1 |
227 |
jeremybenn |
/* Xtensa-specific support for 32-bit ELF.
|
2 |
|
|
Copyright 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
|
3 |
|
|
Free Software Foundation, Inc.
|
4 |
|
|
|
5 |
|
|
This file is part of BFD, the Binary File Descriptor library.
|
6 |
|
|
|
7 |
|
|
This program is free software; you can redistribute it and/or
|
8 |
|
|
modify it under the terms of the GNU General Public License as
|
9 |
|
|
published by the Free Software Foundation; either version 3 of the
|
10 |
|
|
License, or (at your option) any later version.
|
11 |
|
|
|
12 |
|
|
This program is distributed in the hope that it will be useful, but
|
13 |
|
|
WITHOUT ANY WARRANTY; without even the implied warranty of
|
14 |
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
15 |
|
|
General Public License for more details.
|
16 |
|
|
|
17 |
|
|
You should have received a copy of the GNU General Public License
|
18 |
|
|
along with this program; if not, write to the Free Software
|
19 |
|
|
Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA
|
20 |
|
|
02110-1301, USA. */
|
21 |
|
|
|
22 |
|
|
#include "sysdep.h"
|
23 |
|
|
#include "bfd.h"
|
24 |
|
|
|
25 |
|
|
#include <stdarg.h>
|
26 |
|
|
#include <strings.h>
|
27 |
|
|
|
28 |
|
|
#include "bfdlink.h"
|
29 |
|
|
#include "libbfd.h"
|
30 |
|
|
#include "elf-bfd.h"
|
31 |
|
|
#include "elf/xtensa.h"
|
32 |
|
|
#include "xtensa-isa.h"
|
33 |
|
|
#include "xtensa-config.h"
|
34 |
|
|
|
35 |
|
|
#define XTENSA_NO_NOP_REMOVAL 0
|
36 |
|
|
|
37 |
|
|
/* Local helper functions. */
|
38 |
|
|
|
39 |
|
|
static bfd_boolean add_extra_plt_sections (struct bfd_link_info *, int);
|
40 |
|
|
static char *vsprint_msg (const char *, const char *, int, ...) ATTRIBUTE_PRINTF(2,4);
|
41 |
|
|
static bfd_reloc_status_type bfd_elf_xtensa_reloc
|
42 |
|
|
(bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
|
43 |
|
|
static bfd_boolean do_fix_for_relocatable_link
|
44 |
|
|
(Elf_Internal_Rela *, bfd *, asection *, bfd_byte *);
|
45 |
|
|
static void do_fix_for_final_link
|
46 |
|
|
(Elf_Internal_Rela *, bfd *, asection *, bfd_byte *, bfd_vma *);
|
47 |
|
|
|
48 |
|
|
/* Local functions to handle Xtensa configurability. */
|
49 |
|
|
|
50 |
|
|
static bfd_boolean is_indirect_call_opcode (xtensa_opcode);
|
51 |
|
|
static bfd_boolean is_direct_call_opcode (xtensa_opcode);
|
52 |
|
|
static bfd_boolean is_windowed_call_opcode (xtensa_opcode);
|
53 |
|
|
static xtensa_opcode get_const16_opcode (void);
|
54 |
|
|
static xtensa_opcode get_l32r_opcode (void);
|
55 |
|
|
static bfd_vma l32r_offset (bfd_vma, bfd_vma);
|
56 |
|
|
static int get_relocation_opnd (xtensa_opcode, int);
|
57 |
|
|
static int get_relocation_slot (int);
|
58 |
|
|
static xtensa_opcode get_relocation_opcode
|
59 |
|
|
(bfd *, asection *, bfd_byte *, Elf_Internal_Rela *);
|
60 |
|
|
static bfd_boolean is_l32r_relocation
|
61 |
|
|
(bfd *, asection *, bfd_byte *, Elf_Internal_Rela *);
|
62 |
|
|
static bfd_boolean is_alt_relocation (int);
|
63 |
|
|
static bfd_boolean is_operand_relocation (int);
|
64 |
|
|
static bfd_size_type insn_decode_len
|
65 |
|
|
(bfd_byte *, bfd_size_type, bfd_size_type);
|
66 |
|
|
static xtensa_opcode insn_decode_opcode
|
67 |
|
|
(bfd_byte *, bfd_size_type, bfd_size_type, int);
|
68 |
|
|
static bfd_boolean check_branch_target_aligned
|
69 |
|
|
(bfd_byte *, bfd_size_type, bfd_vma, bfd_vma);
