OpenCores
URL https://opencores.org/ocsvn/openrisc/openrisc/trunk

Subversion Repositories openrisc

[/] [openrisc/] [trunk/] [gnu-old/] [gdb-7.1/] [bfd/] [coff-sh.c] - Blame information for rev 855

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 227 jeremybenn
/* BFD back-end for Renesas Super-H COFF binaries.
2
   Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
3
   2003, 2004, 2005, 2006, 2007, 2008, 2009  Free Software Foundation, Inc.
4
   Contributed by Cygnus Support.
5
   Written by Steve Chamberlain, <sac@cygnus.com>.
6
   Relaxing code written by Ian Lance Taylor, <ian@cygnus.com>.
7
 
8
   This file is part of BFD, the Binary File Descriptor library.
9
 
10
   This program is free software; you can redistribute it and/or modify
11
   it under the terms of the GNU General Public License as published by
12
   the Free Software Foundation; either version 3 of the License, or
13
   (at your option) any later version.
14
 
15
   This program is distributed in the hope that it will be useful,
16
   but WITHOUT ANY WARRANTY; without even the implied warranty of
17
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18
   GNU General Public License for more details.
19
 
20
   You should have received a copy of the GNU General Public License
21
   along with this program; if not, write to the Free Software
22
   Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
23
   MA 02110-1301, USA.  */
24
 
25
#include "sysdep.h"
26
#include "bfd.h"
27
#include "libiberty.h"
28
#include "libbfd.h"
29
#include "bfdlink.h"
30
#include "coff/sh.h"
31
#include "coff/internal.h"
32
 
33
#undef  bfd_pe_print_pdata
34
 
35
#ifdef COFF_WITH_PE
36
#include "coff/pe.h"
37
 
38
#ifndef COFF_IMAGE_WITH_PE
39
static bfd_boolean sh_align_load_span
40
  PARAMS ((bfd *, asection *, bfd_byte *,
41
           bfd_boolean (*) (bfd *, asection *, PTR, bfd_byte *, bfd_vma),
42
           PTR, bfd_vma **, bfd_vma *, bfd_vma, bfd_vma, bfd_boolean *));
43
 
44
#define _bfd_sh_align_load_span sh_align_load_span
45
#endif
46
 
47
#define bfd_pe_print_pdata   _bfd_pe_print_ce_compressed_pdata
48
 
49
#else
50
 
51
#define bfd_pe_print_pdata   NULL
52
 
53
#endif /* COFF_WITH_PE.  */
54
 
55
#include "libcoff.h"
56
 
57
/* Internal functions.  */
58
static bfd_reloc_status_type sh_reloc
59
  PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **));
60
static long get_symbol_value PARAMS ((asymbol *));
61
static bfd_boolean sh_relax_section
62
  PARAMS ((bfd *, asection *, struct bfd_link_info *, bfd_boolean *));
63
static bfd_boolean sh_relax_delete_bytes
64
  PARAMS ((bfd *, asection *, bfd_vma, int));
65
#ifndef COFF_IMAGE_WITH_PE
66
static const struct sh_opcode *sh_insn_info PARAMS ((unsigned int));
67
#endif
68
static bfd_boolean sh_align_loads
69
  PARAMS ((bfd *, asection *, struct internal_reloc *, bfd_byte *,
70
           bfd_boolean *));
71
static bfd_boolean sh_swap_insns
72
  PARAMS ((bfd *, asection *, PTR, bfd_byte *, bfd_vma));
73
static bfd_boolean sh_relocate_section
74
  PARAMS ((bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
75
           struct internal_reloc *, struct internal_syment *, asection **));
76
static bfd_byte *sh_coff_get_relocated_section_contents
77
  PARAMS ((bfd *, struct bfd_link_info *, struct bfd_link_order *,
78
           bfd_byte *, bfd_boolean, asymbol **));
79
static reloc_howto_type * sh_coff_reloc_type_lookup PARAMS ((bfd *, bfd_reloc_code_real_type));
80
 
81
#ifdef COFF_WITH_PE
82
/* Can't build import tables with 2**4 alignment.  */
83
#define COFF_DEFAULT_SECTION_ALIGNMENT_POWER    2
84
#else
85
/* Default section alignment to 2**4.  */
86
#define COFF_DEFAULT_SECTION_ALIGNMENT_POWER    4
87
#endif
88
 
89
#ifdef COFF_IMAGE_WITH_PE
90
/* Align PE executables.  */
91
#define COFF_PAGE_SIZE 0x1000
92
#endif
93
 
94
/* Generate long file names.  */
95
#define COFF_LONG_FILENAMES
96
 
97
#ifdef COFF_WITH_PE
98
static bfd_boolean in_reloc_p PARAMS ((bfd *, reloc_howto_type *));
99
/* Return TRUE if this relocation should
100
   appear in the output .reloc section.  */
101
static bfd_boolean in_reloc_p (abfd, howto)
102
     bfd * abfd ATTRIBUTE_UNUSED;
103
     reloc_howto_type * howto;
104
{
105
  return ! howto->pc_relative && howto->type != R_SH_IMAGEBASE;
106
}
107
#endif
108
 
109
/* The supported relocations.  There are a lot of relocations defined
110
   in coff/internal.h which we do not expect to ever see.  */
111
static reloc_howto_type sh_coff_howtos[] =
112
{
113
  EMPTY_HOWTO (0),
114
  EMPTY_HOWTO (1),
115
#ifdef COFF_WITH_PE
116
  /* Windows CE */
117
  HOWTO (R_SH_IMM32CE,          /* type */
118
         0,                      /* rightshift */
119
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
120
         32,                    /* bitsize */
121
         FALSE,                 /* pc_relative */
122
         0,                      /* bitpos */
123
         complain_overflow_bitfield, /* complain_on_overflow */
124
         sh_reloc,              /* special_function */
125
         "r_imm32ce",           /* name */
126
         TRUE,                  /* partial_inplace */
127
         0xffffffff,            /* src_mask */
128
         0xffffffff,            /* dst_mask */
129
         FALSE),                /* pcrel_offset */
130
#else
131
  EMPTY_HOWTO (2),
132
#endif
133
  EMPTY_HOWTO (3), /* R_SH_PCREL8 */
134
  EMPTY_HOWTO (4), /* R_SH_PCREL16 */
135
  EMPTY_HOWTO (5), /* R_SH_HIGH8 */
136
  EMPTY_HOWTO (6), /* R_SH_IMM24 */
137
  EMPTY_HOWTO (7), /* R_SH_LOW16 */
138
  EMPTY_HOWTO (8),
139
  EMPTY_HOWTO (9), /* R_SH_PCDISP8BY4 */
140
 
141
  HOWTO (R_SH_PCDISP8BY2,       /* type */
142
         1,                     /* rightshift */
143
         1,                     /* size (0 = byte, 1 = short, 2 = long) */
144
         8,                     /* bitsize */
145
         TRUE,                  /* pc_relative */
146
         0,                      /* bitpos */
147
         complain_overflow_signed, /* complain_on_overflow */
148
         sh_reloc,              /* special_function */
149
         "r_pcdisp8by2",        /* name */
150
         TRUE,                  /* partial_inplace */
151
         0xff,                  /* src_mask */
152
         0xff,                  /* dst_mask */
153
         TRUE),                 /* pcrel_offset */
154
 
155
  EMPTY_HOWTO (11), /* R_SH_PCDISP8 */
156
 
157
  HOWTO (R_SH_PCDISP,           /* type */
158
         1,                     /* rightshift */
159
         1,                     /* size (0 = byte, 1 = short, 2 = long) */
160
         12,                    /* bitsize */
161
         TRUE,                  /* pc_relative */
162
         0,                      /* bitpos */
163
         complain_overflow_signed, /* complain_on_overflow */
164
         sh_reloc,              /* special_function */
165
         "r_pcdisp12by2",       /* name */
166
         TRUE,                  /* partial_inplace */
167
         0xfff,                 /* src_mask */
168
         0xfff,                 /* dst_mask */
169
         TRUE),                 /* pcrel_offset */
170
 
171
  EMPTY_HOWTO (13),
172
 
173
  HOWTO (R_SH_IMM32,            /* type */
174
         0,                      /* rightshift */
175
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
176
         32,                    /* bitsize */
177
         FALSE,                 /* pc_relative */
178
         0,                      /* bitpos */
179
         complain_overflow_bitfield, /* complain_on_overflow */
180
         sh_reloc,              /* special_function */
181
         "r_imm32",             /* name */
182
         TRUE,                  /* partial_inplace */
183
         0xffffffff,            /* src_mask */
184
         0xffffffff,            /* dst_mask */
185
         FALSE),                /* pcrel_offset */
186
 
187
  EMPTY_HOWTO (15),
188
#ifdef COFF_WITH_PE
189
  HOWTO (R_SH_IMAGEBASE,        /* type */
190
         0,                      /* rightshift */
191
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
192
         32,                    /* bitsize */
193
         FALSE,                 /* pc_relative */
194
         0,                      /* bitpos */
195
         complain_overflow_bitfield, /* complain_on_overflow */
196
         sh_reloc,              /* special_function */
197
         "rva32",               /* name */
198
         TRUE,                  /* partial_inplace */
199
         0xffffffff,            /* src_mask */
200
         0xffffffff,            /* dst_mask */
201
         FALSE),                /* pcrel_offset */
202
#else
203
  EMPTY_HOWTO (16), /* R_SH_IMM8 */
204
#endif
205
  EMPTY_HOWTO (17), /* R_SH_IMM8BY2 */
206
  EMPTY_HOWTO (18), /* R_SH_IMM8BY4 */
207
  EMPTY_HOWTO (19), /* R_SH_IMM4 */
208
  EMPTY_HOWTO (20), /* R_SH_IMM4BY2 */
209
  EMPTY_HOWTO (21), /* R_SH_IMM4BY4 */
210
 
211
  HOWTO (R_SH_PCRELIMM8BY2,     /* type */
212
         1,                     /* rightshift */
213
         1,                     /* size (0 = byte, 1 = short, 2 = long) */
214
         8,                     /* bitsize */
215
         TRUE,                  /* pc_relative */
216
         0,                      /* bitpos */
217
         complain_overflow_unsigned, /* complain_on_overflow */
218
         sh_reloc,              /* special_function */
219
         "r_pcrelimm8by2",      /* name */
220
         TRUE,                  /* partial_inplace */
221
         0xff,                  /* src_mask */
222
         0xff,                  /* dst_mask */
223
         TRUE),                 /* pcrel_offset */
224
 
225
  HOWTO (R_SH_PCRELIMM8BY4,     /* type */
226
         2,                     /* rightshift */
227
         1,                     /* size (0 = byte, 1 = short, 2 = long) */
228
         8,                     /* bitsize */
229
         TRUE,                  /* pc_relative */
230
         0,                      /* bitpos */
231
         complain_overflow_unsigned, /* complain_on_overflow */
232
         sh_reloc,              /* special_function */
233
         "r_pcrelimm8by4",      /* name */
234
         TRUE,                  /* partial_inplace */
235
         0xff,                  /* src_mask */
236
         0xff,                  /* dst_mask */
237
         TRUE),                 /* pcrel_offset */
238
 
239
  HOWTO (R_SH_IMM16,            /* type */
240
         0,                      /* rightshift */
241
         1,                     /* size (0 = byte, 1 = short, 2 = long) */
242
         16,                    /* bitsize */
243
         FALSE,                 /* pc_relative */
244
         0,                      /* bitpos */
245
         complain_overflow_bitfield, /* complain_on_overflow */
246
         sh_reloc,              /* special_function */
247
         "r_imm16",             /* name */
248
         TRUE,                  /* partial_inplace */
249
         0xffff,                /* src_mask */
250
         0xffff,                /* dst_mask */
251
         FALSE),                /* pcrel_offset */
252
 
253
  HOWTO (R_SH_SWITCH16,         /* type */
254
         0,                      /* rightshift */
255
         1,                     /* size (0 = byte, 1 = short, 2 = long) */
256
         16,                    /* bitsize */
257
         FALSE,                 /* pc_relative */
258
         0,                      /* bitpos */
259
         complain_overflow_bitfield, /* complain_on_overflow */
260
         sh_reloc,              /* special_function */
261
         "r_switch16",          /* name */
262
         TRUE,                  /* partial_inplace */
263
         0xffff,                /* src_mask */
264
         0xffff,                /* dst_mask */
265
         FALSE),                /* pcrel_offset */
266
 
267
  HOWTO (R_SH_SWITCH32,         /* type */
268
         0,                      /* rightshift */
269
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
270
         32,                    /* bitsize */
271
         FALSE,                 /* pc_relative */
272
         0,                      /* bitpos */
273
         complain_overflow_bitfield, /* complain_on_overflow */
274
         sh_reloc,              /* special_function */
275
         "r_switch32",          /* name */
276
         TRUE,                  /* partial_inplace */
277
         0xffffffff,            /* src_mask */
278
         0xffffffff,            /* dst_mask */
279
         FALSE),                /* pcrel_offset */
280
 
281
  HOWTO (R_SH_USES,             /* type */
282
         0,                      /* rightshift */
283
         1,                     /* size (0 = byte, 1 = short, 2 = long) */
284
         16,                    /* bitsize */
285
         FALSE,                 /* pc_relative */
286
         0,                      /* bitpos */
287
         complain_overflow_bitfield, /* complain_on_overflow */
288
         sh_reloc,              /* special_function */
289
         "r_uses",              /* name */
290
         TRUE,                  /* partial_inplace */
291
         0xffff,                /* src_mask */
292
         0xffff,                /* dst_mask */
293
         FALSE),                /* pcrel_offset */
294
 
295
  HOWTO (R_SH_COUNT,            /* type */
296
         0,                      /* rightshift */
297
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
298
         32,                    /* bitsize */
299
         FALSE,                 /* pc_relative */
300
         0,                      /* bitpos */
301
         complain_overflow_bitfield, /* complain_on_overflow */
302
         sh_reloc,              /* special_function */
303
         "r_count",             /* name */
304
         TRUE,                  /* partial_inplace */
305
         0xffffffff,            /* src_mask */
306
         0xffffffff,            /* dst_mask */
307
         FALSE),                /* pcrel_offset */
308
 
309
  HOWTO (R_SH_ALIGN,            /* type */
310
         0,                      /* rightshift */
311
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
312
         32,                    /* bitsize */
313
         FALSE,                 /* pc_relative */
314
         0,                      /* bitpos */
315
         complain_overflow_bitfield, /* complain_on_overflow */
316
         sh_reloc,              /* special_function */
317
         "r_align",             /* name */
318
         TRUE,                  /* partial_inplace */
319
         0xffffffff,            /* src_mask */
320
         0xffffffff,            /* dst_mask */
321
         FALSE),                /* pcrel_offset */
322
 
323
  HOWTO (R_SH_CODE,             /* type */
324
         0,                      /* rightshift */
325
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
326
         32,                    /* bitsize */
327
         FALSE,                 /* pc_relative */
328
         0,                      /* bitpos */
329
         complain_overflow_bitfield, /* complain_on_overflow */
330
         sh_reloc,              /* special_function */
331
         "r_code",              /* name */
332
         TRUE,                  /* partial_inplace */
333
         0xffffffff,            /* src_mask */
334
         0xffffffff,            /* dst_mask */
335
         FALSE),                /* pcrel_offset */
336
 
337
  HOWTO (R_SH_DATA,             /* type */
338
         0,                      /* rightshift */
339
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
340
         32,                    /* bitsize */
341
         FALSE,                 /* pc_relative */
342
         0,                      /* bitpos */
343
         complain_overflow_bitfield, /* complain_on_overflow */
344
         sh_reloc,              /* special_function */
345
         "r_data",              /* name */
346
         TRUE,                  /* partial_inplace */
347
         0xffffffff,            /* src_mask */
348
         0xffffffff,            /* dst_mask */
349
         FALSE),                /* pcrel_offset */
350
 
351
  HOWTO (R_SH_LABEL,            /* type */
352
         0,                      /* rightshift */
353
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
354
         32,                    /* bitsize */
355
         FALSE,                 /* pc_relative */
356
         0,                      /* bitpos */
357
         complain_overflow_bitfield, /* complain_on_overflow */
358
         sh_reloc,              /* special_function */
359
         "r_label",             /* name */
360
         TRUE,                  /* partial_inplace */
361
         0xffffffff,            /* src_mask */
362
         0xffffffff,            /* dst_mask */
363
         FALSE),                /* pcrel_offset */
364
 
365
  HOWTO (R_SH_SWITCH8,          /* type */
366
         0,                      /* rightshift */
367
         0,                      /* size (0 = byte, 1 = short, 2 = long) */
368
         8,                     /* bitsize */
369
         FALSE,                 /* pc_relative */
370
         0,                      /* bitpos */
371
         complain_overflow_bitfield, /* complain_on_overflow */
372
         sh_reloc,              /* special_function */
373
         "r_switch8",           /* name */
374
         TRUE,                  /* partial_inplace */
375
         0xff,                  /* src_mask */
376
         0xff,                  /* dst_mask */
377
         FALSE)                 /* pcrel_offset */
378
};
379
 
380
#define SH_COFF_HOWTO_COUNT (sizeof sh_coff_howtos / sizeof sh_coff_howtos[0])
381
 
382
/* Check for a bad magic number.  */
383
#define BADMAG(x) SHBADMAG(x)
384
 
385
/* Customize coffcode.h (this is not currently used).  */
386
#define SH 1
387
 
388
/* FIXME: This should not be set here.  */
389
#define __A_MAGIC_SET__
390
 
391
#ifndef COFF_WITH_PE
392
/* Swap the r_offset field in and out.  */
393
#define SWAP_IN_RELOC_OFFSET  H_GET_32
394
#define SWAP_OUT_RELOC_OFFSET H_PUT_32
395
 
396
/* Swap out extra information in the reloc structure.  */
397
#define SWAP_OUT_RELOC_EXTRA(abfd, src, dst)    \
398
  do                                            \
399
    {                                           \
400
      dst->r_stuff[0] = 'S';                     \
401
      dst->r_stuff[1] = 'C';                    \
402
    }                                           \
403
  while (0)
404
#endif
405
 
