
/* action in a routine, as non-0 status may raise a trap and hence */
|
117 |
|
|
/* the call to set status may not return (if the handler uses long */
|
118 |
|
|
/* jump). Therefore all cleanup must be done first. In general, */
|
119 |
|
|
/* to achieve this status is accumulated and is only applied just */
|
120 |
|
|
/* before return by calling decContextSetStatus (via decStatus). */
|
121 |
|
|
/* */
|
122 |
|
|
/* Routines which allocate storage cannot, in general, use the */
|
123 |
|
|
/* 'top level' routines which could cause a non-returning */
|
124 |
|
|
/* transfer of control. The decXxxxOp routines are safe (do not */
|
125 |
|
|
/* call decStatus even if traps are set in the context) and should */
|
126 |
|
|
/* be used instead (they are also a little faster). */
|
127 |
|
|
/* */
|
128 |
|
|
/* 4. Exponent checking is minimized by allowing the exponent to */
|
129 |
|
|
/* grow outside its limits during calculations, provided that */
|
130 |
|
|
/* the decFinalize function is called later. Multiplication and */
|
131 |
|
|
/* division, and intermediate calculations in exponentiation, */
|
132 |
|
|
/* require more careful checks because of the risk of 31-bit */
|
133 |
|
|
/* overflow (the most negative valid exponent is -1999999997, for */
|
134 |
|
|
/* a 999999999-digit number with adjusted exponent of -999999999). */
|
135 |
|
|
/* */
|
136 |
|
|
/* 5. Rounding is deferred until finalization of results, with any */
|
137 |
|
|
/* 'off to the right' data being represented as a single digit */
|
138 |
|
|
/* residue (in the range -1 through 9). This avoids any double- */
|
139 |
|
|
/* rounding when more than one shortening takes place (for */
|
140 |
|
|
/* example, when a result is subnormal). */
|
141 |
|
|
/* */
|
142 |
|
|
/* 6. The digits count is allowed to rise to a multiple of DECDPUN */
|
143 |
|
|
/* during many operations, so whole Units are handled and exact */
|
144 |
|
|
/* accounting of digits is not needed. The correct digits value */
|
145 |
|
|
/* is found by decGetDigits, which accounts for leading zeros. */
|
146 |
|
|
/* This must be called before any rounding if the number of digits */
|
147 |
|
|
/* is not known exactly. */
|
148 |
|
|
/* */
|
149 |
|
|
/* 7. The multiply-by-reciprocal 'trick' is used for partitioning */
|
150 |
|
|
/* numbers up to four digits, using appropriate constants. This */
|
151 |
|
|
/* is not useful for longer numbers because overflow of 32 bits */
|
152 |
|
|
/* would lead to 4 multiplies, which is almost as expensive as */
|
153 |
|
|
/* a divide (unless a floating-point or 64-bit multiply is */
|
154 |
|
|
/* assumed to be available). */
|
155 |
|
|
/* */
|
156 |
|
|
/* 8. Unusual abbreviations that may be used in the commentary: */
|
157 |
|
|
/* lhs -- left hand side (operand, of an operation) */
|
158 |
|
|
/* lsd -- least significant digit (of coefficient) */
|
159 |
|
|
/* lsu -- least significant Unit (of coefficient) */
|
160 |
|
|
/* msd -- most significant digit (of coefficient) */
|
161 |
|
|
/* msi -- most significant item (in an array) */
|
162 |
|
|
/* msu -- most significant Unit (of coefficient) */
|
163 |
|
|
/* rhs -- right hand side (operand, of an operation) */
|
164 |
|
|
/* +ve -- positive */
|
165 |
|
|
/* -ve -- negative */
|
166 |
|
|
/* ** -- raise to the power */
|
167 |
|
|
/* ------------------------------------------------------------------ */
|
168 |
|
|
|
169 |
|
|
#include <stdlib.h> /* for malloc, free, etc. */
|
170 |
|
|
#include <stdio.h> /* for printf [if needed] */
|
171 |
|
|
#include <string.h> /* for strcpy */
|
172 |
|
|
#include <ctype.h> /* for lower */
|
173 |
|
|
#include "config.h" /* for GCC definitions */
|
174 |
|
|
#include "decNumber.h" /* base number library */
|
175 |
|
|
#include "decNumberLocal.h" /* decNumber local types, etc. */
|
176 |
|
|
|
177 |
|
|
/* Constants */
|
178 |
|
|
/* Public lookup table used by the D2U macro */
|
179 |
|
|
const uByte d2utable[DECMAXD2U+1]=D2UTABLE;
|
180 |
|
|
|
181 |
|
|
#define DECVERB 1 /* set to 1 for verbose DECCHECK */
|
182 |
|
|
#define powers DECPOWERS /* old internal name */
|
183 |
|
|
|
184 |
|
|
/* Local constants */
|
185 |
|
|
#define DIVIDE 0x80 /* Divide operators */
|
186 |
|
|
#define REMAINDER 0x40 /* .. */
|
187 |
|
|
#define DIVIDEINT 0x20 /* .. */
|
188 |
|
|
#define REMNEAR 0x10 /* .. */
|
189 |
|
|
#define COMPARE 0x01 /* Compare operators */
|
190 |
|
|
#define COMPMAX 0x02 /* .. */
|
191 |
|
|
#define COMPMIN 0x03 /* .. */
|
192 |
|
|
#define COMPTOTAL 0x04 /* .. */
|
193 |
|
|
#define COMPNAN 0x05 /* .. [NaN processing] */
|
194 |
|
|
#define COMPSIG 0x06 /* .. [signaling COMPARE] */
|
195 |
|
|
#define COMPMAXMAG 0x07 /* .. */
|
196 |
|
|
#define COMPMINMAG 0x08 /* .. */
|
197 |
|
|
|
198 |
|
|
#define DEC_sNaN 0x40000000 /* local status: sNaN signal */
|
199 |
|
|
#define BADINT (Int)0x80000000 /* most-negative Int; error indicator */
|
200 |
|
|
/* Next two indicate an integer >= 10**6, and its parity (bottom bit) */
|
201 |
|
|
#define BIGEVEN (Int)0x80000002
|
202 |
|
|
#define BIGODD (Int)0x80000003
|
203 |
|
|
|
204 |
|
|
static Unit uarrone[1]={1}; /* Unit array of 1, used for incrementing */
|
205 |
|
|
|
206 |
|
|
/* Granularity-dependent code */
|
207 |
|
|
#if DECDPUN<=4
|
208 |
|
|
#define eInt Int /* extended integer */
|
209 |
|
|
#define ueInt uInt /* unsigned extended integer */
|
210 |
|
|
/* Constant multipliers for divide-by-power-of five using reciprocal */
|
211 |
|
|
/* multiply, after removing powers of 2 by shifting, and final shift */
|
212 |
|
|
/* of 17 [we only need up to **4] */
|
213 |
|
|
static const uInt multies[]={131073, 26215, 5243, 1049, 210};
|
214 |
|
|
/* QUOT10 -- macro to return the quotient of unit u divided by 10**n */
|
215 |
|
|
#define QUOT10(u, n) ((((uInt)(u)>>(n))*multies[n])>>17)
|
216 |
|
|
#else
|
217 |
|
|
/* For DECDPUN>4 non-ANSI-89 64-bit types are needed. */
|
218 |
|
|
#if !DECUSE64
|
219 |
|
|
#error decNumber.c: DECUSE64 must be 1 when DECDPUN>4
|
220 |
|
|
#endif
|
221 |
|
|
#define eInt Long /* extended integer */
|
222 |
|
|
#define ueInt uLong /* unsigned extended integer */
|
223 |
|
|
#endif
|
224 |
|
|
|
225 |
|
|
/* Local routines */
|
226 |
|
|
static decNumber * decAddOp(decNumber *, const decNumber *, const decNumber *,
|
227 |
|
|
decContext *, uByte, uInt *);
|
228 |
|
|
static Flag decBiStr(const char *, const char *, const char *);
|
229 |
|
|
static uInt decCheckMath(const decNumber *, decContext *, uInt *);
|
230 |
|
|
static void decApplyRound(decNumber *, decContext *, Int, uInt *);
|
231 |
|
|
static Int decCompare(const decNumber *lhs, const decNumber *rhs, Flag);
|
232 |
|
|
static decNumber * decCompareOp(decNumber *, const decNumber *,
|
233 |
|
|
const decNumber *, decContext *,
|
234 |
|
|
Flag, uInt *);
|
235 |
|
|
static void decCopyFit(decNumber *, const decNumber *, decContext *,
|
236 |
|
|
Int *, uInt *);
|
237 |
|
|
static decNumber * decDecap(decNumber *, Int);
|
238 |
|
|
static decNumber * decDivideOp(decNumber *, const decNumber *,
|
239 |
|
|
const decNumber *, decContext *, Flag, uInt *);
|
240 |
|
|
static decNumber * decExpOp(decNumber *, const decNumber *,
|
241 |
|
|
decContext *, uInt *);
|
242 |
|
|
static void decFinalize(decNumber *, decContext *, Int *, uInt *);
|
243 |
|
|
static Int decGetDigits(Unit *, Int);
|
244 |
|
|
static Int decGetInt(const decNumber *);
|
245 |
|
|
static decNumber * decLnOp(decNumber *, const decNumber *,
|
246 |
|
|
decContext *, uInt *);
|
247 |
|
|
static decNumber * decMultiplyOp(decNumber *, const decNumber *,
|
248 |
|
|
const decNumber *, decContext *,
|
249 |
|
|
uInt *);
|
250 |
|
|
static decNumber * decNaNs(decNumber *, const decNumber *,
|
251 |
|
|
const decNumber *, decContext *, uInt *);
|
252 |
|
|
static decNumber * decQuantizeOp(decNumber *, const decNumber *,
|
253 |
|
|
const decNumber *, decContext *, Flag,
|
254 |
|
|
uInt *);
|
255 |
|
|
static void decReverse(Unit *, Unit *);
|
256 |
|
|
static void decSetCoeff(decNumber *, decContext *, const Unit *,
|
257 |
|
|
Int, Int *, uInt *);
|
258 |
|
|
static void decSetMaxValue(decNumber *, decContext *);
|
259 |
|
|
static void decSetOverflow(decNumber *, decContext *, uInt *);
|
260 |
|
|
static void decSetSubnormal(decNumber *, decContext *, Int *, uInt *);
|
261 |
|
|
static Int decShiftToLeast(Unit *, Int, Int);
|
262 |
|
|
static Int decShiftToMost(Unit *, Int, Int);
|
263 |
|
|
static void decStatus(decNumber *, uInt, decContext *);
|
264 |
|
|
static void decToString(const decNumber *, char[], Flag);
|
265 |
|
|
static decNumber * decTrim(decNumber *, decContext *, Flag, Int *);
|
266 |
|
|
static Int decUnitAddSub(const Unit *, Int, const Unit *, Int, Int,
|
267 |
|
|
Unit *, Int);
|
268 |
|
|
static Int decUnitCompare(const Unit *, Int, const Unit *, Int, Int);
|
269 |
|
|
|
270 |
|
|
#if !DECSUBSET
|
271 |
|
|
/* decFinish == decFinalize when no subset arithmetic needed */
|
272 |
|
|
#define decFinish(a,b,c,d) decFinalize(a,b,c,d)
|
273 |
|
|
#else
|
274 |
|
|
static void decFinish(decNumber *, decContext *, Int *, uInt *);
|
275 |
|
|
static decNumber * decRoundOperand(const decNumber *, decContext *, uInt *);
|
276 |
|
|
#endif
|
277 |
|
|
|
278 |
|
|
/* Local macros */
|
279 |
|
|
/* masked special-values bits */
|
280 |
|
|
#define SPECIALARG (rhs->bits & DECSPECIAL)
|
281 |
|
|
#define SPECIALARGS ((lhs->bits | rhs->bits) & DECSPECIAL)
|
282 |
|
|
|
283 |
|
|
/* Diagnostic macros, etc. */
|
284 |
|
|
#if DECALLOC
|
285 |
|
|
/* Handle malloc/free accounting. If enabled, our accountable routines */
|
286 |
|
|
/* are used; otherwise the code just goes straight to the system malloc */
|
287 |
|
|
/* and free routines. */
|
288 |
|
|
#define malloc(a) decMalloc(a)
|
289 |
|
|
#define free(a) decFree(a)
|
290 |
|
|
#define DECFENCE 0x5a /* corruption detector */
|
291 |
|
|
/* 'Our' malloc and free: */
|
292 |
|
|
static void *decMalloc(size_t);
|
293 |
|
|
static void decFree(void *);
|
294 |
|
|
uInt decAllocBytes=0; /* count of bytes allocated */
|
295 |
|
|
/* Note that DECALLOC code only checks for storage buffer overflow. */
|
296 |
|
|
/* To check for memory leaks, the decAllocBytes variable must be */
|
297 |
|
|
/* checked to be 0 at appropriate times (e.g., after the test */
|
298 |
|
|
/* harness completes a set of tests). This checking may be unreliable */
|
299 |
|
|
/* if the testing is done in a multi-thread environment. */
|
300 |
|
|
#endif
|
301 |
|
|
|
302 |
|
|
#if DECCHECK
|
303 |
|
|
/* Optional checking routines. Enabling these means that decNumber */
|
304 |
|
|
/* and decContext operands to operator routines are checked for */
|
305 |
|
|
/* correctness. This roughly doubles the execution time of the */
|
306 |
|
|
/* fastest routines (and adds 600+ bytes), so should not normally be */
|
307 |
|
|
/* used in 'production'. */
|
308 |
|
|
/* decCheckInexact is used to check that inexact results have a full */
|
309 |
|
|
/* complement of digits (where appropriate -- this is not the case */
|
310 |
|
|
/* for Quantize, for example) */
|
311 |
|
|
#define DECUNRESU ((decNumber *)(void *)0xffffffff)
|
312 |
|
|
#define DECUNUSED ((const decNumber *)(void *)0xffffffff)
|
313 |
|
|
#define DECUNCONT ((decContext *)(void *)(0xffffffff))
|
314 |
|
|
static Flag decCheckOperands(decNumber *, const decNumber *,
|
315 |
|
|
const decNumber *, decContext *);
|
316 |
|
|
static Flag decCheckNumber(const decNumber *);
|
317 |
|
|
static void decCheckInexact(const decNumber *, decContext *);
|
318 |
|
|
#endif
|
319 |
|
|
|
320 |
|
|
#if DECTRACE || DECCHECK
|
321 |
|
|
/* Optional trace/debugging routines (may or may not be used) */
|
322 |
|
|
void decNumberShow(const decNumber *); /* displays the components of a number */
|
323 |
|
|
static void decDumpAr(char, const Unit *, Int);
|
324 |
|
|
#endif
|
325 |
|
|
|
326 |
|
|
/* ================================================================== */
|
327 |
|
|
/* Conversions */
|
328 |
|
|
/* ================================================================== */
|
329 |
|
|
|
330 |
|
|
/* ------------------------------------------------------------------ */
|
331 |
|
|
/* from-int32 -- conversion from Int or uInt */
|
332 |
|
|
/* */
|
333 |
|
|
/* dn is the decNumber to receive the integer */
|
334 |
|
|
/* in or uin is the integer to be converted */
|
335 |
|
|
/* returns dn */
|
336 |
|
|
/* */
|
337 |
|
|
/* No error is possible. */
|
338 |
|
|
/* ------------------------------------------------------------------ */
|
339 |
|
|
decNumber * decNumberFromInt32(decNumber *dn, Int in) {
|
340 |
|
|
uInt unsig;
|
341 |
|
|
if (in>=0) unsig=in;
|
342 |
|
|
else { /* negative (possibly BADINT) */
|
343 |
|
|
if (in==BADINT) unsig=(uInt)1073741824*2; /* special case */
|
344 |
|
|
else unsig=-in; /* invert */
|
345 |
|
|
}
|
346 |
|
|
/* in is now positive */
|
347 |
|
|
decNumberFromUInt32(dn, unsig);
|
348 |
|
|
if (in<0) dn->bits=DECNEG; /* sign needed */
|
349 |
|
|
return dn;
|
350 |
|
|
} /* decNumberFromInt32 */
|
351 |
|
|
|
352 |
|
|
decNumber * decNumberFromUInt32(decNumber *dn, uInt uin) {
|
353 |
|
|
Unit *up; /* work pointer */
|
354 |
|
|
decNumberZero(dn); /* clean */
|
355 |
|
|
if (uin==0) return dn; /* [or decGetDigits bad call] */
|
356 |
|
|
for (up=dn->lsu; uin>0; up++) {
|
357 |
|
|
*up=(Unit)(uin%(DECDPUNMAX+1));
|
358 |
|
|
uin=uin/(DECDPUNMAX+1);
|
359 |
|
|
}
|
360 |
|
|
dn->digits=decGetDigits(dn->lsu, up-dn->lsu);
|
361 |
|
|
return dn;
|
362 |
|
|
} /* decNumberFromUInt32 */
|
363 |
|
|
|
364 |
|
|
/* ------------------------------------------------------------------ */
|
365 |
|
|
/* to-int32 -- conversion to Int or uInt */
|
366 |
|
|
/* */
|
367 |
|
|
/* dn is the decNumber to convert */
|
368 |
|
|
/* set is the context for reporting errors */
|
369 |
|
|
/* returns the converted decNumber, or 0 if Invalid is set */
|
370 |
|
|
/* */
|
371 |
|
|
/* Invalid is set if the decNumber does not have exponent==0 or if */
|
372 |
|
|
/* it is a NaN, Infinite, or out-of-range. */
|
373 |
|
|
/* ------------------------------------------------------------------ */
|
374 |
|
|
Int decNumberToInt32(const decNumber *dn, decContext *set) {
|
375 |
|
|
#if DECCHECK
|
376 |
|
|
if (decCheckOperands(DECUNRESU, DECUNUSED, dn, set)) return 0;
|
377 |
|
|
#endif
|
378 |
|
|
|
379 |
|
|
/* special or too many digits, or bad exponent */
|
380 |
|
|
if (dn->bits&DECSPECIAL || dn->digits>10 || dn->exponent!=0) ; /* bad */
|
381 |
|
|
else { /* is a finite integer with 10 or fewer digits */
|
382 |
|
|
Int d; /* work */
|
383 |
|
|
const Unit *up; /* .. */
|
384 |
|
|
uInt hi=0, lo; /* .. */
|
385 |
|
|
up=dn->lsu; /* -> lsu */
|
386 |
|
|
lo=*up; /* get 1 to 9 digits */
|
387 |
|
|
#if DECDPUN>1 /* split to higher */
|
388 |
|
|
hi=lo/10;
|
389 |
|
|
lo=lo%10;
|
390 |
|
|
#endif
|
391 |
|
|
up++;
|
392 |
|
|
/* collect remaining Units, if any, into hi */
|
393 |
|
|
for (d=DECDPUN; d<dn->digits; up++, d+=DECDPUN) hi+=*up*powers[d-1];
|
394 |
|
|
/* now low has the lsd, hi the remainder */
|
395 |
|
|
if (hi>214748364 || (hi==214748364 && lo>7)) { /* out of range? */
|
396 |
|
|
/* most-negative is a reprieve */
|
397 |
|
|
if (dn->bits&DECNEG && hi==214748364 && lo==8) return 0x80000000;
|
398 |
|
|
/* bad -- drop through */
|
399 |
|
|
}
|
400 |
|
|
else { /* in-range always */
|
401 |
|
|
Int i=X10(hi)+lo;
|
402 |
|
|
if (dn->bits&DECNEG) return -i;
|
403 |
|
|
return i;
|
404 |
|
|
}
|
405 |
|
|
} /* integer */
|
406 |
|
|
decContextSetStatus(set, DEC_Invalid_operation); /* [may not return] */
|
407 |
|
|
return 0;
|
408 |
|
|
} /* decNumberToInt32 */
|
409 |
|
|
|
410 |
|
|
uInt decNumberToUInt32(const decNumber *dn, decContext *set) {
|
411 |
|
|
#if DECCHECK
|
412 |
|
|
if (decCheckOperands(DECUNRESU, DECUNUSED, dn, set)) return 0;
|
413 |
|
|
#endif
|
414 |
|
|
/* special or too many digits, or bad exponent, or negative (<0) */
|
415 |
|
|
if (dn->bits&DECSPECIAL || dn->digits>10 || dn->exponent!=0
|
416 |
|
|
|| (dn->bits&DECNEG && !ISZERO(dn))); /* bad */
|
417 |
|
|
else { /* is a finite integer with 10 or fewer digits */
|
418 |
|
|
Int d; /* work */
|
419 |
|
|
const Unit *up; /* .. */
|
420 |
|
|
uInt hi=0, lo; /* .. */
|
421 |
|
|
up=dn->lsu; /* -> lsu */
|
422 |
|
|
lo=*up; /* get 1 to 9 digits */
|
423 |
|
|
#if DECDPUN>1 /* split to higher */
|
424 |
|
|
hi=lo/10;
|
425 |
|
|
lo=lo%10;
|
426 |
|
|
#endif
|
427 |
|
|
up++;
|
428 |
|
|
/* collect remaining Units, if any, into hi */
|
429 |
|
|
for (d=DECDPUN; d<dn->digits; up++, d+=DECDPUN) hi+=*up*powers[d-1];
|
430 |
|
|
|
431 |
|
|
/* now low has the lsd, hi the remainder */
|
432 |
|
|
if (hi>429496729 || (hi==429496729 && lo>5)) ; /* no reprieve possible */
|
433 |
|
|
else return X10(hi)+lo;
|
434 |
|
|
} /* integer */
|
435 |
|
|
decContextSetStatus(set, DEC_Invalid_operation); /* [may not return] */
|
436 |
|
|
return 0;
|
437 |
|
|
} /* decNumberToUInt32 */
|
438 |
|
|
|
439 |
|
|
/* ------------------------------------------------------------------ */
|
440 |
|
|
/* to-scientific-string -- conversion to numeric string */
|
441 |
|
|
/* to-engineering-string -- conversion to numeric string */
|
442 |
|
|
/* */
|
443 |
|
|
/* decNumberToString(dn, string); */
|
444 |
|
|
/* decNumberToEngString(dn, string); */
|
445 |
|
|
/* */
|
446 |
|
|
/* dn is the decNumber to convert */
|
447 |
|
|
/* string is the string where the result will be laid out */
|
448 |
|
|
/* */
|
449 |
|
|
/* string must be at least dn->digits+14 characters long */
|
450 |
|
|
/* */
|
451 |
|
|
/* No error is possible, and no status can be set. */
|
452 |
|
|
/* ------------------------------------------------------------------ */
|
453 |
|
|
char * decNumberToString(const decNumber *dn, char *string){
|
454 |
|
|
decToString(dn, string, 0);
|
455 |
|
|
return string;
|
456 |
|
|
} /* DecNumberToString */
|
457 |
|
|
|
458 |
|
|
char * decNumberToEngString(const decNumber *dn, char *string){
|
459 |
|
|
decToString(dn, string, 1);
|
460 |
|
|
return string;
|
461 |
|
|
} /* DecNumberToEngString */
|
462 |
|
|
|
463 |
|
|
/* ------------------------------------------------------------------ */
|
464 |
|
|
/* to-number -- conversion from numeric string */
|
465 |
|
|
/* */
|
466 |
|
|
/* decNumberFromString -- convert string to decNumber */
|
467 |
|
|
/* dn -- the number structure to fill */
|
468 |
|
|
/* chars[] -- the string to convert ('\0' terminated) */
|
469 |
|
|
/* set -- the context used for processing any error, */
|
470 |
|
|
/* determining the maximum precision available */
|
471 |
|
|
/* (set.digits), determining the maximum and minimum */
|
472 |
|
|
/* exponent (set.emax and set.emin), determining if */
|
473 |
|
|
/* extended values are allowed, and checking the */
|
474 |
|
|
/* rounding mode if overflow occurs or rounding is */
|
475 |
|
|
/* needed. */
|
476 |
|
|
/* */
|
477 |
|
|
/* The length of the coefficient and the size of the exponent are */
|
478 |
|
|
/* checked by this routine, so the correct error (Underflow or */
|
479 |
|
|
/* Overflow) can be reported or rounding applied, as necessary. */
|
480 |
|
|
/* */
|
481 |
|
|
/* If bad syntax is detected, the result will be a quiet NaN. */
|
482 |
|
|
/* ------------------------------------------------------------------ */
|
483 |
|
|
decNumber * decNumberFromString(decNumber *dn, const char chars[],
|
484 |
|
|
decContext *set) {
|
485 |
|
|
Int exponent=0; /* working exponent [assume 0] */
|
486 |
|
|
uByte bits=0; /* working flags [assume +ve] */
|
487 |
|
|
Unit *res; /* where result will be built */
|
488 |
|
|
Unit resbuff[SD2U(DECBUFFER+9)];/* local buffer in case need temporary */
|
489 |
|
|
/* [+9 allows for ln() constants] */
|
490 |
|
|
Unit *allocres=NULL; /* -> allocated result, iff allocated */
|
491 |
|
|
Int d=0; /* count of digits found in decimal part */
|
492 |
|
|
const char *dotchar=NULL; /* where dot was found */
|
493 |
|
|
const char *cfirst=chars; /* -> first character of decimal part */
|
494 |
|
|
const char *last=NULL; /* -> last digit of decimal part */
|
495 |
|
|
const char *c; /* work */
|
496 |
|
|
Unit *up; /* .. */
|
497 |
|
|
#if DECDPUN>1
|
498 |
|
|
Int cut, out; /* .. */
|
499 |
|
|
#endif
|
500 |
|
|
Int residue; /* rounding residue */
|
501 |
|
|
uInt status=0; /* error code */
|
502 |
|
|
|
503 |
|
|
#if DECCHECK
|
504 |
|
|
if (decCheckOperands(DECUNRESU, DECUNUSED, DECUNUSED, set))
|
505 |
|
|
return decNumberZero(dn);
|
506 |
|
|
#endif
|
507 |
|
|
|
508 |
|
|
do { /* status & malloc protection */
|
509 |
|
|
for (c=chars;; c++) { /* -> input character */
|
510 |
|
|
if (*c>='0' && *c<='9') { /* test for Arabic digit */
|
511 |
|
|
last=c;
|
512 |
|
|
d++; /* count of real digits */
|
513 |
|
|
continue; /* still in decimal part */
|
514 |
|
|
}
|
515 |
|
|
if (*c=='.' && dotchar==NULL) { /* first '.' */
|
516 |
|
|
dotchar=c; /* record offset into decimal part */
|
517 |
|
|
if (c==cfirst) cfirst++; /* first digit must follow */
|
518 |
|
|
continue;}
|
519 |
|
|
if (c==chars) { /* first in string... */
|
520 |
|
|
if (*c=='-') { /* valid - sign */
|
521 |
|
|
cfirst++;
|
522 |
|
|
bits=DECNEG;
|
523 |
|
|
continue;}
|
524 |
|
|
if (*c=='+') { /* valid + sign */
|
525 |
|
|
cfirst++;
|
526 |
|
|
continue;}
|
527 |
|
|
}
|
528 |
|
|
/* *c is not a digit, or a valid +, -, or '.' */
|
529 |
|
|
break;
|
530 |
|
|
} /* c */
|
531 |
|
|
|
532 |
|
|
if (last==NULL) { /* no digits yet */
|
533 |
|
|
status=DEC_Conversion_syntax;/* assume the worst */
|
534 |
|
|
if (*c=='\0') break; /* and no more to come... */
|
535 |
|
|
#if DECSUBSET
|
536 |
|
|
/* if subset then infinities and NaNs are not allowed */
|
537 |
|
|
if (!set->extended) break; /* hopeless */
|
538 |
|
|
#endif
|
539 |
|
|
/* Infinities and NaNs are possible, here */
|
540 |
|
|
if (dotchar!=NULL) break; /* .. unless had a dot */
|
541 |
|
|
decNumberZero(dn); /* be optimistic */
|
542 |
|
|
if (decBiStr(c, "infinity", "INFINITY")
|
543 |
|
|
|| decBiStr(c, "inf", "INF")) {
|
544 |
|
|
dn->bits=bits | DECINF;
|
545 |
|
|
status=0; /* is OK */
|
546 |
|
|
break; /* all done */
|
547 |
|
|
}
|
548 |
|
|
/* a NaN expected */
|
549 |
|
|
/* 2003.09.10 NaNs are now permitted to have a sign */
|
550 |
|
|
dn->bits=bits | DECNAN; /* assume simple NaN */
|
551 |
|
|
if (*c=='s' || *c=='S') { /* looks like an sNaN */
|
552 |
|
|
c++;
|
553 |
|
|
dn->bits=bits | DECSNAN;
|
554 |
|
|
}
|
555 |
|
|
if (*c!='n' && *c!='N') break; /* check caseless "NaN" */
|
556 |
|
|
c++;
|
557 |
|
|
if (*c!='a' && *c!='A') break; /* .. */
|
558 |
|
|
c++;
|
559 |
|
|
if (*c!='n' && *c!='N') break; /* .. */
|
560 |
|
|
c++;
|
561 |
|
|
/* now either nothing, or nnnn payload, expected */
|
562 |
|
|
/* -> start of integer and skip leading 0s [including plain 0] */
|
563 |
|
|
for (cfirst=c; *cfirst=='0';) cfirst++;
|
564 |
|
|
if (*cfirst=='\0') { /* "NaN" or "sNaN", maybe with all 0s */
|
565 |
|
|
status=0; /* it's good */
|
566 |
|
|
break; /* .. */
|
567 |
|
|
}
|
568 |
|
|
/* something other than 0s; setup last and d as usual [no dots] */
|
569 |
|
|
for (c=cfirst;; c++, d++) {
|
570 |
|
|
if (*c<'0' || *c>'9') break; /* test for Arabic digit */
|
571 |
|
|
last=c;
|
572 |
|
|
}
|
573 |
|
|
if (*c!='\0') break; /* not all digits */
|
574 |
|
|
if (d>set->digits-1) {
|
575 |
|
|
/* [NB: payload in a decNumber can be full length unless */
|
576 |
|
|
/* clamped, in which case can only be digits-1] */
|
577 |
|
|
if (set->clamp) break;
|
578 |
|
|
if (d>set->digits) break;
|
579 |
|
|
} /* too many digits? */
|
580 |
|
|
/* good; drop through to convert the integer to coefficient */
|
581 |
|
|
status=0; /* syntax is OK */
|
582 |
|
|
bits=dn->bits; /* for copy-back */
|
583 |
|
|
} /* last==NULL */
|
584 |
|
|
|
585 |
|
|
else if (*c!='\0') { /* more to process... */
|
586 |
|
|
/* had some digits; exponent is only valid sequence now */
|
587 |
|
|
Flag nege; /* 1=negative exponent */
|
588 |
|
|
const char *firstexp; /* -> first significant exponent digit */
|
589 |
|
|
status=DEC_Conversion_syntax;/* assume the worst */
|
590 |
|
|
if (*c!='e' && *c!='E') break;
|
591 |
|
|
/* Found 'e' or 'E' -- now process explicit exponent */
|
592 |
|
|
/* 1998.07.11: sign no longer required */
|
593 |
|
|
nege=0;
|
594 |
|
|
c++; /* to (possible) sign */
|
595 |
|
|
if (*c=='-') {nege=1; c++;}
|
596 |
|
|
else if (*c=='+') c++;
|
597 |
|
|
if (*c=='\0') break;
|
598 |
|
|
|
599 |
|
|
for (; *c=='0' && *(c+1)!='\0';) c++; /* strip insignificant zeros */
|
600 |
|
|
firstexp=c; /* save exponent digit place */
|
601 |
|
|
for (; ;c++) {
|
602 |
|
|
if (*c<'0' || *c>'9') break; /* not a digit */
|
603 |
|
|
exponent=X10(exponent)+(Int)*c-(Int)'0';
|
604 |
|
|
} /* c */
|
605 |
|
|
/* if not now on a '\0', *c must not be a digit */
|
606 |
|
|
if (*c!='\0') break;
|
607 |
|
|
|
608 |
|
|
/* (this next test must be after the syntax checks) */
|
609 |
|
|
/* if it was too long the exponent may have wrapped, so check */
|
610 |
|
|
/* carefully and set it to a certain overflow if wrap possible */
|
611 |
|
|
if (c>=firstexp+9+1) {
|
612 |
|
|
if (c>firstexp+9+1 || *firstexp>'1') exponent=DECNUMMAXE*2;
|
613 |
|
|
/* [up to 1999999999 is OK, for example 1E-1000000998] */
|
614 |
|
|
}
|
615 |
|
|
if (nege) exponent=-exponent; /* was negative */
|
616 |
|
|
status=0; /* is OK */
|
617 |
|
|
} /* stuff after digits */
|
618 |
|
|
|
619 |
|
|
/* Here when whole string has been inspected; syntax is good */
|
620 |
|
|
/* cfirst->first digit (never dot), last->last digit (ditto) */
|
621 |
|
|
|
622 |
|
|
/* strip leading zeros/dot [leave final 0 if all 0's] */
|
623 |
|
|
if (*cfirst=='0') { /* [cfirst has stepped over .] */
|
624 |
|
|
for (c=cfirst; c<last; c++, cfirst++) {
|
625 |
|
|
if (*c=='.') continue; /* ignore dots */
|
626 |
|
|
if (*c!='0') break; /* non-zero found */
|
627 |
|
|
d--; /* 0 stripped */
|
628 |
|
|
} /* c */
|
629 |
|
|
#if DECSUBSET
|
630 |
|
|
/* make a rapid exit for easy zeros if !extended */
|
631 |
|
|
if (*cfirst=='0' && !set->extended) {
|
632 |
|
|
decNumberZero(dn); /* clean result */
|
633 |
|
|
break; /* [could be return] */
|
634 |
|
|
}
|
635 |
|
|
#endif
|
636 |
|
|
} /* at least one leading 0 */
|
637 |
|
|
|
638 |
|
|
/* Handle decimal point... */
|
639 |
|
|
if (dotchar!=NULL && dotchar<last) /* non-trailing '.' found? */
|
640 |
|
|
exponent-=(last-dotchar); /* adjust exponent */
|
641 |
|
|
/* [we can now ignore the .] */
|
642 |
|
|
|
643 |
|
|
/* OK, the digits string is good. Assemble in the decNumber, or in */
|
644 |
|
|
/* a temporary units array if rounding is needed */
|
645 |
|
|
if (d<=set->digits) res=dn->lsu; /* fits into supplied decNumber */
|
646 |
|
|
else { /* rounding needed */
|
647 |
|
|
Int needbytes=D2U(d)*sizeof(Unit);/* bytes needed */
|
648 |
|
|
res=resbuff; /* assume use local buffer */
|
649 |
|
|
if (needbytes>(Int)sizeof(resbuff)) { /* too big for local */
|
650 |
|
|
allocres=(Unit *)malloc(needbytes);
|
651 |
|
|
if (allocres==NULL) {status|=DEC_Insufficient_storage; break;}
|
652 |
|
|
res=allocres;
|
653 |
|
|
}
|
654 |
|
|
}
|
655 |
|
|
/* res now -> number lsu, buffer, or allocated storage for Unit array */
|
656 |
|
|
|
657 |
|
|
/* Place the coefficient into the selected Unit array */
|
658 |
|
|
/* [this is often 70% of the cost of this function when DECDPUN>1] */
|
659 |
|
|
#if DECDPUN>1
|
660 |
|
|
out=0; /* accumulator */
|
661 |
|
|
up=res+D2U(d)-1; /* -> msu */
|
662 |
|
|
cut=d-(up-res)*DECDPUN; /* digits in top unit */
|
663 |
|
|
for (c=cfirst;; c++) { /* along the digits */
|
664 |
|
|
if (*c=='.') continue; /* ignore '.' [don't decrement cut] */
|
665 |
|
|
out=X10(out)+(Int)*c-(Int)'0';
|
666 |
|
|
if (c==last) break; /* done [never get to trailing '.'] */
|
667 |
|
|
cut--;
|
668 |
|
|
if (cut>0) continue; /* more for this unit */
|
669 |
|
|
*up=(Unit)out; /* write unit */
|
670 |
|
|
up--; /* prepare for unit below.. */
|
671 |
|
|
cut=DECDPUN; /* .. */
|
672 |
|
|
out=0; /* .. */
|
673 |
|
|
} /* c */
|
674 |
|
|
*up=(Unit)out; /* write lsu */
|
675 |
|
|
|
676 |
|
|
#else
|
677 |
|
|
/* DECDPUN==1 */
|
678 |
|
|
up=res; /* -> lsu */
|
679 |
|
|
for (c=last; c>=cfirst; c--) { /* over each character, from least */
|
680 |
|
|
if (*c=='.') continue; /* ignore . [don't step up] */
|
681 |
|
|
*up=(Unit)((Int)*c-(Int)'0');
|
682 |
|
|
up++;
|
683 |
|
|
} /* c */
|
684 |
|
|
#endif
|
685 |
|
|
|
686 |
|
|
dn->bits=bits;
|
687 |
|
|
dn->exponent=exponent;
|
688 |
|
|
dn->digits=d;
|
689 |
|
|
|
690 |
|
|
/* if not in number (too long) shorten into the number */
|
691 |
|
|
if (d>set->digits) {
|
692 |
|
|
residue=0;
|
693 |
|
|
decSetCoeff(dn, set, res, d, &residue, &status);
|
694 |
|
|
/* always check for overflow or subnormal and round as needed */
|
695 |
|
|
decFinalize(dn, set, &residue, &status);
|
696 |
|
|
}
|
697 |
|
|
else { /* no rounding, but may still have overflow or subnormal */
|
698 |
|
|
/* [these tests are just for performance; finalize repeats them] */
|
699 |
|
|
if ((dn->exponent-1<set->emin-dn->digits)
|
700 |
|
|
|| (dn->exponent-1>set->emax-set->digits)) {
|
701 |
|
|
residue=0;
|
702 |
|
|
decFinalize(dn, set, &residue, &status);
|
703 |
|
|
}
|
704 |
|
|
}
|
705 |
|
|
/* decNumberShow(dn); */
|
706 |
|
|
} while(0); /* [for break] */
|
707 |
|
|
|
708 |
|
|
if (allocres!=NULL) free(allocres); /* drop any storage used */
|
709 |
|
|
if (status!=0) decStatus(dn, status, set);
|
710 |
|
|
return dn;
|
711 |
|
|
} /* decNumberFromString */
|
712 |
|
|
|
713 |
|
|
/* ================================================================== */
|
714 |
|
|
/* Operators */
|
715 |
|
|
/* ================================================================== */
|
716 |
|
|
|
717 |
|
|
/* ------------------------------------------------------------------ */
|
718 |
|
|
/* decNumberAbs -- absolute value operator */
|
719 |
|
|
/* */
|
720 |
|
|
/* This computes C = abs(A) */
|
721 |
|
|
/* */
|
722 |
|
|
/* res is C, the result. C may be A */
|
723 |
|
|
/* rhs is A */
|
724 |
|
|
/* set is the context */
|
725 |
|
|
/* */
|
726 |
|
|
/* See also decNumberCopyAbs for a quiet bitwise version of this. */
|
727 |
|
|
/* C must have space for set->digits digits. */
|
728 |
|
|
/* ------------------------------------------------------------------ */
|
729 |
|
|
/* This has the same effect as decNumberPlus unless A is negative, */
|
730 |
|
|
/* in which case it has the same effect as decNumberMinus. */
|
731 |
|
|
/* ------------------------------------------------------------------ */
|
732 |
|
|
decNumber * decNumberAbs(decNumber *res, const decNumber *rhs,
|
733 |
|
|
decContext *set) {
|
734 |
|
|
decNumber dzero; /* for 0 */
|
735 |
|
|
uInt status=0; /* accumulator */
|
736 |
|
|
|
737 |
|
|
#if DECCHECK
|
738 |
|
|
if (decCheckOperands(res, DECUNUSED, rhs, set)) return res;
|
739 |
|
|
#endif
|
740 |
|
|
|
741 |
|
|
decNumberZero(&dzero); /* set 0 */
|
742 |
|
|
dzero.exponent=rhs->exponent; /* [no coefficient expansion] */
|
743 |
|
|
decAddOp(res, &dzero, rhs, set, (uByte)(rhs->bits & DECNEG), &status);
|
744 |
|
|
if (status!=0) decStatus(res, status, set);
|
745 |
|
|
#if DECCHECK
|
746 |
|
|
decCheckInexact(res, set);
|
747 |
|
|
#endif
|
748 |
|
|
return res;
|
749 |
|
|
} /* decNumberAbs */
|
750 |
|
|
|
751 |
|
|
/* ------------------------------------------------------------------ */
|
752 |
|
|
/* decNumberAdd -- add two Numbers */
|
753 |
|
|
/* */
|
754 |
|
|
/* This computes C = A + B */
|
755 |
|
|
/* */
|
756 |
|
|
/* res is C, the result. C may be A and/or B (e.g., X=X+X) */
|
757 |
|
|
/* lhs is A */
|
758 |
|
|
/* rhs is B */
|
759 |
|
|
/* set is the context */
|
760 |
|
|
/* */
|
761 |
|
|
/* C must have space for set->digits digits. */
|
762 |
|
|
/* ------------------------------------------------------------------ */
|
763 |
|
|
/* This just calls the routine shared with Subtract */
|
764 |
|
|
decNumber * decNumberAdd(decNumber *res, const decNumber *lhs,
|
765 |
|
|
const decNumber *rhs, decContext *set) {
|
766 |
|
|
uInt status=0; /* accumulator */
|
767 |
|
|
decAddOp(res, lhs, rhs, set, 0, &status);
|
768 |
|
|
if (status!=0) decStatus(res, status, set);
|
769 |
|
|
#if DECCHECK
|
770 |
|
|
decCheckInexact(res, set);
|
771 |
|
|
#endif
|
772 |
|
|
return res;
|
773 |
|
|
} /* decNumberAdd */
|
774 |
|
|
|
775 |
|
|
/* ------------------------------------------------------------------ */
|
776 |
|
|
/* decNumberAnd -- AND two Numbers, digitwise */
|
777 |
|
|
/* */
|
778 |
|
|
/* This computes C = A & B */
|
779 |
|
|
/* */
|
780 |
|
|
/* res is C, the result. C may be A and/or B (e.g., X=X&X) */
|
781 |
|
|
/* lhs is A */
|
782 |
|
|
/* rhs is B */
|
783 |
|
|
/* set is the context (used for result length and error report) */
|
784 |
|
|
/* */
|
785 |
|
|
/* C must have space for set->digits digits. */
|
786 |
|
|
/* */
|
787 |
|
|
/* Logical function restrictions apply (see above); a NaN is */
|
788 |
|
|
/* returned with Invalid_operation if a restriction is violated. */
|
789 |
|
|
/* ------------------------------------------------------------------ */
|
790 |
|
|
decNumber * decNumberAnd(decNumber *res, const decNumber *lhs,
|
791 |
|
|
const decNumber *rhs, decContext *set) {
|
792 |
|
|
const Unit *ua, *ub; /* -> operands */
|
793 |
|
|
const Unit *msua, *msub; /* -> operand msus */
|
794 |
|
|
Unit *uc, *msuc; /* -> result and its msu */
|
795 |
|
|
Int msudigs; /* digits in res msu */
|
796 |
|
|
#if DECCHECK
|
797 |
|
|
if (decCheckOperands(res, lhs, rhs, set)) return res;
|
798 |
|
|
#endif
|
799 |
|
|
|
800 |
|
|
if (lhs->exponent!=0 || decNumberIsSpecial(lhs) || decNumberIsNegative(lhs)
|
801 |
|
|
|| rhs->exponent!=0 || decNumberIsSpecial(rhs) || decNumberIsNegative(rhs)) {
|
802 |
|
|
decStatus(res, DEC_Invalid_operation, set);
|
803 |
|
|
return res;
|
804 |
|
|
}
|
805 |
|
|
|
806 |
|
|
/* operands are valid */
|
807 |
|
|
ua=lhs->lsu; /* bottom-up */
|
808 |
|
|
ub=rhs->lsu; /* .. */
|
809 |
|
|
uc=res->lsu; /* .. */
|
810 |
|
|
msua=ua+D2U(lhs->digits)-1; /* -> msu of lhs */
|
811 |
|
|
msub=ub+D2U(rhs->digits)-1; /* -> msu of rhs */
|
812 |
|
|
msuc=uc+D2U(set->digits)-1; /* -> msu of result */
|
813 |
|
|
msudigs=MSUDIGITS(set->digits); /* [faster than remainder] */
|
814 |
|
|
for (; uc<=msuc; ua++, ub++, uc++) { /* Unit loop */
|
815 |
|
|
Unit a, b; /* extract units */
|
816 |
|
|
if (ua>msua) a=0;
|
817 |
|
|
else a=*ua;
|
818 |
|
|
if (ub>msub) b=0;
|
819 |
|
|
else b=*ub;
|
820 |
|
|
*uc=0; /* can now write back */
|
821 |
|
|
if (a|b) { /* maybe 1 bits to examine */
|
822 |
|
|
Int i, j;
|
823 |
|
|
*uc=0; /* can now write back */
|
824 |
|
|
/* This loop could be unrolled and/or use BIN2BCD tables */
|
825 |
|
|
for (i=0; i<DECDPUN; i++) {
|
826 |
|
|
if (a&b&1) *uc=*uc+(Unit)powers[i]; /* effect AND */
|
827 |
|
|
j=a%10;
|
828 |
|
|
a=a/10;
|
829 |
|
|
j|=b%10;
|
830 |
|
|
b=b/10;
|
831 |
|
|
if (j>1) {
|
832 |
|
|
decStatus(res, DEC_Invalid_operation, set);
|
833 |
|
|
return res;
|
834 |
|
|
}
|
835 |
|
|
if (uc==msuc && i==msudigs-1) break; /* just did final digit */
|
836 |
|
|
} /* each digit */
|
837 |
|
|
} /* both OK */
|
838 |
|
|
} /* each unit */
|
839 |
|
|
/* [here uc-1 is the msu of the result] */
|
840 |
|
|
res->digits=decGetDigits(res->lsu, uc-res->lsu);
|
841 |
|
|
res->exponent=0; /* integer */
|
842 |
|
|
res->bits=0; /* sign=0 */
|
843 |
|
|
return res; /* [no status to set] */
|
844 |
|
|
} /* decNumberAnd */
|
845 |
|
|
|
846 |
|
|
/* ------------------------------------------------------------------ */
|
847 |
|
|
/* decNumberCompare -- compare two Numbers */
|
848 |
|
|
/* */
|
849 |
|
|
/* This computes C = A ? B */
|
850 |
|
|
/* */
|
851 |
|
|
/* res is C, the result. C may be A and/or B (e.g., X=X?X) */
|
852 |
|
|
/* lhs is A */
|
853 |
|
|
/* rhs is B */
|
854 |
|
|
/* set is the context */
|
855 |
|
|
/* */
|
856 |
|
|
/* C must have space for one digit (or NaN). */
|
857 |
|
|
/* ------------------------------------------------------------------ */
|
858 |
|
|
decNumber * decNumberCompare(decNumber *res, const decNumber *lhs,
|
859 |
|
|
const decNumber *rhs, decContext *set) {
|
860 |
|
|
uInt status=0; /* accumulator */
|
861 |
|
|
decCompareOp(res, lhs, rhs, set, COMPARE, &status);
|
862 |
|
|
if (status!=0) decStatus(res, status, set);
|
863 |
|
|
return res;
|
864 |
|
|
} /* decNumberCompare */
|
865 |
|
|
|
866 |
|
|
/* ------------------------------------------------------------------ */
|
867 |
|
|
/* decNumberCompareSignal -- compare, signalling on all NaNs */
|
868 |
|
|
/* */
|
869 |
|
|
/* This computes C = A ? B */
|
870 |
|
|
/* */
|
871 |
|
|
/* res is C, the result. C may be A and/or B (e.g., X=X?X) */
|
872 |
|
|
/* lhs is A */
|
873 |
|
|
/* rhs is B */
|
874 |
|
|
/* set is the context */
|
875 |
|
|
/* */
|
876 |
|
|
/* C must have space for one digit (or NaN). */
|
877 |
|
|
/* ------------------------------------------------------------------ */
|
878 |
|
|
decNumber * decNumberCompareSignal(decNumber *res, const decNumber *lhs,
|
879 |
|
|
const decNumber *rhs, decContext *set) {
|
880 |
|
|
uInt status=0; /* accumulator */
|
881 |
|
|
decCompareOp(res, lhs, rhs, set, COMPSIG, &status);
|
882 |
|
|
if (status!=0) decStatus(res, status, set);
|
883 |
|
|
return res;
|
884 |
|
|
} /* decNumberCompareSignal */
|
885 |
|
|
|
886 |
|
|
/* ------------------------------------------------------------------ */
|
887 |
|
|
/* decNumberCompareTotal -- compare two Numbers, using total ordering */
|
888 |
|
|
/* */
|
889 |
|
|
/* This computes C = A ? B, under total ordering */
|
890 |
|
|
/* */
|
891 |
|
|
/* res is C, the result. C may be A and/or B (e.g., X=X?X) */
|
892 |
|
|
/* lhs is A */
|
893 |
|
|
/* rhs is B */
|
894 |
|
|
/* set is the context */
|
895 |
|
|
/* */
|
896 |
|
|
/* C must have space for one digit; the result will always be one of */
|
897 |
|
|
/* -1, 0, or 1. */
|
898 |
|
|
/* ------------------------------------------------------------------ */
|
899 |
|
|
decNumber * decNumberCompareTotal(decNumber *res, const decNumber *lhs,
|
900 |
|
|
const decNumber *rhs, decContext *set) {
|
901 |
|
|
uInt status=0; /* accumulator */
|
902 |
|
|
decCompareOp(res, lhs, rhs, set, COMPTOTAL, &status);
|
903 |
|
|
if (status!=0) decStatus(res, status, set);
|
904 |
|
|
return res;
|
905 |
|
|
} /* decNumberCompareTotal */
|
906 |
|
|
|
907 |
|
|
/* ------------------------------------------------------------------ */
|
908 |
|
|
/* decNumberCompareTotalMag -- compare, total ordering of magnitudes */
|
909 |
|
|
/* */
|
910 |
|
|
/* This computes C = |A| ? |B|, under total ordering */
|
911 |
|
|
/* */
|
912 |
|
|
/* res is C, the result. C may be A and/or B (e.g., X=X?X) */
|
913 |
|
|
/* lhs is A */
|
914 |
|
|
/* rhs is B */
|
915 |
|
|
/* set is the context */
|
916 |
|
|
/* */
|
917 |
|
|
/* C must have space for one digit; the result will always be one of */
|
918 |
|
|
/* -1, 0, or 1. */
|
919 |
|
|
/* ------------------------------------------------------------------ */
|
920 |
|
|
decNumber * decNumberCompareTotalMag(decNumber *res, const decNumber *lhs,
|
921 |
|
|
const decNumber *rhs, decContext *set) {
|
922 |
|
|
uInt status=0; /* accumulator */
|
923 |
|
|
uInt needbytes; /* for space calculations */
|
924 |
|
|
decNumber bufa[D2N(DECBUFFER+1)];/* +1 in case DECBUFFER=0 */
|
925 |
|
|
decNumber *allocbufa=NULL; /* -> allocated bufa, iff allocated */
|
926 |
|
|
decNumber bufb[D2N(DECBUFFER+1)];
|
927 |
|
|
decNumber *allocbufb=NULL; /* -> allocated bufb, iff allocated */
|
928 |
|
|
decNumber *a, *b; /* temporary pointers */
|
929 |
|
|
|
930 |
|
|
#if DECCHECK
|
931 |
|
|
if (decCheckOperands(res, lhs, rhs, set)) return res;
|
932 |
|
|
#endif
|
933 |
|
|
|
934 |
|
|
do { /* protect allocated storage */
|
935 |
|
|
/* if either is negative, take a copy and absolute */
|
936 |
|
|
if (decNumberIsNegative(lhs)) { /* lhs<0 */
|
937 |
|
|
a=bufa;
|
938 |
|
|
needbytes=sizeof(decNumber)+(D2U(lhs->digits)-1)*sizeof(Unit);
|
939 |
|
|
if (needbytes>sizeof(bufa)) { /* need malloc space */
|
940 |
|
|
allocbufa=(decNumber *)malloc(needbytes);
|
941 |
|
|
if (allocbufa==NULL) { /* hopeless -- abandon */
|
942 |
|
|
status|=DEC_Insufficient_storage;
|
943 |
|
|
break;}
|
944 |
|
|
a=allocbufa; /* use the allocated space */
|
945 |
|
|
}
|
946 |
|
|
decNumberCopy(a, lhs); /* copy content */
|
947 |
|
|
a->bits&=~DECNEG; /* .. and clear the sign */
|
948 |
|
|
lhs=a; /* use copy from here on */
|
949 |
|
|
}
|
950 |
|
|
if (decNumberIsNegative(rhs)) { /* rhs<0 */
|
951 |
|
|
b=bufb;
|
952 |
|
|
needbytes=sizeof(decNumber)+(D2U(rhs->digits)-1)*sizeof(Unit);
|
953 |
|
|
if (needbytes>sizeof(bufb)) { /* need malloc space */
|
954 |
|
|
allocbufb=(decNumber *)malloc(needbytes);
|
955 |
|
|
if (allocbufb==NULL) { /* hopeless -- abandon */
|
956 |
|
|
status|=DEC_Insufficient_storage;
|
957 |
|
|
break;}
|
958 |
|
|
b=allocbufb; /* use the allocated space */
|
959 |
|
|
}
|
960 |
|
|
decNumberCopy(b, rhs); /* copy content */
|
961 |
|
|
b->bits&=~DECNEG; /* .. and clear the sign */
|
962 |
|
|
rhs=b; /* use copy from here on */
|
963 |
|
|
}
|
964 |
|
|
decCompareOp(res, lhs, rhs, set, COMPTOTAL, &status);
|
965 |
|
|
} while(0); /* end protected */
|
966 |
|
|
|
967 |
|
|
if (allocbufa!=NULL) free(allocbufa); /* drop any storage used */
|
968 |
|
|
if (allocbufb!=NULL) free(allocbufb); /* .. */
|
969 |
|
|
if (status!=0) decStatus(res, status, set);
|
970 |
|
|
return res;
|
971 |
|
|
} /* decNumberCompareTotalMag */
|
972 |
|
|
|
973 |
|
|
/* ------------------------------------------------------------------ */
|
974 |
|
|
/* decNumberDivide -- divide one number by another */
|
975 |
|
|
/* */
|
976 |
|
|
/* This computes C = A / B */
|
977 |
|
|
/* */
|
978 |
|
|
/* res is C, the result. C may be A and/or B (e.g., X=X/X) */
|
979 |
|
|
/* lhs is A */
|
980 |
|
|
/* rhs is B */
|
981 |
|
|
/* set is the context */
|
982 |
|
|
/* */
|
983 |
|
|
/* C must have space for set->digits digits. */
|
984 |
|
|
/* ------------------------------------------------------------------ */
|
985 |
|
|
decNumber * decNumberDivide(decNumber *res, const decNumber *lhs,
|
986 |
|
|
const decNumber *rhs, decContext *set) {
|
987 |
|
|
uInt status=0; /* accumulator */
|
988 |
|
|
decDivideOp(res, lhs, rhs, set, DIVIDE, &status);
|
989 |
|
|
if (status!=0) decStatus(res, status, set);
|
990 |
|
|
#if DECCHECK
|
991 |
|
|
decCheckInexact(res, set);
|
992 |
|
|
#endif
|
993 |
|
|
return res;
|
994 |
|
|
} /* decNumberDivide */
|
995 |
|
|
|
996 |
|
|
/* ------------------------------------------------------------------ */
|
997 |
|
|
/* decNumberDivideInteger -- divide and return integer quotient */
|
998 |
|
|
/* */
|
999 |
|
|
/* This computes C = A # B, where # is the integer divide operator */
|
1000 |
|
|
/* */
|
1001 |
|
|
/* res is C, the result. C may be A and/or B (e.g., X=X#X) */
|
1002 |
|
|
/* lhs is A */
|
1003 |
|
|
/* rhs is B */
|
1004 |
|
|
/* set is the context */
|
1005 |
|
|
/* */
|
1006 |
|
|
/* C must have space for set->digits digits. */
|
1007 |
|
|
/* ------------------------------------------------------------------ */
|
1008 |
|
|
decNumber * decNumberDivideInteger(decNumber *res, const decNumber *lhs,
|
1009 |
|
|
const decNumber *rhs, decContext *set) {
|
1010 |
|
|
uInt status=0; /* accumulator */
|
1011 |
|
|
decDivideOp(res, lhs, rhs, set, DIVIDEINT, &status);
|
1012 |
|
|
if (status!=0) decStatus(res, status, set);
|
1013 |
|
|
return res;
|
1014 |
|
|
} /* decNumberDivideInteger */
|
1015 |
|
|
|
1016 |
|
|
/* ------------------------------------------------------------------ */
|
1017 |
|
|
/* decNumberExp -- exponentiation */
|
1018 |
|
|
/* */
|
1019 |
|
|
/* This computes C = exp(A) */
|
1020 |
|
|
/* */
|
1021 |
|
|
/* res is C, the result. C may be A */
|
1022 |
|
|
/* rhs is A */
|
1023 |
|
|
/* set is the context; note that rounding mode has no effect */
|
1024 |
|
|
/* */
|
1025 |
|
|
/* C must have space for set->digits digits. */
|
1026 |
|
|
/* */
|
1027 |
|
|
/* Mathematical function restrictions apply (see above); a NaN is */
|
1028 |
|
|
/* returned with Invalid_operation if a restriction is violated. */
|
1029 |
|
|
/* */
|
1030 |
|
|
/* Finite results will always be full precision and Inexact, except */
|
1031 |
|
|
/* when A is a zero or -Infinity (giving 1 or 0 respectively). */
|
1032 |
|
|
/* */
|
1033 |
|
|
/* An Inexact result is rounded using DEC_ROUND_HALF_EVEN; it will */
|
1034 |
|
|
/* almost always be correctly rounded, but may be up to 1 ulp in */
|
1035 |
|
|
/* error in rare cases. */
|
1036 |
|
|
/* ------------------------------------------------------------------ */
|
1037 |
|
|
/* This is a wrapper for decExpOp which can handle the slightly wider */
|
1038 |
|
|
/* (double) range needed by Ln (which has to be able to calculate */
|
1039 |
|
|
/* exp(-a) where a can be the tiniest number (Ntiny). */
|
1040 |
|
|
/* ------------------------------------------------------------------ */
|
1041 |
|
|
decNumber * decNumberExp(decNumber *res, const decNumber *rhs,
|
1042 |
|
|
decContext *set) {
|
1043 |
|
|
uInt status=0; /* accumulator */
|
1044 |
|
|
#if DECSUBSET
|
1045 |
|
|
decNumber *allocrhs=NULL; /* non-NULL if rounded rhs allocated */
|
1046 |
|
|
#endif
|
1047 |
|
|
|
1048 |
|
|
#if DECCHECK
|
1049 |
|
|
if (decCheckOperands(res, DECUNUSED, rhs, set)) return res;
|
1050 |
|
|
#endif
|
1051 |
|
|
|
1052 |
|
|
/* Check restrictions; these restrictions ensure that if h=8 (see */
|
1053 |
|
|
/* decExpOp) then the result will either overflow or underflow to 0. */
|
1054 |
|
|
/* Other math functions restrict the input range, too, for inverses. */
|
1055 |
|
|
/* If not violated then carry out the operation. */
|
1056 |
|
|
if (!decCheckMath(rhs, set, &status)) do { /* protect allocation */
|
1057 |
|
|
#if DECSUBSET
|
1058 |
|
|
if (!set->extended) {
|
1059 |
|
|
/* reduce operand and set lostDigits status, as needed */
|
1060 |
|
|
if (rhs->digits>set->digits) {
|
1061 |
|
|
allocrhs=decRoundOperand(rhs, set, &status);
|
1062 |
|
|
if (allocrhs==NULL) break;
|
1063 |
|
|
rhs=allocrhs;
|
1064 |
|
|
}
|
1065 |
|
|
}
|
1066 |
|
|
#endif
|
1067 |
|
|
decExpOp(res, rhs, set, &status);
|
1068 |
|
|
} while(0); /* end protected */
|
1069 |
|
|
|
1070 |
|
|
#if DECSUBSET
|
1071 |
|
|
if (allocrhs !=NULL) free(allocrhs); /* drop any storage used */
|
1072 |
|
|
#endif
|
1073 |
|
|
/* apply significant status */
|
1074 |
|
|
if (status!=0) decStatus(res, status, set);
|
1075 |
|
|
#if DECCHECK
|
1076 |
|
|
decCheckInexact(res, set);
|
1077 |
|
|
#endif
|
1078 |
|
|
return res;
|
1079 |
|
|
} /* decNumberExp */
|
1080 |
|
|
|
1081 |
|
|
/* ------------------------------------------------------------------ */
|
1082 |
|
|
/* decNumberFMA -- fused multiply add */
|
1083 |
|
|
/* */
|
1084 |
|
|
/* This computes D = (A * B) + C with only one rounding */
|
1085 |
|
|
/* */
|
1086 |
|
|
/* res is D, the result. D may be A or B or C (e.g., X=FMA(X,X,X)) */
|
1087 |
|
|
/* lhs is A */
|
1088 |
|
|
/* rhs is B */
|
1089 |
|
|
/* fhs is C [far hand side] */
|
1090 |
|
|
/* set is the context */
|
1091 |
|
|
/* */
|
1092 |
|
|
/* Mathematical function restrictions apply (see above); a NaN is */
|
1093 |
|
|
/* returned with Invalid_operation if a restriction is violated. */
|
1094 |
|
|
/* */
|
1095 |
|
|
/* C must have space for set->digits digits. */
|
1096 |
|
|
/* ------------------------------------------------------------------ */
|
1097 |
|
|
decNumber * decNumberFMA(decNumber *res, const decNumber *lhs,
|
1098 |
|
|
const decNumber *rhs, const decNumber *fhs,
|
1099 |
|
|
decContext *set) {
|
1100 |
|
|
uInt status=0; /* accumulator */
|
1101 |
|
|
decContext dcmul; /* context for the multiplication */
|
1102 |
|
|
uInt needbytes; /* for space calculations */
|
1103 |
|
|
decNumber bufa[D2N(DECBUFFER*2+1)];
|
1104 |
|
|
decNumber *allocbufa=NULL; /* -> allocated bufa, iff allocated */
|
1105 |
|
|
decNumber *acc; /* accumulator pointer */
|
1106 |
|
|
decNumber dzero; /* work */
|
1107 |
|
|
|
1108 |
|
|
#if DECCHECK
|
1109 |
|
|
if (decCheckOperands(res, lhs, rhs, set)) return res;
|
1110 |
|
|
if (decCheckOperands(res, fhs, DECUNUSED, set)) return res;
|
1111 |
|
|
#endif
|
1112 |
|
|
|
1113 |
|
|
do { /* protect allocated storage */