|
70 |
|
|
static bfd_boolean check_loop_aligned
|
71 |
|
|
(bfd_byte *, bfd_size_type, bfd_vma, bfd_vma);
|
72 |
|
|
static bfd_boolean check_branch_target_aligned_address (bfd_vma, int);
|
73 |
|
|
static bfd_size_type get_asm_simplify_size
|
74 |
|
|
(bfd_byte *, bfd_size_type, bfd_size_type);
|
75 |
|
|
|
76 |
|
|
/* Functions for link-time code simplifications. */
|
77 |
|
|
|
78 |
|
|
static bfd_reloc_status_type elf_xtensa_do_asm_simplify
|
79 |
|
|
(bfd_byte *, bfd_vma, bfd_vma, char **);
|
80 |
|
|
static bfd_reloc_status_type contract_asm_expansion
|
81 |
|
|
(bfd_byte *, bfd_vma, Elf_Internal_Rela *, char **);
|
82 |
|
|
static xtensa_opcode swap_callx_for_call_opcode (xtensa_opcode);
|
83 |
|
|
static xtensa_opcode get_expanded_call_opcode (bfd_byte *, int, bfd_boolean *);
|
84 |
|
|
|
85 |
|
|
/* Access to internal relocations, section contents and symbols. */
|
86 |
|
|
|
87 |
|
|
static Elf_Internal_Rela *retrieve_internal_relocs
|
88 |
|
|
(bfd *, asection *, bfd_boolean);
|
89 |
|
|
static void pin_internal_relocs (asection *, Elf_Internal_Rela *);
|
90 |
|
|
static void release_internal_relocs (asection *, Elf_Internal_Rela *);
|
91 |
|
|
static bfd_byte *retrieve_contents (bfd *, asection *, bfd_boolean);
|
92 |
|
|
static void pin_contents (asection *, bfd_byte *);
|
93 |
|
|
static void release_contents (asection *, bfd_byte *);
|
94 |
|
|
static Elf_Internal_Sym *retrieve_local_syms (bfd *);
|
95 |
|
|
|
96 |
|
|
/* Miscellaneous utility functions. */
|
97 |
|
|
|
98 |
|
|
static asection *elf_xtensa_get_plt_section (struct bfd_link_info *, int);
|
99 |
|
|
static asection *elf_xtensa_get_gotplt_section (struct bfd_link_info *, int);
|
100 |
|
|
static asection *get_elf_r_symndx_section (bfd *, unsigned long);
|
101 |
|
|
static struct elf_link_hash_entry *get_elf_r_symndx_hash_entry
|
102 |
|
|
(bfd *, unsigned long);
|
103 |
|
|
static bfd_vma get_elf_r_symndx_offset (bfd *, unsigned long);
|
104 |
|
|
static bfd_boolean is_reloc_sym_weak (bfd *, Elf_Internal_Rela *);
|
105 |
|
|
static bfd_boolean pcrel_reloc_fits (xtensa_opcode, int, bfd_vma, bfd_vma);
|
106 |
|
|
static bfd_boolean xtensa_is_property_section (asection *);
|
107 |
|
|
static bfd_boolean xtensa_is_insntable_section (asection *);
|
108 |
|
|
static bfd_boolean xtensa_is_littable_section (asection *);
|
109 |
|
|
static bfd_boolean xtensa_is_proptable_section (asection *);
|
110 |
|
|
static int internal_reloc_compare (const void *, const void *);
|
111 |
|
|
static int internal_reloc_matches (const void *, const void *);
|
112 |
|
|
static asection *xtensa_get_property_section (asection *, const char *);
|
113 |
|
|
extern asection *xtensa_make_property_section (asection *, const char *);
|
114 |
|
|
static flagword xtensa_get_property_predef_flags (asection *);
|
115 |
|
|
|
116 |
|
|
/* Other functions called directly by the linker. */
|
117 |
|
|
|
118 |
|
|
typedef void (*deps_callback_t)
|
119 |
|
|
(asection *, bfd_vma, asection *, bfd_vma, void *);
|
120 |
|
|
extern bfd_boolean xtensa_callback_required_dependence
|
121 |
|
|
(bfd *, asection *, struct bfd_link_info *, deps_callback_t, void *);
|
122 |
|
|
|
123 |
|
|
|
124 |
|
|
/* Globally visible flag for choosing size optimization of NOP removal
|
125 |
|
|
instead of branch-target-aware minimization for NOP removal.