406
/* Get the value of a symbol, when performing a relocation.  */
407
 
408
static long
409
get_symbol_value (symbol)
410
     asymbol *symbol;
411
{
412
  bfd_vma relocation;
413
 
414
  if (bfd_is_com_section (symbol->section))
415
    relocation = 0;
416
  else
417
    relocation = (symbol->value +
418
                  symbol->section->output_section->vma +
419
                  symbol->section->output_offset);
420
 
421
  return relocation;
422
}
423
 
424
#ifdef COFF_WITH_PE
425
/* Convert an rtype to howto for the COFF backend linker.
426
   Copied from coff-i386.  */
427
#define coff_rtype_to_howto coff_sh_rtype_to_howto
428
static reloc_howto_type * coff_sh_rtype_to_howto PARAMS ((bfd *, asection *, struct internal_reloc *, struct coff_link_hash_entry *, struct internal_syment *, bfd_vma *));
429
 
430
static reloc_howto_type *
431
coff_sh_rtype_to_howto (abfd, sec, rel, h, sym, addendp)
432
     bfd * abfd ATTRIBUTE_UNUSED;
433
     asection * sec;
434
     struct internal_reloc * rel;
435
     struct coff_link_hash_entry * h;
436
     struct internal_syment * sym;
437
     bfd_vma * addendp;
438
{
439
  reloc_howto_type * howto;
440
 
441
  howto = sh_coff_howtos + rel->r_type;
442
 
443
  *addendp = 0;
444
 
445
  if (howto->pc_relative)
446
    *addendp += sec->vma;
447
 
448
  if (sym != NULL && sym->n_scnum == 0 && sym->n_value != 0)
449
    {
450
      /* This is a common symbol.  The section contents include the
451
         size (sym->n_value) as an addend.  The relocate_section
452
         function will be adding in the final value of the symbol.  We
453
         need to subtract out the current size in order to get the
454
         correct result.  */
455
      BFD_ASSERT (h != NULL);
456
    }
457
 
458
  if (howto->pc_relative)
459
    {
460
      *addendp -= 4;
461
 
462
      /* If the symbol is defined, then the generic code is going to
463
         add back the symbol value in order to cancel out an
464
         adjustment it made to the addend.  However, we set the addend
465
         to 0 at the start of this function.  We need to adjust here,
466
         to avoid the adjustment the generic code will make.  FIXME:
467
         This is getting a bit hackish.  */
468
      if (sym != NULL && sym->n_scnum != 0)
469
        *addendp -= sym->n_value;
470
    }
471
 
472
  if (rel->r_type == R_SH_IMAGEBASE)
473
    *addendp -= pe_data (sec->output_section->owner)->pe_opthdr.ImageBase;
474
 
475
  return howto;
476
}
477
 
478
#endif /* COFF_WITH_PE */
479
 
480
/* This structure is used to map BFD reloc codes to SH PE relocs.  */
481
struct shcoff_reloc_map
482
{
483
  bfd_reloc_code_real_type bfd_reloc_val;
484
  unsigned char shcoff_reloc_val;
485
};
486
 
487
#ifdef COFF_WITH_PE
488
/* An array mapping BFD reloc codes to SH PE relocs.  */
489
static const struct shcoff_reloc_map sh_reloc_map[] =
490
{
491
  { BFD_RELOC_32, R_SH_IMM32CE },
492
  { BFD_RELOC_RVA, R_SH_IMAGEBASE },
493
  { BFD_RELOC_CTOR, R_SH_IMM32CE },
494
};
495
#else
496
/* An array mapping BFD reloc codes to SH PE relocs.  */
497
static const struct shcoff_reloc_map sh_reloc_map[] =
498
{
499
  { BFD_RELOC_32, R_SH_IMM32 },
500
  { BFD_RELOC_CTOR, R_SH_IMM32 },
501
};
502
#endif
503
 
504
/* Given a BFD reloc code, return the howto structure for the
505
   corresponding SH PE reloc.  */
506
#define coff_bfd_reloc_type_lookup      sh_coff_reloc_type_lookup
507
#define coff_bfd_reloc_name_lookup sh_coff_reloc_name_lookup
508
 
509
static reloc_howto_type *
510
sh_coff_reloc_type_lookup (abfd, code)
511
     bfd * abfd ATTRIBUTE_UNUSED;
512
     bfd_reloc_code_real_type code;
513
{
514
  unsigned int i;
515
 
516
  for (i = ARRAY_SIZE (sh_reloc_map); i--;)
517
    if (sh_reloc_map[i].bfd_reloc_val == code)
518
      return &sh_coff_howtos[(int) sh_reloc_map[i].shcoff_reloc_val];
519
 
520
  fprintf (stderr, "SH Error: unknown reloc type %d\n", code);
521
  return NULL;
522
}
523
 
524
static reloc_howto_type *
525
sh_coff_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
526
                           const char *r_name)
527
{
528
  unsigned int i;
529
 
530
  for (i = 0; i < sizeof (sh_coff_howtos) / sizeof (sh_coff_howtos[0]); i++)
531
    if (sh_coff_howtos[i].name != NULL
532
        && strcasecmp (sh_coff_howtos[i].name, r_name) == 0)
533
      return &sh_coff_howtos[i];
534
 
535
  return NULL;
536
}
537
 
538
/* This macro is used in coffcode.h to get the howto corresponding to
539
   an internal reloc.  */
540
 
541
#define RTYPE2HOWTO(relent, internal)           \
542
  ((relent)->howto =                            \
543
   ((internal)->r_type < SH_COFF_HOWTO_COUNT    \
544
    ? &sh_coff_howtos[(internal)->r_type]       \
545
    : (reloc_howto_type *) NULL))
546
 
547
/* This is the same as the macro in coffcode.h, except that it copies
548
   r_offset into reloc_entry->addend for some relocs.  */
549
#define CALC_ADDEND(abfd, ptr, reloc, cache_ptr)                \
550
  {                                                             \
551
    coff_symbol_type *coffsym = (coff_symbol_type *) NULL;      \
552
    if (ptr && bfd_asymbol_bfd (ptr) != abfd)                   \
553
      coffsym = (obj_symbols (abfd)                             \
554
                 + (cache_ptr->sym_ptr_ptr - symbols));         \
555
    else if (ptr)                                               \
556
      coffsym = coff_symbol_from (abfd, ptr);                   \
557
    if (coffsym != (coff_symbol_type *) NULL                    \
558
        && coffsym->native->u.syment.n_scnum == 0)              \
559
      cache_ptr->addend = 0;                                    \
560
    else if (ptr && bfd_asymbol_bfd (ptr) == abfd               \
561
             && ptr->section != (asection *) NULL)              \
562
      cache_ptr->addend = - (ptr->section->vma + ptr->value);   \
563
    else                                                        \
564
      cache_ptr->addend = 0;                                    \
565
    if ((reloc).r_type == R_SH_SWITCH8                          \
566
        || (reloc).r_type == R_SH_SWITCH16                      \
567
        || (reloc).r_type == R_SH_SWITCH32                      \
568
        || (reloc).r_type == R_SH_USES                          \
569
        || (reloc).r_type == R_SH_COUNT                         \
570
        || (reloc).r_type == R_SH_ALIGN)                        \
571
      cache_ptr->addend = (reloc).r_offset;                     \
572
  }
573
 
574
/* This is the howto function for the SH relocations.  */
575
 
576
static bfd_reloc_status_type
577
sh_reloc (abfd, reloc_entry, symbol_in, data, input_section, output_bfd,
578
          error_message)
579
     bfd *abfd;
580
     arelent *reloc_entry;
581
     asymbol *symbol_in;
582
     PTR data;
583
     asection *input_section;
584
     bfd *output_bfd;
585
     char **error_message ATTRIBUTE_UNUSED;
586
{
587
  unsigned long insn;
588
  bfd_vma sym_value;
589
  unsigned short r_type;
590
  bfd_vma addr = reloc_entry->address;
591
  bfd_byte *hit_data = addr + (bfd_byte *) data;
592
 
593
  r_type = reloc_entry->howto->type;
594
 
595
  if (output_bfd != NULL)
596
    {
597
      /* Partial linking--do nothing.  */
598
      reloc_entry->address += input_section->output_offset;
599
      return bfd_reloc_ok;
600
    }
601
 
602
  /* Almost all relocs have to do with relaxing.  If any work must be
603
     done for them, it has been done in sh_relax_section.  */
604
  if (r_type != R_SH_IMM32
605
#ifdef COFF_WITH_PE
606
      && r_type != R_SH_IMM32CE
607
      && r_type != R_SH_IMAGEBASE
608
#endif
609
      && (r_type != R_SH_PCDISP
610
          || (symbol_in->flags & BSF_LOCAL) != 0))
611
    return bfd_reloc_ok;
612
 
613
  if (symbol_in != NULL
614
      && bfd_is_und_section (symbol_in->section))
615
    return bfd_reloc_undefined;
616
 
617
  sym_value = get_symbol_value (symbol_in);
618
 
619
  switch (r_type)
620
    {
621
    case R_SH_IMM32:
622
#ifdef COFF_WITH_PE
623
    case R_SH_IMM32CE:
624
#endif
625
      insn = bfd_get_32 (abfd, hit_data);
626
      insn += sym_value + reloc_entry->addend;
627
      bfd_put_32 (abfd, (bfd_vma) insn, hit_data);
628
      break;
629
#ifdef COFF_WITH_PE
630
    case R_SH_IMAGEBASE:
631
      insn = bfd_get_32 (abfd, hit_data);
632
      insn += sym_value + reloc_entry->addend;
633
      insn -= pe_data (input_section->output_section->owner)->pe_opthdr.ImageBase;
634
      bfd_put_32 (abfd, (bfd_vma) insn, hit_data);
635
      break;
636
#endif
637
    case R_SH_PCDISP:
638
      insn = bfd_get_16 (abfd, hit_data);
639
      sym_value += reloc_entry->addend;
640
      sym_value -= (input_section->output_section->vma
641
                    + input_section->output_offset
642
                    + addr
643
                    + 4);
644
      sym_value += (insn & 0xfff) << 1;
645
      if (insn & 0x800)
646
        sym_value -= 0x1000;
647
      insn = (insn & 0xf000) | (sym_value & 0xfff);
648
      bfd_put_16 (abfd, (bfd_vma) insn, hit_data);
649
      if (sym_value < (bfd_vma) -0x1000 || sym_value >= 0x1000)
650
        return bfd_reloc_overflow;
651
      break;
652
    default:
653
      abort ();
654
      break;
655
    }
656
 
657
  return bfd_reloc_ok;
658
}
659
 
660
#define coff_bfd_merge_private_bfd_data _bfd_generic_verify_endian_match
661
 
662
/* We can do relaxing.  */
663
#define coff_bfd_relax_section sh_relax_section
664
 
665
/* We use the special COFF backend linker.  */
666
#define coff_relocate_section sh_relocate_section
667
 
668
/* When relaxing, we need to use special code to get the relocated
669
   section contents.  */
670
#define coff_bfd_get_relocated_section_contents \
671
  sh_coff_get_relocated_section_contents
672
 
673
#include "coffcode.h"
674
 
675
/* This function handles relaxing on the SH.
676
 
677
   Function calls on the SH look like this:
678
 
679
       movl  L1,r0
680
       ...
681
       jsr   @r0
682
       ...
683
     L1:
684
       .long function
685
 
686
   The compiler and assembler will cooperate to create R_SH_USES
687
   relocs on the jsr instructions.  The r_offset field of the
688
   R_SH_USES reloc is the PC relative offset to the instruction which
689
   loads the register (the r_offset field is computed as though it
690
   were a jump instruction, so the offset value is actually from four
691
   bytes past the instruction).  The linker can use this reloc to
692
   determine just which function is being called, and thus decide
693
   whether it is possible to replace the jsr with a bsr.
694
 
695
   If multiple function calls are all based on a single register load
696
   (i.e., the same function is called multiple times), the compiler
697
   guarantees that each function call will have an R_SH_USES reloc.
698
   Therefore, if the linker is able to convert each R_SH_USES reloc
699
   which refers to that address, it can safely eliminate the register
700
   load.
701
 
702
   When the assembler creates an R_SH_USES reloc, it examines it to
703
   determine which address is being loaded (L1 in the above example).
704
   It then counts the number of references to that address, and
705
   creates an R_SH_COUNT reloc at that address.  The r_offset field of
706
   the R_SH_COUNT reloc will be the number of references.  If the
707
   linker is able to eliminate a register load, it can use the
708
   R_SH_COUNT reloc to see whether it can also eliminate the function
709
   address.
710
 
711
   SH relaxing also handles another, unrelated, matter.  On the SH, if
712
   a load or store instruction is not aligned on a four byte boundary,
713
   the memory cycle interferes with the 32 bit instruction fetch,
714
   causing a one cycle bubble in the pipeline.  Therefore, we try to
715
   align load and store instructions on four byte boundaries if we
716
   can, by swapping them with one of the adjacent instructions.  */
717
 
718
static bfd_boolean
719
sh_relax_section (abfd, sec, link_info, again)
720
     bfd *abfd;
721
     asection *sec;
722
     struct bfd_link_info *link_info;
723
     bfd_boolean *again;
724
{
725
  struct internal_reloc *internal_relocs;
726
  bfd_boolean have_code;
727
  struct internal_reloc *irel, *irelend;
728
  bfd_byte *contents = NULL;
729
 
730
  *again = FALSE;
731
 
732
  if (link_info->relocatable
733
      || (sec->flags & SEC_RELOC) == 0
734
      || sec->reloc_count == 0)
735
    return TRUE;
736
 
737
  if (coff_section_data (abfd, sec) == NULL)
738
    {
739
      bfd_size_type amt = sizeof (struct coff_section_tdata);
740
      sec->used_by_bfd = (PTR) bfd_zalloc (abfd, amt);
741
      if (sec->used_by_bfd == NULL)
742
        return FALSE;
743
    }
744
 
745
  internal_relocs = (_bfd_coff_read_internal_relocs
746
                     (abfd, sec, link_info->keep_memory,
747
                      (bfd_byte *) NULL, FALSE,
748
                      (struct internal_reloc *) NULL));
749
  if (internal_relocs == NULL)
750
    goto error_return;
751
 
752
  have_code = FALSE;
753
 
754
  irelend = internal_relocs + sec->reloc_count;
755
  for (irel = internal_relocs; irel < irelend; irel++)
756
    {
757
      bfd_vma laddr, paddr, symval;
758
      unsigned short insn;
759
      struct internal_reloc *irelfn, *irelscan, *irelcount;
760
      struct internal_syment sym;
761
      bfd_signed_vma foff;
762
 
763
      if (irel->r_type == R_SH_CODE)
764
        have_code = TRUE;
765
 
766
      if (irel->r_type != R_SH_USES)
767
        continue;
768
 
769
      /* Get the section contents.  */
770
      if (contents == NULL)
771
        {
772
          if (coff_section_data (abfd, sec)->contents != NULL)
773
            contents = coff_section_data (abfd, sec)->contents;
774
          else
775
            {
776
              if (!bfd_malloc_and_get_section (abfd, sec, &contents))
777
                goto error_return;
778
            }
779
        }
780
 
781
      /* The r_offset field of the R_SH_USES reloc will point us to
782
         the register load.  The 4 is because the r_offset field is
783
         computed as though it were a jump offset, which are based
784
         from 4 bytes after the jump instruction.  */
785
      laddr = irel->r_vaddr - sec->vma + 4;
786
      /* Careful to sign extend the 32-bit offset.  */
787
      laddr += ((irel->r_offset & 0xffffffff) ^ 0x80000000) - 0x80000000;
788
      if (laddr >= sec->size)
789
        {
790
          (*_bfd_error_handler) ("%B: 0x%lx: warning: bad R_SH_USES offset",
791
                                 abfd, (unsigned long) irel->r_vaddr);
792
          continue;
793
        }
794
      insn = bfd_get_16 (abfd, contents + laddr);
795
 
796
      /* If the instruction is not mov.l NN,rN, we don't know what to do.  */
797
      if ((insn & 0xf000) != 0xd000)
798
        {
799
          ((*_bfd_error_handler)
800
           ("%B: 0x%lx: warning: R_SH_USES points to unrecognized insn 0x%x",
801
            abfd, (unsigned long) irel->r_vaddr, insn));
802
          continue;
803
        }
804
 
805
      /* Get the address from which the register is being loaded.  The
806
         displacement in the mov.l instruction is quadrupled.  It is a
807
         displacement from four bytes after the movl instruction, but,
808
         before adding in the PC address, two least significant bits
809
         of the PC are cleared.  We assume that the section is aligned
810
         on a four byte boundary.  */
811
      paddr = insn & 0xff;
812
      paddr *= 4;
813
      paddr += (laddr + 4) &~ (bfd_vma) 3;
814
      if (paddr >= sec->size)
815
        {
816
          ((*_bfd_error_handler)
817
           ("%B: 0x%lx: warning: bad R_SH_USES load offset",
818
            abfd, (unsigned long) irel->r_vaddr));
819
          continue;
820
        }
821
 
822
      /* Get the reloc for the address from which the register is
823
         being loaded.  This reloc will tell us which function is
824
         actually being called.  */
825
      paddr += sec->vma;
826
      for (irelfn = internal_relocs; irelfn < irelend; irelfn++)
827
        if (irelfn->r_vaddr == paddr
828
#ifdef COFF_WITH_PE
829
            && (irelfn->r_type == R_SH_IMM32
830
                || irelfn->r_type == R_SH_IMM32CE
831
                || irelfn->r_type == R_SH_IMAGEBASE)
832
 
833
#else
834
            && irelfn->r_type == R_SH_IMM32
835
#endif
836
            )
837
          break;
838
      if (irelfn >= irelend)
839
        {
840
          ((*_bfd_error_handler)
841
           ("%B: 0x%lx: warning: could not find expected reloc",
842
            abfd, (unsigned long) paddr));
843
          continue;
844
        }
845
 