|
1114 |
|
|
#if DECSUBSET
|
1115 |
|
|
if (!set->extended) { /* [undefined if subset] */
|
1116 |
|
|
status|=DEC_Invalid_operation;
|
1117 |
|
|
break;}
|
1118 |
|
|
#endif
|
1119 |
|
|
/* Check math restrictions [these ensure no overflow or underflow] */
|
1120 |
|
|
if ((!decNumberIsSpecial(lhs) && decCheckMath(lhs, set, &status))
|
1121 |
|
|
|| (!decNumberIsSpecial(rhs) && decCheckMath(rhs, set, &status))
|
1122 |
|
|
|| (!decNumberIsSpecial(fhs) && decCheckMath(fhs, set, &status))) break;
|
1123 |
|
|
/* set up context for multiply */
|
1124 |
|
|
dcmul=*set;
|
1125 |
|
|
dcmul.digits=lhs->digits+rhs->digits; /* just enough */
|
1126 |
|
|
/* [The above may be an over-estimate for subset arithmetic, but that's OK] */
|
1127 |
|
|
dcmul.emax=DEC_MAX_EMAX; /* effectively unbounded .. */
|
1128 |
|
|
dcmul.emin=DEC_MIN_EMIN; /* [thanks to Math restrictions] */
|
1129 |
|
|
/* set up decNumber space to receive the result of the multiply */
|
1130 |
|
|
acc=bufa; /* may fit */
|
1131 |
|
|
needbytes=sizeof(decNumber)+(D2U(dcmul.digits)-1)*sizeof(Unit);
|
1132 |
|
|
if (needbytes>sizeof(bufa)) { /* need malloc space */
|
1133 |
|
|
allocbufa=(decNumber *)malloc(needbytes);
|
1134 |
|
|
if (allocbufa==NULL) { /* hopeless -- abandon */
|
1135 |
|
|
status|=DEC_Insufficient_storage;
|
1136 |
|
|
break;}
|
1137 |
|
|
acc=allocbufa; /* use the allocated space */
|
1138 |
|
|
}
|
1139 |
|
|
/* multiply with extended range and necessary precision */
|
1140 |
|
|
/*printf("emin=%ld\n", dcmul.emin); */
|
1141 |
|
|
decMultiplyOp(acc, lhs, rhs, &dcmul, &status);
|
1142 |
|
|
/* Only Invalid operation (from sNaN or Inf * 0) is possible in */
|
1143 |
|
|
/* status; if either is seen than ignore fhs (in case it is */
|
1144 |
|
|
/* another sNaN) and set acc to NaN unless we had an sNaN */
|
1145 |
|
|
/* [decMultiplyOp leaves that to caller] */
|
1146 |
|
|
/* Note sNaN has to go through addOp to shorten payload if */
|
1147 |
|
|
/* necessary */
|
1148 |
|
|
if ((status&DEC_Invalid_operation)!=0) {
|
1149 |
|
|
if (!(status&DEC_sNaN)) { /* but be true invalid */
|
1150 |
|
|
decNumberZero(res); /* acc not yet set */
|
1151 |
|
|
res->bits=DECNAN;
|
1152 |
|
|
break;
|
1153 |
|
|
}
|
1154 |
|
|
decNumberZero(&dzero); /* make 0 (any non-NaN would do) */
|
1155 |
|
|
fhs=&dzero; /* use that */
|
1156 |
|
|
}
|
1157 |
|
|
#if DECCHECK
|
1158 |
|
|
else { /* multiply was OK */
|
1159 |
|
|
if (status!=0) printf("Status=%08lx after FMA multiply\n", status);
|
1160 |
|
|
}
|
1161 |
|
|
#endif
|
1162 |
|
|
/* add the third operand and result -> res, and all is done */
|
1163 |
|
|
decAddOp(res, acc, fhs, set, 0, &status);
|
1164 |
|
|
} while(0); /* end protected */
|
1165 |
|
|
|
1166 |
|
|
if (allocbufa!=NULL) free(allocbufa); /* drop any storage used */
|
1167 |
|
|
if (status!=0) decStatus(res, status, set);
|
1168 |
|
|
#if DECCHECK
|
1169 |
|
|
decCheckInexact(res, set);
|
1170 |
|
|
#endif
|
1171 |
|
|
return res;
|
1172 |
|
|
} /* decNumberFMA */
|
1173 |
|
|
|
1174 |
|
|
/* ------------------------------------------------------------------ */
|
1175 |
|
|
/* decNumberInvert -- invert a Number, digitwise */
|
1176 |
|
|
/* */
|
1177 |
|
|
/* This computes C = ~A */
|
1178 |
|
|
/* */
|
1179 |
|
|
/* res is C, the result. C may be A (e.g., X=~X) */
|
1180 |
|
|
/* rhs is A */
|
1181 |
|
|
/* set is the context (used for result length and error report) */
|
1182 |
|
|
/* */
|
1183 |
|
|
/* C must have space for set->digits digits. */
|
1184 |
|
|
/* */
|
1185 |
|
|
/* Logical function restrictions apply (see above); a NaN is */
|
1186 |
|
|
/* returned with Invalid_operation if a restriction is violated. */
|
1187 |
|
|
/* ------------------------------------------------------------------ */
|
1188 |
|
|
decNumber * decNumberInvert(decNumber *res, const decNumber *rhs,
|
1189 |
|
|
decContext *set) {
|
1190 |
|
|
const Unit *ua, *msua; /* -> operand and its msu */
|
1191 |
|
|
Unit *uc, *msuc; /* -> result and its msu */
|
1192 |
|
|
Int msudigs; /* digits in res msu */
|
1193 |
|
|
#if DECCHECK
|
1194 |
|
|
if (decCheckOperands(res, DECUNUSED, rhs, set)) return res;
|
1195 |
|
|
#endif
|
1196 |
|
|
|
1197 |
|
|
if (rhs->exponent!=0 || decNumberIsSpecial(rhs) || decNumberIsNegative(rhs)) {
|
1198 |
|
|
decStatus(res, DEC_Invalid_operation, set);
|
1199 |
|
|
return res;
|
1200 |
|
|
}
|
1201 |
|
|
/* operand is valid */
|
1202 |
|
|
ua=rhs->lsu; /* bottom-up */
|
1203 |
|
|
uc=res->lsu; /* .. */
|
1204 |
|
|
msua=ua+D2U(rhs->digits)-1; /* -> msu of rhs */
|
1205 |
|
|
msuc=uc+D2U(set->digits)-1; /* -> msu of result */
|
1206 |
|
|
msudigs=MSUDIGITS(set->digits); /* [faster than remainder] */
|
1207 |
|
|
for (; uc<=msuc; ua++, uc++) { /* Unit loop */
|
1208 |
|
|
Unit a; /* extract unit */
|
1209 |
|
|
Int i, j; /* work */
|
1210 |
|
|
if (ua>msua) a=0;
|
1211 |
|
|
else a=*ua;
|
1212 |
|
|
*uc=0; /* can now write back */
|
1213 |
|
|
/* always need to examine all bits in rhs */
|
1214 |
|
|
/* This loop could be unrolled and/or use BIN2BCD tables */
|
1215 |
|
|
for (i=0; i<DECDPUN; i++) {
|
1216 |
|
|
if ((~a)&1) *uc=*uc+(Unit)powers[i]; /* effect INVERT */
|
1217 |
|
|
j=a%10;
|
1218 |
|
|
a=a/10;
|
1219 |
|
|
if (j>1) {
|
1220 |
|
|
decStatus(res, DEC_Invalid_operation, set);
|
1221 |
|
|
return res;
|
1222 |
|
|
}
|
1223 |
|
|
if (uc==msuc && i==msudigs-1) break; /* just did final digit */
|
1224 |
|
|
} /* each digit */
|
1225 |
|
|
} /* each unit */
|
1226 |
|
|
/* [here uc-1 is the msu of the result] */
|
1227 |
|
|
res->digits=decGetDigits(res->lsu, uc-res->lsu);
|
1228 |
|
|
res->exponent=0; /* integer */
|
1229 |
|
|
res->bits=0; /* sign=0 */
|
1230 |
|
|
return res; /* [no status to set] */
|
1231 |
|
|
} /* decNumberInvert */
|
1232 |
|
|
|
1233 |
|
|
/* ------------------------------------------------------------------ */
|
1234 |
|
|
/* decNumberLn -- natural logarithm */
|
1235 |
|
|
/* */
|
1236 |
|
|
/* This computes C = ln(A) */
|
1237 |
|
|
/* */
|
1238 |
|
|
/* res is C, the result. C may be A */
|
1239 |
|
|
/* rhs is A */
|
1240 |
|
|
/* set is the context; note that rounding mode has no effect */
|
1241 |
|
|
/* */
|
1242 |
|
|
/* C must have space for set->digits digits. */
|
1243 |
|
|
/* */
|
1244 |
|
|
/* Notable cases: */
|
1245 |
|
|
/* A<0 -> Invalid */
|
1246 |
|
|
/* A=0 -> -Infinity (Exact) */
|
1247 |
|
|
/* A=+Infinity -> +Infinity (Exact) */
|
1248 |
|
|
/* A=1 exactly -> 0 (Exact) */
|
1249 |
|
|
/* */
|
1250 |
|
|
/* Mathematical function restrictions apply (see above); a NaN is */
|
1251 |
|
|
/* returned with Invalid_operation if a restriction is violated. */
|
1252 |
|
|
/* */
|
1253 |
|
|
/* An Inexact result is rounded using DEC_ROUND_HALF_EVEN; it will */
|
1254 |
|
|
/* almost always be correctly rounded, but may be up to 1 ulp in */
|
1255 |
|
|
/* error in rare cases. */
|
1256 |
|
|
/* ------------------------------------------------------------------ */
|
1257 |
|
|
/* This is a wrapper for decLnOp which can handle the slightly wider */
|
1258 |
|
|
/* (+11) range needed by Ln, Log10, etc. (which may have to be able */
|
1259 |
|
|
/* to calculate at p+e+2). */
|
1260 |
|
|
/* ------------------------------------------------------------------ */
|
1261 |
|
|
decNumber * decNumberLn(decNumber *res, const decNumber *rhs,
|
1262 |
|
|
decContext *set) {
|
1263 |
|
|
uInt status=0; /* accumulator */
|
1264 |
|
|
#if DECSUBSET
|
1265 |
|
|
decNumber *allocrhs=NULL; /* non-NULL if rounded rhs allocated */
|
1266 |
|
|
#endif
|
1267 |
|
|
|
1268 |
|
|
#if DECCHECK
|
1269 |
|
|
if (decCheckOperands(res, DECUNUSED, rhs, set)) return res;
|
1270 |
|
|
#endif
|
1271 |
|
|
|
1272 |
|
|
/* Check restrictions; this is a math function; if not violated */
|
1273 |
|
|
/* then carry out the operation. */
|
1274 |
|
|
if (!decCheckMath(rhs, set, &status)) do { /* protect allocation */
|
1275 |
|
|
#if DECSUBSET
|
1276 |
|
|
if (!set->extended) {
|
1277 |
|
|
/* reduce operand and set lostDigits status, as needed */
|
1278 |
|
|
if (rhs->digits>set->digits) {
|
1279 |
|
|
allocrhs=decRoundOperand(rhs, set, &status);
|
1280 |
|
|
if (allocrhs==NULL) break;
|
1281 |
|
|
rhs=allocrhs;
|
1282 |
|
|
}
|
1283 |
|
|
/* special check in subset for rhs=0 */
|
1284 |
|
|
if (ISZERO(rhs)) { /* +/- zeros -> error */
|
1285 |
|
|
status|=DEC_Invalid_operation;
|
1286 |
|
|
break;}
|
1287 |
|
|
} /* extended=0 */
|
1288 |
|
|
#endif
|
1289 |
|
|
decLnOp(res, rhs, set, &status);
|
1290 |
|
|
} while(0); /* end protected */
|
1291 |
|
|
|
1292 |
|
|
#if DECSUBSET
|
1293 |
|
|
if (allocrhs !=NULL) free(allocrhs); /* drop any storage used */
|
1294 |
|
|
#endif
|
1295 |
|
|
/* apply significant status */
|
1296 |
|
|
if (status!=0) decStatus(res, status, set);
|
1297 |
|
|
#if DECCHECK
|
1298 |
|
|
decCheckInexact(res, set);
|
1299 |
|
|
#endif
|
1300 |
|
|
return res;
|
1301 |
|
|
} /* decNumberLn */
|
1302 |
|
|
|
1303 |
|
|
/* ------------------------------------------------------------------ */
|
1304 |
|
|
/* decNumberLogB - get adjusted exponent, by 754r rules */
|
1305 |
|
|
/* */
|
1306 |
|
|
/* This computes C = adjustedexponent(A) */
|
1307 |
|
|
/* */
|
1308 |
|
|
/* res is C, the result. C may be A */
|
1309 |
|
|
/* rhs is A */
|
1310 |
|
|
/* set is the context, used only for digits and status */
|
1311 |
|
|
/* */
|
1312 |
|
|
/* C must have space for 10 digits (A might have 10**9 digits and */
|
1313 |
|
|
/* an exponent of +999999999, or one digit and an exponent of */
|
1314 |
|
|
/* -1999999999). */
|
1315 |
|
|
/* */
|
1316 |
|
|
/* This returns the adjusted exponent of A after (in theory) padding */
|
1317 |
|
|
/* with zeros on the right to set->digits digits while keeping the */
|
1318 |
|
|
/* same value. The exponent is not limited by emin/emax. */
|
1319 |
|
|
/* */
|
1320 |
|
|
/* Notable cases: */
|
1321 |
|
|
/* A<0 -> Use |A| */
|
1322 |
|
|
/* A=0 -> -Infinity (Division by zero) */
|
1323 |
|
|
/* A=Infinite -> +Infinity (Exact) */
|
1324 |
|
|
/* A=1 exactly -> 0 (Exact) */
|
1325 |
|
|
/* NaNs are propagated as usual */
|
1326 |
|
|
/* ------------------------------------------------------------------ */
|
1327 |
|
|
decNumber * decNumberLogB(decNumber *res, const decNumber *rhs,
|
1328 |
|
|
decContext *set) {
|
1329 |
|
|
uInt status=0; /* accumulator */
|
1330 |
|
|
|
1331 |
|
|
#if DECCHECK
|
1332 |
|
|
if (decCheckOperands(res, DECUNUSED, rhs, set)) return res;
|
1333 |
|
|
#endif
|
1334 |
|
|
|
1335 |
|
|
/* NaNs as usual; Infinities return +Infinity; 0->oops */
|
1336 |
|
|
if (decNumberIsNaN(rhs)) decNaNs(res, rhs, NULL, set, &status);
|
1337 |
|
|
else if (decNumberIsInfinite(rhs)) decNumberCopyAbs(res, rhs);
|
1338 |
|
|
else if (decNumberIsZero(rhs)) {
|
1339 |
|
|
decNumberZero(res); /* prepare for Infinity */
|
1340 |
|
|
res->bits=DECNEG|DECINF; /* -Infinity */
|
1341 |
|
|
status|=DEC_Division_by_zero; /* as per 754r */
|
1342 |
|
|
}
|
1343 |
|
|
else { /* finite non-zero */
|
1344 |
|
|
Int ae=rhs->exponent+rhs->digits-1; /* adjusted exponent */
|
1345 |
|
|
decNumberFromInt32(res, ae); /* lay it out */
|
1346 |
|
|
}
|
1347 |
|
|
|
1348 |
|
|
if (status!=0) decStatus(res, status, set);
|
1349 |
|
|
return res;
|
1350 |
|
|
} /* decNumberLogB */
|
1351 |
|
|
|
1352 |
|
|
/* ------------------------------------------------------------------ */
|
1353 |
|
|
/* decNumberLog10 -- logarithm in base 10 */
|
1354 |
|
|
/* */
|
1355 |
|
|
/* This computes C = log10(A) */
|
1356 |
|
|
/* */
|
1357 |
|
|
/* res is C, the result. C may be A */
|
1358 |
|
|
/* rhs is A */
|
1359 |
|
|
/* set is the context; note that rounding mode has no effect */
|
1360 |
|
|
/* */
|
1361 |
|
|
/* C must have space for set->digits digits. */
|
1362 |
|
|
/* */
|
1363 |
|
|
/* Notable cases: */
|
1364 |
|
|
/* A<0 -> Invalid */
|
1365 |
|
|
/* A=0 -> -Infinity (Exact) */
|
1366 |
|
|
/* A=+Infinity -> +Infinity (Exact) */
|
1367 |
|
|
/* A=10**n (if n is an integer) -> n (Exact) */
|
1368 |
|
|
/* */
|
1369 |
|
|
/* Mathematical function restrictions apply (see above); a NaN is */
|
1370 |
|
|
/* returned with Invalid_operation if a restriction is violated. */
|
1371 |
|
|
/* */
|
1372 |
|
|
/* An Inexact result is rounded using DEC_ROUND_HALF_EVEN; it will */
|
1373 |
|
|
/* almost always be correctly rounded, but may be up to 1 ulp in */
|
1374 |
|
|
/* error in rare cases. */
|
1375 |
|
|
/* ------------------------------------------------------------------ */
|
1376 |
|
|
/* This calculates ln(A)/ln(10) using appropriate precision. For */
|
1377 |
|
|
/* ln(A) this is the max(p, rhs->digits + t) + 3, where p is the */
|
1378 |
|
|
/* requested digits and t is the number of digits in the exponent */
|
1379 |
|
|
/* (maximum 6). For ln(10) it is p + 3; this is often handled by the */
|
1380 |
|
|
/* fastpath in decLnOp. The final division is done to the requested */
|
1381 |
|
|
/* precision. */
|
1382 |
|
|
/* ------------------------------------------------------------------ */
|
1383 |
|
|
decNumber * decNumberLog10(decNumber *res, const decNumber *rhs,
|
1384 |
|
|
decContext *set) {
|
1385 |
|
|
uInt status=0, ignore=0; /* status accumulators */
|
1386 |
|
|
uInt needbytes; /* for space calculations */
|
1387 |
|
|
Int p; /* working precision */
|
1388 |
|
|
Int t; /* digits in exponent of A */
|
1389 |
|
|
|
1390 |
|
|
/* buffers for a and b working decimals */
|
1391 |
|
|
/* (adjustment calculator, same size) */
|
1392 |
|
|
decNumber bufa[D2N(DECBUFFER+2)];
|
1393 |
|
|
decNumber *allocbufa=NULL; /* -> allocated bufa, iff allocated */
|
1394 |
|
|
decNumber *a=bufa; /* temporary a */
|
1395 |
|
|
decNumber bufb[D2N(DECBUFFER+2)];
|
1396 |
|
|
decNumber *allocbufb=NULL; /* -> allocated bufb, iff allocated */
|
1397 |
|
|
decNumber *b=bufb; /* temporary b */
|
1398 |
|
|
decNumber bufw[D2N(10)]; /* working 2-10 digit number */
|
1399 |
|
|
decNumber *w=bufw; /* .. */
|
1400 |
|
|
#if DECSUBSET
|
1401 |
|
|
decNumber *allocrhs=NULL; /* non-NULL if rounded rhs allocated */
|
1402 |
|
|
#endif
|
1403 |
|
|
|
1404 |
|
|
decContext aset; /* working context */
|
1405 |
|
|
|
1406 |
|
|
#if DECCHECK
|
1407 |
|
|
if (decCheckOperands(res, DECUNUSED, rhs, set)) return res;
|
1408 |
|
|
#endif
|
1409 |
|
|
|
1410 |
|
|
/* Check restrictions; this is a math function; if not violated */
|
1411 |
|
|
/* then carry out the operation. */
|
1412 |
|
|
if (!decCheckMath(rhs, set, &status)) do { /* protect malloc */
|
1413 |
|
|
#if DECSUBSET
|
1414 |
|
|
if (!set->extended) {
|
1415 |
|
|
/* reduce operand and set lostDigits status, as needed */
|
1416 |
|
|
if (rhs->digits>set->digits) {
|
1417 |
|
|
allocrhs=decRoundOperand(rhs, set, &status);
|
1418 |
|
|
if (allocrhs==NULL) break;
|
1419 |
|
|
rhs=allocrhs;
|
1420 |
|
|
}
|
1421 |
|
|
/* special check in subset for rhs=0 */
|
1422 |
|
|
if (ISZERO(rhs)) { /* +/- zeros -> error */
|
1423 |
|
|
status|=DEC_Invalid_operation;
|
1424 |
|
|
break;}
|
1425 |
|
|
} /* extended=0 */
|
1426 |
|
|
#endif
|
1427 |
|
|
|
1428 |
|
|
decContextDefault(&aset, DEC_INIT_DECIMAL64); /* clean context */
|
1429 |
|
|
|
1430 |
|
|
/* handle exact powers of 10; only check if +ve finite */
|
1431 |
|
|
if (!(rhs->bits&(DECNEG|DECSPECIAL)) && !ISZERO(rhs)) {
|
1432 |
|
|
Int residue=0; /* (no residue) */
|
1433 |
|
|
uInt copystat=0; /* clean status */
|
1434 |
|
|
|
1435 |
|
|
/* round to a single digit... */
|
1436 |
|
|
aset.digits=1;
|
1437 |
|
|
decCopyFit(w, rhs, &aset, &residue, ©stat); /* copy & shorten */
|
1438 |
|
|
/* if exact and the digit is 1, rhs is a power of 10 */
|
1439 |
|
|
if (!(copystat&DEC_Inexact) && w->lsu[0]==1) {
|
1440 |
|
|
/* the exponent, conveniently, is the power of 10; making */
|
1441 |
|
|
/* this the result needs a little care as it might not fit, */
|
1442 |
|
|
/* so first convert it into the working number, and then move */
|
1443 |
|
|
/* to res */
|
1444 |
|
|
decNumberFromInt32(w, w->exponent);
|
1445 |
|
|
residue=0;
|
1446 |
|
|
decCopyFit(res, w, set, &residue, &status); /* copy & round */
|
1447 |
|
|
decFinish(res, set, &residue, &status); /* cleanup/set flags */
|
1448 |
|
|
break;
|
1449 |
|
|
} /* not a power of 10 */
|
1450 |
|
|
} /* not a candidate for exact */
|
1451 |
|
|
|
1452 |
|
|
/* simplify the information-content calculation to use 'total */
|
1453 |
|
|
/* number of digits in a, including exponent' as compared to the */
|
1454 |
|
|
/* requested digits, as increasing this will only rarely cost an */
|
1455 |
|
|
/* iteration in ln(a) anyway */
|
1456 |
|
|
t=6; /* it can never be >6 */
|
1457 |
|
|
|
1458 |
|
|
/* allocate space when needed... */
|
1459 |
|
|
p=(rhs->digits+t>set->digits?rhs->digits+t:set->digits)+3;
|
1460 |
|
|
needbytes=sizeof(decNumber)+(D2U(p)-1)*sizeof(Unit);
|
1461 |
|
|
if (needbytes>sizeof(bufa)) { /* need malloc space */
|
1462 |
|
|
allocbufa=(decNumber *)malloc(needbytes);
|
1463 |
|
|
if (allocbufa==NULL) { /* hopeless -- abandon */
|
1464 |
|
|
status|=DEC_Insufficient_storage;
|
1465 |
|
|
break;}
|
1466 |
|
|
a=allocbufa; /* use the allocated space */
|
1467 |
|
|
}
|
1468 |
|
|
aset.digits=p; /* as calculated */
|
1469 |
|
|
aset.emax=DEC_MAX_MATH; /* usual bounds */
|
1470 |
|
|
aset.emin=-DEC_MAX_MATH; /* .. */
|
1471 |
|
|
aset.clamp=0; /* and no concrete format */
|
1472 |
|
|
decLnOp(a, rhs, &aset, &status); /* a=ln(rhs) */
|
1473 |
|
|
|
1474 |
|
|
/* skip the division if the result so far is infinite, NaN, or */
|
1475 |
|
|
/* zero, or there was an error; note NaN from sNaN needs copy */
|
1476 |
|
|
if (status&DEC_NaNs && !(status&DEC_sNaN)) break;
|
1477 |
|
|
if (a->bits&DECSPECIAL || ISZERO(a)) {
|
1478 |
|
|
decNumberCopy(res, a); /* [will fit] */
|
1479 |
|
|
break;}
|
1480 |
|
|
|
1481 |
|
|
/* for ln(10) an extra 3 digits of precision are needed */
|
1482 |
|
|
p=set->digits+3;
|
1483 |
|
|
needbytes=sizeof(decNumber)+(D2U(p)-1)*sizeof(Unit);
|
1484 |
|
|
if (needbytes>sizeof(bufb)) { /* need malloc space */
|
1485 |
|
|
allocbufb=(decNumber *)malloc(needbytes);
|
1486 |
|
|
if (allocbufb==NULL) { /* hopeless -- abandon */
|
1487 |
|
|
status|=DEC_Insufficient_storage;
|
1488 |
|
|
break;}
|
1489 |
|
|
b=allocbufb; /* use the allocated space */
|
1490 |
|
|
}
|
1491 |
|
|
decNumberZero(w); /* set up 10... */
|
1492 |
|
|
#if DECDPUN==1
|
1493 |
|
|
w->lsu[1]=1; w->lsu[0]=0; /* .. */
|
1494 |
|
|
#else
|
1495 |
|
|
w->lsu[0]=10; /* .. */
|
1496 |
|
|
#endif
|
1497 |
|
|
w->digits=2; /* .. */
|
1498 |
|
|
|
1499 |
|
|
aset.digits=p;
|
1500 |
|
|
decLnOp(b, w, &aset, &ignore); /* b=ln(10) */
|
1501 |
|
|
|
1502 |
|
|
aset.digits=set->digits; /* for final divide */
|
1503 |
|
|
decDivideOp(res, a, b, &aset, DIVIDE, &status); /* into result */
|
1504 |
|
|
} while(0); /* [for break] */
|
1505 |
|
|
|
1506 |
|
|
if (allocbufa!=NULL) free(allocbufa); /* drop any storage used */
|
1507 |
|
|
if (allocbufb!=NULL) free(allocbufb); /* .. */
|
1508 |
|
|
#if DECSUBSET
|
1509 |
|
|
if (allocrhs !=NULL) free(allocrhs); /* .. */
|
1510 |
|
|
#endif
|
1511 |
|
|
/* apply significant status */
|
1512 |
|
|
if (status!=0) decStatus(res, status, set);
|
1513 |
|
|
#if DECCHECK
|
1514 |
|
|
decCheckInexact(res, set);
|
1515 |
|
|
#endif
|
1516 |
|
|
return res;
|
1517 |
|
|
} /* decNumberLog10 */
|
1518 |
|
|
|
1519 |
|
|
/* ------------------------------------------------------------------ */
|
1520 |
|
|
/* decNumberMax -- compare two Numbers and return the maximum */
|
1521 |
|
|
/* */
|
1522 |
|
|
/* This computes C = A ? B, returning the maximum by 754R rules */
|
1523 |
|
|
/* */
|
1524 |
|
|
/* res is C, the result. C may be A and/or B (e.g., X=X?X) */
|
1525 |
|
|
/* lhs is A */
|
1526 |
|
|
/* rhs is B */
|
1527 |
|
|
/* set is the context */
|
1528 |
|
|
/* */
|
1529 |
|
|
/* C must have space for set->digits digits. */
|
1530 |
|
|
/* ------------------------------------------------------------------ */
|
1531 |
|
|
decNumber * decNumberMax(decNumber *res, const decNumber *lhs,
|
1532 |
|
|
const decNumber *rhs, decContext *set) {
|
1533 |
|
|
uInt status=0; /* accumulator */
|
1534 |
|
|
decCompareOp(res, lhs, rhs, set, COMPMAX, &status);
|
1535 |
|
|
if (status!=0) decStatus(res, status, set);
|
1536 |
|
|
#if DECCHECK
|
1537 |
|
|
decCheckInexact(res, set);
|
1538 |
|
|
#endif
|
1539 |
|
|
return res;
|
1540 |
|
|
} /* decNumberMax */
|
1541 |
|
|
|
1542 |
|
|
/* ------------------------------------------------------------------ */
|
1543 |
|
|
/* decNumberMaxMag -- compare and return the maximum by magnitude */
|
1544 |
|
|
/* */
|
1545 |
|
|
/* This computes C = A ? B, returning the maximum by 754R rules */
|
1546 |
|
|
/* */
|
1547 |
|
|
/* res is C, the result. C may be A and/or B (e.g., X=X?X) */
|
1548 |
|
|
/* lhs is A */
|
1549 |
|
|
/* rhs is B */
|
1550 |
|
|
/* set is the context */
|
1551 |
|
|
/* */
|
1552 |
|
|
/* C must have space for set->digits digits. */
|
1553 |
|
|
/* ------------------------------------------------------------------ */
|
1554 |
|
|
decNumber * decNumberMaxMag(decNumber *res, const decNumber *lhs,
|
1555 |
|
|
const decNumber *rhs, decContext *set) {
|
1556 |
|
|
uInt status=0; /* accumulator */
|
1557 |
|
|
decCompareOp(res, lhs, rhs, set, COMPMAXMAG, &status);
|
1558 |
|
|
if (status!=0) decStatus(res, status, set);
|
1559 |
|
|
#if DECCHECK
|
1560 |
|
|
decCheckInexact(res, set);
|
1561 |
|
|
#endif
|
1562 |
|
|
return res;
|
1563 |
|
|
} /* decNumberMaxMag */
|
1564 |
|
|
|
1565 |
|
|
/* ------------------------------------------------------------------ */
|
1566 |
|
|
/* decNumberMin -- compare two Numbers and return the minimum */
|
1567 |
|
|
/* */
|
1568 |
|
|
/* This computes C = A ? B, returning the minimum by 754R rules */
|
1569 |
|
|
/* */
|
1570 |
|
|
/* res is C, the result. C may be A and/or B (e.g., X=X?X) */
|
1571 |
|
|
/* lhs is A */
|
1572 |
|
|
/* rhs is B */
|
1573 |
|
|
/* set is the context */
|
1574 |
|
|
/* */
|
1575 |
|
|
/* C must have space for set->digits digits. */
|
1576 |
|
|
/* ------------------------------------------------------------------ */
|
1577 |
|
|
decNumber * decNumberMin(decNumber *res, const decNumber *lhs,
|
1578 |
|
|
const decNumber *rhs, decContext *set) {
|
1579 |
|
|
uInt status=0; /* accumulator */
|
1580 |
|
|
decCompareOp(res, lhs, rhs, set, COMPMIN, &status);
|
1581 |
|
|
if (status!=0) decStatus(res, status, set);
|
1582 |
|
|
#if DECCHECK
|
1583 |
|
|
decCheckInexact(res, set);
|
1584 |
|
|
#endif
|
1585 |
|
|
return res;
|
1586 |
|
|
} /* decNumberMin */
|
1587 |
|
|
|
1588 |
|
|
/* ------------------------------------------------------------------ */
|
1589 |
|
|
/* decNumberMinMag -- compare and return the minimum by magnitude */
|
1590 |
|
|
/* */
|
1591 |
|
|
/* This computes C = A ? B, returning the minimum by 754R rules */
|
1592 |
|
|
/* */
|
1593 |
|
|
/* res is C, the result. C may be A and/or B (e.g., X=X?X) */
|
1594 |
|
|
/* lhs is A */
|
1595 |
|
|
/* rhs is B */
|
1596 |
|
|
/* set is the context */
|
1597 |
|
|
/* */
|
1598 |
|
|
/* C must have space for set->digits digits. */
|
1599 |
|
|
/* ------------------------------------------------------------------ */
|
1600 |
|
|
decNumber * decNumberMinMag(decNumber *res, const decNumber *lhs,
|
1601 |
|
|
const decNumber *rhs, decContext *set) {
|
1602 |
|
|
uInt status=0; /* accumulator */
|
1603 |
|
|
decCompareOp(res, lhs, rhs, set, COMPMINMAG, &status);
|
1604 |
|
|
if (status!=0) decStatus(res, status, set);
|
1605 |
|
|
#if DECCHECK
|
1606 |
|
|
decCheckInexact(res, set);
|
1607 |
|
|
#endif
|
1608 |
|
|
return res;
|
1609 |
|
|
} /* decNumberMinMag */
|
1610 |
|
|
|
1611 |
|
|
/* ------------------------------------------------------------------ */
|
1612 |
|
|
/* decNumberMinus -- prefix minus operator */
|
1613 |
|
|
/* */
|
1614 |
|
|
/* This computes C = 0 - A */
|
1615 |
|
|
/* */
|
1616 |
|
|
/* res is C, the result. C may be A */
|
1617 |
|
|
/* rhs is A */
|
1618 |
|
|
/* set is the context */
|
1619 |
|
|
/* */
|
1620 |
|
|
/* See also decNumberCopyNegate for a quiet bitwise version of this. */
|
1621 |
|
|
/* C must have space for set->digits digits. */
|
1622 |
|
|
/* ------------------------------------------------------------------ */
|
1623 |
|
|
/* Simply use AddOp for the subtract, which will do the necessary. */
|
1624 |
|
|
/* ------------------------------------------------------------------ */
|
1625 |
|
|
decNumber * decNumberMinus(decNumber *res, const decNumber *rhs,
|
1626 |
|
|
decContext *set) {
|
1627 |
|
|
decNumber dzero;
|
1628 |
|
|
uInt status=0; /* accumulator */
|
1629 |
|
|
|
1630 |
|
|
#if DECCHECK
|
1631 |
|
|
if (decCheckOperands(res, DECUNUSED, rhs, set)) return res;
|
1632 |
|
|
#endif
|
1633 |
|
|
|
1634 |
|
|
decNumberZero(&dzero); /* make 0 */
|
1635 |
|
|
dzero.exponent=rhs->exponent; /* [no coefficient expansion] */
|
1636 |
|
|
decAddOp(res, &dzero, rhs, set, DECNEG, &status);
|
1637 |
|
|
if (status!=0) decStatus(res, status, set);
|
1638 |
|
|
#if DECCHECK
|
1639 |
|
|
decCheckInexact(res, set);
|
1640 |
|
|
#endif
|
1641 |
|
|
return res;
|
1642 |
|
|
} /* decNumberMinus */
|
1643 |
|
|
|
1644 |
|
|
/* ------------------------------------------------------------------ */
|
1645 |
|
|
/* decNumberNextMinus -- next towards -Infinity */
|
1646 |
|
|
/* */
|
1647 |
|
|
/* This computes C = A - infinitesimal, rounded towards -Infinity */
|
1648 |
|
|
/* */
|
1649 |
|
|
/* res is C, the result. C may be A */
|
1650 |
|
|
/* rhs is A */
|
1651 |
|
|
/* set is the context */
|
1652 |
|
|
/* */
|
1653 |
|
|
/* This is a generalization of 754r NextDown. */
|
1654 |
|
|
/* ------------------------------------------------------------------ */
|
1655 |
|
|
decNumber * decNumberNextMinus(decNumber *res, const decNumber *rhs,
|
1656 |
|
|
decContext *set) {
|
1657 |
|
|
decNumber dtiny; /* constant */
|
1658 |
|
|
decContext workset=*set; /* work */
|
1659 |
|
|
uInt status=0; /* accumulator */
|
1660 |
|
|
#if DECCHECK
|
1661 |
|
|
if (decCheckOperands(res, DECUNUSED, rhs, set)) return res;
|
1662 |
|
|
#endif
|
1663 |
|
|
|
1664 |
|
|
/* +Infinity is the special case */
|
1665 |
|
|
if ((rhs->bits&(DECINF|DECNEG))==DECINF) {
|
1666 |
|
|
decSetMaxValue(res, set); /* is +ve */
|
1667 |
|
|
/* there is no status to set */
|
1668 |
|
|
return res;
|
1669 |
|
|
}
|
1670 |
|
|
decNumberZero(&dtiny); /* start with 0 */
|
1671 |
|
|
dtiny.lsu[0]=1; /* make number that is .. */
|
1672 |
|
|
dtiny.exponent=DEC_MIN_EMIN-1; /* .. smaller than tiniest */
|
1673 |
|
|
workset.round=DEC_ROUND_FLOOR;
|
1674 |
|
|
decAddOp(res, rhs, &dtiny, &workset, DECNEG, &status);
|
1675 |
|
|
status&=DEC_Invalid_operation|DEC_sNaN; /* only sNaN Invalid please */
|
1676 |
|
|
if (status!=0) decStatus(res, status, set);
|
1677 |
|
|
return res;
|
1678 |
|
|
} /* decNumberNextMinus */
|
1679 |
|
|
|
1680 |
|
|
/* ------------------------------------------------------------------ */
|
1681 |
|
|
/* decNumberNextPlus -- next towards +Infinity */
|
1682 |
|
|
/* */
|
1683 |
|
|
/* This computes C = A + infinitesimal, rounded towards +Infinity */
|
1684 |
|
|
/* */
|
1685 |
|
|
/* res is C, the result. C may be A */
|
1686 |
|
|
/* rhs is A */
|
1687 |
|
|
/* set is the context */
|
1688 |
|
|
/* */
|
1689 |
|
|
/* This is a generalization of 754r NextUp. */
|
1690 |
|
|
/* ------------------------------------------------------------------ */
|
1691 |
|
|
decNumber * decNumberNextPlus(decNumber *res, const decNumber *rhs,
|
1692 |
|
|
decContext *set) {
|
1693 |
|
|
decNumber dtiny; /* constant */
|
1694 |
|
|
decContext workset=*set; /* work */
|
1695 |
|
|
uInt status=0; /* accumulator */
|
1696 |
|
|
#if DECCHECK
|
1697 |
|
|
if (decCheckOperands(res, DECUNUSED, rhs, set)) return res;
|
1698 |
|
|
#endif
|
1699 |
|
|
|
1700 |
|
|
/* -Infinity is the special case */
|
1701 |
|
|
if ((rhs->bits&(DECINF|DECNEG))==(DECINF|DECNEG)) {
|
1702 |
|
|
decSetMaxValue(res, set);
|
1703 |
|
|
res->bits=DECNEG; /* negative */
|
1704 |
|
|
/* there is no status to set */
|
1705 |
|
|
return res;
|
1706 |
|
|
}
|
1707 |
|
|
decNumberZero(&dtiny); /* start with 0 */
|
1708 |
|
|
dtiny.lsu[0]=1; /* make number that is .. */
|
1709 |
|
|
dtiny.exponent=DEC_MIN_EMIN-1; /* .. smaller than tiniest */
|
1710 |
|
|
workset.round=DEC_ROUND_CEILING;
|
1711 |
|
|
decAddOp(res, rhs, &dtiny, &workset, 0, &status);
|
1712 |
|
|
status&=DEC_Invalid_operation|DEC_sNaN; /* only sNaN Invalid please */
|
1713 |
|
|
if (status!=0) decStatus(res, status, set);
|
1714 |
|
|
return res;
|
1715 |
|
|
} /* decNumberNextPlus */
|
1716 |
|
|
|
1717 |
|
|
/* ------------------------------------------------------------------ */
|
1718 |
|
|
/* decNumberNextToward -- next towards rhs */
|
1719 |
|
|
/* */
|
1720 |
|
|
/* This computes C = A +/- infinitesimal, rounded towards */
|
1721 |
|
|
/* +/-Infinity in the direction of B, as per 754r nextafter rules */
|
1722 |
|
|
/* */
|
1723 |
|
|
/* res is C, the result. C may be A or B. */
|
1724 |
|
|
/* lhs is A */
|
1725 |
|
|
/* rhs is B */
|
1726 |
|
|
/* set is the context */
|
1727 |
|
|
/* */
|
1728 |
|
|
/* This is a generalization of 754r NextAfter. */
|
1729 |
|
|
/* ------------------------------------------------------------------ */
|
1730 |
|
|
decNumber * decNumberNextToward(decNumber *res, const decNumber *lhs,
|
1731 |
|
|
const decNumber *rhs, decContext *set) {
|
1732 |
|
|
decNumber dtiny; /* constant */
|
1733 |
|
|
decContext workset=*set; /* work */
|
1734 |
|
|
Int result; /* .. */
|
1735 |
|
|
uInt status=0; /* accumulator */
|
1736 |
|
|
#if DECCHECK
|
1737 |
|
|
if (decCheckOperands(res, lhs, rhs, set)) return res;
|
1738 |
|
|
#endif
|
1739 |
|
|
|
1740 |
|
|
if (decNumberIsNaN(lhs) || decNumberIsNaN(rhs)) {
|
1741 |
|
|
decNaNs(res, lhs, rhs, set, &status);
|
1742 |
|
|
}
|
1743 |
|
|
else { /* Is numeric, so no chance of sNaN Invalid, etc. */
|
1744 |
|
|
result=decCompare(lhs, rhs, 0); /* sign matters */
|
1745 |
|
|
if (result==BADINT) status|=DEC_Insufficient_storage; /* rare */
|
1746 |
|
|
else { /* valid compare */
|
1747 |
|
|
if (result==0) decNumberCopySign(res, lhs, rhs); /* easy */
|
1748 |
|
|
else { /* differ: need NextPlus or NextMinus */
|
1749 |
|
|
uByte sub; /* add or subtract */
|
1750 |
|
|
if (result<0) { /* lhs<rhs, do nextplus */
|
1751 |
|
|
/* -Infinity is the special case */
|
1752 |
|
|
if ((lhs->bits&(DECINF|DECNEG))==(DECINF|DECNEG)) {
|
1753 |
|
|
decSetMaxValue(res, set);
|
1754 |
|
|
res->bits=DECNEG; /* negative */
|
1755 |
|
|
return res; /* there is no status to set */
|
1756 |
|
|
}
|
1757 |
|
|
workset.round=DEC_ROUND_CEILING;
|
1758 |
|
|
sub=0; /* add, please */
|
1759 |
|
|
} /* plus */
|
1760 |
|
|
else { /* lhs>rhs, do nextminus */
|
1761 |
|
|
/* +Infinity is the special case */
|
1762 |
|
|
if ((lhs->bits&(DECINF|DECNEG))==DECINF) {
|
1763 |
|
|
decSetMaxValue(res, set);
|
1764 |
|
|
return res; /* there is no status to set */
|
1765 |
|
|
}
|
1766 |
|
|
workset.round=DEC_ROUND_FLOOR;
|
1767 |
|
|
sub=DECNEG; /* subtract, please */
|
1768 |
|
|
} /* minus */
|
1769 |
|
|
decNumberZero(&dtiny); /* start with 0 */
|
1770 |
|
|
dtiny.lsu[0]=1; /* make number that is .. */
|
1771 |
|
|
dtiny.exponent=DEC_MIN_EMIN-1; /* .. smaller than tiniest */
|
1772 |
|
|
decAddOp(res, lhs, &dtiny, &workset, sub, &status); /* + or - */
|
1773 |
|
|
/* turn off exceptions if the result is a normal number */
|
1774 |
|
|
/* (including Nmin), otherwise let all status through */
|
1775 |
|
|
if (decNumberIsNormal(res, set)) status=0;
|
1776 |
|
|
} /* unequal */
|
1777 |
|
|
} /* compare OK */
|
1778 |
|
|
} /* numeric */
|
1779 |
|
|
if (status!=0) decStatus(res, status, set);
|
1780 |
|
|
return res;
|
1781 |
|
|
} /* decNumberNextToward */
|
1782 |
|
|
|
1783 |
|
|
/* ------------------------------------------------------------------ */
|
1784 |
|
|
/* decNumberOr -- OR two Numbers, digitwise */
|
1785 |
|
|
/* */
|
1786 |
|
|
/* This computes C = A | B */
|
1787 |
|
|
/* */
|
1788 |
|
|
/* res is C, the result. C may be A and/or B (e.g., X=X|X) */
|
1789 |
|
|
/* lhs is A */
|
1790 |
|
|
/* rhs is B */
|
1791 |
|
|
/* set is the context (used for result length and error report) */
|
1792 |
|
|
/* */
|
1793 |
|
|
/* C must have space for set->digits digits. */
|
1794 |
|
|
/* */
|
1795 |
|
|
/* Logical function restrictions apply (see above); a NaN is */
|
1796 |
|
|
/* returned with Invalid_operation if a restriction is violated. */
|
1797 |
|
|
/* ------------------------------------------------------------------ */
|
1798 |
|
|
decNumber * decNumberOr(decNumber *res, const decNumber *lhs,
|
1799 |
|
|
const decNumber *rhs, decContext *set) {
|
1800 |
|
|
const Unit *ua, *ub; /* -> operands */
|
1801 |
|
|
const Unit *msua, *msub; /* -> operand msus */
|
1802 |
|
|
Unit *uc, *msuc; /* -> result and its msu */
|
1803 |
|
|
Int msudigs; /* digits in res msu */
|
1804 |
|
|
#if DECCHECK
|
1805 |
|
|
if (decCheckOperands(res, lhs, rhs, set)) return res;
|
1806 |
|
|
#endif
|
1807 |
|
|
|
1808 |
|
|
if (lhs->exponent!=0 || decNumberIsSpecial(lhs) || decNumberIsNegative(lhs)
|
1809 |
|
|
|| rhs->exponent!=0 || decNumberIsSpecial(rhs) || decNumberIsNegative(rhs)) {
|
1810 |
|
|
decStatus(res, DEC_Invalid_operation, set);
|
1811 |
|
|
return res;
|
1812 |
|
|
}
|
1813 |
|
|
/* operands are valid */
|
1814 |
|
|
ua=lhs->lsu; /* bottom-up */
|
1815 |
|
|
ub=rhs->lsu; /* .. */
|
1816 |
|
|
uc=res->lsu; /* .. */
|
1817 |
|
|
msua=ua+D2U(lhs->digits)-1; /* -> msu of lhs */
|
1818 |
|
|
msub=ub+D2U(rhs->digits)-1; /* -> msu of rhs */
|
1819 |
|
|
msuc=uc+D2U(set->digits)-1; /* -> msu of result */
|
1820 |
|
|
msudigs=MSUDIGITS(set->digits); /* [faster than remainder] */
|
1821 |
|
|
for (; uc<=msuc; ua++, ub++, uc++) { /* Unit loop */
|
1822 |
|
|
Unit a, b; /* extract units */
|
1823 |
|
|
if (ua>msua) a=0;
|
1824 |
|
|
else a=*ua;
|
1825 |
|
|
if (ub>msub) b=0;
|
1826 |
|
|
else b=*ub;
|
1827 |
|
|
*uc=0; /* can now write back */
|
1828 |
|
|
if (a|b) { /* maybe 1 bits to examine */
|
1829 |
|
|
Int i, j;
|
1830 |
|
|
/* This loop could be unrolled and/or use BIN2BCD tables */
|
1831 |
|
|
for (i=0; i<DECDPUN; i++) {
|
1832 |
|
|
if ((a|b)&1) *uc=*uc+(Unit)powers[i]; /* effect OR */
|
1833 |
|
|
j=a%10;
|
1834 |
|
|
a=a/10;
|
1835 |
|
|
j|=b%10;
|
1836 |
|
|
b=b/10;
|
1837 |
|
|
if (j>1) {
|
1838 |
|
|
decStatus(res, DEC_Invalid_operation, set);
|
1839 |
|
|
return res;
|
1840 |
|
|
}
|
1841 |
|
|
if (uc==msuc && i==msudigs-1) break; /* just did final digit */
|
1842 |
|
|
} /* each digit */
|
1843 |
|
|
} /* non-zero */
|
1844 |
|
|
} /* each unit */
|
1845 |
|
|
/* [here uc-1 is the msu of the result] */
|
1846 |
|
|
res->digits=decGetDigits(res->lsu, uc-res->lsu);
|
1847 |
|
|
res->exponent=0; /* integer */
|
1848 |
|
|
res->bits=0; /* sign=0 */
|
1849 |
|
|
return res; /* [no status to set] */
|
1850 |
|
|
} /* decNumberOr */
|
1851 |
|
|
|
1852 |
|
|
/* ------------------------------------------------------------------ */
|
1853 |
|
|
/* decNumberPlus -- prefix plus operator */
|
1854 |
|
|
/* */
|
1855 |
|
|
/* This computes C = 0 + A */
|
1856 |
|
|
/* */
|
1857 |
|
|
/* res is C, the result. C may be A */
|
1858 |
|
|
/* rhs is A */
|
1859 |
|
|
/* set is the context */
|
1860 |
|
|
/* */
|
1861 |
|
|
/* See also decNumberCopy for a quiet bitwise version of this. */
|
1862 |
|
|
/* C must have space for set->digits digits. */
|
1863 |
|
|
/* ------------------------------------------------------------------ */
|
1864 |
|
|
/* This simply uses AddOp; Add will take fast path after preparing A. */
|
1865 |
|
|
/* Performance is a concern here, as this routine is often used to */
|
1866 |
|
|
/* check operands and apply rounding and overflow/underflow testing. */
|
1867 |
|
|
/* ------------------------------------------------------------------ */
|
1868 |
|
|
decNumber * decNumberPlus(decNumber *res, const decNumber *rhs,
|
1869 |
|
|
decContext *set) {
|
1870 |
|
|
decNumber dzero;
|
1871 |
|
|
uInt status=0; /* accumulator */
|
1872 |
|
|
#if DECCHECK
|
1873 |
|
|
if (decCheckOperands(res, DECUNUSED, rhs, set)) return res;
|
1874 |
|
|
#endif
|
1875 |
|
|
|
1876 |
|
|
decNumberZero(&dzero); /* make 0 */
|
1877 |
|
|
dzero.exponent=rhs->exponent; /* [no coefficient expansion] */
|
1878 |
|
|
decAddOp(res, &dzero, rhs, set, 0, &status);
|
1879 |
|
|
if (status!=0) decStatus(res, status, set);
|
1880 |
|
|
#if DECCHECK
|
1881 |
|
|
decCheckInexact(res, set);
|
1882 |
|
|
#endif
|
1883 |
|
|
return res;
|
1884 |
|
|
} /* decNumberPlus */
|
1885 |
|
|
|
1886 |
|
|
/* ------------------------------------------------------------------ */
|
1887 |
|
|
/* decNumberMultiply -- multiply two Numbers */
|
1888 |
|
|
/* */
|
1889 |
|
|
/* This computes C = A x B */
|
1890 |
|
|
/* */
|
1891 |
|
|
/* res is C, the result. C may be A and/or B (e.g., X=X+X) */
|
1892 |
|
|
/* lhs is A */
|
1893 |
|
|
/* rhs is B */
|
1894 |
|
|
/* set is the context */
|
1895 |
|
|
/* */
|
1896 |
|
|
/* C must have space for set->digits digits. */
|
1897 |
|
|
/* ------------------------------------------------------------------ */
|
1898 |
|
|
decNumber * decNumberMultiply(decNumber *res, const decNumber *lhs,
|
1899 |
|
|
const decNumber *rhs, decContext *set) {
|
1900 |
|
|
uInt status=0; /* accumulator */
|
1901 |
|
|
decMultiplyOp(res, lhs, rhs, set, &status);
|
1902 |
|
|
if (status!=0) decStatus(res, status, set);
|
1903 |
|
|
#if DECCHECK
|
1904 |
|
|
decCheckInexact(res, set);
|
1905 |
|
|
#endif
|
1906 |
|
|
return res;
|
1907 |
|
|
} /* decNumberMultiply */
|
1908 |
|
|
|
1909 |
|
|
/* ------------------------------------------------------------------ */
|
1910 |
|
|
/* decNumberPower -- raise a number to a power */
|
1911 |
|
|
/* */
|
1912 |
|
|
/* This computes C = A ** B */
|
1913 |
|
|
/* */
|
1914 |
|
|
/* res is C, the result. C may be A and/or B (e.g., X=X**X) */
|
1915 |
|
|
/* lhs is A */
|
1916 |
|
|
/* rhs is B */
|
1917 |
|
|
/* set is the context */
|
1918 |
|
|
/* */
|
1919 |
|
|
/* C must have space for set->digits digits. */
|
1920 |
|
|
/* */
|
1921 |
|
|
/* Mathematical function restrictions apply (see above); a NaN is */
|
1922 |
|
|
/* returned with Invalid_operation if a restriction is violated. */
|
1923 |
|
|
/* */
|
1924 |
|
|
/* However, if 1999999997<=B<=999999999 and B is an integer then the */
|
1925 |
|
|
/* restrictions on A and the context are relaxed to the usual bounds, */
|
1926 |
|
|
/* for compatibility with the earlier (integer power only) version */
|
1927 |
|
|
/* of this function. */
|
1928 |
|
|
/* */
|
1929 |
|
|
/* When B is an integer, the result may be exact, even if rounded. */
|
1930 |
|
|
/* */
|
1931 |
|
|
/* The final result is rounded according to the context; it will */
|
1932 |
|
|
/* almost always be correctly rounded, but may be up to 1 ulp in */
|
1933 |
|
|
/* error in rare cases. */
|
1934 |
|
|
/* ------------------------------------------------------------------ */
|
1935 |
|
|
decNumber * decNumberPower(decNumber *res, const decNumber *lhs,
|
1936 |
|
|
const decNumber *rhs, decContext *set) {
|
1937 |
|
|
#if DECSUBSET
|
1938 |
|
|
decNumber *alloclhs=NULL; /* non-NULL if rounded lhs allocated */
|
1939 |
|
|
decNumber *allocrhs=NULL; /* .., rhs */
|
1940 |
|
|
#endif
|
1941 |
|
|
decNumber *allocdac=NULL; /* -> allocated acc buffer, iff used */
|
1942 |
|
|
decNumber *allocinv=NULL; /* -> allocated 1/x buffer, iff used */
|
1943 |
|
|
Int reqdigits=set->digits; /* requested DIGITS */
|
1944 |
|
|
Int n; /* rhs in binary */
|
1945 |
|
|
Flag rhsint=0; /* 1 if rhs is an integer */
|
1946 |
|
|
Flag useint=0; /* 1 if can use integer calculation */
|
1947 |
|
|
Flag isoddint=0; /* 1 if rhs is an integer and odd */
|
1948 |
|
|
Int i; /* work */
|
1949 |
|
|
#if DECSUBSET
|
1950 |
|
|
Int dropped; /* .. */
|
1951 |
|
|
#endif
|
1952 |
|
|
uInt needbytes; /* buffer size needed */
|
1953 |
|
|
Flag seenbit; /* seen a bit while powering */
|
1954 |
|
|
Int residue=0; /* rounding residue */
|
1955 |
|
|
uInt status=0; /* accumulators */
|
1956 |
|
|
uByte bits=0; /* result sign if errors */
|
1957 |
|
|
decContext aset; /* working context */
|
1958 |
|
|
decNumber dnOne; /* work value 1... */
|
1959 |
|
|
/* local accumulator buffer [a decNumber, with digits+elength+1 digits] */
|
1960 |
|
|
decNumber dacbuff[D2N(DECBUFFER+9)];
|
1961 |
|
|
decNumber *dac=dacbuff; /* -> result accumulator */
|
1962 |
|
|
/* same again for possible 1/lhs calculation */
|
1963 |
|
|
decNumber invbuff[D2N(DECBUFFER+9)];
|
1964 |
|
|
|
1965 |
|
|
#if DECCHECK
|
1966 |
|
|
if (decCheckOperands(res, lhs, rhs, set)) return res;
|
1967 |
|
|
#endif
|
1968 |
|
|
|
1969 |
|
|
do { /* protect allocated storage */
|
1970 |
|
|
#if DECSUBSET
|
1971 |
|
|
if (!set->extended) { /* reduce operands and set status, as needed */
|
1972 |
|
|
if (lhs->digits>reqdigits) {
|
1973 |
|
|
alloclhs=decRoundOperand(lhs, set, &status);
|
1974 |
|
|
if (alloclhs==NULL) break;
|
1975 |
|
|
lhs=alloclhs;
|
1976 |
|
|
}
|
1977 |
|
|
if (rhs->digits>reqdigits) {
|
1978 |
|
|
allocrhs=decRoundOperand(rhs, set, &status);
|
1979 |
|
|
if (allocrhs==NULL) break;
|
1980 |
|
|
rhs=allocrhs;
|
1981 |
|
|
}
|
1982 |
|
|
}
|
1983 |
|
|
#endif
|
1984 |
|
|
/* [following code does not require input rounding] */
|
1985 |
|
|
|
1986 |
|
|
/* handle NaNs and rhs Infinity (lhs infinity is harder) */
|
1987 |
|
|
if (SPECIALARGS) {
|
1988 |
|
|
if (decNumberIsNaN(lhs) || decNumberIsNaN(rhs)) { /* NaNs */
|
1989 |
|
|
decNaNs(res, lhs, rhs, set, &status);
|
1990 |
|
|
break;}
|
1991 |
|
|
if (decNumberIsInfinite(rhs)) { /* rhs Infinity */
|
1992 |
|
|
Flag rhsneg=rhs->bits&DECNEG; /* save rhs sign */
|
1993 |
|
|
if (decNumberIsNegative(lhs) /* lhs<0 */
|
1994 |
|
|
&& !decNumberIsZero(lhs)) /* .. */
|
1995 |
|
|
status|=DEC_Invalid_operation;
|
1996 |
|
|
else { /* lhs >=0 */
|
1997 |
|
|
decNumberZero(&dnOne); /* set up 1 */
|
1998 |
|
|
dnOne.lsu[0]=1;
|
1999 |
|
|
decNumberCompare(dac, lhs, &dnOne, set); /* lhs ? 1 */
|
2000 |
|
|
decNumberZero(res); /* prepare for 0/1/Infinity */
|
2001 |
|
|
if (decNumberIsNegative(dac)) { /* lhs<1 */
|
2002 |
|
|
if (rhsneg) res->bits|=DECINF; /* +Infinity [else is +0] */
|
2003 |
|
|
}
|
2004 |
|
|
else if (dac->lsu[0]==0) { /* lhs=1 */
|
2005 |
|
|
/* 1**Infinity is inexact, so return fully-padded 1.0000 */
|
2006 |
|
|
Int shift=set->digits-1;
|
2007 |
|
|
*res->lsu=1; /* was 0, make int 1 */
|
2008 |
|
|
res->digits=decShiftToMost(res->lsu, 1, shift);
|
2009 |
|
|
res->exponent=-shift; /* make 1.0000... */
|
2010 |
|
|
status|=DEC_Inexact|DEC_Rounded; /* deemed inexact */
|
2011 |
|
|
}
|
2012 |
|
|
else { /* lhs>1 */
|
2013 |
|
|
if (!rhsneg) res->bits|=DECINF; /* +Infinity [else is +0] */
|
2014 |
|
|
}
|
2015 |
|
|
} /* lhs>=0 */
|
2016 |
|
|
break;}
|
2017 |
|
|
/* [lhs infinity drops through] */
|
2018 |
|
|
} /* specials */
|
2019 |
|
|
|
2020 |
|
|
/* Original rhs may be an integer that fits and is in range */
|
2021 |
|
|
n=decGetInt(rhs);
|
2022 |
|
|
if (n!=BADINT) { /* it is an integer */
|
2023 |
|
|
rhsint=1; /* record the fact for 1**n */
|
2024 |
|
|
isoddint=(Flag)n&1; /* [works even if big] */
|
2025 |
|
|
if (n!=BIGEVEN && n!=BIGODD) /* can use integer path? */
|
2026 |
|
|
useint=1; /* looks good */
|
2027 |
|
|
}
|
2028 |
|
|
|
2029 |
|
|
if (decNumberIsNegative(lhs) /* -x .. */
|
2030 |
|
|
&& isoddint) bits=DECNEG; /* .. to an odd power */
|
2031 |
|
|
|
2032 |
|
|
/* handle LHS infinity */
|
2033 |
|
|
if (decNumberIsInfinite(lhs)) { /* [NaNs already handled] */
|
2034 |
|
|
uByte rbits=rhs->bits; /* save */
|
2035 |
|
|
decNumberZero(res); /* prepare */
|
2036 |
|
|
if (n==0) *res->lsu=1; /* [-]Inf**0 => 1 */
|
2037 |
|
|
else {
|
2038 |
|
|
/* -Inf**nonint -> error */
|
2039 |
|
|
if (!rhsint && decNumberIsNegative(lhs)) {
|
2040 |
|
|
status|=DEC_Invalid_operation; /* -Inf**nonint is error */
|
2041 |
|
|
break;}
|
2042 |
|
|
if (!(rbits & DECNEG)) bits|=DECINF; /* was not a **-n */
|
2043 |
|
|
/* [otherwise will be 0 or -0] */
|
2044 |
|
|
res->bits=bits;
|
2045 |
|
|
}
|
2046 |
|
|
break;}
|
2047 |
|
|
|
2048 |
|
|
/* similarly handle LHS zero */
|
2049 |
|
|
if (decNumberIsZero(lhs)) {
|
2050 |
|
|
if (n==0) { /* 0**0 => Error */
|
2051 |
|
|
#if DECSUBSET
|
2052 |
|
|
if (!set->extended) { /* [unless subset] */
|
2053 |
|
|
decNumberZero(res);
|
2054 |
|
|
*res->lsu=1; /* return 1 */
|
2055 |
|
|
break;}
|
2056 |
|
|
#endif
|
2057 |
|
|
status|=DEC_Invalid_operation;
|
2058 |
|
|
}
|
2059 |
|
|
else { /* 0**x */
|
2060 |
|
|
uByte rbits=rhs->bits; /* save */
|
2061 |
|
|
if (rbits & DECNEG) { /* was a 0**(-n) */
|
2062 |
|
|
#if DECSUBSET
|
2063 |
|
|
if (!set->extended) { /* [bad if subset] */
|
2064 |
|
|
status|=DEC_Invalid_operation;
|
2065 |
|
|
break;}
|
2066 |
|
|
#endif
|
2067 |
|
|
bits|=DECINF;
|
2068 |
|
|
}
|
2069 |
|
|
decNumberZero(res); /* prepare */
|
2070 |
|
|
/* [otherwise will be 0 or -0] */
|
2071 |
|
|
res->bits=bits;
|
2072 |
|
|
}
|
2073 |
|
|
break;}
|
2074 |
|
|
|
2075 |
|
|
/* here both lhs and rhs are finite; rhs==0 is handled in the */
|
2076 |
|
|
/* integer path. Next handle the non-integer cases */
|
2077 |
|
|
if (!useint) { /* non-integral rhs */
|
2078 |
|
|
/* any -ve lhs is bad, as is either operand or context out of */
|
2079 |
|
|
/* bounds */
|
2080 |
|
|
if (decNumberIsNegative(lhs)) {
|
2081 |
|
|
status|=DEC_Invalid_operation;
|
2082 |
|
|
break;}
|
2083 |
|
|
if (decCheckMath(lhs, set, &status)
|
2084 |
|
|
|| decCheckMath(rhs, set, &status)) break; /* variable status */
|
2085 |
|
|
|
2086 |
|
|
decContextDefault(&aset, DEC_INIT_DECIMAL64); /* clean context */
|
2087 |
|
|
aset.emax=DEC_MAX_MATH; /* usual bounds */
|
2088 |
|
|
aset.emin=-DEC_MAX_MATH; /* .. */
|
2089 |
|
|
aset.clamp=0; /* and no concrete format */
|
2090 |
|
|
|
2091 |
|
|
/* calculate the result using exp(ln(lhs)*rhs), which can */
|
2092 |
|
|
/* all be done into the accumulator, dac. The precision needed */
|
2093 |
|
|
/* is enough to contain the full information in the lhs (which */
|
2094 |
|
|
/* is the total digits, including exponent), or the requested */
|
2095 |
|
|
/* precision, if larger, + 4; 6 is used for the exponent */
|
2096 |
|
|
/* maximum length, and this is also used when it is shorter */
|
2097 |
|
|
/* than the requested digits as it greatly reduces the >0.5 ulp */
|
2098 |
|
|
/* cases at little cost (because Ln doubles digits each */
|
2099 |
|
|
/* iteration so a few extra digits rarely causes an extra */
|
2100 |
|
|
/* iteration) */
|
2101 |
|
|
aset.digits=MAXI(lhs->digits, set->digits)+6+4;
|
2102 |
|
|
} /* non-integer rhs */
|
2103 |
|
|
|
2104 |
|
|
else { /* rhs is in-range integer */
|
2105 |
|
|
if (n==0) { /* x**0 = 1 */
|
2106 |
|
|
/* (0**0 was handled above) */
|
2107 |
|
|
decNumberZero(res); /* result=1 */
|
2108 |
|
|
*res->lsu=1; /* .. */
|
2109 |
|
|
break;}
|
2110 |
|
|
/* rhs is a non-zero integer */
|
2111 |
|
|
if (n<0) n=-n; /* use abs(n) */
|
2112 |
|
|
|
2113 |
|
|
aset=*set; /* clone the context */
|
2114 |
|
|
aset.round=DEC_ROUND_HALF_EVEN; /* internally use balanced */
|
2115 |
|
|
/* calculate the working DIGITS */
|
2116 |
|
|
aset.digits=reqdigits+(rhs->digits+rhs->exponent)+2;
|
2117 |
|
|
#if DECSUBSET
|
2118 |
|
|
if (!set->extended) aset.digits--; /* use classic precision */
|
2119 |
|
|
#endif
|
2120 |
|
|
/* it's an error if this is more than can be handled */
|
2121 |
|
|
if (aset.digits>DECNUMMAXP) {status|=DEC_Invalid_operation; break;}
|
2122 |
|
|
} /* integer path */
|
2123 |
|
|
|
2124 |
|
|
/* aset.digits is the count of digits for the accumulator needed */
|
2125 |
|
|
/* if accumulator is too long for local storage, then allocate */
|
2126 |
|
|
needbytes=sizeof(decNumber)+(D2U(aset.digits)-1)*sizeof(Unit);
|
2127 |
|
|
/* [needbytes also used below if 1/lhs needed] */
|
2128 |
|
|
if (needbytes>sizeof(dacbuff)) {
|
2129 |
|
|
allocdac=(decNumber *)malloc(needbytes);
|
2130 |
|
|
if (allocdac==NULL) { /* hopeless -- abandon */
|
2131 |
|
|
status|=DEC_Insufficient_storage;
|
2132 |
|
|
break;}
|
2133 |
|
|
dac=allocdac; /* use the allocated space */
|
2134 |
|
|
}
|
2135 |
|
|
/* here, aset is set up and accumulator is ready for use */
|
2136 |
|
|
|
2137 |
|
|
if (!useint) { /* non-integral rhs */
|
2138 |
|
|
/* x ** y; special-case x=1 here as it will otherwise always */
|
2139 |
|
|
/* reduce to integer 1; decLnOp has a fastpath which detects */