|
126 |
|
|
When nonzero, narrow all instructions and remove all NOPs possible
|
127 |
|
|
around longcall expansions. */
|
128 |
|
|
|
129 |
|
|
int elf32xtensa_size_opt;
|
130 |
|
|
|
131 |
|
|
|
132 |
|
|
/* The "new_section_hook" is used to set up a per-section
|
133 |
|
|
"xtensa_relax_info" data structure with additional information used
|
134 |
|
|
during relaxation. */
|
135 |
|
|
|
136 |
|
|
typedef struct xtensa_relax_info_struct xtensa_relax_info;
|
137 |
|
|
|
138 |
|
|
|
139 |
|
|
/* The GNU tools do not easily allow extending interfaces to pass around
|
140 |
|
|
the pointer to the Xtensa ISA information, so instead we add a global
|
141 |
|
|
variable here (in BFD) that can be used by any of the tools that need
|
142 |
|
|
this information. */
|
143 |
|
|
|
144 |
|
|
xtensa_isa xtensa_default_isa;
|
145 |
|
|
|
146 |
|
|
|
147 |
|
|
/* When this is true, relocations may have been modified to refer to
|
148 |
|
|
symbols from other input files. The per-section list of "fix"
|
149 |
|
|
records needs to be checked when resolving relocations. */
|
150 |
|
|
|
151 |
|
|
static bfd_boolean relaxing_section = FALSE;
|
152 |
|
|
|
153 |
|
|
/* When this is true, during final links, literals that cannot be
|
154 |
|
|
coalesced and their relocations may be moved to other sections. */
|
155 |
|
|
|
156 |
|
|
int elf32xtensa_no_literal_movement = 1;
|
157 |
|
|
|
158 |
|
|
/* Rename one of the generic section flags to better document how it
|
159 |
|
|
is used here. */
|
160 |
|
|
/* Whether relocations have been processed. */
|
161 |
|
|
#define reloc_done sec_flg0
|
162 |
|
|
|
163 |
|
|
static reloc_howto_type elf_howto_table[] =
|
164 |
|
|
{
|
165 |
|
|
HOWTO (R_XTENSA_NONE, 0, 0, 0, FALSE, 0, complain_overflow_dont,
|
166 |
|
|
bfd_elf_xtensa_reloc, "R_XTENSA_NONE",
|
167 |
|
|
FALSE, 0, 0, FALSE),
|
168 |
|
|
HOWTO (R_XTENSA_32, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
|
169 |
|
|
bfd_elf_xtensa_reloc, "R_XTENSA_32",
|
170 |
|
|
TRUE, 0xffffffff, 0xffffffff, FALSE),
|
171 |
|
|
|
172 |
|
|
/* Replace a 32-bit value with a value from the runtime linker (only
|
173 |
|
|
used by linker-generated stub functions). The r_addend value is
|
174 |
|
|
special: 1 means to substitute a pointer to the runtime linker's
|
175 |
|
|
dynamic resolver function; 2 means to substitute the link map for
|
176 |
|
|
the shared object. */
|
177 |
|
|
HOWTO (R_XTENSA_RTLD, 0, 2, 32, FALSE, 0, complain_overflow_dont,
|
178 |
|
|
NULL, "R_XTENSA_RTLD", FALSE, 0, 0, FALSE),
|
179 |
|
|
|
180 |
|
|
HOWTO (R_XTENSA_GLOB_DAT, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
|
181 |
|
|
bfd_elf_generic_reloc, "R_XTENSA_GLOB_DAT",
|
182 |
|
|
FALSE, 0, 0xffffffff, FALSE),
|
183 |
|
|