846
      /* Get the value of the symbol referred to by the reloc.  */
847
      if (! _bfd_coff_get_external_symbols (abfd))
848
        goto error_return;
849
      bfd_coff_swap_sym_in (abfd,
850
                            ((bfd_byte *) obj_coff_external_syms (abfd)
851
                             + (irelfn->r_symndx
852
                                * bfd_coff_symesz (abfd))),
853
                            &sym);
854
      if (sym.n_scnum != 0 && sym.n_scnum != sec->target_index)
855
        {
856
          ((*_bfd_error_handler)
857
           ("%B: 0x%lx: warning: symbol in unexpected section",
858
            abfd, (unsigned long) paddr));
859
          continue;
860
        }
861
 
862
      if (sym.n_sclass != C_EXT)
863
        {
864
          symval = (sym.n_value
865
                    - sec->vma
866
                    + sec->output_section->vma
867
                    + sec->output_offset);
868
        }
869
      else
870
        {
871
          struct coff_link_hash_entry *h;
872
 
873
          h = obj_coff_sym_hashes (abfd)[irelfn->r_symndx];
874
          BFD_ASSERT (h != NULL);
875
          if (h->root.type != bfd_link_hash_defined
876
              && h->root.type != bfd_link_hash_defweak)
877
            {
878
              /* This appears to be a reference to an undefined
879
                 symbol.  Just ignore it--it will be caught by the
880
                 regular reloc processing.  */
881
              continue;
882
            }
883
 
884
          symval = (h->root.u.def.value
885
                    + h->root.u.def.section->output_section->vma
886
                    + h->root.u.def.section->output_offset);
887
        }
888
 
889
      symval += bfd_get_32 (abfd, contents + paddr - sec->vma);
890
 
891
      /* See if this function call can be shortened.  */
892
      foff = (symval
893
              - (irel->r_vaddr
894
                 - sec->vma
895
                 + sec->output_section->vma
896
                 + sec->output_offset
897
                 + 4));
898
      if (foff < -0x1000 || foff >= 0x1000)
899
        {
900
          /* After all that work, we can't shorten this function call.  */
901
          continue;
902
        }
903
 
904
      /* Shorten the function call.  */
905
 
906
      /* For simplicity of coding, we are going to modify the section
907
         contents, the section relocs, and the BFD symbol table.  We
908
         must tell the rest of the code not to free up this
909
         information.  It would be possible to instead create a table
910
         of changes which have to be made, as is done in coff-mips.c;
911
         that would be more work, but would require less memory when
912
         the linker is run.  */
913
 
914
      coff_section_data (abfd, sec)->relocs = internal_relocs;
915
      coff_section_data (abfd, sec)->keep_relocs = TRUE;
916
 
917
      coff_section_data (abfd, sec)->contents = contents;
918
      coff_section_data (abfd, sec)->keep_contents = TRUE;
919
 
920
      obj_coff_keep_syms (abfd) = TRUE;
921
 
922
      /* Replace the jsr with a bsr.  */
923
 
924
      /* Change the R_SH_USES reloc into an R_SH_PCDISP reloc, and
925
         replace the jsr with a bsr.  */
926
      irel->r_type = R_SH_PCDISP;
927
      irel->r_symndx = irelfn->r_symndx;
928
      if (sym.n_sclass != C_EXT)
929
        {
930
          /* If this needs to be changed because of future relaxing,
931
             it will be handled here like other internal PCDISP
932
             relocs.  */
933
          bfd_put_16 (abfd,
934
                      (bfd_vma) 0xb000 | ((foff >> 1) & 0xfff),
935
                      contents + irel->r_vaddr - sec->vma);
936
        }
937
      else
938
        {
939
          /* We can't fully resolve this yet, because the external
940
             symbol value may be changed by future relaxing.  We let
941
             the final link phase handle it.  */
942
          bfd_put_16 (abfd, (bfd_vma) 0xb000,
943
                      contents + irel->r_vaddr - sec->vma);
944
        }
945
 
946
      /* See if there is another R_SH_USES reloc referring to the same
947
         register load.  */
948
      for (irelscan = internal_relocs; irelscan < irelend; irelscan++)
949
        if (irelscan->r_type == R_SH_USES
950
            && laddr == irelscan->r_vaddr - sec->vma + 4 + irelscan->r_offset)
951
          break;
952
      if (irelscan < irelend)
953
        {
954
          /* Some other function call depends upon this register load,
955
             and we have not yet converted that function call.
956
             Indeed, we may never be able to convert it.  There is
957
             nothing else we can do at this point.  */
958
          continue;
959
        }
960
 
961
      /* Look for a R_SH_COUNT reloc on the location where the
962
         function address is stored.  Do this before deleting any
963
         bytes, to avoid confusion about the address.  */
964
      for (irelcount = internal_relocs; irelcount < irelend; irelcount++)
965
        if (irelcount->r_vaddr == paddr
966
            && irelcount->r_type == R_SH_COUNT)
967
          break;
968
 
969
      /* Delete the register load.  */
970
      if (! sh_relax_delete_bytes (abfd, sec, laddr, 2))
971
        goto error_return;
972
 
973
      /* That will change things, so, just in case it permits some
974
         other function call to come within range, we should relax
975
         again.  Note that this is not required, and it may be slow.  */
976
      *again = TRUE;
977
 
978
      /* Now check whether we got a COUNT reloc.  */
979
      if (irelcount >= irelend)
980
        {
981
          ((*_bfd_error_handler)
982
           ("%B: 0x%lx: warning: could not find expected COUNT reloc",
983
            abfd, (unsigned long) paddr));
984
          continue;
985
        }
986
 
987
      /* The number of uses is stored in the r_offset field.  We've
988
         just deleted one.  */
989
      if (irelcount->r_offset == 0)
990
        {
991
          ((*_bfd_error_handler) ("%B: 0x%lx: warning: bad count",
992
                                  abfd, (unsigned long) paddr));
993
          continue;
994
        }
995
 
996
      --irelcount->r_offset;
997
 
998
      /* If there are no more uses, we can delete the address.  Reload
999
         the address from irelfn, in case it was changed by the
1000
         previous call to sh_relax_delete_bytes.  */
1001
      if (irelcount->r_offset == 0)
1002
        {
1003
          if (! sh_relax_delete_bytes (abfd, sec,
1004
                                       irelfn->r_vaddr - sec->vma, 4))
1005
            goto error_return;
1006
        }
1007
 
1008
      /* We've done all we can with that function call.  */
1009
    }
1010
 
1011
  /* Look for load and store instructions that we can align on four
1012
     byte boundaries.  */
1013
  if (have_code)
1014
    {
1015
      bfd_boolean swapped;
1016
 
1017
      /* Get the section contents.  */
1018
      if (contents == NULL)
1019
        {
1020
          if (coff_section_data (abfd, sec)->contents != NULL)
1021
            contents = coff_section_data (abfd, sec)->contents;
1022
          else
1023
            {
1024
              if (!bfd_malloc_and_get_section (abfd, sec, &contents))
1025
                goto error_return;
1026
            }
1027
        }
1028
 
1029
      if (! sh_align_loads (abfd, sec, internal_relocs, contents, &swapped))
1030
        goto error_return;
1031
 
1032
      if (swapped)
1033
        {
1034
          coff_section_data (abfd, sec)->relocs = internal_relocs;
1035
          coff_section_data (abfd, sec)->keep_relocs = TRUE;
1036
 
1037
          coff_section_data (abfd, sec)->contents = contents;
1038
          coff_section_data (abfd, sec)->keep_contents = TRUE;
1039
 
1040
          obj_coff_keep_syms (abfd) = TRUE;
1041
        }
1042
    }
1043
 
1044
  if (internal_relocs != NULL
1045
      && internal_relocs != coff_section_data (abfd, sec)->relocs)
1046
    {
1047
      if (! link_info->keep_memory)
1048
        free (internal_relocs);
1049
      else
1050
        coff_section_data (abfd, sec)->relocs = internal_relocs;
1051
    }
1052
 
1053
  if (contents != NULL && contents != coff_section_data (abfd, sec)->contents)
1054
    {
1055
      if (! link_info->keep_memory)
1056
        free (contents);
1057
      else
1058
        /* Cache the section contents for coff_link_input_bfd.  */
1059
        coff_section_data (abfd, sec)->contents = contents;
1060
    }
1061
 
1062
  return TRUE;
1063
 
1064
 error_return:
1065
  if (internal_relocs != NULL
1066
      && internal_relocs != coff_section_data (abfd, sec)->relocs)
1067
    free (internal_relocs);
1068
  if (contents != NULL && contents != coff_section_data (abfd, sec)->contents)
1069
    free (contents);
1070
  return FALSE;
1071
}
1072
 
1073
/* Delete some bytes from a section while relaxing.  */
1074
 
1075
static bfd_boolean
1076
sh_relax_delete_bytes (abfd, sec, addr, count)
1077
     bfd *abfd;
1078
     asection *sec;
1079
     bfd_vma addr;
1080
     int count;
1081
{
1082
  bfd_byte *contents;
1083
  struct internal_reloc *irel, *irelend;
1084
  struct internal_reloc *irelalign;
1085
  bfd_vma toaddr;
1086
  bfd_byte *esym, *esymend;
1087
  bfd_size_type symesz;
1088
  struct coff_link_hash_entry **sym_hash;
1089
  asection *o;
1090
 
1091
  contents = coff_section_data (abfd, sec)->contents;
1092
 
1093
  /* The deletion must stop at the next ALIGN reloc for an aligment
1094
     power larger than the number of bytes we are deleting.  */
1095
 
1096
  irelalign = NULL;
1097
  toaddr = sec->size;
1098
 
1099
  irel = coff_section_data (abfd, sec)->relocs;
1100
  irelend = irel + sec->reloc_count;
1101
  for (; irel < irelend; irel++)
1102
    {
1103
      if (irel->r_type == R_SH_ALIGN
1104
          && irel->r_vaddr - sec->vma > addr
1105
          && count < (1 << irel->r_offset))
1106
        {
1107
          irelalign = irel;
1108
          toaddr = irel->r_vaddr - sec->vma;
1109
          break;
1110
        }
1111
    }
1112
 
1113
  /* Actually delete the bytes.  */
1114
  memmove (contents + addr, contents + addr + count,
1115
           (size_t) (toaddr - addr - count));
1116
  if (irelalign == NULL)
1117
    sec->size -= count;
1118
  else
1119
    {
1120
      int i;
1121
 
1122
#define NOP_OPCODE (0x0009)
1123
 
1124
      BFD_ASSERT ((count & 1) == 0);
1125
      for (i = 0; i < count; i += 2)
1126
        bfd_put_16 (abfd, (bfd_vma) NOP_OPCODE, contents + toaddr - count + i);
1127
    }
1128
 
1129
  /* Adjust all the relocs.  */
1130
  for (irel = coff_section_data (abfd, sec)->relocs; irel < irelend; irel++)
1131
    {
1132
      bfd_vma nraddr, stop;
1133
      bfd_vma start = 0;
1134
      int insn = 0;
1135
      struct internal_syment sym;
1136
      int off, adjust, oinsn;
1137
      bfd_signed_vma voff = 0;
1138
      bfd_boolean overflow;
1139
 
1140
      /* Get the new reloc address.  */
1141
      nraddr = irel->r_vaddr - sec->vma;
1142
      if ((irel->r_vaddr - sec->vma > addr
1143
           && irel->r_vaddr - sec->vma < toaddr)
1144
          || (irel->r_type == R_SH_ALIGN
1145
              && irel->r_vaddr - sec->vma == toaddr))
1146
        nraddr -= count;
1147
 
1148
      /* See if this reloc was for the bytes we have deleted, in which
1149
         case we no longer care about it.  Don't delete relocs which
1150
         represent addresses, though.  */
1151
      if (irel->r_vaddr - sec->vma >= addr
1152
          && irel->r_vaddr - sec->vma < addr + count
1153
          && irel->r_type != R_SH_ALIGN
1154
          && irel->r_type != R_SH_CODE
1155
          && irel->r_type != R_SH_DATA
1156
          && irel->r_type != R_SH_LABEL)
1157
        irel->r_type = R_SH_UNUSED;
1158
 
1159
      /* If this is a PC relative reloc, see if the range it covers
1160
         includes the bytes we have deleted.  */
1161
      switch (irel->r_type)
1162
        {
1163
        default:
1164
          break;
1165
 
1166
        case R_SH_PCDISP8BY2:
1167
        case R_SH_PCDISP:
1168
        case R_SH_PCRELIMM8BY2:
1169
        case R_SH_PCRELIMM8BY4:
1170
          start = irel->r_vaddr - sec->vma;
1171
          insn = bfd_get_16 (abfd, contents + nraddr);
1172
          break;
1173
        }
1174
 
1175
      switch (irel->r_type)
1176
        {
1177
        default:
1178
          start = stop = addr;
1179
          break;
1180
 
1181
        case R_SH_IMM32:
1182
#ifdef COFF_WITH_PE
1183
        case R_SH_IMM32CE:
1184
        case R_SH_IMAGEBASE:
1185
#endif
1186
          /* If this reloc is against a symbol defined in this
1187
             section, and the symbol will not be adjusted below, we
1188
             must check the addend to see it will put the value in
1189
             range to be adjusted, and hence must be changed.  */
1190
          bfd_coff_swap_sym_in (abfd,
1191
                                ((bfd_byte *) obj_coff_external_syms (abfd)
1192
                                 + (irel->r_symndx
1193
                                    * bfd_coff_symesz (abfd))),
1194
                                &sym);
1195
          if (sym.n_sclass != C_EXT
1196
              && sym.n_scnum == sec->target_index
1197
              && ((bfd_vma) sym.n_value <= addr
1198
                  || (bfd_vma) sym.n_value >= toaddr))
1199
            {
1200
              bfd_vma val;
1201
 
1202
              val = bfd_get_32 (abfd, contents + nraddr);
1203
              val += sym.n_value;
1204
              if (val > addr && val < toaddr)
1205
                bfd_put_32 (abfd, val - count, contents + nraddr);
1206
            }
1207
          start = stop = addr;
1208
          break;
1209
 
1210
        case R_SH_PCDISP8BY2:
1211
          off = insn & 0xff;
1212
          if (off & 0x80)
1213
            off -= 0x100;
1214
          stop = (bfd_vma) ((bfd_signed_vma) start + 4 + off * 2);
1215
          break;
1216
 
1217
        case R_SH_PCDISP:
1218
          bfd_coff_swap_sym_in (abfd,
1219
                                ((bfd_byte *) obj_coff_external_syms (abfd)
1220
                                 + (irel->r_symndx
1221
                                    * bfd_coff_symesz (abfd))),
1222
                                &sym);
1223
          if (sym.n_sclass == C_EXT)
1224
            start = stop = addr;
1225
          else
1226
            {
1227
              off = insn & 0xfff;
1228
              if (off & 0x800)
1229
                off -= 0x1000;
1230
              stop = (bfd_vma) ((bfd_signed_vma) start + 4 + off * 2);
1231
            }
1232
          break;
1233
 
1234
        case R_SH_PCRELIMM8BY2:
1235
          off = insn & 0xff;
1236
          stop = start + 4 + off * 2;
1237
          break;
1238
 
1239
        case R_SH_PCRELIMM8BY4:
1240
          off = insn & 0xff;
1241
          stop = (start &~ (bfd_vma) 3) + 4 + off * 4;
1242
          break;
1243
 
1244
        case R_SH_SWITCH8:
1245
        case R_SH_SWITCH16:
1246
        case R_SH_SWITCH32:
1247
          /* These relocs types represent
1248
               .word L2-L1
1249
             The r_offset field holds the difference between the reloc
1250
             address and L1.  That is the start of the reloc, and
1251
             adding in the contents gives us the top.  We must adjust
1252
             both the r_offset field and the section contents.  */
1253
 
1254
          start = irel->r_vaddr - sec->vma;
1255
          stop = (bfd_vma) ((bfd_signed_vma) start - (long) irel->r_offset);
1256
 
1257
          if (start > addr
1258
              && start < toaddr
1259
              && (stop <= addr || stop >= toaddr))
1260
            irel->r_offset += count;
1261
          else if (stop > addr
1262
                   && stop < toaddr
1263
                   && (start <= addr || start >= toaddr))
1264
            irel->r_offset -= count;
1265
 
1266
          start = stop;
1267
 
1268
          if (irel->r_type == R_SH_SWITCH16)
1269
            voff = bfd_get_signed_16 (abfd, contents + nraddr);
1270
          else if (irel->r_type == R_SH_SWITCH8)
1271
            voff = bfd_get_8 (abfd, contents + nraddr);
1272
          else
1273
            voff = bfd_get_signed_32 (abfd, contents + nraddr);
1274
          stop = (bfd_vma) ((bfd_signed_vma) start + voff);
1275
 
1276
          break;
1277
 
1278
        case R_SH_USES:
1279
          start = irel->r_vaddr - sec->vma;
1280
          stop = (bfd_vma) ((bfd_signed_vma) start
1281
                            + (long) irel->r_offset
1282
                            + 4);
1283
          break;
1284
        }
1285
 
1286
      if (start > addr
1287
          && start < toaddr
1288
          && (stop <= addr || stop >= toaddr))
1289
        adjust = count;
1290
      else if (stop > addr
1291
               && stop < toaddr
1292
               && (start <= addr || start >= toaddr))
1293
        adjust = - count;
1294
      else
1295
        adjust = 0;
1296
 
1297
      if (adjust != 0)
1298
        {
1299
          oinsn = insn;
1300
          overflow = FALSE;
1301
          switch (irel->r_type)
1302
            {
1303
            default:
1304
              abort ();
1305
              break;
1306
 
1307
            case R_SH_PCDISP8BY2:
1308
            case R_SH_PCRELIMM8BY2:
1309
              insn += adjust / 2;
1310
              if ((oinsn & 0xff00) != (insn & 0xff00))
1311
                overflow = TRUE;
1312
              bfd_put_16 (abfd, (bfd_vma) insn, contents + nraddr);
1313
              break;
1314
 