|
2140 |
|
|
/* the case of x=1 */
|
2141 |
|
|
decLnOp(dac, lhs, &aset, &status); /* dac=ln(lhs) */
|
2142 |
|
|
/* [no error possible, as lhs 0 already handled] */
|
2143 |
|
|
if (ISZERO(dac)) { /* x==1, 1.0, etc. */
|
2144 |
|
|
/* need to return fully-padded 1.0000 etc., but rhsint->1 */
|
2145 |
|
|
*dac->lsu=1; /* was 0, make int 1 */
|
2146 |
|
|
if (!rhsint) { /* add padding */
|
2147 |
|
|
Int shift=set->digits-1;
|
2148 |
|
|
dac->digits=decShiftToMost(dac->lsu, 1, shift);
|
2149 |
|
|
dac->exponent=-shift; /* make 1.0000... */
|
2150 |
|
|
status|=DEC_Inexact|DEC_Rounded; /* deemed inexact */
|
2151 |
|
|
}
|
2152 |
|
|
}
|
2153 |
|
|
else {
|
2154 |
|
|
decMultiplyOp(dac, dac, rhs, &aset, &status); /* dac=dac*rhs */
|
2155 |
|
|
decExpOp(dac, dac, &aset, &status); /* dac=exp(dac) */
|
2156 |
|
|
}
|
2157 |
|
|
/* and drop through for final rounding */
|
2158 |
|
|
} /* non-integer rhs */
|
2159 |
|
|
|
2160 |
|
|
else { /* carry on with integer */
|
2161 |
|
|
decNumberZero(dac); /* acc=1 */
|
2162 |
|
|
*dac->lsu=1; /* .. */
|
2163 |
|
|
|
2164 |
|
|
/* if a negative power the constant 1 is needed, and if not subset */
|
2165 |
|
|
/* invert the lhs now rather than inverting the result later */
|
2166 |
|
|
if (decNumberIsNegative(rhs)) { /* was a **-n [hence digits>0] */
|
2167 |
|
|
decNumber *inv=invbuff; /* asssume use fixed buffer */
|
2168 |
|
|
decNumberCopy(&dnOne, dac); /* dnOne=1; [needed now or later] */
|
2169 |
|
|
#if DECSUBSET
|
2170 |
|
|
if (set->extended) { /* need to calculate 1/lhs */
|
2171 |
|
|
#endif
|
2172 |
|
|
/* divide lhs into 1, putting result in dac [dac=1/dac] */
|
2173 |
|
|
decDivideOp(dac, &dnOne, lhs, &aset, DIVIDE, &status);
|
2174 |
|
|
/* now locate or allocate space for the inverted lhs */
|
2175 |
|
|
if (needbytes>sizeof(invbuff)) {
|
2176 |
|
|
allocinv=(decNumber *)malloc(needbytes);
|
2177 |
|
|
if (allocinv==NULL) { /* hopeless -- abandon */
|
2178 |
|
|
status|=DEC_Insufficient_storage;
|
2179 |
|
|
break;}
|
2180 |
|
|
inv=allocinv; /* use the allocated space */
|
2181 |
|
|
}
|
2182 |
|
|
/* [inv now points to big-enough buffer or allocated storage] */
|
2183 |
|
|
decNumberCopy(inv, dac); /* copy the 1/lhs */
|
2184 |
|
|
decNumberCopy(dac, &dnOne); /* restore acc=1 */
|
2185 |
|
|
lhs=inv; /* .. and go forward with new lhs */
|
2186 |
|
|
#if DECSUBSET
|
2187 |
|
|
}
|
2188 |
|
|
#endif
|
2189 |
|
|
}
|
2190 |
|
|
|
2191 |
|
|
/* Raise-to-the-power loop... */
|
2192 |
|
|
seenbit=0; /* set once a 1-bit is encountered */
|
2193 |
|
|
for (i=1;;i++){ /* for each bit [top bit ignored] */
|
2194 |
|
|
/* abandon if had overflow or terminal underflow */
|
2195 |
|
|
if (status & (DEC_Overflow|DEC_Underflow)) { /* interesting? */
|
2196 |
|
|
if (status&DEC_Overflow || ISZERO(dac)) break;
|
2197 |
|
|
}
|
2198 |
|
|
/* [the following two lines revealed an optimizer bug in a C++ */
|
2199 |
|
|
/* compiler, with symptom: 5**3 -> 25, when n=n+n was used] */
|
2200 |
|
|
n=n<<1; /* move next bit to testable position */
|
2201 |
|
|
if (n<0) { /* top bit is set */
|
2202 |
|
|
seenbit=1; /* OK, significant bit seen */
|
2203 |
|
|
decMultiplyOp(dac, dac, lhs, &aset, &status); /* dac=dac*x */
|
2204 |
|
|
}
|
2205 |
|
|
if (i==31) break; /* that was the last bit */
|
2206 |
|
|
if (!seenbit) continue; /* no need to square 1 */
|
2207 |
|
|
decMultiplyOp(dac, dac, dac, &aset, &status); /* dac=dac*dac [square] */
|
2208 |
|
|
} /*i*/ /* 32 bits */
|
2209 |
|
|
|
2210 |
|
|
/* complete internal overflow or underflow processing */
|
2211 |
|
|
if (status & (DEC_Overflow|DEC_Underflow)) {
|
2212 |
|
|
#if DECSUBSET
|
2213 |
|
|
/* If subset, and power was negative, reverse the kind of -erflow */
|
2214 |
|
|
/* [1/x not yet done] */
|
2215 |
|
|
if (!set->extended && decNumberIsNegative(rhs)) {
|
2216 |
|
|
if (status & DEC_Overflow)
|
2217 |
|
|
status^=DEC_Overflow | DEC_Underflow | DEC_Subnormal;
|
2218 |
|
|
else { /* trickier -- Underflow may or may not be set */
|
2219 |
|
|
status&=~(DEC_Underflow | DEC_Subnormal); /* [one or both] */
|
2220 |
|
|
status|=DEC_Overflow;
|
2221 |
|
|
}
|
2222 |
|
|
}
|
2223 |
|
|
#endif
|
2224 |
|
|
dac->bits=(dac->bits & ~DECNEG) | bits; /* force correct sign */
|
2225 |
|
|
/* round subnormals [to set.digits rather than aset.digits] */
|
2226 |
|
|
/* or set overflow result similarly as required */
|
2227 |
|
|
decFinalize(dac, set, &residue, &status);
|
2228 |
|
|
decNumberCopy(res, dac); /* copy to result (is now OK length) */
|
2229 |
|
|
break;
|
2230 |
|
|
}
|
2231 |
|
|
|
2232 |
|
|
#if DECSUBSET
|
2233 |
|
|
if (!set->extended && /* subset math */
|
2234 |
|
|
decNumberIsNegative(rhs)) { /* was a **-n [hence digits>0] */
|
2235 |
|
|
/* so divide result into 1 [dac=1/dac] */
|
2236 |
|
|
decDivideOp(dac, &dnOne, dac, &aset, DIVIDE, &status);
|
2237 |
|
|
}
|
2238 |
|
|
#endif
|
2239 |
|
|
} /* rhs integer path */
|
2240 |
|
|
|
2241 |
|
|
/* reduce result to the requested length and copy to result */
|
2242 |
|
|
decCopyFit(res, dac, set, &residue, &status);
|
2243 |
|
|
decFinish(res, set, &residue, &status); /* final cleanup */
|
2244 |
|
|
#if DECSUBSET
|
2245 |
|
|
if (!set->extended) decTrim(res, set, 0, &dropped); /* trailing zeros */
|
2246 |
|
|
#endif
|
2247 |
|
|
} while(0); /* end protected */
|
2248 |
|
|
|
2249 |
|
|
if (allocdac!=NULL) free(allocdac); /* drop any storage used */
|
2250 |
|
|
if (allocinv!=NULL) free(allocinv); /* .. */
|
2251 |
|
|
#if DECSUBSET
|
2252 |
|
|
if (alloclhs!=NULL) free(alloclhs); /* .. */
|
2253 |
|
|
if (allocrhs!=NULL) free(allocrhs); /* .. */
|
2254 |
|
|
#endif
|
2255 |
|
|
if (status!=0) decStatus(res, status, set);
|
2256 |
|
|
#if DECCHECK
|
2257 |
|
|
decCheckInexact(res, set);
|
2258 |
|
|
#endif
|
2259 |
|
|
return res;
|
2260 |
|
|
} /* decNumberPower */
|
2261 |
|
|
|
2262 |
|
|
/* ------------------------------------------------------------------ */
|
2263 |
|
|
/* decNumberQuantize -- force exponent to requested value */
|
2264 |
|
|
/* */
|
2265 |
|
|
/* This computes C = op(A, B), where op adjusts the coefficient */
|
2266 |
|
|
/* of C (by rounding or shifting) such that the exponent (-scale) */
|
2267 |
|
|
/* of C has exponent of B. The numerical value of C will equal A, */
|
2268 |
|
|
/* except for the effects of any rounding that occurred. */
|
2269 |
|
|
/* */
|
2270 |
|
|
/* res is C, the result. C may be A or B */
|
2271 |
|
|
/* lhs is A, the number to adjust */
|
2272 |
|
|
/* rhs is B, the number with exponent to match */
|
2273 |
|
|
/* set is the context */
|
2274 |
|
|
/* */
|
2275 |
|
|
/* C must have space for set->digits digits. */
|
2276 |
|
|
/* */
|
2277 |
|
|
/* Unless there is an error or the result is infinite, the exponent */
|
2278 |
|
|
/* after the operation is guaranteed to be equal to that of B. */
|
2279 |
|
|
/* ------------------------------------------------------------------ */
|
2280 |
|
|
decNumber * decNumberQuantize(decNumber *res, const decNumber *lhs,
|
2281 |
|
|
const decNumber *rhs, decContext *set) {
|
2282 |
|
|
uInt status=0; /* accumulator */
|
2283 |
|
|
decQuantizeOp(res, lhs, rhs, set, 1, &status);
|
2284 |
|
|
if (status!=0) decStatus(res, status, set);
|
2285 |
|
|
return res;
|
2286 |
|
|
} /* decNumberQuantize */
|
2287 |
|
|
|
2288 |
|
|
/* ------------------------------------------------------------------ */
|
2289 |
|
|
/* decNumberReduce -- remove trailing zeros */
|
2290 |
|
|
/* */
|
2291 |
|
|
/* This computes C = 0 + A, and normalizes the result */
|
2292 |
|
|
/* */
|
2293 |
|
|
/* res is C, the result. C may be A */
|
2294 |
|
|
/* rhs is A */
|
2295 |
|
|
/* set is the context */
|
2296 |
|
|
/* */
|
2297 |
|
|
/* C must have space for set->digits digits. */
|
2298 |
|
|
/* ------------------------------------------------------------------ */
|
2299 |
|
|
/* Previously known as Normalize */
|
2300 |
|
|
decNumber * decNumberNormalize(decNumber *res, const decNumber *rhs,
|
2301 |
|
|
decContext *set) {
|
2302 |
|
|
return decNumberReduce(res, rhs, set);
|
2303 |
|
|
} /* decNumberNormalize */
|
2304 |
|
|
|
2305 |
|
|
decNumber * decNumberReduce(decNumber *res, const decNumber *rhs,
|
2306 |
|
|
decContext *set) {
|
2307 |
|
|
#if DECSUBSET
|
2308 |
|
|
decNumber *allocrhs=NULL; /* non-NULL if rounded rhs allocated */
|
2309 |
|
|
#endif
|
2310 |
|
|
uInt status=0; /* as usual */
|
2311 |
|
|
Int residue=0; /* as usual */
|
2312 |
|
|
Int dropped; /* work */
|
2313 |
|
|
|
2314 |
|
|
#if DECCHECK
|
2315 |
|
|
if (decCheckOperands(res, DECUNUSED, rhs, set)) return res;
|
2316 |
|
|
#endif
|
2317 |
|
|
|
2318 |
|
|
do { /* protect allocated storage */
|
2319 |
|
|
#if DECSUBSET
|
2320 |
|
|
if (!set->extended) {
|
2321 |
|
|
/* reduce operand and set lostDigits status, as needed */
|
2322 |
|
|
if (rhs->digits>set->digits) {
|
2323 |
|
|
allocrhs=decRoundOperand(rhs, set, &status);
|
2324 |
|
|
if (allocrhs==NULL) break;
|
2325 |
|
|
rhs=allocrhs;
|
2326 |
|
|
}
|
2327 |
|
|
}
|
2328 |
|
|
#endif
|
2329 |
|
|
/* [following code does not require input rounding] */
|
2330 |
|
|
|
2331 |
|
|
/* Infinities copy through; NaNs need usual treatment */
|
2332 |
|
|
if (decNumberIsNaN(rhs)) {
|
2333 |
|
|
decNaNs(res, rhs, NULL, set, &status);
|
2334 |
|
|
break;
|
2335 |
|
|
}
|
2336 |
|
|
|
2337 |
|
|
/* reduce result to the requested length and copy to result */
|
2338 |
|
|
decCopyFit(res, rhs, set, &residue, &status); /* copy & round */
|
2339 |
|
|
decFinish(res, set, &residue, &status); /* cleanup/set flags */
|
2340 |
|
|
decTrim(res, set, 1, &dropped); /* normalize in place */
|
2341 |
|
|
} while(0); /* end protected */
|
2342 |
|
|
|
2343 |
|
|
#if DECSUBSET
|
2344 |
|
|
if (allocrhs !=NULL) free(allocrhs); /* .. */
|
2345 |
|
|
#endif
|
2346 |
|
|
if (status!=0) decStatus(res, status, set);/* then report status */
|
2347 |
|
|
return res;
|
2348 |
|
|
} /* decNumberReduce */
|
2349 |
|
|
|
2350 |
|
|
/* ------------------------------------------------------------------ */
|
2351 |
|
|
/* decNumberRescale -- force exponent to requested value */
|
2352 |
|
|
/* */
|
2353 |
|
|
/* This computes C = op(A, B), where op adjusts the coefficient */
|
2354 |
|
|
/* of C (by rounding or shifting) such that the exponent (-scale) */
|
2355 |
|
|
/* of C has the value B. The numerical value of C will equal A, */
|
2356 |
|
|
/* except for the effects of any rounding that occurred. */
|
2357 |
|
|
/* */
|
2358 |
|
|
/* res is C, the result. C may be A or B */
|
2359 |
|
|
/* lhs is A, the number to adjust */
|
2360 |
|
|
/* rhs is B, the requested exponent */
|
2361 |
|
|
/* set is the context */
|
2362 |
|
|
/* */
|
2363 |
|
|
/* C must have space for set->digits digits. */
|
2364 |
|
|
/* */
|
2365 |
|
|
/* Unless there is an error or the result is infinite, the exponent */
|
2366 |
|
|
/* after the operation is guaranteed to be equal to B. */
|
2367 |
|
|
/* ------------------------------------------------------------------ */
|
2368 |
|
|
decNumber * decNumberRescale(decNumber *res, const decNumber *lhs,
|
2369 |
|
|
const decNumber *rhs, decContext *set) {
|
2370 |
|
|
uInt status=0; /* accumulator */
|
2371 |
|
|
decQuantizeOp(res, lhs, rhs, set, 0, &status);
|
2372 |
|
|
if (status!=0) decStatus(res, status, set);
|
2373 |
|
|
return res;
|
2374 |
|
|
} /* decNumberRescale */
|
2375 |
|
|
|
2376 |
|
|
/* ------------------------------------------------------------------ */
|
2377 |
|
|
/* decNumberRemainder -- divide and return remainder */
|
2378 |
|
|
/* */
|
2379 |
|
|
/* This computes C = A % B */
|
2380 |
|
|
/* */
|
2381 |
|
|
/* res is C, the result. C may be A and/or B (e.g., X=X%X) */
|
2382 |
|
|
/* lhs is A */
|
2383 |
|
|
/* rhs is B */
|
2384 |
|
|
/* set is the context */
|
2385 |
|
|
/* */
|
2386 |
|
|
/* C must have space for set->digits digits. */
|
2387 |
|
|
/* ------------------------------------------------------------------ */
|
2388 |
|
|
decNumber * decNumberRemainder(decNumber *res, const decNumber *lhs,
|
2389 |
|
|
const decNumber *rhs, decContext *set) {
|
2390 |
|
|
uInt status=0; /* accumulator */
|
2391 |
|
|
decDivideOp(res, lhs, rhs, set, REMAINDER, &status);
|
2392 |
|
|
if (status!=0) decStatus(res, status, set);
|
2393 |
|
|
#if DECCHECK
|
2394 |
|
|
decCheckInexact(res, set);
|
2395 |
|
|
#endif
|
2396 |
|
|
return res;
|
2397 |
|
|
} /* decNumberRemainder */
|
2398 |
|
|
|
2399 |
|
|
/* ------------------------------------------------------------------ */
|
2400 |
|
|
/* decNumberRemainderNear -- divide and return remainder from nearest */
|
2401 |
|
|
/* */
|
2402 |
|
|
/* This computes C = A % B, where % is the IEEE remainder operator */
|
2403 |
|
|
/* */
|
2404 |
|
|
/* res is C, the result. C may be A and/or B (e.g., X=X%X) */
|
2405 |
|
|
/* lhs is A */
|
2406 |
|
|
/* rhs is B */
|
2407 |
|
|
/* set is the context */
|
2408 |
|
|
/* */
|
2409 |
|
|
/* C must have space for set->digits digits. */
|
2410 |
|
|
/* ------------------------------------------------------------------ */
|
2411 |
|
|
decNumber * decNumberRemainderNear(decNumber *res, const decNumber *lhs,
|
2412 |
|
|
const decNumber *rhs, decContext *set) {
|
2413 |
|
|
uInt status=0; /* accumulator */
|
2414 |
|
|
decDivideOp(res, lhs, rhs, set, REMNEAR, &status);
|
2415 |
|
|
if (status!=0) decStatus(res, status, set);
|
2416 |
|
|
#if DECCHECK
|
2417 |
|
|
decCheckInexact(res, set);
|
2418 |
|
|
#endif
|
2419 |
|
|
return res;
|
2420 |
|
|
} /* decNumberRemainderNear */
|
2421 |
|
|
|
2422 |
|
|
/* ------------------------------------------------------------------ */
|
2423 |
|
|
/* decNumberRotate -- rotate the coefficient of a Number left/right */
|
2424 |
|
|
/* */
|
2425 |
|
|
/* This computes C = A rot B (in base ten and rotating set->digits */
|
2426 |
|
|
/* digits). */
|
2427 |
|
|
/* */
|
2428 |
|
|
/* res is C, the result. C may be A and/or B (e.g., X=XrotX) */
|
2429 |
|
|
/* lhs is A */
|
2430 |
|
|
/* rhs is B, the number of digits to rotate (-ve to right) */
|
2431 |
|
|
/* set is the context */
|
2432 |
|
|
/* */
|
2433 |
|
|
/* The digits of the coefficient of A are rotated to the left (if B */
|
2434 |
|
|
/* is positive) or to the right (if B is negative) without adjusting */
|
2435 |
|
|
/* the exponent or the sign of A. If lhs->digits is less than */
|
2436 |
|
|
/* set->digits the coefficient is padded with zeros on the left */
|
2437 |
|
|
/* before the rotate. Any leading zeros in the result are removed */
|
2438 |
|
|
/* as usual. */
|
2439 |
|
|
/* */
|
2440 |
|
|
/* B must be an integer (q=0) and in the range -set->digits through */
|
2441 |
|
|
/* +set->digits. */
|
2442 |
|
|
/* C must have space for set->digits digits. */
|
2443 |
|
|
/* NaNs are propagated as usual. Infinities are unaffected (but */
|
2444 |
|
|
/* B must be valid). No status is set unless B is invalid or an */
|
2445 |
|
|
/* operand is an sNaN. */
|
2446 |
|
|
/* ------------------------------------------------------------------ */
|
2447 |
|
|
decNumber * decNumberRotate(decNumber *res, const decNumber *lhs,
|
2448 |
|
|
const decNumber *rhs, decContext *set) {
|
2449 |
|
|
uInt status=0; /* accumulator */
|
2450 |
|
|
Int rotate; /* rhs as an Int */
|
2451 |
|
|
|
2452 |
|
|
#if DECCHECK
|
2453 |
|
|
if (decCheckOperands(res, lhs, rhs, set)) return res;
|
2454 |
|
|
#endif
|
2455 |
|
|
|
2456 |
|
|
/* NaNs propagate as normal */
|
2457 |
|
|
if (decNumberIsNaN(lhs) || decNumberIsNaN(rhs))
|
2458 |
|
|
decNaNs(res, lhs, rhs, set, &status);
|
2459 |
|
|
/* rhs must be an integer */
|
2460 |
|
|
else if (decNumberIsInfinite(rhs) || rhs->exponent!=0)
|
2461 |
|
|
status=DEC_Invalid_operation;
|
2462 |
|
|
else { /* both numeric, rhs is an integer */
|
2463 |
|
|
rotate=decGetInt(rhs); /* [cannot fail] */
|
2464 |
|
|
if (rotate==BADINT /* something bad .. */
|
2465 |
|
|
|| rotate==BIGODD || rotate==BIGEVEN /* .. very big .. */
|
2466 |
|
|
|| abs(rotate)>set->digits) /* .. or out of range */
|
2467 |
|
|
status=DEC_Invalid_operation;
|
2468 |
|
|
else { /* rhs is OK */
|
2469 |
|
|
decNumberCopy(res, lhs);
|
2470 |
|
|
/* convert -ve rotate to equivalent positive rotation */
|
2471 |
|
|
if (rotate<0) rotate=set->digits+rotate;
|
2472 |
|
|
if (rotate!=0 && rotate!=set->digits /* zero or full rotation */
|
2473 |
|
|
&& !decNumberIsInfinite(res)) { /* lhs was infinite */
|
2474 |
|
|
/* left-rotate to do; 0 < rotate < set->digits */
|
2475 |
|
|
uInt units, shift; /* work */
|
2476 |
|
|
uInt msudigits; /* digits in result msu */
|
2477 |
|
|
Unit *msu=res->lsu+D2U(res->digits)-1; /* current msu */
|
2478 |
|
|
Unit *msumax=res->lsu+D2U(set->digits)-1; /* rotation msu */
|
2479 |
|
|
for (msu++; msu<=msumax; msu++) *msu=0; /* ensure high units=0 */
|
2480 |
|
|
res->digits=set->digits; /* now full-length */
|
2481 |
|
|
msudigits=MSUDIGITS(res->digits); /* actual digits in msu */
|
2482 |
|
|
|
2483 |
|
|
/* rotation here is done in-place, in three steps */
|
2484 |
|
|
/* 1. shift all to least up to one unit to unit-align final */
|
2485 |
|
|
/* lsd [any digits shifted out are rotated to the left, */
|
2486 |
|
|
/* abutted to the original msd (which may require split)] */
|
2487 |
|
|
/* */
|
2488 |
|
|
/* [if there are no whole units left to rotate, the */
|
2489 |
|
|
/* rotation is now complete] */
|
2490 |
|
|
/* */
|
2491 |
|
|
/* 2. shift to least, from below the split point only, so that */
|
2492 |
|
|
/* the final msd is in the right place in its Unit [any */
|
2493 |
|
|
/* digits shifted out will fit exactly in the current msu, */
|
2494 |
|
|
/* left aligned, no split required] */
|
2495 |
|
|
/* */
|
2496 |
|
|
/* 3. rotate all the units by reversing left part, right */
|
2497 |
|
|
/* part, and then whole */
|
2498 |
|
|
/* */
|
2499 |
|
|
/* example: rotate right 8 digits (2 units + 2), DECDPUN=3. */
|
2500 |
|
|
/* */
|
2501 |
|
|
/* start: 00a bcd efg hij klm npq */
|
2502 |
|
|
/* */
|
2503 |
|
|
/* 1a 000 0ab cde fgh|ijk lmn [pq saved] */
|
2504 |
|
|
/* 1b 00p qab cde fgh|ijk lmn */
|
2505 |
|
|
/* */
|
2506 |
|
|
/* 2a 00p qab cde fgh|00i jkl [mn saved] */
|
2507 |
|
|
/* 2b mnp qab cde fgh|00i jkl */
|
2508 |
|
|
/* */
|
2509 |
|
|
/* 3a fgh cde qab mnp|00i jkl */
|
2510 |
|
|
/* 3b fgh cde qab mnp|jkl 00i */
|
2511 |
|
|
/* 3c 00i jkl mnp qab cde fgh */
|
2512 |
|
|
|
2513 |
|
|
/* Step 1: amount to shift is the partial right-rotate count */
|
2514 |
|
|
rotate=set->digits-rotate; /* make it right-rotate */
|
2515 |
|
|
units=rotate/DECDPUN; /* whole units to rotate */
|
2516 |
|
|
shift=rotate%DECDPUN; /* left-over digits count */
|
2517 |
|
|
if (shift>0) { /* not an exact number of units */
|
2518 |
|
|
uInt save=res->lsu[0]%powers[shift]; /* save low digit(s) */
|
2519 |
|
|
decShiftToLeast(res->lsu, D2U(res->digits), shift);
|
2520 |
|
|
if (shift>msudigits) { /* msumax-1 needs >0 digits */
|
2521 |
|
|
uInt rem=save%powers[shift-msudigits];/* split save */
|
2522 |
|
|
*msumax=(Unit)(save/powers[shift-msudigits]); /* and insert */
|
2523 |
|
|
*(msumax-1)=*(msumax-1)
|
2524 |
|
|
+(Unit)(rem*powers[DECDPUN-(shift-msudigits)]); /* .. */
|
2525 |
|
|
}
|
2526 |
|
|
else { /* all fits in msumax */
|
2527 |
|
|
*msumax=*msumax+(Unit)(save*powers[msudigits-shift]); /* [maybe *1] */
|
2528 |
|
|
}
|
2529 |
|
|
} /* digits shift needed */
|
2530 |
|
|
|
2531 |
|
|
/* If whole units to rotate... */
|
2532 |
|
|
if (units>0) { /* some to do */
|
2533 |
|
|
/* Step 2: the units to touch are the whole ones in rotate, */
|
2534 |
|
|
/* if any, and the shift is DECDPUN-msudigits (which may be */
|
2535 |
|
|
/* 0, again) */
|
2536 |
|
|
shift=DECDPUN-msudigits;
|
2537 |
|
|
if (shift>0) { /* not an exact number of units */
|
2538 |
|
|
uInt save=res->lsu[0]%powers[shift]; /* save low digit(s) */
|
2539 |
|
|
decShiftToLeast(res->lsu, units, shift);
|
2540 |
|
|
*msumax=*msumax+(Unit)(save*powers[msudigits]);
|
2541 |
|
|
} /* partial shift needed */
|
2542 |
|
|
|
2543 |
|
|
/* Step 3: rotate the units array using triple reverse */
|
2544 |
|
|
/* (reversing is easy and fast) */
|
2545 |
|
|
decReverse(res->lsu+units, msumax); /* left part */
|
2546 |
|
|
decReverse(res->lsu, res->lsu+units-1); /* right part */
|
2547 |
|
|
decReverse(res->lsu, msumax); /* whole */
|
2548 |
|
|
} /* whole units to rotate */
|
2549 |
|
|
/* the rotation may have left an undetermined number of zeros */
|
2550 |
|
|
/* on the left, so true length needs to be calculated */
|
2551 |
|
|
res->digits=decGetDigits(res->lsu, msumax-res->lsu+1);
|
2552 |
|
|
} /* rotate needed */
|
2553 |
|
|
} /* rhs OK */
|
2554 |
|
|
} /* numerics */
|
2555 |
|
|
if (status!=0) decStatus(res, status, set);
|
2556 |
|
|
return res;
|
2557 |
|
|
} /* decNumberRotate */
|
2558 |
|
|
|
2559 |
|
|
/* ------------------------------------------------------------------ */
|
2560 |
|
|
/* decNumberSameQuantum -- test for equal exponents */
|
2561 |
|
|
/* */
|
2562 |
|
|
/* res is the result number, which will contain either 0 or 1 */
|
2563 |
|
|
/* lhs is a number to test */
|
2564 |
|
|
/* rhs is the second (usually a pattern) */
|
2565 |
|
|
/* */
|
2566 |
|
|
/* No errors are possible and no context is needed. */
|
2567 |
|
|
/* ------------------------------------------------------------------ */
|
2568 |
|
|
decNumber * decNumberSameQuantum(decNumber *res, const decNumber *lhs,
|
2569 |
|
|
const decNumber *rhs) {
|
2570 |
|
|
Unit ret=0; /* return value */
|
2571 |
|
|
|
2572 |
|
|
#if DECCHECK
|
2573 |
|
|
if (decCheckOperands(res, lhs, rhs, DECUNCONT)) return res;
|
2574 |
|
|
#endif
|
2575 |
|
|
|
2576 |
|
|
if (SPECIALARGS) {
|
2577 |
|
|
if (decNumberIsNaN(lhs) && decNumberIsNaN(rhs)) ret=1;
|
2578 |
|
|
else if (decNumberIsInfinite(lhs) && decNumberIsInfinite(rhs)) ret=1;
|
2579 |
|
|
/* [anything else with a special gives 0] */
|
2580 |
|
|
}
|
2581 |
|
|
else if (lhs->exponent==rhs->exponent) ret=1;
|
2582 |
|
|
|
2583 |
|
|
decNumberZero(res); /* OK to overwrite an operand now */
|
2584 |
|
|
*res->lsu=ret;
|
2585 |
|
|
return res;
|
2586 |
|
|
} /* decNumberSameQuantum */
|
2587 |
|
|
|
2588 |
|
|
/* ------------------------------------------------------------------ */
|
2589 |
|
|
/* decNumberScaleB -- multiply by a power of 10 */
|
2590 |
|
|
/* */
|
2591 |
|
|
/* This computes C = A x 10**B where B is an integer (q=0) with */
|
2592 |
|
|
/* maximum magnitude 2*(emax+digits) */
|
2593 |
|
|
/* */
|
2594 |
|
|
/* res is C, the result. C may be A or B */
|
2595 |
|
|
/* lhs is A, the number to adjust */
|
2596 |
|
|
/* rhs is B, the requested power of ten to use */
|
2597 |
|
|
/* set is the context */
|
2598 |
|
|
/* */
|
2599 |
|
|
/* C must have space for set->digits digits. */
|
2600 |
|
|
/* */
|
2601 |
|
|
/* The result may underflow or overflow. */
|
2602 |
|
|
/* ------------------------------------------------------------------ */
|
2603 |
|
|
decNumber * decNumberScaleB(decNumber *res, const decNumber *lhs,
|
2604 |
|
|
const decNumber *rhs, decContext *set) {
|
2605 |
|
|
Int reqexp; /* requested exponent change [B] */
|
2606 |
|
|
uInt status=0; /* accumulator */
|
2607 |
|
|
Int residue; /* work */
|
2608 |
|
|
|
2609 |
|
|
#if DECCHECK
|
2610 |
|
|
if (decCheckOperands(res, lhs, rhs, set)) return res;
|
2611 |
|
|
#endif
|
2612 |
|
|
|
2613 |
|
|
/* Handle special values except lhs infinite */
|
2614 |
|
|
if (decNumberIsNaN(lhs) || decNumberIsNaN(rhs))
|
2615 |
|
|
decNaNs(res, lhs, rhs, set, &status);
|
2616 |
|
|
/* rhs must be an integer */
|
2617 |
|
|
else if (decNumberIsInfinite(rhs) || rhs->exponent!=0)
|
2618 |
|
|
status=DEC_Invalid_operation;
|
2619 |
|
|
else {
|
2620 |
|
|
/* lhs is a number; rhs is a finite with q==0 */
|
2621 |
|
|
reqexp=decGetInt(rhs); /* [cannot fail] */
|
2622 |
|
|
if (reqexp==BADINT /* something bad .. */
|
2623 |
|
|
|| reqexp==BIGODD || reqexp==BIGEVEN /* .. very big .. */
|
2624 |
|
|
|| abs(reqexp)>(2*(set->digits+set->emax))) /* .. or out of range */
|
2625 |
|
|
status=DEC_Invalid_operation;
|
2626 |
|
|
else { /* rhs is OK */
|
2627 |
|
|
decNumberCopy(res, lhs); /* all done if infinite lhs */
|
2628 |
|
|
if (!decNumberIsInfinite(res)) { /* prepare to scale */
|
2629 |
|
|
res->exponent+=reqexp; /* adjust the exponent */
|
2630 |
|
|
residue=0;
|
2631 |
|
|
decFinalize(res, set, &residue, &status); /* .. and check */
|
2632 |
|
|
} /* finite LHS */
|
2633 |
|
|
} /* rhs OK */
|
2634 |
|
|
} /* rhs finite */
|
2635 |
|
|
if (status!=0) decStatus(res, status, set);
|
2636 |
|
|
return res;
|
2637 |
|
|
} /* decNumberScaleB */
|
2638 |
|
|
|
2639 |
|
|
/* ------------------------------------------------------------------ */
|
2640 |
|
|
/* decNumberShift -- shift the coefficient of a Number left or right */
|
2641 |
|
|
/* */
|
2642 |
|
|
/* This computes C = A << B or C = A >> -B (in base ten). */
|
2643 |
|
|
/* */
|
2644 |
|
|
/* res is C, the result. C may be A and/or B (e.g., X=X<<X) */
|
2645 |
|
|
/* lhs is A */
|
2646 |
|
|
/* rhs is B, the number of digits to shift (-ve to right) */
|
2647 |
|
|
/* set is the context */
|
2648 |
|
|
/* */
|
2649 |
|
|
/* The digits of the coefficient of A are shifted to the left (if B */
|
2650 |
|
|
/* is positive) or to the right (if B is negative) without adjusting */
|
2651 |
|
|
/* the exponent or the sign of A. */
|
2652 |
|
|
/* */
|
2653 |
|
|
/* B must be an integer (q=0) and in the range -set->digits through */
|
2654 |
|
|
/* +set->digits. */
|
2655 |
|
|
/* C must have space for set->digits digits. */
|
2656 |
|
|
/* NaNs are propagated as usual. Infinities are unaffected (but */
|
2657 |
|
|
/* B must be valid). No status is set unless B is invalid or an */
|
2658 |
|
|
/* operand is an sNaN. */
|
2659 |
|
|
/* ------------------------------------------------------------------ */
|
2660 |
|
|
decNumber * decNumberShift(decNumber *res, const decNumber *lhs,
|
2661 |
|
|
const decNumber *rhs, decContext *set) {
|
2662 |
|
|
uInt status=0; /* accumulator */
|
2663 |
|
|
Int shift; /* rhs as an Int */
|
2664 |
|
|
|
2665 |
|
|
#if DECCHECK
|
2666 |
|
|
if (decCheckOperands(res, lhs, rhs, set)) return res;
|
2667 |
|
|
#endif
|
2668 |
|
|
|
2669 |
|
|
/* NaNs propagate as normal */
|
2670 |
|
|
if (decNumberIsNaN(lhs) || decNumberIsNaN(rhs))
|
2671 |
|
|
decNaNs(res, lhs, rhs, set, &status);
|
2672 |
|
|
/* rhs must be an integer */
|
2673 |
|
|
else if (decNumberIsInfinite(rhs) || rhs->exponent!=0)
|
2674 |
|
|
status=DEC_Invalid_operation;
|
2675 |
|
|
else { /* both numeric, rhs is an integer */
|
2676 |
|
|
shift=decGetInt(rhs); /* [cannot fail] */
|
2677 |
|
|
if (shift==BADINT /* something bad .. */
|
2678 |
|
|
|| shift==BIGODD || shift==BIGEVEN /* .. very big .. */
|
2679 |
|
|
|| abs(shift)>set->digits) /* .. or out of range */
|
2680 |
|
|
status=DEC_Invalid_operation;
|
2681 |
|
|
else { /* rhs is OK */
|
2682 |
|
|
decNumberCopy(res, lhs);
|
2683 |
|
|
if (shift!=0 && !decNumberIsInfinite(res)) { /* something to do */
|
2684 |
|
|
if (shift>0) { /* to left */
|
2685 |
|
|
if (shift==set->digits) { /* removing all */
|
2686 |
|
|
*res->lsu=0; /* so place 0 */
|
2687 |
|
|
res->digits=1; /* .. */
|
2688 |
|
|
}
|
2689 |
|
|
else { /* */
|
2690 |
|
|
/* first remove leading digits if necessary */
|
2691 |
|
|
if (res->digits+shift>set->digits) {
|
2692 |
|
|
decDecap(res, res->digits+shift-set->digits);
|
2693 |
|
|
/* that updated res->digits; may have gone to 1 (for a */
|
2694 |
|
|
/* single digit or for zero */
|
2695 |
|
|
}
|
2696 |
|
|
if (res->digits>1 || *res->lsu) /* if non-zero.. */
|
2697 |
|
|
res->digits=decShiftToMost(res->lsu, res->digits, shift);
|
2698 |
|
|
} /* partial left */
|
2699 |
|
|
} /* left */
|
2700 |
|
|
else { /* to right */
|
2701 |
|
|
if (-shift>=res->digits) { /* discarding all */
|
2702 |
|
|
*res->lsu=0; /* so place 0 */
|
2703 |
|
|
res->digits=1; /* .. */
|
2704 |
|
|
}
|
2705 |
|
|
else {
|
2706 |
|
|
decShiftToLeast(res->lsu, D2U(res->digits), -shift);
|
2707 |
|
|
res->digits-=(-shift);
|
2708 |
|
|
}
|
2709 |
|
|
} /* to right */
|
2710 |
|
|
} /* non-0 non-Inf shift */
|
2711 |
|
|
} /* rhs OK */
|
2712 |
|
|
} /* numerics */
|
2713 |
|
|
if (status!=0) decStatus(res, status, set);
|
2714 |
|
|
return res;
|
2715 |
|
|
} /* decNumberShift */
|
2716 |
|
|
|
2717 |
|
|
/* ------------------------------------------------------------------ */
|
2718 |
|
|
/* decNumberSquareRoot -- square root operator */
|
2719 |
|
|
/* */
|
2720 |
|
|
/* This computes C = squareroot(A) */
|
2721 |
|
|
/* */
|
2722 |
|
|
/* res is C, the result. C may be A */
|
2723 |
|
|
/* rhs is A */
|
2724 |
|
|
/* set is the context; note that rounding mode has no effect */
|
2725 |
|
|
/* */
|
2726 |
|
|
/* C must have space for set->digits digits. */
|
2727 |
|
|
/* ------------------------------------------------------------------ */
|
2728 |
|
|
/* This uses the following varying-precision algorithm in: */
|
2729 |
|
|
/* */
|
2730 |
|
|
/* Properly Rounded Variable Precision Square Root, T. E. Hull and */
|
2731 |
|
|
/* A. Abrham, ACM Transactions on Mathematical Software, Vol 11 #3, */
|
2732 |
|
|
/* pp229-237, ACM, September 1985. */
|
2733 |
|
|
/* */
|
2734 |
|
|
/* The square-root is calculated using Newton's method, after which */
|
2735 |
|
|
/* a check is made to ensure the result is correctly rounded. */
|
2736 |
|
|
/* */
|
2737 |
|
|
/* % [Reformatted original Numerical Turing source code follows.] */
|
2738 |
|
|
/* function sqrt(x : real) : real */
|
2739 |
|
|
/* % sqrt(x) returns the properly rounded approximation to the square */
|
2740 |
|
|
/* % root of x, in the precision of the calling environment, or it */
|
2741 |
|
|
/* % fails if x < 0. */
|
2742 |
|
|
/* % t e hull and a abrham, august, 1984 */
|
2743 |
|
|
/* if x <= 0 then */
|
2744 |
|
|
/* if x < 0 then */
|
2745 |
|
|
/* assert false */
|
2746 |
|
|
/* else */
|
2747 |
|
|
/* result 0 */
|
2748 |
|
|
/* end if */
|
2749 |
|
|
/* end if */
|
2750 |
|
|
/* var f := setexp(x, 0) % fraction part of x [0.1 <= x < 1] */
|
2751 |
|
|
/* var e := getexp(x) % exponent part of x */
|
2752 |
|
|
/* var approx : real */
|
2753 |
|
|
/* if e mod 2 = 0 then */
|
2754 |
|
|
/* approx := .259 + .819 * f % approx to root of f */
|
2755 |
|
|
/* else */
|
2756 |
|
|
/* f := f/l0 % adjustments */
|
2757 |
|
|
/* e := e + 1 % for odd */
|
2758 |
|
|
/* approx := .0819 + 2.59 * f % exponent */
|
2759 |
|
|
/* end if */
|
2760 |
|
|
/* */
|
2761 |
|
|
/* var p:= 3 */
|
2762 |
|
|
/* const maxp := currentprecision + 2 */
|
2763 |
|
|
/* loop */
|
2764 |
|
|
/* p := min(2*p - 2, maxp) % p = 4,6,10, . . . , maxp */
|
2765 |
|
|
/* precision p */
|
2766 |
|
|
/* approx := .5 * (approx + f/approx) */
|
2767 |
|
|
/* exit when p = maxp */
|
2768 |
|
|
/* end loop */
|
2769 |
|
|
/* */
|
2770 |
|
|
/* % approx is now within 1 ulp of the properly rounded square root */
|
2771 |
|
|
/* % of f; to ensure proper rounding, compare squares of (approx - */
|
2772 |
|
|
/* % l/2 ulp) and (approx + l/2 ulp) with f. */
|
2773 |
|
|
/* p := currentprecision */
|
2774 |
|
|
/* begin */
|
2775 |
|
|
/* precision p + 2 */
|
2776 |
|
|
/* const approxsubhalf := approx - setexp(.5, -p) */
|
2777 |
|
|
/* if mulru(approxsubhalf, approxsubhalf) > f then */
|
2778 |
|
|
/* approx := approx - setexp(.l, -p + 1) */
|
2779 |
|
|
/* else */
|
2780 |
|
|
/* const approxaddhalf := approx + setexp(.5, -p) */
|
2781 |
|
|
/* if mulrd(approxaddhalf, approxaddhalf) < f then */
|
2782 |
|
|
/* approx := approx + setexp(.l, -p + 1) */
|
2783 |
|
|
/* end if */
|
2784 |
|
|
/* end if */
|
2785 |
|
|
/* end */
|
2786 |
|
|
/* result setexp(approx, e div 2) % fix exponent */
|
2787 |
|
|
/* end sqrt */
|
2788 |
|
|
/* ------------------------------------------------------------------ */
|
2789 |
|
|
decNumber * decNumberSquareRoot(decNumber *res, const decNumber *rhs,
|
2790 |
|
|
decContext *set) {
|
2791 |
|
|
decContext workset, approxset; /* work contexts */
|
2792 |
|
|
decNumber dzero; /* used for constant zero */
|
2793 |
|
|
Int maxp; /* largest working precision */
|
2794 |
|
|
Int workp; /* working precision */
|
2795 |
|
|
Int residue=0; /* rounding residue */
|
2796 |
|
|
uInt status=0, ignore=0; /* status accumulators */
|
2797 |
|
|
uInt rstatus; /* .. */
|
2798 |
|
|
Int exp; /* working exponent */
|
2799 |
|
|
Int ideal; /* ideal (preferred) exponent */
|
2800 |
|
|
Int needbytes; /* work */
|
2801 |
|
|
Int dropped; /* .. */
|
2802 |
|
|
|
2803 |
|
|
#if DECSUBSET
|
2804 |
|
|
decNumber *allocrhs=NULL; /* non-NULL if rounded rhs allocated */
|
2805 |
|
|
#endif
|
2806 |
|
|
/* buffer for f [needs +1 in case DECBUFFER 0] */
|
2807 |
|
|
decNumber buff[D2N(DECBUFFER+1)];
|
2808 |
|
|
/* buffer for a [needs +2 to match likely maxp] */
|
2809 |
|
|
decNumber bufa[D2N(DECBUFFER+2)];
|
2810 |
|
|
/* buffer for temporary, b [must be same size as a] */
|
2811 |
|
|
decNumber bufb[D2N(DECBUFFER+2)];
|
2812 |
|
|
decNumber *allocbuff=NULL; /* -> allocated buff, iff allocated */
|
2813 |
|
|
decNumber *allocbufa=NULL; /* -> allocated bufa, iff allocated */
|
2814 |
|
|
decNumber *allocbufb=NULL; /* -> allocated bufb, iff allocated */
|
2815 |
|
|
decNumber *f=buff; /* reduced fraction */
|
2816 |
|
|
decNumber *a=bufa; /* approximation to result */
|
2817 |
|
|
decNumber *b=bufb; /* intermediate result */
|
2818 |
|
|
/* buffer for temporary variable, up to 3 digits */
|
2819 |
|
|
decNumber buft[D2N(3)];
|
2820 |
|
|
decNumber *t=buft; /* up-to-3-digit constant or work */
|
2821 |
|
|
|
2822 |
|
|
#if DECCHECK
|
2823 |
|
|
if (decCheckOperands(res, DECUNUSED, rhs, set)) return res;
|
2824 |
|
|
#endif
|
2825 |
|
|
|
2826 |
|
|
do { /* protect allocated storage */
|
2827 |
|
|
#if DECSUBSET
|
2828 |
|
|
if (!set->extended) {
|
2829 |
|
|
/* reduce operand and set lostDigits status, as needed */
|
2830 |
|
|
if (rhs->digits>set->digits) {
|
2831 |
|
|
allocrhs=decRoundOperand(rhs, set, &status);
|
2832 |
|
|
if (allocrhs==NULL) break;
|
2833 |
|
|
/* [Note: 'f' allocation below could reuse this buffer if */
|
2834 |
|
|
/* used, but as this is rare they are kept separate for clarity.] */
|
2835 |
|
|
rhs=allocrhs;
|
2836 |
|
|
}
|
2837 |
|
|
}
|
2838 |
|
|
#endif
|
2839 |
|
|
/* [following code does not require input rounding] */
|
2840 |
|
|
|
2841 |
|
|
/* handle infinities and NaNs */
|
2842 |
|
|
if (SPECIALARG) {
|
2843 |
|
|
if (decNumberIsInfinite(rhs)) { /* an infinity */
|
2844 |
|
|
if (decNumberIsNegative(rhs)) status|=DEC_Invalid_operation;
|
2845 |
|
|
else decNumberCopy(res, rhs); /* +Infinity */
|
2846 |
|
|
}
|
2847 |
|
|
else decNaNs(res, rhs, NULL, set, &status); /* a NaN */
|
2848 |
|
|
break;
|
2849 |
|
|
}
|
2850 |
|
|
|
2851 |
|
|
/* calculate the ideal (preferred) exponent [floor(exp/2)] */
|
2852 |
|
|
/* [We would like to write: ideal=rhs->exponent>>1, but this */
|
2853 |
|
|
/* generates a compiler warning. Generated code is the same.] */
|
2854 |
|
|
ideal=(rhs->exponent&~1)/2; /* target */
|
2855 |
|
|
|
2856 |
|
|
/* handle zeros */
|
2857 |
|
|
if (ISZERO(rhs)) {
|
2858 |
|
|
decNumberCopy(res, rhs); /* could be 0 or -0 */
|
2859 |
|
|
res->exponent=ideal; /* use the ideal [safe] */
|
2860 |
|
|
/* use decFinish to clamp any out-of-range exponent, etc. */
|
2861 |
|
|
decFinish(res, set, &residue, &status);
|
2862 |
|
|
break;
|
2863 |
|
|
}
|
2864 |
|
|
|
2865 |
|
|
/* any other -x is an oops */
|
2866 |
|
|
if (decNumberIsNegative(rhs)) {
|
2867 |
|
|
status|=DEC_Invalid_operation;
|
2868 |
|
|
break;
|
2869 |
|
|
}
|
2870 |
|
|
|
2871 |
|
|
/* space is needed for three working variables */
|
2872 |
|
|
/* f -- the same precision as the RHS, reduced to 0.01->0.99... */
|
2873 |
|
|
/* a -- Hull's approximation -- precision, when assigned, is */
|
2874 |
|
|
/* currentprecision+1 or the input argument precision, */
|
2875 |
|
|
/* whichever is larger (+2 for use as temporary) */
|
2876 |
|
|
/* b -- intermediate temporary result (same size as a) */
|
2877 |
|
|
/* if any is too long for local storage, then allocate */
|
2878 |
|
|
workp=MAXI(set->digits+1, rhs->digits); /* actual rounding precision */
|
2879 |
|
|
maxp=workp+2; /* largest working precision */
|
2880 |
|
|
|
2881 |
|
|
needbytes=sizeof(decNumber)+(D2U(rhs->digits)-1)*sizeof(Unit);
|
2882 |
|
|
if (needbytes>(Int)sizeof(buff)) {
|
2883 |
|
|
allocbuff=(decNumber *)malloc(needbytes);
|
2884 |
|
|
if (allocbuff==NULL) { /* hopeless -- abandon */
|
2885 |
|
|
status|=DEC_Insufficient_storage;
|
2886 |
|
|
break;}
|
2887 |
|
|
f=allocbuff; /* use the allocated space */
|
2888 |
|
|
}
|
2889 |
|
|
/* a and b both need to be able to hold a maxp-length number */
|
2890 |
|
|
needbytes=sizeof(decNumber)+(D2U(maxp)-1)*sizeof(Unit);
|
2891 |
|
|
if (needbytes>(Int)sizeof(bufa)) { /* [same applies to b] */
|
2892 |
|
|
allocbufa=(decNumber *)malloc(needbytes);
|
2893 |
|
|
allocbufb=(decNumber *)malloc(needbytes);
|
2894 |
|
|
if (allocbufa==NULL || allocbufb==NULL) { /* hopeless */
|
2895 |
|
|
status|=DEC_Insufficient_storage;
|
2896 |
|
|
break;}
|
2897 |
|
|
a=allocbufa; /* use the allocated spaces */
|
2898 |
|
|
b=allocbufb; /* .. */
|
2899 |
|
|
}
|
2900 |
|
|
|
2901 |
|
|
/* copy rhs -> f, save exponent, and reduce so 0.1 <= f < 1 */
|
2902 |
|
|
decNumberCopy(f, rhs);
|
2903 |
|
|
exp=f->exponent+f->digits; /* adjusted to Hull rules */
|
2904 |
|
|
f->exponent=-(f->digits); /* to range */
|
2905 |
|
|
|
2906 |
|
|
/* set up working context */
|
2907 |
|
|
decContextDefault(&workset, DEC_INIT_DECIMAL64);
|
2908 |
|
|
|
2909 |
|
|
/* [Until further notice, no error is possible and status bits */
|
2910 |
|
|
/* (Rounded, etc.) should be ignored, not accumulated.] */
|
2911 |
|
|
|
2912 |
|
|
/* Calculate initial approximation, and allow for odd exponent */
|
2913 |
|
|
workset.digits=workp; /* p for initial calculation */
|
2914 |
|
|
t->bits=0; t->digits=3;
|
2915 |
|
|
a->bits=0; a->digits=3;
|
2916 |
|
|
if ((exp & 1)==0) { /* even exponent */
|
2917 |
|
|
/* Set t=0.259, a=0.819 */
|
2918 |
|
|
t->exponent=-3;
|
2919 |
|
|
a->exponent=-3;
|
2920 |
|
|
#if DECDPUN>=3
|
2921 |
|
|
t->lsu[0]=259;
|
2922 |
|
|
a->lsu[0]=819;
|
2923 |
|
|
#elif DECDPUN==2
|
2924 |
|
|
t->lsu[0]=59; t->lsu[1]=2;
|
2925 |
|
|
a->lsu[0]=19; a->lsu[1]=8;
|
2926 |
|
|
#else
|
2927 |
|
|
t->lsu[0]=9; t->lsu[1]=5; t->lsu[2]=2;
|
2928 |
|
|
a->lsu[0]=9; a->lsu[1]=1; a->lsu[2]=8;
|
2929 |
|
|
#endif
|
2930 |
|
|
}
|
2931 |
|
|
else { /* odd exponent */
|
2932 |
|
|
/* Set t=0.0819, a=2.59 */
|
2933 |
|
|
f->exponent--; /* f=f/10 */
|
2934 |
|
|
exp++; /* e=e+1 */
|
2935 |
|
|
t->exponent=-4;
|
2936 |
|
|
a->exponent=-2;
|
2937 |
|
|
#if DECDPUN>=3
|
2938 |
|
|
t->lsu[0]=819;
|
2939 |
|
|
a->lsu[0]=259;
|
2940 |
|
|
#elif DECDPUN==2
|
2941 |
|
|
t->lsu[0]=19; t->lsu[1]=8;
|
2942 |
|
|
a->lsu[0]=59; a->lsu[1]=2;
|
2943 |
|
|
#else
|
2944 |
|
|
t->lsu[0]=9; t->lsu[1]=1; t->lsu[2]=8;
|
2945 |
|
|
a->lsu[0]=9; a->lsu[1]=5; a->lsu[2]=2;
|
2946 |
|
|
#endif
|
2947 |
|
|
}
|
2948 |
|
|
decMultiplyOp(a, a, f, &workset, &ignore); /* a=a*f */
|
2949 |
|
|
decAddOp(a, a, t, &workset, 0, &ignore); /* ..+t */
|
2950 |
|
|
/* [a is now the initial approximation for sqrt(f), calculated with */
|
2951 |
|
|
/* currentprecision, which is also a's precision.] */
|
2952 |
|
|
|
2953 |
|
|
/* the main calculation loop */
|
2954 |
|
|
decNumberZero(&dzero); /* make 0 */
|
2955 |
|
|
decNumberZero(t); /* set t = 0.5 */
|
2956 |
|
|
t->lsu[0]=5; /* .. */
|
2957 |
|
|
t->exponent=-1; /* .. */
|
2958 |
|
|
workset.digits=3; /* initial p */
|
2959 |
|
|
for (;;) {
|
2960 |
|
|
/* set p to min(2*p - 2, maxp) [hence 3; or: 4, 6, 10, ... , maxp] */
|
2961 |
|
|
workset.digits=workset.digits*2-2;
|
2962 |
|
|
if (workset.digits>maxp) workset.digits=maxp;
|
2963 |
|
|
/* a = 0.5 * (a + f/a) */
|
2964 |
|
|
/* [calculated at p then rounded to currentprecision] */
|
2965 |
|
|
decDivideOp(b, f, a, &workset, DIVIDE, &ignore); /* b=f/a */
|
2966 |
|
|
decAddOp(b, b, a, &workset, 0, &ignore); /* b=b+a */
|
2967 |
|
|
decMultiplyOp(a, b, t, &workset, &ignore); /* a=b*0.5 */
|
2968 |
|
|
if (a->digits==maxp) break; /* have required digits */
|
2969 |
|
|
} /* loop */
|
2970 |
|
|
|
2971 |
|
|
/* Here, 0.1 <= a < 1 [Hull], and a has maxp digits */
|
2972 |
|
|
/* now reduce to length, etc.; this needs to be done with a */
|
2973 |
|
|
/* having the correct exponent so as to handle subnormals */
|
2974 |
|
|
/* correctly */
|
2975 |
|
|
approxset=*set; /* get emin, emax, etc. */
|
2976 |
|
|
approxset.round=DEC_ROUND_HALF_EVEN;
|
2977 |
|
|
a->exponent+=exp/2; /* set correct exponent */
|
2978 |
|
|
|
2979 |
|
|
rstatus=0; /* clear status */
|
2980 |
|
|
residue=0; /* .. and accumulator */
|
2981 |
|
|
decCopyFit(a, a, &approxset, &residue, &rstatus); /* reduce (if needed) */
|
2982 |
|
|
decFinish(a, &approxset, &residue, &rstatus); /* clean and finalize */
|
2983 |
|
|
|
2984 |
|
|
/* Overflow was possible if the input exponent was out-of-range, */
|
2985 |
|
|
/* in which case quit */
|
2986 |
|
|
if (rstatus&DEC_Overflow) {
|
2987 |
|
|
status=rstatus; /* use the status as-is */
|
2988 |
|
|
decNumberCopy(res, a); /* copy to result */
|
2989 |
|
|
break;
|
2990 |
|
|
}
|
2991 |
|
|
|
2992 |
|
|
/* Preserve status except Inexact/Rounded */
|
2993 |
|
|
status|=(rstatus & ~(DEC_Rounded|DEC_Inexact));
|
2994 |
|
|
|
2995 |
|
|
/* Carry out the Hull correction */
|
2996 |
|
|
a->exponent-=exp/2; /* back to 0.1->1 */
|
2997 |
|
|
|
2998 |
|
|
/* a is now at final precision and within 1 ulp of the properly */
|
2999 |
|
|
/* rounded square root of f; to ensure proper rounding, compare */
|
3000 |
|
|
/* squares of (a - l/2 ulp) and (a + l/2 ulp) with f. */
|
3001 |
|
|
/* Here workset.digits=maxp and t=0.5, and a->digits determines */
|
3002 |
|
|
/* the ulp */
|
3003 |
|
|
workset.digits--; /* maxp-1 is OK now */
|
3004 |
|
|
t->exponent=-a->digits-1; /* make 0.5 ulp */
|
3005 |
|
|
decAddOp(b, a, t, &workset, DECNEG, &ignore); /* b = a - 0.5 ulp */
|
3006 |
|
|
workset.round=DEC_ROUND_UP;
|
3007 |
|
|
decMultiplyOp(b, b, b, &workset, &ignore); /* b = mulru(b, b) */
|
3008 |
|
|
decCompareOp(b, f, b, &workset, COMPARE, &ignore); /* b ? f, reversed */
|
3009 |
|
|
if (decNumberIsNegative(b)) { /* f < b [i.e., b > f] */
|
3010 |
|
|
/* this is the more common adjustment, though both are rare */
|
3011 |
|
|
t->exponent++; /* make 1.0 ulp */
|
3012 |
|
|
t->lsu[0]=1; /* .. */
|
3013 |
|
|
decAddOp(a, a, t, &workset, DECNEG, &ignore); /* a = a - 1 ulp */
|
3014 |
|
|
/* assign to approx [round to length] */
|
3015 |
|
|
approxset.emin-=exp/2; /* adjust to match a */
|
3016 |
|
|
approxset.emax-=exp/2;
|
3017 |
|
|
decAddOp(a, &dzero, a, &approxset, 0, &ignore);
|
3018 |
|
|
}
|
3019 |
|
|
else {
|
3020 |
|
|
decAddOp(b, a, t, &workset, 0, &ignore); /* b = a + 0.5 ulp */
|
3021 |
|
|
workset.round=DEC_ROUND_DOWN;
|
3022 |
|
|
decMultiplyOp(b, b, b, &workset, &ignore); /* b = mulrd(b, b) */
|
3023 |
|
|
decCompareOp(b, b, f, &workset, COMPARE, &ignore); /* b ? f */
|
3024 |
|
|
if (decNumberIsNegative(b)) { /* b < f */
|
3025 |
|
|
t->exponent++; /* make 1.0 ulp */
|
3026 |
|
|
t->lsu[0]=1; /* .. */
|
3027 |
|
|
decAddOp(a, a, t, &workset, 0, &ignore); /* a = a + 1 ulp */
|
3028 |
|
|
/* assign to approx [round to length] */
|
3029 |
|
|
approxset.emin-=exp/2; /* adjust to match a */
|
3030 |
|
|
approxset.emax-=exp/2;
|
3031 |
|
|
decAddOp(a, &dzero, a, &approxset, 0, &ignore);
|
3032 |
|
|
}
|
3033 |
|
|
}
|
3034 |
|
|
/* [no errors are possible in the above, and rounding/inexact during */
|
3035 |
|
|
/* estimation are irrelevant, so status was not accumulated] */
|
3036 |
|
|
|
3037 |
|
|
/* Here, 0.1 <= a < 1 (still), so adjust back */
|
3038 |
|
|
a->exponent+=exp/2; /* set correct exponent */
|
3039 |
|
|
|
3040 |
|
|
/* count droppable zeros [after any subnormal rounding] by */
|
3041 |
|
|
/* trimming a copy */
|
3042 |
|
|
decNumberCopy(b, a);
|
3043 |
|
|
decTrim(b, set, 1, &dropped); /* [drops trailing zeros] */
|
3044 |
|
|
|
3045 |
|
|
/* Set Inexact and Rounded. The answer can only be exact if */
|
3046 |
|
|
/* it is short enough so that squaring it could fit in workp digits, */
|
3047 |
|
|
/* and it cannot have trailing zeros due to clamping, so these are */
|
3048 |
|
|
/* the only (relatively rare) conditions a careful check is needed */
|
3049 |
|
|
if (b->digits*2-1 > workp && !set->clamp) { /* cannot fit */
|
3050 |
|
|
status|=DEC_Inexact|DEC_Rounded;
|
3051 |
|
|
}
|
3052 |
|
|
else { /* could be exact/unrounded */
|
3053 |
|
|
uInt mstatus=0; /* local status */
|
3054 |
|
|
decMultiplyOp(b, b, b, &workset, &mstatus); /* try the multiply */
|
3055 |
|
|
if (mstatus&DEC_Overflow) { /* result just won't fit */
|
3056 |
|
|
status|=DEC_Inexact|DEC_Rounded;
|
3057 |
|
|
}
|
3058 |
|
|
else { /* plausible */
|
3059 |
|
|
decCompareOp(t, b, rhs, &workset, COMPARE, &mstatus); /* b ? rhs */
|
3060 |
|
|
if (!ISZERO(t)) status|=DEC_Inexact|DEC_Rounded; /* not equal */
|
3061 |
|
|
else { /* is Exact */
|
3062 |
|
|
/* here, dropped is the count of trailing zeros in 'a' */
|
3063 |
|
|
/* use closest exponent to ideal... */
|
3064 |
|
|
Int todrop=ideal-a->exponent; /* most that can be dropped */
|
3065 |
|
|
if (todrop<0) status|=DEC_Rounded; /* ideally would add 0s */
|
3066 |
|
|
else { /* unrounded */
|
3067 |
|
|
if (dropped<todrop) { /* clamp to those available */
|
3068 |
|
|
todrop=dropped;
|
3069 |
|
|
status|=DEC_Clamped;
|
3070 |
|
|
}
|
3071 |
|
|
if (todrop>0) { /* have some to drop */
|
3072 |
|
|
decShiftToLeast(a->lsu, D2U(a->digits), todrop);
|
3073 |
|
|
a->exponent+=todrop; /* maintain numerical value */
|
3074 |
|
|
a->digits-=todrop; /* new length */
|
3075 |
|
|
}
|
3076 |
|
|
}
|
3077 |
|
|
}
|
3078 |
|
|
}
|
3079 |
|
|
}
|
3080 |
|
|
|
3081 |
|
|
/* double-check Underflow, as perhaps the result could not have */
|
3082 |
|
|
/* been subnormal (initial argument too big), or it is now Exact */
|
3083 |
|
|
if (status&DEC_Underflow) {
|
3084 |
|
|
Int ae=rhs->exponent+rhs->digits-1; /* adjusted exponent */
|
3085 |
|
|
/* check if truly subnormal */
|
3086 |
|
|
#if DECEXTFLAG /* DEC_Subnormal too */
|
3087 |
|
|
if (ae>=set->emin*2) status&=~(DEC_Subnormal|DEC_Underflow);
|
3088 |
|
|
#else
|
3089 |
|
|
if (ae>=set->emin*2) status&=~DEC_Underflow;
|
3090 |
|
|
#endif
|
3091 |
|
|
/* check if truly inexact */
|
3092 |
|
|
if (!(status&DEC_Inexact)) status&=~DEC_Underflow;
|
3093 |
|
|
}
|
3094 |
|
|
|
3095 |
|
|
decNumberCopy(res, a); /* a is now the result */
|
3096 |
|
|
} while(0); /* end protected */
|
3097 |
|
|
|
3098 |
|
|
if (allocbuff!=NULL) free(allocbuff); /* drop any storage used */
|
3099 |
|
|
if (allocbufa!=NULL) free(allocbufa); /* .. */
|
3100 |
|
|
if (allocbufb!=NULL) free(allocbufb); /* .. */
|
3101 |
|
|
#if DECSUBSET
|
3102 |
|
|
if (allocrhs !=NULL) free(allocrhs); /* .. */
|
3103 |
|
|
#endif
|
3104 |
|
|
if (status!=0) decStatus(res, status, set);/* then report status */
|
3105 |
|
|
#if DECCHECK
|
3106 |
|
|
decCheckInexact(res, set);
|
3107 |
|
|
#endif
|
3108 |
|
|
return res;
|
3109 |
|
|
} /* decNumberSquareRoot */
|
3110 |
|
|
|
3111 |
|
|
/* ------------------------------------------------------------------ */
|
3112 |
|
|
/* decNumberSubtract -- subtract two Numbers */
|
3113 |
|
|
/* */
|
3114 |
|
|
/* This computes C = A - B */
|
3115 |
|
|
/* */
|
3116 |
|
|
/* res is C, the result. C may be A and/or B (e.g., X=X-X) */
|
3117 |
|
|
/* lhs is A */
|
3118 |
|
|
/* rhs is B */
|
3119 |
|
|
/* set is the context */
|
3120 |
|
|
/* */
|
3121 |
|
|
/* C must have space for set->digits digits. */
|
3122 |
|
|
/* ------------------------------------------------------------------ */
|
3123 |
|
|
decNumber * decNumberSubtract(decNumber *res, const decNumber *lhs,
|
3124 |
|
|
const decNumber *rhs, decContext *set) {
|
3125 |
|
|
uInt status=0; /* accumulator */
|
3126 |
|
|
|
3127 |
|
|
decAddOp(res, lhs, rhs, set, DECNEG, &status);
|
3128 |
|
|
if (status!=0) decStatus(res, status, set);
|
3129 |
|
|
#if DECCHECK
|
3130 |
|
|
decCheckInexact(res, set);
|
3131 |
|
|
#endif
|
3132 |
|
|
return res;
|
3133 |
|
|
} /* decNumberSubtract */
|
3134 |
|
|
|
3135 |
|
|
/* ------------------------------------------------------------------ */
|
3136 |
|
|
/* decNumberToIntegralExact -- round-to-integral-value with InExact */
|
3137 |
|
|