HOWTO (R_XTENSA_JMP_SLOT, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
|
184 |
|
|
bfd_elf_generic_reloc, "R_XTENSA_JMP_SLOT",
|
185 |
|
|
FALSE, 0, 0xffffffff, FALSE),
|
186 |
|
|
HOWTO (R_XTENSA_RELATIVE, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
|
187 |
|
|
bfd_elf_generic_reloc, "R_XTENSA_RELATIVE",
|
188 |
|
|
FALSE, 0, 0xffffffff, FALSE),
|
189 |
|
|
HOWTO (R_XTENSA_PLT, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
|
190 |
|
|
bfd_elf_xtensa_reloc, "R_XTENSA_PLT",
|
191 |
|
|
FALSE, 0, 0xffffffff, FALSE),
|
192 |
|
|
|
193 |
|
|
EMPTY_HOWTO (7),
|
194 |
|
|
|
195 |
|
|
/* Old relocations for backward compatibility. */
|
196 |
|
|
HOWTO (R_XTENSA_OP0, 0, 0, 0, TRUE, 0, complain_overflow_dont,
|
197 |
|
|
bfd_elf_xtensa_reloc, "R_XTENSA_OP0", FALSE, 0, 0, TRUE),
|
198 |
|
|
HOWTO (R_XTENSA_OP1, 0, 0, 0, TRUE, 0, complain_overflow_dont,
|
199 |
|
|
bfd_elf_xtensa_reloc, "R_XTENSA_OP1", FALSE, 0, 0, TRUE),
|
200 |
|
|
HOWTO (R_XTENSA_OP2, 0, 0, 0, TRUE, 0, complain_overflow_dont,
|
201 |
|
|
bfd_elf_xtensa_reloc, "R_XTENSA_OP2", FALSE, 0, 0, TRUE),
|
202 |
|
|
|
203 |
|
|
/* Assembly auto-expansion. */
|
204 |
|
|
HOWTO (R_XTENSA_ASM_EXPAND, 0, 0, 0, TRUE, 0, complain_overflow_dont,
|
205 |
|
|
bfd_elf_xtensa_reloc, "R_XTENSA_ASM_EXPAND", FALSE, 0, 0, TRUE),
|
206 |
|
|
/* Relax assembly auto-expansion. */
|
207 |
|
|
HOWTO (R_XTENSA_ASM_SIMPLIFY, 0, 0, 0, TRUE, 0, complain_overflow_dont,
|
208 |
|
|
bfd_elf_xtensa_reloc, "R_XTENSA_ASM_SIMPLIFY", FALSE, 0, 0, TRUE),
|
209 |
|
|
|
210 |
|
|
EMPTY_HOWTO (13),
|
211 |
|
|
|
212 |
|
|
HOWTO (R_XTENSA_32_PCREL, 0, 2, 32, TRUE, 0, complain_overflow_bitfield,
|
213 |
|
|
bfd_elf_xtensa_reloc, "R_XTENSA_32_PCREL",
|
214 |
|
|
FALSE, 0, 0xffffffff, TRUE),
|
215 |
|
|
|
216 |
|
|
/* GNU extension to record C++ vtable hierarchy. */
|
217 |
|
|
HOWTO (R_XTENSA_GNU_VTINHERIT, 0, 2, 0, FALSE, 0, complain_overflow_dont,
|
218 |
|
|
NULL, "R_XTENSA_GNU_VTINHERIT",
|
219 |
|
|
FALSE, 0, 0, FALSE),
|
220 |
|
|
/* GNU extension to record C++ vtable member usage. */
|
221 |
|
|
HOWTO (R_XTENSA_GNU_VTENTRY, 0, 2, 0, FALSE, 0, complain_overflow_dont,
|
222 |
|
|
_bfd_elf_rel_vtable_reloc_fn, "R_XTENSA_GNU_VTENTRY",
|
223 |
|
|
FALSE, 0, 0, FALSE),
|
224 |
|
|
|
225 |
|
|
/* Relocations for supporting difference of symbols. */
|
226 |
|
|
HOWTO (R_XTENSA_DIFF8, 0, 0, 8, FALSE, 0, complain_overflow_bitfield,
|
227 |
|
|
bfd_elf_xtensa_reloc, "R_XTENSA_DIFF8", FALSE, 0, 0xff, FALSE),
|
228 |
|
|
HOWTO (R_XTENSA_DIFF16, 0, 1, 16, FALSE, 0, complain_overflow_bitfield,
|
229 |
|
|
bfd_elf_xtensa_reloc, "R_XTENSA_DIFF16", FALSE, 0, 0xffff, FALSE),
|
230 |
|
|
HOWTO (R_XTENSA_DIFF32, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
|
231 |