1315
            case R_SH_PCDISP:
1316
              insn += adjust / 2;
1317
              if ((oinsn & 0xf000) != (insn & 0xf000))
1318
                overflow = TRUE;
1319
              bfd_put_16 (abfd, (bfd_vma) insn, contents + nraddr);
1320
              break;
1321
 
1322
            case R_SH_PCRELIMM8BY4:
1323
              BFD_ASSERT (adjust == count || count >= 4);
1324
              if (count >= 4)
1325
                insn += adjust / 4;
1326
              else
1327
                {
1328
                  if ((irel->r_vaddr & 3) == 0)
1329
                    ++insn;
1330
                }
1331
              if ((oinsn & 0xff00) != (insn & 0xff00))
1332
                overflow = TRUE;
1333
              bfd_put_16 (abfd, (bfd_vma) insn, contents + nraddr);
1334
              break;
1335
 
1336
            case R_SH_SWITCH8:
1337
              voff += adjust;
1338
              if (voff < 0 || voff >= 0xff)
1339
                overflow = TRUE;
1340
              bfd_put_8 (abfd, (bfd_vma) voff, contents + nraddr);
1341
              break;
1342
 
1343
            case R_SH_SWITCH16:
1344
              voff += adjust;
1345
              if (voff < - 0x8000 || voff >= 0x8000)
1346
                overflow = TRUE;
1347
              bfd_put_signed_16 (abfd, (bfd_vma) voff, contents + nraddr);
1348
              break;
1349
 
1350
            case R_SH_SWITCH32:
1351
              voff += adjust;
1352
              bfd_put_signed_32 (abfd, (bfd_vma) voff, contents + nraddr);
1353
              break;
1354
 
1355
            case R_SH_USES:
1356
              irel->r_offset += adjust;
1357
              break;
1358
            }
1359
 
1360
          if (overflow)
1361
            {
1362
              ((*_bfd_error_handler)
1363
               ("%B: 0x%lx: fatal: reloc overflow while relaxing",
1364
                abfd, (unsigned long) irel->r_vaddr));
1365
              bfd_set_error (bfd_error_bad_value);
1366
              return FALSE;
1367
            }
1368
        }
1369
 
1370
      irel->r_vaddr = nraddr + sec->vma;
1371
    }
1372
 
1373
  /* Look through all the other sections.  If there contain any IMM32
1374
     relocs against internal symbols which we are not going to adjust
1375
     below, we may need to adjust the addends.  */
1376
  for (o = abfd->sections; o != NULL; o = o->next)
1377
    {
1378
      struct internal_reloc *internal_relocs;
1379
      struct internal_reloc *irelscan, *irelscanend;
1380
      bfd_byte *ocontents;
1381
 
1382
      if (o == sec
1383
          || (o->flags & SEC_RELOC) == 0
1384
          || o->reloc_count == 0)
1385
        continue;
1386
 
1387
      /* We always cache the relocs.  Perhaps, if info->keep_memory is
1388
         FALSE, we should free them, if we are permitted to, when we
1389
         leave sh_coff_relax_section.  */
1390
      internal_relocs = (_bfd_coff_read_internal_relocs
1391
                         (abfd, o, TRUE, (bfd_byte *) NULL, FALSE,
1392
                          (struct internal_reloc *) NULL));
1393
      if (internal_relocs == NULL)
1394
        return FALSE;
1395
 
1396
      ocontents = NULL;
1397
      irelscanend = internal_relocs + o->reloc_count;
1398
      for (irelscan = internal_relocs; irelscan < irelscanend; irelscan++)
1399
        {
1400
          struct internal_syment sym;
1401
 
1402
#ifdef COFF_WITH_PE
1403
          if (irelscan->r_type != R_SH_IMM32
1404
              && irelscan->r_type != R_SH_IMAGEBASE
1405
              && irelscan->r_type != R_SH_IMM32CE)
1406
#else
1407
          if (irelscan->r_type != R_SH_IMM32)
1408
#endif
1409
            continue;
1410
 
1411
          bfd_coff_swap_sym_in (abfd,
1412
                                ((bfd_byte *) obj_coff_external_syms (abfd)
1413
                                 + (irelscan->r_symndx
1414
                                    * bfd_coff_symesz (abfd))),
1415
                                &sym);
1416
          if (sym.n_sclass != C_EXT
1417
              && sym.n_scnum == sec->target_index
1418
              && ((bfd_vma) sym.n_value <= addr
1419
                  || (bfd_vma) sym.n_value >= toaddr))
1420
            {
1421
              bfd_vma val;
1422
 
1423
              if (ocontents == NULL)
1424
                {
1425
                  if (coff_section_data (abfd, o)->contents != NULL)
1426
                    ocontents = coff_section_data (abfd, o)->contents;
1427
                  else
1428
                    {
1429
                      if (!bfd_malloc_and_get_section (abfd, o, &ocontents))
1430
                        return FALSE;
1431
                      /* We always cache the section contents.
1432
                         Perhaps, if info->keep_memory is FALSE, we
1433
                         should free them, if we are permitted to,
1434
                         when we leave sh_coff_relax_section.  */
1435
                      coff_section_data (abfd, o)->contents = ocontents;
1436
                    }
1437
                }
1438
 
1439
              val = bfd_get_32 (abfd, ocontents + irelscan->r_vaddr - o->vma);
1440
              val += sym.n_value;
1441
              if (val > addr && val < toaddr)
1442
                bfd_put_32 (abfd, val - count,
1443
                            ocontents + irelscan->r_vaddr - o->vma);
1444
 
1445
              coff_section_data (abfd, o)->keep_contents = TRUE;
1446
            }
1447
        }
1448
    }
1449
 
1450
  /* Adjusting the internal symbols will not work if something has
1451
     already retrieved the generic symbols.  It would be possible to
1452
     make this work by adjusting the generic symbols at the same time.
1453
     However, this case should not arise in normal usage.  */
1454
  if (obj_symbols (abfd) != NULL
1455
      || obj_raw_syments (abfd) != NULL)
1456
    {
1457
      ((*_bfd_error_handler)
1458
       ("%B: fatal: generic symbols retrieved before relaxing", abfd));
1459
      bfd_set_error (bfd_error_invalid_operation);
1460
      return FALSE;
1461
    }
1462
 
1463
  /* Adjust all the symbols.  */
1464
  sym_hash = obj_coff_sym_hashes (abfd);
1465
  symesz = bfd_coff_symesz (abfd);
1466
  esym = (bfd_byte *) obj_coff_external_syms (abfd);
1467
  esymend = esym + obj_raw_syment_count (abfd) * symesz;
1468
  while (esym < esymend)
1469
    {
1470
      struct internal_syment isym;
1471
 
1472
      bfd_coff_swap_sym_in (abfd, (PTR) esym, (PTR) &isym);
1473
 
1474
      if (isym.n_scnum == sec->target_index
1475
          && (bfd_vma) isym.n_value > addr
1476
          && (bfd_vma) isym.n_value < toaddr)
1477
        {
1478
          isym.n_value -= count;
1479
 
1480
          bfd_coff_swap_sym_out (abfd, (PTR) &isym, (PTR) esym);
1481
 
1482
          if (*sym_hash != NULL)
1483
            {
1484
              BFD_ASSERT ((*sym_hash)->root.type == bfd_link_hash_defined
1485
                          || (*sym_hash)->root.type == bfd_link_hash_defweak);
1486
              BFD_ASSERT ((*sym_hash)->root.u.def.value >= addr
1487
                          && (*sym_hash)->root.u.def.value < toaddr);
1488
              (*sym_hash)->root.u.def.value -= count;
1489
            }
1490
        }
1491
 
1492
      esym += (isym.n_numaux + 1) * symesz;
1493
      sym_hash += isym.n_numaux + 1;
1494
    }
1495
 
1496
  /* See if we can move the ALIGN reloc forward.  We have adjusted
1497
     r_vaddr for it already.  */
1498
  if (irelalign != NULL)
1499
    {
1500
      bfd_vma alignto, alignaddr;
1501
 
1502
      alignto = BFD_ALIGN (toaddr, 1 << irelalign->r_offset);
1503
      alignaddr = BFD_ALIGN (irelalign->r_vaddr - sec->vma,
1504
                             1 << irelalign->r_offset);
1505
      if (alignto != alignaddr)
1506
        {
1507
          /* Tail recursion.  */
1508
          return sh_relax_delete_bytes (abfd, sec, alignaddr,
1509
                                        (int) (alignto - alignaddr));
1510
        }
1511
    }
1512
 
1513
  return TRUE;
1514
}
1515
 
1516
/* This is yet another version of the SH opcode table, used to rapidly
1517
   get information about a particular instruction.  */
1518
 
1519
/* The opcode map is represented by an array of these structures.  The
1520
   array is indexed by the high order four bits in the instruction.  */
1521
 
1522
struct sh_major_opcode
1523
{
1524
  /* A pointer to the instruction list.  This is an array which
1525
     contains all the instructions with this major opcode.  */
1526
  const struct sh_minor_opcode *minor_opcodes;
1527
  /* The number of elements in minor_opcodes.  */
1528
  unsigned short count;
1529
};
1530
 
1531
/* This structure holds information for a set of SH opcodes.  The
1532
   instruction code is anded with the mask value, and the resulting
1533
   value is used to search the order opcode list.  */
1534
 
1535
struct sh_minor_opcode
1536
{
1537
  /* The sorted opcode list.  */
1538
  const struct sh_opcode *opcodes;
1539
  /* The number of elements in opcodes.  */
1540
  unsigned short count;
1541
  /* The mask value to use when searching the opcode list.  */
1542
  unsigned short mask;
1543
};
1544
 
1545
/* This structure holds information for an SH instruction.  An array
1546
   of these structures is sorted in order by opcode.  */
1547
 
1548
struct sh_opcode
1549
{
1550
  /* The code for this instruction, after it has been anded with the
1551
     mask value in the sh_major_opcode structure.  */
1552
  unsigned short opcode;
1553
  /* Flags for this instruction.  */
1554
  unsigned long flags;
1555
};
1556
 
1557
/* Flag which appear in the sh_opcode structure.  */
1558
 
1559
/* This instruction loads a value from memory.  */
1560
#define LOAD (0x1)
1561
 
1562
/* This instruction stores a value to memory.  */
1563
#define STORE (0x2)
1564
 
1565
/* This instruction is a branch.  */
1566
#define BRANCH (0x4)
1567
 
1568
/* This instruction has a delay slot.  */
1569
#define DELAY (0x8)
1570
 
1571
/* This instruction uses the value in the register in the field at
1572
   mask 0x0f00 of the instruction.  */
1573
#define USES1 (0x10)
1574
#define USES1_REG(x) ((x & 0x0f00) >> 8)
1575
 
1576
/* This instruction uses the value in the register in the field at
1577
   mask 0x00f0 of the instruction.  */
1578
#define USES2 (0x20)
1579
#define USES2_REG(x) ((x & 0x00f0) >> 4)
1580
 
1581
/* This instruction uses the value in register 0.  */
1582
#define USESR0 (0x40)
1583
 
1584
/* This instruction sets the value in the register in the field at
1585
   mask 0x0f00 of the instruction.  */
1586
#define SETS1 (0x80)
1587
#define SETS1_REG(x) ((x & 0x0f00) >> 8)
1588
 
1589
/* This instruction sets the value in the register in the field at
1590
   mask 0x00f0 of the instruction.  */
1591
#define SETS2 (0x100)
1592
#define SETS2_REG(x) ((x & 0x00f0) >> 4)
1593
 
1594
/* This instruction sets register 0.  */
1595
#define SETSR0 (0x200)
1596
 
1597
/* This instruction sets a special register.  */
1598
#define SETSSP (0x400)
1599
 
1600
/* This instruction uses a special register.  */
1601
#define USESSP (0x800)
1602
 
1603
/* This instruction uses the floating point register in the field at
1604
   mask 0x0f00 of the instruction.  */
1605
#define USESF1 (0x1000)
1606
#define USESF1_REG(x) ((x & 0x0f00) >> 8)
1607
 
1608
/* This instruction uses the floating point register in the field at
1609
   mask 0x00f0 of the instruction.  */
1610
#define USESF2 (0x2000)
1611
#define USESF2_REG(x) ((x & 0x00f0) >> 4)
1612
 
1613
/* This instruction uses floating point register 0.  */
1614
#define USESF0 (0x4000)
1615
 
1616
/* This instruction sets the floating point register in the field at
1617
   mask 0x0f00 of the instruction.  */
1618
#define SETSF1 (0x8000)
1619
#define SETSF1_REG(x) ((x & 0x0f00) >> 8)
1620
 
1621
#define USESAS (0x10000)
1622
#define USESAS_REG(x) (((((x) >> 8) - 2) & 3) + 2)
1623
#define USESR8 (0x20000)
1624
#define SETSAS (0x40000)
1625
#define SETSAS_REG(x) USESAS_REG (x)
1626
 
1627
#define MAP(a) a, sizeof a / sizeof a[0]
1628
 
1629
#ifndef COFF_IMAGE_WITH_PE
1630
static bfd_boolean sh_insn_uses_reg
1631
  PARAMS ((unsigned int, const struct sh_opcode *, unsigned int));
1632
static bfd_boolean sh_insn_sets_reg
1633
  PARAMS ((unsigned int, const struct sh_opcode *, unsigned int));
1634
static bfd_boolean sh_insn_uses_or_sets_reg
1635
  PARAMS ((unsigned int, const struct sh_opcode *, unsigned int));
1636
static bfd_boolean sh_insn_uses_freg
1637
  PARAMS ((unsigned int, const struct sh_opcode *, unsigned int));
1638
static bfd_boolean sh_insn_sets_freg
1639
  PARAMS ((unsigned int, const struct sh_opcode *, unsigned int));
1640
static bfd_boolean sh_insn_uses_or_sets_freg
1641
  PARAMS ((unsigned int, const struct sh_opcode *, unsigned int));
1642
static bfd_boolean sh_insns_conflict
1643
  PARAMS ((unsigned int, const struct sh_opcode *, unsigned int,
1644
           const struct sh_opcode *));
1645
static bfd_boolean sh_load_use
1646
  PARAMS ((unsigned int, const struct sh_opcode *, unsigned int,
1647
           const struct sh_opcode *));
1648
 
1649
/* The opcode maps.  */
1650
 
1651
static const struct sh_opcode sh_opcode00[] =
1652
{
1653
  { 0x0008, SETSSP },                   /* clrt */
1654
  { 0x0009, 0 },                 /* nop */
1655
  { 0x000b, BRANCH | DELAY | USESSP },  /* rts */
1656
  { 0x0018, SETSSP },                   /* sett */
1657
  { 0x0019, SETSSP },                   /* div0u */
1658
  { 0x001b, 0 },                 /* sleep */
1659
  { 0x0028, SETSSP },                   /* clrmac */
1660
  { 0x002b, BRANCH | DELAY | SETSSP },  /* rte */
1661
  { 0x0038, USESSP | SETSSP },          /* ldtlb */
1662
  { 0x0048, SETSSP },                   /* clrs */
1663
  { 0x0058, SETSSP }                    /* sets */
1664
};
1665
 
1666
static const struct sh_opcode sh_opcode01[] =
1667
{
1668
  { 0x0003, BRANCH | DELAY | USES1 | SETSSP },  /* bsrf rn */
1669
  { 0x000a, SETS1 | USESSP },                   /* sts mach,rn */
1670
  { 0x001a, SETS1 | USESSP },                   /* sts macl,rn */
1671
  { 0x0023, BRANCH | DELAY | USES1 },           /* braf rn */
1672
  { 0x0029, SETS1 | USESSP },                   /* movt rn */
1673
  { 0x002a, SETS1 | USESSP },                   /* sts pr,rn */
1674
  { 0x005a, SETS1 | USESSP },                   /* sts fpul,rn */
1675
  { 0x006a, SETS1 | USESSP },                   /* sts fpscr,rn / sts dsr,rn */
1676
  { 0x0083, LOAD | USES1 },                     /* pref @rn */
1677
  { 0x007a, SETS1 | USESSP },                   /* sts a0,rn */
1678
  { 0x008a, SETS1 | USESSP },                   /* sts x0,rn */
1679
  { 0x009a, SETS1 | USESSP },                   /* sts x1,rn */
1680
  { 0x00aa, SETS1 | USESSP },                   /* sts y0,rn */
1681
  { 0x00ba, SETS1 | USESSP }                    /* sts y1,rn */
1682
};
1683
 
1684
static const struct sh_opcode sh_opcode02[] =
1685
{
1686
  { 0x0002, SETS1 | USESSP },                   /* stc <special_reg>,rn */
1687
  { 0x0004, STORE | USES1 | USES2 | USESR0 },   /* mov.b rm,@(r0,rn) */
1688
  { 0x0005, STORE | USES1 | USES2 | USESR0 },   /* mov.w rm,@(r0,rn) */
1689
  { 0x0006, STORE | USES1 | USES2 | USESR0 },   /* mov.l rm,@(r0,rn) */
1690
  { 0x0007, SETSSP | USES1 | USES2 },           /* mul.l rm,rn */
1691
  { 0x000c, LOAD | SETS1 | USES2 | USESR0 },    /* mov.b @(r0,rm),rn */
1692
  { 0x000d, LOAD | SETS1 | USES2 | USESR0 },    /* mov.w @(r0,rm),rn */
1693
  { 0x000e, LOAD | SETS1 | USES2 | USESR0 },    /* mov.l @(r0,rm),rn */
1694
  { 0x000f, LOAD|SETS1|SETS2|SETSSP|USES1|USES2|USESSP }, /* mac.l @rm+,@rn+ */
1695
};
1696
 
1697
static const struct sh_minor_opcode sh_opcode0[] =
1698
{
1699
  { MAP (sh_opcode00), 0xffff },
1700
  { MAP (sh_opcode01), 0xf0ff },
1701
  { MAP (sh_opcode02), 0xf00f }
1702
};
1703
 
1704
static const struct sh_opcode sh_opcode10[] =
1705
{
1706
  { 0x1000, STORE | USES1 | USES2 }     /* mov.l rm,@(disp,rn) */
1707
};
1708
 