/* decNumberToIntegralValue -- round-to-integral-value */
|
3138 |
|
|
/* */
|
3139 |
|
|
/* res is the result */
|
3140 |
|
|
/* rhs is input number */
|
3141 |
|
|
/* set is the context */
|
3142 |
|
|
/* */
|
3143 |
|
|
/* res must have space for any value of rhs. */
|
3144 |
|
|
/* */
|
3145 |
|
|
/* This implements the IEEE special operators and therefore treats */
|
3146 |
|
|
/* special values as valid. For finite numbers it returns */
|
3147 |
|
|
/* rescale(rhs, 0) if rhs->exponent is <0. */
|
3148 |
|
|
/* Otherwise the result is rhs (so no error is possible, except for */
|
3149 |
|
|
/* sNaN). */
|
3150 |
|
|
/* */
|
3151 |
|
|
/* The context is used for rounding mode and status after sNaN, but */
|
3152 |
|
|
/* the digits setting is ignored. The Exact version will signal */
|
3153 |
|
|
/* Inexact if the result differs numerically from rhs; the other */
|
3154 |
|
|
/* never signals Inexact. */
|
3155 |
|
|
/* ------------------------------------------------------------------ */
|
3156 |
|
|
decNumber * decNumberToIntegralExact(decNumber *res, const decNumber *rhs,
|
3157 |
|
|
decContext *set) {
|
3158 |
|
|
decNumber dn;
|
3159 |
|
|
decContext workset; /* working context */
|
3160 |
|
|
uInt status=0; /* accumulator */
|
3161 |
|
|
|
3162 |
|
|
#if DECCHECK
|
3163 |
|
|
if (decCheckOperands(res, DECUNUSED, rhs, set)) return res;
|
3164 |
|
|
#endif
|
3165 |
|
|
|
3166 |
|
|
/* handle infinities and NaNs */
|
3167 |
|
|
if (SPECIALARG) {
|
3168 |
|
|
if (decNumberIsInfinite(rhs)) decNumberCopy(res, rhs); /* an Infinity */
|
3169 |
|
|
else decNaNs(res, rhs, NULL, set, &status); /* a NaN */
|
3170 |
|
|
}
|
3171 |
|
|
else { /* finite */
|
3172 |
|
|
/* have a finite number; no error possible (res must be big enough) */
|
3173 |
|
|
if (rhs->exponent>=0) return decNumberCopy(res, rhs);
|
3174 |
|
|
/* that was easy, but if negative exponent there is work to do... */
|
3175 |
|
|
workset=*set; /* clone rounding, etc. */
|
3176 |
|
|
workset.digits=rhs->digits; /* no length rounding */
|
3177 |
|
|
workset.traps=0; /* no traps */
|
3178 |
|
|
decNumberZero(&dn); /* make a number with exponent 0 */
|
3179 |
|
|
decNumberQuantize(res, rhs, &dn, &workset);
|
3180 |
|
|
status|=workset.status;
|
3181 |
|
|
}
|
3182 |
|
|
if (status!=0) decStatus(res, status, set);
|
3183 |
|
|
return res;
|
3184 |
|
|
} /* decNumberToIntegralExact */
|
3185 |
|
|
|
3186 |
|
|
decNumber * decNumberToIntegralValue(decNumber *res, const decNumber *rhs,
|
3187 |
|
|
decContext *set) {
|
3188 |
|
|
decContext workset=*set; /* working context */
|
3189 |
|
|
workset.traps=0; /* no traps */
|
3190 |
|
|
decNumberToIntegralExact(res, rhs, &workset);
|
3191 |
|
|
/* this never affects set, except for sNaNs; NaN will have been set */
|
3192 |
|
|
/* or propagated already, so no need to call decStatus */
|
3193 |
|
|
set->status|=workset.status&DEC_Invalid_operation;
|
3194 |
|
|
return res;
|
3195 |
|
|
} /* decNumberToIntegralValue */
|
3196 |
|
|
|
3197 |
|
|
/* ------------------------------------------------------------------ */
|
3198 |
|
|
/* decNumberXor -- XOR two Numbers, digitwise */
|
3199 |
|
|
/* */
|
3200 |
|
|
/* This computes C = A ^ B */
|
3201 |
|
|
/* */
|
3202 |
|
|
/* res is C, the result. C may be A and/or B (e.g., X=X^X) */
|
3203 |
|
|
/* lhs is A */
|
3204 |
|
|
/* rhs is B */
|
3205 |
|
|
/* set is the context (used for result length and error report) */
|
3206 |
|
|
/* */
|
3207 |
|
|
/* C must have space for set->digits digits. */
|
3208 |
|
|
/* */
|
3209 |
|
|
/* Logical function restrictions apply (see above); a NaN is */
|
3210 |
|
|
/* returned with Invalid_operation if a restriction is violated. */
|
3211 |
|
|
/* ------------------------------------------------------------------ */
|
3212 |
|
|
decNumber * decNumberXor(decNumber *res, const decNumber *lhs,
|
3213 |
|
|
const decNumber *rhs, decContext *set) {
|
3214 |
|
|
const Unit *ua, *ub; /* -> operands */
|
3215 |
|
|
const Unit *msua, *msub; /* -> operand msus */
|
3216 |
|
|
Unit *uc, *msuc; /* -> result and its msu */
|
3217 |
|
|
Int msudigs; /* digits in res msu */
|
3218 |
|
|
#if DECCHECK
|
3219 |
|
|
if (decCheckOperands(res, lhs, rhs, set)) return res;
|
3220 |
|
|
#endif
|
3221 |
|
|
|
3222 |
|
|
if (lhs->exponent!=0 || decNumberIsSpecial(lhs) || decNumberIsNegative(lhs)
|
3223 |
|
|
|| rhs->exponent!=0 || decNumberIsSpecial(rhs) || decNumberIsNegative(rhs)) {
|
3224 |
|
|
decStatus(res, DEC_Invalid_operation, set);
|
3225 |
|
|
return res;
|
3226 |
|
|
}
|
3227 |
|
|
/* operands are valid */
|
3228 |
|
|
ua=lhs->lsu; /* bottom-up */
|
3229 |
|
|
ub=rhs->lsu; /* .. */
|
3230 |
|
|
uc=res->lsu; /* .. */
|
3231 |
|
|
msua=ua+D2U(lhs->digits)-1; /* -> msu of lhs */
|
3232 |
|
|
msub=ub+D2U(rhs->digits)-1; /* -> msu of rhs */
|
3233 |
|
|
msuc=uc+D2U(set->digits)-1; /* -> msu of result */
|
3234 |
|
|
msudigs=MSUDIGITS(set->digits); /* [faster than remainder] */
|
3235 |
|
|
for (; uc<=msuc; ua++, ub++, uc++) { /* Unit loop */
|
3236 |
|
|
Unit a, b; /* extract units */
|
3237 |
|
|
if (ua>msua) a=0;
|
3238 |
|
|
else a=*ua;
|
3239 |
|
|
if (ub>msub) b=0;
|
3240 |
|
|
else b=*ub;
|
3241 |
|
|
*uc=0; /* can now write back */
|
3242 |
|
|
if (a|b) { /* maybe 1 bits to examine */
|
3243 |
|
|
Int i, j;
|
3244 |
|
|
/* This loop could be unrolled and/or use BIN2BCD tables */
|
3245 |
|
|
for (i=0; i<DECDPUN; i++) {
|
3246 |
|
|
if ((a^b)&1) *uc=*uc+(Unit)powers[i]; /* effect XOR */
|
3247 |
|
|
j=a%10;
|
3248 |
|
|
a=a/10;
|
3249 |
|
|
j|=b%10;
|
3250 |
|
|
b=b/10;
|
3251 |
|
|
if (j>1) {
|
3252 |
|
|
decStatus(res, DEC_Invalid_operation, set);
|
3253 |
|
|
return res;
|
3254 |
|
|
}
|
3255 |
|
|
if (uc==msuc && i==msudigs-1) break; /* just did final digit */
|
3256 |
|
|
} /* each digit */
|
3257 |
|
|
} /* non-zero */
|
3258 |
|
|
} /* each unit */
|
3259 |
|
|
/* [here uc-1 is the msu of the result] */
|
3260 |
|
|
res->digits=decGetDigits(res->lsu, uc-res->lsu);
|
3261 |
|
|
res->exponent=0; /* integer */
|
3262 |
|
|
res->bits=0; /* sign=0 */
|
3263 |
|
|
return res; /* [no status to set] */
|
3264 |
|
|
} /* decNumberXor */
|
3265 |
|
|
|
3266 |
|
|
|
3267 |
|
|
/* ================================================================== */
|
3268 |
|
|
/* Utility routines */
|
3269 |
|
|
/* ================================================================== */
|
3270 |
|
|
|
3271 |
|
|
/* ------------------------------------------------------------------ */
|
3272 |
|
|
/* decNumberClass -- return the decClass of a decNumber */
|
3273 |
|
|
/* dn -- the decNumber to test */
|
3274 |
|
|
/* set -- the context to use for Emin */
|
3275 |
|
|
/* returns the decClass enum */
|
3276 |
|
|
/* ------------------------------------------------------------------ */
|
3277 |
|
|
enum decClass decNumberClass(const decNumber *dn, decContext *set) {
|
3278 |
|
|
if (decNumberIsSpecial(dn)) {
|
3279 |
|
|
if (decNumberIsQNaN(dn)) return DEC_CLASS_QNAN;
|
3280 |
|
|
if (decNumberIsSNaN(dn)) return DEC_CLASS_SNAN;
|
3281 |
|
|
/* must be an infinity */
|
3282 |
|
|
if (decNumberIsNegative(dn)) return DEC_CLASS_NEG_INF;
|
3283 |
|
|
return DEC_CLASS_POS_INF;
|
3284 |
|
|
}
|
3285 |
|
|
/* is finite */
|
3286 |
|
|
if (decNumberIsNormal(dn, set)) { /* most common */
|
3287 |
|
|
if (decNumberIsNegative(dn)) return DEC_CLASS_NEG_NORMAL;
|
3288 |
|
|
return DEC_CLASS_POS_NORMAL;
|
3289 |
|
|
}
|
3290 |
|
|
/* is subnormal or zero */
|
3291 |
|
|
if (decNumberIsZero(dn)) { /* most common */
|
3292 |
|
|
if (decNumberIsNegative(dn)) return DEC_CLASS_NEG_ZERO;
|
3293 |
|
|
return DEC_CLASS_POS_ZERO;
|
3294 |
|
|
}
|
3295 |
|
|
if (decNumberIsNegative(dn)) return DEC_CLASS_NEG_SUBNORMAL;
|
3296 |
|
|
return DEC_CLASS_POS_SUBNORMAL;
|
3297 |
|
|
} /* decNumberClass */
|
3298 |
|
|
|
3299 |
|
|
/* ------------------------------------------------------------------ */
|
3300 |
|
|
/* decNumberClassToString -- convert decClass to a string */
|
3301 |
|
|
/* */
|
3302 |
|
|
/* eclass is a valid decClass */
|
3303 |
|
|
/* returns a constant string describing the class (max 13+1 chars) */
|
3304 |
|
|
/* ------------------------------------------------------------------ */
|
3305 |
|
|
const char *decNumberClassToString(enum decClass eclass) {
|
3306 |
|
|
if (eclass==DEC_CLASS_POS_NORMAL) return DEC_ClassString_PN;
|
3307 |
|
|
if (eclass==DEC_CLASS_NEG_NORMAL) return DEC_ClassString_NN;
|
3308 |
|
|
if (eclass==DEC_CLASS_POS_ZERO) return DEC_ClassString_PZ;
|
3309 |
|
|
if (eclass==DEC_CLASS_NEG_ZERO) return DEC_ClassString_NZ;
|
3310 |
|
|
if (eclass==DEC_CLASS_POS_SUBNORMAL) return DEC_ClassString_PS;
|
3311 |
|
|
if (eclass==DEC_CLASS_NEG_SUBNORMAL) return DEC_ClassString_NS;
|
3312 |
|
|
if (eclass==DEC_CLASS_POS_INF) return DEC_ClassString_PI;
|
3313 |
|
|
if (eclass==DEC_CLASS_NEG_INF) return DEC_ClassString_NI;
|
3314 |
|
|
if (eclass==DEC_CLASS_QNAN) return DEC_ClassString_QN;
|
3315 |
|
|
if (eclass==DEC_CLASS_SNAN) return DEC_ClassString_SN;
|
3316 |
|
|
return DEC_ClassString_UN; /* Unknown */
|
3317 |
|
|
} /* decNumberClassToString */
|
3318 |
|
|
|
3319 |
|
|
/* ------------------------------------------------------------------ */
|
3320 |
|
|
/* decNumberCopy -- copy a number */
|
3321 |
|
|
/* */
|
3322 |
|
|
/* dest is the target decNumber */
|
3323 |
|
|
/* src is the source decNumber */
|
3324 |
|
|
/* returns dest */
|
3325 |
|
|
/* */
|
3326 |
|
|
/* (dest==src is allowed and is a no-op) */
|
3327 |
|
|
/* All fields are updated as required. This is a utility operation, */
|
3328 |
|
|
/* so special values are unchanged and no error is possible. */
|
3329 |
|
|
/* ------------------------------------------------------------------ */
|
3330 |
|
|
decNumber * decNumberCopy(decNumber *dest, const decNumber *src) {
|
3331 |
|
|
|
3332 |
|
|
#if DECCHECK
|
3333 |
|
|
if (src==NULL) return decNumberZero(dest);
|
3334 |
|
|
#endif
|
3335 |
|
|
|
3336 |
|
|
if (dest==src) return dest; /* no copy required */
|
3337 |
|
|
|
3338 |
|
|
/* Use explicit assignments here as structure assignment could copy */
|
3339 |
|
|
/* more than just the lsu (for small DECDPUN). This would not affect */
|
3340 |
|
|
/* the value of the results, but could disturb test harness spill */
|
3341 |
|
|
/* checking. */
|
3342 |
|
|
dest->bits=src->bits;
|
3343 |
|
|
dest->exponent=src->exponent;
|
3344 |
|
|
dest->digits=src->digits;
|
3345 |
|
|
dest->lsu[0]=src->lsu[0];
|
3346 |
|
|
if (src->digits>DECDPUN) { /* more Units to come */
|
3347 |
|
|
const Unit *smsup, *s; /* work */
|
3348 |
|
|
Unit *d; /* .. */
|
3349 |
|
|
/* memcpy for the remaining Units would be safe as they cannot */
|
3350 |
|
|
/* overlap. However, this explicit loop is faster in short cases. */
|
3351 |
|
|
d=dest->lsu+1; /* -> first destination */
|
3352 |
|
|
smsup=src->lsu+D2U(src->digits); /* -> source msu+1 */
|
3353 |
|
|
for (s=src->lsu+1; s<smsup; s++, d++) *d=*s;
|
3354 |
|
|
}
|
3355 |
|
|
return dest;
|
3356 |
|
|
} /* decNumberCopy */
|
3357 |
|
|
|
3358 |
|
|
/* ------------------------------------------------------------------ */
|
3359 |
|
|
/* decNumberCopyAbs -- quiet absolute value operator */
|
3360 |
|
|
/* */
|
3361 |
|
|
/* This sets C = abs(A) */
|
3362 |
|
|
/* */
|
3363 |
|
|
/* res is C, the result. C may be A */
|
3364 |
|
|
/* rhs is A */
|
3365 |
|
|
/* */
|
3366 |
|
|
/* C must have space for set->digits digits. */
|
3367 |
|
|
/* No exception or error can occur; this is a quiet bitwise operation.*/
|
3368 |
|
|
/* See also decNumberAbs for a checking version of this. */
|
3369 |
|
|
/* ------------------------------------------------------------------ */
|
3370 |
|
|
decNumber * decNumberCopyAbs(decNumber *res, const decNumber *rhs) {
|
3371 |
|
|
#if DECCHECK
|
3372 |
|
|
if (decCheckOperands(res, DECUNUSED, rhs, DECUNCONT)) return res;
|
3373 |
|
|
#endif
|
3374 |
|
|
decNumberCopy(res, rhs);
|
3375 |
|
|
res->bits&=~DECNEG; /* turn off sign */
|
3376 |
|
|
return res;
|
3377 |
|
|
} /* decNumberCopyAbs */
|
3378 |
|
|
|
3379 |
|
|
/* ------------------------------------------------------------------ */
|
3380 |
|
|
/* decNumberCopyNegate -- quiet negate value operator */
|
3381 |
|
|
/* */
|
3382 |
|
|
/* This sets C = negate(A) */
|
3383 |
|
|
/* */
|
3384 |
|
|
/* res is C, the result. C may be A */
|
3385 |
|
|
/* rhs is A */
|
3386 |
|
|
/* */
|
3387 |
|
|
/* C must have space for set->digits digits. */
|
3388 |
|
|
/* No exception or error can occur; this is a quiet bitwise operation.*/
|
3389 |
|
|
/* See also decNumberMinus for a checking version of this. */
|
3390 |
|
|
/* ------------------------------------------------------------------ */
|
3391 |
|
|
decNumber * decNumberCopyNegate(decNumber *res, const decNumber *rhs) {
|
3392 |
|
|
#if DECCHECK
|
3393 |
|
|
if (decCheckOperands(res, DECUNUSED, rhs, DECUNCONT)) return res;
|
3394 |
|
|
#endif
|
3395 |
|
|
decNumberCopy(res, rhs);
|
3396 |
|
|
res->bits^=DECNEG; /* invert the sign */
|
3397 |
|
|
return res;
|
3398 |
|
|
} /* decNumberCopyNegate */
|
3399 |
|
|
|
3400 |
|
|
/* ------------------------------------------------------------------ */
|
3401 |
|
|
/* decNumberCopySign -- quiet copy and set sign operator */
|
3402 |
|
|
/* */
|
3403 |
|
|
/* This sets C = A with the sign of B */
|
3404 |
|
|
/* */
|
3405 |
|
|
/* res is C, the result. C may be A */
|
3406 |
|
|
/* lhs is A */
|
3407 |
|
|
/* rhs is B */
|
3408 |
|
|
/* */
|
3409 |
|
|
/* C must have space for set->digits digits. */
|
3410 |
|
|
/* No exception or error can occur; this is a quiet bitwise operation.*/
|
3411 |
|
|
/* ------------------------------------------------------------------ */
|
3412 |
|
|
decNumber * decNumberCopySign(decNumber *res, const decNumber *lhs,
|
3413 |
|
|
const decNumber *rhs) {
|
3414 |
|
|
uByte sign; /* rhs sign */
|
3415 |
|
|
#if DECCHECK
|
3416 |
|
|
if (decCheckOperands(res, DECUNUSED, rhs, DECUNCONT)) return res;
|
3417 |
|
|
#endif
|
3418 |
|
|
sign=rhs->bits & DECNEG; /* save sign bit */
|
3419 |
|
|
decNumberCopy(res, lhs);
|
3420 |
|
|
res->bits&=~DECNEG; /* clear the sign */
|
3421 |
|
|
res->bits|=sign; /* set from rhs */
|
3422 |
|
|
return res;
|
3423 |
|
|
} /* decNumberCopySign */
|
3424 |
|
|
|
3425 |
|
|
/* ------------------------------------------------------------------ */
|
3426 |
|
|
/* decNumberGetBCD -- get the coefficient in BCD8 */
|
3427 |
|
|
/* dn is the source decNumber */
|
3428 |
|
|
/* bcd is the uInt array that will receive dn->digits BCD bytes, */
|
3429 |
|
|
/* most-significant at offset 0 */
|
3430 |
|
|
/* returns bcd */
|
3431 |
|
|
/* */
|
3432 |
|
|
/* bcd must have at least dn->digits bytes. No error is possible; if */
|
3433 |
|
|
/* dn is a NaN or Infinite, digits must be 1 and the coefficient 0. */
|
3434 |
|
|
/* ------------------------------------------------------------------ */
|
3435 |
|
|
uByte * decNumberGetBCD(const decNumber *dn, uint8_t *bcd) {
|
3436 |
|
|
uByte *ub=bcd+dn->digits-1; /* -> lsd */
|
3437 |
|
|
const Unit *up=dn->lsu; /* Unit pointer, -> lsu */
|
3438 |
|
|
|
3439 |
|
|
#if DECDPUN==1 /* trivial simple copy */
|
3440 |
|
|
for (; ub>=bcd; ub--, up++) *ub=*up;
|
3441 |
|
|
#else /* chopping needed */
|
3442 |
|
|
uInt u=*up; /* work */
|
3443 |
|
|
uInt cut=DECDPUN; /* downcounter through unit */
|
3444 |
|
|
for (; ub>=bcd; ub--) {
|
3445 |
|
|
*ub=(uByte)(u%10); /* [*6554 trick inhibits, here] */
|
3446 |
|
|
u=u/10;
|
3447 |
|
|
cut--;
|
3448 |
|
|
if (cut>0) continue; /* more in this unit */
|
3449 |
|
|
up++;
|
3450 |
|
|
u=*up;
|
3451 |
|
|
cut=DECDPUN;
|
3452 |
|
|
}
|
3453 |
|
|
#endif
|
3454 |
|
|
return bcd;
|
3455 |
|
|
} /* decNumberGetBCD */
|
3456 |
|
|
|
3457 |
|
|
/* ------------------------------------------------------------------ */
|
3458 |
|
|
/* decNumberSetBCD -- set (replace) the coefficient from BCD8 */
|
3459 |
|
|
/* dn is the target decNumber */
|
3460 |
|
|
/* bcd is the uInt array that will source n BCD bytes, most- */
|
3461 |
|
|
/* significant at offset 0 */
|
3462 |
|
|
/* n is the number of digits in the source BCD array (bcd) */
|
3463 |
|
|
/* returns dn */
|
3464 |
|
|
/* */
|
3465 |
|
|
/* dn must have space for at least n digits. No error is possible; */
|
3466 |
|
|
/* if dn is a NaN, or Infinite, or is to become a zero, n must be 1 */
|
3467 |
|
|
/* and bcd[0] zero. */
|
3468 |
|
|
/* ------------------------------------------------------------------ */
|
3469 |
|
|
decNumber * decNumberSetBCD(decNumber *dn, const uByte *bcd, uInt n) {
|
3470 |
|
|
Unit *up=dn->lsu+D2U(dn->digits)-1; /* -> msu [target pointer] */
|
3471 |
|
|
const uByte *ub=bcd; /* -> source msd */
|
3472 |
|
|
|
3473 |
|
|
#if DECDPUN==1 /* trivial simple copy */
|
3474 |
|
|
for (; ub<bcd+n; ub++, up--) *up=*ub;
|
3475 |
|
|
#else /* some assembly needed */
|
3476 |
|
|
/* calculate how many digits in msu, and hence first cut */
|
3477 |
|
|
Int cut=MSUDIGITS(n); /* [faster than remainder] */
|
3478 |
|
|
for (;up>=dn->lsu; up--) { /* each Unit from msu */
|
3479 |
|
|
*up=0; /* will take <=DECDPUN digits */
|
3480 |
|
|
for (; cut>0; ub++, cut--) *up=X10(*up)+*ub;
|
3481 |
|
|
cut=DECDPUN; /* next Unit has all digits */
|
3482 |
|
|
}
|
3483 |
|
|
#endif
|
3484 |
|
|
dn->digits=n; /* set digit count */
|
3485 |
|
|
return dn;
|
3486 |
|
|
} /* decNumberSetBCD */
|
3487 |
|
|
|
3488 |
|
|
/* ------------------------------------------------------------------ */
|
3489 |
|
|
/* decNumberIsNormal -- test normality of a decNumber */
|
3490 |
|
|
/* dn is the decNumber to test */
|
3491 |
|
|
/* set is the context to use for Emin */
|
3492 |
|
|
/* returns 1 if |dn| is finite and >=Nmin, 0 otherwise */
|
3493 |
|
|
/* ------------------------------------------------------------------ */
|
3494 |
|
|
Int decNumberIsNormal(const decNumber *dn, decContext *set) {
|
3495 |
|
|
Int ae; /* adjusted exponent */
|
3496 |
|
|
#if DECCHECK
|
3497 |
|
|
if (decCheckOperands(DECUNRESU, DECUNUSED, dn, set)) return 0;
|
3498 |
|
|
#endif
|
3499 |
|
|
|
3500 |
|
|
if (decNumberIsSpecial(dn)) return 0; /* not finite */
|
3501 |
|
|
if (decNumberIsZero(dn)) return 0; /* not non-zero */
|
3502 |
|
|
|
3503 |
|
|
ae=dn->exponent+dn->digits-1; /* adjusted exponent */
|
3504 |
|
|
if (ae<set->emin) return 0; /* is subnormal */
|
3505 |
|
|
return 1;
|
3506 |
|
|
} /* decNumberIsNormal */
|
3507 |
|
|
|
3508 |
|
|
/* ------------------------------------------------------------------ */
|
3509 |
|
|
/* decNumberIsSubnormal -- test subnormality of a decNumber */
|
3510 |
|
|
/* dn is the decNumber to test */
|
3511 |
|
|
/* set is the context to use for Emin */
|
3512 |
|
|
/* returns 1 if |dn| is finite, non-zero, and <Nmin, 0 otherwise */
|
3513 |
|
|
/* ------------------------------------------------------------------ */
|
3514 |
|
|
Int decNumberIsSubnormal(const decNumber *dn, decContext *set) {
|
3515 |
|
|
Int ae; /* adjusted exponent */
|
3516 |
|
|
#if DECCHECK
|
3517 |
|
|
if (decCheckOperands(DECUNRESU, DECUNUSED, dn, set)) return 0;
|
3518 |
|
|
#endif
|
3519 |
|
|
|
3520 |
|
|
if (decNumberIsSpecial(dn)) return 0; /* not finite */
|
3521 |
|
|
if (decNumberIsZero(dn)) return 0; /* not non-zero */
|
3522 |
|
|
|
3523 |
|
|
ae=dn->exponent+dn->digits-1; /* adjusted exponent */
|
3524 |
|
|
if (ae<set->emin) return 1; /* is subnormal */
|
3525 |
|
|
return 0;
|
3526 |
|
|
} /* decNumberIsSubnormal */
|
3527 |
|
|
|
3528 |
|
|
/* ------------------------------------------------------------------ */
|
3529 |
|
|
/* decNumberTrim -- remove insignificant zeros */
|
3530 |
|
|
/* */
|
3531 |
|
|
/* dn is the number to trim */
|
3532 |
|
|
/* returns dn */
|
3533 |
|
|
/* */
|
3534 |
|
|
/* All fields are updated as required. This is a utility operation, */
|
3535 |
|
|
/* so special values are unchanged and no error is possible. */
|
3536 |
|
|
/* ------------------------------------------------------------------ */
|
3537 |
|
|
decNumber * decNumberTrim(decNumber *dn) {
|
3538 |
|
|
Int dropped; /* work */
|
3539 |
|
|
decContext set; /* .. */
|
3540 |
|
|
#if DECCHECK
|
3541 |
|
|
if (decCheckOperands(DECUNRESU, DECUNUSED, dn, DECUNCONT)) return dn;
|
3542 |
|
|
#endif
|
3543 |
|
|
decContextDefault(&set, DEC_INIT_BASE); /* clamp=0 */
|
3544 |
|
|
return decTrim(dn, &set, 0, &dropped);
|
3545 |
|
|
} /* decNumberTrim */
|
3546 |
|
|
|
3547 |
|
|
/* ------------------------------------------------------------------ */
|
3548 |
|
|
/* decNumberVersion -- return the name and version of this module */
|
3549 |
|
|
/* */
|
3550 |
|
|
/* No error is possible. */
|
3551 |
|
|
/* ------------------------------------------------------------------ */
|
3552 |
|
|
const char * decNumberVersion(void) {
|
3553 |
|
|
return DECVERSION;
|
3554 |
|
|
} /* decNumberVersion */
|
3555 |
|
|
|
3556 |
|
|
/* ------------------------------------------------------------------ */
|
3557 |
|
|
/* decNumberZero -- set a number to 0 */
|
3558 |
|
|
/* */
|
3559 |
|
|
/* dn is the number to set, with space for one digit */
|
3560 |
|
|
/* returns dn */
|
3561 |
|
|
/* */
|
3562 |
|
|
/* No error is possible. */
|
3563 |
|
|
/* ------------------------------------------------------------------ */
|
3564 |
|
|
/* Memset is not used as it is much slower in some environments. */
|
3565 |
|
|
decNumber * decNumberZero(decNumber *dn) {
|
3566 |
|
|
|
3567 |
|
|
#if DECCHECK
|
3568 |
|
|
if (decCheckOperands(dn, DECUNUSED, DECUNUSED, DECUNCONT)) return dn;
|
3569 |
|
|
#endif
|
3570 |
|
|
|
3571 |
|
|
dn->bits=0;
|
3572 |
|
|
dn->exponent=0;
|
3573 |
|
|
dn->digits=1;
|
3574 |
|
|
dn->lsu[0]=0;
|
3575 |
|
|
return dn;
|
3576 |
|
|
} /* decNumberZero */
|
3577 |
|
|
|
3578 |
|
|
/* ================================================================== */
|
3579 |
|
|
/* Local routines */
|
3580 |
|
|
/* ================================================================== */
|
3581 |
|
|
|
3582 |
|
|
/* ------------------------------------------------------------------ */
|
3583 |
|
|
/* decToString -- lay out a number into a string */
|
3584 |
|
|
/* */
|
3585 |
|
|
/* dn is the number to lay out */
|
3586 |
|
|
/* string is where to lay out the number */
|
3587 |
|
|
/* eng is 1 if Engineering, 0 if Scientific */
|
3588 |
|
|
/* */
|
3589 |
|
|
/* string must be at least dn->digits+14 characters long */
|
3590 |
|
|
/* No error is possible. */
|
3591 |
|
|
/* */
|
3592 |
|
|
/* Note that this routine can generate a -0 or 0.000. These are */
|
3593 |
|
|
/* never generated in subset to-number or arithmetic, but can occur */
|
3594 |
|
|
/* in non-subset arithmetic (e.g., -1*0 or 1.234-1.234). */
|
3595 |
|
|
/* ------------------------------------------------------------------ */
|
3596 |
|
|
/* If DECCHECK is enabled the string "?" is returned if a number is */
|
3597 |
|
|
/* invalid. */
|
3598 |
|
|
static void decToString(const decNumber *dn, char *string, Flag eng) {
|
3599 |
|
|
Int exp=dn->exponent; /* local copy */
|
3600 |
|
|
Int e; /* E-part value */
|
3601 |
|
|
Int pre; /* digits before the '.' */
|
3602 |
|
|
Int cut; /* for counting digits in a Unit */
|
3603 |
|
|
char *c=string; /* work [output pointer] */
|
3604 |
|
|
const Unit *up=dn->lsu+D2U(dn->digits)-1; /* -> msu [input pointer] */
|
3605 |
|
|
uInt u, pow; /* work */
|
3606 |
|
|
|
3607 |
|
|
#if DECCHECK
|
3608 |
|
|
if (decCheckOperands(DECUNRESU, dn, DECUNUSED, DECUNCONT)) {
|
3609 |
|
|
strcpy(string, "?");
|
3610 |
|
|
return;}
|
3611 |
|
|
#endif
|
3612 |
|
|
|
3613 |
|
|
if (decNumberIsNegative(dn)) { /* Negatives get a minus */
|
3614 |
|
|
*c='-';
|
3615 |
|
|
c++;
|
3616 |
|
|
}
|
3617 |
|
|
if (dn->bits&DECSPECIAL) { /* Is a special value */
|
3618 |
|
|
if (decNumberIsInfinite(dn)) {
|
3619 |
|
|
strcpy(c, "Inf");
|
3620 |
|
|
strcpy(c+3, "inity");
|
3621 |
|
|
return;}
|
3622 |
|
|
/* a NaN */
|
3623 |
|
|
if (dn->bits&DECSNAN) { /* signalling NaN */
|
3624 |
|
|
*c='s';
|
3625 |
|
|
c++;
|
3626 |
|
|
}
|
3627 |
|
|
strcpy(c, "NaN");
|
3628 |
|
|
c+=3; /* step past */
|
3629 |
|
|
/* if not a clean non-zero coefficient, that's all there is in a */
|
3630 |
|
|
/* NaN string */
|
3631 |
|
|
if (exp!=0 || (*dn->lsu==0 && dn->digits==1)) return;
|
3632 |
|
|
/* [drop through to add integer] */
|
3633 |
|
|
}
|
3634 |
|
|
|
3635 |
|
|
/* calculate how many digits in msu, and hence first cut */
|
3636 |
|
|
cut=MSUDIGITS(dn->digits); /* [faster than remainder] */
|
3637 |
|
|
cut--; /* power of ten for digit */
|
3638 |
|
|
|
3639 |
|
|
if (exp==0) { /* simple integer [common fastpath] */
|
3640 |
|
|
for (;up>=dn->lsu; up--) { /* each Unit from msu */
|
3641 |
|
|
u=*up; /* contains DECDPUN digits to lay out */
|
3642 |
|
|
for (; cut>=0; c++, cut--) TODIGIT(u, cut, c, pow);
|
3643 |
|
|
cut=DECDPUN-1; /* next Unit has all digits */
|
3644 |
|
|
}
|
3645 |
|
|
*c='\0'; /* terminate the string */
|
3646 |
|
|
return;}
|
3647 |
|
|
|
3648 |
|
|
/* non-0 exponent -- assume plain form */
|
3649 |
|
|
pre=dn->digits+exp; /* digits before '.' */
|
3650 |
|
|
e=0; /* no E */
|
3651 |
|
|
if ((exp>0) || (pre<-5)) { /* need exponential form */
|
3652 |
|
|
e=exp+dn->digits-1; /* calculate E value */
|
3653 |
|
|
pre=1; /* assume one digit before '.' */
|
3654 |
|
|
if (eng && (e!=0)) { /* engineering: may need to adjust */
|
3655 |
|
|
Int adj; /* adjustment */
|
3656 |
|
|
/* The C remainder operator is undefined for negative numbers, so */
|
3657 |
|
|
/* a positive remainder calculation must be used here */
|
3658 |
|
|
if (e<0) {
|
3659 |
|
|
adj=(-e)%3;
|
3660 |
|
|
if (adj!=0) adj=3-adj;
|
3661 |
|
|
}
|
3662 |
|
|
else { /* e>0 */
|
3663 |
|
|
adj=e%3;
|
3664 |
|
|
}
|
3665 |
|
|
e=e-adj;
|
3666 |
|
|
/* if dealing with zero still produce an exponent which is a */
|
3667 |
|
|
/* multiple of three, as expected, but there will only be the */
|
3668 |
|
|
/* one zero before the E, still. Otherwise note the padding. */
|
3669 |
|
|
if (!ISZERO(dn)) pre+=adj;
|
3670 |
|
|
else { /* is zero */
|
3671 |
|
|
if (adj!=0) { /* 0.00Esnn needed */
|
3672 |
|
|
e=e+3;
|
3673 |
|
|
pre=-(2-adj);
|
3674 |
|
|
}
|
3675 |
|
|
} /* zero */
|
3676 |
|
|
} /* eng */
|
3677 |
|
|
} /* need exponent */
|
3678 |
|
|
|
3679 |
|
|
/* lay out the digits of the coefficient, adding 0s and . as needed */
|
3680 |
|
|
u=*up;
|
3681 |
|
|
if (pre>0) { /* xxx.xxx or xx00 (engineering) form */
|
3682 |
|
|
Int n=pre;
|
3683 |
|
|
for (; pre>0; pre--, c++, cut--) {
|
3684 |
|
|
if (cut<0) { /* need new Unit */
|
3685 |
|
|
if (up==dn->lsu) break; /* out of input digits (pre>digits) */
|
3686 |
|
|
up--;
|
3687 |
|
|
cut=DECDPUN-1;
|
3688 |
|
|
u=*up;
|
3689 |
|
|
}
|
3690 |
|
|
TODIGIT(u, cut, c, pow);
|
3691 |
|
|
}
|
3692 |
|
|
if (n<dn->digits) { /* more to come, after '.' */
|
3693 |
|
|
*c='.'; c++;
|
3694 |
|
|
for (;; c++, cut--) {
|
3695 |
|
|
if (cut<0) { /* need new Unit */
|
3696 |
|
|
if (up==dn->lsu) break; /* out of input digits */
|
3697 |
|
|
up--;
|
3698 |
|
|
cut=DECDPUN-1;
|
3699 |
|
|
u=*up;
|
3700 |
|
|
}
|
3701 |
|
|
TODIGIT(u, cut, c, pow);
|
3702 |
|
|
}
|
3703 |
|
|
}
|
3704 |
|
|
else for (; pre>0; pre--, c++) *c='0'; /* 0 padding (for engineering) needed */
|
3705 |
|
|
}
|
3706 |
|
|
else { /* 0.xxx or 0.000xxx form */
|
3707 |
|
|
*c='0'; c++;
|
3708 |
|
|
*c='.'; c++;
|
3709 |
|
|
for (; pre<0; pre++, c++) *c='0'; /* add any 0's after '.' */
|
3710 |
|
|
for (; ; c++, cut--) {
|
3711 |
|
|
if (cut<0) { /* need new Unit */
|
3712 |
|
|
if (up==dn->lsu) break; /* out of input digits */
|
3713 |
|
|
up--;
|
3714 |
|
|
cut=DECDPUN-1;
|
3715 |
|
|
u=*up;
|
3716 |
|
|
}
|
3717 |
|
|
TODIGIT(u, cut, c, pow);
|
3718 |
|
|
}
|
3719 |
|
|
}
|
3720 |
|
|
|
3721 |
|
|
/* Finally add the E-part, if needed. It will never be 0, has a
|
3722 |
|
|
base maximum and minimum of +999999999 through -999999999, but
|
3723 |
|
|
could range down to -1999999998 for anormal numbers */
|
3724 |
|
|
if (e!=0) {
|
3725 |
|
|
Flag had=0; /* 1=had non-zero */
|
3726 |
|
|
*c='E'; c++;
|
3727 |
|
|
*c='+'; c++; /* assume positive */
|
3728 |
|
|
u=e; /* .. */
|
3729 |
|
|
if (e<0) {
|
3730 |
|
|
*(c-1)='-'; /* oops, need - */
|
3731 |
|
|
u=-e; /* uInt, please */
|
3732 |
|
|
}
|
3733 |
|
|
/* lay out the exponent [_itoa or equivalent is not ANSI C] */
|
3734 |
|
|
for (cut=9; cut>=0; cut--) {
|
3735 |
|
|
TODIGIT(u, cut, c, pow);
|
3736 |
|
|
if (*c=='0' && !had) continue; /* skip leading zeros */
|
3737 |
|
|
had=1; /* had non-0 */
|
3738 |
|
|
c++; /* step for next */
|
3739 |
|
|
} /* cut */
|
3740 |
|
|
}
|
3741 |
|
|
*c='\0'; /* terminate the string (all paths) */
|
3742 |
|
|
return;
|
3743 |
|
|
} /* decToString */
|
3744 |
|
|
|
3745 |
|
|
/* ------------------------------------------------------------------ */
|
3746 |
|
|
/* decAddOp -- add/subtract operation */
|
3747 |
|
|
/* */
|
3748 |
|
|
/* This computes C = A + B */
|
3749 |
|
|
/* */
|
3750 |
|
|
/* res is C, the result. C may be A and/or B (e.g., X=X+X) */
|
3751 |
|
|
/* lhs is A */
|
3752 |
|
|
/* rhs is B */
|
3753 |
|
|
/* set is the context */
|
3754 |
|
|
/* negate is DECNEG if rhs should be negated, or 0 otherwise */
|
3755 |
|
|
/* status accumulates status for the caller */
|
3756 |
|
|
/* */
|
3757 |
|
|
/* C must have space for set->digits digits. */
|
3758 |
|
|
/* Inexact in status must be 0 for correct Exact zero sign in result */
|
3759 |
|
|
/* ------------------------------------------------------------------ */
|
3760 |
|
|
/* If possible, the coefficient is calculated directly into C. */
|
3761 |
|
|
/* However, if: */
|
3762 |
|
|
/* -- a digits+1 calculation is needed because the numbers are */
|
3763 |
|
|
/* unaligned and span more than set->digits digits */
|
3764 |
|
|
/* -- a carry to digits+1 digits looks possible */
|
3765 |
|
|
/* -- C is the same as A or B, and the result would destructively */
|
3766 |
|
|
/* overlap the A or B coefficient */
|
3767 |
|
|
/* then the result must be calculated into a temporary buffer. In */
|
3768 |
|
|
/* this case a local (stack) buffer is used if possible, and only if */
|
3769 |
|
|
/* too long for that does malloc become the final resort. */
|
3770 |
|
|
/* */
|
3771 |
|
|
/* Misalignment is handled as follows: */
|
3772 |
|
|
/* Apad: (AExp>BExp) Swap operands and proceed as for BExp>AExp. */
|
3773 |
|
|
/* BPad: Apply the padding by a combination of shifting (whole */
|
3774 |
|
|
/* units) and multiplication (part units). */
|
3775 |
|
|
/* */
|
3776 |
|
|
/* Addition, especially x=x+1, is speed-critical. */
|
3777 |
|
|
/* The static buffer is larger than might be expected to allow for */
|
3778 |
|
|
/* calls from higher-level funtions (notable exp). */
|
3779 |
|
|
/* ------------------------------------------------------------------ */
|
3780 |
|
|
static decNumber * decAddOp(decNumber *res, const decNumber *lhs,
|
3781 |
|
|
const decNumber *rhs, decContext *set,
|
3782 |
|
|
uByte negate, uInt *status) {
|
3783 |
|
|
#if DECSUBSET
|
3784 |
|
|
decNumber *alloclhs=NULL; /* non-NULL if rounded lhs allocated */
|
3785 |
|
|
decNumber *allocrhs=NULL; /* .., rhs */
|
3786 |
|
|
#endif
|
3787 |
|
|
Int rhsshift; /* working shift (in Units) */
|
3788 |
|
|
Int maxdigits; /* longest logical length */
|
3789 |
|
|
Int mult; /* multiplier */
|
3790 |
|
|
Int residue; /* rounding accumulator */
|
3791 |
|
|
uByte bits; /* result bits */
|
3792 |
|
|
Flag diffsign; /* non-0 if arguments have different sign */
|
3793 |
|
|
Unit *acc; /* accumulator for result */
|
3794 |
|
|
Unit accbuff[SD2U(DECBUFFER*2+20)]; /* local buffer [*2+20 reduces many */
|
3795 |
|
|
/* allocations when called from */
|
3796 |
|
|
/* other operations, notable exp] */
|
3797 |
|
|
Unit *allocacc=NULL; /* -> allocated acc buffer, iff allocated */
|
3798 |
|
|
Int reqdigits=set->digits; /* local copy; requested DIGITS */
|
3799 |
|
|
Int padding; /* work */
|
3800 |
|
|
|
3801 |
|
|
#if DECCHECK
|
3802 |
|
|
if (decCheckOperands(res, lhs, rhs, set)) return res;
|
3803 |
|
|
#endif
|
3804 |
|
|
|
3805 |
|
|
do { /* protect allocated storage */
|
3806 |
|
|
#if DECSUBSET
|
3807 |
|
|
if (!set->extended) {
|
3808 |
|
|
/* reduce operands and set lostDigits status, as needed */
|
3809 |
|
|
if (lhs->digits>reqdigits) {
|
3810 |
|
|
alloclhs=decRoundOperand(lhs, set, status);
|
3811 |
|
|
if (alloclhs==NULL) break;
|
3812 |
|
|
lhs=alloclhs;
|
3813 |
|
|
}
|
3814 |
|
|
if (rhs->digits>reqdigits) {
|
3815 |
|
|
allocrhs=decRoundOperand(rhs, set, status);
|
3816 |
|
|
if (allocrhs==NULL) break;
|
3817 |
|
|
rhs=allocrhs;
|
3818 |
|
|
}
|
3819 |
|
|
}
|
3820 |
|
|
#endif
|
3821 |
|
|
/* [following code does not require input rounding] */
|
3822 |
|
|
|
3823 |
|
|
/* note whether signs differ [used all paths] */
|
3824 |
|
|
diffsign=(Flag)((lhs->bits^rhs->bits^negate)&DECNEG);
|
3825 |
|
|
|
3826 |
|
|
/* handle infinities and NaNs */
|
3827 |
|
|
if (SPECIALARGS) { /* a special bit set */
|
3828 |
|
|
if (SPECIALARGS & (DECSNAN | DECNAN)) /* a NaN */
|
3829 |
|
|
decNaNs(res, lhs, rhs, set, status);
|
3830 |
|
|
else { /* one or two infinities */
|
3831 |
|
|
if (decNumberIsInfinite(lhs)) { /* LHS is infinity */
|
3832 |
|
|
/* two infinities with different signs is invalid */
|
3833 |
|
|
if (decNumberIsInfinite(rhs) && diffsign) {
|
3834 |
|
|
*status|=DEC_Invalid_operation;
|
3835 |
|
|
break;
|
3836 |
|
|
}
|
3837 |
|
|
bits=lhs->bits & DECNEG; /* get sign from LHS */
|
3838 |
|
|
}
|
3839 |
|
|
else bits=(rhs->bits^negate) & DECNEG;/* RHS must be Infinity */
|
3840 |
|
|
bits|=DECINF;
|
3841 |
|
|
decNumberZero(res);
|
3842 |
|
|
res->bits=bits; /* set +/- infinity */
|
3843 |
|
|
} /* an infinity */
|
3844 |
|
|
break;
|
3845 |
|
|
}
|
3846 |
|
|
|
3847 |
|
|
/* Quick exit for add 0s; return the non-0, modified as need be */
|
3848 |
|
|
if (ISZERO(lhs)) {
|
3849 |
|
|
Int adjust; /* work */
|
3850 |
|
|
Int lexp=lhs->exponent; /* save in case LHS==RES */
|
3851 |
|
|
bits=lhs->bits; /* .. */
|
3852 |
|
|
residue=0; /* clear accumulator */
|
3853 |
|
|
decCopyFit(res, rhs, set, &residue, status); /* copy (as needed) */
|
3854 |
|
|
res->bits^=negate; /* flip if rhs was negated */
|
3855 |
|
|
#if DECSUBSET
|
3856 |
|
|
if (set->extended) { /* exponents on zeros count */
|
3857 |
|
|
#endif
|
3858 |
|
|
/* exponent will be the lower of the two */
|
3859 |
|
|
adjust=lexp-res->exponent; /* adjustment needed [if -ve] */
|
3860 |
|
|
if (ISZERO(res)) { /* both 0: special IEEE 854 rules */
|
3861 |
|
|
if (adjust<0) res->exponent=lexp; /* set exponent */
|
3862 |
|
|
/* 0-0 gives +0 unless rounding to -infinity, and -0-0 gives -0 */
|
3863 |
|
|
if (diffsign) {
|
3864 |
|
|
if (set->round!=DEC_ROUND_FLOOR) res->bits=0;
|
3865 |
|
|
else res->bits=DECNEG; /* preserve 0 sign */
|
3866 |
|
|
}
|
3867 |
|
|
}
|
3868 |
|
|
else { /* non-0 res */
|
3869 |
|
|
if (adjust<0) { /* 0-padding needed */
|
3870 |
|
|
if ((res->digits-adjust)>set->digits) {
|
3871 |
|
|
adjust=res->digits-set->digits; /* to fit exactly */
|
3872 |
|
|
*status|=DEC_Rounded; /* [but exact] */
|
3873 |
|
|
}
|
3874 |
|
|
res->digits=decShiftToMost(res->lsu, res->digits, -adjust);
|
3875 |
|
|
res->exponent+=adjust; /* set the exponent. */
|
3876 |
|
|
}
|
3877 |
|
|
} /* non-0 res */
|
3878 |
|
|
#if DECSUBSET
|
3879 |
|
|
} /* extended */
|
3880 |
|
|
#endif
|
3881 |
|
|
decFinish(res, set, &residue, status); /* clean and finalize */
|
3882 |
|
|
break;}
|
3883 |
|
|
|
3884 |
|
|
if (ISZERO(rhs)) { /* [lhs is non-zero] */
|
3885 |
|
|
Int adjust; /* work */
|
3886 |
|
|
Int rexp=rhs->exponent; /* save in case RHS==RES */
|
3887 |
|
|
bits=rhs->bits; /* be clean */
|
3888 |
|
|
residue=0; /* clear accumulator */
|
3889 |
|
|
decCopyFit(res, lhs, set, &residue, status); /* copy (as needed) */
|
3890 |
|
|
#if DECSUBSET
|
3891 |
|
|
if (set->extended) { /* exponents on zeros count */
|
3892 |
|
|
#endif
|
3893 |
|
|
/* exponent will be the lower of the two */
|
3894 |
|
|
/* [0-0 case handled above] */
|
3895 |
|
|
adjust=rexp-res->exponent; /* adjustment needed [if -ve] */
|
3896 |
|
|
if (adjust<0) { /* 0-padding needed */
|
3897 |
|
|
if ((res->digits-adjust)>set->digits) {
|
3898 |
|
|
adjust=res->digits-set->digits; /* to fit exactly */
|
3899 |
|
|
*status|=DEC_Rounded; /* [but exact] */
|
3900 |
|
|
}
|
3901 |
|
|
res->digits=decShiftToMost(res->lsu, res->digits, -adjust);
|
3902 |
|
|
res->exponent+=adjust; /* set the exponent. */
|
3903 |
|
|
}
|
3904 |
|
|
#if DECSUBSET
|
3905 |
|
|
} /* extended */
|
3906 |
|
|
#endif
|
3907 |
|
|
decFinish(res, set, &residue, status); /* clean and finalize */
|
3908 |
|
|
break;}
|
3909 |
|
|
|
3910 |
|
|
/* [NB: both fastpath and mainpath code below assume these cases */
|
3911 |
|
|
/* (notably 0-0) have already been handled] */
|
3912 |
|
|
|
3913 |
|
|
/* calculate the padding needed to align the operands */
|
3914 |
|
|
padding=rhs->exponent-lhs->exponent;
|
3915 |
|
|
|
3916 |
|
|
/* Fastpath cases where the numbers are aligned and normal, the RHS */
|
3917 |
|
|
/* is all in one unit, no operand rounding is needed, and no carry, */
|
3918 |
|
|
/* lengthening, or borrow is needed */
|
3919 |
|
|
if (padding==0
|
3920 |
|
|
&& rhs->digits<=DECDPUN
|
3921 |
|
|
&& rhs->exponent>=set->emin /* [some normals drop through] */
|
3922 |
|
|
&& rhs->exponent<=set->emax-set->digits+1 /* [could clamp] */
|
3923 |
|
|
&& rhs->digits<=reqdigits
|
3924 |
|
|
&& lhs->digits<=reqdigits) {
|
3925 |
|
|
Int partial=*lhs->lsu;
|
3926 |
|
|
if (!diffsign) { /* adding */
|
3927 |
|
|
partial+=*rhs->lsu;
|
3928 |
|
|
if ((partial<=DECDPUNMAX) /* result fits in unit */
|
3929 |
|
|
&& (lhs->digits>=DECDPUN || /* .. and no digits-count change */
|
3930 |
|
|
partial<(Int)powers[lhs->digits])) { /* .. */
|
3931 |
|
|
if (res!=lhs) decNumberCopy(res, lhs); /* not in place */
|
3932 |
|
|
*res->lsu=(Unit)partial; /* [copy could have overwritten RHS] */
|
3933 |
|
|
break;
|
3934 |
|
|
}
|
3935 |
|
|
/* else drop out for careful add */
|
3936 |
|
|
}
|
3937 |
|
|
else { /* signs differ */
|
3938 |
|
|
partial-=*rhs->lsu;
|
3939 |
|
|
if (partial>0) { /* no borrow needed, and non-0 result */
|
3940 |
|
|
if (res!=lhs) decNumberCopy(res, lhs); /* not in place */
|
3941 |
|
|
*res->lsu=(Unit)partial;
|
3942 |
|
|
/* this could have reduced digits [but result>0] */
|
3943 |
|
|
res->digits=decGetDigits(res->lsu, D2U(res->digits));
|
3944 |
|
|
break;
|
3945 |
|
|
}
|
3946 |
|
|
/* else drop out for careful subtract */
|
3947 |
|
|
}
|
3948 |
|
|
}
|
3949 |
|
|
|
3950 |
|
|
/* Now align (pad) the lhs or rhs so they can be added or */
|
3951 |
|
|
/* subtracted, as necessary. If one number is much larger than */
|
3952 |
|
|
/* the other (that is, if in plain form there is a least one */
|
3953 |
|
|
/* digit between the lowest digit of one and the highest of the */
|
3954 |
|
|
/* other) padding with up to DIGITS-1 trailing zeros may be */
|
3955 |
|
|
/* needed; then apply rounding (as exotic rounding modes may be */
|
3956 |
|
|
/* affected by the residue). */
|
3957 |
|
|
rhsshift=0; /* rhs shift to left (padding) in Units */
|
3958 |
|
|
bits=lhs->bits; /* assume sign is that of LHS */
|
3959 |
|
|
mult=1; /* likely multiplier */
|
3960 |
|
|
|
3961 |
|
|
/* [if padding==0 the operands are aligned; no padding is needed] */
|
3962 |
|
|
if (padding!=0) {
|
3963 |
|
|
/* some padding needed; always pad the RHS, as any required */
|
3964 |
|
|
/* padding can then be effected by a simple combination of */
|
3965 |
|
|
/* shifts and a multiply */
|
3966 |
|
|
Flag swapped=0;
|
3967 |
|
|
if (padding<0) { /* LHS needs the padding */
|
3968 |
|
|
const decNumber *t;
|
3969 |
|
|
padding=-padding; /* will be +ve */
|
3970 |
|
|
bits=(uByte)(rhs->bits^negate); /* assumed sign is now that of RHS */
|
3971 |
|
|
t=lhs; lhs=rhs; rhs=t;
|
3972 |
|
|
swapped=1;
|
3973 |
|
|
}
|
3974 |
|
|
|
3975 |
|
|
/* If, after pad, rhs would be longer than lhs by digits+1 or */
|
3976 |
|
|
/* more then lhs cannot affect the answer, except as a residue, */
|
3977 |
|
|
/* so only need to pad up to a length of DIGITS+1. */
|
3978 |
|
|
if (rhs->digits+padding > lhs->digits+reqdigits+1) {
|
3979 |
|
|
/* The RHS is sufficient */
|
3980 |
|
|
/* for residue use the relative sign indication... */
|
3981 |
|
|
Int shift=reqdigits-rhs->digits; /* left shift needed */
|
3982 |
|
|
residue=1; /* residue for rounding */
|
3983 |
|
|
if (diffsign) residue=-residue; /* signs differ */
|
3984 |
|
|
/* copy, shortening if necessary */
|
3985 |
|
|
decCopyFit(res, rhs, set, &residue, status);
|
3986 |
|
|
/* if it was already shorter, then need to pad with zeros */
|
3987 |
|
|
if (shift>0) {
|
3988 |
|
|
res->digits=decShiftToMost(res->lsu, res->digits, shift);
|
3989 |
|
|
res->exponent-=shift; /* adjust the exponent. */
|
3990 |
|
|
}
|
3991 |
|
|
/* flip the result sign if unswapped and rhs was negated */
|
3992 |
|
|
if (!swapped) res->bits^=negate;
|
3993 |
|
|
decFinish(res, set, &residue, status); /* done */
|
3994 |
|
|
break;}
|
3995 |
|
|
|
3996 |
|
|
/* LHS digits may affect result */
|
3997 |
|
|
rhsshift=D2U(padding+1)-1; /* this much by Unit shift .. */
|
3998 |
|
|
mult=powers[padding-(rhsshift*DECDPUN)]; /* .. this by multiplication */
|
3999 |
|
|
} /* padding needed */
|
4000 |
|
|
|
4001 |
|
|
if (diffsign) mult=-mult; /* signs differ */
|
4002 |
|
|
|
4003 |
|
|
/* determine the longer operand */
|
4004 |
|
|
maxdigits=rhs->digits+padding; /* virtual length of RHS */
|
4005 |
|
|
if (lhs->digits>maxdigits) maxdigits=lhs->digits;
|
4006 |
|
|
|
4007 |
|
|
/* Decide on the result buffer to use; if possible place directly */
|
4008 |
|
|
/* into result. */
|
4009 |
|
|
acc=res->lsu; /* assume add direct to result */
|
4010 |
|
|
/* If destructive overlap, or the number is too long, or a carry or */
|
4011 |
|
|
/* borrow to DIGITS+1 might be possible, a buffer must be used. */
|
4012 |
|
|
/* [Might be worth more sophisticated tests when maxdigits==reqdigits] */
|
4013 |
|
|
if ((maxdigits>=reqdigits) /* is, or could be, too large */
|
4014 |
|
|
|| (res==rhs && rhsshift>0)) { /* destructive overlap */
|
4015 |
|
|
/* buffer needed, choose it; units for maxdigits digits will be */
|
4016 |
|
|
/* needed, +1 Unit for carry or borrow */
|
4017 |
|
|
Int need=D2U(maxdigits)+1;
|
4018 |
|
|
acc=accbuff; /* assume use local buffer */
|
4019 |
|
|
if (need*sizeof(Unit)>sizeof(accbuff)) {
|
4020 |
|
|
/* printf("malloc add %ld %ld\n", need, sizeof(accbuff)); */
|
4021 |
|
|
allocacc=(Unit *)malloc(need*sizeof(Unit));
|
4022 |
|
|
if (allocacc==NULL) { /* hopeless -- abandon */
|
4023 |
|
|
*status|=DEC_Insufficient_storage;
|
4024 |
|
|
break;}
|
4025 |
|
|
acc=allocacc;
|
4026 |
|
|
}
|
4027 |
|
|
}
|
4028 |
|
|
|
4029 |
|
|
res->bits=(uByte)(bits&DECNEG); /* it's now safe to overwrite.. */
|
4030 |
|
|
res->exponent=lhs->exponent; /* .. operands (even if aliased) */
|
4031 |
|
|
|
4032 |
|
|
#if DECTRACE
|
4033 |
|
|
decDumpAr('A', lhs->lsu, D2U(lhs->digits));
|
4034 |
|
|
decDumpAr('B', rhs->lsu, D2U(rhs->digits));
|
4035 |
|
|
printf(" :h: %ld %ld\n", rhsshift, mult);
|
4036 |
|
|
#endif
|
4037 |
|
|
|
4038 |
|
|
/* add [A+B*m] or subtract [A+B*(-m)] */
|
4039 |
|
|
res->digits=decUnitAddSub(lhs->lsu, D2U(lhs->digits),
|
4040 |
|
|
rhs->lsu, D2U(rhs->digits),
|
4041 |
|
|
rhsshift, acc, mult)
|
4042 |
|
|
*DECDPUN; /* [units -> digits] */
|
4043 |
|
|
if (res->digits<0) { /* borrowed... */
|
4044 |
|
|
res->digits=-res->digits;
|
4045 |
|
|
res->bits^=DECNEG; /* flip the sign */
|
4046 |
|
|
}
|
4047 |
|
|
#if DECTRACE
|
4048 |
|
|
decDumpAr('+', acc, D2U(res->digits));
|
4049 |
|
|
#endif
|
4050 |
|
|
|
4051 |
|
|
/* If a buffer was used the result must be copied back, possibly */
|
4052 |
|
|
/* shortening. (If no buffer was used then the result must have */
|
4053 |
|
|
/* fit, so can't need rounding and residue must be 0.) */
|
4054 |
|
|
residue=0; /* clear accumulator */
|
4055 |
|
|
if (acc!=res->lsu) {
|
4056 |
|
|
#if DECSUBSET
|
4057 |
|
|
if (set->extended) { /* round from first significant digit */
|
4058 |
|
|
#endif
|
4059 |
|
|
/* remove leading zeros that were added due to rounding up to */
|
4060 |
|
|
/* integral Units -- before the test for rounding. */
|
4061 |
|
|
if (res->digits>reqdigits)
|
4062 |
|
|
res->digits=decGetDigits(acc, D2U(res->digits));
|
4063 |
|
|
decSetCoeff(res, set, acc, res->digits, &residue, status);
|
4064 |
|
|
#if DECSUBSET
|
4065 |
|
|
}
|
4066 |
|
|
else { /* subset arithmetic rounds from original significant digit */
|
4067 |
|
|
/* May have an underestimate. This only occurs when both */
|
4068 |
|
|
/* numbers fit in DECDPUN digits and are padding with a */
|
4069 |
|
|
/* negative multiple (-10, -100...) and the top digit(s) become */
|
4070 |
|
|
/* 0. (This only matters when using X3.274 rules where the */
|
4071 |
|
|
/* leading zero could be included in the rounding.) */
|
4072 |
|
|
if (res->digits<maxdigits) {
|
4073 |
|
|
*(acc+D2U(res->digits))=0; /* ensure leading 0 is there */
|
4074 |
|
|
res->digits=maxdigits;
|
4075 |
|
|
}
|
4076 |
|
|
else {
|
4077 |
|
|
/* remove leading zeros that added due to rounding up to */
|
4078 |
|
|
/* integral Units (but only those in excess of the original */
|
4079 |
|
|
/* maxdigits length, unless extended) before test for rounding. */
|
4080 |
|
|
if (res->digits>reqdigits) {
|
4081 |
|
|
res->digits=decGetDigits(acc, D2U(res->digits));
|
4082 |
|
|
if (res->digits<maxdigits) res->digits=maxdigits;
|
4083 |
|
|
}
|
4084 |
|
|
}
|
4085 |
|
|
decSetCoeff(res, set, acc, res->digits, &residue, status);
|
4086 |
|
|
/* Now apply rounding if needed before removing leading zeros. */
|
4087 |
|
|
/* This is safe because subnormals are not a possibility */
|
4088 |
|
|
if (residue!=0) {
|
4089 |
|
|
decApplyRound(res, set, residue, status);
|
4090 |
|
|
residue=0; /* did what needed to be done */
|
4091 |
|
|
}
|
4092 |
|
|
} /* subset */
|
4093 |
|
|
#endif
|
4094 |
|
|
} /* used buffer */
|
4095 |
|
|
|
4096 |
|
|
/* strip leading zeros [these were left on in case of subset subtract] */
|
4097 |
|
|
res->digits=decGetDigits(res->lsu, D2U(res->digits));
|
4098 |
|
|
|
4099 |
|
|
/* apply checks and rounding */
|
4100 |
|
|
decFinish(res, set, &residue, status);
|
4101 |
|
|
|
4102 |
|
|
/* "When the sum of two operands with opposite signs is exactly */
|
4103 |
|
|
/* zero, the sign of that sum shall be '+' in all rounding modes */
|
4104 |
|
|
/* except round toward -Infinity, in which mode that sign shall be */
|
4105 |
|
|
/* '-'." [Subset zeros also never have '-', set by decFinish.] */
|
4106 |
|
|
if (ISZERO(res) && diffsign
|
4107 |
|
|
#if DECSUBSET
|
4108 |
|
|
&& set->extended
|
4109 |
|
|
#endif
|
4110 |
|
|
&& (*status&DEC_Inexact)==0) {
|
4111 |
|
|
if (set->round==DEC_ROUND_FLOOR) res->bits|=DECNEG; /* sign - */
|
4112 |
|
|
else res->bits&=~DECNEG; /* sign + */
|
4113 |
|
|
}
|
4114 |
|
|
} while(0); /* end protected */
|
4115 |
|
|
|
4116 |
|
|
if (allocacc!=NULL) free(allocacc); /* drop any storage used */
|
4117 |
|
|
#if DECSUBSET
|
4118 |
|
|
if (allocrhs!=NULL) free(allocrhs); /* .. */
|
4119 |
|
|
if (alloclhs!=NULL) free(alloclhs); /* .. */
|
4120 |
|
|
#endif
|
4121 |
|
|
return res;
|
4122 |
|
|
} /* decAddOp */
|
4123 |
|
|
|
4124 |
|
|
/* ------------------------------------------------------------------ */
|
4125 |
|
|
/* decDivideOp -- division operation */
|
4126 |
|
|
/* */
|
4127 |
|
|
/* This routine performs the calculations for all four division */
|
4128 |
|
|
/* operators (divide, divideInteger, remainder, remainderNear). */
|
4129 |
|
|
/* */
|
4130 |
|
|
/* C=A op B */
|
4131 |
|
|
/* */
|
4132 |
|
|
/* res is C, the result. C may be A and/or B (e.g., X=X/X) */
|
4133 |
|
|
/* lhs is A */
|
4134 |
|
|
/* rhs is B */
|
4135 |
|
|
/* set is the context */
|
4136 |
|
|
/* op is DIVIDE, DIVIDEINT, REMAINDER, or REMNEAR respectively. */
|
4137 |
|
|
/* status is the usual accumulator */
|
4138 |
|
|
/* */
|
4139 |
|
|
/* C must have space for set->digits digits. */
|
4140 |
|
|
/* */
|
4141 |
|
|
/* ------------------------------------------------------------------ */
|
4142 |
|
|
/* The underlying algorithm of this routine is the same as in the */
|
4143 |
|
|
/* 1981 S/370 implementation, that is, non-restoring long division */
|
4144 |
|
|
/* with bi-unit (rather than bi-digit) estimation for each unit */
|
4145 |
|
|
/* multiplier. In this pseudocode overview, complications for the */