|
|
bfd_elf_xtensa_reloc, "R_XTENSA_DIFF32", FALSE, 0, 0xffffffff, FALSE),
|
232 |
|
|
|
233 |
|
|
/* General immediate operand relocations. */
|
234 |
|
|
HOWTO (R_XTENSA_SLOT0_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
|
235 |
|
|
bfd_elf_xtensa_reloc, "R_XTENSA_SLOT0_OP", FALSE, 0, 0, TRUE),
|
236 |
|
|
HOWTO (R_XTENSA_SLOT1_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
|
237 |
|
|
bfd_elf_xtensa_reloc, "R_XTENSA_SLOT1_OP", FALSE, 0, 0, TRUE),
|
238 |
|
|
HOWTO (R_XTENSA_SLOT2_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
|
239 |
|
|
bfd_elf_xtensa_reloc, "R_XTENSA_SLOT2_OP", FALSE, 0, 0, TRUE),
|
240 |
|
|
HOWTO (R_XTENSA_SLOT3_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
|
241 |
|
|
bfd_elf_xtensa_reloc, "R_XTENSA_SLOT3_OP", FALSE, 0, 0, TRUE),
|
242 |
|
|
HOWTO (R_XTENSA_SLOT4_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
|
243 |
|
|
bfd_elf_xtensa_reloc, "R_XTENSA_SLOT4_OP", FALSE, 0, 0, TRUE),
|
244 |
|
|
HOWTO (R_XTENSA_SLOT5_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
|
245 |
|
|
bfd_elf_xtensa_reloc, "R_XTENSA_SLOT5_OP", FALSE, 0, 0, TRUE),
|
246 |
|
|
HOWTO (R_XTENSA_SLOT6_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
|
247 |
|
|
bfd_elf_xtensa_reloc, "R_XTENSA_SLOT6_OP", FALSE, 0, 0, TRUE),
|
248 |
|
|
HOWTO (R_XTENSA_SLOT7_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
|
249 |
|
|
bfd_elf_xtensa_reloc, "R_XTENSA_SLOT7_OP", FALSE, 0, 0, TRUE),
|
250 |
|
|
HOWTO (R_XTENSA_SLOT8_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
|
251 |
|
|
bfd_elf_xtensa_reloc, "R_XTENSA_SLOT8_OP", FALSE, 0, 0, TRUE),
|
252 |
|
|
HOWTO (R_XTENSA_SLOT9_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
|
253 |
|
|
bfd_elf_xtensa_reloc, "R_XTENSA_SLOT9_OP", FALSE, 0, 0, TRUE),
|
254 |
|
|
HOWTO (R_XTENSA_SLOT10_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
|
255 |
|
|
bfd_elf_xtensa_reloc, "R_XTENSA_SLOT10_OP", FALSE, 0, 0, TRUE),
|
256 |
|
|
HOWTO (R_XTENSA_SLOT11_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
|
257 |
|
|
bfd_elf_xtensa_reloc, "R_XTENSA_SLOT11_OP", FALSE, 0, 0, TRUE),
|
258 |
|
|
HOWTO (R_XTENSA_SLOT12_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
|
259 |
|
|
bfd_elf_xtensa_reloc, "R_XTENSA_SLOT12_OP", FALSE, 0, 0, TRUE),
|
260 |
|
|
HOWTO (R_XTENSA_SLOT13_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
|
261 |
|
|
bfd_elf_xtensa_reloc, "R_XTENSA_SLOT13_OP", FALSE, 0, 0, TRUE),
|
262 |
|
|
HOWTO (R_XTENSA_SLOT14_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
|
263 |
|
|
bfd_elf_xtensa_reloc, "R_XTENSA_SLOT14_OP", FALSE, 0, 0, TRUE),
|
264 |
|
|
|
265 |
|
|
/* "Alternate" relocations. The meaning of these is opcode-specific. */
|
266 |
|
|