1709
static const struct sh_minor_opcode sh_opcode1[] =
1710
{
1711
  { MAP (sh_opcode10), 0xf000 }
1712
};
1713
 
1714
static const struct sh_opcode sh_opcode20[] =
1715
{
1716
  { 0x2000, STORE | USES1 | USES2 },            /* mov.b rm,@rn */
1717
  { 0x2001, STORE | USES1 | USES2 },            /* mov.w rm,@rn */
1718
  { 0x2002, STORE | USES1 | USES2 },            /* mov.l rm,@rn */
1719
  { 0x2004, STORE | SETS1 | USES1 | USES2 },    /* mov.b rm,@-rn */
1720
  { 0x2005, STORE | SETS1 | USES1 | USES2 },    /* mov.w rm,@-rn */
1721
  { 0x2006, STORE | SETS1 | USES1 | USES2 },    /* mov.l rm,@-rn */
1722
  { 0x2007, SETSSP | USES1 | USES2 | USESSP },  /* div0s */
1723
  { 0x2008, SETSSP | USES1 | USES2 },           /* tst rm,rn */
1724
  { 0x2009, SETS1 | USES1 | USES2 },            /* and rm,rn */
1725
  { 0x200a, SETS1 | USES1 | USES2 },            /* xor rm,rn */
1726
  { 0x200b, SETS1 | USES1 | USES2 },            /* or rm,rn */
1727
  { 0x200c, SETSSP | USES1 | USES2 },           /* cmp/str rm,rn */
1728
  { 0x200d, SETS1 | USES1 | USES2 },            /* xtrct rm,rn */
1729
  { 0x200e, SETSSP | USES1 | USES2 },           /* mulu.w rm,rn */
1730
  { 0x200f, SETSSP | USES1 | USES2 }            /* muls.w rm,rn */
1731
};
1732
 
1733
static const struct sh_minor_opcode sh_opcode2[] =
1734
{
1735
  { MAP (sh_opcode20), 0xf00f }
1736
};
1737
 
1738
static const struct sh_opcode sh_opcode30[] =
1739
{
1740
  { 0x3000, SETSSP | USES1 | USES2 },           /* cmp/eq rm,rn */
1741
  { 0x3002, SETSSP | USES1 | USES2 },           /* cmp/hs rm,rn */
1742
  { 0x3003, SETSSP | USES1 | USES2 },           /* cmp/ge rm,rn */
1743
  { 0x3004, SETSSP | USESSP | USES1 | USES2 },  /* div1 rm,rn */
1744
  { 0x3005, SETSSP | USES1 | USES2 },           /* dmulu.l rm,rn */
1745
  { 0x3006, SETSSP | USES1 | USES2 },           /* cmp/hi rm,rn */
1746
  { 0x3007, SETSSP | USES1 | USES2 },           /* cmp/gt rm,rn */
1747
  { 0x3008, SETS1 | USES1 | USES2 },            /* sub rm,rn */
1748
  { 0x300a, SETS1 | SETSSP | USES1 | USES2 | USESSP }, /* subc rm,rn */
1749
  { 0x300b, SETS1 | SETSSP | USES1 | USES2 },   /* subv rm,rn */
1750
  { 0x300c, SETS1 | USES1 | USES2 },            /* add rm,rn */
1751
  { 0x300d, SETSSP | USES1 | USES2 },           /* dmuls.l rm,rn */
1752
  { 0x300e, SETS1 | SETSSP | USES1 | USES2 | USESSP }, /* addc rm,rn */
1753
  { 0x300f, SETS1 | SETSSP | USES1 | USES2 }    /* addv rm,rn */
1754
};
1755
 
1756
static const struct sh_minor_opcode sh_opcode3[] =
1757
{
1758
  { MAP (sh_opcode30), 0xf00f }
1759
};
1760
 
1761
static const struct sh_opcode sh_opcode40[] =
1762
{
1763
  { 0x4000, SETS1 | SETSSP | USES1 },           /* shll rn */
1764
  { 0x4001, SETS1 | SETSSP | USES1 },           /* shlr rn */
1765
  { 0x4002, STORE | SETS1 | USES1 | USESSP },   /* sts.l mach,@-rn */
1766
  { 0x4004, SETS1 | SETSSP | USES1 },           /* rotl rn */
1767
  { 0x4005, SETS1 | SETSSP | USES1 },           /* rotr rn */
1768
  { 0x4006, LOAD | SETS1 | SETSSP | USES1 },    /* lds.l @rm+,mach */
1769
  { 0x4008, SETS1 | USES1 },                    /* shll2 rn */
1770
  { 0x4009, SETS1 | USES1 },                    /* shlr2 rn */
1771
  { 0x400a, SETSSP | USES1 },                   /* lds rm,mach */
1772
  { 0x400b, BRANCH | DELAY | USES1 },           /* jsr @rn */
1773
  { 0x4010, SETS1 | SETSSP | USES1 },           /* dt rn */
1774
  { 0x4011, SETSSP | USES1 },                   /* cmp/pz rn */
1775
  { 0x4012, STORE | SETS1 | USES1 | USESSP },   /* sts.l macl,@-rn */
1776
  { 0x4014, SETSSP | USES1 },                   /* setrc rm */
1777
  { 0x4015, SETSSP | USES1 },                   /* cmp/pl rn */
1778
  { 0x4016, LOAD | SETS1 | SETSSP | USES1 },    /* lds.l @rm+,macl */
1779
  { 0x4018, SETS1 | USES1 },                    /* shll8 rn */
1780
  { 0x4019, SETS1 | USES1 },                    /* shlr8 rn */
1781
  { 0x401a, SETSSP | USES1 },                   /* lds rm,macl */
1782
  { 0x401b, LOAD | SETSSP | USES1 },            /* tas.b @rn */
1783
  { 0x4020, SETS1 | SETSSP | USES1 },           /* shal rn */
1784
  { 0x4021, SETS1 | SETSSP | USES1 },           /* shar rn */
1785
  { 0x4022, STORE | SETS1 | USES1 | USESSP },   /* sts.l pr,@-rn */
1786
  { 0x4024, SETS1 | SETSSP | USES1 | USESSP },  /* rotcl rn */
1787
  { 0x4025, SETS1 | SETSSP | USES1 | USESSP },  /* rotcr rn */
1788
  { 0x4026, LOAD | SETS1 | SETSSP | USES1 },    /* lds.l @rm+,pr */
1789
  { 0x4028, SETS1 | USES1 },                    /* shll16 rn */
1790
  { 0x4029, SETS1 | USES1 },                    /* shlr16 rn */
1791
  { 0x402a, SETSSP | USES1 },                   /* lds rm,pr */
1792
  { 0x402b, BRANCH | DELAY | USES1 },           /* jmp @rn */
1793
  { 0x4052, STORE | SETS1 | USES1 | USESSP },   /* sts.l fpul,@-rn */
1794
  { 0x4056, LOAD | SETS1 | SETSSP | USES1 },    /* lds.l @rm+,fpul */
1795
  { 0x405a, SETSSP | USES1 },                   /* lds.l rm,fpul */
1796
  { 0x4062, STORE | SETS1 | USES1 | USESSP },   /* sts.l fpscr / dsr,@-rn */
1797
  { 0x4066, LOAD | SETS1 | SETSSP | USES1 },    /* lds.l @rm+,fpscr / dsr */
1798
  { 0x406a, SETSSP | USES1 },                   /* lds rm,fpscr / lds rm,dsr */
1799
  { 0x4072, STORE | SETS1 | USES1 | USESSP },   /* sts.l a0,@-rn */
1800
  { 0x4076, LOAD | SETS1 | SETSSP | USES1 },    /* lds.l @rm+,a0 */
1801
  { 0x407a, SETSSP | USES1 },                   /* lds.l rm,a0 */
1802
  { 0x4082, STORE | SETS1 | USES1 | USESSP },   /* sts.l x0,@-rn */
1803
  { 0x4086, LOAD | SETS1 | SETSSP | USES1 },    /* lds.l @rm+,x0 */
1804
  { 0x408a, SETSSP | USES1 },                   /* lds.l rm,x0 */
1805
  { 0x4092, STORE | SETS1 | USES1 | USESSP },   /* sts.l x1,@-rn */
1806
  { 0x4096, LOAD | SETS1 | SETSSP | USES1 },    /* lds.l @rm+,x1 */
1807
  { 0x409a, SETSSP | USES1 },                   /* lds.l rm,x1 */
1808
  { 0x40a2, STORE | SETS1 | USES1 | USESSP },   /* sts.l y0,@-rn */
1809
  { 0x40a6, LOAD | SETS1 | SETSSP | USES1 },    /* lds.l @rm+,y0 */
1810
  { 0x40aa, SETSSP | USES1 },                   /* lds.l rm,y0 */
1811
  { 0x40b2, STORE | SETS1 | USES1 | USESSP },   /* sts.l y1,@-rn */
1812
  { 0x40b6, LOAD | SETS1 | SETSSP | USES1 },    /* lds.l @rm+,y1 */
1813
  { 0x40ba, SETSSP | USES1 }                    /* lds.l rm,y1 */
1814
};
1815
 
1816
static const struct sh_opcode sh_opcode41[] =
1817
{
1818
  { 0x4003, STORE | SETS1 | USES1 | USESSP },   /* stc.l <special_reg>,@-rn */
1819
  { 0x4007, LOAD | SETS1 | SETSSP | USES1 },    /* ldc.l @rm+,<special_reg> */
1820
  { 0x400c, SETS1 | USES1 | USES2 },            /* shad rm,rn */
1821
  { 0x400d, SETS1 | USES1 | USES2 },            /* shld rm,rn */
1822
  { 0x400e, SETSSP | USES1 },                   /* ldc rm,<special_reg> */
1823
  { 0x400f, LOAD|SETS1|SETS2|SETSSP|USES1|USES2|USESSP }, /* mac.w @rm+,@rn+ */
1824
};
1825
 
1826
static const struct sh_minor_opcode sh_opcode4[] =
1827
{
1828
  { MAP (sh_opcode40), 0xf0ff },
1829
  { MAP (sh_opcode41), 0xf00f }
1830
};
1831
 
1832
static const struct sh_opcode sh_opcode50[] =
1833
{
1834
  { 0x5000, LOAD | SETS1 | USES2 }      /* mov.l @(disp,rm),rn */
1835
};
1836
 
1837
static const struct sh_minor_opcode sh_opcode5[] =
1838
{
1839
  { MAP (sh_opcode50), 0xf000 }
1840
};
1841
 
1842
static const struct sh_opcode sh_opcode60[] =
1843
{
1844
  { 0x6000, LOAD | SETS1 | USES2 },             /* mov.b @rm,rn */
1845
  { 0x6001, LOAD | SETS1 | USES2 },             /* mov.w @rm,rn */
1846
  { 0x6002, LOAD | SETS1 | USES2 },             /* mov.l @rm,rn */
1847
  { 0x6003, SETS1 | USES2 },                    /* mov rm,rn */
1848
  { 0x6004, LOAD | SETS1 | SETS2 | USES2 },     /* mov.b @rm+,rn */
1849
  { 0x6005, LOAD | SETS1 | SETS2 | USES2 },     /* mov.w @rm+,rn */
1850
  { 0x6006, LOAD | SETS1 | SETS2 | USES2 },     /* mov.l @rm+,rn */
1851
  { 0x6007, SETS1 | USES2 },                    /* not rm,rn */
1852
  { 0x6008, SETS1 | USES2 },                    /* swap.b rm,rn */
1853
  { 0x6009, SETS1 | USES2 },                    /* swap.w rm,rn */
1854
  { 0x600a, SETS1 | SETSSP | USES2 | USESSP },  /* negc rm,rn */
1855
  { 0x600b, SETS1 | USES2 },                    /* neg rm,rn */
1856
  { 0x600c, SETS1 | USES2 },                    /* extu.b rm,rn */
1857
  { 0x600d, SETS1 | USES2 },                    /* extu.w rm,rn */
1858
  { 0x600e, SETS1 | USES2 },                    /* exts.b rm,rn */
1859
  { 0x600f, SETS1 | USES2 }                     /* exts.w rm,rn */
1860
};
1861
 
1862
static const struct sh_minor_opcode sh_opcode6[] =
1863
{
1864
  { MAP (sh_opcode60), 0xf00f }
1865
};
1866
 
1867
static const struct sh_opcode sh_opcode70[] =
1868
{
1869
  { 0x7000, SETS1 | USES1 }             /* add #imm,rn */
1870
};
1871
 
1872
static const struct sh_minor_opcode sh_opcode7[] =
1873
{
1874
  { MAP (sh_opcode70), 0xf000 }
1875
};
1876
 
1877
static const struct sh_opcode sh_opcode80[] =
1878
{
1879
  { 0x8000, STORE | USES2 | USESR0 },   /* mov.b r0,@(disp,rn) */
1880
  { 0x8100, STORE | USES2 | USESR0 },   /* mov.w r0,@(disp,rn) */
1881
  { 0x8200, SETSSP },                   /* setrc #imm */
1882
  { 0x8400, LOAD | SETSR0 | USES2 },    /* mov.b @(disp,rm),r0 */
1883
  { 0x8500, LOAD | SETSR0 | USES2 },    /* mov.w @(disp,rn),r0 */
1884
  { 0x8800, SETSSP | USESR0 },          /* cmp/eq #imm,r0 */
1885
  { 0x8900, BRANCH | USESSP },          /* bt label */
1886
  { 0x8b00, BRANCH | USESSP },          /* bf label */
1887
  { 0x8c00, SETSSP },                   /* ldrs @(disp,pc) */
1888
  { 0x8d00, BRANCH | DELAY | USESSP },  /* bt/s label */
1889
  { 0x8e00, SETSSP },                   /* ldre @(disp,pc) */
1890
  { 0x8f00, BRANCH | DELAY | USESSP }   /* bf/s label */
1891
};
1892
 
1893
static const struct sh_minor_opcode sh_opcode8[] =
1894
{
1895
  { MAP (sh_opcode80), 0xff00 }
1896
};
1897
 
1898
static const struct sh_opcode sh_opcode90[] =
1899
{
1900
  { 0x9000, LOAD | SETS1 }      /* mov.w @(disp,pc),rn */
1901
};
1902
 
1903
static const struct sh_minor_opcode sh_opcode9[] =
1904
{
1905
  { MAP (sh_opcode90), 0xf000 }
1906
};
1907
 
1908
static const struct sh_opcode sh_opcodea0[] =
1909
{
1910
  { 0xa000, BRANCH | DELAY }    /* bra label */
1911
};
1912
 
1913
static const struct sh_minor_opcode sh_opcodea[] =
1914
{
1915
  { MAP (sh_opcodea0), 0xf000 }
1916
};
1917
 
1918
static const struct sh_opcode sh_opcodeb0[] =
1919
{
1920
  { 0xb000, BRANCH | DELAY }    /* bsr label */
1921
};
1922
 
1923
static const struct sh_minor_opcode sh_opcodeb[] =
1924
{
1925
  { MAP (sh_opcodeb0), 0xf000 }
1926
};
1927
 
1928
static const struct sh_opcode sh_opcodec0[] =
1929
{
1930
  { 0xc000, STORE | USESR0 | USESSP },          /* mov.b r0,@(disp,gbr) */
1931
  { 0xc100, STORE | USESR0 | USESSP },          /* mov.w r0,@(disp,gbr) */
1932
  { 0xc200, STORE | USESR0 | USESSP },          /* mov.l r0,@(disp,gbr) */
1933
  { 0xc300, BRANCH | USESSP },                  /* trapa #imm */
1934
  { 0xc400, LOAD | SETSR0 | USESSP },           /* mov.b @(disp,gbr),r0 */
1935
  { 0xc500, LOAD | SETSR0 | USESSP },           /* mov.w @(disp,gbr),r0 */
1936
  { 0xc600, LOAD | SETSR0 | USESSP },           /* mov.l @(disp,gbr),r0 */
1937
  { 0xc700, SETSR0 },                           /* mova @(disp,pc),r0 */
1938
  { 0xc800, SETSSP | USESR0 },                  /* tst #imm,r0 */
1939
  { 0xc900, SETSR0 | USESR0 },                  /* and #imm,r0 */
1940
  { 0xca00, SETSR0 | USESR0 },                  /* xor #imm,r0 */
1941
  { 0xcb00, SETSR0 | USESR0 },                  /* or #imm,r0 */
1942
  { 0xcc00, LOAD | SETSSP | USESR0 | USESSP },  /* tst.b #imm,@(r0,gbr) */
1943
  { 0xcd00, LOAD | STORE | USESR0 | USESSP },   /* and.b #imm,@(r0,gbr) */
1944
  { 0xce00, LOAD | STORE | USESR0 | USESSP },   /* xor.b #imm,@(r0,gbr) */
1945
  { 0xcf00, LOAD | STORE | USESR0 | USESSP }    /* or.b #imm,@(r0,gbr) */
1946
};
1947
 
1948
static const struct sh_minor_opcode sh_opcodec[] =
1949
{
1950
  { MAP (sh_opcodec0), 0xff00 }
1951
};
1952
 
1953
static const struct sh_opcode sh_opcoded0[] =
1954
{
1955
  { 0xd000, LOAD | SETS1 }              /* mov.l @(disp,pc),rn */
1956
};
1957
 
1958
static const struct sh_minor_opcode sh_opcoded[] =
1959
{
1960
  { MAP (sh_opcoded0), 0xf000 }
1961
};
1962
 
1963
static const struct sh_opcode sh_opcodee0[] =
1964
{
1965
  { 0xe000, SETS1 }             /* mov #imm,rn */
1966
};
1967
 
1968
static const struct sh_minor_opcode sh_opcodee[] =
1969
{
1970
  { MAP (sh_opcodee0), 0xf000 }
1971
};
1972
 