|
4146 |
|
|
/* Remainder operators and division residues for exact rounding are */
|
4147 |
|
|
/* omitted for clarity. */
|
4148 |
|
|
/* */
|
4149 |
|
|
/* Prepare operands and handle special values */
|
4150 |
|
|
/* Test for x/0 and then 0/x */
|
4151 |
|
|
/* Exp =Exp1 - Exp2 */
|
4152 |
|
|
/* Exp =Exp +len(var1) -len(var2) */
|
4153 |
|
|
/* Sign=Sign1 * Sign2 */
|
4154 |
|
|
/* Pad accumulator (Var1) to double-length with 0's (pad1) */
|
4155 |
|
|
/* Pad Var2 to same length as Var1 */
|
4156 |
|
|
/* msu2pair/plus=1st 2 or 1 units of var2, +1 to allow for round */
|
4157 |
|
|
/* have=0 */
|
4158 |
|
|
/* Do until (have=digits+1 OR residue=0) */
|
4159 |
|
|
/* if exp<0 then if integer divide/residue then leave */
|
4160 |
|
|
/* this_unit=0 */
|
4161 |
|
|
/* Do forever */
|
4162 |
|
|
/* compare numbers */
|
4163 |
|
|
/* if <0 then leave inner_loop */
|
4164 |
|
|
/* if =0 then (* quick exit without subtract *) do */
|
4165 |
|
|
/* this_unit=this_unit+1; output this_unit */
|
4166 |
|
|
/* leave outer_loop; end */
|
4167 |
|
|
/* Compare lengths of numbers (mantissae): */
|
4168 |
|
|
/* If same then tops2=msu2pair -- {units 1&2 of var2} */
|
4169 |
|
|
/* else tops2=msu2plus -- {0, unit 1 of var2} */
|
4170 |
|
|
/* tops1=first_unit_of_Var1*10**DECDPUN +second_unit_of_var1 */
|
4171 |
|
|
/* mult=tops1/tops2 -- Good and safe guess at divisor */
|
4172 |
|
|
/* if mult=0 then mult=1 */
|
4173 |
|
|
/* this_unit=this_unit+mult */
|
4174 |
|
|
/* subtract */
|
4175 |
|
|
/* end inner_loop */
|
4176 |
|
|
/* if have\=0 | this_unit\=0 then do */
|
4177 |
|
|
/* output this_unit */
|
4178 |
|
|
/* have=have+1; end */
|
4179 |
|
|
/* var2=var2/10 */
|
4180 |
|
|
/* exp=exp-1 */
|
4181 |
|
|
/* end outer_loop */
|
4182 |
|
|
/* exp=exp+1 -- set the proper exponent */
|
4183 |
|
|
/* if have=0 then generate answer=0 */
|
4184 |
|
|
/* Return (Result is defined by Var1) */
|
4185 |
|
|
/* */
|
4186 |
|
|
/* ------------------------------------------------------------------ */
|
4187 |
|
|
/* Two working buffers are needed during the division; one (digits+ */
|
4188 |
|
|
/* 1) to accumulate the result, and the other (up to 2*digits+1) for */
|
4189 |
|
|
/* long subtractions. These are acc and var1 respectively. */
|
4190 |
|
|
/* var1 is a copy of the lhs coefficient, var2 is the rhs coefficient.*/
|
4191 |
|
|
/* The static buffers may be larger than might be expected to allow */
|
4192 |
|
|
/* for calls from higher-level funtions (notable exp). */
|
4193 |
|
|
/* ------------------------------------------------------------------ */
|
4194 |
|
|
static decNumber * decDivideOp(decNumber *res,
|
4195 |
|
|
const decNumber *lhs, const decNumber *rhs,
|
4196 |
|
|
decContext *set, Flag op, uInt *status) {
|
4197 |
|
|
#if DECSUBSET
|
4198 |
|
|
decNumber *alloclhs=NULL; /* non-NULL if rounded lhs allocated */
|
4199 |
|
|
decNumber *allocrhs=NULL; /* .., rhs */
|
4200 |
|
|
#endif
|
4201 |
|
|
Unit accbuff[SD2U(DECBUFFER+DECDPUN+10)]; /* local buffer */
|
4202 |
|
|
Unit *acc=accbuff; /* -> accumulator array for result */
|
4203 |
|
|
Unit *allocacc=NULL; /* -> allocated buffer, iff allocated */
|
4204 |
|
|
Unit *accnext; /* -> where next digit will go */
|
4205 |
|
|
Int acclength; /* length of acc needed [Units] */
|
4206 |
|
|
Int accunits; /* count of units accumulated */
|
4207 |
|
|
Int accdigits; /* count of digits accumulated */
|
4208 |
|
|
|
4209 |
|
|
Unit varbuff[SD2U(DECBUFFER*2+DECDPUN)*sizeof(Unit)]; /* buffer for var1 */
|
4210 |
|
|
Unit *var1=varbuff; /* -> var1 array for long subtraction */
|
4211 |
|
|
Unit *varalloc=NULL; /* -> allocated buffer, iff used */
|
4212 |
|
|
Unit *msu1; /* -> msu of var1 */
|
4213 |
|
|
|
4214 |
|
|
const Unit *var2; /* -> var2 array */
|
4215 |
|
|
const Unit *msu2; /* -> msu of var2 */
|
4216 |
|
|
Int msu2plus; /* msu2 plus one [does not vary] */
|
4217 |
|
|
eInt msu2pair; /* msu2 pair plus one [does not vary] */
|
4218 |
|
|
|
4219 |
|
|
Int var1units, var2units; /* actual lengths */
|
4220 |
|
|
Int var2ulen; /* logical length (units) */
|
4221 |
|
|
Int var1initpad=0; /* var1 initial padding (digits) */
|
4222 |
|
|
Int maxdigits; /* longest LHS or required acc length */
|
4223 |
|
|
Int mult; /* multiplier for subtraction */
|
4224 |
|
|
Unit thisunit; /* current unit being accumulated */
|
4225 |
|
|
Int residue; /* for rounding */
|
4226 |
|
|
Int reqdigits=set->digits; /* requested DIGITS */
|
4227 |
|
|
Int exponent; /* working exponent */
|
4228 |
|
|
Int maxexponent=0; /* DIVIDE maximum exponent if unrounded */
|
4229 |
|
|
uByte bits; /* working sign */
|
4230 |
|
|
Unit *target; /* work */
|
4231 |
|
|
const Unit *source; /* .. */
|
4232 |
|
|
uInt const *pow; /* .. */
|
4233 |
|
|
Int shift, cut; /* .. */
|
4234 |
|
|
#if DECSUBSET
|
4235 |
|
|
Int dropped; /* work */
|
4236 |
|
|
#endif
|
4237 |
|
|
|
4238 |
|
|
#if DECCHECK
|
4239 |
|
|
if (decCheckOperands(res, lhs, rhs, set)) return res;
|
4240 |
|
|
#endif
|
4241 |
|
|
|
4242 |
|
|
do { /* protect allocated storage */
|
4243 |
|
|
#if DECSUBSET
|
4244 |
|
|
if (!set->extended) {
|
4245 |
|
|
/* reduce operands and set lostDigits status, as needed */
|
4246 |
|
|
if (lhs->digits>reqdigits) {
|
4247 |
|
|
alloclhs=decRoundOperand(lhs, set, status);
|
4248 |
|
|
if (alloclhs==NULL) break;
|
4249 |
|
|
lhs=alloclhs;
|
4250 |
|
|
}
|
4251 |
|
|
if (rhs->digits>reqdigits) {
|
4252 |
|
|
allocrhs=decRoundOperand(rhs, set, status);
|
4253 |
|
|
if (allocrhs==NULL) break;
|
4254 |
|
|
rhs=allocrhs;
|
4255 |
|
|
}
|
4256 |
|
|
}
|
4257 |
|
|
#endif
|
4258 |
|
|
/* [following code does not require input rounding] */
|
4259 |
|
|
|
4260 |
|
|
bits=(lhs->bits^rhs->bits)&DECNEG; /* assumed sign for divisions */
|
4261 |
|
|
|
4262 |
|
|
/* handle infinities and NaNs */
|
4263 |
|
|
if (SPECIALARGS) { /* a special bit set */
|
4264 |
|
|
if (SPECIALARGS & (DECSNAN | DECNAN)) { /* one or two NaNs */
|
4265 |
|
|
decNaNs(res, lhs, rhs, set, status);
|
4266 |
|
|
break;
|
4267 |
|
|
}
|
4268 |
|
|
/* one or two infinities */
|
4269 |
|
|
if (decNumberIsInfinite(lhs)) { /* LHS (dividend) is infinite */
|
4270 |
|
|
if (decNumberIsInfinite(rhs) || /* two infinities are invalid .. */
|
4271 |
|
|
op & (REMAINDER | REMNEAR)) { /* as is remainder of infinity */
|
4272 |
|
|
*status|=DEC_Invalid_operation;
|
4273 |
|
|
break;
|
4274 |
|
|
}
|
4275 |
|
|
/* [Note that infinity/0 raises no exceptions] */
|
4276 |
|
|
decNumberZero(res);
|
4277 |
|
|
res->bits=bits|DECINF; /* set +/- infinity */
|
4278 |
|
|
break;
|
4279 |
|
|
}
|
4280 |
|
|
else { /* RHS (divisor) is infinite */
|
4281 |
|
|
residue=0;
|
4282 |
|
|
if (op&(REMAINDER|REMNEAR)) {
|
4283 |
|
|
/* result is [finished clone of] lhs */
|
4284 |
|
|
decCopyFit(res, lhs, set, &residue, status);
|
4285 |
|
|
}
|
4286 |
|
|
else { /* a division */
|
4287 |
|
|
decNumberZero(res);
|
4288 |
|
|
res->bits=bits; /* set +/- zero */
|
4289 |
|
|
/* for DIVIDEINT the exponent is always 0. For DIVIDE, result */
|
4290 |
|
|
/* is a 0 with infinitely negative exponent, clamped to minimum */
|
4291 |
|
|
if (op&DIVIDE) {
|
4292 |
|
|
res->exponent=set->emin-set->digits+1;
|
4293 |
|
|
*status|=DEC_Clamped;
|
4294 |
|
|
}
|
4295 |
|
|
}
|
4296 |
|
|
decFinish(res, set, &residue, status);
|
4297 |
|
|
break;
|
4298 |
|
|
}
|
4299 |
|
|
}
|
4300 |
|
|
|
4301 |
|
|
/* handle 0 rhs (x/0) */
|
4302 |
|
|
if (ISZERO(rhs)) { /* x/0 is always exceptional */
|
4303 |
|
|
if (ISZERO(lhs)) {
|
4304 |
|
|
decNumberZero(res); /* [after lhs test] */
|
4305 |
|
|
*status|=DEC_Division_undefined;/* 0/0 will become NaN */
|
4306 |
|
|
}
|
4307 |
|
|
else {
|
4308 |
|
|
decNumberZero(res);
|
4309 |
|
|
if (op&(REMAINDER|REMNEAR)) *status|=DEC_Invalid_operation;
|
4310 |
|
|
else {
|
4311 |
|
|
*status|=DEC_Division_by_zero; /* x/0 */
|
4312 |
|
|
res->bits=bits|DECINF; /* .. is +/- Infinity */
|
4313 |
|
|
}
|
4314 |
|
|
}
|
4315 |
|
|
break;}
|
4316 |
|
|
|
4317 |
|
|
/* handle 0 lhs (0/x) */
|
4318 |
|
|
if (ISZERO(lhs)) { /* 0/x [x!=0] */
|
4319 |
|
|
#if DECSUBSET
|
4320 |
|
|
if (!set->extended) decNumberZero(res);
|
4321 |
|
|
else {
|
4322 |
|
|
#endif
|
4323 |
|
|
if (op&DIVIDE) {
|
4324 |
|
|
residue=0;
|
4325 |
|
|
exponent=lhs->exponent-rhs->exponent; /* ideal exponent */
|
4326 |
|
|
decNumberCopy(res, lhs); /* [zeros always fit] */
|
4327 |
|
|
res->bits=bits; /* sign as computed */
|
4328 |
|
|
res->exponent=exponent; /* exponent, too */
|
4329 |
|
|
decFinalize(res, set, &residue, status); /* check exponent */
|
4330 |
|
|
}
|
4331 |
|
|
else if (op&DIVIDEINT) {
|
4332 |
|
|
decNumberZero(res); /* integer 0 */
|
4333 |
|
|
res->bits=bits; /* sign as computed */
|
4334 |
|
|
}
|
4335 |
|
|
else { /* a remainder */
|
4336 |
|
|
exponent=rhs->exponent; /* [save in case overwrite] */
|
4337 |
|
|
decNumberCopy(res, lhs); /* [zeros always fit] */
|
4338 |
|
|
if (exponent<res->exponent) res->exponent=exponent; /* use lower */
|
4339 |
|
|
}
|
4340 |
|
|
#if DECSUBSET
|
4341 |
|
|
}
|
4342 |
|
|
#endif
|
4343 |
|
|
break;}
|
4344 |
|
|
|
4345 |
|
|
/* Precalculate exponent. This starts off adjusted (and hence fits */
|
4346 |
|
|
/* in 31 bits) and becomes the usual unadjusted exponent as the */
|
4347 |
|
|
/* division proceeds. The order of evaluation is important, here, */
|
4348 |
|
|
/* to avoid wrap. */
|
4349 |
|
|
exponent=(lhs->exponent+lhs->digits)-(rhs->exponent+rhs->digits);
|
4350 |
|
|
|
4351 |
|
|
/* If the working exponent is -ve, then some quick exits are */
|
4352 |
|
|
/* possible because the quotient is known to be <1 */
|
4353 |
|
|
/* [for REMNEAR, it needs to be < -1, as -0.5 could need work] */
|
4354 |
|
|
if (exponent<0 && !(op==DIVIDE)) {
|
4355 |
|
|
if (op&DIVIDEINT) {
|
4356 |
|
|
decNumberZero(res); /* integer part is 0 */
|
4357 |
|
|
#if DECSUBSET
|
4358 |
|
|
if (set->extended)
|
4359 |
|
|
#endif
|
4360 |
|
|
res->bits=bits; /* set +/- zero */
|
4361 |
|
|
break;}
|
4362 |
|
|
/* fastpath remainders so long as the lhs has the smaller */
|
4363 |
|
|
/* (or equal) exponent */
|
4364 |
|
|
if (lhs->exponent<=rhs->exponent) {
|
4365 |
|
|
if (op&REMAINDER || exponent<-1) {
|
4366 |
|
|
/* It is REMAINDER or safe REMNEAR; result is [finished */
|
4367 |
|
|
/* clone of] lhs (r = x - 0*y) */
|
4368 |
|
|
residue=0;
|
4369 |
|
|
decCopyFit(res, lhs, set, &residue, status);
|
4370 |
|
|
decFinish(res, set, &residue, status);
|
4371 |
|
|
break;
|
4372 |
|
|
}
|
4373 |
|
|
/* [unsafe REMNEAR drops through] */
|
4374 |
|
|
}
|
4375 |
|
|
} /* fastpaths */
|
4376 |
|
|
|
4377 |
|
|
/* Long (slow) division is needed; roll up the sleeves... */
|
4378 |
|
|
|
4379 |
|
|
/* The accumulator will hold the quotient of the division. */
|
4380 |
|
|
/* If it needs to be too long for stack storage, then allocate. */
|
4381 |
|
|
acclength=D2U(reqdigits+DECDPUN); /* in Units */
|
4382 |
|
|
if (acclength*sizeof(Unit)>sizeof(accbuff)) {
|
4383 |
|
|
/* printf("malloc dvacc %ld units\n", acclength); */
|
4384 |
|
|
allocacc=(Unit *)malloc(acclength*sizeof(Unit));
|
4385 |
|
|
if (allocacc==NULL) { /* hopeless -- abandon */
|
4386 |
|
|
*status|=DEC_Insufficient_storage;
|
4387 |
|
|
break;}
|
4388 |
|
|
acc=allocacc; /* use the allocated space */
|
4389 |
|
|
}
|
4390 |
|
|
|
4391 |
|
|
/* var1 is the padded LHS ready for subtractions. */
|
4392 |
|
|
/* If it needs to be too long for stack storage, then allocate. */
|
4393 |
|
|
/* The maximum units needed for var1 (long subtraction) is: */
|
4394 |
|
|
/* Enough for */
|
4395 |
|
|
/* (rhs->digits+reqdigits-1) -- to allow full slide to right */
|
4396 |
|
|
/* or (lhs->digits) -- to allow for long lhs */
|
4397 |
|
|
/* whichever is larger */
|
4398 |
|
|
/* +1 -- for rounding of slide to right */
|
4399 |
|
|
/* +1 -- for leading 0s */
|
4400 |
|
|
/* +1 -- for pre-adjust if a remainder or DIVIDEINT */
|
4401 |
|
|
/* [Note: unused units do not participate in decUnitAddSub data] */
|
4402 |
|
|
maxdigits=rhs->digits+reqdigits-1;
|
4403 |
|
|
if (lhs->digits>maxdigits) maxdigits=lhs->digits;
|
4404 |
|
|
var1units=D2U(maxdigits)+2;
|
4405 |
|
|
/* allocate a guard unit above msu1 for REMAINDERNEAR */
|
4406 |
|
|
if (!(op&DIVIDE)) var1units++;
|
4407 |
|
|
if ((var1units+1)*sizeof(Unit)>sizeof(varbuff)) {
|
4408 |
|
|
/* printf("malloc dvvar %ld units\n", var1units+1); */
|
4409 |
|
|
varalloc=(Unit *)malloc((var1units+1)*sizeof(Unit));
|
4410 |
|
|
if (varalloc==NULL) { /* hopeless -- abandon */
|
4411 |
|
|
*status|=DEC_Insufficient_storage;
|
4412 |
|
|
break;}
|
4413 |
|
|
var1=varalloc; /* use the allocated space */
|
4414 |
|
|
}
|
4415 |
|
|
|
4416 |
|
|
/* Extend the lhs and rhs to full long subtraction length. The lhs */
|
4417 |
|
|
/* is truly extended into the var1 buffer, with 0 padding, so a */
|
4418 |
|
|
/* subtract in place is always possible. The rhs (var2) has */
|
4419 |
|
|
/* virtual padding (implemented by decUnitAddSub). */
|
4420 |
|
|
/* One guard unit was allocated above msu1 for rem=rem+rem in */
|
4421 |
|
|
/* REMAINDERNEAR. */
|
4422 |
|
|
msu1=var1+var1units-1; /* msu of var1 */
|
4423 |
|
|
source=lhs->lsu+D2U(lhs->digits)-1; /* msu of input array */
|
4424 |
|
|
for (target=msu1; source>=lhs->lsu; source--, target--) *target=*source;
|
4425 |
|
|
for (; target>=var1; target--) *target=0;
|
4426 |
|
|
|
4427 |
|
|
/* rhs (var2) is left-aligned with var1 at the start */
|
4428 |
|
|
var2ulen=var1units; /* rhs logical length (units) */
|
4429 |
|
|
var2units=D2U(rhs->digits); /* rhs actual length (units) */
|
4430 |
|
|
var2=rhs->lsu; /* -> rhs array */
|
4431 |
|
|
msu2=var2+var2units-1; /* -> msu of var2 [never changes] */
|
4432 |
|
|
/* now set up the variables which will be used for estimating the */
|
4433 |
|
|
/* multiplication factor. If these variables are not exact, add */
|
4434 |
|
|
/* 1 to make sure that the multiplier is never overestimated. */
|
4435 |
|
|
msu2plus=*msu2; /* it's value .. */
|
4436 |
|
|
if (var2units>1) msu2plus++; /* .. +1 if any more */
|
4437 |
|
|
msu2pair=(eInt)*msu2*(DECDPUNMAX+1);/* top two pair .. */
|
4438 |
|
|
if (var2units>1) { /* .. [else treat 2nd as 0] */
|
4439 |
|
|
msu2pair+=*(msu2-1); /* .. */
|
4440 |
|
|
if (var2units>2) msu2pair++; /* .. +1 if any more */
|
4441 |
|
|
}
|
4442 |
|
|
|
4443 |
|
|
/* The calculation is working in units, which may have leading zeros, */
|
4444 |
|
|
/* but the exponent was calculated on the assumption that they are */
|
4445 |
|
|
/* both left-aligned. Adjust the exponent to compensate: add the */
|
4446 |
|
|
/* number of leading zeros in var1 msu and subtract those in var2 msu. */
|
4447 |
|
|
/* [This is actually done by counting the digits and negating, as */
|
4448 |
|
|
/* lead1=DECDPUN-digits1, and similarly for lead2.] */
|
4449 |
|
|
for (pow=&powers[1]; *msu1>=*pow; pow++) exponent--;
|
4450 |
|
|
for (pow=&powers[1]; *msu2>=*pow; pow++) exponent++;
|
4451 |
|
|
|
4452 |
|
|
/* Now, if doing an integer divide or remainder, ensure that */
|
4453 |
|
|
/* the result will be Unit-aligned. To do this, shift the var1 */
|
4454 |
|
|
/* accumulator towards least if need be. (It's much easier to */
|
4455 |
|
|
/* do this now than to reassemble the residue afterwards, if */
|
4456 |
|
|
/* doing a remainder.) Also ensure the exponent is not negative. */
|
4457 |
|
|
if (!(op&DIVIDE)) {
|
4458 |
|
|
Unit *u; /* work */
|
4459 |
|
|
/* save the initial 'false' padding of var1, in digits */
|
4460 |
|
|
var1initpad=(var1units-D2U(lhs->digits))*DECDPUN;
|
4461 |
|
|
/* Determine the shift to do. */
|
4462 |
|
|
if (exponent<0) cut=-exponent;
|
4463 |
|
|
else cut=DECDPUN-exponent%DECDPUN;
|
4464 |
|
|
decShiftToLeast(var1, var1units, cut);
|
4465 |
|
|
exponent+=cut; /* maintain numerical value */
|
4466 |
|
|
var1initpad-=cut; /* .. and reduce padding */
|
4467 |
|
|
/* clean any most-significant units which were just emptied */
|
4468 |
|
|
for (u=msu1; cut>=DECDPUN; cut-=DECDPUN, u--) *u=0;
|
4469 |
|
|
} /* align */
|
4470 |
|
|
else { /* is DIVIDE */
|
4471 |
|
|
maxexponent=lhs->exponent-rhs->exponent; /* save */
|
4472 |
|
|
/* optimization: if the first iteration will just produce 0, */
|
4473 |
|
|
/* preadjust to skip it [valid for DIVIDE only] */
|
4474 |
|
|
if (*msu1<*msu2) {
|
4475 |
|
|
var2ulen--; /* shift down */
|
4476 |
|
|
exponent-=DECDPUN; /* update the exponent */
|
4477 |
|
|
}
|
4478 |
|
|
}
|
4479 |
|
|
|
4480 |
|
|
/* ---- start the long-division loops ------------------------------ */
|
4481 |
|
|
accunits=0; /* no units accumulated yet */
|
4482 |
|
|
accdigits=0; /* .. or digits */
|
4483 |
|
|
accnext=acc+acclength-1; /* -> msu of acc [NB: allows digits+1] */
|
4484 |
|
|
for (;;) { /* outer forever loop */
|
4485 |
|
|
thisunit=0; /* current unit assumed 0 */
|
4486 |
|
|
/* find the next unit */
|
4487 |
|
|
for (;;) { /* inner forever loop */
|
4488 |
|
|
/* strip leading zero units [from either pre-adjust or from */
|
4489 |
|
|
/* subtract last time around]. Leave at least one unit. */
|
4490 |
|
|
for (; *msu1==0 && msu1>var1; msu1--) var1units--;
|
4491 |
|
|
|
4492 |
|
|
if (var1units<var2ulen) break; /* var1 too low for subtract */
|
4493 |
|
|
if (var1units==var2ulen) { /* unit-by-unit compare needed */
|
4494 |
|
|
/* compare the two numbers, from msu */
|
4495 |
|
|
const Unit *pv1, *pv2;
|
4496 |
|
|
Unit v2; /* units to compare */
|
4497 |
|
|
pv2=msu2; /* -> msu */
|
4498 |
|
|
for (pv1=msu1; ; pv1--, pv2--) {
|
4499 |
|
|
/* v1=*pv1 -- always OK */
|
4500 |
|
|
v2=0; /* assume in padding */
|
4501 |
|
|
if (pv2>=var2) v2=*pv2; /* in range */
|
4502 |
|
|
if (*pv1!=v2) break; /* no longer the same */
|
4503 |
|
|
if (pv1==var1) break; /* done; leave pv1 as is */
|
4504 |
|
|
}
|
4505 |
|
|
/* here when all inspected or a difference seen */
|
4506 |
|
|
if (*pv1<v2) break; /* var1 too low to subtract */
|
4507 |
|
|
if (*pv1==v2) { /* var1 == var2 */
|
4508 |
|
|
/* reach here if var1 and var2 are identical; subtraction */
|
4509 |
|
|
/* would increase digit by one, and the residue will be 0 so */
|
4510 |
|
|
/* the calculation is done; leave the loop with residue=0. */
|
4511 |
|
|
thisunit++; /* as though subtracted */
|
4512 |
|
|
*var1=0; /* set var1 to 0 */
|
4513 |
|
|
var1units=1; /* .. */
|
4514 |
|
|
break; /* from inner */
|
4515 |
|
|
} /* var1 == var2 */
|
4516 |
|
|
/* *pv1>v2. Prepare for real subtraction; the lengths are equal */
|
4517 |
|
|
/* Estimate the multiplier (there's always a msu1-1)... */
|
4518 |
|
|
/* Bring in two units of var2 to provide a good estimate. */
|
4519 |
|
|
mult=(Int)(((eInt)*msu1*(DECDPUNMAX+1)+*(msu1-1))/msu2pair);
|
4520 |
|
|
} /* lengths the same */
|
4521 |
|
|
else { /* var1units > var2ulen, so subtraction is safe */
|
4522 |
|
|
/* The var2 msu is one unit towards the lsu of the var1 msu, */
|
4523 |
|
|
/* so only one unit for var2 can be used. */
|
4524 |
|
|
mult=(Int)(((eInt)*msu1*(DECDPUNMAX+1)+*(msu1-1))/msu2plus);
|
4525 |
|
|
}
|
4526 |
|
|
if (mult==0) mult=1; /* must always be at least 1 */
|
4527 |
|
|
/* subtraction needed; var1 is > var2 */
|
4528 |
|
|
thisunit=(Unit)(thisunit+mult); /* accumulate */
|
4529 |
|
|
/* subtract var1-var2, into var1; only the overlap needs */
|
4530 |
|
|
/* processing, as this is an in-place calculation */
|
4531 |
|
|
shift=var2ulen-var2units;
|
4532 |
|
|
#if DECTRACE
|
4533 |
|
|
decDumpAr('1', &var1[shift], var1units-shift);
|
4534 |
|
|
decDumpAr('2', var2, var2units);
|
4535 |
|
|
printf("m=%ld\n", -mult);
|
4536 |
|
|
#endif
|
4537 |
|
|
decUnitAddSub(&var1[shift], var1units-shift,
|
4538 |
|
|
var2, var2units, 0,
|
4539 |
|
|
&var1[shift], -mult);
|
4540 |
|
|
#if DECTRACE
|
4541 |
|
|
decDumpAr('#', &var1[shift], var1units-shift);
|
4542 |
|
|
#endif
|
4543 |
|
|
/* var1 now probably has leading zeros; these are removed at the */
|
4544 |
|
|
/* top of the inner loop. */
|
4545 |
|
|
} /* inner loop */
|
4546 |
|
|
|
4547 |
|
|
/* The next unit has been calculated in full; unless it's a */
|
4548 |
|
|
/* leading zero, add to acc */
|
4549 |
|
|
if (accunits!=0 || thisunit!=0) { /* is first or non-zero */
|
4550 |
|
|
*accnext=thisunit; /* store in accumulator */
|
4551 |
|
|
/* account exactly for the new digits */
|
4552 |
|
|
if (accunits==0) {
|
4553 |
|
|
accdigits++; /* at least one */
|
4554 |
|
|
for (pow=&powers[1]; thisunit>=*pow; pow++) accdigits++;
|
4555 |
|
|
}
|
4556 |
|
|
else accdigits+=DECDPUN;
|
4557 |
|
|
accunits++; /* update count */
|
4558 |
|
|
accnext--; /* ready for next */
|
4559 |
|
|
if (accdigits>reqdigits) break; /* have enough digits */
|
4560 |
|
|
}
|
4561 |
|
|
|
4562 |
|
|
/* if the residue is zero, the operation is done (unless divide */
|
4563 |
|
|
/* or divideInteger and still not enough digits yet) */
|
4564 |
|
|
if (*var1==0 && var1units==1) { /* residue is 0 */
|
4565 |
|
|
if (op&(REMAINDER|REMNEAR)) break;
|
4566 |
|
|
if ((op&DIVIDE) && (exponent<=maxexponent)) break;
|
4567 |
|
|
/* [drop through if divideInteger] */
|
4568 |
|
|
}
|
4569 |
|
|
/* also done enough if calculating remainder or integer */
|
4570 |
|
|
/* divide and just did the last ('units') unit */
|
4571 |
|
|
if (exponent==0 && !(op&DIVIDE)) break;
|
4572 |
|
|
|
4573 |
|
|
/* to get here, var1 is less than var2, so divide var2 by the per- */
|
4574 |
|
|
/* Unit power of ten and go for the next digit */
|
4575 |
|
|
var2ulen--; /* shift down */
|
4576 |
|
|
exponent-=DECDPUN; /* update the exponent */
|
4577 |
|
|
} /* outer loop */
|
4578 |
|
|
|
4579 |
|
|
/* ---- division is complete --------------------------------------- */
|
4580 |
|
|
/* here: acc has at least reqdigits+1 of good results (or fewer */
|
4581 |
|
|
/* if early stop), starting at accnext+1 (its lsu) */
|
4582 |
|
|
/* var1 has any residue at the stopping point */
|
4583 |
|
|
/* accunits is the number of digits collected in acc */
|
4584 |
|
|
if (accunits==0) { /* acc is 0 */
|
4585 |
|
|
accunits=1; /* show have a unit .. */
|
4586 |
|
|
accdigits=1; /* .. */
|
4587 |
|
|
*accnext=0; /* .. whose value is 0 */
|
4588 |
|
|
}
|
4589 |
|
|
else accnext++; /* back to last placed */
|
4590 |
|
|
/* accnext now -> lowest unit of result */
|
4591 |
|
|
|
4592 |
|
|
residue=0; /* assume no residue */
|
4593 |
|
|
if (op&DIVIDE) {
|
4594 |
|
|
/* record the presence of any residue, for rounding */
|
4595 |
|
|
if (*var1!=0 || var1units>1) residue=1;
|
4596 |
|
|
else { /* no residue */
|
4597 |
|
|
/* Had an exact division; clean up spurious trailing 0s. */
|
4598 |
|
|
/* There will be at most DECDPUN-1, from the final multiply, */
|
4599 |
|
|
/* and then only if the result is non-0 (and even) and the */
|
4600 |
|
|
/* exponent is 'loose'. */
|
4601 |
|
|
#if DECDPUN>1
|
4602 |
|
|
Unit lsu=*accnext;
|
4603 |
|
|
if (!(lsu&0x01) && (lsu!=0)) {
|
4604 |
|
|
/* count the trailing zeros */
|
4605 |
|
|
Int drop=0;
|
4606 |
|
|
for (;; drop++) { /* [will terminate because lsu!=0] */
|
4607 |
|
|
if (exponent>=maxexponent) break; /* don't chop real 0s */
|
4608 |
|
|
#if DECDPUN<=4
|
4609 |
|
|
if ((lsu-QUOT10(lsu, drop+1)
|
4610 |
|
|
*powers[drop+1])!=0) break; /* found non-0 digit */
|
4611 |
|
|
#else
|
4612 |
|
|
if (lsu%powers[drop+1]!=0) break; /* found non-0 digit */
|
4613 |
|
|
#endif
|
4614 |
|
|
exponent++;
|
4615 |
|
|
}
|
4616 |
|
|
if (drop>0) {
|
4617 |
|
|
accunits=decShiftToLeast(accnext, accunits, drop);
|
4618 |
|
|
accdigits=decGetDigits(accnext, accunits);
|
4619 |
|
|
accunits=D2U(accdigits);
|
4620 |
|
|
/* [exponent was adjusted in the loop] */
|
4621 |
|
|
}
|
4622 |
|
|
} /* neither odd nor 0 */
|
4623 |
|
|
#endif
|
4624 |
|
|
} /* exact divide */
|
4625 |
|
|
} /* divide */
|
4626 |
|
|
else /* op!=DIVIDE */ {
|
4627 |
|
|
/* check for coefficient overflow */
|
4628 |
|
|
if (accdigits+exponent>reqdigits) {
|
4629 |
|
|
*status|=DEC_Division_impossible;
|
4630 |
|
|
break;
|
4631 |
|
|
}
|
4632 |
|
|
if (op & (REMAINDER|REMNEAR)) {
|
4633 |
|
|
/* [Here, the exponent will be 0, because var1 was adjusted */
|
4634 |
|
|
/* appropriately.] */
|
4635 |
|
|
Int postshift; /* work */
|
4636 |
|
|
Flag wasodd=0; /* integer was odd */
|
4637 |
|
|
Unit *quotlsu; /* for save */
|
4638 |
|
|
Int quotdigits; /* .. */
|
4639 |
|
|
|
4640 |
|
|
bits=lhs->bits; /* remainder sign is always as lhs */
|
4641 |
|
|
|
4642 |
|
|
/* Fastpath when residue is truly 0 is worthwhile [and */
|
4643 |
|
|
/* simplifies the code below] */
|
4644 |
|
|
if (*var1==0 && var1units==1) { /* residue is 0 */
|
4645 |
|
|
Int exp=lhs->exponent; /* save min(exponents) */
|
4646 |
|
|
if (rhs->exponent<exp) exp=rhs->exponent;
|
4647 |
|
|
decNumberZero(res); /* 0 coefficient */
|
4648 |
|
|
#if DECSUBSET
|
4649 |
|
|
if (set->extended)
|
4650 |
|
|
#endif
|
4651 |
|
|
res->exponent=exp; /* .. with proper exponent */
|
4652 |
|
|
res->bits=(uByte)(bits&DECNEG); /* [cleaned] */
|
4653 |
|
|
decFinish(res, set, &residue, status); /* might clamp */
|
4654 |
|
|
break;
|
4655 |
|
|
}
|
4656 |
|
|
/* note if the quotient was odd */
|
4657 |
|
|
if (*accnext & 0x01) wasodd=1; /* acc is odd */
|
4658 |
|
|
quotlsu=accnext; /* save in case need to reinspect */
|
4659 |
|
|
quotdigits=accdigits; /* .. */
|
4660 |
|
|
|
4661 |
|
|
/* treat the residue, in var1, as the value to return, via acc */
|
4662 |
|
|
/* calculate the unused zero digits. This is the smaller of: */
|
4663 |
|
|
/* var1 initial padding (saved above) */
|
4664 |
|
|
/* var2 residual padding, which happens to be given by: */
|
4665 |
|
|
postshift=var1initpad+exponent-lhs->exponent+rhs->exponent;
|
4666 |
|
|
/* [the 'exponent' term accounts for the shifts during divide] */
|
4667 |
|
|
if (var1initpad<postshift) postshift=var1initpad;
|
4668 |
|
|
|
4669 |
|
|
/* shift var1 the requested amount, and adjust its digits */
|
4670 |
|
|
var1units=decShiftToLeast(var1, var1units, postshift);
|
4671 |
|
|
accnext=var1;
|
4672 |
|
|
accdigits=decGetDigits(var1, var1units);
|
4673 |
|
|
accunits=D2U(accdigits);
|
4674 |
|
|
|
4675 |
|
|
exponent=lhs->exponent; /* exponent is smaller of lhs & rhs */
|
4676 |
|
|
if (rhs->exponent<exponent) exponent=rhs->exponent;
|
4677 |
|
|
|
4678 |
|
|
/* Now correct the result if doing remainderNear; if it */
|
4679 |
|
|
/* (looking just at coefficients) is > rhs/2, or == rhs/2 and */
|
4680 |
|
|
/* the integer was odd then the result should be rem-rhs. */
|
4681 |
|
|
if (op&REMNEAR) {
|
4682 |
|
|
Int compare, tarunits; /* work */
|
4683 |
|
|
Unit *up; /* .. */
|
4684 |
|
|
/* calculate remainder*2 into the var1 buffer (which has */
|
4685 |
|
|
/* 'headroom' of an extra unit and hence enough space) */
|
4686 |
|
|
/* [a dedicated 'double' loop would be faster, here] */
|
4687 |
|
|
tarunits=decUnitAddSub(accnext, accunits, accnext, accunits,
|
4688 |
|
|
0, accnext, 1);
|
4689 |
|
|
/* decDumpAr('r', accnext, tarunits); */
|
4690 |
|
|
|
4691 |
|
|
/* Here, accnext (var1) holds tarunits Units with twice the */
|
4692 |
|
|
/* remainder's coefficient, which must now be compared to the */
|
4693 |
|
|
/* RHS. The remainder's exponent may be smaller than the RHS's. */
|
4694 |
|
|
compare=decUnitCompare(accnext, tarunits, rhs->lsu, D2U(rhs->digits),
|
4695 |
|
|
rhs->exponent-exponent);
|
4696 |
|
|
if (compare==BADINT) { /* deep trouble */
|
4697 |
|
|
*status|=DEC_Insufficient_storage;
|
4698 |
|
|
break;}
|
4699 |
|
|
|
4700 |
|
|
/* now restore the remainder by dividing by two; the lsu */
|
4701 |
|
|
/* is known to be even. */
|
4702 |
|
|
for (up=accnext; up<accnext+tarunits; up++) {
|
4703 |
|
|
Int half; /* half to add to lower unit */
|
4704 |
|
|
half=*up & 0x01;
|
4705 |
|
|
*up/=2; /* [shift] */
|
4706 |
|
|
if (!half) continue;
|
4707 |
|
|
*(up-1)+=(DECDPUNMAX+1)/2;
|
4708 |
|
|
}
|
4709 |
|
|
/* [accunits still describes the original remainder length] */
|
4710 |
|
|
|
4711 |
|
|
if (compare>0 || (compare==0 && wasodd)) { /* adjustment needed */
|
4712 |
|
|
Int exp, expunits, exprem; /* work */
|
4713 |
|
|
/* This is effectively causing round-up of the quotient, */
|
4714 |
|
|
/* so if it was the rare case where it was full and all */
|
4715 |
|
|
/* nines, it would overflow and hence division-impossible */
|
4716 |
|
|
/* should be raised */
|
4717 |
|
|
Flag allnines=0; /* 1 if quotient all nines */
|
4718 |
|
|
if (quotdigits==reqdigits) { /* could be borderline */
|
4719 |
|
|
for (up=quotlsu; ; up++) {
|
4720 |
|
|
if (quotdigits>DECDPUN) {
|
4721 |
|
|
if (*up!=DECDPUNMAX) break;/* non-nines */
|
4722 |
|
|
}
|
4723 |
|
|
else { /* this is the last Unit */
|
4724 |
|
|
if (*up==powers[quotdigits]-1) allnines=1;
|
4725 |
|
|
break;
|
4726 |
|
|
}
|
4727 |
|
|
quotdigits-=DECDPUN; /* checked those digits */
|
4728 |
|
|
} /* up */
|
4729 |
|
|
} /* borderline check */
|
4730 |
|
|
if (allnines) {
|
4731 |
|
|
*status|=DEC_Division_impossible;
|
4732 |
|
|
break;}
|
4733 |
|
|
|
4734 |
|
|
/* rem-rhs is needed; the sign will invert. Again, var1 */
|
4735 |
|
|
/* can safely be used for the working Units array. */
|
4736 |
|
|
exp=rhs->exponent-exponent; /* RHS padding needed */
|
4737 |
|
|
/* Calculate units and remainder from exponent. */
|
4738 |
|
|
expunits=exp/DECDPUN;
|
4739 |
|
|
exprem=exp%DECDPUN;
|
4740 |
|
|
/* subtract [A+B*(-m)]; the result will always be negative */
|
4741 |
|
|
accunits=-decUnitAddSub(accnext, accunits,
|
4742 |
|
|
rhs->lsu, D2U(rhs->digits),
|
4743 |
|
|
expunits, accnext, -(Int)powers[exprem]);
|
4744 |
|
|
accdigits=decGetDigits(accnext, accunits); /* count digits exactly */
|
4745 |
|
|
accunits=D2U(accdigits); /* and recalculate the units for copy */
|
4746 |
|
|
/* [exponent is as for original remainder] */
|
4747 |
|
|
bits^=DECNEG; /* flip the sign */
|
4748 |
|
|
}
|
4749 |
|
|
} /* REMNEAR */
|
4750 |
|
|
} /* REMAINDER or REMNEAR */
|
4751 |
|
|
} /* not DIVIDE */
|
4752 |
|
|
|
4753 |
|
|
/* Set exponent and bits */
|
4754 |
|
|
res->exponent=exponent;
|
4755 |
|
|
res->bits=(uByte)(bits&DECNEG); /* [cleaned] */
|
4756 |
|
|
|
4757 |
|
|
/* Now the coefficient. */
|
4758 |
|
|
decSetCoeff(res, set, accnext, accdigits, &residue, status);
|
4759 |
|
|
|
4760 |
|
|
decFinish(res, set, &residue, status); /* final cleanup */
|
4761 |
|
|
|
4762 |
|
|
#if DECSUBSET
|
4763 |
|
|
/* If a divide then strip trailing zeros if subset [after round] */
|
4764 |
|
|
if (!set->extended && (op==DIVIDE)) decTrim(res, set, 0, &dropped);
|
4765 |
|
|
#endif
|
4766 |
|
|
} while(0); /* end protected */
|
4767 |
|
|
|
4768 |
|
|
if (varalloc!=NULL) free(varalloc); /* drop any storage used */
|
4769 |
|
|
if (allocacc!=NULL) free(allocacc); /* .. */
|
4770 |
|
|
#if DECSUBSET
|
4771 |
|
|
if (allocrhs!=NULL) free(allocrhs); /* .. */
|
4772 |
|
|
if (alloclhs!=NULL) free(alloclhs); /* .. */
|
4773 |
|
|
#endif
|
4774 |
|
|
return res;
|
4775 |
|
|
} /* decDivideOp */
|
4776 |
|
|
|
4777 |
|
|
/* ------------------------------------------------------------------ */
|
4778 |
|
|
/* decMultiplyOp -- multiplication operation */
|
4779 |
|
|
/* */
|
4780 |
|
|
/* This routine performs the multiplication C=A x B. */
|
4781 |
|
|
/* */
|
4782 |
|
|
/* res is C, the result. C may be A and/or B (e.g., X=X*X) */
|
4783 |
|
|
/* lhs is A */
|
4784 |
|
|
/* rhs is B */
|
4785 |
|
|
/* set is the context */
|
4786 |
|
|
/* status is the usual accumulator */
|
4787 |
|
|
/* */
|
4788 |
|
|
/* C must have space for set->digits digits. */
|
4789 |
|
|
/* */
|
4790 |
|
|
/* ------------------------------------------------------------------ */
|
4791 |
|
|
/* 'Classic' multiplication is used rather than Karatsuba, as the */
|
4792 |
|
|
/* latter would give only a minor improvement for the short numbers */
|
4793 |
|
|
/* expected to be handled most (and uses much more memory). */
|
4794 |
|
|
/* */
|
4795 |
|
|
/* There are two major paths here: the general-purpose ('old code') */
|
4796 |
|
|
/* path which handles all DECDPUN values, and a fastpath version */
|
4797 |
|
|
/* which is used if 64-bit ints are available, DECDPUN<=4, and more */
|
4798 |
|
|
/* than two calls to decUnitAddSub would be made. */
|
4799 |
|
|
/* */
|
4800 |
|
|
/* The fastpath version lumps units together into 8-digit or 9-digit */
|
4801 |
|
|
/* chunks, and also uses a lazy carry strategy to minimise expensive */
|
4802 |
|
|
/* 64-bit divisions. The chunks are then broken apart again into */
|
4803 |
|
|
/* units for continuing processing. Despite this overhead, the */
|
4804 |
|
|
/* fastpath can speed up some 16-digit operations by 10x (and much */
|
4805 |
|
|
/* more for higher-precision calculations). */
|
4806 |
|
|
/* */
|
4807 |
|
|
/* A buffer always has to be used for the accumulator; in the */
|
4808 |
|
|
/* fastpath, buffers are also always needed for the chunked copies of */
|
4809 |
|
|
/* of the operand coefficients. */
|
4810 |
|
|
/* Static buffers are larger than needed just for multiply, to allow */
|
4811 |
|
|
/* for calls from other operations (notably exp). */
|
4812 |
|
|
/* ------------------------------------------------------------------ */
|
4813 |
|
|
#define FASTMUL (DECUSE64 && DECDPUN<5)
|
4814 |
|
|
static decNumber * decMultiplyOp(decNumber *res, const decNumber *lhs,
|
4815 |
|
|
const decNumber *rhs, decContext *set,
|
4816 |
|
|
uInt *status) {
|
4817 |
|
|
Int accunits; /* Units of accumulator in use */
|
4818 |
|
|
Int exponent; /* work */
|
4819 |
|
|
Int residue=0; /* rounding residue */
|
4820 |
|
|
uByte bits; /* result sign */
|
4821 |
|
|
Unit *acc; /* -> accumulator Unit array */
|
4822 |
|
|
Int needbytes; /* size calculator */
|
4823 |
|
|
void *allocacc=NULL; /* -> allocated accumulator, iff allocated */
|
4824 |
|
|
Unit accbuff[SD2U(DECBUFFER*4+1)]; /* buffer (+1 for DECBUFFER==0, */
|
4825 |
|
|
/* *4 for calls from other operations) */
|
4826 |
|
|
const Unit *mer, *mermsup; /* work */
|
4827 |
|
|
Int madlength; /* Units in multiplicand */
|
4828 |
|
|
Int shift; /* Units to shift multiplicand by */
|
4829 |
|
|
|
4830 |
|
|
#if FASTMUL
|
4831 |
|
|
/* if DECDPUN is 1 or 3 work in base 10**9, otherwise */
|
4832 |
|
|
/* (DECDPUN is 2 or 4) then work in base 10**8 */
|
4833 |
|
|
#if DECDPUN & 1 /* odd */
|
4834 |
|
|
#define FASTBASE 1000000000 /* base */
|
4835 |
|
|
#define FASTDIGS 9 /* digits in base */
|
4836 |
|
|
#define FASTLAZY 18 /* carry resolution point [1->18] */
|
4837 |
|
|
#else
|
4838 |
|
|
#define FASTBASE 100000000
|
4839 |
|
|
#define FASTDIGS 8
|
4840 |
|
|
#define FASTLAZY 1844 /* carry resolution point [1->1844] */
|
4841 |
|
|
#endif
|
4842 |
|
|
/* three buffers are used, two for chunked copies of the operands */
|
4843 |
|
|
/* (base 10**8 or base 10**9) and one base 2**64 accumulator with */
|
4844 |
|
|
/* lazy carry evaluation */
|
4845 |
|
|
uInt zlhibuff[(DECBUFFER*2+1)/8+1]; /* buffer (+1 for DECBUFFER==0) */
|
4846 |
|
|
uInt *zlhi=zlhibuff; /* -> lhs array */
|
4847 |
|
|
uInt *alloclhi=NULL; /* -> allocated buffer, iff allocated */
|
4848 |
|
|
uInt zrhibuff[(DECBUFFER*2+1)/8+1]; /* buffer (+1 for DECBUFFER==0) */
|
4849 |
|
|
uInt *zrhi=zrhibuff; /* -> rhs array */
|
4850 |
|
|
uInt *allocrhi=NULL; /* -> allocated buffer, iff allocated */
|
4851 |
|
|
uLong zaccbuff[(DECBUFFER*2+1)/4+2]; /* buffer (+1 for DECBUFFER==0) */
|
4852 |
|
|
/* [allocacc is shared for both paths, as only one will run] */
|
4853 |
|
|
uLong *zacc=zaccbuff; /* -> accumulator array for exact result */
|
4854 |
|
|
#if DECDPUN==1
|
4855 |
|
|
Int zoff; /* accumulator offset */
|
4856 |
|
|
#endif
|
4857 |
|
|
uInt *lip, *rip; /* item pointers */
|
4858 |
|
|
uInt *lmsi, *rmsi; /* most significant items */
|
4859 |
|
|
Int ilhs, irhs, iacc; /* item counts in the arrays */
|
4860 |
|
|
Int lazy; /* lazy carry counter */
|
4861 |
|
|
uLong lcarry; /* uLong carry */
|
4862 |
|
|
uInt carry; /* carry (NB not uLong) */
|
4863 |
|
|
Int count; /* work */
|
4864 |
|
|
const Unit *cup; /* .. */
|
4865 |
|
|
Unit *up; /* .. */
|
4866 |
|
|
uLong *lp; /* .. */
|
4867 |
|
|
Int p; /* .. */
|
4868 |
|
|
#endif
|
4869 |
|
|
|
4870 |
|
|
#if DECSUBSET
|
4871 |
|
|
decNumber *alloclhs=NULL; /* -> allocated buffer, iff allocated */
|
4872 |
|
|
decNumber *allocrhs=NULL; /* -> allocated buffer, iff allocated */
|
4873 |
|
|
#endif
|
4874 |
|
|
|
4875 |
|
|
#if DECCHECK
|
4876 |
|
|
if (decCheckOperands(res, lhs, rhs, set)) return res;
|
4877 |
|
|
#endif
|
4878 |
|
|
|
4879 |
|
|
/* precalculate result sign */
|
4880 |
|
|
bits=(uByte)((lhs->bits^rhs->bits)&DECNEG);
|
4881 |
|
|
|
4882 |
|
|
/* handle infinities and NaNs */
|
4883 |
|
|
if (SPECIALARGS) { /* a special bit set */
|
4884 |
|
|
if (SPECIALARGS & (DECSNAN | DECNAN)) { /* one or two NaNs */
|
4885 |
|
|
decNaNs(res, lhs, rhs, set, status);
|
4886 |
|
|
return res;}
|
4887 |
|
|
/* one or two infinities; Infinity * 0 is invalid */
|
4888 |
|
|
if (((lhs->bits & DECINF)==0 && ISZERO(lhs))
|
4889 |
|
|
||((rhs->bits & DECINF)==0 && ISZERO(rhs))) {
|
4890 |
|
|
*status|=DEC_Invalid_operation;
|
4891 |
|
|
return res;}
|
4892 |
|
|
decNumberZero(res);
|
4893 |
|
|
res->bits=bits|DECINF; /* infinity */
|
4894 |
|
|
return res;}
|
4895 |
|
|
|
4896 |
|
|
/* For best speed, as in DMSRCN [the original Rexx numerics */
|
4897 |
|
|
/* module], use the shorter number as the multiplier (rhs) and */
|
4898 |
|
|
/* the longer as the multiplicand (lhs) to minimise the number of */
|
4899 |
|
|
/* adds (partial products) */
|
4900 |
|
|
if (lhs->digits<rhs->digits) { /* swap... */
|
4901 |
|
|
const decNumber *hold=lhs;
|
4902 |
|
|
lhs=rhs;
|
4903 |
|
|
rhs=hold;
|
4904 |
|
|
}
|
4905 |
|
|
|
4906 |
|
|
do { /* protect allocated storage */
|
4907 |
|
|
#if DECSUBSET
|
4908 |
|
|
if (!set->extended) {
|
4909 |
|
|
/* reduce operands and set lostDigits status, as needed */
|
4910 |
|
|
if (lhs->digits>set->digits) {
|
4911 |
|
|
alloclhs=decRoundOperand(lhs, set, status);
|
4912 |
|
|
if (alloclhs==NULL) break;
|
4913 |
|
|
lhs=alloclhs;
|
4914 |
|
|
}
|
4915 |
|
|
if (rhs->digits>set->digits) {
|
4916 |
|
|
allocrhs=decRoundOperand(rhs, set, status);
|
4917 |
|
|
if (allocrhs==NULL) break;
|
4918 |
|
|
rhs=allocrhs;
|
4919 |
|
|
}
|
4920 |
|
|
}
|
4921 |
|
|
#endif
|
4922 |
|
|
/* [following code does not require input rounding] */
|
4923 |
|
|
|
4924 |
|
|
#if FASTMUL /* fastpath can be used */
|
4925 |
|
|
/* use the fast path if there are enough digits in the shorter */
|
4926 |
|
|
/* operand to make the setup and takedown worthwhile */
|
4927 |
|
|
#define NEEDTWO (DECDPUN*2) /* within two decUnitAddSub calls */
|
4928 |
|
|
if (rhs->digits>NEEDTWO) { /* use fastpath... */
|
4929 |
|
|
/* calculate the number of elements in each array */
|
4930 |
|
|
ilhs=(lhs->digits+FASTDIGS-1)/FASTDIGS; /* [ceiling] */
|
4931 |
|
|
irhs=(rhs->digits+FASTDIGS-1)/FASTDIGS; /* .. */
|
4932 |
|
|
iacc=ilhs+irhs;
|
4933 |
|
|
|
4934 |
|
|
/* allocate buffers if required, as usual */
|
4935 |
|
|
needbytes=ilhs*sizeof(uInt);
|
4936 |
|
|
if (needbytes>(Int)sizeof(zlhibuff)) {
|
4937 |
|
|
alloclhi=(uInt *)malloc(needbytes);
|
4938 |
|
|
zlhi=alloclhi;}
|
4939 |
|
|
needbytes=irhs*sizeof(uInt);
|
4940 |
|
|
if (needbytes>(Int)sizeof(zrhibuff)) {
|
4941 |
|
|
allocrhi=(uInt *)malloc(needbytes);
|
4942 |
|
|
zrhi=allocrhi;}
|
4943 |
|
|
|
4944 |
|
|
/* Allocating the accumulator space needs a special case when */
|
4945 |
|
|
/* DECDPUN=1 because when converting the accumulator to Units */
|
4946 |
|
|
/* after the multiplication each 8-byte item becomes 9 1-byte */
|
4947 |
|
|
/* units. Therefore iacc extra bytes are needed at the front */
|
4948 |
|
|
/* (rounded up to a multiple of 8 bytes), and the uLong */
|
4949 |
|
|
/* accumulator starts offset the appropriate number of units */
|
4950 |
|
|
/* to the right to avoid overwrite during the unchunking. */
|
4951 |
|
|
needbytes=iacc*sizeof(uLong);
|
4952 |
|
|
#if DECDPUN==1
|
4953 |
|
|
zoff=(iacc+7)/8; /* items to offset by */
|
4954 |
|
|
needbytes+=zoff*8;
|
4955 |
|
|
#endif
|
4956 |
|
|
if (needbytes>(Int)sizeof(zaccbuff)) {
|
4957 |
|
|
allocacc=(uLong *)malloc(needbytes);
|
4958 |
|
|
zacc=(uLong *)allocacc;}
|
4959 |
|
|
if (zlhi==NULL||zrhi==NULL||zacc==NULL) {
|
4960 |
|
|
*status|=DEC_Insufficient_storage;
|
4961 |
|
|
break;}
|
4962 |
|
|
|
4963 |
|
|
acc=(Unit *)zacc; /* -> target Unit array */
|
4964 |
|
|
#if DECDPUN==1
|
4965 |
|
|
zacc+=zoff; /* start uLong accumulator to right */
|
4966 |
|
|
#endif
|
4967 |
|
|
|
4968 |
|
|
/* assemble the chunked copies of the left and right sides */
|
4969 |
|
|
for (count=lhs->digits, cup=lhs->lsu, lip=zlhi; count>0; lip++)
|
4970 |
|
|
for (p=0, *lip=0; p<FASTDIGS && count>0;
|
4971 |
|
|
p+=DECDPUN, cup++, count-=DECDPUN)
|
4972 |
|
|
*lip+=*cup*powers[p];
|
4973 |
|
|
lmsi=lip-1; /* save -> msi */
|
4974 |
|
|
for (count=rhs->digits, cup=rhs->lsu, rip=zrhi; count>0; rip++)
|
4975 |
|
|
for (p=0, *rip=0; p<FASTDIGS && count>0;
|
4976 |
|
|
p+=DECDPUN, cup++, count-=DECDPUN)
|
4977 |
|
|
*rip+=*cup*powers[p];
|
4978 |
|
|
rmsi=rip-1; /* save -> msi */
|
4979 |
|
|
|
4980 |
|
|
/* zero the accumulator */
|
4981 |
|
|
for (lp=zacc; lp<zacc+iacc; lp++) *lp=0;
|
4982 |
|
|
|
4983 |
|
|
/* Start the multiplication */
|
4984 |
|
|
/* Resolving carries can dominate the cost of accumulating the */
|
4985 |
|
|
/* partial products, so this is only done when necessary. */
|
4986 |
|
|
/* Each uLong item in the accumulator can hold values up to */
|
4987 |
|
|
/* 2**64-1, and each partial product can be as large as */
|
4988 |
|
|
/* (10**FASTDIGS-1)**2. When FASTDIGS=9, this can be added to */
|
4989 |
|
|
/* itself 18.4 times in a uLong without overflowing, so during */
|
4990 |
|
|
/* the main calculation resolution is carried out every 18th */
|
4991 |
|
|
/* add -- every 162 digits. Similarly, when FASTDIGS=8, the */
|
4992 |
|
|
/* partial products can be added to themselves 1844.6 times in */
|
4993 |
|
|
/* a uLong without overflowing, so intermediate carry */
|
4994 |
|
|
/* resolution occurs only every 14752 digits. Hence for common */
|
4995 |
|
|
/* short numbers usually only the one final carry resolution */
|
4996 |
|
|
/* occurs. */
|
4997 |
|
|
/* (The count is set via FASTLAZY to simplify experiments to */
|
4998 |
|
|
/* measure the value of this approach: a 35% improvement on a */
|
4999 |
|
|
/* [34x34] multiply.) */
|
5000 |
|
|
lazy=FASTLAZY; /* carry delay count */
|
5001 |
|
|
for (rip=zrhi; rip<=rmsi; rip++) { /* over each item in rhs */
|
5002 |
|
|
lp=zacc+(rip-zrhi); /* where to add the lhs */
|
5003 |
|
|
for (lip=zlhi; lip<=lmsi; lip++, lp++) { /* over each item in lhs */
|
5004 |
|
|
*lp+=(uLong)(*lip)*(*rip); /* [this should in-line] */
|
5005 |
|
|
} /* lip loop */
|
5006 |
|
|
lazy--;
|
5007 |
|
|
if (lazy>0 && rip!=rmsi) continue;
|
5008 |
|
|
lazy=FASTLAZY; /* reset delay count */
|
5009 |
|
|
/* spin up the accumulator resolving overflows */
|
5010 |
|
|
for (lp=zacc; lp<zacc+iacc; lp++) {
|
5011 |
|
|
if (*lp<FASTBASE) continue; /* it fits */
|
5012 |
|
|
lcarry=*lp/FASTBASE; /* top part [slow divide] */
|
5013 |
|
|
/* lcarry can exceed 2**32-1, so check again; this check */
|
5014 |
|
|
/* and occasional extra divide (slow) is well worth it, as */
|
5015 |
|
|
/* it allows FASTLAZY to be increased to 18 rather than 4 */
|
5016 |
|
|
/* in the FASTDIGS=9 case */
|
5017 |
|
|
if (lcarry<FASTBASE) carry=(uInt)lcarry; /* [usual] */
|
5018 |
|
|
else { /* two-place carry [fairly rare] */
|
5019 |
|
|
uInt carry2=(uInt)(lcarry/FASTBASE); /* top top part */
|
5020 |
|
|
*(lp+2)+=carry2; /* add to item+2 */
|
5021 |
|
|
*lp-=((uLong)FASTBASE*FASTBASE*carry2); /* [slow] */
|
5022 |
|
|
carry=(uInt)(lcarry-((uLong)FASTBASE*carry2)); /* [inline] */
|
5023 |
|
|
}
|
5024 |
|
|
*(lp+1)+=carry; /* add to item above [inline] */
|
5025 |
|
|
*lp-=((uLong)FASTBASE*carry); /* [inline] */
|
5026 |
|
|
} /* carry resolution */
|
5027 |
|
|
} /* rip loop */
|
5028 |
|
|
|
5029 |
|
|
/* The multiplication is complete; time to convert back into */
|
5030 |
|
|
/* units. This can be done in-place in the accumulator and in */
|
5031 |
|
|
/* 32-bit operations, because carries were resolved after the */
|
5032 |
|
|
/* final add. This needs N-1 divides and multiplies for */
|
5033 |
|
|
/* each item in the accumulator (which will become up to N */
|
5034 |
|
|
/* units, where 2<=N<=9). */
|
5035 |
|
|
for (lp=zacc, up=acc; lp<zacc+iacc; lp++) {
|
5036 |
|
|
uInt item=(uInt)*lp; /* decapitate to uInt */
|
5037 |
|
|
for (p=0; p<FASTDIGS-DECDPUN; p+=DECDPUN, up++) {
|
5038 |
|
|
uInt part=item/(DECDPUNMAX+1);
|
5039 |
|
|
*up=(Unit)(item-(part*(DECDPUNMAX+1)));
|
5040 |
|
|
item=part;
|
5041 |
|
|
} /* p */
|
5042 |
|
|
*up=(Unit)item; up++; /* [final needs no division] */
|
5043 |
|
|
} /* lp */
|
5044 |
|
|
accunits=up-acc; /* count of units */
|
5045 |
|
|
}
|
5046 |
|
|
else { /* here to use units directly, without chunking ['old code'] */
|
5047 |
|
|
#endif
|
5048 |
|
|
|
5049 |
|
|
/* if accumulator will be too long for local storage, then allocate */
|
5050 |
|
|
acc=accbuff; /* -> assume buffer for accumulator */
|
5051 |
|
|
needbytes=(D2U(lhs->digits)+D2U(rhs->digits))*sizeof(Unit);
|
5052 |
|
|
if (needbytes>(Int)sizeof(accbuff)) {
|
5053 |
|
|
allocacc=(Unit *)malloc(needbytes);
|
5054 |
|
|
if (allocacc==NULL) {*status|=DEC_Insufficient_storage; break;}
|
5055 |
|
|
acc=(Unit *)allocacc; /* use the allocated space */
|
5056 |
|
|
}
|
5057 |
|
|
|
5058 |
|
|
/* Now the main long multiplication loop */
|
5059 |
|
|
/* Unlike the equivalent in the IBM Java implementation, there */
|
5060 |
|
|
/* is no advantage in calculating from msu to lsu. So, do it */
|
5061 |
|
|
/* by the book, as it were. */
|
5062 |
|
|
/* Each iteration calculates ACC=ACC+MULTAND*MULT */
|
5063 |
|
|
accunits=1; /* accumulator starts at '0' */
|
5064 |
|
|
*acc=0; /* .. (lsu=0) */
|
5065 |
|
|
shift=0; /* no multiplicand shift at first */
|
5066 |
|
|
madlength=D2U(lhs->digits); /* this won't change */
|
5067 |
|
|
mermsup=rhs->lsu+D2U(rhs->digits); /* -> msu+1 of multiplier */
|
5068 |
|
|
|
5069 |
|
|
for (mer=rhs->lsu; mer<mermsup; mer++) {
|
5070 |
|
|
/* Here, *mer is the next Unit in the multiplier to use */
|
5071 |
|
|
/* If non-zero [optimization] add it... */
|
5072 |
|
|
if (*mer!=0) accunits=decUnitAddSub(&acc[shift], accunits-shift,
|
5073 |
|
|
lhs->lsu, madlength, 0,
|
5074 |
|
|
&acc[shift], *mer)
|
5075 |
|
|
+ shift;
|
5076 |
|
|
else { /* extend acc with a 0; it will be used shortly */
|
5077 |
|
|
*(acc+accunits)=0; /* [this avoids length of <=0 later] */
|
5078 |
|
|
accunits++;
|
5079 |
|
|
}
|
5080 |
|
|
/* multiply multiplicand by 10**DECDPUN for next Unit to left */
|
5081 |
|
|
shift++; /* add this for 'logical length' */
|
5082 |
|
|
} /* n */
|
5083 |
|
|
#if FASTMUL
|
5084 |
|
|
} /* unchunked units */
|
5085 |
|
|
#endif
|
5086 |
|
|
/* common end-path */
|
5087 |
|
|
#if DECTRACE
|
5088 |
|
|
decDumpAr('*', acc, accunits); /* Show exact result */
|
5089 |
|
|
#endif
|
5090 |
|
|
|
5091 |
|
|
/* acc now contains the exact result of the multiplication, */
|
5092 |
|
|
/* possibly with a leading zero unit; build the decNumber from */
|
5093 |
|
|
/* it, noting if any residue */
|
5094 |
|
|
res->bits=bits; /* set sign */
|
5095 |
|
|
res->digits=decGetDigits(acc, accunits); /* count digits exactly */
|
5096 |
|
|
|
5097 |
|
|
/* There can be a 31-bit wrap in calculating the exponent. */
|
5098 |
|
|
/* This can only happen if both input exponents are negative and */
|
5099 |
|
|
/* both their magnitudes are large. If there was a wrap, set a */
|
5100 |
|
|
/* safe very negative exponent, from which decFinalize() will */
|
5101 |
|
|
/* raise a hard underflow shortly. */
|
5102 |
|
|
exponent=lhs->exponent+rhs->exponent; /* calculate exponent */
|
5103 |
|
|
if (lhs->exponent<0 && rhs->exponent<0 && exponent>0)
|
5104 |
|
|
exponent=-2*DECNUMMAXE; /* force underflow */
|
5105 |
|
|
res->exponent=exponent; /* OK to overwrite now */
|
5106 |
|
|
|
5107 |
|
|
|
5108 |
|
|
/* Set the coefficient. If any rounding, residue records */
|
5109 |
|
|
decSetCoeff(res, set, acc, res->digits, &residue, status);
|
5110 |
|
|
decFinish(res, set, &residue, status); /* final cleanup */
|
5111 |
|
|
} while(0); /* end protected */
|
5112 |
|
|
|
5113 |
|
|
if (allocacc!=NULL) free(allocacc); /* drop any storage used */
|
5114 |
|
|
#if DECSUBSET
|
5115 |
|
|
if (allocrhs!=NULL) free(allocrhs); /* .. */