HOWTO (R_XTENSA_SLOT0_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
|
267 |
|
|
bfd_elf_xtensa_reloc, "R_XTENSA_SLOT0_ALT", FALSE, 0, 0, TRUE),
|
268 |
|
|
HOWTO (R_XTENSA_SLOT1_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
|
269 |
|
|
bfd_elf_xtensa_reloc, "R_XTENSA_SLOT1_ALT", FALSE, 0, 0, TRUE),
|
270 |
|
|
HOWTO (R_XTENSA_SLOT2_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
|
271 |
|
|
bfd_elf_xtensa_reloc, "R_XTENSA_SLOT2_ALT", FALSE, 0, 0, TRUE),
|
272 |
|
|
HOWTO (R_XTENSA_SLOT3_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
|
273 |
|
|
bfd_elf_xtensa_reloc, "R_XTENSA_SLOT3_ALT", FALSE, 0, 0, TRUE),
|
274 |
|
|
HOWTO (R_XTENSA_SLOT4_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
|
275 |
|
|
bfd_elf_xtensa_reloc, "R_XTENSA_SLOT4_ALT", FALSE, 0, 0, TRUE),
|
276 |
|
|
HOWTO (R_XTENSA_SLOT5_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
|
277 |
|
|
bfd_elf_xtensa_reloc, "R_XTENSA_SLOT5_ALT", FALSE, 0, 0, TRUE),
|
278 |
|
|
HOWTO (R_XTENSA_SLOT6_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
|
279 |
|
|
bfd_elf_xtensa_reloc, "R_XTENSA_SLOT6_ALT", FALSE, 0, 0, TRUE),
|
280 |
|
|
HOWTO (R_XTENSA_SLOT7_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
|
281 |
|
|
bfd_elf_xtensa_reloc, "R_XTENSA_SLOT7_ALT", FALSE, 0, 0, TRUE),
|
282 |
|
|
HOWTO (R_XTENSA_SLOT8_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
|
283 |
|
|
bfd_elf_xtensa_reloc, "R_XTENSA_SLOT8_ALT", FALSE, 0, 0, TRUE),
|
284 |
|
|
HOWTO (R_XTENSA_SLOT9_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
|
285 |
|
|
bfd_elf_xtensa_reloc, "R_XTENSA_SLOT9_ALT", FALSE, 0, 0, TRUE),
|
286 |
|
|
HOWTO (R_XTENSA_SLOT10_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
|
287 |
|
|
bfd_elf_xtensa_reloc, "R_XTENSA_SLOT10_ALT", FALSE, 0, 0, TRUE),
|
288 |
|
|
HOWTO (R_XTENSA_SLOT11_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
|
289 |
|
|
bfd_elf_xtensa_reloc, "R_XTENSA_SLOT11_ALT", FALSE, 0, 0, TRUE),
|
290 |
|
|
HOWTO (R_XTENSA_SLOT12_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
|
291 |
|
|
bfd_elf_xtensa_reloc, "R_XTENSA_SLOT12_ALT", FALSE, 0, 0, TRUE),
|
292 |
|
|
HOWTO (R_XTENSA_SLOT13_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
|
293 |
|
|
bfd_elf_xtensa_reloc, "R_XTENSA_SLOT13_ALT", FALSE, 0, 0, TRUE),
|
294 |
|
|
HOWTO (R_XTENSA_SLOT14_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
|
295 |
|
|
bfd_elf_xtensa_reloc, "R_XTENSA_SLOT14_ALT", FALSE, 0, 0, TRUE),
|
296 |
|
|
|
297 |
|
|
/* TLS relocations. */
|
298 |
|
|
HOWTO (R_XTENSA_TLSDESC_FN, 0, 2, 32, FALSE, 0, complain_overflow_dont,
|
299 |
|
|
bfd_elf_xtensa_reloc, "R_XTENSA_TLSDESC_FN",
|
300 |
|
|
FALSE, 0, 0xffffffff, FALSE),
|
301 |
|
|
HOWTO (R_XTENSA_TLSDESC_ARG, 0, 2, 32, FALSE, 0, complain_overflow_dont,