1973
static const struct sh_opcode sh_opcodef0[] =
1974
{
1975
  { 0xf000, SETSF1 | USESF1 | USESF2 },         /* fadd fm,fn */
1976
  { 0xf001, SETSF1 | USESF1 | USESF2 },         /* fsub fm,fn */
1977
  { 0xf002, SETSF1 | USESF1 | USESF2 },         /* fmul fm,fn */
1978
  { 0xf003, SETSF1 | USESF1 | USESF2 },         /* fdiv fm,fn */
1979
  { 0xf004, SETSSP | USESF1 | USESF2 },         /* fcmp/eq fm,fn */
1980
  { 0xf005, SETSSP | USESF1 | USESF2 },         /* fcmp/gt fm,fn */
1981
  { 0xf006, LOAD | SETSF1 | USES2 | USESR0 },   /* fmov.s @(r0,rm),fn */
1982
  { 0xf007, STORE | USES1 | USESF2 | USESR0 },  /* fmov.s fm,@(r0,rn) */
1983
  { 0xf008, LOAD | SETSF1 | USES2 },            /* fmov.s @rm,fn */
1984
  { 0xf009, LOAD | SETS2 | SETSF1 | USES2 },    /* fmov.s @rm+,fn */
1985
  { 0xf00a, STORE | USES1 | USESF2 },           /* fmov.s fm,@rn */
1986
  { 0xf00b, STORE | SETS1 | USES1 | USESF2 },   /* fmov.s fm,@-rn */
1987
  { 0xf00c, SETSF1 | USESF2 },                  /* fmov fm,fn */
1988
  { 0xf00e, SETSF1 | USESF1 | USESF2 | USESF0 } /* fmac f0,fm,fn */
1989
};
1990
 
1991
static const struct sh_opcode sh_opcodef1[] =
1992
{
1993
  { 0xf00d, SETSF1 | USESSP },  /* fsts fpul,fn */
1994
  { 0xf01d, SETSSP | USESF1 },  /* flds fn,fpul */
1995
  { 0xf02d, SETSF1 | USESSP },  /* float fpul,fn */
1996
  { 0xf03d, SETSSP | USESF1 },  /* ftrc fn,fpul */
1997
  { 0xf04d, SETSF1 | USESF1 },  /* fneg fn */
1998
  { 0xf05d, SETSF1 | USESF1 },  /* fabs fn */
1999
  { 0xf06d, SETSF1 | USESF1 },  /* fsqrt fn */
2000
  { 0xf07d, SETSSP | USESF1 },  /* ftst/nan fn */
2001
  { 0xf08d, SETSF1 },           /* fldi0 fn */
2002
  { 0xf09d, SETSF1 }            /* fldi1 fn */
2003
};
2004
 
2005
static const struct sh_minor_opcode sh_opcodef[] =
2006
{
2007
  { MAP (sh_opcodef0), 0xf00f },
2008
  { MAP (sh_opcodef1), 0xf0ff }
2009
};
2010
 
2011
static struct sh_major_opcode sh_opcodes[] =
2012
{
2013
  { MAP (sh_opcode0) },
2014
  { MAP (sh_opcode1) },
2015
  { MAP (sh_opcode2) },
2016
  { MAP (sh_opcode3) },
2017
  { MAP (sh_opcode4) },
2018
  { MAP (sh_opcode5) },
2019
  { MAP (sh_opcode6) },
2020
  { MAP (sh_opcode7) },
2021
  { MAP (sh_opcode8) },
2022
  { MAP (sh_opcode9) },
2023
  { MAP (sh_opcodea) },
2024
  { MAP (sh_opcodeb) },
2025
  { MAP (sh_opcodec) },
2026
  { MAP (sh_opcoded) },
2027
  { MAP (sh_opcodee) },
2028
  { MAP (sh_opcodef) }
2029
};
2030
 
2031
/* The double data transfer / parallel processing insns are not
2032
   described here.  This will cause sh_align_load_span to leave them alone.  */
2033
 
2034
static const struct sh_opcode sh_dsp_opcodef0[] =
2035
{
2036
  { 0xf400, USESAS | SETSAS | LOAD | SETSSP },  /* movs.x @-as,ds */
2037
  { 0xf401, USESAS | SETSAS | STORE | USESSP }, /* movs.x ds,@-as */
2038
  { 0xf404, USESAS | LOAD | SETSSP },           /* movs.x @as,ds */
2039
  { 0xf405, USESAS | STORE | USESSP },          /* movs.x ds,@as */
2040
  { 0xf408, USESAS | SETSAS | LOAD | SETSSP },  /* movs.x @as+,ds */
2041
  { 0xf409, USESAS | SETSAS | STORE | USESSP }, /* movs.x ds,@as+ */
2042
  { 0xf40c, USESAS | SETSAS | LOAD | SETSSP | USESR8 }, /* movs.x @as+r8,ds */
2043
  { 0xf40d, USESAS | SETSAS | STORE | USESSP | USESR8 } /* movs.x ds,@as+r8 */
2044
};
2045
 
2046
static const struct sh_minor_opcode sh_dsp_opcodef[] =
2047
{
2048
  { MAP (sh_dsp_opcodef0), 0xfc0d }
2049
};
2050
 
2051
/* Given an instruction, return a pointer to the corresponding
2052
   sh_opcode structure.  Return NULL if the instruction is not
2053
   recognized.  */
2054
 
2055
static const struct sh_opcode *
2056
sh_insn_info (insn)
2057
     unsigned int insn;
2058
{
2059
  const struct sh_major_opcode *maj;
2060
  const struct sh_minor_opcode *min, *minend;
2061
 
2062
  maj = &sh_opcodes[(insn & 0xf000) >> 12];
2063
  min = maj->minor_opcodes;
2064
  minend = min + maj->count;
2065
  for (; min < minend; min++)
2066
    {
2067
      unsigned int l;
2068
      const struct sh_opcode *op, *opend;
2069
 
2070
      l = insn & min->mask;
2071
      op = min->opcodes;
2072
      opend = op + min->count;
2073
 
2074
      /* Since the opcodes tables are sorted, we could use a binary
2075
         search here if the count were above some cutoff value.  */
2076
      for (; op < opend; op++)
2077
        if (op->opcode == l)
2078
          return op;
2079
    }
2080
 
2081
  return NULL;
2082
}
2083
 
2084
/* See whether an instruction uses or sets a general purpose register */
2085
 
2086
static bfd_boolean
2087
sh_insn_uses_or_sets_reg (insn, op, reg)
2088
     unsigned int insn;
2089
     const struct sh_opcode *op;
2090
     unsigned int reg;
2091
{
2092
  if (sh_insn_uses_reg (insn, op, reg))
2093
    return TRUE;
2094
 
2095
  return sh_insn_sets_reg (insn, op, reg);
2096
}
2097
 
2098
/* See whether an instruction uses a general purpose register.  */
2099
 
2100
static bfd_boolean
2101
sh_insn_uses_reg (insn, op, reg)
2102
     unsigned int insn;
2103
     const struct sh_opcode *op;
2104
     unsigned int reg;
2105
{
2106
  unsigned int f;
2107
 
2108
  f = op->flags;
2109
 
2110
  if ((f & USES1) != 0
2111
      && USES1_REG (insn) == reg)
2112
    return TRUE;
2113
  if ((f & USES2) != 0
2114
      && USES2_REG (insn) == reg)
2115
    return TRUE;
2116
  if ((f & USESR0) != 0
2117
      && reg == 0)
2118
    return TRUE;
2119
  if ((f & USESAS) && reg == USESAS_REG (insn))
2120
    return TRUE;
2121
  if ((f & USESR8) && reg == 8)
2122
    return TRUE;
2123
 
2124
  return FALSE;
2125
}
2126
 
2127
/* See whether an instruction sets a general purpose register.  */
2128
 
2129
static bfd_boolean
2130
sh_insn_sets_reg (insn, op, reg)
2131
     unsigned int insn;
2132
     const struct sh_opcode *op;
2133
     unsigned int reg;
2134
{
2135
  unsigned int f;
2136
 
2137
  f = op->flags;
2138
 
2139
  if ((f & SETS1) != 0
2140
      && SETS1_REG (insn) == reg)
2141
    return TRUE;
2142
  if ((f & SETS2) != 0
2143
      && SETS2_REG (insn) == reg)
2144
    return TRUE;
2145
  if ((f & SETSR0) != 0
2146
      && reg == 0)
2147
    return TRUE;
2148
  if ((f & SETSAS) && reg == SETSAS_REG (insn))
2149
    return TRUE;
2150
 
2151
  return FALSE;
2152
}
2153
 
2154
/* See whether an instruction uses or sets a floating point register */
2155
 
2156
static bfd_boolean
2157
sh_insn_uses_or_sets_freg (insn, op, reg)
2158
     unsigned int insn;
2159
     const struct sh_opcode *op;
2160
     unsigned int reg;
2161
{
2162
  if (sh_insn_uses_freg (insn, op, reg))
2163
    return TRUE;
2164
 
2165
  return sh_insn_sets_freg (insn, op, reg);
2166
}
2167
 
2168
/* See whether an instruction uses a floating point register.  */
2169
 
2170
static bfd_boolean
2171
sh_insn_uses_freg (insn, op, freg)
2172
     unsigned int insn;
2173
     const struct sh_opcode *op;
2174
     unsigned int freg;
2175
{
2176
  unsigned int f;
2177
 
2178
  f = op->flags;
2179
 
2180
  /* We can't tell if this is a double-precision insn, so just play safe
2181
     and assume that it might be.  So not only have we test FREG against
2182
     itself, but also even FREG against FREG+1 - if the using insn uses
2183
     just the low part of a double precision value - but also an odd
2184
     FREG against FREG-1 -  if the setting insn sets just the low part
2185
     of a double precision value.
2186
     So what this all boils down to is that we have to ignore the lowest
2187
     bit of the register number.  */
2188
 
2189
  if ((f & USESF1) != 0
2190
      && (USESF1_REG (insn) & 0xe) == (freg & 0xe))
2191
    return TRUE;
2192
  if ((f & USESF2) != 0
2193
      && (USESF2_REG (insn) & 0xe) == (freg & 0xe))
2194
    return TRUE;
2195
  if ((f & USESF0) != 0
2196
      && freg == 0)
2197
    return TRUE;
2198
 
2199
  return FALSE;
2200
}
2201
 
2202
/* See whether an instruction sets a floating point register.  */
2203
 
2204
static bfd_boolean
2205
sh_insn_sets_freg (insn, op, freg)
2206
     unsigned int insn;
2207
     const struct sh_opcode *op;
2208
     unsigned int freg;
2209
{
2210
  unsigned int f;
2211
 
2212
  f = op->flags;
2213
 
2214
  /* We can't tell if this is a double-precision insn, so just play safe
2215
     and assume that it might be.  So not only have we test FREG against
2216
     itself, but also even FREG against FREG+1 - if the using insn uses
2217
     just the low part of a double precision value - but also an odd
2218
     FREG against FREG-1 -  if the setting insn sets just the low part
2219
     of a double precision value.
2220
     So what this all boils down to is that we have to ignore the lowest
2221
     bit of the register number.  */
2222
 
2223
  if ((f & SETSF1) != 0
2224
      && (SETSF1_REG (insn) & 0xe) == (freg & 0xe))
2225
    return TRUE;
2226
 
2227
  return FALSE;
2228
}
2229
 
2230
/* See whether instructions I1 and I2 conflict, assuming I1 comes
2231
   before I2.  OP1 and OP2 are the corresponding sh_opcode structures.
2232
   This should return TRUE if there is a conflict, or FALSE if the
2233
   instructions can be swapped safely.  */
2234
 
2235
static bfd_boolean
2236
sh_insns_conflict (i1, op1, i2, op2)
2237
     unsigned int i1;
2238
     const struct sh_opcode *op1;
2239
     unsigned int i2;
2240
     const struct sh_opcode *op2;
2241
{
2242
  unsigned int f1, f2;
2243
 
2244
  f1 = op1->flags;
2245
  f2 = op2->flags;
2246
 
2247
  /* Load of fpscr conflicts with floating point operations.
2248
     FIXME: shouldn't test raw opcodes here.  */
2249
  if (((i1 & 0xf0ff) == 0x4066 && (i2 & 0xf000) == 0xf000)
2250
      || ((i2 & 0xf0ff) == 0x4066 && (i1 & 0xf000) == 0xf000))
2251
    return TRUE;
2252
 
2253
  if ((f1 & (BRANCH | DELAY)) != 0
2254
      || (f2 & (BRANCH | DELAY)) != 0)
2255
    return TRUE;
2256
 
2257
  if (((f1 | f2) & SETSSP)
2258
      && (f1 & (SETSSP | USESSP))
2259
      && (f2 & (SETSSP | USESSP)))
2260
    return TRUE;
2261
 
2262
  if ((f1 & SETS1) != 0
2263
      && sh_insn_uses_or_sets_reg (i2, op2, SETS1_REG (i1)))
2264
    return TRUE;
2265
  if ((f1 & SETS2) != 0
2266
      && sh_insn_uses_or_sets_reg (i2, op2, SETS2_REG (i1)))
2267
    return TRUE;
2268
  if ((f1 & SETSR0) != 0
2269
      && sh_insn_uses_or_sets_reg (i2, op2, 0))
2270
    return TRUE;
2271
  if ((f1 & SETSAS)
2272
      && sh_insn_uses_or_sets_reg (i2, op2, SETSAS_REG (i1)))
2273
    return TRUE;
2274
  if ((f1 & SETSF1) != 0
2275
      && sh_insn_uses_or_sets_freg (i2, op2, SETSF1_REG (i1)))
2276
    return TRUE;
2277
 
2278
  if ((f2 & SETS1) != 0
2279
      && sh_insn_uses_or_sets_reg (i1, op1, SETS1_REG (i2)))
2280
    return TRUE;
2281
  if ((f2 & SETS2) != 0
2282
      && sh_insn_uses_or_sets_reg (i1, op1, SETS2_REG (i2)))
2283
    return TRUE;
2284
  if ((f2 & SETSR0) != 0
2285
      && sh_insn_uses_or_sets_reg (i1, op1, 0))
2286
    return TRUE;
2287
  if ((f2 & SETSAS)
2288
      && sh_insn_uses_or_sets_reg (i1, op1, SETSAS_REG (i2)))
2289
    return TRUE;
2290
  if ((f2 & SETSF1) != 0
2291
      && sh_insn_uses_or_sets_freg (i1, op1, SETSF1_REG (i2)))
2292
    return TRUE;
2293
 
2294
  /* The instructions do not conflict.  */
2295
  return FALSE;
2296
}
2297
 
2298
/* I1 is a load instruction, and I2 is some other instruction.  Return
2299
   TRUE if I1 loads a register which I2 uses.  */
2300
 
2301
static bfd_boolean
2302
sh_load_use (i1, op1, i2, op2)
2303
     unsigned int i1;
2304
     const struct sh_opcode *op1;
2305
     unsigned int i2;
2306
     const struct sh_opcode *op2;
2307
{
2308
  unsigned int f1;
2309
 
2310
  f1 = op1->flags;
2311
 
2312
  if ((f1 & LOAD) == 0)
2313
    return FALSE;
2314
 
2315
  /* If both SETS1 and SETSSP are set, that means a load to a special
2316
     register using postincrement addressing mode, which we don't care
2317
     about here.  */
2318
  if ((f1 & SETS1) != 0
2319
      && (f1 & SETSSP) == 0
2320
      && sh_insn_uses_reg (i2, op2, (i1 & 0x0f00) >> 8))
2321
    return TRUE;
2322
 
2323
  if ((f1 & SETSR0) != 0
2324
      && sh_insn_uses_reg (i2, op2, 0))
2325
    return TRUE;
2326
 
2327
  if ((f1 & SETSF1) != 0
2328
      && sh_insn_uses_freg (i2, op2, (i1 & 0x0f00) >> 8))
2329
    return TRUE;
2330
 
2331
  return FALSE;
2332
}
2333
 
2334
/* Try to align loads and stores within a span of memory.  This is
2335
   called by both the ELF and the COFF sh targets.  ABFD and SEC are
2336
   the BFD and section we are examining.  CONTENTS is the contents of
2337
   the section.  SWAP is the routine to call to swap two instructions.
2338
   RELOCS is a pointer to the internal relocation information, to be
2339
   passed to SWAP.  PLABEL is a pointer to the current label in a
2340
   sorted list of labels; LABEL_END is the end of the list.  START and
2341
   STOP are the range of memory to examine.  If a swap is made,
2342
   *PSWAPPED is set to TRUE.  */
2343
 
2344
#ifdef COFF_WITH_PE
2345
static
2346
#endif
2347
bfd_boolean
2348
_bfd_sh_align_load_span (abfd, sec, contents, swap, relocs,
2349
                         plabel, label_end, start, stop, pswapped)
2350
     bfd *abfd;
2351
     asection *sec;
2352
     bfd_byte *contents;
2353
     bfd_boolean (*swap) PARAMS ((bfd *, asection *, PTR, bfd_byte *, bfd_vma));
2354
     PTR relocs;
2355
     bfd_vma **plabel;
2356
     bfd_vma *label_end;
2357
     bfd_vma start;
2358
     bfd_vma stop;
2359
     bfd_boolean *pswapped;
2360
{
2361
  int dsp = (abfd->arch_info->mach == bfd_mach_sh_dsp
2362
             || abfd->arch_info->mach == bfd_mach_sh3_dsp);
2363
  bfd_vma i;
2364
 
2365
  /* The SH4 has a Harvard architecture, hence aligning loads is not
2366
     desirable.  In fact, it is counter-productive, since it interferes
2367
     with the schedules generated by the compiler.  */
2368
  if (abfd->arch_info->mach == bfd_mach_sh4)
2369
    return TRUE;
2370
 
2371
  /* If we are linking sh[3]-dsp code, swap the FPU instructions for DSP
2372
     instructions.  */
2373
  if (dsp)
2374
    {
2375
      sh_opcodes[0xf].minor_opcodes = sh_dsp_opcodef;
2376
      sh_opcodes[0xf].count = sizeof sh_dsp_opcodef / sizeof sh_dsp_opcodef;
2377
    }
2378
 