|
5116 |
|
|
if (alloclhs!=NULL) free(alloclhs); /* .. */
|
5117 |
|
|
#endif
|
5118 |
|
|
#if FASTMUL
|
5119 |
|
|
if (allocrhi!=NULL) free(allocrhi); /* .. */
|
5120 |
|
|
if (alloclhi!=NULL) free(alloclhi); /* .. */
|
5121 |
|
|
#endif
|
5122 |
|
|
return res;
|
5123 |
|
|
} /* decMultiplyOp */
|
5124 |
|
|
|
5125 |
|
|
/* ------------------------------------------------------------------ */
|
5126 |
|
|
/* decExpOp -- effect exponentiation */
|
5127 |
|
|
/* */
|
5128 |
|
|
/* This computes C = exp(A) */
|
5129 |
|
|
/* */
|
5130 |
|
|
/* res is C, the result. C may be A */
|
5131 |
|
|
/* rhs is A */
|
5132 |
|
|
/* set is the context; note that rounding mode has no effect */
|
5133 |
|
|
/* */
|
5134 |
|
|
/* C must have space for set->digits digits. status is updated but */
|
5135 |
|
|
/* not set. */
|
5136 |
|
|
/* */
|
5137 |
|
|
/* Restrictions: */
|
5138 |
|
|
/* */
|
5139 |
|
|
/* digits, emax, and -emin in the context must be less than */
|
5140 |
|
|
/* 2*DEC_MAX_MATH (1999998), and the rhs must be within these */
|
5141 |
|
|
/* bounds or a zero. This is an internal routine, so these */
|
5142 |
|
|
/* restrictions are contractual and not enforced. */
|
5143 |
|
|
/* */
|
5144 |
|
|
/* A finite result is rounded using DEC_ROUND_HALF_EVEN; it will */
|
5145 |
|
|
/* almost always be correctly rounded, but may be up to 1 ulp in */
|
5146 |
|
|
/* error in rare cases. */
|
5147 |
|
|
/* */
|
5148 |
|
|
/* Finite results will always be full precision and Inexact, except */
|
5149 |
|
|
/* when A is a zero or -Infinity (giving 1 or 0 respectively). */
|
5150 |
|
|
/* ------------------------------------------------------------------ */
|
5151 |
|
|
/* This approach used here is similar to the algorithm described in */
|
5152 |
|
|
/* */
|
5153 |
|
|
/* Variable Precision Exponential Function, T. E. Hull and */
|
5154 |
|
|
/* A. Abrham, ACM Transactions on Mathematical Software, Vol 12 #2, */
|
5155 |
|
|
/* pp79-91, ACM, June 1986. */
|
5156 |
|
|
/* */
|
5157 |
|
|
/* with the main difference being that the iterations in the series */
|
5158 |
|
|
/* evaluation are terminated dynamically (which does not require the */
|
5159 |
|
|
/* extra variable-precision variables which are expensive in this */
|
5160 |
|
|
/* context). */
|
5161 |
|
|
/* */
|
5162 |
|
|
/* The error analysis in Hull & Abrham's paper applies except for the */
|
5163 |
|
|
/* round-off error accumulation during the series evaluation. This */
|
5164 |
|
|
/* code does not precalculate the number of iterations and so cannot */
|
5165 |
|
|
/* use Horner's scheme. Instead, the accumulation is done at double- */
|
5166 |
|
|
/* precision, which ensures that the additions of the terms are exact */
|
5167 |
|
|
/* and do not accumulate round-off (and any round-off errors in the */
|
5168 |
|
|
/* terms themselves move 'to the right' faster than they can */
|
5169 |
|
|
/* accumulate). This code also extends the calculation by allowing, */
|
5170 |
|
|
/* in the spirit of other decNumber operators, the input to be more */
|
5171 |
|
|
/* precise than the result (the precision used is based on the more */
|
5172 |
|
|
/* precise of the input or requested result). */
|
5173 |
|
|
/* */
|
5174 |
|
|
/* Implementation notes: */
|
5175 |
|
|
/* */
|
5176 |
|
|
/* 1. This is separated out as decExpOp so it can be called from */
|
5177 |
|
|
/* other Mathematical functions (notably Ln) with a wider range */
|
5178 |
|
|
/* than normal. In particular, it can handle the slightly wider */
|
5179 |
|
|
/* (double) range needed by Ln (which has to be able to calculate */
|
5180 |
|
|
/* exp(-x) where x can be the tiniest number (Ntiny). */
|
5181 |
|
|
/* */
|
5182 |
|
|
/* 2. Normalizing x to be <=0.1 (instead of <=1) reduces loop */
|
5183 |
|
|
/* iterations by appoximately a third with additional (although */
|
5184 |
|
|
/* diminishing) returns as the range is reduced to even smaller */
|
5185 |
|
|
/* fractions. However, h (the power of 10 used to correct the */
|
5186 |
|
|
/* result at the end, see below) must be kept <=8 as otherwise */
|
5187 |
|
|
/* the final result cannot be computed. Hence the leverage is a */
|
5188 |
|
|
/* sliding value (8-h), where potentially the range is reduced */
|
5189 |
|
|
/* more for smaller values. */
|
5190 |
|
|
/* */
|
5191 |
|
|
/* The leverage that can be applied in this way is severely */
|
5192 |
|
|
/* limited by the cost of the raise-to-the power at the end, */
|
5193 |
|
|
/* which dominates when the number of iterations is small (less */
|
5194 |
|
|
/* than ten) or when rhs is short. As an example, the adjustment */
|
5195 |
|
|
/* x**10,000,000 needs 31 multiplications, all but one full-width. */
|
5196 |
|
|
/* */
|
5197 |
|
|
/* 3. The restrictions (especially precision) could be raised with */
|
5198 |
|
|
/* care, but the full decNumber range seems very hard within the */
|
5199 |
|
|
/* 32-bit limits. */
|
5200 |
|
|
/* */
|
5201 |
|
|
/* 4. The working precisions for the static buffers are twice the */
|
5202 |
|
|
/* obvious size to allow for calls from decNumberPower. */
|
5203 |
|
|
/* ------------------------------------------------------------------ */
|
5204 |
|
|
decNumber * decExpOp(decNumber *res, const decNumber *rhs,
|
5205 |
|
|
decContext *set, uInt *status) {
|
5206 |
|
|
uInt ignore=0; /* working status */
|
5207 |
|
|
Int h; /* adjusted exponent for 0.xxxx */
|
5208 |
|
|
Int p; /* working precision */
|
5209 |
|
|
Int residue; /* rounding residue */
|
5210 |
|
|
uInt needbytes; /* for space calculations */
|
5211 |
|
|
const decNumber *x=rhs; /* (may point to safe copy later) */
|
5212 |
|
|
decContext aset, tset, dset; /* working contexts */
|
5213 |
|
|
Int comp; /* work */
|
5214 |
|
|
|
5215 |
|
|
/* the argument is often copied to normalize it, so (unusually) it */
|
5216 |
|
|
/* is treated like other buffers, using DECBUFFER, +1 in case */
|
5217 |
|
|
/* DECBUFFER is 0 */
|
5218 |
|
|
decNumber bufr[D2N(DECBUFFER*2+1)];
|
5219 |
|
|
decNumber *allocrhs=NULL; /* non-NULL if rhs buffer allocated */
|
5220 |
|
|
|
5221 |
|
|
/* the working precision will be no more than set->digits+8+1 */
|
5222 |
|
|
/* so for on-stack buffers DECBUFFER+9 is used, +1 in case DECBUFFER */
|
5223 |
|
|
/* is 0 (and twice that for the accumulator) */
|
5224 |
|
|
|
5225 |
|
|
/* buffer for t, term (working precision plus) */
|
5226 |
|
|
decNumber buft[D2N(DECBUFFER*2+9+1)];
|
5227 |
|
|
decNumber *allocbuft=NULL; /* -> allocated buft, iff allocated */
|
5228 |
|
|
decNumber *t=buft; /* term */
|
5229 |
|
|
/* buffer for a, accumulator (working precision * 2), at least 9 */
|
5230 |
|
|
decNumber bufa[D2N(DECBUFFER*4+18+1)];
|
5231 |
|
|
decNumber *allocbufa=NULL; /* -> allocated bufa, iff allocated */
|
5232 |
|
|
decNumber *a=bufa; /* accumulator */
|
5233 |
|
|
/* decNumber for the divisor term; this needs at most 9 digits */
|
5234 |
|
|
/* and so can be fixed size [16 so can use standard context] */
|
5235 |
|
|
decNumber bufd[D2N(16)];
|
5236 |
|
|
decNumber *d=bufd; /* divisor */
|
5237 |
|
|
decNumber numone; /* constant 1 */
|
5238 |
|
|
|
5239 |
|
|
#if DECCHECK
|
5240 |
|
|
Int iterations=0; /* for later sanity check */
|
5241 |
|
|
if (decCheckOperands(res, DECUNUSED, rhs, set)) return res;
|
5242 |
|
|
#endif
|
5243 |
|
|
|
5244 |
|
|
do { /* protect allocated storage */
|
5245 |
|
|
if (SPECIALARG) { /* handle infinities and NaNs */
|
5246 |
|
|
if (decNumberIsInfinite(rhs)) { /* an infinity */
|
5247 |
|
|
if (decNumberIsNegative(rhs)) /* -Infinity -> +0 */
|
5248 |
|
|
decNumberZero(res);
|
5249 |
|
|
else decNumberCopy(res, rhs); /* +Infinity -> self */
|
5250 |
|
|
}
|
5251 |
|
|
else decNaNs(res, rhs, NULL, set, status); /* a NaN */
|
5252 |
|
|
break;}
|
5253 |
|
|
|
5254 |
|
|
if (ISZERO(rhs)) { /* zeros -> exact 1 */
|
5255 |
|
|
decNumberZero(res); /* make clean 1 */
|
5256 |
|
|
*res->lsu=1; /* .. */
|
5257 |
|
|
break;} /* [no status to set] */
|
5258 |
|
|
|
5259 |
|
|
/* e**x when 0 < x < 0.66 is < 1+3x/2, hence can fast-path */
|
5260 |
|
|
/* positive and negative tiny cases which will result in inexact */
|
5261 |
|
|
/* 1. This also allows the later add-accumulate to always be */
|
5262 |
|
|
/* exact (because its length will never be more than twice the */
|
5263 |
|
|
/* working precision). */
|
5264 |
|
|
/* The comparator (tiny) needs just one digit, so use the */
|
5265 |
|
|
/* decNumber d for it (reused as the divisor, etc., below); its */
|
5266 |
|
|
/* exponent is such that if x is positive it will have */
|
5267 |
|
|
/* set->digits-1 zeros between the decimal point and the digit, */
|
5268 |
|
|
/* which is 4, and if x is negative one more zero there as the */
|
5269 |
|
|
/* more precise result will be of the form 0.9999999 rather than */
|
5270 |
|
|
/* 1.0000001. Hence, tiny will be 0.0000004 if digits=7 and x>0 */
|
5271 |
|
|
/* or 0.00000004 if digits=7 and x<0. If RHS not larger than */
|
5272 |
|
|
/* this then the result will be 1.000000 */
|
5273 |
|
|
decNumberZero(d); /* clean */
|
5274 |
|
|
*d->lsu=4; /* set 4 .. */
|
5275 |
|
|
d->exponent=-set->digits; /* * 10**(-d) */
|
5276 |
|
|
if (decNumberIsNegative(rhs)) d->exponent--; /* negative case */
|
5277 |
|
|
comp=decCompare(d, rhs, 1); /* signless compare */
|
5278 |
|
|
if (comp==BADINT) {
|
5279 |
|
|
*status|=DEC_Insufficient_storage;
|
5280 |
|
|
break;}
|
5281 |
|
|
if (comp>=0) { /* rhs < d */
|
5282 |
|
|
Int shift=set->digits-1;
|
5283 |
|
|
decNumberZero(res); /* set 1 */
|
5284 |
|
|
*res->lsu=1; /* .. */
|
5285 |
|
|
res->digits=decShiftToMost(res->lsu, 1, shift);
|
5286 |
|
|
res->exponent=-shift; /* make 1.0000... */
|
5287 |
|
|
*status|=DEC_Inexact | DEC_Rounded; /* .. inexactly */
|
5288 |
|
|
break;} /* tiny */
|
5289 |
|
|
|
5290 |
|
|
/* set up the context to be used for calculating a, as this is */
|
5291 |
|
|
/* used on both paths below */
|
5292 |
|
|
decContextDefault(&aset, DEC_INIT_DECIMAL64);
|
5293 |
|
|
/* accumulator bounds are as requested (could underflow) */
|
5294 |
|
|
aset.emax=set->emax; /* usual bounds */
|
5295 |
|
|
aset.emin=set->emin; /* .. */
|
5296 |
|
|
aset.clamp=0; /* and no concrete format */
|
5297 |
|
|
|
5298 |
|
|
/* calculate the adjusted (Hull & Abrham) exponent (where the */
|
5299 |
|
|
/* decimal point is just to the left of the coefficient msd) */
|
5300 |
|
|
h=rhs->exponent+rhs->digits;
|
5301 |
|
|
/* if h>8 then 10**h cannot be calculated safely; however, when */
|
5302 |
|
|
/* h=8 then exp(|rhs|) will be at least exp(1E+7) which is at */
|
5303 |
|
|
/* least 6.59E+4342944, so (due to the restriction on Emax/Emin) */
|
5304 |
|
|
/* overflow (or underflow to 0) is guaranteed -- so this case can */
|
5305 |
|
|
/* be handled by simply forcing the appropriate excess */
|
5306 |
|
|
if (h>8) { /* overflow/underflow */
|
5307 |
|
|
/* set up here so Power call below will over or underflow to */
|
5308 |
|
|
/* zero; set accumulator to either 2 or 0.02 */
|
5309 |
|
|
/* [stack buffer for a is always big enough for this] */
|
5310 |
|
|
decNumberZero(a);
|
5311 |
|
|
*a->lsu=2; /* not 1 but < exp(1) */
|
5312 |
|
|
if (decNumberIsNegative(rhs)) a->exponent=-2; /* make 0.02 */
|
5313 |
|
|
h=8; /* clamp so 10**h computable */
|
5314 |
|
|
p=9; /* set a working precision */
|
5315 |
|
|
}
|
5316 |
|
|
else { /* h<=8 */
|
5317 |
|
|
Int maxlever=(rhs->digits>8?1:0);
|
5318 |
|
|
/* [could/should increase this for precisions >40 or so, too] */
|
5319 |
|
|
|
5320 |
|
|
/* if h is 8, cannot normalize to a lower upper limit because */
|
5321 |
|
|
/* the final result will not be computable (see notes above), */
|
5322 |
|
|
/* but leverage can be applied whenever h is less than 8. */
|
5323 |
|
|
/* Apply as much as possible, up to a MAXLEVER digits, which */
|
5324 |
|
|
/* sets the tradeoff against the cost of the later a**(10**h). */
|
5325 |
|
|
/* As h is increased, the working precision below also */
|
5326 |
|
|
/* increases to compensate for the "constant digits at the */
|
5327 |
|
|
/* front" effect. */
|
5328 |
|
|
Int lever=MINI(8-h, maxlever); /* leverage attainable */
|
5329 |
|
|
Int use=-rhs->digits-lever; /* exponent to use for RHS */
|
5330 |
|
|
h+=lever; /* apply leverage selected */
|
5331 |
|
|
if (h<0) { /* clamp */
|
5332 |
|
|
use+=h; /* [may end up subnormal] */
|
5333 |
|
|
h=0;
|
5334 |
|
|
}
|
5335 |
|
|
/* Take a copy of RHS if it needs normalization (true whenever x>=1) */
|
5336 |
|
|
if (rhs->exponent!=use) {
|
5337 |
|
|
decNumber *newrhs=bufr; /* assume will fit on stack */
|
5338 |
|
|
needbytes=sizeof(decNumber)+(D2U(rhs->digits)-1)*sizeof(Unit);
|
5339 |
|
|
if (needbytes>sizeof(bufr)) { /* need malloc space */
|
5340 |
|
|
allocrhs=(decNumber *)malloc(needbytes);
|
5341 |
|
|
if (allocrhs==NULL) { /* hopeless -- abandon */
|
5342 |
|
|
*status|=DEC_Insufficient_storage;
|
5343 |
|
|
break;}
|
5344 |
|
|
newrhs=allocrhs; /* use the allocated space */
|
5345 |
|
|
}
|
5346 |
|
|
decNumberCopy(newrhs, rhs); /* copy to safe space */
|
5347 |
|
|
newrhs->exponent=use; /* normalize; now <1 */
|
5348 |
|
|
x=newrhs; /* ready for use */
|
5349 |
|
|
/* decNumberShow(x); */
|
5350 |
|
|
}
|
5351 |
|
|
|
5352 |
|
|
/* Now use the usual power series to evaluate exp(x). The */
|
5353 |
|
|
/* series starts as 1 + x + x^2/2 ... so prime ready for the */
|
5354 |
|
|
/* third term by setting the term variable t=x, the accumulator */
|
5355 |
|
|
/* a=1, and the divisor d=2. */
|
5356 |
|
|
|
5357 |
|
|
/* First determine the working precision. From Hull & Abrham */
|
5358 |
|
|
/* this is set->digits+h+2. However, if x is 'over-precise' we */
|
5359 |
|
|
/* need to allow for all its digits to potentially participate */
|
5360 |
|
|
/* (consider an x where all the excess digits are 9s) so in */
|
5361 |
|
|
/* this case use x->digits+h+2 */
|
5362 |
|
|
p=MAXI(x->digits, set->digits)+h+2; /* [h<=8] */
|
5363 |
|
|
|
5364 |
|
|
/* a and t are variable precision, and depend on p, so space */
|
5365 |
|
|
/* must be allocated for them if necessary */
|
5366 |
|
|
|
5367 |
|
|
/* the accumulator needs to be able to hold 2p digits so that */
|
5368 |
|
|
/* the additions on the second and subsequent iterations are */
|
5369 |
|
|
/* sufficiently exact. */
|
5370 |
|
|
needbytes=sizeof(decNumber)+(D2U(p*2)-1)*sizeof(Unit);
|
5371 |
|
|
if (needbytes>sizeof(bufa)) { /* need malloc space */
|
5372 |
|
|
allocbufa=(decNumber *)malloc(needbytes);
|
5373 |
|
|
if (allocbufa==NULL) { /* hopeless -- abandon */
|
5374 |
|
|
*status|=DEC_Insufficient_storage;
|
5375 |
|
|
break;}
|
5376 |
|
|
a=allocbufa; /* use the allocated space */
|
5377 |
|
|
}
|
5378 |
|
|
/* the term needs to be able to hold p digits (which is */
|
5379 |
|
|
/* guaranteed to be larger than x->digits, so the initial copy */
|
5380 |
|
|
/* is safe); it may also be used for the raise-to-power */
|
5381 |
|
|
/* calculation below, which needs an extra two digits */
|
5382 |
|
|
needbytes=sizeof(decNumber)+(D2U(p+2)-1)*sizeof(Unit);
|
5383 |
|
|
if (needbytes>sizeof(buft)) { /* need malloc space */
|
5384 |
|
|
allocbuft=(decNumber *)malloc(needbytes);
|
5385 |
|
|
if (allocbuft==NULL) { /* hopeless -- abandon */
|
5386 |
|
|
*status|=DEC_Insufficient_storage;
|
5387 |
|
|
break;}
|
5388 |
|
|
t=allocbuft; /* use the allocated space */
|
5389 |
|
|
}
|
5390 |
|
|
|
5391 |
|
|
decNumberCopy(t, x); /* term=x */
|
5392 |
|
|
decNumberZero(a); *a->lsu=1; /* accumulator=1 */
|
5393 |
|
|
decNumberZero(d); *d->lsu=2; /* divisor=2 */
|
5394 |
|
|
decNumberZero(&numone); *numone.lsu=1; /* constant 1 for increment */
|
5395 |
|
|
|
5396 |
|
|
/* set up the contexts for calculating a, t, and d */
|
5397 |
|
|
decContextDefault(&tset, DEC_INIT_DECIMAL64);
|
5398 |
|
|
dset=tset;
|
5399 |
|
|
/* accumulator bounds are set above, set precision now */
|
5400 |
|
|
aset.digits=p*2; /* double */
|
5401 |
|
|
/* term bounds avoid any underflow or overflow */
|
5402 |
|
|
tset.digits=p;
|
5403 |
|
|
tset.emin=DEC_MIN_EMIN; /* [emax is plenty] */
|
5404 |
|
|
/* [dset.digits=16, etc., are sufficient] */
|
5405 |
|
|
|
5406 |
|
|
/* finally ready to roll */
|
5407 |
|
|
for (;;) {
|
5408 |
|
|
#if DECCHECK
|
5409 |
|
|
iterations++;
|
5410 |
|
|
#endif
|
5411 |
|
|
/* only the status from the accumulation is interesting */
|
5412 |
|
|
/* [but it should remain unchanged after first add] */
|
5413 |
|
|
decAddOp(a, a, t, &aset, 0, status); /* a=a+t */
|
5414 |
|
|
decMultiplyOp(t, t, x, &tset, &ignore); /* t=t*x */
|
5415 |
|
|
decDivideOp(t, t, d, &tset, DIVIDE, &ignore); /* t=t/d */
|
5416 |
|
|
/* the iteration ends when the term cannot affect the result, */
|
5417 |
|
|
/* if rounded to p digits, which is when its value is smaller */
|
5418 |
|
|
/* than the accumulator by p+1 digits. There must also be */
|
5419 |
|
|
/* full precision in a. */
|
5420 |
|
|
if (((a->digits+a->exponent)>=(t->digits+t->exponent+p+1))
|
5421 |
|
|
&& (a->digits>=p)) break;
|
5422 |
|
|
decAddOp(d, d, &numone, &dset, 0, &ignore); /* d=d+1 */
|
5423 |
|
|
} /* iterate */
|
5424 |
|
|
|
5425 |
|
|
#if DECCHECK
|
5426 |
|
|
/* just a sanity check; comment out test to show always */
|
5427 |
|
|
if (iterations>p+3)
|
5428 |
|
|
printf("Exp iterations=%ld, status=%08lx, p=%ld, d=%ld\n",
|
5429 |
|
|
iterations, *status, p, x->digits);
|
5430 |
|
|
#endif
|
5431 |
|
|
} /* h<=8 */
|
5432 |
|
|
|
5433 |
|
|
/* apply postconditioning: a=a**(10**h) -- this is calculated */
|
5434 |
|
|
/* at a slightly higher precision than Hull & Abrham suggest */
|
5435 |
|
|
if (h>0) {
|
5436 |
|
|
Int seenbit=0; /* set once a 1-bit is seen */
|
5437 |
|
|
Int i; /* counter */
|
5438 |
|
|
Int n=powers[h]; /* always positive */
|
5439 |
|
|
aset.digits=p+2; /* sufficient precision */
|
5440 |
|
|
/* avoid the overhead and many extra digits of decNumberPower */
|
5441 |
|
|
/* as all that is needed is the short 'multipliers' loop; here */
|
5442 |
|
|
/* accumulate the answer into t */
|
5443 |
|
|
decNumberZero(t); *t->lsu=1; /* acc=1 */
|
5444 |
|
|
for (i=1;;i++){ /* for each bit [top bit ignored] */
|
5445 |
|
|
/* abandon if have had overflow or terminal underflow */
|
5446 |
|
|
if (*status & (DEC_Overflow|DEC_Underflow)) { /* interesting? */
|
5447 |
|
|
if (*status&DEC_Overflow || ISZERO(t)) break;}
|
5448 |
|
|
n=n<<1; /* move next bit to testable position */
|
5449 |
|
|
if (n<0) { /* top bit is set */
|
5450 |
|
|
seenbit=1; /* OK, have a significant bit */
|
5451 |
|
|
decMultiplyOp(t, t, a, &aset, status); /* acc=acc*x */
|
5452 |
|
|
}
|
5453 |
|
|
if (i==31) break; /* that was the last bit */
|
5454 |
|
|
if (!seenbit) continue; /* no need to square 1 */
|
5455 |
|
|
decMultiplyOp(t, t, t, &aset, status); /* acc=acc*acc [square] */
|
5456 |
|
|
} /*i*/ /* 32 bits */
|
5457 |
|
|
/* decNumberShow(t); */
|
5458 |
|
|
a=t; /* and carry on using t instead of a */
|
5459 |
|
|
}
|
5460 |
|
|
|
5461 |
|
|
/* Copy and round the result to res */
|
5462 |
|
|
residue=1; /* indicate dirt to right .. */
|
5463 |
|
|
if (ISZERO(a)) residue=0; /* .. unless underflowed to 0 */
|
5464 |
|
|
aset.digits=set->digits; /* [use default rounding] */
|
5465 |
|
|
decCopyFit(res, a, &aset, &residue, status); /* copy & shorten */
|
5466 |
|
|
decFinish(res, set, &residue, status); /* cleanup/set flags */
|
5467 |
|
|
} while(0); /* end protected */
|
5468 |
|
|
|
5469 |
|
|
if (allocrhs !=NULL) free(allocrhs); /* drop any storage used */
|
5470 |
|
|
if (allocbufa!=NULL) free(allocbufa); /* .. */
|
5471 |
|
|
if (allocbuft!=NULL) free(allocbuft); /* .. */
|
5472 |
|
|
/* [status is handled by caller] */
|
5473 |
|
|
return res;
|
5474 |
|
|
} /* decExpOp */
|
5475 |
|
|
|
5476 |
|
|
/* ------------------------------------------------------------------ */
|
5477 |
|
|
/* Initial-estimate natural logarithm table */
|
5478 |
|
|
/* */
|
5479 |
|
|
/* LNnn -- 90-entry 16-bit table for values from .10 through .99. */
|
5480 |
|
|
/* The result is a 4-digit encode of the coefficient (c=the */
|
5481 |
|
|
/* top 14 bits encoding 0-9999) and a 2-digit encode of the */
|
5482 |
|
|
/* exponent (e=the bottom 2 bits encoding 0-3) */
|
5483 |
|
|
/* */
|
5484 |
|
|
/* The resulting value is given by: */
|
5485 |
|
|
/* */
|
5486 |
|
|
/* v = -c * 10**(-e-3) */
|
5487 |
|
|
/* */
|
5488 |
|
|
/* where e and c are extracted from entry k = LNnn[x-10] */
|
5489 |
|
|
/* where x is truncated (NB) into the range 10 through 99, */
|
5490 |
|
|
/* and then c = k>>2 and e = k&3. */
|
5491 |
|
|
/* ------------------------------------------------------------------ */
|
5492 |
|
|
const uShort LNnn[90]={9016, 8652, 8316, 8008, 7724, 7456, 7208,
|
5493 |
|
|
6972, 6748, 6540, 6340, 6148, 5968, 5792, 5628, 5464, 5312,
|
5494 |
|
|
5164, 5020, 4884, 4748, 4620, 4496, 4376, 4256, 4144, 4032,
|
5495 |
|
|
39233, 38181, 37157, 36157, 35181, 34229, 33297, 32389, 31501, 30629,
|
5496 |
|
|
29777, 28945, 28129, 27329, 26545, 25777, 25021, 24281, 23553, 22837,
|
5497 |
|
|
22137, 21445, 20769, 20101, 19445, 18801, 18165, 17541, 16925, 16321,
|
5498 |
|
|
15721, 15133, 14553, 13985, 13421, 12865, 12317, 11777, 11241, 10717,
|
5499 |
|
|
10197, 9685, 9177, 8677, 8185, 7697, 7213, 6737, 6269, 5801,
|
5500 |
|
|
5341, 4889, 4437, 39930, 35534, 31186, 26886, 22630, 18418, 14254,
|
5501 |
|
|
10130, 6046, 20055};
|
5502 |
|
|
|
5503 |
|
|
/* ------------------------------------------------------------------ */
|
5504 |
|
|
/* decLnOp -- effect natural logarithm */
|
5505 |
|
|
/* */
|
5506 |
|
|
/* This computes C = ln(A) */
|
5507 |
|
|
/* */
|
5508 |
|
|
/* res is C, the result. C may be A */
|
5509 |
|
|
/* rhs is A */
|
5510 |
|
|
/* set is the context; note that rounding mode has no effect */
|
5511 |
|
|
/* */
|
5512 |
|
|
/* C must have space for set->digits digits. */
|
5513 |
|
|
/* */
|
5514 |
|
|
/* Notable cases: */
|
5515 |
|
|
/* A<0 -> Invalid */
|
5516 |
|
|
/* A=0 -> -Infinity (Exact) */
|
5517 |
|
|
/* A=+Infinity -> +Infinity (Exact) */
|
5518 |
|
|
/* A=1 exactly -> 0 (Exact) */
|
5519 |
|
|
/* */
|
5520 |
|
|
/* Restrictions (as for Exp): */
|
5521 |
|
|
/* */
|
5522 |
|
|
/* digits, emax, and -emin in the context must be less than */
|
5523 |
|
|
/* DEC_MAX_MATH+11 (1000010), and the rhs must be within these */
|
5524 |
|
|
/* bounds or a zero. This is an internal routine, so these */
|
5525 |
|
|
/* restrictions are contractual and not enforced. */
|
5526 |
|
|
/* */
|
5527 |
|
|
/* A finite result is rounded using DEC_ROUND_HALF_EVEN; it will */
|
5528 |
|
|
/* almost always be correctly rounded, but may be up to 1 ulp in */
|
5529 |
|
|
/* error in rare cases. */
|
5530 |
|
|
/* ------------------------------------------------------------------ */
|
5531 |
|
|
/* The result is calculated using Newton's method, with each */
|
5532 |
|
|
/* iteration calculating a' = a + x * exp(-a) - 1. See, for example, */
|
5533 |
|
|
/* Epperson 1989. */
|
5534 |
|
|
/* */
|
5535 |
|
|
/* The iteration ends when the adjustment x*exp(-a)-1 is tiny enough. */
|
5536 |
|
|
/* This has to be calculated at the sum of the precision of x and the */
|
5537 |
|
|
/* working precision. */
|
5538 |
|
|
/* */
|
5539 |
|
|
/* Implementation notes: */
|
5540 |
|
|
/* */
|
5541 |
|
|
/* 1. This is separated out as decLnOp so it can be called from */
|
5542 |
|
|
/* other Mathematical functions (e.g., Log 10) with a wider range */
|
5543 |
|
|
/* than normal. In particular, it can handle the slightly wider */
|
5544 |
|
|
/* (+9+2) range needed by a power function. */
|
5545 |
|
|
/* */
|
5546 |
|
|
/* 2. The speed of this function is about 10x slower than exp, as */
|
5547 |
|
|
/* it typically needs 4-6 iterations for short numbers, and the */
|
5548 |
|
|
/* extra precision needed adds a squaring effect, twice. */
|
5549 |
|
|
/* */
|
5550 |
|
|
/* 3. Fastpaths are included for ln(10) and ln(2), up to length 40, */
|
5551 |
|
|
/* as these are common requests. ln(10) is used by log10(x). */
|
5552 |
|
|
/* */
|
5553 |
|
|
/* 4. An iteration might be saved by widening the LNnn table, and */
|
5554 |
|
|
/* would certainly save at least one if it were made ten times */
|
5555 |
|
|
/* bigger, too (for truncated fractions 0.100 through 0.999). */
|
5556 |
|
|
/* However, for most practical evaluations, at least four or five */
|
5557 |
|
|
/* iterations will be neede -- so this would only speed up by */
|
5558 |
|
|
/* 20-25% and that probably does not justify increasing the table */
|
5559 |
|
|
/* size. */
|
5560 |
|
|
/* */
|
5561 |
|
|
/* 5. The static buffers are larger than might be expected to allow */
|
5562 |
|
|
/* for calls from decNumberPower. */
|
5563 |
|
|
/* ------------------------------------------------------------------ */
|
5564 |
|
|
decNumber * decLnOp(decNumber *res, const decNumber *rhs,
|
5565 |
|
|
decContext *set, uInt *status) {
|
5566 |
|
|
uInt ignore=0; /* working status accumulator */
|
5567 |
|
|
uInt needbytes; /* for space calculations */
|
5568 |
|
|
Int residue; /* rounding residue */
|
5569 |
|
|
Int r; /* rhs=f*10**r [see below] */
|
5570 |
|
|
Int p; /* working precision */
|
5571 |
|
|
Int pp; /* precision for iteration */
|
5572 |
|
|
Int t; /* work */
|
5573 |
|
|
|
5574 |
|
|
/* buffers for a (accumulator, typically precision+2) and b */
|
5575 |
|
|
/* (adjustment calculator, same size) */
|
5576 |
|
|
decNumber bufa[D2N(DECBUFFER+12)];
|
5577 |
|
|
decNumber *allocbufa=NULL; /* -> allocated bufa, iff allocated */
|
5578 |
|
|
decNumber *a=bufa; /* accumulator/work */
|
5579 |
|
|
decNumber bufb[D2N(DECBUFFER*2+2)];
|
5580 |
|
|
decNumber *allocbufb=NULL; /* -> allocated bufa, iff allocated */
|
5581 |
|
|
decNumber *b=bufb; /* adjustment/work */
|
5582 |
|
|
|
5583 |
|
|
decNumber numone; /* constant 1 */
|
5584 |
|
|
decNumber cmp; /* work */
|
5585 |
|
|
decContext aset, bset; /* working contexts */
|
5586 |
|
|
|
5587 |
|
|
#if DECCHECK
|
5588 |
|
|
Int iterations=0; /* for later sanity check */
|
5589 |
|
|
if (decCheckOperands(res, DECUNUSED, rhs, set)) return res;
|
5590 |
|
|
#endif
|
5591 |
|
|
|
5592 |
|
|
do { /* protect allocated storage */
|
5593 |
|
|
if (SPECIALARG) { /* handle infinities and NaNs */
|
5594 |
|
|
if (decNumberIsInfinite(rhs)) { /* an infinity */
|
5595 |
|
|
if (decNumberIsNegative(rhs)) /* -Infinity -> error */
|
5596 |
|
|
*status|=DEC_Invalid_operation;
|
5597 |
|
|
else decNumberCopy(res, rhs); /* +Infinity -> self */
|
5598 |
|
|
}
|
5599 |
|
|
else decNaNs(res, rhs, NULL, set, status); /* a NaN */
|
5600 |
|
|
break;}
|
5601 |
|
|
|
5602 |
|
|
if (ISZERO(rhs)) { /* +/- zeros -> -Infinity */
|
5603 |
|
|
decNumberZero(res); /* make clean */
|
5604 |
|
|
res->bits=DECINF|DECNEG; /* set - infinity */
|
5605 |
|
|
break;} /* [no status to set] */
|
5606 |
|
|
|
5607 |
|
|
/* Non-zero negatives are bad... */
|
5608 |
|
|
if (decNumberIsNegative(rhs)) { /* -x -> error */
|
5609 |
|
|
*status|=DEC_Invalid_operation;
|
5610 |
|
|
break;}
|
5611 |
|
|
|
5612 |
|
|
/* Here, rhs is positive, finite, and in range */
|
5613 |
|
|
|
5614 |
|
|
/* lookaside fastpath code for ln(2) and ln(10) at common lengths */
|
5615 |
|
|
if (rhs->exponent==0 && set->digits<=40) {
|
5616 |
|
|
#if DECDPUN==1
|
5617 |
|
|
if (rhs->lsu[0]==0 && rhs->lsu[1]==1 && rhs->digits==2) { /* ln(10) */
|
5618 |
|
|
#else
|
5619 |
|
|
if (rhs->lsu[0]==10 && rhs->digits==2) { /* ln(10) */
|
5620 |
|
|
#endif
|
5621 |
|
|
aset=*set; aset.round=DEC_ROUND_HALF_EVEN;
|
5622 |
|
|
#define LN10 "2.302585092994045684017991454684364207601"
|
5623 |
|
|
decNumberFromString(res, LN10, &aset);
|
5624 |
|
|
*status|=(DEC_Inexact | DEC_Rounded); /* is inexact */
|
5625 |
|
|
break;}
|
5626 |
|
|
if (rhs->lsu[0]==2 && rhs->digits==1) { /* ln(2) */
|
5627 |
|
|
aset=*set; aset.round=DEC_ROUND_HALF_EVEN;
|
5628 |
|
|
#define LN2 "0.6931471805599453094172321214581765680755"
|
5629 |
|
|
decNumberFromString(res, LN2, &aset);
|
5630 |
|
|
*status|=(DEC_Inexact | DEC_Rounded);
|
5631 |
|
|
break;}
|
5632 |
|
|
} /* integer and short */
|
5633 |
|
|
|
5634 |
|
|
/* Determine the working precision. This is normally the */
|
5635 |
|
|
/* requested precision + 2, with a minimum of 9. However, if */
|
5636 |
|
|
/* the rhs is 'over-precise' then allow for all its digits to */
|
5637 |
|
|
/* potentially participate (consider an rhs where all the excess */
|
5638 |
|
|
/* digits are 9s) so in this case use rhs->digits+2. */
|
5639 |
|
|
p=MAXI(rhs->digits, MAXI(set->digits, 7))+2;
|
5640 |
|
|
|
5641 |
|
|
/* Allocate space for the accumulator and the high-precision */
|
5642 |
|
|
/* adjustment calculator, if necessary. The accumulator must */
|
5643 |
|
|
/* be able to hold p digits, and the adjustment up to */
|
5644 |
|
|
/* rhs->digits+p digits. They are also made big enough for 16 */
|
5645 |
|
|
/* digits so that they can be used for calculating the initial */
|
5646 |
|
|
/* estimate. */
|
5647 |
|
|
needbytes=sizeof(decNumber)+(D2U(MAXI(p,16))-1)*sizeof(Unit);
|
5648 |
|
|
if (needbytes>sizeof(bufa)) { /* need malloc space */
|
5649 |
|
|
allocbufa=(decNumber *)malloc(needbytes);
|
5650 |
|
|
if (allocbufa==NULL) { /* hopeless -- abandon */
|
5651 |
|
|
*status|=DEC_Insufficient_storage;
|
5652 |
|
|
break;}
|
5653 |
|
|
a=allocbufa; /* use the allocated space */
|
5654 |
|
|
}
|
5655 |
|
|
pp=p+rhs->digits;
|
5656 |
|
|
needbytes=sizeof(decNumber)+(D2U(MAXI(pp,16))-1)*sizeof(Unit);
|
5657 |
|
|
if (needbytes>sizeof(bufb)) { /* need malloc space */
|
5658 |
|
|
allocbufb=(decNumber *)malloc(needbytes);
|
5659 |
|
|
if (allocbufb==NULL) { /* hopeless -- abandon */
|
5660 |
|
|
*status|=DEC_Insufficient_storage;
|
5661 |
|
|
break;}
|
5662 |
|
|
b=allocbufb; /* use the allocated space */
|
5663 |
|
|
}
|
5664 |
|
|
|
5665 |
|
|
/* Prepare an initial estimate in acc. Calculate this by */
|
5666 |
|
|
/* considering the coefficient of x to be a normalized fraction, */
|
5667 |
|
|
/* f, with the decimal point at far left and multiplied by */
|
5668 |
|
|
/* 10**r. Then, rhs=f*10**r and 0.1<=f<1, and */
|
5669 |
|
|
/* ln(x) = ln(f) + ln(10)*r */
|
5670 |
|
|
/* Get the initial estimate for ln(f) from a small lookup */
|
5671 |
|
|
/* table (see above) indexed by the first two digits of f, */
|
5672 |
|
|
/* truncated. */
|
5673 |
|
|
|
5674 |
|
|
decContextDefault(&aset, DEC_INIT_DECIMAL64); /* 16-digit extended */
|
5675 |
|
|
r=rhs->exponent+rhs->digits; /* 'normalised' exponent */
|
5676 |
|
|
decNumberFromInt32(a, r); /* a=r */
|
5677 |
|
|
decNumberFromInt32(b, 2302585); /* b=ln(10) (2.302585) */
|
5678 |
|
|
b->exponent=-6; /* .. */
|
5679 |
|
|
decMultiplyOp(a, a, b, &aset, &ignore); /* a=a*b */
|
5680 |
|
|
/* now get top two digits of rhs into b by simple truncate and */
|
5681 |
|
|
/* force to integer */
|
5682 |
|
|
residue=0; /* (no residue) */
|
5683 |
|
|
aset.digits=2; aset.round=DEC_ROUND_DOWN;
|
5684 |
|
|
decCopyFit(b, rhs, &aset, &residue, &ignore); /* copy & shorten */
|
5685 |
|
|
b->exponent=0; /* make integer */
|
5686 |
|
|
t=decGetInt(b); /* [cannot fail] */
|
5687 |
|
|
if (t<10) t=X10(t); /* adjust single-digit b */
|
5688 |
|
|
t=LNnn[t-10]; /* look up ln(b) */
|
5689 |
|
|
decNumberFromInt32(b, t>>2); /* b=ln(b) coefficient */
|
5690 |
|
|
b->exponent=-(t&3)-3; /* set exponent */
|
5691 |
|
|
b->bits=DECNEG; /* ln(0.10)->ln(0.99) always -ve */
|
5692 |
|
|
aset.digits=16; aset.round=DEC_ROUND_HALF_EVEN; /* restore */
|
5693 |
|
|
decAddOp(a, a, b, &aset, 0, &ignore); /* acc=a+b */
|
5694 |
|
|
/* the initial estimate is now in a, with up to 4 digits correct. */
|
5695 |
|
|
/* When rhs is at or near Nmax the estimate will be low, so we */
|
5696 |
|
|
/* will approach it from below, avoiding overflow when calling exp. */
|
5697 |
|
|
|
5698 |
|
|
decNumberZero(&numone); *numone.lsu=1; /* constant 1 for adjustment */
|
5699 |
|
|
|
5700 |
|
|
/* accumulator bounds are as requested (could underflow, but */
|
5701 |
|
|
/* cannot overflow) */
|
5702 |
|
|
aset.emax=set->emax;
|
5703 |
|
|
aset.emin=set->emin;
|
5704 |
|
|
aset.clamp=0; /* no concrete format */
|
5705 |
|
|
/* set up a context to be used for the multiply and subtract */
|
5706 |
|
|
bset=aset;
|
5707 |
|
|
bset.emax=DEC_MAX_MATH*2; /* use double bounds for the */
|
5708 |
|
|
bset.emin=-DEC_MAX_MATH*2; /* adjustment calculation */
|
5709 |
|
|
/* [see decExpOp call below] */
|
5710 |
|
|
/* for each iteration double the number of digits to calculate, */
|
5711 |
|
|
/* up to a maximum of p */
|
5712 |
|
|
pp=9; /* initial precision */
|
5713 |
|
|
/* [initially 9 as then the sequence starts 7+2, 16+2, and */
|
5714 |
|
|
/* 34+2, which is ideal for standard-sized numbers] */
|
5715 |
|
|
aset.digits=pp; /* working context */
|
5716 |
|
|
bset.digits=pp+rhs->digits; /* wider context */
|
5717 |
|
|
for (;;) { /* iterate */
|
5718 |
|
|
#if DECCHECK
|
5719 |
|
|
iterations++;
|
5720 |
|
|
if (iterations>24) break; /* consider 9 * 2**24 */
|
5721 |
|
|
#endif
|
5722 |
|
|
/* calculate the adjustment (exp(-a)*x-1) into b. This is a */
|
5723 |
|
|
/* catastrophic subtraction but it really is the difference */
|
5724 |
|
|
/* from 1 that is of interest. */
|
5725 |
|
|
/* Use the internal entry point to Exp as it allows the double */
|
5726 |
|
|
/* range for calculating exp(-a) when a is the tiniest subnormal. */
|
5727 |
|
|
a->bits^=DECNEG; /* make -a */
|
5728 |
|
|
decExpOp(b, a, &bset, &ignore); /* b=exp(-a) */
|
5729 |
|
|
a->bits^=DECNEG; /* restore sign of a */
|
5730 |
|
|
/* now multiply by rhs and subtract 1, at the wider precision */
|
5731 |
|
|
decMultiplyOp(b, b, rhs, &bset, &ignore); /* b=b*rhs */
|
5732 |
|
|
decAddOp(b, b, &numone, &bset, DECNEG, &ignore); /* b=b-1 */
|
5733 |
|
|
|
5734 |
|
|
/* the iteration ends when the adjustment cannot affect the */
|
5735 |
|
|
/* result by >=0.5 ulp (at the requested digits), which */
|
5736 |
|
|
/* is when its value is smaller than the accumulator by */
|
5737 |
|
|
/* set->digits+1 digits (or it is zero) -- this is a looser */
|
5738 |
|
|
/* requirement than for Exp because all that happens to the */
|
5739 |
|
|
/* accumulator after this is the final rounding (but note that */
|
5740 |
|
|
/* there must also be full precision in a, or a=0). */
|
5741 |
|
|
|
5742 |
|
|
if (decNumberIsZero(b) ||
|
5743 |
|
|
(a->digits+a->exponent)>=(b->digits+b->exponent+set->digits+1)) {
|
5744 |
|
|
if (a->digits==p) break;
|
5745 |
|
|
if (decNumberIsZero(a)) {
|
5746 |
|
|
decCompareOp(&cmp, rhs, &numone, &aset, COMPARE, &ignore); /* rhs=1 ? */
|
5747 |
|
|
if (cmp.lsu[0]==0) a->exponent=0; /* yes, exact 0 */
|
5748 |
|
|
else *status|=(DEC_Inexact | DEC_Rounded); /* no, inexact */
|
5749 |
|
|
break;
|
5750 |
|
|
}
|
5751 |
|
|
/* force padding if adjustment has gone to 0 before full length */
|
5752 |
|
|
if (decNumberIsZero(b)) b->exponent=a->exponent-p;
|
5753 |
|
|
}
|
5754 |
|
|
|
5755 |
|
|
/* not done yet ... */
|
5756 |
|
|
decAddOp(a, a, b, &aset, 0, &ignore); /* a=a+b for next estimate */
|
5757 |
|
|
if (pp==p) continue; /* precision is at maximum */
|
5758 |
|
|
/* lengthen the next calculation */
|
5759 |
|
|
pp=pp*2; /* double precision */
|
5760 |
|
|
if (pp>p) pp=p; /* clamp to maximum */
|
5761 |
|
|
aset.digits=pp; /* working context */
|
5762 |
|
|
bset.digits=pp+rhs->digits; /* wider context */
|
5763 |
|
|
} /* Newton's iteration */
|
5764 |
|
|
|
5765 |
|
|
#if DECCHECK
|
5766 |
|
|
/* just a sanity check; remove the test to show always */
|
5767 |
|
|
if (iterations>24)
|
5768 |
|
|
printf("Ln iterations=%ld, status=%08lx, p=%ld, d=%ld\n",
|
5769 |
|
|
iterations, *status, p, rhs->digits);
|
5770 |
|
|
#endif
|
5771 |
|
|
|
5772 |
|
|
/* Copy and round the result to res */
|
5773 |
|
|
residue=1; /* indicate dirt to right */
|
5774 |
|
|
if (ISZERO(a)) residue=0; /* .. unless underflowed to 0 */
|
5775 |
|
|
aset.digits=set->digits; /* [use default rounding] */
|
5776 |
|
|
decCopyFit(res, a, &aset, &residue, status); /* copy & shorten */
|
5777 |
|
|
decFinish(res, set, &residue, status); /* cleanup/set flags */
|
5778 |
|
|
} while(0); /* end protected */
|
5779 |
|
|
|
5780 |
|
|
if (allocbufa!=NULL) free(allocbufa); /* drop any storage used */
|
5781 |
|
|
if (allocbufb!=NULL) free(allocbufb); /* .. */
|
5782 |
|
|
/* [status is handled by caller] */
|
5783 |
|
|
return res;
|
5784 |
|
|
} /* decLnOp */
|
5785 |
|
|
|
5786 |
|
|
/* ------------------------------------------------------------------ */
|
5787 |
|
|
/* decQuantizeOp -- force exponent to requested value */
|
5788 |
|
|
/* */
|
5789 |
|
|
/* This computes C = op(A, B), where op adjusts the coefficient */
|
5790 |
|
|
/* of C (by rounding or shifting) such that the exponent (-scale) */
|
5791 |
|
|
/* of C has the value B or matches the exponent of B. */
|
5792 |
|
|
/* The numerical value of C will equal A, except for the effects of */
|
5793 |
|
|
/* any rounding that occurred. */
|
5794 |
|
|
/* */
|
5795 |
|
|
/* res is C, the result. C may be A or B */
|
5796 |
|
|
/* lhs is A, the number to adjust */
|
5797 |
|
|
/* rhs is B, the requested exponent */
|
5798 |
|
|
/* set is the context */
|
5799 |
|
|
/* quant is 1 for quantize or 0 for rescale */
|
5800 |
|
|
/* status is the status accumulator (this can be called without */
|
5801 |
|
|
/* risk of control loss) */
|
5802 |
|
|
/* */
|
5803 |
|
|
/* C must have space for set->digits digits. */
|
5804 |
|
|
/* */
|
5805 |
|
|
/* Unless there is an error or the result is infinite, the exponent */
|
5806 |
|
|
/* after the operation is guaranteed to be that requested. */
|
5807 |
|
|
/* ------------------------------------------------------------------ */
|
5808 |
|
|
static decNumber * decQuantizeOp(decNumber *res, const decNumber *lhs,
|
5809 |
|
|
const decNumber *rhs, decContext *set,
|
5810 |
|
|
Flag quant, uInt *status) {
|
5811 |
|
|
#if DECSUBSET
|
5812 |
|
|
decNumber *alloclhs=NULL; /* non-NULL if rounded lhs allocated */
|
5813 |
|
|
decNumber *allocrhs=NULL; /* .., rhs */
|
5814 |
|
|
#endif
|
5815 |
|
|
const decNumber *inrhs=rhs; /* save original rhs */
|
5816 |
|
|
Int reqdigits=set->digits; /* requested DIGITS */
|
5817 |
|
|
Int reqexp; /* requested exponent [-scale] */
|
5818 |
|
|
Int residue=0; /* rounding residue */
|
5819 |
|
|
Int etiny=set->emin-(reqdigits-1);
|
5820 |
|
|
|
5821 |
|
|
#if DECCHECK
|
5822 |
|
|
if (decCheckOperands(res, lhs, rhs, set)) return res;
|
5823 |
|
|
#endif
|
5824 |
|
|
|
5825 |
|
|
do { /* protect allocated storage */
|
5826 |
|
|
#if DECSUBSET
|
5827 |
|
|
if (!set->extended) {
|
5828 |
|
|
/* reduce operands and set lostDigits status, as needed */
|
5829 |
|
|
if (lhs->digits>reqdigits) {
|
5830 |
|
|
alloclhs=decRoundOperand(lhs, set, status);
|
5831 |
|
|
if (alloclhs==NULL) break;
|
5832 |
|
|
lhs=alloclhs;
|
5833 |
|
|
}
|
5834 |
|
|
if (rhs->digits>reqdigits) { /* [this only checks lostDigits] */
|
5835 |
|
|
allocrhs=decRoundOperand(rhs, set, status);
|
5836 |
|
|
if (allocrhs==NULL) break;
|
5837 |
|
|
rhs=allocrhs;
|
5838 |
|
|
}
|
5839 |
|
|
}
|
5840 |
|
|
#endif
|
5841 |
|
|
/* [following code does not require input rounding] */
|
5842 |
|
|
|
5843 |
|
|
/* Handle special values */
|
5844 |
|
|
if (SPECIALARGS) {
|
5845 |
|
|
/* NaNs get usual processing */
|
5846 |
|
|
if (SPECIALARGS & (DECSNAN | DECNAN))
|
5847 |
|
|
decNaNs(res, lhs, rhs, set, status);
|
5848 |
|
|
/* one infinity but not both is bad */
|
5849 |
|
|
else if ((lhs->bits ^ rhs->bits) & DECINF)
|
5850 |
|
|
*status|=DEC_Invalid_operation;
|
5851 |
|
|
/* both infinity: return lhs */
|
5852 |
|
|
else decNumberCopy(res, lhs); /* [nop if in place] */
|
5853 |
|
|
break;
|
5854 |
|
|
}
|
5855 |
|
|
|
5856 |
|
|
/* set requested exponent */
|
5857 |
|
|
if (quant) reqexp=inrhs->exponent; /* quantize -- match exponents */
|
5858 |
|
|
else { /* rescale -- use value of rhs */
|
5859 |
|
|
/* Original rhs must be an integer that fits and is in range, */
|
5860 |
|
|
/* which could be from -1999999997 to +999999999, thanks to */
|
5861 |
|
|
/* subnormals */
|
5862 |
|
|
reqexp=decGetInt(inrhs); /* [cannot fail] */
|
5863 |
|
|
}
|
5864 |
|
|
|
5865 |
|
|
#if DECSUBSET
|
5866 |
|
|
if (!set->extended) etiny=set->emin; /* no subnormals */
|
5867 |
|
|
#endif
|
5868 |
|
|
|
5869 |
|
|
if (reqexp==BADINT /* bad (rescale only) or .. */
|
5870 |
|
|
|| reqexp==BIGODD || reqexp==BIGEVEN /* very big (ditto) or .. */
|
5871 |
|
|
|| (reqexp<etiny) /* < lowest */
|
5872 |
|
|
|| (reqexp>set->emax)) { /* > emax */
|
5873 |
|
|
*status|=DEC_Invalid_operation;
|
5874 |
|
|
break;}
|
5875 |
|
|
|
5876 |
|
|
/* the RHS has been processed, so it can be overwritten now if necessary */
|
5877 |
|
|
if (ISZERO(lhs)) { /* zero coefficient unchanged */
|
5878 |
|
|
decNumberCopy(res, lhs); /* [nop if in place] */
|
5879 |
|
|
res->exponent=reqexp; /* .. just set exponent */
|
5880 |
|
|
#if DECSUBSET
|
5881 |
|
|
if (!set->extended) res->bits=0; /* subset specification; no -0 */
|
5882 |
|
|
#endif
|
5883 |
|
|
}
|
5884 |
|
|
else { /* non-zero lhs */
|
5885 |
|
|
Int adjust=reqexp-lhs->exponent; /* digit adjustment needed */
|
5886 |
|
|
/* if adjusted coefficient will definitely not fit, give up now */
|
5887 |
|
|
if ((lhs->digits-adjust)>reqdigits) {
|
5888 |
|
|
*status|=DEC_Invalid_operation;
|
5889 |
|
|
break;
|
5890 |
|
|
}
|
5891 |
|
|
|
5892 |
|
|
if (adjust>0) { /* increasing exponent */
|
5893 |
|
|
/* this will decrease the length of the coefficient by adjust */
|
5894 |
|
|
/* digits, and must round as it does so */
|
5895 |
|
|
decContext workset; /* work */
|
5896 |
|
|
workset=*set; /* clone rounding, etc. */
|
5897 |
|
|
workset.digits=lhs->digits-adjust; /* set requested length */
|
5898 |
|
|
/* [note that the latter can be <1, here] */
|
5899 |
|
|
decCopyFit(res, lhs, &workset, &residue, status); /* fit to result */
|
5900 |
|
|
decApplyRound(res, &workset, residue, status); /* .. and round */
|
5901 |
|
|
residue=0; /* [used] */
|
5902 |
|
|
/* If just rounded a 999s case, exponent will be off by one; */
|
5903 |
|
|
/* adjust back (after checking space), if so. */
|
5904 |
|
|
if (res->exponent>reqexp) {
|
5905 |
|
|
/* re-check needed, e.g., for quantize(0.9999, 0.001) under */
|
5906 |
|
|
/* set->digits==3 */
|
5907 |
|
|
if (res->digits==reqdigits) { /* cannot shift by 1 */
|
5908 |
|
|
*status&=~(DEC_Inexact | DEC_Rounded); /* [clean these] */
|
5909 |
|
|
*status|=DEC_Invalid_operation;
|
5910 |
|
|
break;
|
5911 |
|
|
}
|
5912 |
|
|
res->digits=decShiftToMost(res->lsu, res->digits, 1); /* shift */
|
5913 |
|
|
res->exponent--; /* (re)adjust the exponent. */
|
5914 |
|
|
}
|
5915 |
|
|
#if DECSUBSET
|
5916 |
|
|
if (ISZERO(res) && !set->extended) res->bits=0; /* subset; no -0 */
|
5917 |
|
|
#endif
|
5918 |
|
|
} /* increase */
|
5919 |
|
|
else /* adjust<=0 */ { /* decreasing or = exponent */
|
5920 |
|
|
/* this will increase the length of the coefficient by -adjust */
|
5921 |
|
|
/* digits, by adding zero or more trailing zeros; this is */
|
5922 |
|
|
/* already checked for fit, above */
|
5923 |
|
|
decNumberCopy(res, lhs); /* [it will fit] */
|
5924 |
|
|
/* if padding needed (adjust<0), add it now... */
|
5925 |
|
|
if (adjust<0) {
|
5926 |
|
|
res->digits=decShiftToMost(res->lsu, res->digits, -adjust);
|
5927 |
|
|
res->exponent+=adjust; /* adjust the exponent */
|
5928 |
|
|
}
|
5929 |
|
|
} /* decrease */
|
5930 |
|
|
} /* non-zero */
|
5931 |
|
|
|
5932 |
|
|
/* Check for overflow [do not use Finalize in this case, as an */
|
5933 |
|
|
/* overflow here is a "don't fit" situation] */
|
5934 |
|
|
if (res->exponent>set->emax-res->digits+1) { /* too big */
|
5935 |
|
|
*status|=DEC_Invalid_operation;
|
5936 |
|
|
break;
|
5937 |
|
|
}
|
5938 |
|
|
else {
|
5939 |
|
|
decFinalize(res, set, &residue, status); /* set subnormal flags */
|
5940 |
|
|
*status&=~DEC_Underflow; /* suppress Underflow [754r] */
|
5941 |
|
|
}
|
5942 |
|
|
} while(0); /* end protected */
|
5943 |
|
|
|
5944 |
|
|
#if DECSUBSET
|
5945 |
|
|
if (allocrhs!=NULL) free(allocrhs); /* drop any storage used */
|
5946 |
|
|
if (alloclhs!=NULL) free(alloclhs); /* .. */
|
5947 |
|
|
#endif
|
5948 |
|
|
return res;
|
5949 |
|
|
} /* decQuantizeOp */
|
5950 |
|
|
|
5951 |
|
|
/* ------------------------------------------------------------------ */
|
5952 |
|
|
/* decCompareOp -- compare, min, or max two Numbers */
|
5953 |
|
|
/* */
|
5954 |
|
|
/* This computes C = A ? B and carries out one of four operations: */
|
5955 |
|
|
/* COMPARE -- returns the signum (as a number) giving the */
|
5956 |
|
|
/* result of a comparison unless one or both */
|
5957 |
|
|
/* operands is a NaN (in which case a NaN results) */
|
5958 |
|
|
/* COMPSIG -- as COMPARE except that a quiet NaN raises */
|
5959 |
|
|
/* Invalid operation. */
|
5960 |
|
|
/* COMPMAX -- returns the larger of the operands, using the */
|
5961 |
|
|
/* 754r maxnum operation */
|
5962 |
|
|
/* COMPMAXMAG -- ditto, comparing absolute values */
|
5963 |
|
|
/* COMPMIN -- the 754r minnum operation */
|
5964 |
|
|
/* COMPMINMAG -- ditto, comparing absolute values */
|
5965 |
|
|
/* COMTOTAL -- returns the signum (as a number) giving the */
|
5966 |
|
|
/* result of a comparison using 754r total ordering */
|
5967 |
|
|
/* */
|
5968 |
|
|
/* res is C, the result. C may be A and/or B (e.g., X=X?X) */
|
5969 |
|
|
/* lhs is A */
|
5970 |
|
|
/* rhs is B */
|
5971 |
|
|
/* set is the context */
|
5972 |
|
|
/* op is the operation flag */
|
5973 |
|
|
/* status is the usual accumulator */
|
5974 |
|
|
/* */
|
5975 |
|
|
/* C must have space for one digit for COMPARE or set->digits for */
|
5976 |
|
|
/* COMPMAX, COMPMIN, COMPMAXMAG, or COMPMINMAG. */
|
5977 |
|
|
/* ------------------------------------------------------------------ */
|
5978 |
|
|
/* The emphasis here is on speed for common cases, and avoiding */
|
5979 |
|
|
/* coefficient comparison if possible. */
|
5980 |
|
|
/* ------------------------------------------------------------------ */
|
5981 |
|
|
decNumber * decCompareOp(decNumber *res, const decNumber *lhs,
|
5982 |
|
|
const decNumber *rhs, decContext *set,
|
5983 |
|
|
Flag op, uInt *status) {
|
5984 |
|
|
#if DECSUBSET
|
5985 |
|
|
decNumber *alloclhs=NULL; /* non-NULL if rounded lhs allocated */
|
5986 |
|
|
decNumber *allocrhs=NULL; /* .., rhs */
|
5987 |
|
|
#endif
|
5988 |
|
|
Int result=0; /* default result value */
|
5989 |
|
|
uByte merged; /* work */
|
5990 |
|
|
|
5991 |
|
|
#if DECCHECK
|
5992 |
|
|
if (decCheckOperands(res, lhs, rhs, set)) return res;
|
5993 |
|
|
#endif
|
5994 |
|
|
|
5995 |
|
|
do { /* protect allocated storage */
|
5996 |
|
|
#if DECSUBSET
|
5997 |
|
|
if (!set->extended) {
|
5998 |
|
|
/* reduce operands and set lostDigits status, as needed */
|
5999 |
|
|
if (lhs->digits>set->digits) {
|
6000 |
|
|
alloclhs=decRoundOperand(lhs, set, status);
|
6001 |
|
|
if (alloclhs==NULL) {result=BADINT; break;}
|
6002 |
|
|
lhs=alloclhs;
|
6003 |
|
|
}
|
6004 |
|
|
if (rhs->digits>set->digits) {
|
6005 |
|
|
allocrhs=decRoundOperand(rhs, set, status);
|
6006 |
|
|
if (allocrhs==NULL) {result=BADINT; break;}
|
6007 |
|
|
rhs=allocrhs;
|
6008 |
|
|
}
|
6009 |
|
|
}
|
6010 |
|
|
#endif
|
6011 |
|
|
/* [following code does not require input rounding] */
|
6012 |
|
|
|
6013 |
|
|
/* If total ordering then handle differing signs 'up front' */
|
6014 |
|
|
if (op==COMPTOTAL) { /* total ordering */
|
6015 |
|
|
if (decNumberIsNegative(lhs) & !decNumberIsNegative(rhs)) {
|
6016 |
|
|
result=-1;
|
6017 |
|
|
break;
|
6018 |
|
|
}
|
6019 |
|
|
if (!decNumberIsNegative(lhs) & decNumberIsNegative(rhs)) {
|
6020 |
|
|
result=+1;
|
6021 |
|
|
break;
|
6022 |
|
|
}
|
6023 |
|
|
}
|
6024 |
|
|
|
6025 |
|
|
/* handle NaNs specially; let infinities drop through */
|
6026 |
|
|
/* This assumes sNaN (even just one) leads to NaN. */
|
6027 |
|
|
merged=(lhs->bits | rhs->bits) & (DECSNAN | DECNAN);
|
6028 |
|
|
if (merged) { /* a NaN bit set */
|
6029 |
|
|
if (op==COMPARE); /* result will be NaN */
|
6030 |
|
|
else if (op==COMPSIG) /* treat qNaN as sNaN */
|
6031 |
|
|
*status|=DEC_Invalid_operation | DEC_sNaN;
|
6032 |
|
|
else if (op==COMPTOTAL) { /* total ordering, always finite */
|
6033 |
|
|
/* signs are known to be the same; compute the ordering here */
|
6034 |
|
|
/* as if the signs are both positive, then invert for negatives */
|
6035 |
|
|
if (!decNumberIsNaN(lhs)) result=-1;