|
302 |
|
|
bfd_elf_xtensa_reloc, "R_XTENSA_TLSDESC_ARG",
|
303 |
|
|
FALSE, 0, 0xffffffff, FALSE),
|
304 |
|
|
HOWTO (R_XTENSA_TLS_DTPOFF, 0, 2, 32, FALSE, 0, complain_overflow_dont,
|
305 |
|
|
bfd_elf_xtensa_reloc, "R_XTENSA_TLS_DTPOFF",
|
306 |
|
|
FALSE, 0, 0xffffffff, FALSE),
|
307 |
|
|
HOWTO (R_XTENSA_TLS_TPOFF, 0, 2, 32, FALSE, 0, complain_overflow_dont,
|
308 |
|
|
bfd_elf_xtensa_reloc, "R_XTENSA_TLS_TPOFF",
|
309 |
|
|
FALSE, 0, 0xffffffff, FALSE),
|
310 |
|
|
HOWTO (R_XTENSA_TLS_FUNC, 0, 0, 0, FALSE, 0, complain_overflow_dont,
|
311 |
|
|
bfd_elf_xtensa_reloc, "R_XTENSA_TLS_FUNC",
|
312 |
|
|
FALSE, 0, 0, FALSE),
|
313 |
|
|
HOWTO (R_XTENSA_TLS_ARG, 0, 0, 0, FALSE, 0, complain_overflow_dont,
|
314 |
|
|
bfd_elf_xtensa_reloc, "R_XTENSA_TLS_ARG",
|
315 |
|
|
FALSE, 0, 0, FALSE),
|
316 |
|
|
HOWTO (R_XTENSA_TLS_CALL, 0, 0, 0, FALSE, 0, complain_overflow_dont,
|
317 |
|
|
bfd_elf_xtensa_reloc, "R_XTENSA_TLS_CALL",
|
318 |
|
|
FALSE, 0, 0, FALSE),
|
319 |
|
|
};
|
320 |
|
|
|
321 |
|
|
#if DEBUG_GEN_RELOC
|
322 |
|
|
#define TRACE(str) \
|
323 |
|
|
fprintf (stderr, "Xtensa bfd reloc lookup %d (%s)\n", code, str)
|
324 |
|
|
#else
|
325 |
|
|
#define TRACE(str)
|
326 |
|
|
#endif
|
327 |
|
|
|
328 |
|
|
static reloc_howto_type *
|
329 |
|
|
elf_xtensa_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
|
330 |
|
|
bfd_reloc_code_real_type code)
|
331 |
|
|
{
|
332 |
|
|
switch (code)
|
333 |
|
|
{
|
334 |
|
|
case BFD_RELOC_NONE:
|
335 |
|
|
TRACE ("BFD_RELOC_NONE");
|
336 |
|
|
return &elf_howto_table[(unsigned) R_XTENSA_NONE ];
|
337 |
|
|
|
338 |
|
|
case BFD_RELOC_32:
|
339 |
|
|
TRACE ("BFD_RELOC_32");
|
340 |
|
|
return &elf_howto_table[(unsigned) R_XTENSA_32 ];
|
341 |
|
|
|
342 |
|
|
case BFD_RELOC_32_PCREL:
|
343 |
|
|
TRACE ("BFD_RELOC_32_PCREL");
|
344 |
|
|
return &elf_howto_table[(unsigned) R_XTENSA_32_PCREL ];
|
345 |
|
|
|
346 |
|
|
case BFD_RELOC_XTENSA_DIFF8:
|
347 |
|
|
TRACE ("BFD_RELOC_XTENSA_DIFF8");
|
348 |
|
|
return &elf_howto_table[(unsigned) R_XTENSA_DIFF8 ];
|
349 |
|
|
|
350 |
|
|
case BFD_RELOC_XTENSA_DIFF16:
|
351 |
|
|
TRACE ("BFD_RELOC_XTENSA_DIFF16");
|
352 |
|
|
return &elf_howto_table[(unsigned) R_XTENSA_DIFF16 ];
|
353 |
|
|
|
354 |
|
|
case BFD_RELOC_XTENSA_DIFF32:
|
355 |
|
|
TRACE ("BFD_RELOC_XTENSA_DIFF32");
|
356 |
|
|
return &elf_howto_table[(unsigned) R_XTENSA_DIFF32 ];
|
357 |
|
|
|
358 |
|
|
case BFD_RELOC_XTENSA_RTLD:
|
359 |
|
|
TRACE ("BFD_RELOC_XTENSA_RTLD");
|
360 |
|
|
return &elf_howto_table[(unsigned) R_XTENSA_RTLD ];
|
361 |
|
|
|
362 |
|
|
case BFD_RELOC_XTENSA_GLOB_DAT:
|
363 |
|
|
TRACE ("BFD_RELOC_XTENSA_GLOB_DAT");
|
364 |
|
|
return &elf_howto_table[(unsigned) R_XTENSA_GLOB_DAT ];
|
365 |
|
|
|
366 |
|
|