2379
  /* Instructions should be aligned on 2 byte boundaries.  */
2380
  if ((start & 1) == 1)
2381
    ++start;
2382
 
2383
  /* Now look through the unaligned addresses.  */
2384
  i = start;
2385
  if ((i & 2) == 0)
2386
    i += 2;
2387
  for (; i < stop; i += 4)
2388
    {
2389
      unsigned int insn;
2390
      const struct sh_opcode *op;
2391
      unsigned int prev_insn = 0;
2392
      const struct sh_opcode *prev_op = NULL;
2393
 
2394
      insn = bfd_get_16 (abfd, contents + i);
2395
      op = sh_insn_info (insn);
2396
      if (op == NULL
2397
          || (op->flags & (LOAD | STORE)) == 0)
2398
        continue;
2399
 
2400
      /* This is a load or store which is not on a four byte boundary.  */
2401
 
2402
      while (*plabel < label_end && **plabel < i)
2403
        ++*plabel;
2404
 
2405
      if (i > start)
2406
        {
2407
          prev_insn = bfd_get_16 (abfd, contents + i - 2);
2408
          /* If INSN is the field b of a parallel processing insn, it is not
2409
             a load / store after all.  Note that the test here might mistake
2410
             the field_b of a pcopy insn for the starting code of a parallel
2411
             processing insn; this might miss a swapping opportunity, but at
2412
             least we're on the safe side.  */
2413
          if (dsp && (prev_insn & 0xfc00) == 0xf800)
2414
            continue;
2415
 
2416
          /* Check if prev_insn is actually the field b of a parallel
2417
             processing insn.  Again, this can give a spurious match
2418
             after a pcopy.  */
2419
          if (dsp && i - 2 > start)
2420
            {
2421
              unsigned pprev_insn = bfd_get_16 (abfd, contents + i - 4);
2422
 
2423
              if ((pprev_insn & 0xfc00) == 0xf800)
2424
                prev_op = NULL;
2425
              else
2426
                prev_op = sh_insn_info (prev_insn);
2427
            }
2428
          else
2429
            prev_op = sh_insn_info (prev_insn);
2430
 
2431
          /* If the load/store instruction is in a delay slot, we
2432
             can't swap.  */
2433
          if (prev_op == NULL
2434
              || (prev_op->flags & DELAY) != 0)
2435
            continue;
2436
        }
2437
      if (i > start
2438
          && (*plabel >= label_end || **plabel != i)
2439
          && prev_op != NULL
2440
          && (prev_op->flags & (LOAD | STORE)) == 0
2441
          && ! sh_insns_conflict (prev_insn, prev_op, insn, op))
2442
        {
2443
          bfd_boolean ok;
2444
 
2445
          /* The load/store instruction does not have a label, and
2446
             there is a previous instruction; PREV_INSN is not
2447
             itself a load/store instruction, and PREV_INSN and
2448
             INSN do not conflict.  */
2449
 
2450
          ok = TRUE;
2451
 
2452
          if (i >= start + 4)
2453
            {
2454
              unsigned int prev2_insn;
2455
              const struct sh_opcode *prev2_op;
2456
 
2457
              prev2_insn = bfd_get_16 (abfd, contents + i - 4);
2458
              prev2_op = sh_insn_info (prev2_insn);
2459
 
2460
              /* If the instruction before PREV_INSN has a delay
2461
                 slot--that is, PREV_INSN is in a delay slot--we
2462
                 can not swap.  */
2463
              if (prev2_op == NULL
2464
                  || (prev2_op->flags & DELAY) != 0)
2465
                ok = FALSE;
2466
 
2467
              /* If the instruction before PREV_INSN is a load,
2468
                 and it sets a register which INSN uses, then
2469
                 putting INSN immediately after PREV_INSN will
2470
                 cause a pipeline bubble, so there is no point to
2471
                 making the swap.  */
2472
              if (ok
2473
                  && (prev2_op->flags & LOAD) != 0
2474
                  && sh_load_use (prev2_insn, prev2_op, insn, op))
2475
                ok = FALSE;
2476
            }
2477
 
2478
          if (ok)
2479
            {
2480
              if (! (*swap) (abfd, sec, relocs, contents, i - 2))
2481
                return FALSE;
2482
              *pswapped = TRUE;
2483
              continue;
2484
            }
2485
        }
2486
 
2487
      while (*plabel < label_end && **plabel < i + 2)
2488
        ++*plabel;
2489
 
2490
      if (i + 2 < stop
2491
          && (*plabel >= label_end || **plabel != i + 2))
2492
        {
2493
          unsigned int next_insn;
2494
          const struct sh_opcode *next_op;
2495
 
2496
          /* There is an instruction after the load/store
2497
             instruction, and it does not have a label.  */
2498
          next_insn = bfd_get_16 (abfd, contents + i + 2);
2499
          next_op = sh_insn_info (next_insn);
2500
          if (next_op != NULL
2501
              && (next_op->flags & (LOAD | STORE)) == 0
2502
              && ! sh_insns_conflict (insn, op, next_insn, next_op))
2503
            {
2504
              bfd_boolean ok;
2505
 
2506
              /* NEXT_INSN is not itself a load/store instruction,
2507
                 and it does not conflict with INSN.  */
2508
 
2509
              ok = TRUE;
2510
 
2511
              /* If PREV_INSN is a load, and it sets a register
2512
                 which NEXT_INSN uses, then putting NEXT_INSN
2513
                 immediately after PREV_INSN will cause a pipeline
2514
                 bubble, so there is no reason to make this swap.  */
2515
              if (prev_op != NULL
2516
                  && (prev_op->flags & LOAD) != 0
2517
                  && sh_load_use (prev_insn, prev_op, next_insn, next_op))
2518
                ok = FALSE;
2519
 
2520
              /* If INSN is a load, and it sets a register which
2521
                 the insn after NEXT_INSN uses, then doing the
2522
                 swap will cause a pipeline bubble, so there is no
2523
                 reason to make the swap.  However, if the insn
2524
                 after NEXT_INSN is itself a load or store
2525
                 instruction, then it is misaligned, so
2526
                 optimistically hope that it will be swapped
2527
                 itself, and just live with the pipeline bubble if
2528
                 it isn't.  */
2529
              if (ok
2530
                  && i + 4 < stop
2531
                  && (op->flags & LOAD) != 0)
2532
                {
2533
                  unsigned int next2_insn;
2534
                  const struct sh_opcode *next2_op;
2535
 
2536
                  next2_insn = bfd_get_16 (abfd, contents + i + 4);
2537
                  next2_op = sh_insn_info (next2_insn);
2538
                  if (next2_op == NULL
2539
                      || ((next2_op->flags & (LOAD | STORE)) == 0
2540
                          && sh_load_use (insn, op, next2_insn, next2_op)))
2541
                    ok = FALSE;
2542
                }
2543
 
2544
              if (ok)
2545
                {
2546
                  if (! (*swap) (abfd, sec, relocs, contents, i))
2547
                    return FALSE;
2548
                  *pswapped = TRUE;
2549
                  continue;
2550
                }
2551
            }
2552
        }
2553
    }
2554
 
2555
  return TRUE;
2556
}
2557
#endif /* not COFF_IMAGE_WITH_PE */
2558
 
2559
/* Look for loads and stores which we can align to four byte
2560
   boundaries.  See the longer comment above sh_relax_section for why
2561
   this is desirable.  This sets *PSWAPPED if some instruction was
2562
   swapped.  */
2563
 
2564
static bfd_boolean
2565
sh_align_loads (abfd, sec, internal_relocs, contents, pswapped)
2566
     bfd *abfd;
2567
     asection *sec;
2568
     struct internal_reloc *internal_relocs;
2569
     bfd_byte *contents;
2570
     bfd_boolean *pswapped;
2571
{
2572
  struct internal_reloc *irel, *irelend;
2573
  bfd_vma *labels = NULL;
2574
  bfd_vma *label, *label_end;
2575
  bfd_size_type amt;
2576
 
2577
  *pswapped = FALSE;
2578
 
2579
  irelend = internal_relocs + sec->reloc_count;
2580
 
2581
  /* Get all the addresses with labels on them.  */
2582
  amt = (bfd_size_type) sec->reloc_count * sizeof (bfd_vma);
2583
  labels = (bfd_vma *) bfd_malloc (amt);
2584
  if (labels == NULL)
2585
    goto error_return;
2586
  label_end = labels;
2587
  for (irel = internal_relocs; irel < irelend; irel++)
2588
    {
2589
      if (irel->r_type == R_SH_LABEL)
2590
        {
2591
          *label_end = irel->r_vaddr - sec->vma;
2592
          ++label_end;
2593
        }
2594
    }
2595
 
2596
  /* Note that the assembler currently always outputs relocs in
2597
     address order.  If that ever changes, this code will need to sort
2598
     the label values and the relocs.  */
2599
 
2600
  label = labels;
2601
 
2602
  for (irel = internal_relocs; irel < irelend; irel++)
2603
    {
2604
      bfd_vma start, stop;
2605
 
2606
      if (irel->r_type != R_SH_CODE)
2607
        continue;
2608
 
2609
      start = irel->r_vaddr - sec->vma;
2610
 
2611
      for (irel++; irel < irelend; irel++)
2612
        if (irel->r_type == R_SH_DATA)
2613
          break;
2614
      if (irel < irelend)
2615
        stop = irel->r_vaddr - sec->vma;
2616
      else
2617
        stop = sec->size;
2618
 
2619
      if (! _bfd_sh_align_load_span (abfd, sec, contents, sh_swap_insns,
2620
                                     (PTR) internal_relocs, &label,
2621
                                     label_end, start, stop, pswapped))
2622
        goto error_return;
2623
    }
2624
 
2625
  free (labels);
2626
 
2627
  return TRUE;
2628
 
2629
 error_return:
2630
  if (labels != NULL)
2631
    free (labels);
2632
  return FALSE;
2633
}
2634
 
2635
/* Swap two SH instructions.  */
2636
 
2637
static bfd_boolean
2638
sh_swap_insns (abfd, sec, relocs, contents, addr)
2639
     bfd *abfd;
2640
     asection *sec;
2641
     PTR relocs;
2642
     bfd_byte *contents;
2643
     bfd_vma addr;
2644
{
2645
  struct internal_reloc *internal_relocs = (struct internal_reloc *) relocs;
2646
  unsigned short i1, i2;
2647
  struct internal_reloc *irel, *irelend;
2648
 
2649
  /* Swap the instructions themselves.  */
2650
  i1 = bfd_get_16 (abfd, contents + addr);
2651
  i2 = bfd_get_16 (abfd, contents + addr + 2);
2652
  bfd_put_16 (abfd, (bfd_vma) i2, contents + addr);
2653
  bfd_put_16 (abfd, (bfd_vma) i1, contents + addr + 2);
2654
 
2655
  /* Adjust all reloc addresses.  */
2656
  irelend = internal_relocs + sec->reloc_count;
2657
  for (irel = internal_relocs; irel < irelend; irel++)
2658
    {
2659
      int type, add;
2660
 
2661
      /* There are a few special types of relocs that we don't want to
2662
         adjust.  These relocs do not apply to the instruction itself,
2663
         but are only associated with the address.  */
2664
      type = irel->r_type;
2665
      if (type == R_SH_ALIGN
2666
          || type == R_SH_CODE
2667
          || type == R_SH_DATA
2668
          || type == R_SH_LABEL)
2669
        continue;
2670
 
2671
      /* If an R_SH_USES reloc points to one of the addresses being
2672
         swapped, we must adjust it.  It would be incorrect to do this
2673
         for a jump, though, since we want to execute both
2674
         instructions after the jump.  (We have avoided swapping
2675
         around a label, so the jump will not wind up executing an
2676
         instruction it shouldn't).  */
2677
      if (type == R_SH_USES)
2678
        {
2679
          bfd_vma off;
2680
 
2681
          off = irel->r_vaddr - sec->vma + 4 + irel->r_offset;
2682
          if (off == addr)
2683
            irel->r_offset += 2;
2684
          else if (off == addr + 2)
2685
            irel->r_offset -= 2;
2686
        }
2687
 
2688
      if (irel->r_vaddr - sec->vma == addr)
2689
        {
2690
          irel->r_vaddr += 2;
2691
          add = -2;
2692
        }
2693
      else if (irel->r_vaddr - sec->vma == addr + 2)
2694
        {
2695
          irel->r_vaddr -= 2;
2696
          add = 2;
2697
        }
2698
      else
2699
        add = 0;
2700
 
2701
      if (add != 0)
2702
        {
2703
          bfd_byte *loc;
2704
          unsigned short insn, oinsn;
2705
          bfd_boolean overflow;
2706
 
2707
          loc = contents + irel->r_vaddr - sec->vma;
2708
          overflow = FALSE;
2709
          switch (type)
2710
            {
2711
            default:
2712
              break;
2713
 
2714
            case R_SH_PCDISP8BY2:
2715
            case R_SH_PCRELIMM8BY2:
2716
              insn = bfd_get_16 (abfd, loc);
2717
              oinsn = insn;
2718
              insn += add / 2;
2719
              if ((oinsn & 0xff00) != (insn & 0xff00))
2720
                overflow = TRUE;
2721
              bfd_put_16 (abfd, (bfd_vma) insn, loc);
2722
              break;
2723
 
2724
            case R_SH_PCDISP:
2725
              insn = bfd_get_16 (abfd, loc);
2726
              oinsn = insn;
2727
              insn += add / 2;
2728
              if ((oinsn & 0xf000) != (insn & 0xf000))
2729
                overflow = TRUE;
2730
              bfd_put_16 (abfd, (bfd_vma) insn, loc);
2731
              break;
2732
 
2733
            case R_SH_PCRELIMM8BY4:
2734
              /* This reloc ignores the least significant 3 bits of
2735
                 the program counter before adding in the offset.
2736
                 This means that if ADDR is at an even address, the
2737
                 swap will not affect the offset.  If ADDR is an at an
2738
                 odd address, then the instruction will be crossing a
2739
                 four byte boundary, and must be adjusted.  */
2740
              if ((addr & 3) != 0)
2741
                {
2742
                  insn = bfd_get_16 (abfd, loc);
2743
                  oinsn = insn;
2744
                  insn += add / 2;
2745
                  if ((oinsn & 0xff00) != (insn & 0xff00))
2746
                    overflow = TRUE;
2747
                  bfd_put_16 (abfd, (bfd_vma) insn, loc);
2748
                }
2749
 
2750
              break;
2751
            }
2752
 
2753
          if (overflow)
2754
            {
2755
              ((*_bfd_error_handler)
2756
               ("%B: 0x%lx: fatal: reloc overflow while relaxing",
2757
                abfd, (unsigned long) irel->r_vaddr));
2758
              bfd_set_error (bfd_error_bad_value);
2759
              return FALSE;
2760
            }
2761
        }
2762
    }
2763
 
2764
  return TRUE;
2765
}
2766
 
2767
/* This is a modification of _bfd_coff_generic_relocate_section, which
2768
   will handle SH relaxing.  */
2769
 
2770
static bfd_boolean
2771
sh_relocate_section (output_bfd, info, input_bfd, input_section, contents,
2772
                     relocs, syms, sections)
2773
     bfd *output_bfd ATTRIBUTE_UNUSED;
2774
     struct bfd_link_info *info;
2775
     bfd *input_bfd;
2776
     asection *input_section;
2777
     bfd_byte *contents;
2778
     struct internal_reloc *relocs;
2779
     struct internal_syment *syms;
2780
     asection **sections;
2781
{
2782
  struct internal_reloc *rel;
2783
  struct internal_reloc *relend;
2784
 
2785
  rel = relocs;
2786
  relend = rel + input_section->reloc_count;
2787
  for (; rel < relend; rel++)
2788
    {
2789
      long symndx;
2790
      struct coff_link_hash_entry *h;
2791
      struct internal_syment *sym;
2792
      bfd_vma addend;
2793
      bfd_vma val;
2794
      reloc_howto_type *howto;
2795
      bfd_reloc_status_type rstat;
2796
 
2797
      /* Almost all relocs have to do with relaxing.  If any work must
2798
         be done for them, it has been done in sh_relax_section.  */
2799
      if (rel->r_type != R_SH_IMM32
2800
#ifdef COFF_WITH_PE
2801
          && rel->r_type != R_SH_IMM32CE
2802
          && rel->r_type != R_SH_IMAGEBASE
2803
#endif
2804
          && rel->r_type != R_SH_PCDISP)
2805
        continue;
2806
 
2807
      symndx = rel->r_symndx;
2808
 
2809
      if (symndx == -1)
2810
        {
2811
          h = NULL;
2812
          sym = NULL;
2813
        }
2814
      else
2815
        {
2816
          if (symndx < 0
2817
              || (unsigned long) symndx >= obj_raw_syment_count (input_bfd))
2818
            {
2819
              (*_bfd_error_handler)
2820
                ("%B: illegal symbol index %ld in relocs",
2821
                 input_bfd, symndx);
2822
              bfd_set_error (bfd_error_bad_value);
2823
              return FALSE;
2824
            }
2825
          h = obj_coff_sym_hashes (input_bfd)[symndx];
2826
          sym = syms + symndx;
2827
        }
2828
 
2829
      if (sym != NULL && sym->n_scnum != 0)
2830
        addend = - sym->n_value;
2831
      else
2832
        addend = 0;
2833
 
2834
      if (rel->r_type == R_SH_PCDISP)
2835
        addend -= 4;
2836
 
2837
      if (rel->r_type >= SH_COFF_HOWTO_COUNT)
2838
        howto = NULL;
2839
      else
2840
        howto = &sh_coff_howtos[rel->r_type];
2841
 
2842
      if (howto == NULL)
2843
        {
2844
          bfd_set_error (bfd_error_bad_value);
2845
          return FALSE;
2846
        }
2847
 
2848
#ifdef COFF_WITH_PE
2849
      if (rel->r_type == R_SH_IMAGEBASE)
2850
        addend -= pe_data (input_section->output_section->owner)->pe_opthdr.ImageBase;
2851
#endif
2852
 