|
6036 |
|
|
else if (!decNumberIsNaN(rhs)) result=+1;
|
6037 |
|
|
/* here if both NaNs */
|
6038 |
|
|
else if (decNumberIsSNaN(lhs) && decNumberIsQNaN(rhs)) result=-1;
|
6039 |
|
|
else if (decNumberIsQNaN(lhs) && decNumberIsSNaN(rhs)) result=+1;
|
6040 |
|
|
else { /* both NaN or both sNaN */
|
6041 |
|
|
/* now it just depends on the payload */
|
6042 |
|
|
result=decUnitCompare(lhs->lsu, D2U(lhs->digits),
|
6043 |
|
|
rhs->lsu, D2U(rhs->digits), 0);
|
6044 |
|
|
/* [Error not possible, as these are 'aligned'] */
|
6045 |
|
|
} /* both same NaNs */
|
6046 |
|
|
if (decNumberIsNegative(lhs)) result=-result;
|
6047 |
|
|
break;
|
6048 |
|
|
} /* total order */
|
6049 |
|
|
|
6050 |
|
|
else if (merged & DECSNAN); /* sNaN -> qNaN */
|
6051 |
|
|
else { /* here if MIN or MAX and one or two quiet NaNs */
|
6052 |
|
|
/* min or max -- 754r rules ignore single NaN */
|
6053 |
|
|
if (!decNumberIsNaN(lhs) || !decNumberIsNaN(rhs)) {
|
6054 |
|
|
/* just one NaN; force choice to be the non-NaN operand */
|
6055 |
|
|
op=COMPMAX;
|
6056 |
|
|
if (lhs->bits & DECNAN) result=-1; /* pick rhs */
|
6057 |
|
|
else result=+1; /* pick lhs */
|
6058 |
|
|
break;
|
6059 |
|
|
}
|
6060 |
|
|
} /* max or min */
|
6061 |
|
|
op=COMPNAN; /* use special path */
|
6062 |
|
|
decNaNs(res, lhs, rhs, set, status); /* propagate NaN */
|
6063 |
|
|
break;
|
6064 |
|
|
}
|
6065 |
|
|
/* have numbers */
|
6066 |
|
|
if (op==COMPMAXMAG || op==COMPMINMAG) result=decCompare(lhs, rhs, 1);
|
6067 |
|
|
else result=decCompare(lhs, rhs, 0); /* sign matters */
|
6068 |
|
|
} while(0); /* end protected */
|
6069 |
|
|
|
6070 |
|
|
if (result==BADINT) *status|=DEC_Insufficient_storage; /* rare */
|
6071 |
|
|
else {
|
6072 |
|
|
if (op==COMPARE || op==COMPSIG ||op==COMPTOTAL) { /* returning signum */
|
6073 |
|
|
if (op==COMPTOTAL && result==0) {
|
6074 |
|
|
/* operands are numerically equal or same NaN (and same sign, */
|
6075 |
|
|
/* tested first); if identical, leave result 0 */
|
6076 |
|
|
if (lhs->exponent!=rhs->exponent) {
|
6077 |
|
|
if (lhs->exponent<rhs->exponent) result=-1;
|
6078 |
|
|
else result=+1;
|
6079 |
|
|
if (decNumberIsNegative(lhs)) result=-result;
|
6080 |
|
|
} /* lexp!=rexp */
|
6081 |
|
|
} /* total-order by exponent */
|
6082 |
|
|
decNumberZero(res); /* [always a valid result] */
|
6083 |
|
|
if (result!=0) { /* must be -1 or +1 */
|
6084 |
|
|
*res->lsu=1;
|
6085 |
|
|
if (result<0) res->bits=DECNEG;
|
6086 |
|
|
}
|
6087 |
|
|
}
|
6088 |
|
|
else if (op==COMPNAN); /* special, drop through */
|
6089 |
|
|
else { /* MAX or MIN, non-NaN result */
|
6090 |
|
|
Int residue=0; /* rounding accumulator */
|
6091 |
|
|
/* choose the operand for the result */
|
6092 |
|
|
const decNumber *choice;
|
6093 |
|
|
if (result==0) { /* operands are numerically equal */
|
6094 |
|
|
/* choose according to sign then exponent (see 754r) */
|
6095 |
|
|
uByte slhs=(lhs->bits & DECNEG);
|
6096 |
|
|
uByte srhs=(rhs->bits & DECNEG);
|
6097 |
|
|
#if DECSUBSET
|
6098 |
|
|
if (!set->extended) { /* subset: force left-hand */
|
6099 |
|
|
op=COMPMAX;
|
6100 |
|
|
result=+1;
|
6101 |
|
|
}
|
6102 |
|
|
else
|
6103 |
|
|
#endif
|
6104 |
|
|
if (slhs!=srhs) { /* signs differ */
|
6105 |
|
|
if (slhs) result=-1; /* rhs is max */
|
6106 |
|
|
else result=+1; /* lhs is max */
|
6107 |
|
|
}
|
6108 |
|
|
else if (slhs && srhs) { /* both negative */
|
6109 |
|
|
if (lhs->exponent<rhs->exponent) result=+1;
|
6110 |
|
|
else result=-1;
|
6111 |
|
|
/* [if equal, use lhs, technically identical] */
|
6112 |
|
|
}
|
6113 |
|
|
else { /* both positive */
|
6114 |
|
|
if (lhs->exponent>rhs->exponent) result=+1;
|
6115 |
|
|
else result=-1;
|
6116 |
|
|
/* [ditto] */
|
6117 |
|
|
}
|
6118 |
|
|
} /* numerically equal */
|
6119 |
|
|
/* here result will be non-0; reverse if looking for MIN */
|
6120 |
|
|
if (op==COMPMIN || op==COMPMINMAG) result=-result;
|
6121 |
|
|
choice=(result>0 ? lhs : rhs); /* choose */
|
6122 |
|
|
/* copy chosen to result, rounding if need be */
|
6123 |
|
|
decCopyFit(res, choice, set, &residue, status);
|
6124 |
|
|
decFinish(res, set, &residue, status);
|
6125 |
|
|
}
|
6126 |
|
|
}
|
6127 |
|
|
#if DECSUBSET
|
6128 |
|
|
if (allocrhs!=NULL) free(allocrhs); /* free any storage used */
|
6129 |
|
|
if (alloclhs!=NULL) free(alloclhs); /* .. */
|
6130 |
|
|
#endif
|
6131 |
|
|
return res;
|
6132 |
|
|
} /* decCompareOp */
|
6133 |
|
|
|
6134 |
|
|
/* ------------------------------------------------------------------ */
|
6135 |
|
|
/* decCompare -- compare two decNumbers by numerical value */
|
6136 |
|
|
/* */
|
6137 |
|
|
/* This routine compares A ? B without altering them. */
|
6138 |
|
|
/* */
|
6139 |
|
|
/* Arg1 is A, a decNumber which is not a NaN */
|
6140 |
|
|
/* Arg2 is B, a decNumber which is not a NaN */
|
6141 |
|
|
/* Arg3 is 1 for a sign-independent compare, 0 otherwise */
|
6142 |
|
|
/* */
|
6143 |
|
|
/* returns -1, 0, or 1 for A<B, A==B, or A>B, or BADINT if failure */
|
6144 |
|
|
/* (the only possible failure is an allocation error) */
|
6145 |
|
|
/* ------------------------------------------------------------------ */
|
6146 |
|
|
static Int decCompare(const decNumber *lhs, const decNumber *rhs,
|
6147 |
|
|
Flag abs) {
|
6148 |
|
|
Int result; /* result value */
|
6149 |
|
|
Int sigr; /* rhs signum */
|
6150 |
|
|
Int compare; /* work */
|
6151 |
|
|
|
6152 |
|
|
result=1; /* assume signum(lhs) */
|
6153 |
|
|
if (ISZERO(lhs)) result=0;
|
6154 |
|
|
if (abs) {
|
6155 |
|
|
if (ISZERO(rhs)) return result; /* LHS wins or both 0 */
|
6156 |
|
|
/* RHS is non-zero */
|
6157 |
|
|
if (result==0) return -1; /* LHS is 0; RHS wins */
|
6158 |
|
|
/* [here, both non-zero, result=1] */
|
6159 |
|
|
}
|
6160 |
|
|
else { /* signs matter */
|
6161 |
|
|
if (result && decNumberIsNegative(lhs)) result=-1;
|
6162 |
|
|
sigr=1; /* compute signum(rhs) */
|
6163 |
|
|
if (ISZERO(rhs)) sigr=0;
|
6164 |
|
|
else if (decNumberIsNegative(rhs)) sigr=-1;
|
6165 |
|
|
if (result > sigr) return +1; /* L > R, return 1 */
|
6166 |
|
|
if (result < sigr) return -1; /* L < R, return -1 */
|
6167 |
|
|
if (result==0) return 0; /* both 0 */
|
6168 |
|
|
}
|
6169 |
|
|
|
6170 |
|
|
/* signums are the same; both are non-zero */
|
6171 |
|
|
if ((lhs->bits | rhs->bits) & DECINF) { /* one or more infinities */
|
6172 |
|
|
if (decNumberIsInfinite(rhs)) {
|
6173 |
|
|
if (decNumberIsInfinite(lhs)) result=0;/* both infinite */
|
6174 |
|
|
else result=-result; /* only rhs infinite */
|
6175 |
|
|
}
|
6176 |
|
|
return result;
|
6177 |
|
|
}
|
6178 |
|
|
/* must compare the coefficients, allowing for exponents */
|
6179 |
|
|
if (lhs->exponent>rhs->exponent) { /* LHS exponent larger */
|
6180 |
|
|
/* swap sides, and sign */
|
6181 |
|
|
const decNumber *temp=lhs;
|
6182 |
|
|
lhs=rhs;
|
6183 |
|
|
rhs=temp;
|
6184 |
|
|
result=-result;
|
6185 |
|
|
}
|
6186 |
|
|
compare=decUnitCompare(lhs->lsu, D2U(lhs->digits),
|
6187 |
|
|
rhs->lsu, D2U(rhs->digits),
|
6188 |
|
|
rhs->exponent-lhs->exponent);
|
6189 |
|
|
if (compare!=BADINT) compare*=result; /* comparison succeeded */
|
6190 |
|
|
return compare;
|
6191 |
|
|
} /* decCompare */
|
6192 |
|
|
|
6193 |
|
|
/* ------------------------------------------------------------------ */
|
6194 |
|
|
/* decUnitCompare -- compare two >=0 integers in Unit arrays */
|
6195 |
|
|
/* */
|
6196 |
|
|
/* This routine compares A ? B*10**E where A and B are unit arrays */
|
6197 |
|
|
/* A is a plain integer */
|
6198 |
|
|
/* B has an exponent of E (which must be non-negative) */
|
6199 |
|
|
/* */
|
6200 |
|
|
/* Arg1 is A first Unit (lsu) */
|
6201 |
|
|
/* Arg2 is A length in Units */
|
6202 |
|
|
/* Arg3 is B first Unit (lsu) */
|
6203 |
|
|
/* Arg4 is B length in Units */
|
6204 |
|
|
/* Arg5 is E (0 if the units are aligned) */
|
6205 |
|
|
/* */
|
6206 |
|
|
/* returns -1, 0, or 1 for A<B, A==B, or A>B, or BADINT if failure */
|
6207 |
|
|
/* (the only possible failure is an allocation error, which can */
|
6208 |
|
|
/* only occur if E!=0) */
|
6209 |
|
|
/* ------------------------------------------------------------------ */
|
6210 |
|
|
static Int decUnitCompare(const Unit *a, Int alength,
|
6211 |
|
|
const Unit *b, Int blength, Int exp) {
|
6212 |
|
|
Unit *acc; /* accumulator for result */
|
6213 |
|
|
Unit accbuff[SD2U(DECBUFFER*2+1)]; /* local buffer */
|
6214 |
|
|
Unit *allocacc=NULL; /* -> allocated acc buffer, iff allocated */
|
6215 |
|
|
Int accunits, need; /* units in use or needed for acc */
|
6216 |
|
|
const Unit *l, *r, *u; /* work */
|
6217 |
|
|
Int expunits, exprem, result; /* .. */
|
6218 |
|
|
|
6219 |
|
|
if (exp==0) { /* aligned; fastpath */
|
6220 |
|
|
if (alength>blength) return 1;
|
6221 |
|
|
if (alength<blength) return -1;
|
6222 |
|
|
/* same number of units in both -- need unit-by-unit compare */
|
6223 |
|
|
l=a+alength-1;
|
6224 |
|
|
r=b+alength-1;
|
6225 |
|
|
for (;l>=a; l--, r--) {
|
6226 |
|
|
if (*l>*r) return 1;
|
6227 |
|
|
if (*l<*r) return -1;
|
6228 |
|
|
}
|
6229 |
|
|
return 0; /* all units match */
|
6230 |
|
|
} /* aligned */
|
6231 |
|
|
|
6232 |
|
|
/* Unaligned. If one is >1 unit longer than the other, padded */
|
6233 |
|
|
/* approximately, then can return easily */
|
6234 |
|
|
if (alength>blength+(Int)D2U(exp)) return 1;
|
6235 |
|
|
if (alength+1<blength+(Int)D2U(exp)) return -1;
|
6236 |
|
|
|
6237 |
|
|
/* Need to do a real subtract. For this, a result buffer is needed */
|
6238 |
|
|
/* even though only the sign is of interest. Its length needs */
|
6239 |
|
|
/* to be the larger of alength and padded blength, +2 */
|
6240 |
|
|
need=blength+D2U(exp); /* maximum real length of B */
|
6241 |
|
|
if (need<alength) need=alength;
|
6242 |
|
|
need+=2;
|
6243 |
|
|
acc=accbuff; /* assume use local buffer */
|
6244 |
|
|
if (need*sizeof(Unit)>sizeof(accbuff)) {
|
6245 |
|
|
allocacc=(Unit *)malloc(need*sizeof(Unit));
|
6246 |
|
|
if (allocacc==NULL) return BADINT; /* hopeless -- abandon */
|
6247 |
|
|
acc=allocacc;
|
6248 |
|
|
}
|
6249 |
|
|
/* Calculate units and remainder from exponent. */
|
6250 |
|
|
expunits=exp/DECDPUN;
|
6251 |
|
|
exprem=exp%DECDPUN;
|
6252 |
|
|
/* subtract [A+B*(-m)] */
|
6253 |
|
|
accunits=decUnitAddSub(a, alength, b, blength, expunits, acc,
|
6254 |
|
|
-(Int)powers[exprem]);
|
6255 |
|
|
/* [UnitAddSub result may have leading zeros, even on zero] */
|
6256 |
|
|
if (accunits<0) result=-1; /* negative result */
|
6257 |
|
|
else { /* non-negative result */
|
6258 |
|
|
/* check units of the result before freeing any storage */
|
6259 |
|
|
for (u=acc; u<acc+accunits-1 && *u==0;) u++;
|
6260 |
|
|
result=(*u==0 ? 0 : +1);
|
6261 |
|
|
}
|
6262 |
|
|
/* clean up and return the result */
|
6263 |
|
|
if (allocacc!=NULL) free(allocacc); /* drop any storage used */
|
6264 |
|
|
return result;
|
6265 |
|
|
} /* decUnitCompare */
|
6266 |
|
|
|
6267 |
|
|
/* ------------------------------------------------------------------ */
|
6268 |
|
|
/* decUnitAddSub -- add or subtract two >=0 integers in Unit arrays */
|
6269 |
|
|
/* */
|
6270 |
|
|
/* This routine performs the calculation: */
|
6271 |
|
|
/* */
|
6272 |
|
|
/* C=A+(B*M) */
|
6273 |
|
|
/* */
|
6274 |
|
|
/* Where M is in the range -DECDPUNMAX through +DECDPUNMAX. */
|
6275 |
|
|
/* */
|
6276 |
|
|
/* A may be shorter or longer than B. */
|
6277 |
|
|
/* */
|
6278 |
|
|
/* Leading zeros are not removed after a calculation. The result is */
|
6279 |
|
|
/* either the same length as the longer of A and B (adding any */
|
6280 |
|
|
/* shift), or one Unit longer than that (if a Unit carry occurred). */
|
6281 |
|
|
/* */
|
6282 |
|
|
/* A and B content are not altered unless C is also A or B. */
|
6283 |
|
|
/* C may be the same array as A or B, but only if no zero padding is */
|
6284 |
|
|
/* requested (that is, C may be B only if bshift==0). */
|
6285 |
|
|
/* C is filled from the lsu; only those units necessary to complete */
|
6286 |
|
|
/* the calculation are referenced. */
|
6287 |
|
|
/* */
|
6288 |
|
|
/* Arg1 is A first Unit (lsu) */
|
6289 |
|
|
/* Arg2 is A length in Units */
|
6290 |
|
|
/* Arg3 is B first Unit (lsu) */
|
6291 |
|
|
/* Arg4 is B length in Units */
|
6292 |
|
|
/* Arg5 is B shift in Units (>=0; pads with 0 units if positive) */
|
6293 |
|
|
/* Arg6 is C first Unit (lsu) */
|
6294 |
|
|
/* Arg7 is M, the multiplier */
|
6295 |
|
|
/* */
|
6296 |
|
|
/* returns the count of Units written to C, which will be non-zero */
|
6297 |
|
|
/* and negated if the result is negative. That is, the sign of the */
|
6298 |
|
|
/* returned Int is the sign of the result (positive for zero) and */
|
6299 |
|
|
/* the absolute value of the Int is the count of Units. */
|
6300 |
|
|
/* */
|
6301 |
|
|
/* It is the caller's responsibility to make sure that C size is */
|
6302 |
|
|
/* safe, allowing space if necessary for a one-Unit carry. */
|
6303 |
|
|
/* */
|
6304 |
|
|
/* This routine is severely performance-critical; *any* change here */
|
6305 |
|
|
/* must be measured (timed) to assure no performance degradation. */
|
6306 |
|
|
/* In particular, trickery here tends to be counter-productive, as */
|
6307 |
|
|
/* increased complexity of code hurts register optimizations on */
|
6308 |
|
|
/* register-poor architectures. Avoiding divisions is nearly */
|
6309 |
|
|
/* always a Good Idea, however. */
|
6310 |
|
|
/* */
|
6311 |
|
|
/* Special thanks to Rick McGuire (IBM Cambridge, MA) and Dave Clark */
|
6312 |
|
|
/* (IBM Warwick, UK) for some of the ideas used in this routine. */
|
6313 |
|
|
/* ------------------------------------------------------------------ */
|
6314 |
|
|
static Int decUnitAddSub(const Unit *a, Int alength,
|
6315 |
|
|
const Unit *b, Int blength, Int bshift,
|
6316 |
|
|
Unit *c, Int m) {
|
6317 |
|
|
const Unit *alsu=a; /* A lsu [need to remember it] */
|
6318 |
|
|
Unit *clsu=c; /* C ditto */
|
6319 |
|
|
Unit *minC; /* low water mark for C */
|
6320 |
|
|
Unit *maxC; /* high water mark for C */
|
6321 |
|
|
eInt carry=0; /* carry integer (could be Long) */
|
6322 |
|
|
Int add; /* work */
|
6323 |
|
|
#if DECDPUN<=4 /* myriadal, millenary, etc. */
|
6324 |
|
|
Int est; /* estimated quotient */
|
6325 |
|
|
#endif
|
6326 |
|
|
|
6327 |
|
|
#if DECTRACE
|
6328 |
|
|
if (alength<1 || blength<1)
|
6329 |
|
|
printf("decUnitAddSub: alen blen m %ld %ld [%ld]\n", alength, blength, m);
|
6330 |
|
|
#endif
|
6331 |
|
|
|
6332 |
|
|
maxC=c+alength; /* A is usually the longer */
|
6333 |
|
|
minC=c+blength; /* .. and B the shorter */
|
6334 |
|
|
if (bshift!=0) { /* B is shifted; low As copy across */
|
6335 |
|
|
minC+=bshift;
|
6336 |
|
|
/* if in place [common], skip copy unless there's a gap [rare] */
|
6337 |
|
|
if (a==c && bshift<=alength) {
|
6338 |
|
|
c+=bshift;
|
6339 |
|
|
a+=bshift;
|
6340 |
|
|
}
|
6341 |
|
|
else for (; c<clsu+bshift; a++, c++) { /* copy needed */
|
6342 |
|
|
if (a<alsu+alength) *c=*a;
|
6343 |
|
|
else *c=0;
|
6344 |
|
|
}
|
6345 |
|
|
}
|
6346 |
|
|
if (minC>maxC) { /* swap */
|
6347 |
|
|
Unit *hold=minC;
|
6348 |
|
|
minC=maxC;
|
6349 |
|
|
maxC=hold;
|
6350 |
|
|
}
|
6351 |
|
|
|
6352 |
|
|
/* For speed, do the addition as two loops; the first where both A */
|
6353 |
|
|
/* and B contribute, and the second (if necessary) where only one or */
|
6354 |
|
|
/* other of the numbers contribute. */
|
6355 |
|
|
/* Carry handling is the same (i.e., duplicated) in each case. */
|
6356 |
|
|
for (; c<minC; c++) {
|
6357 |
|
|
carry+=*a;
|
6358 |
|
|
a++;
|
6359 |
|
|
carry+=((eInt)*b)*m; /* [special-casing m=1/-1 */
|
6360 |
|
|
b++; /* here is not a win] */
|
6361 |
|
|
/* here carry is new Unit of digits; it could be +ve or -ve */
|
6362 |
|
|
if ((ueInt)carry<=DECDPUNMAX) { /* fastpath 0-DECDPUNMAX */
|
6363 |
|
|
*c=(Unit)carry;
|
6364 |
|
|
carry=0;
|
6365 |
|
|
continue;
|
6366 |
|
|
}
|
6367 |
|
|
#if DECDPUN==4 /* use divide-by-multiply */
|
6368 |
|
|
if (carry>=0) {
|
6369 |
|
|
est=(((ueInt)carry>>11)*53687)>>18;
|
6370 |
|
|
*c=(Unit)(carry-est*(DECDPUNMAX+1)); /* remainder */
|
6371 |
|
|
carry=est; /* likely quotient [89%] */
|
6372 |
|
|
if (*c<DECDPUNMAX+1) continue; /* estimate was correct */
|
6373 |
|
|
carry++;
|
6374 |
|
|
*c-=DECDPUNMAX+1;
|
6375 |
|
|
continue;
|
6376 |
|
|
}
|
6377 |
|
|
/* negative case */
|
6378 |
|
|
carry=carry+(eInt)(DECDPUNMAX+1)*(DECDPUNMAX+1); /* make positive */
|
6379 |
|
|
est=(((ueInt)carry>>11)*53687)>>18;
|
6380 |
|
|
*c=(Unit)(carry-est*(DECDPUNMAX+1));
|
6381 |
|
|
carry=est-(DECDPUNMAX+1); /* correctly negative */
|
6382 |
|
|
if (*c<DECDPUNMAX+1) continue; /* was OK */
|
6383 |
|
|
carry++;
|
6384 |
|
|
*c-=DECDPUNMAX+1;
|
6385 |
|
|
#elif DECDPUN==3
|
6386 |
|
|
if (carry>=0) {
|
6387 |
|
|
est=(((ueInt)carry>>3)*16777)>>21;
|
6388 |
|
|
*c=(Unit)(carry-est*(DECDPUNMAX+1)); /* remainder */
|
6389 |
|
|
carry=est; /* likely quotient [99%] */
|
6390 |
|
|
if (*c<DECDPUNMAX+1) continue; /* estimate was correct */
|
6391 |
|
|
carry++;
|
6392 |
|
|
*c-=DECDPUNMAX+1;
|
6393 |
|
|
continue;
|
6394 |
|
|
}
|
6395 |
|
|
/* negative case */
|
6396 |
|
|
carry=carry+(eInt)(DECDPUNMAX+1)*(DECDPUNMAX+1); /* make positive */
|
6397 |
|
|
est=(((ueInt)carry>>3)*16777)>>21;
|
6398 |
|
|
*c=(Unit)(carry-est*(DECDPUNMAX+1));
|
6399 |
|
|
carry=est-(DECDPUNMAX+1); /* correctly negative */
|
6400 |
|
|
if (*c<DECDPUNMAX+1) continue; /* was OK */
|
6401 |
|
|
carry++;
|
6402 |
|
|
*c-=DECDPUNMAX+1;
|
6403 |
|
|
#elif DECDPUN<=2
|
6404 |
|
|
/* Can use QUOT10 as carry <= 4 digits */
|
6405 |
|
|
if (carry>=0) {
|
6406 |
|
|
est=QUOT10(carry, DECDPUN);
|
6407 |
|
|
*c=(Unit)(carry-est*(DECDPUNMAX+1)); /* remainder */
|
6408 |
|
|
carry=est; /* quotient */
|
6409 |
|
|
continue;
|
6410 |
|
|
}
|
6411 |
|
|
/* negative case */
|
6412 |
|
|
carry=carry+(eInt)(DECDPUNMAX+1)*(DECDPUNMAX+1); /* make positive */
|
6413 |
|
|
est=QUOT10(carry, DECDPUN);
|
6414 |
|
|
*c=(Unit)(carry-est*(DECDPUNMAX+1));
|
6415 |
|
|
carry=est-(DECDPUNMAX+1); /* correctly negative */
|
6416 |
|
|
#else
|
6417 |
|
|
/* remainder operator is undefined if negative, so must test */
|
6418 |
|
|
if ((ueInt)carry<(DECDPUNMAX+1)*2) { /* fastpath carry +1 */
|
6419 |
|
|
*c=(Unit)(carry-(DECDPUNMAX+1)); /* [helps additions] */
|
6420 |
|
|
carry=1;
|
6421 |
|
|
continue;
|
6422 |
|
|
}
|
6423 |
|
|
if (carry>=0) {
|
6424 |
|
|
*c=(Unit)(carry%(DECDPUNMAX+1));
|
6425 |
|
|
carry=carry/(DECDPUNMAX+1);
|
6426 |
|
|
continue;
|
6427 |
|
|
}
|
6428 |
|
|
/* negative case */
|
6429 |
|
|
carry=carry+(eInt)(DECDPUNMAX+1)*(DECDPUNMAX+1); /* make positive */
|
6430 |
|
|
*c=(Unit)(carry%(DECDPUNMAX+1));
|
6431 |
|
|
carry=carry/(DECDPUNMAX+1)-(DECDPUNMAX+1);
|
6432 |
|
|
#endif
|
6433 |
|
|
} /* c */
|
6434 |
|
|
|
6435 |
|
|
/* now may have one or other to complete */
|
6436 |
|
|
/* [pretest to avoid loop setup/shutdown] */
|
6437 |
|
|
if (c<maxC) for (; c<maxC; c++) {
|
6438 |
|
|
if (a<alsu+alength) { /* still in A */
|
6439 |
|
|
carry+=*a;
|
6440 |
|
|
a++;
|
6441 |
|
|
}
|
6442 |
|
|
else { /* inside B */
|
6443 |
|
|
carry+=((eInt)*b)*m;
|
6444 |
|
|
b++;
|
6445 |
|
|
}
|
6446 |
|
|
/* here carry is new Unit of digits; it could be +ve or -ve and */
|
6447 |
|
|
/* magnitude up to DECDPUNMAX squared */
|
6448 |
|
|
if ((ueInt)carry<=DECDPUNMAX) { /* fastpath 0-DECDPUNMAX */
|
6449 |
|
|
*c=(Unit)carry;
|
6450 |
|
|
carry=0;
|
6451 |
|
|
continue;
|
6452 |
|
|
}
|
6453 |
|
|
/* result for this unit is negative or >DECDPUNMAX */
|
6454 |
|
|
#if DECDPUN==4 /* use divide-by-multiply */
|
6455 |
|
|
if (carry>=0) {
|
6456 |
|
|
est=(((ueInt)carry>>11)*53687)>>18;
|
6457 |
|
|
*c=(Unit)(carry-est*(DECDPUNMAX+1)); /* remainder */
|
6458 |
|
|
carry=est; /* likely quotient [79.7%] */
|
6459 |
|
|
if (*c<DECDPUNMAX+1) continue; /* estimate was correct */
|
6460 |
|
|
carry++;
|
6461 |
|
|
*c-=DECDPUNMAX+1;
|
6462 |
|
|
continue;
|
6463 |
|
|
}
|
6464 |
|
|
/* negative case */
|
6465 |
|
|
carry=carry+(eInt)(DECDPUNMAX+1)*(DECDPUNMAX+1); /* make positive */
|
6466 |
|
|
est=(((ueInt)carry>>11)*53687)>>18;
|
6467 |
|
|
*c=(Unit)(carry-est*(DECDPUNMAX+1));
|
6468 |
|
|
carry=est-(DECDPUNMAX+1); /* correctly negative */
|
6469 |
|
|
if (*c<DECDPUNMAX+1) continue; /* was OK */
|
6470 |
|
|
carry++;
|
6471 |
|
|
*c-=DECDPUNMAX+1;
|
6472 |
|
|
#elif DECDPUN==3
|
6473 |
|
|
if (carry>=0) {
|
6474 |
|
|
est=(((ueInt)carry>>3)*16777)>>21;
|
6475 |
|
|
*c=(Unit)(carry-est*(DECDPUNMAX+1)); /* remainder */
|
6476 |
|
|
carry=est; /* likely quotient [99%] */
|
6477 |
|
|
if (*c<DECDPUNMAX+1) continue; /* estimate was correct */
|
6478 |
|
|
carry++;
|
6479 |
|
|
*c-=DECDPUNMAX+1;
|
6480 |
|
|
continue;
|
6481 |
|
|
}
|
6482 |
|
|
/* negative case */
|
6483 |
|
|
carry=carry+(eInt)(DECDPUNMAX+1)*(DECDPUNMAX+1); /* make positive */
|
6484 |
|
|
est=(((ueInt)carry>>3)*16777)>>21;
|
6485 |
|
|
*c=(Unit)(carry-est*(DECDPUNMAX+1));
|
6486 |
|
|
carry=est-(DECDPUNMAX+1); /* correctly negative */
|
6487 |
|
|
if (*c<DECDPUNMAX+1) continue; /* was OK */
|
6488 |
|
|
carry++;
|
6489 |
|
|
*c-=DECDPUNMAX+1;
|
6490 |
|
|
#elif DECDPUN<=2
|
6491 |
|
|
if (carry>=0) {
|
6492 |
|
|
est=QUOT10(carry, DECDPUN);
|
6493 |
|
|
*c=(Unit)(carry-est*(DECDPUNMAX+1)); /* remainder */
|
6494 |
|
|
carry=est; /* quotient */
|
6495 |
|
|
continue;
|
6496 |
|
|
}
|
6497 |
|
|
/* negative case */
|
6498 |
|
|
carry=carry+(eInt)(DECDPUNMAX+1)*(DECDPUNMAX+1); /* make positive */
|
6499 |
|
|
est=QUOT10(carry, DECDPUN);
|
6500 |
|
|
*c=(Unit)(carry-est*(DECDPUNMAX+1));
|
6501 |
|
|
carry=est-(DECDPUNMAX+1); /* correctly negative */
|
6502 |
|
|
#else
|
6503 |
|
|
if ((ueInt)carry<(DECDPUNMAX+1)*2){ /* fastpath carry 1 */
|
6504 |
|
|
*c=(Unit)(carry-(DECDPUNMAX+1));
|
6505 |
|
|
carry=1;
|
6506 |
|
|
continue;
|
6507 |
|
|
}
|
6508 |
|
|
/* remainder operator is undefined if negative, so must test */
|
6509 |
|
|
if (carry>=0) {
|
6510 |
|
|
*c=(Unit)(carry%(DECDPUNMAX+1));
|
6511 |
|
|
carry=carry/(DECDPUNMAX+1);
|
6512 |
|
|
continue;
|
6513 |
|
|
}
|
6514 |
|
|
/* negative case */
|
6515 |
|
|
carry=carry+(eInt)(DECDPUNMAX+1)*(DECDPUNMAX+1); /* make positive */
|
6516 |
|
|
*c=(Unit)(carry%(DECDPUNMAX+1));
|
6517 |
|
|
carry=carry/(DECDPUNMAX+1)-(DECDPUNMAX+1);
|
6518 |
|
|
#endif
|
6519 |
|
|
} /* c */
|
6520 |
|
|
|
6521 |
|
|
/* OK, all A and B processed; might still have carry or borrow */
|
6522 |
|
|
/* return number of Units in the result, negated if a borrow */
|
6523 |
|
|
if (carry==0) return c-clsu; /* no carry, so no more to do */
|
6524 |
|
|
if (carry>0) { /* positive carry */
|
6525 |
|
|
*c=(Unit)carry; /* place as new unit */
|
6526 |
|
|
c++; /* .. */
|
6527 |
|
|
return c-clsu;
|
6528 |
|
|
}
|
6529 |
|
|
/* -ve carry: it's a borrow; complement needed */
|
6530 |
|
|
add=1; /* temporary carry... */
|
6531 |
|
|
for (c=clsu; c<maxC; c++) {
|
6532 |
|
|
add=DECDPUNMAX+add-*c;
|
6533 |
|
|
if (add<=DECDPUNMAX) {
|
6534 |
|
|
*c=(Unit)add;
|
6535 |
|
|
add=0;
|
6536 |
|
|
}
|
6537 |
|
|
else {
|
6538 |
|
|
*c=0;
|
6539 |
|
|
add=1;
|
6540 |
|
|
}
|
6541 |
|
|
}
|
6542 |
|
|
/* add an extra unit iff it would be non-zero */
|
6543 |
|
|
#if DECTRACE
|
6544 |
|
|
printf("UAS borrow: add %ld, carry %ld\n", add, carry);
|
6545 |
|
|
#endif
|
6546 |
|
|
if ((add-carry-1)!=0) {
|
6547 |
|
|
*c=(Unit)(add-carry-1);
|
6548 |
|
|
c++; /* interesting, include it */
|
6549 |
|
|
}
|
6550 |
|
|
return clsu-c; /* -ve result indicates borrowed */
|
6551 |
|
|
} /* decUnitAddSub */
|
6552 |
|
|
|
6553 |
|
|
/* ------------------------------------------------------------------ */
|
6554 |
|
|
/* decTrim -- trim trailing zeros or normalize */
|
6555 |
|
|
/* */
|
6556 |
|
|
/* dn is the number to trim or normalize */
|
6557 |
|
|
/* set is the context to use to check for clamp */
|
6558 |
|
|
/* all is 1 to remove all trailing zeros, 0 for just fraction ones */
|
6559 |
|
|
/* dropped returns the number of discarded trailing zeros */
|
6560 |
|
|
/* returns dn */
|
6561 |
|
|
/* */
|
6562 |
|
|
/* If clamp is set in the context then the number of zeros trimmed */
|
6563 |
|
|
/* may be limited if the exponent is high. */
|
6564 |
|
|
/* All fields are updated as required. This is a utility operation, */
|
6565 |
|
|
/* so special values are unchanged and no error is possible. */
|
6566 |
|
|
/* ------------------------------------------------------------------ */
|
6567 |
|
|
static decNumber * decTrim(decNumber *dn, decContext *set, Flag all,
|
6568 |
|
|
Int *dropped) {
|
6569 |
|
|
Int d, exp; /* work */
|
6570 |
|
|
uInt cut; /* .. */
|
6571 |
|
|
Unit *up; /* -> current Unit */
|
6572 |
|
|
|
6573 |
|
|
#if DECCHECK
|
6574 |
|
|
if (decCheckOperands(dn, DECUNUSED, DECUNUSED, DECUNCONT)) return dn;
|
6575 |
|
|
#endif
|
6576 |
|
|
|
6577 |
|
|
*dropped=0; /* assume no zeros dropped */
|
6578 |
|
|
if ((dn->bits & DECSPECIAL) /* fast exit if special .. */
|
6579 |
|
|
|| (*dn->lsu & 0x01)) return dn; /* .. or odd */
|
6580 |
|
|
if (ISZERO(dn)) { /* .. or 0 */
|
6581 |
|
|
dn->exponent=0; /* (sign is preserved) */
|
6582 |
|
|
return dn;
|
6583 |
|
|
}
|
6584 |
|
|
|
6585 |
|
|
/* have a finite number which is even */
|
6586 |
|
|
exp=dn->exponent;
|
6587 |
|
|
cut=1; /* digit (1-DECDPUN) in Unit */
|
6588 |
|
|
up=dn->lsu; /* -> current Unit */
|
6589 |
|
|
for (d=0; d<dn->digits-1; d++) { /* [don't strip the final digit] */
|
6590 |
|
|
/* slice by powers */
|
6591 |
|
|
#if DECDPUN<=4
|
6592 |
|
|
uInt quot=QUOT10(*up, cut);
|
6593 |
|
|
if ((*up-quot*powers[cut])!=0) break; /* found non-0 digit */
|
6594 |
|
|
#else
|
6595 |
|
|
if (*up%powers[cut]!=0) break; /* found non-0 digit */
|
6596 |
|
|
#endif
|
6597 |
|
|
/* have a trailing 0 */
|
6598 |
|
|
if (!all) { /* trimming */
|
6599 |
|
|
/* [if exp>0 then all trailing 0s are significant for trim] */
|
6600 |
|
|
if (exp<=0) { /* if digit might be significant */
|
6601 |
|
|
if (exp==0) break; /* then quit */
|
6602 |
|
|
exp++; /* next digit might be significant */
|
6603 |
|
|
}
|
6604 |
|
|
}
|
6605 |
|
|
cut++; /* next power */
|
6606 |
|
|
if (cut>DECDPUN) { /* need new Unit */
|
6607 |
|
|
up++;
|
6608 |
|
|
cut=1;
|
6609 |
|
|
}
|
6610 |
|
|
} /* d */
|
6611 |
|
|
if (d==0) return dn; /* none to drop */
|
6612 |
|
|
|
6613 |
|
|
/* may need to limit drop if clamping */
|
6614 |
|
|
if (set->clamp) {
|
6615 |
|
|
Int maxd=set->emax-set->digits+1-dn->exponent;
|
6616 |
|
|
if (maxd<=0) return dn; /* nothing possible */
|
6617 |
|
|
if (d>maxd) d=maxd;
|
6618 |
|
|
}
|
6619 |
|
|
|
6620 |
|
|
/* effect the drop */
|
6621 |
|
|
decShiftToLeast(dn->lsu, D2U(dn->digits), d);
|
6622 |
|
|
dn->exponent+=d; /* maintain numerical value */
|
6623 |
|
|
dn->digits-=d; /* new length */
|
6624 |
|
|
*dropped=d; /* report the count */
|
6625 |
|
|
return dn;
|
6626 |
|
|
} /* decTrim */
|
6627 |
|
|
|
6628 |
|
|
/* ------------------------------------------------------------------ */
|
6629 |
|
|
/* decReverse -- reverse a Unit array in place */
|
6630 |
|
|
/* */
|
6631 |
|
|
/* ulo is the start of the array */
|
6632 |
|
|
/* uhi is the end of the array (highest Unit to include) */
|
6633 |
|
|
/* */
|
6634 |
|
|
/* The units ulo through uhi are reversed in place (if the number */
|
6635 |
|
|
/* of units is odd, the middle one is untouched). Note that the */
|
6636 |
|
|
/* digit(s) in each unit are unaffected. */
|
6637 |
|
|
/* ------------------------------------------------------------------ */
|
6638 |
|
|
static void decReverse(Unit *ulo, Unit *uhi) {
|
6639 |
|
|
Unit temp;
|
6640 |
|
|
for (; ulo<uhi; ulo++, uhi--) {
|
6641 |
|
|
temp=*ulo;
|
6642 |
|
|
*ulo=*uhi;
|
6643 |
|
|
*uhi=temp;
|
6644 |
|
|
}
|
6645 |
|
|
return;
|
6646 |
|
|
} /* decReverse */
|
6647 |
|
|
|
6648 |
|
|
/* ------------------------------------------------------------------ */
|
6649 |
|
|
/* decShiftToMost -- shift digits in array towards most significant */
|
6650 |
|
|
/* */
|
6651 |
|
|
/* uar is the array */
|
6652 |
|
|
/* digits is the count of digits in use in the array */
|
6653 |
|
|
/* shift is the number of zeros to pad with (least significant); */
|
6654 |
|
|
/* it must be zero or positive */
|
6655 |
|
|
/* */
|
6656 |
|
|
/* returns the new length of the integer in the array, in digits */
|
6657 |
|
|
/* */
|
6658 |
|
|
/* No overflow is permitted (that is, the uar array must be known to */
|
6659 |
|
|
/* be large enough to hold the result, after shifting). */
|
6660 |
|
|
/* ------------------------------------------------------------------ */
|
6661 |
|
|
static Int decShiftToMost(Unit *uar, Int digits, Int shift) {
|
6662 |
|
|
Unit *target, *source, *first; /* work */
|
6663 |
|
|
Int cut; /* odd 0's to add */
|
6664 |
|
|
uInt next; /* work */
|
6665 |
|
|
|
6666 |
|
|
if (shift==0) return digits; /* [fastpath] nothing to do */
|
6667 |
|
|
if ((digits+shift)<=DECDPUN) { /* [fastpath] single-unit case */
|
6668 |
|
|
*uar=(Unit)(*uar*powers[shift]);
|
6669 |
|
|
return digits+shift;
|
6670 |
|
|
}
|
6671 |
|
|
|
6672 |
|
|
next=0; /* all paths */
|
6673 |
|
|
source=uar+D2U(digits)-1; /* where msu comes from */
|
6674 |
|
|
target=source+D2U(shift); /* where upper part of first cut goes */
|
6675 |
|
|
cut=DECDPUN-MSUDIGITS(shift); /* where to slice */
|
6676 |
|
|
if (cut==0) { /* unit-boundary case */
|
6677 |
|
|
for (; source>=uar; source--, target--) *target=*source;
|
6678 |
|
|
}
|
6679 |
|
|
else {
|
6680 |
|
|
first=uar+D2U(digits+shift)-1; /* where msu of source will end up */
|
6681 |
|
|
for (; source>=uar; source--, target--) {
|
6682 |
|
|
/* split the source Unit and accumulate remainder for next */
|
6683 |
|
|
#if DECDPUN<=4
|
6684 |
|
|
uInt quot=QUOT10(*source, cut);
|
6685 |
|
|
uInt rem=*source-quot*powers[cut];
|
6686 |
|
|
next+=quot;
|
6687 |
|
|
#else
|
6688 |
|
|
uInt rem=*source%powers[cut];
|
6689 |
|
|
next+=*source/powers[cut];
|
6690 |
|
|
#endif
|
6691 |
|
|
if (target<=first) *target=(Unit)next; /* write to target iff valid */
|
6692 |
|
|
next=rem*powers[DECDPUN-cut]; /* save remainder for next Unit */
|
6693 |
|
|
}
|
6694 |
|
|
} /* shift-move */
|
6695 |
|
|
|
6696 |
|
|
/* propagate any partial unit to one below and clear the rest */
|
6697 |
|
|
for (; target>=uar; target--) {
|
6698 |
|
|
*target=(Unit)next;
|
6699 |
|
|
next=0;
|
6700 |
|
|
}
|
6701 |
|
|
return digits+shift;
|
6702 |
|
|
} /* decShiftToMost */
|
6703 |
|
|
|
6704 |
|
|
/* ------------------------------------------------------------------ */
|
6705 |
|
|
/* decShiftToLeast -- shift digits in array towards least significant */
|
6706 |
|
|
/* */
|
6707 |
|
|
/* uar is the array */
|
6708 |
|
|
/* units is length of the array, in units */
|
6709 |
|
|
/* shift is the number of digits to remove from the lsu end; it */
|
6710 |
|
|
/* must be zero or positive and <= than units*DECDPUN. */
|
6711 |
|
|
/* */
|
6712 |
|
|
/* returns the new length of the integer in the array, in units */
|
6713 |
|
|
/* */
|
6714 |
|
|
/* Removed digits are discarded (lost). Units not required to hold */
|
6715 |
|
|
/* the final result are unchanged. */
|
6716 |
|
|
/* ------------------------------------------------------------------ */
|
6717 |
|
|
static Int decShiftToLeast(Unit *uar, Int units, Int shift) {
|
6718 |
|
|
Unit *target, *up; /* work */
|
6719 |
|
|
Int cut, count; /* work */
|
6720 |
|
|
Int quot, rem; /* for division */
|
6721 |
|
|
|
6722 |
|
|
if (shift==0) return units; /* [fastpath] nothing to do */
|
6723 |
|
|
if (shift==units*DECDPUN) { /* [fastpath] little to do */
|
6724 |
|
|
*uar=0; /* all digits cleared gives zero */
|
6725 |
|
|
return 1; /* leaves just the one */
|
6726 |
|
|
}
|
6727 |
|
|
|
6728 |
|
|
target=uar; /* both paths */
|
6729 |
|
|
cut=MSUDIGITS(shift);
|
6730 |
|
|
if (cut==DECDPUN) { /* unit-boundary case; easy */
|
6731 |
|
|
up=uar+D2U(shift);
|
6732 |
|
|
for (; up<uar+units; target++, up++) *target=*up;
|
6733 |
|
|
return target-uar;
|
6734 |
|
|
}
|
6735 |
|
|
|
6736 |
|
|
/* messier */
|
6737 |
|
|
up=uar+D2U(shift-cut); /* source; correct to whole Units */
|
6738 |
|
|
count=units*DECDPUN-shift; /* the maximum new length */
|
6739 |
|
|
#if DECDPUN<=4
|
6740 |
|
|
quot=QUOT10(*up, cut);
|
6741 |
|
|
#else
|
6742 |
|
|
quot=*up/powers[cut];
|
6743 |
|
|
#endif
|
6744 |
|
|
for (; ; target++) {
|
6745 |
|
|
*target=(Unit)quot;
|
6746 |
|
|
count-=(DECDPUN-cut);
|
6747 |
|
|
if (count<=0) break;
|
6748 |
|
|
up++;
|
6749 |
|
|
quot=*up;
|
6750 |
|
|
#if DECDPUN<=4
|
6751 |
|
|
quot=QUOT10(quot, cut);
|
6752 |
|
|
rem=*up-quot*powers[cut];
|
6753 |
|
|
#else
|
6754 |
|
|
rem=quot%powers[cut];
|
6755 |
|
|
quot=quot/powers[cut];
|
6756 |
|
|
#endif
|
6757 |
|
|
*target=(Unit)(*target+rem*powers[DECDPUN-cut]);
|
6758 |
|
|
count-=cut;
|
6759 |
|
|
if (count<=0) break;
|
6760 |
|
|
}
|
6761 |
|
|
return target-uar+1;
|
6762 |
|
|
} /* decShiftToLeast */
|
6763 |
|
|
|
6764 |
|
|
#if DECSUBSET
|
6765 |
|
|
/* ------------------------------------------------------------------ */
|
6766 |
|
|
/* decRoundOperand -- round an operand [used for subset only] */
|
6767 |
|
|
/* */
|
6768 |
|
|
/* dn is the number to round (dn->digits is > set->digits) */
|
6769 |
|
|
/* set is the relevant context */
|
6770 |
|
|
/* status is the status accumulator */
|
6771 |
|
|
/* */
|
6772 |
|
|
/* returns an allocated decNumber with the rounded result. */
|
6773 |
|
|
/* */
|
6774 |
|
|
/* lostDigits and other status may be set by this. */
|
6775 |
|
|
/* */
|
6776 |
|
|
/* Since the input is an operand, it must not be modified. */
|
6777 |
|
|
/* Instead, return an allocated decNumber, rounded as required. */
|
6778 |
|
|
/* It is the caller's responsibility to free the allocated storage. */
|
6779 |
|
|
/* */
|
6780 |
|
|
/* If no storage is available then the result cannot be used, so NULL */
|
6781 |
|
|
/* is returned. */
|
6782 |
|
|
/* ------------------------------------------------------------------ */
|
6783 |
|
|
static decNumber *decRoundOperand(const decNumber *dn, decContext *set,
|
6784 |
|
|
uInt *status) {
|
6785 |
|
|
decNumber *res; /* result structure */
|
6786 |
|
|
uInt newstatus=0; /* status from round */
|
6787 |
|
|
Int residue=0; /* rounding accumulator */
|
6788 |
|
|
|
6789 |
|
|
/* Allocate storage for the returned decNumber, big enough for the */
|
6790 |
|
|
/* length specified by the context */
|
6791 |
|
|
res=(decNumber *)malloc(sizeof(decNumber)
|
6792 |
|
|
+(D2U(set->digits)-1)*sizeof(Unit));
|
6793 |
|
|
if (res==NULL) {
|
6794 |
|
|
*status|=DEC_Insufficient_storage;
|
6795 |
|
|
return NULL;
|
6796 |
|
|
}
|
6797 |
|
|
decCopyFit(res, dn, set, &residue, &newstatus);
|
6798 |
|
|
decApplyRound(res, set, residue, &newstatus);
|
6799 |
|
|
|
6800 |
|
|
/* If that set Inexact then "lost digits" is raised... */
|
6801 |
|
|
if (newstatus & DEC_Inexact) newstatus|=DEC_Lost_digits;
|
6802 |
|
|
*status|=newstatus;
|
6803 |
|
|
return res;
|
6804 |
|
|
} /* decRoundOperand */
|
6805 |
|
|
#endif
|
6806 |
|
|
|
6807 |
|
|
/* ------------------------------------------------------------------ */
|
6808 |
|
|
/* decCopyFit -- copy a number, truncating the coefficient if needed */
|
6809 |
|
|
/* */
|
6810 |
|
|
/* dest is the target decNumber */
|
6811 |
|
|
/* src is the source decNumber */
|
6812 |
|
|
/* set is the context [used for length (digits) and rounding mode] */
|
6813 |
|
|
/* residue is the residue accumulator */
|
6814 |
|
|
/* status contains the current status to be updated */
|
6815 |
|
|
/* */
|
6816 |
|
|
/* (dest==src is allowed and will be a no-op if fits) */
|
6817 |
|
|
/* All fields are updated as required. */
|
6818 |
|
|
/* ------------------------------------------------------------------ */
|
6819 |
|
|
static void decCopyFit(decNumber *dest, const decNumber *src,
|
6820 |
|
|
decContext *set, Int *residue, uInt *status) {
|
6821 |
|
|
dest->bits=src->bits;
|
6822 |
|
|
dest->exponent=src->exponent;
|
6823 |
|
|
decSetCoeff(dest, set, src->lsu, src->digits, residue, status);
|
6824 |
|
|
} /* decCopyFit */
|
6825 |
|
|
|
6826 |
|
|
/* ------------------------------------------------------------------ */
|
6827 |
|
|
/* decSetCoeff -- set the coefficient of a number */
|
6828 |
|
|
/* */
|
6829 |
|
|
/* dn is the number whose coefficient array is to be set. */
|
6830 |
|
|
/* It must have space for set->digits digits */
|
6831 |
|
|
/* set is the context [for size] */
|
6832 |
|
|
/* lsu -> lsu of the source coefficient [may be dn->lsu] */
|
6833 |
|
|
/* len is digits in the source coefficient [may be dn->digits] */
|
6834 |
|
|
/* residue is the residue accumulator. This has values as in */
|
6835 |
|
|
/* decApplyRound, and will be unchanged unless the */
|
6836 |
|
|
/* target size is less than len. In this case, the */
|
6837 |
|
|
/* coefficient is truncated and the residue is updated to */
|
6838 |
|
|
/* reflect the previous residue and the dropped digits. */
|
6839 |
|
|
/* status is the status accumulator, as usual */
|
6840 |
|
|
/* */
|
6841 |
|
|
/* The coefficient may already be in the number, or it can be an */
|
6842 |
|
|
/* external intermediate array. If it is in the number, lsu must == */
|
6843 |
|
|
/* dn->lsu and len must == dn->digits. */
|
6844 |
|
|
/* */
|
6845 |
|
|
/* Note that the coefficient length (len) may be < set->digits, and */
|
6846 |
|
|
/* in this case this merely copies the coefficient (or is a no-op */
|
6847 |
|
|
/* if dn->lsu==lsu). */
|
6848 |
|
|
/* */
|
6849 |
|
|
/* Note also that (only internally, from decQuantizeOp and */
|
6850 |
|
|
/* decSetSubnormal) the value of set->digits may be less than one, */
|
6851 |
|
|
/* indicating a round to left. This routine handles that case */
|
6852 |
|
|
/* correctly; caller ensures space. */
|
6853 |
|
|
/* */
|
6854 |
|
|
/* dn->digits, dn->lsu (and as required), and dn->exponent are */
|
6855 |
|
|
/* updated as necessary. dn->bits (sign) is unchanged. */
|
6856 |
|
|
/* */
|
6857 |
|
|
/* DEC_Rounded status is set if any digits are discarded. */
|
6858 |
|
|
/* DEC_Inexact status is set if any non-zero digits are discarded, or */
|
6859 |
|
|
/* incoming residue was non-0 (implies rounded) */
|
6860 |
|
|
/* ------------------------------------------------------------------ */
|
6861 |
|
|
/* mapping array: maps 0-9 to canonical residues, so that a residue */
|
6862 |
|
|
/* can be adjusted in the range [-1, +1] and achieve correct rounding */
|
6863 |
|
|
/* 0 1 2 3 4 5 6 7 8 9 */
|
6864 |
|
|
static const uByte resmap[10]={0, 3, 3, 3, 3, 5, 7, 7, 7, 7};
|
6865 |
|
|
static void decSetCoeff(decNumber *dn, decContext *set, const Unit *lsu,
|
6866 |
|
|
Int len, Int *residue, uInt *status) {
|
6867 |
|
|
Int discard; /* number of digits to discard */
|
6868 |
|
|
uInt cut; /* cut point in Unit */
|
6869 |
|
|
const Unit *up; /* work */
|
6870 |
|
|
Unit *target; /* .. */
|
6871 |
|
|
Int count; /* .. */
|
6872 |
|
|
#if DECDPUN<=4
|
6873 |
|
|
uInt temp; /* .. */
|
6874 |
|
|
#endif
|
6875 |
|
|
|
6876 |
|
|
discard=len-set->digits; /* digits to discard */
|
6877 |
|
|
if (discard<=0) { /* no digits are being discarded */
|
6878 |
|
|
if (dn->lsu!=lsu) { /* copy needed */
|
6879 |
|
|
/* copy the coefficient array to the result number; no shift needed */
|
6880 |
|
|
count=len; /* avoids D2U */
|
6881 |
|
|
up=lsu;
|
6882 |
|
|
for (target=dn->lsu; count>0; target++, up++, count-=DECDPUN)
|
6883 |
|
|
*target=*up;
|
6884 |
|
|
dn->digits=len; /* set the new length */
|
6885 |
|
|
}
|
6886 |
|
|
/* dn->exponent and residue are unchanged, record any inexactitude */
|
6887 |
|
|
if (*residue!=0) *status|=(DEC_Inexact | DEC_Rounded);
|
6888 |
|
|
return;
|
6889 |
|
|
}
|
6890 |
|
|
|
6891 |
|
|
/* some digits must be discarded ... */
|
6892 |
|
|
dn->exponent+=discard; /* maintain numerical value */
|
6893 |
|
|
*status|=DEC_Rounded; /* accumulate Rounded status */
|
6894 |
|
|
if (*residue>1) *residue=1; /* previous residue now to right, so reduce */
|
6895 |
|
|
|
6896 |
|
|
if (discard>len) { /* everything, +1, is being discarded */
|
6897 |
|
|
/* guard digit is 0 */
|
6898 |
|
|
/* residue is all the number [NB could be all 0s] */
|
6899 |
|
|
if (*residue<=0) { /* not already positive */
|
6900 |
|
|
count=len; /* avoids D2U */
|
6901 |
|
|
for (up=lsu; count>0; up++, count-=DECDPUN) if (*up!=0) { /* found non-0 */
|
6902 |
|
|
*residue=1;
|
6903 |
|
|
break; /* no need to check any others */
|
6904 |
|
|
}
|
6905 |
|
|
}
|
6906 |
|
|
if (*residue!=0) *status|=DEC_Inexact; /* record inexactitude */
|
6907 |
|
|
*dn->lsu=0; /* coefficient will now be 0 */
|
6908 |
|
|
dn->digits=1; /* .. */
|
6909 |
|
|
return;
|
6910 |
|
|
} /* total discard */
|
6911 |
|
|
|
6912 |
|
|
/* partial discard [most common case] */
|
6913 |
|
|
/* here, at least the first (most significant) discarded digit exists */
|
6914 |
|
|
|
6915 |
|
|
/* spin up the number, noting residue during the spin, until get to */
|
6916 |
|
|
/* the Unit with the first discarded digit. When reach it, extract */
|
6917 |
|
|
/* it and remember its position */
|
6918 |
|
|
count=0;
|
6919 |
|
|
for (up=lsu;; up++) {
|
6920 |
|
|
count+=DECDPUN;
|
6921 |
|
|
if (count>=discard) break; /* full ones all checked */
|
6922 |
|
|
if (*up!=0) *residue=1;
|
6923 |
|
|
} /* up */
|
6924 |
|
|
|
6925 |
|
|
/* here up -> Unit with first discarded digit */
|
6926 |
|
|
cut=discard-(count-DECDPUN)-1;
|
6927 |
|
|
if (cut==DECDPUN-1) { /* unit-boundary case (fast) */
|
6928 |
|
|
Unit half=(Unit)powers[DECDPUN]>>1;
|
6929 |
|
|
/* set residue directly */
|
6930 |
|
|
if (*up>=half) {
|
6931 |
|
|
if (*up>half) *residue=7;
|
6932 |
|
|
else *residue+=5; /* add sticky bit */
|
6933 |
|
|
}
|
6934 |
|
|
else { /* <half */
|
6935 |
|
|
if (*up!=0) *residue=3; /* [else is 0, leave as sticky bit] */
|
6936 |
|
|
}
|
6937 |
|
|
if (set->digits<=0) { /* special for Quantize/Subnormal :-( */
|
6938 |
|
|
*dn->lsu=0; /* .. result is 0 */
|
6939 |
|
|
dn->digits=1; /* .. */
|
6940 |
|
|
}
|
6941 |
|
|
else { /* shift to least */
|
6942 |
|
|
count=set->digits; /* now digits to end up with */
|
6943 |
|
|
dn->digits=count; /* set the new length */
|
6944 |
|
|
up++; /* move to next */
|
6945 |
|
|
/* on unit boundary, so shift-down copy loop is simple */
|
6946 |
|
|
for (target=dn->lsu; count>0; target++, up++, count-=DECDPUN)
|
6947 |
|
|
*target=*up;
|
6948 |
|
|
}
|
6949 |
|
|
} /* unit-boundary case */
|
6950 |
|
|
|
6951 |
|
|
else { /* discard digit is in low digit(s), and not top digit */
|
6952 |
|
|
uInt discard1; /* first discarded digit */
|
6953 |
|
|
uInt quot, rem; /* for divisions */
|
6954 |
|
|
if (cut==0) quot=*up; /* is at bottom of unit */
|
6955 |
|
|
else /* cut>0 */ { /* it's not at bottom of unit */
|
6956 |
|
|
#if DECDPUN<=4
|
6957 |
|
|
quot=QUOT10(*up, cut);
|
6958 |
|
|
rem=*up-quot*powers[cut];
|
6959 |
|
|
#else
|
6960 |
|
|
rem=*up%powers[cut];
|
6961 |
|
|
quot=*up/powers[cut];
|
6962 |
|
|
#endif
|
6963 |
|
|
if (rem!=0) *residue=1;
|
6964 |
|
|
}
|
6965 |
|
|
/* discard digit is now at bottom of quot */
|
6966 |
|
|
#if DECDPUN<=4
|
6967 |
|
|
temp=(quot*6554)>>16; /* fast /10 */
|
6968 |
|
|
/* Vowels algorithm here not a win (9 instructions) */
|
6969 |
|
|
discard1=quot-X10(temp);
|
6970 |
|
|
quot=temp;
|
6971 |
|
|
#else
|
6972 |
|
|
discard1=quot%10;
|
6973 |
|
|
quot=quot/10;
|
6974 |
|
|
#endif
|
6975 |
|
|
/* here, discard1 is the guard digit, and residue is everything */
|
6976 |
|
|
/* else [use mapping array to accumulate residue safely] */
|
6977 |
|
|
*residue+=resmap[discard1];
|
6978 |
|
|
cut++; /* update cut */
|
6979 |
|
|
/* here: up -> Unit of the array with bottom digit */
|
6980 |
|
|
/* cut is the division point for each Unit */
|
6981 |
|
|
/* quot holds the uncut high-order digits for the current unit */
|
6982 |
|
|
if (set->digits<=0) { /* special for Quantize/Subnormal :-( */
|
6983 |
|
|
*dn->lsu=0; /* .. result is 0 */
|
6984 |
|
|
dn->digits=1; /* .. */
|
6985 |
|
|
}
|
6986 |
|
|
else { /* shift to least needed */
|
6987 |
|
|
count=set->digits; /* now digits to end up with */
|
6988 |
|
|
dn->digits=count; /* set the new length */
|
6989 |
|
|
/* shift-copy the coefficient array to the result number */
|
6990 |
|
|
for (target=dn->lsu; ; target++) {
|
6991 |
|
|
*target=(Unit)quot;
|
6992 |
|
|
count-=(DECDPUN-cut);
|
6993 |
|
|
if (count<=0) break;
|
6994 |
|
|
up++;
|
6995 |
|
|
quot=*up;
|
6996 |
|
|
#if DECDPUN<=4
|
6997 |
|
|
quot=QUOT10(quot, cut);
|
6998 |
|
|
rem=*up-quot*powers[cut];
|
6999 |
|
|
#else
|
7000 |
|
|
rem=quot%powers[cut];
|
7001 |
|
|
quot=quot/powers[cut];
|
7002 |
|
|
#endif
|
7003 |
|
|
*target=(Unit)(*target+rem*powers[DECDPUN-cut]);
|
7004 |
|
|
count-=cut;
|
7005 |
|
|
if (count<=0) break;
|
7006 |
|
|
} /* shift-copy loop */
|
7007 |
|
|
} /* shift to least */
|
7008 |
|
|
} /* not unit boundary */
|
7009 |
|
|
|
7010 |
|
|
if (*residue!=0) *status|=DEC_Inexact; /* record inexactitude */
|
7011 |
|
|
return;
|
7012 |
|
|
} /* decSetCoeff */
|
7013 |
|
|
|
7014 |
|
|
/* ------------------------------------------------------------------ */
|
7015 |
|
|
/* decApplyRound -- apply pending rounding to a number */
|
7016 |
|
|
/* */
|
7017 |
|
|
/* dn is the number, with space for set->digits digits */
|
7018 |
|
|
/* set is the context [for size and rounding mode] */
|
7019 |
|
|
/* residue indicates pending rounding, being any accumulated */
|
7020 |
|
|
/* guard and sticky information. It may be: */
|
7021 |
|
|
/* 6-9: rounding digit is >5 */
|
7022 |
|
|
/* 5: rounding digit is exactly half-way */
|
7023 |
|
|
/* 1-4: rounding digit is <5 and >0 */
|
7024 |
|
|
/* 0: the coefficient is exact */
|
7025 |
|
|
/* -1: as 1, but the hidden digits are subtractive, that */
|
7026 |
|
|
/* is, of the opposite sign to dn. In this case the */
|
7027 |
|
|
/* coefficient must be non-0. This case occurs when */
|
7028 |
|
|
/* subtracting a small number (which can be reduced to */
|
7029 |
|
|
/* a sticky bit); see decAddOp. */
|
7030 |
|
|
/* status is the status accumulator, as usual */
|
7031 |
|
|
/* */
|
7032 |
|
|
/* This routine applies rounding while keeping the length of the */
|
7033 |
|
|
/* coefficient constant. The exponent and status are unchanged */
|
7034 |
|
|
/* except if: */
|
7035 |
|
|
/* */
|
7036 |
|
|
/* -- the coefficient was increased and is all nines (in which */
|
7037 |
|
|
/* case Overflow could occur, and is handled directly here so */
|
7038 |
|
|
/* the caller does not need to re-test for overflow) */
|
7039 |
|
|
/* */
|
7040 |
|
|
/* -- the coefficient was decreased and becomes all nines (in which */
|
7041 |
|
|
/* case Underflow could occur, and is also handled directly). */
|
7042 |
|
|
/* */
|
7043 |
|
|
/* All fields in dn are updated as required. */
|
7044 |
|
|
/* */
|
7045 |
|
|
/* ------------------------------------------------------------------ */
|
7046 |
|
|
static void decApplyRound(decNumber *dn, decContext *set, Int residue,
|
7047 |
|
|
uInt *status) {
|
7048 |
|
|
Int bump; /* 1 if coefficient needs to be incremented */
|
7049 |
|
|
/* -1 if coefficient needs to be decremented */
|
7050 |
|
|
|
7051 |
|
|
if (residue==0) return; /* nothing to apply */
|
7052 |
|
|
|
7053 |
|
|
bump=0; /* assume a smooth ride */
|
7054 |
|
|
|
7055 |
|
|
/* now decide whether, and how, to round, depending on mode */
|
7056 |
|
|
switch (set->round) {
|
7057 |
|
|
case DEC_ROUND_05UP: { /* round zero or five up (for reround) */
|
7058 |
|
|
/* This is the same as DEC_ROUND_DOWN unless there is a */
|
7059 |
|
|
/* positive residue and the lsd of dn is 0 or 5, in which case */
|
7060 |
|
|
/* it is bumped; when residue is <0, the number is therefore */
|
7061 |
|
|
/* bumped down unless the final digit was 1 or 6 (in which */
|
7062 |
|
|
/* case it is bumped down and then up -- a no-op) */
|
7063 |
|
|
Int lsd5=*dn->lsu%5; /* get lsd and quintate */
|
7064 |
|
|
if (residue<0 && lsd5!=1) bump=-1;
|
7065 |
|
|
else if (residue>0 && lsd5==0) bump=1;
|
7066 |
|
|
/* [bump==1 could be applied directly; use common path for clarity] */
|
7067 |
|
|
break;} /* r-05 */
|
7068 |
|
|
|
7069 |
|
|
case DEC_ROUND_DOWN: {
|
7070 |
|
|
/* no change, except if negative residue */
|
7071 |
|
|
if (residue<0) bump=-1;
|
7072 |
|
|
break;} /* r-d */
|
7073 |
|
|
|
7074 |
|
|
case DEC_ROUND_HALF_DOWN: {
|
7075 |
|
|
if (residue>5) bump=1;
|
7076 |
|
|
break;} /* r-h-d */
|
7077 |
|
|
|
7078 |
|
|
case DEC_ROUND_HALF_EVEN: {