2853
      val = 0;
2854
 
2855
      if (h == NULL)
2856
        {
2857
          asection *sec;
2858
 
2859
          /* There is nothing to do for an internal PCDISP reloc.  */
2860
          if (rel->r_type == R_SH_PCDISP)
2861
            continue;
2862
 
2863
          if (symndx == -1)
2864
            {
2865
              sec = bfd_abs_section_ptr;
2866
              val = 0;
2867
            }
2868
          else
2869
            {
2870
              sec = sections[symndx];
2871
              val = (sec->output_section->vma
2872
                     + sec->output_offset
2873
                     + sym->n_value
2874
                     - sec->vma);
2875
            }
2876
        }
2877
      else
2878
        {
2879
          if (h->root.type == bfd_link_hash_defined
2880
              || h->root.type == bfd_link_hash_defweak)
2881
            {
2882
              asection *sec;
2883
 
2884
              sec = h->root.u.def.section;
2885
              val = (h->root.u.def.value
2886
                     + sec->output_section->vma
2887
                     + sec->output_offset);
2888
            }
2889
          else if (! info->relocatable)
2890
            {
2891
              if (! ((*info->callbacks->undefined_symbol)
2892
                     (info, h->root.root.string, input_bfd, input_section,
2893
                      rel->r_vaddr - input_section->vma, TRUE)))
2894
                return FALSE;
2895
            }
2896
        }
2897
 
2898
      rstat = _bfd_final_link_relocate (howto, input_bfd, input_section,
2899
                                        contents,
2900
                                        rel->r_vaddr - input_section->vma,
2901
                                        val, addend);
2902
 
2903
      switch (rstat)
2904
        {
2905
        default:
2906
          abort ();
2907
        case bfd_reloc_ok:
2908
          break;
2909
        case bfd_reloc_overflow:
2910
          {
2911
            const char *name;
2912
            char buf[SYMNMLEN + 1];
2913
 
2914
            if (symndx == -1)
2915
              name = "*ABS*";
2916
            else if (h != NULL)
2917
              name = NULL;
2918
            else if (sym->_n._n_n._n_zeroes == 0
2919
                     && sym->_n._n_n._n_offset != 0)
2920
              name = obj_coff_strings (input_bfd) + sym->_n._n_n._n_offset;
2921
            else
2922
              {
2923
                strncpy (buf, sym->_n._n_name, SYMNMLEN);
2924
                buf[SYMNMLEN] = '\0';
2925
                name = buf;
2926
              }
2927
 
2928
            if (! ((*info->callbacks->reloc_overflow)
2929
                   (info, (h ? &h->root : NULL), name, howto->name,
2930
                    (bfd_vma) 0, input_bfd, input_section,
2931
                    rel->r_vaddr - input_section->vma)))
2932
              return FALSE;
2933
          }
2934
        }
2935
    }
2936
 
2937
  return TRUE;
2938
}
2939
 
2940
/* This is a version of bfd_generic_get_relocated_section_contents
2941
   which uses sh_relocate_section.  */
2942
 
2943
static bfd_byte *
2944
sh_coff_get_relocated_section_contents (output_bfd, link_info, link_order,
2945
                                        data, relocatable, symbols)
2946
     bfd *output_bfd;
2947
     struct bfd_link_info *link_info;
2948
     struct bfd_link_order *link_order;
2949
     bfd_byte *data;
2950
     bfd_boolean relocatable;
2951
     asymbol **symbols;
2952
{
2953
  asection *input_section = link_order->u.indirect.section;
2954
  bfd *input_bfd = input_section->owner;
2955
  asection **sections = NULL;
2956
  struct internal_reloc *internal_relocs = NULL;
2957
  struct internal_syment *internal_syms = NULL;
2958
 
2959
  /* We only need to handle the case of relaxing, or of having a
2960
     particular set of section contents, specially.  */
2961
  if (relocatable
2962
      || coff_section_data (input_bfd, input_section) == NULL
2963
      || coff_section_data (input_bfd, input_section)->contents == NULL)
2964
    return bfd_generic_get_relocated_section_contents (output_bfd, link_info,
2965
                                                       link_order, data,
2966
                                                       relocatable,
2967
                                                       symbols);
2968
 
2969
  memcpy (data, coff_section_data (input_bfd, input_section)->contents,
2970
          (size_t) input_section->size);
2971
 
2972
  if ((input_section->flags & SEC_RELOC) != 0
2973
      && input_section->reloc_count > 0)
2974
    {
2975
      bfd_size_type symesz = bfd_coff_symesz (input_bfd);
2976
      bfd_byte *esym, *esymend;
2977
      struct internal_syment *isymp;
2978
      asection **secpp;
2979
      bfd_size_type amt;
2980
 
2981
      if (! _bfd_coff_get_external_symbols (input_bfd))
2982
        goto error_return;
2983
 
2984
      internal_relocs = (_bfd_coff_read_internal_relocs
2985
                         (input_bfd, input_section, FALSE, (bfd_byte *) NULL,
2986
                          FALSE, (struct internal_reloc *) NULL));
2987
      if (internal_relocs == NULL)
2988
        goto error_return;
2989
 
2990
      amt = obj_raw_syment_count (input_bfd);
2991
      amt *= sizeof (struct internal_syment);
2992
      internal_syms = (struct internal_syment *) bfd_malloc (amt);
2993
      if (internal_syms == NULL)
2994
        goto error_return;
2995
 
2996
      amt = obj_raw_syment_count (input_bfd);
2997
      amt *= sizeof (asection *);
2998
      sections = (asection **) bfd_malloc (amt);
2999
      if (sections == NULL)
3000
        goto error_return;
3001
 
3002
      isymp = internal_syms;
3003
      secpp = sections;
3004
      esym = (bfd_byte *) obj_coff_external_syms (input_bfd);
3005
      esymend = esym + obj_raw_syment_count (input_bfd) * symesz;
3006
      while (esym < esymend)
3007
        {
3008
          bfd_coff_swap_sym_in (input_bfd, (PTR) esym, (PTR) isymp);
3009
 
3010
          if (isymp->n_scnum != 0)
3011
            *secpp = coff_section_from_bfd_index (input_bfd, isymp->n_scnum);
3012
          else
3013
            {
3014
              if (isymp->n_value == 0)
3015
                *secpp = bfd_und_section_ptr;
3016
              else
3017
                *secpp = bfd_com_section_ptr;
3018
            }
3019
 
3020
          esym += (isymp->n_numaux + 1) * symesz;
3021
          secpp += isymp->n_numaux + 1;
3022
          isymp += isymp->n_numaux + 1;
3023
        }
3024
 
3025
      if (! sh_relocate_section (output_bfd, link_info, input_bfd,
3026
                                 input_section, data, internal_relocs,
3027
                                 internal_syms, sections))
3028
        goto error_return;
3029
 
3030
      free (sections);
3031
      sections = NULL;
3032
      free (internal_syms);
3033
      internal_syms = NULL;
3034
      free (internal_relocs);
3035
      internal_relocs = NULL;
3036
    }
3037
 
3038
  return data;
3039
 
3040
 error_return:
3041
  if (internal_relocs != NULL)
3042
    free (internal_relocs);
3043
  if (internal_syms != NULL)
3044
    free (internal_syms);
3045
  if (sections != NULL)
3046
    free (sections);
3047
  return NULL;
3048
}
3049
 
3050
/* The target vectors.  */
3051
 
3052
#ifndef TARGET_SHL_SYM
3053
CREATE_BIG_COFF_TARGET_VEC (shcoff_vec, "coff-sh", BFD_IS_RELAXABLE, 0, '_', NULL, COFF_SWAP_TABLE)
3054
#endif
3055
 
3056
#ifdef TARGET_SHL_SYM
3057
#define TARGET_SYM TARGET_SHL_SYM
3058
#else
3059
#define TARGET_SYM shlcoff_vec
3060
#endif
3061
 
3062
#ifndef TARGET_SHL_NAME
3063
#define TARGET_SHL_NAME "coff-shl"
3064
#endif
3065
 
3066
#ifdef COFF_WITH_PE
3067
CREATE_LITTLE_COFF_TARGET_VEC (TARGET_SYM, TARGET_SHL_NAME, BFD_IS_RELAXABLE,
3068
                               SEC_CODE | SEC_DATA, '_', NULL, COFF_SWAP_TABLE);
3069
#else
3070
CREATE_LITTLE_COFF_TARGET_VEC (TARGET_SYM, TARGET_SHL_NAME, BFD_IS_RELAXABLE,
3071
                               0, '_', NULL, COFF_SWAP_TABLE)
3072
#endif
3073
 
3074
#ifndef TARGET_SHL_SYM
3075
static const bfd_target * coff_small_object_p PARAMS ((bfd *));
3076
static bfd_boolean coff_small_new_section_hook PARAMS ((bfd *, asection *));
3077
/* Some people want versions of the SH COFF target which do not align
3078
   to 16 byte boundaries.  We implement that by adding a couple of new
3079
   target vectors.  These are just like the ones above, but they
3080
   change the default section alignment.  To generate them in the
3081
   assembler, use -small.  To use them in the linker, use -b
3082
   coff-sh{l}-small and -oformat coff-sh{l}-small.
3083
 
3084
   Yes, this is a horrible hack.  A general solution for setting
3085
   section alignment in COFF is rather complex.  ELF handles this
3086
   correctly.  */
3087
 
3088
/* Only recognize the small versions if the target was not defaulted.
3089
   Otherwise we won't recognize the non default endianness.  */
3090
 
3091
static const bfd_target *
3092
coff_small_object_p (abfd)
3093
     bfd *abfd;
3094
{
3095
  if (abfd->target_defaulted)
3096
    {
3097
      bfd_set_error (bfd_error_wrong_format);
3098
      return NULL;
3099
    }
3100
  return coff_object_p (abfd);
3101
}
3102
 
3103
/* Set the section alignment for the small versions.  */
3104
 
3105
static bfd_boolean
3106
coff_small_new_section_hook (abfd, section)
3107
     bfd *abfd;
3108
     asection *section;
3109
{
3110
  if (! coff_new_section_hook (abfd, section))
3111
    return FALSE;
3112
 
3113
  /* We must align to at least a four byte boundary, because longword
3114
     accesses must be on a four byte boundary.  */
3115
  if (section->alignment_power == COFF_DEFAULT_SECTION_ALIGNMENT_POWER)
3116
    section->alignment_power = 2;
3117
 
3118
  return TRUE;
3119
}
3120
 
3121
/* This is copied from bfd_coff_std_swap_table so that we can change
3122
   the default section alignment power.  */
3123
 
3124
static bfd_coff_backend_data bfd_coff_small_swap_table =
3125
{
3126
  coff_swap_aux_in, coff_swap_sym_in, coff_swap_lineno_in,
3127
  coff_swap_aux_out, coff_swap_sym_out,
3128
  coff_swap_lineno_out, coff_swap_reloc_out,
3129
  coff_swap_filehdr_out, coff_swap_aouthdr_out,
3130
  coff_swap_scnhdr_out,
3131
  FILHSZ, AOUTSZ, SCNHSZ, SYMESZ, AUXESZ, RELSZ, LINESZ, FILNMLEN,
3132
#ifdef COFF_LONG_FILENAMES
3133
  TRUE,
3134
#else
3135
  FALSE,
3136
#endif
3137
  COFF_DEFAULT_LONG_SECTION_NAMES,
3138
  2,
3139
#ifdef COFF_FORCE_SYMBOLS_IN_STRINGS
3140
  TRUE,
3141
#else
3142
  FALSE,
3143
#endif
3144
#ifdef COFF_DEBUG_STRING_WIDE_PREFIX
3145
  4,
3146
#else
3147
  2,
3148
#endif
3149
  coff_swap_filehdr_in, coff_swap_aouthdr_in, coff_swap_scnhdr_in,
3150
  coff_swap_reloc_in, coff_bad_format_hook, coff_set_arch_mach_hook,
3151
  coff_mkobject_hook, styp_to_sec_flags, coff_set_alignment_hook,
3152
  coff_slurp_symbol_table, symname_in_debug_hook, coff_pointerize_aux_hook,
3153
  coff_print_aux, coff_reloc16_extra_cases, coff_reloc16_estimate,
3154
  coff_classify_symbol, coff_compute_section_file_positions,
3155
  coff_start_final_link, coff_relocate_section, coff_rtype_to_howto,
3156
  coff_adjust_symndx, coff_link_add_one_symbol,
3157
  coff_link_output_has_begun, coff_final_link_postscript,
3158
  bfd_pe_print_pdata
3159
};
3160
 
3161
#define coff_small_close_and_cleanup \
3162
  coff_close_and_cleanup
3163
#define coff_small_bfd_free_cached_info \
3164
  coff_bfd_free_cached_info
3165
#define coff_small_get_section_contents \
3166
  coff_get_section_contents
3167
#define coff_small_get_section_contents_in_window \
3168
  coff_get_section_contents_in_window
3169
 
3170
extern const bfd_target shlcoff_small_vec;
3171
 
3172
const bfd_target shcoff_small_vec =
3173
{
3174
  "coff-sh-small",              /* name */
3175
  bfd_target_coff_flavour,
3176
  BFD_ENDIAN_BIG,               /* data byte order is big */
3177
  BFD_ENDIAN_BIG,               /* header byte order is big */
3178
 
3179
  (HAS_RELOC | EXEC_P |         /* object flags */
3180
   HAS_LINENO | HAS_DEBUG |
3181
   HAS_SYMS | HAS_LOCALS | WP_TEXT | BFD_IS_RELAXABLE),
3182
 
3183
  (SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD | SEC_RELOC),
3184
  '_',                          /* leading symbol underscore */
3185
  '/',                          /* ar_pad_char */
3186
  15,                           /* ar_max_namelen */
3187
  bfd_getb64, bfd_getb_signed_64, bfd_putb64,
3188
  bfd_getb32, bfd_getb_signed_32, bfd_putb32,
3189
  bfd_getb16, bfd_getb_signed_16, bfd_putb16, /* data */
3190
  bfd_getb64, bfd_getb_signed_64, bfd_putb64,
3191
  bfd_getb32, bfd_getb_signed_32, bfd_putb32,
3192
  bfd_getb16, bfd_getb_signed_16, bfd_putb16, /* hdrs */
3193
 
3194
  {_bfd_dummy_target, coff_small_object_p, /* bfd_check_format */
3195
     bfd_generic_archive_p, _bfd_dummy_target},
3196
  {bfd_false, coff_mkobject, _bfd_generic_mkarchive, /* bfd_set_format */
3197
     bfd_false},
3198
  {bfd_false, coff_write_object_contents, /* bfd_write_contents */
3199
     _bfd_write_archive_contents, bfd_false},
3200
 
3201
  BFD_JUMP_TABLE_GENERIC (coff_small),
3202
  BFD_JUMP_TABLE_COPY (coff),
3203
  BFD_JUMP_TABLE_CORE (_bfd_nocore),
3204
  BFD_JUMP_TABLE_ARCHIVE (_bfd_archive_coff),
3205
  BFD_JUMP_TABLE_SYMBOLS (coff),
3206
  BFD_JUMP_TABLE_RELOCS (coff),
3207
  BFD_JUMP_TABLE_WRITE (coff),
3208
  BFD_JUMP_TABLE_LINK (coff),
3209
  BFD_JUMP_TABLE_DYNAMIC (_bfd_nodynamic),
3210
 
3211
  & shlcoff_small_vec,
3212
 
3213
  (PTR) &bfd_coff_small_swap_table
3214
};
3215
 
3216
const bfd_target shlcoff_small_vec =
3217
{
3218
  "coff-shl-small",             /* name */
3219
  bfd_target_coff_flavour,
3220
  BFD_ENDIAN_LITTLE,            /* data byte order is little */
3221
  BFD_ENDIAN_LITTLE,            /* header byte order is little endian too*/
3222
 
3223
  (HAS_RELOC | EXEC_P |         /* object flags */
3224
   HAS_LINENO | HAS_DEBUG |
3225
   HAS_SYMS | HAS_LOCALS | WP_TEXT | BFD_IS_RELAXABLE),
3226
 
3227
  (SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD | SEC_RELOC),
3228
  '_',                          /* leading symbol underscore */
3229
  '/',                          /* ar_pad_char */
3230
  15,                           /* ar_max_namelen */
3231
  bfd_getl64, bfd_getl_signed_64, bfd_putl64,
3232
  bfd_getl32, bfd_getl_signed_32, bfd_putl32,
3233
  bfd_getl16, bfd_getl_signed_16, bfd_putl16, /* data */
3234
  bfd_getl64, bfd_getl_signed_64, bfd_putl64,
3235
  bfd_getl32, bfd_getl_signed_32, bfd_putl32,
3236
  bfd_getl16, bfd_getl_signed_16, bfd_putl16, /* hdrs */
3237
 
3238
  {_bfd_dummy_target, coff_small_object_p, /* bfd_check_format */
3239
     bfd_generic_archive_p, _bfd_dummy_target},
3240
  {bfd_false, coff_mkobject, _bfd_generic_mkarchive, /* bfd_set_format */
3241
     bfd_false},
3242
  {bfd_false, coff_write_object_contents, /* bfd_write_contents */
3243
     _bfd_write_archive_contents, bfd_false},
3244
 
3245
  BFD_JUMP_TABLE_GENERIC (coff_small),
3246
  BFD_JUMP_TABLE_COPY (coff),
3247
  BFD_JUMP_TABLE_CORE (_bfd_nocore),
3248
  BFD_JUMP_TABLE_ARCHIVE (_bfd_archive_coff),
3249
  BFD_JUMP_TABLE_SYMBOLS (coff),
3250
  BFD_JUMP_TABLE_RELOCS (coff),
3251
  BFD_JUMP_TABLE_WRITE (coff),
3252
  BFD_JUMP_TABLE_LINK (coff),
3253
  BFD_JUMP_TABLE_DYNAMIC (_bfd_nodynamic),
3254
 
3255
  & shcoff_small_vec,
3256
 
3257
  (PTR) &bfd_coff_small_swap_table
3258
};
3259
#endif

powered by: WebSVN 2.1.0

© copyright 1999-2025 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.