|
7079 |
|
|
if (residue>5) bump=1; /* >0.5 goes up */
|
7080 |
|
|
else if (residue==5) { /* exactly 0.5000... */
|
7081 |
|
|
/* 0.5 goes up iff [new] lsd is odd */
|
7082 |
|
|
if (*dn->lsu & 0x01) bump=1;
|
7083 |
|
|
}
|
7084 |
|
|
break;} /* r-h-e */
|
7085 |
|
|
|
7086 |
|
|
case DEC_ROUND_HALF_UP: {
|
7087 |
|
|
if (residue>=5) bump=1;
|
7088 |
|
|
break;} /* r-h-u */
|
7089 |
|
|
|
7090 |
|
|
case DEC_ROUND_UP: {
|
7091 |
|
|
if (residue>0) bump=1;
|
7092 |
|
|
break;} /* r-u */
|
7093 |
|
|
|
7094 |
|
|
case DEC_ROUND_CEILING: {
|
7095 |
|
|
/* same as _UP for positive numbers, and as _DOWN for negatives */
|
7096 |
|
|
/* [negative residue cannot occur on 0] */
|
7097 |
|
|
if (decNumberIsNegative(dn)) {
|
7098 |
|
|
if (residue<0) bump=-1;
|
7099 |
|
|
}
|
7100 |
|
|
else {
|
7101 |
|
|
if (residue>0) bump=1;
|
7102 |
|
|
}
|
7103 |
|
|
break;} /* r-c */
|
7104 |
|
|
|
7105 |
|
|
case DEC_ROUND_FLOOR: {
|
7106 |
|
|
/* same as _UP for negative numbers, and as _DOWN for positive */
|
7107 |
|
|
/* [negative residue cannot occur on 0] */
|
7108 |
|
|
if (!decNumberIsNegative(dn)) {
|
7109 |
|
|
if (residue<0) bump=-1;
|
7110 |
|
|
}
|
7111 |
|
|
else {
|
7112 |
|
|
if (residue>0) bump=1;
|
7113 |
|
|
}
|
7114 |
|
|
break;} /* r-f */
|
7115 |
|
|
|
7116 |
|
|
default: { /* e.g., DEC_ROUND_MAX */
|
7117 |
|
|
*status|=DEC_Invalid_context;
|
7118 |
|
|
#if DECTRACE || (DECCHECK && DECVERB)
|
7119 |
|
|
printf("Unknown rounding mode: %d\n", set->round);
|
7120 |
|
|
#endif
|
7121 |
|
|
break;}
|
7122 |
|
|
} /* switch */
|
7123 |
|
|
|
7124 |
|
|
/* now bump the number, up or down, if need be */
|
7125 |
|
|
if (bump==0) return; /* no action required */
|
7126 |
|
|
|
7127 |
|
|
/* Simply use decUnitAddSub unless bumping up and the number is */
|
7128 |
|
|
/* all nines. In this special case set to 100... explicitly */
|
7129 |
|
|
/* and adjust the exponent by one (as otherwise could overflow */
|
7130 |
|
|
/* the array) */
|
7131 |
|
|
/* Similarly handle all-nines result if bumping down. */
|
7132 |
|
|
if (bump>0) {
|
7133 |
|
|
Unit *up; /* work */
|
7134 |
|
|
uInt count=dn->digits; /* digits to be checked */
|
7135 |
|
|
for (up=dn->lsu; ; up++) {
|
7136 |
|
|
if (count<=DECDPUN) {
|
7137 |
|
|
/* this is the last Unit (the msu) */
|
7138 |
|
|
if (*up!=powers[count]-1) break; /* not still 9s */
|
7139 |
|
|
/* here if it, too, is all nines */
|
7140 |
|
|
*up=(Unit)powers[count-1]; /* here 999 -> 100 etc. */
|
7141 |
|
|
for (up=up-1; up>=dn->lsu; up--) *up=0; /* others all to 0 */
|
7142 |
|
|
dn->exponent++; /* and bump exponent */
|
7143 |
|
|
/* [which, very rarely, could cause Overflow...] */
|
7144 |
|
|
if ((dn->exponent+dn->digits)>set->emax+1) {
|
7145 |
|
|
decSetOverflow(dn, set, status);
|
7146 |
|
|
}
|
7147 |
|
|
return; /* done */
|
7148 |
|
|
}
|
7149 |
|
|
/* a full unit to check, with more to come */
|
7150 |
|
|
if (*up!=DECDPUNMAX) break; /* not still 9s */
|
7151 |
|
|
count-=DECDPUN;
|
7152 |
|
|
} /* up */
|
7153 |
|
|
} /* bump>0 */
|
7154 |
|
|
else { /* -1 */
|
7155 |
|
|
/* here checking for a pre-bump of 1000... (leading 1, all */
|
7156 |
|
|
/* other digits zero) */
|
7157 |
|
|
Unit *up, *sup; /* work */
|
7158 |
|
|
uInt count=dn->digits; /* digits to be checked */
|
7159 |
|
|
for (up=dn->lsu; ; up++) {
|
7160 |
|
|
if (count<=DECDPUN) {
|
7161 |
|
|
/* this is the last Unit (the msu) */
|
7162 |
|
|
if (*up!=powers[count-1]) break; /* not 100.. */
|
7163 |
|
|
/* here if have the 1000... case */
|
7164 |
|
|
sup=up; /* save msu pointer */
|
7165 |
|
|
*up=(Unit)powers[count]-1; /* here 100 in msu -> 999 */
|
7166 |
|
|
/* others all to all-nines, too */
|
7167 |
|
|
for (up=up-1; up>=dn->lsu; up--) *up=(Unit)powers[DECDPUN]-1;
|
7168 |
|
|
dn->exponent--; /* and bump exponent */
|
7169 |
|
|
|
7170 |
|
|
/* iff the number was at the subnormal boundary (exponent=etiny) */
|
7171 |
|
|
/* then the exponent is now out of range, so it will in fact get */
|
7172 |
|
|
/* clamped to etiny and the final 9 dropped. */
|
7173 |
|
|
/* printf(">> emin=%d exp=%d sdig=%d\n", set->emin, */
|
7174 |
|
|
/* dn->exponent, set->digits); */
|
7175 |
|
|
if (dn->exponent+1==set->emin-set->digits+1) {
|
7176 |
|
|
if (count==1 && dn->digits==1) *sup=0; /* here 9 -> 0[.9] */
|
7177 |
|
|
else {
|
7178 |
|
|
*sup=(Unit)powers[count-1]-1; /* here 999.. in msu -> 99.. */
|
7179 |
|
|
dn->digits--;
|
7180 |
|
|
}
|
7181 |
|
|
dn->exponent++;
|
7182 |
|
|
*status|=DEC_Underflow | DEC_Subnormal | DEC_Inexact | DEC_Rounded;
|
7183 |
|
|
}
|
7184 |
|
|
return; /* done */
|
7185 |
|
|
}
|
7186 |
|
|
|
7187 |
|
|
/* a full unit to check, with more to come */
|
7188 |
|
|
if (*up!=0) break; /* not still 0s */
|
7189 |
|
|
count-=DECDPUN;
|
7190 |
|
|
} /* up */
|
7191 |
|
|
|
7192 |
|
|
} /* bump<0 */
|
7193 |
|
|
|
7194 |
|
|
/* Actual bump needed. Do it. */
|
7195 |
|
|
decUnitAddSub(dn->lsu, D2U(dn->digits), uarrone, 1, 0, dn->lsu, bump);
|
7196 |
|
|
} /* decApplyRound */
|
7197 |
|
|
|
7198 |
|
|
#if DECSUBSET
|
7199 |
|
|
/* ------------------------------------------------------------------ */
|
7200 |
|
|
/* decFinish -- finish processing a number */
|
7201 |
|
|
/* */
|
7202 |
|
|
/* dn is the number */
|
7203 |
|
|
/* set is the context */
|
7204 |
|
|
/* residue is the rounding accumulator (as in decApplyRound) */
|
7205 |
|
|
/* status is the accumulator */
|
7206 |
|
|
/* */
|
7207 |
|
|
/* This finishes off the current number by: */
|
7208 |
|
|
/* 1. If not extended: */
|
7209 |
|
|
/* a. Converting a zero result to clean '0' */
|
7210 |
|
|
/* b. Reducing positive exponents to 0, if would fit in digits */
|
7211 |
|
|
/* 2. Checking for overflow and subnormals (always) */
|
7212 |
|
|
/* Note this is just Finalize when no subset arithmetic. */
|
7213 |
|
|
/* All fields are updated as required. */
|
7214 |
|
|
/* ------------------------------------------------------------------ */
|
7215 |
|
|
static void decFinish(decNumber *dn, decContext *set, Int *residue,
|
7216 |
|
|
uInt *status) {
|
7217 |
|
|
if (!set->extended) {
|
7218 |
|
|
if ISZERO(dn) { /* value is zero */
|
7219 |
|
|
dn->exponent=0; /* clean exponent .. */
|
7220 |
|
|
dn->bits=0; /* .. and sign */
|
7221 |
|
|
return; /* no error possible */
|
7222 |
|
|
}
|
7223 |
|
|
if (dn->exponent>=0) { /* non-negative exponent */
|
7224 |
|
|
/* >0; reduce to integer if possible */
|
7225 |
|
|
if (set->digits >= (dn->exponent+dn->digits)) {
|
7226 |
|
|
dn->digits=decShiftToMost(dn->lsu, dn->digits, dn->exponent);
|
7227 |
|
|
dn->exponent=0;
|
7228 |
|
|
}
|
7229 |
|
|
}
|
7230 |
|
|
} /* !extended */
|
7231 |
|
|
|
7232 |
|
|
decFinalize(dn, set, residue, status);
|
7233 |
|
|
} /* decFinish */
|
7234 |
|
|
#endif
|
7235 |
|
|
|
7236 |
|
|
/* ------------------------------------------------------------------ */
|
7237 |
|
|
/* decFinalize -- final check, clamp, and round of a number */
|
7238 |
|
|
/* */
|
7239 |
|
|
/* dn is the number */
|
7240 |
|
|
/* set is the context */
|
7241 |
|
|
/* residue is the rounding accumulator (as in decApplyRound) */
|
7242 |
|
|
/* status is the status accumulator */
|
7243 |
|
|
/* */
|
7244 |
|
|
/* This finishes off the current number by checking for subnormal */
|
7245 |
|
|
/* results, applying any pending rounding, checking for overflow, */
|
7246 |
|
|
/* and applying any clamping. */
|
7247 |
|
|
/* Underflow and overflow conditions are raised as appropriate. */
|
7248 |
|
|
/* All fields are updated as required. */
|
7249 |
|
|
/* ------------------------------------------------------------------ */
|
7250 |
|
|
static void decFinalize(decNumber *dn, decContext *set, Int *residue,
|
7251 |
|
|
uInt *status) {
|
7252 |
|
|
Int shift; /* shift needed if clamping */
|
7253 |
|
|
Int tinyexp=set->emin-dn->digits+1; /* precalculate subnormal boundary */
|
7254 |
|
|
|
7255 |
|
|
/* Must be careful, here, when checking the exponent as the */
|
7256 |
|
|
/* adjusted exponent could overflow 31 bits [because it may already */
|
7257 |
|
|
/* be up to twice the expected]. */
|
7258 |
|
|
|
7259 |
|
|
/* First test for subnormal. This must be done before any final */
|
7260 |
|
|
/* round as the result could be rounded to Nmin or 0. */
|
7261 |
|
|
if (dn->exponent<=tinyexp) { /* prefilter */
|
7262 |
|
|
Int comp;
|
7263 |
|
|
decNumber nmin;
|
7264 |
|
|
/* A very nasty case here is dn == Nmin and residue<0 */
|
7265 |
|
|
if (dn->exponent<tinyexp) {
|
7266 |
|
|
/* Go handle subnormals; this will apply round if needed. */
|
7267 |
|
|
decSetSubnormal(dn, set, residue, status);
|
7268 |
|
|
return;
|
7269 |
|
|
}
|
7270 |
|
|
/* Equals case: only subnormal if dn=Nmin and negative residue */
|
7271 |
|
|
decNumberZero(&nmin);
|
7272 |
|
|
nmin.lsu[0]=1;
|
7273 |
|
|
nmin.exponent=set->emin;
|
7274 |
|
|
comp=decCompare(dn, &nmin, 1); /* (signless compare) */
|
7275 |
|
|
if (comp==BADINT) { /* oops */
|
7276 |
|
|
*status|=DEC_Insufficient_storage; /* abandon... */
|
7277 |
|
|
return;
|
7278 |
|
|
}
|
7279 |
|
|
if (*residue<0 && comp==0) { /* neg residue and dn==Nmin */
|
7280 |
|
|
decApplyRound(dn, set, *residue, status); /* might force down */
|
7281 |
|
|
decSetSubnormal(dn, set, residue, status);
|
7282 |
|
|
return;
|
7283 |
|
|
}
|
7284 |
|
|
}
|
7285 |
|
|
|
7286 |
|
|
/* now apply any pending round (this could raise overflow). */
|
7287 |
|
|
if (*residue!=0) decApplyRound(dn, set, *residue, status);
|
7288 |
|
|
|
7289 |
|
|
/* Check for overflow [redundant in the 'rare' case] or clamp */
|
7290 |
|
|
if (dn->exponent<=set->emax-set->digits+1) return; /* neither needed */
|
7291 |
|
|
|
7292 |
|
|
|
7293 |
|
|
/* here when might have an overflow or clamp to do */
|
7294 |
|
|
if (dn->exponent>set->emax-dn->digits+1) { /* too big */
|
7295 |
|
|
decSetOverflow(dn, set, status);
|
7296 |
|
|
return;
|
7297 |
|
|
}
|
7298 |
|
|
/* here when the result is normal but in clamp range */
|
7299 |
|
|
if (!set->clamp) return;
|
7300 |
|
|
|
7301 |
|
|
/* here when need to apply the IEEE exponent clamp (fold-down) */
|
7302 |
|
|
shift=dn->exponent-(set->emax-set->digits+1);
|
7303 |
|
|
|
7304 |
|
|
/* shift coefficient (if non-zero) */
|
7305 |
|
|
if (!ISZERO(dn)) {
|
7306 |
|
|
dn->digits=decShiftToMost(dn->lsu, dn->digits, shift);
|
7307 |
|
|
}
|
7308 |
|
|
dn->exponent-=shift; /* adjust the exponent to match */
|
7309 |
|
|
*status|=DEC_Clamped; /* and record the dirty deed */
|
7310 |
|
|
return;
|
7311 |
|
|
} /* decFinalize */
|
7312 |
|
|
|
7313 |
|
|
/* ------------------------------------------------------------------ */
|
7314 |
|
|
/* decSetOverflow -- set number to proper overflow value */
|
7315 |
|
|
/* */
|
7316 |
|
|
/* dn is the number (used for sign [only] and result) */
|
7317 |
|
|
/* set is the context [used for the rounding mode, etc.] */
|
7318 |
|
|
/* status contains the current status to be updated */
|
7319 |
|
|
/* */
|
7320 |
|
|
/* This sets the sign of a number and sets its value to either */
|
7321 |
|
|
/* Infinity or the maximum finite value, depending on the sign of */
|
7322 |
|
|
/* dn and the rounding mode, following IEEE 854 rules. */
|
7323 |
|
|
/* ------------------------------------------------------------------ */
|
7324 |
|
|
static void decSetOverflow(decNumber *dn, decContext *set, uInt *status) {
|
7325 |
|
|
Flag needmax=0; /* result is maximum finite value */
|
7326 |
|
|
uByte sign=dn->bits&DECNEG; /* clean and save sign bit */
|
7327 |
|
|
|
7328 |
|
|
if (ISZERO(dn)) { /* zero does not overflow magnitude */
|
7329 |
|
|
Int emax=set->emax; /* limit value */
|
7330 |
|
|
if (set->clamp) emax-=set->digits-1; /* lower if clamping */
|
7331 |
|
|
if (dn->exponent>emax) { /* clamp required */
|
7332 |
|
|
dn->exponent=emax;
|
7333 |
|
|
*status|=DEC_Clamped;
|
7334 |
|
|
}
|
7335 |
|
|
return;
|
7336 |
|
|
}
|
7337 |
|
|
|
7338 |
|
|
decNumberZero(dn);
|
7339 |
|
|
switch (set->round) {
|
7340 |
|
|
case DEC_ROUND_DOWN: {
|
7341 |
|
|
needmax=1; /* never Infinity */
|
7342 |
|
|
break;} /* r-d */
|
7343 |
|
|
case DEC_ROUND_05UP: {
|
7344 |
|
|
needmax=1; /* never Infinity */
|
7345 |
|
|
break;} /* r-05 */
|
7346 |
|
|
case DEC_ROUND_CEILING: {
|
7347 |
|
|
if (sign) needmax=1; /* Infinity if non-negative */
|
7348 |
|
|
break;} /* r-c */
|
7349 |
|
|
case DEC_ROUND_FLOOR: {
|
7350 |
|
|
if (!sign) needmax=1; /* Infinity if negative */
|
7351 |
|
|
break;} /* r-f */
|
7352 |
|
|
default: break; /* Infinity in all other cases */
|
7353 |
|
|
}
|
7354 |
|
|
if (needmax) {
|
7355 |
|
|
decSetMaxValue(dn, set);
|
7356 |
|
|
dn->bits=sign; /* set sign */
|
7357 |
|
|
}
|
7358 |
|
|
else dn->bits=sign|DECINF; /* Value is +/-Infinity */
|
7359 |
|
|
*status|=DEC_Overflow | DEC_Inexact | DEC_Rounded;
|
7360 |
|
|
} /* decSetOverflow */
|
7361 |
|
|
|
7362 |
|
|
/* ------------------------------------------------------------------ */
|
7363 |
|
|
/* decSetMaxValue -- set number to +Nmax (maximum normal value) */
|
7364 |
|
|
/* */
|
7365 |
|
|
/* dn is the number to set */
|
7366 |
|
|
/* set is the context [used for digits and emax] */
|
7367 |
|
|
/* */
|
7368 |
|
|
/* This sets the number to the maximum positive value. */
|
7369 |
|
|
/* ------------------------------------------------------------------ */
|
7370 |
|
|
static void decSetMaxValue(decNumber *dn, decContext *set) {
|
7371 |
|
|
Unit *up; /* work */
|
7372 |
|
|
Int count=set->digits; /* nines to add */
|
7373 |
|
|
dn->digits=count;
|
7374 |
|
|
/* fill in all nines to set maximum value */
|
7375 |
|
|
for (up=dn->lsu; ; up++) {
|
7376 |
|
|
if (count>DECDPUN) *up=DECDPUNMAX; /* unit full o'nines */
|
7377 |
|
|
else { /* this is the msu */
|
7378 |
|
|
*up=(Unit)(powers[count]-1);
|
7379 |
|
|
break;
|
7380 |
|
|
}
|
7381 |
|
|
count-=DECDPUN; /* filled those digits */
|
7382 |
|
|
} /* up */
|
7383 |
|
|
dn->bits=0; /* + sign */
|
7384 |
|
|
dn->exponent=set->emax-set->digits+1;
|
7385 |
|
|
} /* decSetMaxValue */
|
7386 |
|
|
|
7387 |
|
|
/* ------------------------------------------------------------------ */
|
7388 |
|
|
/* decSetSubnormal -- process value whose exponent is <Emin */
|
7389 |
|
|
/* */
|
7390 |
|
|
/* dn is the number (used as input as well as output; it may have */
|
7391 |
|
|
/* an allowed subnormal value, which may need to be rounded) */
|
7392 |
|
|
/* set is the context [used for the rounding mode] */
|
7393 |
|
|
/* residue is any pending residue */
|
7394 |
|
|
/* status contains the current status to be updated */
|
7395 |
|
|
/* */
|
7396 |
|
|
/* If subset mode, set result to zero and set Underflow flags. */
|
7397 |
|
|
/* */
|
7398 |
|
|
/* Value may be zero with a low exponent; this does not set Subnormal */
|
7399 |
|
|
/* but the exponent will be clamped to Etiny. */
|
7400 |
|
|
/* */
|
7401 |
|
|
/* Otherwise ensure exponent is not out of range, and round as */
|
7402 |
|
|
/* necessary. Underflow is set if the result is Inexact. */
|
7403 |
|
|
/* ------------------------------------------------------------------ */
|
7404 |
|
|
static void decSetSubnormal(decNumber *dn, decContext *set, Int *residue,
|
7405 |
|
|
uInt *status) {
|
7406 |
|
|
Int dnexp; /* saves original exponent */
|
7407 |
|
|
decContext workset; /* work */
|
7408 |
|
|
Int etiny, adjust; /* .. */
|
7409 |
|
|
|
7410 |
|
|
#if DECSUBSET
|
7411 |
|
|
/* simple set to zero and 'hard underflow' for subset */
|
7412 |
|
|
if (!set->extended) {
|
7413 |
|
|
decNumberZero(dn);
|
7414 |
|
|
/* always full overflow */
|
7415 |
|
|
*status|=DEC_Underflow | DEC_Subnormal | DEC_Inexact | DEC_Rounded;
|
7416 |
|
|
return;
|
7417 |
|
|
}
|
7418 |
|
|
#endif
|
7419 |
|
|
|
7420 |
|
|
/* Full arithmetic -- allow subnormals, rounded to minimum exponent */
|
7421 |
|
|
/* (Etiny) if needed */
|
7422 |
|
|
etiny=set->emin-(set->digits-1); /* smallest allowed exponent */
|
7423 |
|
|
|
7424 |
|
|
if ISZERO(dn) { /* value is zero */
|
7425 |
|
|
/* residue can never be non-zero here */
|
7426 |
|
|
#if DECCHECK
|
7427 |
|
|
if (*residue!=0) {
|
7428 |
|
|
printf("++ Subnormal 0 residue %ld\n", (LI)*residue);
|
7429 |
|
|
*status|=DEC_Invalid_operation;
|
7430 |
|
|
}
|
7431 |
|
|
#endif
|
7432 |
|
|
if (dn->exponent<etiny) { /* clamp required */
|
7433 |
|
|
dn->exponent=etiny;
|
7434 |
|
|
*status|=DEC_Clamped;
|
7435 |
|
|
}
|
7436 |
|
|
return;
|
7437 |
|
|
}
|
7438 |
|
|
|
7439 |
|
|
*status|=DEC_Subnormal; /* have a non-zero subnormal */
|
7440 |
|
|
adjust=etiny-dn->exponent; /* calculate digits to remove */
|
7441 |
|
|
if (adjust<=0) { /* not out of range; unrounded */
|
7442 |
|
|
/* residue can never be non-zero here, except in the Nmin-residue */
|
7443 |
|
|
/* case (which is a subnormal result), so can take fast-path here */
|
7444 |
|
|
/* it may already be inexact (from setting the coefficient) */
|
7445 |
|
|
if (*status&DEC_Inexact) *status|=DEC_Underflow;
|
7446 |
|
|
return;
|
7447 |
|
|
}
|
7448 |
|
|
|
7449 |
|
|
/* adjust>0, so need to rescale the result so exponent becomes Etiny */
|
7450 |
|
|
/* [this code is similar to that in rescale] */
|
7451 |
|
|
dnexp=dn->exponent; /* save exponent */
|
7452 |
|
|
workset=*set; /* clone rounding, etc. */
|
7453 |
|
|
workset.digits=dn->digits-adjust; /* set requested length */
|
7454 |
|
|
workset.emin-=adjust; /* and adjust emin to match */
|
7455 |
|
|
/* [note that the latter can be <1, here, similar to Rescale case] */
|
7456 |
|
|
decSetCoeff(dn, &workset, dn->lsu, dn->digits, residue, status);
|
7457 |
|
|
decApplyRound(dn, &workset, *residue, status);
|
7458 |
|
|
|
7459 |
|
|
/* Use 754R/854 default rule: Underflow is set iff Inexact */
|
7460 |
|
|
/* [independent of whether trapped] */
|
7461 |
|
|
if (*status&DEC_Inexact) *status|=DEC_Underflow;
|
7462 |
|
|
|
7463 |
|
|
/* if rounded up a 999s case, exponent will be off by one; adjust */
|
7464 |
|
|
/* back if so [it will fit, because it was shortened earlier] */
|
7465 |
|
|
if (dn->exponent>etiny) {
|
7466 |
|
|
dn->digits=decShiftToMost(dn->lsu, dn->digits, 1);
|
7467 |
|
|
dn->exponent--; /* (re)adjust the exponent. */
|
7468 |
|
|
}
|
7469 |
|
|
|
7470 |
|
|
/* if rounded to zero, it is by definition clamped... */
|
7471 |
|
|
if (ISZERO(dn)) *status|=DEC_Clamped;
|
7472 |
|
|
} /* decSetSubnormal */
|
7473 |
|
|
|
7474 |
|
|
/* ------------------------------------------------------------------ */
|
7475 |
|
|
/* decCheckMath - check entry conditions for a math function */
|
7476 |
|
|
/* */
|
7477 |
|
|
/* This checks the context and the operand */
|
7478 |
|
|
/* */
|
7479 |
|
|
/* rhs is the operand to check */
|
7480 |
|
|
/* set is the context to check */
|
7481 |
|
|
/* status is unchanged if both are good */
|
7482 |
|
|
/* */
|
7483 |
|
|
/* returns non-zero if status is changed, 0 otherwise */
|
7484 |
|
|
/* */
|
7485 |
|
|
/* Restrictions enforced: */
|
7486 |
|
|
/* */
|
7487 |
|
|
/* digits, emax, and -emin in the context must be less than */
|
7488 |
|
|
/* DEC_MAX_MATH (999999), and A must be within these bounds if */
|
7489 |
|
|
/* non-zero. Invalid_operation is set in the status if a */
|
7490 |
|
|
/* restriction is violated. */
|
7491 |
|
|
/* ------------------------------------------------------------------ */
|
7492 |
|
|
static uInt decCheckMath(const decNumber *rhs, decContext *set,
|
7493 |
|
|
uInt *status) {
|
7494 |
|
|
uInt save=*status; /* record */
|
7495 |
|
|
if (set->digits>DEC_MAX_MATH
|
7496 |
|
|
|| set->emax>DEC_MAX_MATH
|
7497 |
|
|
|| -set->emin>DEC_MAX_MATH) *status|=DEC_Invalid_context;
|
7498 |
|
|
else if ((rhs->digits>DEC_MAX_MATH
|
7499 |
|
|
|| rhs->exponent+rhs->digits>DEC_MAX_MATH+1
|
7500 |
|
|
|| rhs->exponent+rhs->digits<2*(1-DEC_MAX_MATH))
|
7501 |
|
|
&& !ISZERO(rhs)) *status|=DEC_Invalid_operation;
|
7502 |
|
|
return (*status!=save);
|
7503 |
|
|
} /* decCheckMath */
|
7504 |
|
|
|
7505 |
|
|
/* ------------------------------------------------------------------ */
|
7506 |
|
|
/* decGetInt -- get integer from a number */
|
7507 |
|
|
/* */
|
7508 |
|
|
/* dn is the number [which will not be altered] */
|
7509 |
|
|
/* */
|
7510 |
|
|
/* returns one of: */
|
7511 |
|
|
/* BADINT if there is a non-zero fraction */
|
7512 |
|
|
/* the converted integer */
|
7513 |
|
|
/* BIGEVEN if the integer is even and magnitude > 2*10**9 */
|
7514 |
|
|
/* BIGODD if the integer is odd and magnitude > 2*10**9 */
|
7515 |
|
|
/* */
|
7516 |
|
|
/* This checks and gets a whole number from the input decNumber. */
|
7517 |
|
|
/* The sign can be determined from dn by the caller when BIGEVEN or */
|
7518 |
|
|
/* BIGODD is returned. */
|
7519 |
|
|
/* ------------------------------------------------------------------ */
|
7520 |
|
|
static Int decGetInt(const decNumber *dn) {
|
7521 |
|
|
Int theInt; /* result accumulator */
|
7522 |
|
|
const Unit *up; /* work */
|
7523 |
|
|
Int got; /* digits (real or not) processed */
|
7524 |
|
|
Int ilength=dn->digits+dn->exponent; /* integral length */
|
7525 |
|
|
Flag neg=decNumberIsNegative(dn); /* 1 if -ve */
|
7526 |
|
|
|
7527 |
|
|
/* The number must be an integer that fits in 10 digits */
|
7528 |
|
|
/* Assert, here, that 10 is enough for any rescale Etiny */
|
7529 |
|
|
#if DEC_MAX_EMAX > 999999999
|
7530 |
|
|
#error GetInt may need updating [for Emax]
|
7531 |
|
|
#endif
|
7532 |
|
|
#if DEC_MIN_EMIN < -999999999
|
7533 |
|
|
#error GetInt may need updating [for Emin]
|
7534 |
|
|
#endif
|
7535 |
|
|
if (ISZERO(dn)) return 0; /* zeros are OK, with any exponent */
|
7536 |
|
|
|
7537 |
|
|
up=dn->lsu; /* ready for lsu */
|
7538 |
|
|
theInt=0; /* ready to accumulate */
|
7539 |
|
|
if (dn->exponent>=0) { /* relatively easy */
|
7540 |
|
|
/* no fractional part [usual]; allow for positive exponent */
|
7541 |
|
|
got=dn->exponent;
|
7542 |
|
|
}
|
7543 |
|
|
else { /* -ve exponent; some fractional part to check and discard */
|
7544 |
|
|
Int count=-dn->exponent; /* digits to discard */
|
7545 |
|
|
/* spin up whole units until reach the Unit with the unit digit */
|
7546 |
|
|
for (; count>=DECDPUN; up++) {
|
7547 |
|
|
if (*up!=0) return BADINT; /* non-zero Unit to discard */
|
7548 |
|
|
count-=DECDPUN;
|
7549 |
|
|
}
|
7550 |
|
|
if (count==0) got=0; /* [a multiple of DECDPUN] */
|
7551 |
|
|
else { /* [not multiple of DECDPUN] */
|
7552 |
|
|
Int rem; /* work */
|
7553 |
|
|
/* slice off fraction digits and check for non-zero */
|
7554 |
|
|
#if DECDPUN<=4
|
7555 |
|
|
theInt=QUOT10(*up, count);
|
7556 |
|
|
rem=*up-theInt*powers[count];
|
7557 |
|
|
#else
|
7558 |
|
|
rem=*up%powers[count]; /* slice off discards */
|
7559 |
|
|
theInt=*up/powers[count];
|
7560 |
|
|
#endif
|
7561 |
|
|
if (rem!=0) return BADINT; /* non-zero fraction */
|
7562 |
|
|
/* it looks good */
|
7563 |
|
|
got=DECDPUN-count; /* number of digits so far */
|
7564 |
|
|
up++; /* ready for next */
|
7565 |
|
|
}
|
7566 |
|
|
}
|
7567 |
|
|
/* now it's known there's no fractional part */
|
7568 |
|
|
|
7569 |
|
|
/* tricky code now, to accumulate up to 9.3 digits */
|
7570 |
|
|
if (got==0) {theInt=*up; got+=DECDPUN; up++;} /* ensure lsu is there */
|
7571 |
|
|
|
7572 |
|
|
if (ilength<11) {
|
7573 |
|
|
Int save=theInt;
|
7574 |
|
|
/* collect any remaining unit(s) */
|
7575 |
|
|
for (; got<ilength; up++) {
|
7576 |
|
|
theInt+=*up*powers[got];
|
7577 |
|
|
got+=DECDPUN;
|
7578 |
|
|
}
|
7579 |
|
|
if (ilength==10) { /* need to check for wrap */
|
7580 |
|
|
if (theInt/(Int)powers[got-DECDPUN]!=(Int)*(up-1)) ilength=11;
|
7581 |
|
|
/* [that test also disallows the BADINT result case] */
|
7582 |
|
|
else if (neg && theInt>1999999997) ilength=11;
|
7583 |
|
|
else if (!neg && theInt>999999999) ilength=11;
|
7584 |
|
|
if (ilength==11) theInt=save; /* restore correct low bit */
|
7585 |
|
|
}
|
7586 |
|
|
}
|
7587 |
|
|
|
7588 |
|
|
if (ilength>10) { /* too big */
|
7589 |
|
|
if (theInt&1) return BIGODD; /* bottom bit 1 */
|
7590 |
|
|
return BIGEVEN; /* bottom bit 0 */
|
7591 |
|
|
}
|
7592 |
|
|
|
7593 |
|
|
if (neg) theInt=-theInt; /* apply sign */
|
7594 |
|
|
return theInt;
|
7595 |
|
|
} /* decGetInt */
|
7596 |
|
|
|
7597 |
|
|
/* ------------------------------------------------------------------ */
|
7598 |
|
|
/* decDecap -- decapitate the coefficient of a number */
|
7599 |
|
|
/* */
|
7600 |
|
|
/* dn is the number to be decapitated */
|
7601 |
|
|
/* drop is the number of digits to be removed from the left of dn; */
|
7602 |
|
|
/* this must be <= dn->digits (if equal, the coefficient is */
|
7603 |
|
|
/* set to 0) */
|
7604 |
|
|
/* */
|
7605 |
|
|
/* Returns dn; dn->digits will be <= the initial digits less drop */
|
7606 |
|
|
/* (after removing drop digits there may be leading zero digits */
|
7607 |
|
|
/* which will also be removed). Only dn->lsu and dn->digits change. */
|
7608 |
|
|
/* ------------------------------------------------------------------ */
|
7609 |
|
|
static decNumber *decDecap(decNumber *dn, Int drop) {
|
7610 |
|
|
Unit *msu; /* -> target cut point */
|
7611 |
|
|
Int cut; /* work */
|
7612 |
|
|
if (drop>=dn->digits) { /* losing the whole thing */
|
7613 |
|
|
#if DECCHECK
|
7614 |
|
|
if (drop>dn->digits)
|
7615 |
|
|
printf("decDecap called with drop>digits [%ld>%ld]\n",
|
7616 |
|
|
(LI)drop, (LI)dn->digits);
|
7617 |
|
|
#endif
|
7618 |
|
|
dn->lsu[0]=0;
|
7619 |
|
|
dn->digits=1;
|
7620 |
|
|
return dn;
|
7621 |
|
|
}
|
7622 |
|
|
msu=dn->lsu+D2U(dn->digits-drop)-1; /* -> likely msu */
|
7623 |
|
|
cut=MSUDIGITS(dn->digits-drop); /* digits to be in use in msu */
|
7624 |
|
|
if (cut!=DECDPUN) *msu%=powers[cut]; /* clear left digits */
|
7625 |
|
|
/* that may have left leading zero digits, so do a proper count... */
|
7626 |
|
|
dn->digits=decGetDigits(dn->lsu, msu-dn->lsu+1);
|
7627 |
|
|
return dn;
|
7628 |
|
|
} /* decDecap */
|
7629 |
|
|
|
7630 |
|
|
/* ------------------------------------------------------------------ */
|
7631 |
|
|
/* decBiStr -- compare string with pairwise options */
|
7632 |
|
|
/* */
|
7633 |
|
|
/* targ is the string to compare */
|
7634 |
|
|
/* str1 is one of the strings to compare against (length may be 0) */
|
7635 |
|
|
/* str2 is the other; it must be the same length as str1 */
|
7636 |
|
|
/* */
|
7637 |
|
|
/* returns 1 if strings compare equal, (that is, it is the same */
|
7638 |
|
|
/* length as str1 and str2, and each character of targ is in either */
|
7639 |
|
|
/* str1 or str2 in the corresponding position), or 0 otherwise */
|
7640 |
|
|
/* */
|
7641 |
|
|
/* This is used for generic caseless compare, including the awkward */
|
7642 |
|
|
/* case of the Turkish dotted and dotless Is. Use as (for example): */
|
7643 |
|
|
/* if (decBiStr(test, "mike", "MIKE")) ... */
|
7644 |
|
|
/* ------------------------------------------------------------------ */
|
7645 |
|
|
static Flag decBiStr(const char *targ, const char *str1, const char *str2) {
|
7646 |
|
|
for (;;targ++, str1++, str2++) {
|
7647 |
|
|
if (*targ!=*str1 && *targ!=*str2) return 0;
|
7648 |
|
|
/* *targ has a match in one (or both, if terminator) */
|
7649 |
|
|
if (*targ=='\0') break;
|
7650 |
|
|
} /* forever */
|
7651 |
|
|
return 1;
|
7652 |
|
|
} /* decBiStr */
|
7653 |
|
|
|
7654 |
|
|
/* ------------------------------------------------------------------ */
|
7655 |
|
|
/* decNaNs -- handle NaN operand or operands */
|
7656 |
|
|
/* */
|
7657 |
|
|
/* res is the result number */
|
7658 |
|
|
/* lhs is the first operand */
|
7659 |
|
|
/* rhs is the second operand, or NULL if none */
|
7660 |
|
|
/* context is used to limit payload length */
|
7661 |
|
|
/* status contains the current status */
|
7662 |
|
|
/* returns res in case convenient */
|
7663 |
|
|
/* */
|
7664 |
|
|
/* Called when one or both operands is a NaN, and propagates the */
|
7665 |
|
|
/* appropriate result to res. When an sNaN is found, it is changed */
|
7666 |
|
|
/* to a qNaN and Invalid operation is set. */
|
7667 |
|
|
/* ------------------------------------------------------------------ */
|
7668 |
|
|
static decNumber * decNaNs(decNumber *res, const decNumber *lhs,
|
7669 |
|
|
const decNumber *rhs, decContext *set,
|
7670 |
|
|
uInt *status) {
|
7671 |
|
|
/* This decision tree ends up with LHS being the source pointer, */
|
7672 |
|
|
/* and status updated if need be */
|
7673 |
|
|
if (lhs->bits & DECSNAN)
|
7674 |
|
|
*status|=DEC_Invalid_operation | DEC_sNaN;
|
7675 |
|
|
else if (rhs==NULL);
|
7676 |
|
|
else if (rhs->bits & DECSNAN) {
|
7677 |
|
|
lhs=rhs;
|
7678 |
|
|
*status|=DEC_Invalid_operation | DEC_sNaN;
|
7679 |
|
|
}
|
7680 |
|
|
else if (lhs->bits & DECNAN);
|
7681 |
|
|
else lhs=rhs;
|
7682 |
|
|
|
7683 |
|
|
/* propagate the payload */
|
7684 |
|
|
if (lhs->digits<=set->digits) decNumberCopy(res, lhs); /* easy */
|
7685 |
|
|
else { /* too long */
|
7686 |
|
|
const Unit *ul;
|
7687 |
|
|
Unit *ur, *uresp1;
|
7688 |
|
|
/* copy safe number of units, then decapitate */
|
7689 |
|
|
res->bits=lhs->bits; /* need sign etc. */
|
7690 |
|
|
uresp1=res->lsu+D2U(set->digits);
|
7691 |
|
|
for (ur=res->lsu, ul=lhs->lsu; ur<uresp1; ur++, ul++) *ur=*ul;
|
7692 |
|
|
res->digits=D2U(set->digits)*DECDPUN;
|
7693 |
|
|
/* maybe still too long */
|
7694 |
|
|
if (res->digits>set->digits) decDecap(res, res->digits-set->digits);
|
7695 |
|
|
}
|
7696 |
|
|
|
7697 |
|
|
res->bits&=~DECSNAN; /* convert any sNaN to NaN, while */
|
7698 |
|
|
res->bits|=DECNAN; /* .. preserving sign */
|
7699 |
|
|
res->exponent=0; /* clean exponent */
|
7700 |
|
|
/* [coefficient was copied/decapitated] */
|
7701 |
|
|
return res;
|
7702 |
|
|
} /* decNaNs */
|
7703 |
|
|
|
7704 |
|
|
/* ------------------------------------------------------------------ */
|
7705 |
|
|
/* decStatus -- apply non-zero status */
|
7706 |
|
|
/* */
|
7707 |
|
|
/* dn is the number to set if error */
|
7708 |
|
|
/* status contains the current status (not yet in context) */
|
7709 |
|
|
/* set is the context */
|
7710 |
|
|
/* */
|
7711 |
|
|
/* If the status is an error status, the number is set to a NaN, */
|
7712 |
|
|
/* unless the error was an overflow, divide-by-zero, or underflow, */
|
7713 |
|
|
/* in which case the number will have already been set. */
|
7714 |
|
|
/* */
|
7715 |
|
|
/* The context status is then updated with the new status. Note that */
|
7716 |
|
|
/* this may raise a signal, so control may never return from this */
|
7717 |
|
|
/* routine (hence resources must be recovered before it is called). */
|
7718 |
|
|
/* ------------------------------------------------------------------ */
|
7719 |
|
|
static void decStatus(decNumber *dn, uInt status, decContext *set) {
|
7720 |
|
|
if (status & DEC_NaNs) { /* error status -> NaN */
|
7721 |
|
|
/* if cause was an sNaN, clear and propagate [NaN is already set up] */
|
7722 |
|
|
if (status & DEC_sNaN) status&=~DEC_sNaN;
|
7723 |
|
|
else {
|
7724 |
|
|
decNumberZero(dn); /* other error: clean throughout */
|
7725 |
|
|
dn->bits=DECNAN; /* and make a quiet NaN */
|
7726 |
|
|
}
|
7727 |
|
|
}
|
7728 |
|
|
decContextSetStatus(set, status); /* [may not return] */
|
7729 |
|
|
return;
|
7730 |
|
|
} /* decStatus */
|
7731 |
|
|
|
7732 |
|
|
/* ------------------------------------------------------------------ */
|
7733 |
|
|
/* decGetDigits -- count digits in a Units array */
|
7734 |
|
|
/* */
|
7735 |
|
|
/* uar is the Unit array holding the number (this is often an */
|
7736 |
|
|
/* accumulator of some sort) */
|
7737 |
|
|
/* len is the length of the array in units [>=1] */
|
7738 |
|
|
/* */
|
7739 |
|
|
/* returns the number of (significant) digits in the array */
|
7740 |
|
|
/* */
|
7741 |
|
|
/* All leading zeros are excluded, except the last if the array has */
|
7742 |
|
|
/* only zero Units. */
|
7743 |
|
|
/* ------------------------------------------------------------------ */
|
7744 |
|
|
/* This may be called twice during some operations. */
|
7745 |
|
|
static Int decGetDigits(Unit *uar, Int len) {
|
7746 |
|
|
Unit *up=uar+(len-1); /* -> msu */
|
7747 |
|
|
Int digits=(len-1)*DECDPUN+1; /* possible digits excluding msu */
|
7748 |
|
|
#if DECDPUN>4
|
7749 |
|
|
uInt const *pow; /* work */
|
7750 |
|
|
#endif
|
7751 |
|
|
/* (at least 1 in final msu) */
|
7752 |
|
|
#if DECCHECK
|
7753 |
|
|
if (len<1) printf("decGetDigits called with len<1 [%ld]\n", (LI)len);
|
7754 |
|
|
#endif
|
7755 |
|
|
|
7756 |
|
|
for (; up>=uar; up--) {
|
7757 |
|
|
if (*up==0) { /* unit is all 0s */
|
7758 |
|
|
if (digits==1) break; /* a zero has one digit */
|
7759 |
|
|
digits-=DECDPUN; /* adjust for 0 unit */
|
7760 |
|
|
continue;}
|
7761 |
|
|
/* found the first (most significant) non-zero Unit */
|
7762 |
|
|
#if DECDPUN>1 /* not done yet */
|
7763 |
|
|
if (*up<10) break; /* is 1-9 */
|
7764 |
|
|
digits++;
|
7765 |
|
|
#if DECDPUN>2 /* not done yet */
|
7766 |
|
|
if (*up<100) break; /* is 10-99 */
|
7767 |
|
|
digits++;
|
7768 |
|
|
#if DECDPUN>3 /* not done yet */
|
7769 |
|
|
if (*up<1000) break; /* is 100-999 */
|
7770 |
|
|
digits++;
|
7771 |
|
|
#if DECDPUN>4 /* count the rest ... */
|
7772 |
|
|
for (pow=&powers[4]; *up>=*pow; pow++) digits++;
|
7773 |
|
|
#endif
|
7774 |
|
|
#endif
|
7775 |
|
|
#endif
|
7776 |
|
|
#endif
|
7777 |
|
|
break;
|
7778 |
|
|
} /* up */
|
7779 |
|
|
return digits;
|
7780 |
|
|
} /* decGetDigits */
|
7781 |
|
|
|
7782 |
|
|
#if DECTRACE | DECCHECK
|
7783 |
|
|
/* ------------------------------------------------------------------ */
|
7784 |
|
|
/* decNumberShow -- display a number [debug aid] */
|
7785 |
|
|
/* dn is the number to show */
|
7786 |
|
|
/* */
|
7787 |
|
|
/* Shows: sign, exponent, coefficient (msu first), digits */
|
7788 |
|
|
/* or: sign, special-value */
|
7789 |
|
|
/* ------------------------------------------------------------------ */
|
7790 |
|
|
/* this is public so other modules can use it */
|
7791 |
|
|
void decNumberShow(const decNumber *dn) {
|
7792 |
|
|
const Unit *up; /* work */
|
7793 |
|
|
uInt u, d; /* .. */
|
7794 |
|
|
Int cut; /* .. */
|
7795 |
|
|
char isign='+'; /* main sign */
|
7796 |
|
|
if (dn==NULL) {
|
7797 |
|
|
printf("NULL\n");
|
7798 |
|
|
return;}
|
7799 |
|
|
if (decNumberIsNegative(dn)) isign='-';
|
7800 |
|
|
printf(" >> %c ", isign);
|
7801 |
|
|
if (dn->bits&DECSPECIAL) { /* Is a special value */
|
7802 |
|
|
if (decNumberIsInfinite(dn)) printf("Infinity");
|
7803 |
|
|
else { /* a NaN */
|
7804 |
|
|
if (dn->bits&DECSNAN) printf("sNaN"); /* signalling NaN */
|
7805 |
|
|
else printf("NaN");
|
7806 |
|
|
}
|
7807 |
|
|
/* if coefficient and exponent are 0, no more to do */
|
7808 |
|
|
if (dn->exponent==0 && dn->digits==1 && *dn->lsu==0) {
|
7809 |
|
|
printf("\n");
|
7810 |
|
|
return;}
|
7811 |
|
|
/* drop through to report other information */
|
7812 |
|
|
printf(" ");
|
7813 |
|
|
}
|
7814 |
|
|
|
7815 |
|
|
/* now carefully display the coefficient */
|
7816 |
|
|
up=dn->lsu+D2U(dn->digits)-1; /* msu */
|
7817 |
|
|
printf("%ld", (LI)*up);
|
7818 |
|
|
for (up=up-1; up>=dn->lsu; up--) {
|
7819 |
|
|
u=*up;
|
7820 |
|
|
printf(":");
|
7821 |
|
|
for (cut=DECDPUN-1; cut>=0; cut--) {
|
7822 |
|
|
d=u/powers[cut];
|
7823 |
|
|
u-=d*powers[cut];
|
7824 |
|
|
printf("%ld", (LI)d);
|
7825 |
|
|
} /* cut */
|
7826 |
|
|
} /* up */
|
7827 |
|
|
if (dn->exponent!=0) {
|
7828 |
|
|
char esign='+';
|
7829 |
|
|
if (dn->exponent<0) esign='-';
|
7830 |
|
|
printf(" E%c%ld", esign, (LI)abs(dn->exponent));
|
7831 |
|
|
}
|
7832 |
|
|
printf(" [%ld]\n", (LI)dn->digits);
|
7833 |
|
|
} /* decNumberShow */
|
7834 |
|
|
#endif
|
7835 |
|
|
|
7836 |
|
|
#if DECTRACE || DECCHECK
|
7837 |
|
|
/* ------------------------------------------------------------------ */
|
7838 |
|
|
/* decDumpAr -- display a unit array [debug/check aid] */
|
7839 |
|
|
/* name is a single-character tag name */
|
7840 |
|
|
/* ar is the array to display */
|
7841 |
|
|
/* len is the length of the array in Units */
|
7842 |
|
|
/* ------------------------------------------------------------------ */
|
7843 |
|
|
static void decDumpAr(char name, const Unit *ar, Int len) {
|
7844 |
|
|
Int i;
|
7845 |
|
|
const char *spec;
|
7846 |
|
|
#if DECDPUN==9
|
7847 |
|
|
spec="%09d ";
|
7848 |
|
|
#elif DECDPUN==8
|
7849 |
|
|
spec="%08d ";
|
7850 |
|
|
#elif DECDPUN==7
|
7851 |
|
|
spec="%07d ";
|
7852 |
|
|
#elif DECDPUN==6
|
7853 |
|
|
spec="%06d ";
|
7854 |
|
|
#elif DECDPUN==5
|
7855 |
|
|
spec="%05d ";
|
7856 |
|
|
#elif DECDPUN==4
|
7857 |
|
|
spec="%04d ";
|
7858 |
|
|
#elif DECDPUN==3
|
7859 |
|
|
spec="%03d ";
|
7860 |
|
|
#elif DECDPUN==2
|
7861 |
|
|
spec="%02d ";
|
7862 |
|
|
#else
|
7863 |
|
|
spec="%d ";
|
7864 |
|
|
#endif
|
7865 |
|
|
printf(" :%c: ", name);
|
7866 |
|
|
for (i=len-1; i>=0; i--) {
|
7867 |
|
|
if (i==len-1) printf("%ld ", (LI)ar[i]);
|
7868 |
|
|
else printf(spec, ar[i]);
|
7869 |
|
|
}
|
7870 |
|
|
printf("\n");
|
7871 |
|
|
return;}
|
7872 |
|
|
#endif
|
7873 |
|
|
|
7874 |
|
|
#if DECCHECK
|
7875 |
|
|
/* ------------------------------------------------------------------ */
|
7876 |
|
|
/* decCheckOperands -- check operand(s) to a routine */
|
7877 |
|
|
/* res is the result structure (not checked; it will be set to */
|
7878 |
|
|
/* quiet NaN if error found (and it is not NULL)) */
|
7879 |
|
|
/* lhs is the first operand (may be DECUNRESU) */
|
7880 |
|
|
/* rhs is the second (may be DECUNUSED) */
|
7881 |
|
|
/* set is the context (may be DECUNCONT) */
|
7882 |
|
|
/* returns 0 if both operands, and the context are clean, or 1 */
|
7883 |
|
|
/* otherwise (in which case the context will show an error, */
|
7884 |
|
|
/* unless NULL). Note that res is not cleaned; caller should */
|
7885 |
|
|
/* handle this so res=NULL case is safe. */
|
7886 |
|
|
/* The caller is expected to abandon immediately if 1 is returned. */
|
7887 |
|
|
/* ------------------------------------------------------------------ */
|
7888 |
|
|
static Flag decCheckOperands(decNumber *res, const decNumber *lhs,
|
7889 |
|
|
const decNumber *rhs, decContext *set) {
|
7890 |
|
|
Flag bad=0;
|
7891 |
|
|
if (set==NULL) { /* oops; hopeless */
|
7892 |
|
|
#if DECTRACE || DECVERB
|
7893 |
|
|
printf("Reference to context is NULL.\n");
|
7894 |
|
|
#endif
|
7895 |
|
|
bad=1;
|
7896 |
|
|
return 1;}
|
7897 |
|
|
else if (set!=DECUNCONT
|
7898 |
|
|
&& (set->digits<1 || set->round>=DEC_ROUND_MAX)) {
|
7899 |
|
|
bad=1;
|
7900 |
|
|
#if DECTRACE || DECVERB
|
7901 |
|
|
printf("Bad context [digits=%ld round=%ld].\n",
|
7902 |
|
|
(LI)set->digits, (LI)set->round);
|
7903 |
|
|
#endif
|
7904 |
|
|
}
|
7905 |
|
|
else {
|
7906 |
|
|
if (res==NULL) {
|
7907 |
|
|
bad=1;
|
7908 |
|
|
#if DECTRACE
|
7909 |
|
|
/* this one not DECVERB as standard tests include NULL */
|
7910 |
|
|
printf("Reference to result is NULL.\n");
|
7911 |
|
|
#endif
|
7912 |
|
|
}
|
7913 |
|
|
if (!bad && lhs!=DECUNUSED) bad=(decCheckNumber(lhs));
|
7914 |
|
|
if (!bad && rhs!=DECUNUSED) bad=(decCheckNumber(rhs));
|
7915 |
|
|
}
|
7916 |
|
|
if (bad) {
|
7917 |
|
|
if (set!=DECUNCONT) decContextSetStatus(set, DEC_Invalid_operation);
|
7918 |
|
|
if (res!=DECUNRESU && res!=NULL) {
|
7919 |
|
|
decNumberZero(res);
|
7920 |
|
|
res->bits=DECNAN; /* qNaN */
|
7921 |
|
|
}
|
7922 |
|
|
}
|
7923 |
|
|
return bad;
|
7924 |
|
|
} /* decCheckOperands */
|
7925 |
|
|
|
7926 |
|
|
/* ------------------------------------------------------------------ */
|
7927 |
|
|
/* decCheckNumber -- check a number */
|
7928 |
|
|
/* dn is the number to check */
|
7929 |
|
|
/* returns 0 if the number is clean, or 1 otherwise */
|
7930 |
|
|
/* */
|
7931 |
|
|
/* The number is considered valid if it could be a result from some */
|
7932 |
|
|
/* operation in some valid context. */
|
7933 |
|
|
/* ------------------------------------------------------------------ */
|
7934 |
|
|
static Flag decCheckNumber(const decNumber *dn) {
|
7935 |
|
|
const Unit *up; /* work */
|
7936 |
|
|
uInt maxuint; /* .. */
|
7937 |
|
|
Int ae, d, digits; /* .. */
|
7938 |
|
|
Int emin, emax; /* .. */
|
7939 |
|
|
|
7940 |
|
|
if (dn==NULL) { /* hopeless */
|
7941 |
|
|
#if DECTRACE
|
7942 |
|
|
/* this one not DECVERB as standard tests include NULL */
|
7943 |
|
|
printf("Reference to decNumber is NULL.\n");
|
7944 |
|
|
#endif
|
7945 |
|
|
return 1;}
|
7946 |
|
|
|
7947 |
|
|
/* check special values */
|
7948 |
|
|
if (dn->bits & DECSPECIAL) {
|
7949 |
|
|
if (dn->exponent!=0) {
|
7950 |
|
|
#if DECTRACE || DECVERB
|
7951 |
|
|
printf("Exponent %ld (not 0) for a special value [%02x].\n",
|
7952 |
|
|
(LI)dn->exponent, dn->bits);
|
7953 |
|
|
#endif
|
7954 |
|
|
return 1;}
|
7955 |
|
|
|
7956 |
|
|
/* 2003.09.08: NaNs may now have coefficients, so next tests Inf only */
|
7957 |
|
|
if (decNumberIsInfinite(dn)) {
|
7958 |
|
|
if (dn->digits!=1) {
|
7959 |
|
|
#if DECTRACE || DECVERB
|
7960 |
|
|
printf("Digits %ld (not 1) for an infinity.\n", (LI)dn->digits);
|
7961 |
|
|
#endif
|
7962 |
|
|
return 1;}
|
7963 |
|
|
if (*dn->lsu!=0) {
|
7964 |
|
|
#if DECTRACE || DECVERB
|
7965 |
|
|
printf("LSU %ld (not 0) for an infinity.\n", (LI)*dn->lsu);
|
7966 |
|
|
#endif
|
7967 |
|
|
decDumpAr('I', dn->lsu, D2U(dn->digits));
|
7968 |
|
|
return 1;}
|
7969 |
|
|
} /* Inf */
|
7970 |
|
|
/* 2002.12.26: negative NaNs can now appear through proposed IEEE */
|
7971 |
|
|
/* concrete formats (decimal64, etc.). */
|
7972 |
|
|
return 0;
|
7973 |
|
|
}
|
7974 |
|
|
|
7975 |
|
|
/* check the coefficient */
|
7976 |
|
|
if (dn->digits<1 || dn->digits>DECNUMMAXP) {
|
7977 |
|
|
#if DECTRACE || DECVERB
|
7978 |
|
|
printf("Digits %ld in number.\n", (LI)dn->digits);
|
7979 |
|
|
#endif
|
7980 |
|
|
return 1;}
|
7981 |
|
|
|
7982 |
|
|
d=dn->digits;
|
7983 |
|
|
|
7984 |
|
|
for (up=dn->lsu; d>0; up++) {
|
7985 |
|
|
if (d>DECDPUN) maxuint=DECDPUNMAX;
|
7986 |
|
|
else { /* reached the msu */
|
7987 |
|
|
maxuint=powers[d]-1;
|
7988 |
|
|
if (dn->digits>1 && *up<powers[d-1]) {
|
7989 |
|
|
#if DECTRACE || DECVERB
|
7990 |
|
|
printf("Leading 0 in number.\n");
|
7991 |
|
|
decNumberShow(dn);
|
7992 |
|
|
#endif
|
7993 |
|
|
return 1;}
|
7994 |
|
|
}
|
7995 |
|
|
if (*up>maxuint) {
|
7996 |
|
|
#if DECTRACE || DECVERB
|
7997 |
|
|
printf("Bad Unit [%08lx] in %ld-digit number at offset %ld [maxuint %ld].\n",
|
7998 |
|
|
(LI)*up, (LI)dn->digits, (LI)(up-dn->lsu), (LI)maxuint);
|
7999 |
|
|
#endif
|
8000 |
|
|
return 1;}
|
8001 |
|
|
d-=DECDPUN;
|
8002 |
|
|
}
|
8003 |
|
|
|
8004 |
|
|
/* check the exponent. Note that input operands can have exponents */
|
8005 |
|
|
/* which are out of the set->emin/set->emax and set->digits range */
|
8006 |
|
|
/* (just as they can have more digits than set->digits). */
|
8007 |
|
|
ae=dn->exponent+dn->digits-1; /* adjusted exponent */
|
8008 |
|
|
emax=DECNUMMAXE;
|
8009 |
|
|
emin=DECNUMMINE;
|
8010 |
|
|
digits=DECNUMMAXP;
|
8011 |
|
|
if (ae<emin-(digits-1)) {
|
8012 |
|
|
#if DECTRACE || DECVERB
|
8013 |
|
|
printf("Adjusted exponent underflow [%ld].\n", (LI)ae);
|
8014 |
|
|
decNumberShow(dn);
|
8015 |
|
|
#endif
|
8016 |
|
|
return 1;}
|
8017 |
|
|
if (ae>+emax) {
|
8018 |
|
|
#if DECTRACE || DECVERB
|
8019 |
|
|
printf("Adjusted exponent overflow [%ld].\n", (LI)ae);
|
8020 |
|
|
decNumberShow(dn);
|
8021 |
|
|
#endif
|
8022 |
|
|
return 1;}
|
8023 |
|
|
|
8024 |
|
|
return 0; /* it's OK */
|
8025 |
|
|
} /* decCheckNumber */
|
8026 |
|
|
|
8027 |
|
|
/* ------------------------------------------------------------------ */
|
8028 |
|
|
/* decCheckInexact -- check a normal finite inexact result has digits */
|
8029 |
|
|
/* dn is the number to check */
|
8030 |
|
|
/* set is the context (for status and precision) */
|
8031 |
|
|
/* sets Invalid operation, etc., if some digits are missing */
|
8032 |
|
|
/* [this check is not made for DECSUBSET compilation or when */
|
8033 |
|
|
/* subnormal is not set] */
|
8034 |
|
|
/* ------------------------------------------------------------------ */
|
8035 |
|
|
static void decCheckInexact(const decNumber *dn, decContext *set) {
|
8036 |
|
|
#if !DECSUBSET && DECEXTFLAG
|
8037 |
|
|
if ((set->status & (DEC_Inexact|DEC_Subnormal))==DEC_Inexact
|
8038 |
|
|
&& (set->digits!=dn->digits) && !(dn->bits & DECSPECIAL)) {
|
8039 |
|
|
#if DECTRACE || DECVERB
|
8040 |
|
|
printf("Insufficient digits [%ld] on normal Inexact result.\n",
|
8041 |
|
|
(LI)dn->digits);
|
8042 |
|
|
decNumberShow(dn);
|
8043 |
|
|
#endif
|
8044 |
|
|
decContextSetStatus(set, DEC_Invalid_operation);
|
8045 |
|
|
}
|
8046 |
|
|
#else
|
8047 |
|
|
/* next is a noop for quiet compiler */
|
8048 |
|
|
if (dn!=NULL && dn->digits==0) set->status|=DEC_Invalid_operation;
|
8049 |
|
|
#endif
|
8050 |
|
|
return;
|
8051 |
|
|
} /* decCheckInexact */
|
8052 |
|
|
#endif
|
8053 |
|
|
|
8054 |
|
|
#if DECALLOC
|
8055 |
|
|
#undef malloc
|
8056 |
|
|
#undef free
|
8057 |
|
|
/* ------------------------------------------------------------------ */
|
8058 |
|
|
/* decMalloc -- accountable allocation routine */
|
8059 |
|
|
/* n is the number of bytes to allocate */
|
8060 |
|
|
/* */
|
8061 |
|
|
/* Semantics is the same as the stdlib malloc routine, but bytes */
|
8062 |
|
|
/* allocated are accounted for globally, and corruption fences are */
|
8063 |
|
|
/* added before and after the 'actual' storage. */
|
8064 |
|
|
/* ------------------------------------------------------------------ */
|
8065 |
|
|
/* This routine allocates storage with an extra twelve bytes; 8 are */
|
8066 |
|
|
/* at the start and hold: */
|
8067 |
|
|
/* 0-3 the original length requested */
|
8068 |
|
|
/* 4-7 buffer corruption detection fence (DECFENCE, x4) */
|
8069 |
|
|
/* The 4 bytes at the end also hold a corruption fence (DECFENCE, x4) */
|
8070 |
|
|
/* ------------------------------------------------------------------ */
|
8071 |
|
|
static void *decMalloc(size_t n) {
|
8072 |
|
|
uInt size=n+12; /* true size */
|
8073 |
|
|
void *alloc; /* -> allocated storage */
|
8074 |
|
|
uInt *j; /* work */
|
8075 |
|
|
uByte *b, *b0; /* .. */
|
8076 |
|
|
|
8077 |
|
|
alloc=malloc(size); /* -> allocated storage */
|
8078 |
|
|
if (alloc==NULL) return NULL; /* out of strorage */
|
8079 |
|
|
b0=(uByte *)alloc; /* as bytes */
|
8080 |
|
|
decAllocBytes+=n; /* account for storage */
|
8081 |
|
|
j=(uInt *)alloc; /* -> first four bytes */
|
8082 |
|
|
*j=n; /* save n */
|
8083 |
|
|
/* printf(" alloc ++ dAB: %ld (%d)\n", decAllocBytes, n); */
|
8084 |
|
|
for (b=b0+4; b<b0+8; b++) *b=DECFENCE;
|
8085 |
|
|
for (b=b0+n+8; b<b0+n+12; b++) *b=DECFENCE;
|
8086 |
|
|
return b0+8; /* -> play area */
|
8087 |
|
|
} /* decMalloc */
|
8088 |
|
|
|
8089 |
|
|
/* ------------------------------------------------------------------ */
|
8090 |
|
|
/* decFree -- accountable free routine */
|
8091 |
|
|
/* alloc is the storage to free */
|
8092 |
|
|
/* */
|
8093 |
|
|
/* Semantics is the same as the stdlib malloc routine, except that */
|
8094 |
|
|
/* the global storage accounting is updated and the fences are */
|
8095 |
|
|
/* checked to ensure that no routine has written 'out of bounds'. */
|
8096 |
|
|
/* ------------------------------------------------------------------ */
|
8097 |
|
|
/* This routine first checks that the fences have not been corrupted. */
|
8098 |
|
|
/* It then frees the storage using the 'truw' storage address (that */
|
8099 |
|
|
/* is, offset by 8). */
|
8100 |
|
|
/* ------------------------------------------------------------------ */
|
8101 |
|
|
static void decFree(void *alloc) {
|
8102 |
|
|
uInt *j, n; /* pointer, original length */
|
8103 |
|
|
uByte *b, *b0; /* work */
|
8104 |
|
|
|
8105 |
|
|
if (alloc==NULL) return; /* allowed; it's a nop */
|
8106 |
|
|
b0=(uByte *)alloc; /* as bytes */
|
8107 |
|
|
b0-=8; /* -> true start of storage */
|
8108 |
|
|
j=(uInt *)b0; /* -> first four bytes */
|
8109 |
|
|
n=*j; /* lift */
|
8110 |
|
|
for (b=b0+4; b<b0+8; b++) if (*b!=DECFENCE)
|
8111 |
|
|
printf("=== Corrupt byte [%02x] at offset %d from %ld ===\n", *b,
|
8112 |
|
|
b-b0-8, (Int)b0);
|
8113 |
|
|
for (b=b0+n+8; b<b0+n+12; b++) if (*b!=DECFENCE)
|
8114 |
|
|
printf("=== Corrupt byte [%02x] at offset +%d from %ld, n=%ld ===\n", *b,
|
8115 |
|
|
b-b0-8, (Int)b0, n);
|
8116 |
|
|
free(b0); /* drop the storage */
|
8117 |
|
|
decAllocBytes-=n; /* account for storage */
|
8118 |
|
|
/* printf(" free -- dAB: %d (%d)\n", decAllocBytes, -n); */
|
8119 |
|
|
} /* decFree */
|
8120 |
|
|
#define malloc(a) decMalloc(a)
|
8121 |
|
|
#define free(a) decFree(a)
|
8122 |
|
|
#endif
|