case BFD_RELOC_XTENSA_JMP_SLOT:
|
367 |
|
|
TRACE ("BFD_RELOC_XTENSA_JMP_SLOT");
|
368 |
|
|
return &elf_howto_table[(unsigned) R_XTENSA_JMP_SLOT ];
|
369 |
|
|
|
370 |
|
|
case BFD_RELOC_XTENSA_RELATIVE:
|
371 |
|
|
TRACE ("BFD_RELOC_XTENSA_RELATIVE");
|
372 |
|
|
return &elf_howto_table[(unsigned) R_XTENSA_RELATIVE ];
|
373 |
|
|
|
374 |
|
|
case BFD_RELOC_XTENSA_PLT:
|
375 |
|
|
TRACE ("BFD_RELOC_XTENSA_PLT");
|
376 |
|
|
return &elf_howto_table[(unsigned) R_XTENSA_PLT ];
|
377 |
|
|
|
378 |
|
|
case BFD_RELOC_XTENSA_OP0:
|
379 |
|
|
TRACE ("BFD_RELOC_XTENSA_OP0");
|
380 |
|
|
return &elf_howto_table[(unsigned) R_XTENSA_OP0 ];
|
381 |
|
|
|
382 |
|
|
case BFD_RELOC_XTENSA_OP1:
|
383 |
|
|
TRACE ("BFD_RELOC_XTENSA_OP1");
|
384 |
|
|
return &elf_howto_table[(unsigned) R_XTENSA_OP1 ];
|
385 |
|
|
|
386 |
|
|
case BFD_RELOC_XTENSA_OP2:
|
387 |
|
|
TRACE ("BFD_RELOC_XTENSA_OP2");
|
388 |
|
|
return &elf_howto_table[(unsigned) R_XTENSA_OP2 ];
|
389 |
|
|
|
390 |
|
|
case BFD_RELOC_XTENSA_ASM_EXPAND:
|
391 |
|
|
TRACE ("BFD_RELOC_XTENSA_ASM_EXPAND");
|
392 |
|
|
return &elf_howto_table[(unsigned) R_XTENSA_ASM_EXPAND ];
|
393 |
|
|
|
394 |
|
|
case BFD_RELOC_XTENSA_ASM_SIMPLIFY:
|
395 |
|
|
TRACE ("BFD_RELOC_XTENSA_ASM_SIMPLIFY");
|
396 |
|
|
return &elf_howto_table[(unsigned) R_XTENSA_ASM_SIMPLIFY ];
|
397 |
|
|
|
398 |
|
|
case BFD_RELOC_VTABLE_INHERIT:
|
399 |
|
|
TRACE ("BFD_RELOC_VTABLE_INHERIT");
|
400 |
|
|
return &elf_howto_table[(unsigned) R_XTENSA_GNU_VTINHERIT ];
|
401 |
|
|
|
402 |
|
|
case BFD_RELOC_VTABLE_ENTRY:
|
403 |
|
|
TRACE ("BFD_RELOC_VTABLE_ENTRY");
|
404 |
|
|
return &elf_howto_table[(unsigned) R_XTENSA_GNU_VTENTRY ];
|
405 |
|
|
|
406 |
|
|
case BFD_RELOC_XTENSA_TLSDESC_FN:
|
407 |
|
|
TRACE ("BFD_RELOC_XTENSA_TLSDESC_FN");
|
408 |
|
|
return &elf_howto_table[(unsigned) R_XTENSA_TLSDESC_FN ];
|
409 |
|
|
|
410 |
|
|
case BFD_RELOC_XTENSA_TLSDESC_ARG:
|
411 |
|
|
TRACE ("BFD_RELOC_XTENSA_TLSDESC_ARG");
|
412 |
|
|
return &elf_howto_table[(unsigned) R_XTENSA_TLSDESC_ARG ];
|
413 |
|
|
|
414 |
|
|
case BFD_RELOC_XTENSA_TLS_DTPOFF:
|
415 |
|
|
TRACE ("BFD_RELOC_XTENSA_TLS_DTPOFF");
|
416 |
|
|
return &elf_howto_table[(unsigned) R_XTENSA_TLS_DTPOFF ];
|
417 |
|
|
|
418 |
|
|
case BFD_RELOC_XTENSA_TLS_TPOFF:
|
419 |
|
|
TRACE ("BFD_RELOC_XTENSA_TLS_TPOFF");
|
420 |
|
|
return &elf_howto_table[(unsigned) R_XTENSA_TLS_TPOFF ];
|
421 |
|
|
|
422 |
|
|
case BFD_RELOC_XTENSA_TLS_FUNC:
|
423 |
|
|
TRACE ("BFD_RELOC_XTENSA_TLS_FUNC");
|
424 |
|
|
return &elf_howto_table[(unsigned) R_XTENSA_TLS_FUNC ];
|
425 |
|
|
|
426 |
|
|
case BFD_RELOC_XTENSA_TLS_ARG:
|
427 |
|
|
TRACE ("BFD_RELOC_XTENSA_TLS_ARG");
|
428 |
|
|
return &elf_howto_table[(unsigned) R_XTENSA_TLS_ARG ];
|
429 |
|
|
|
430 |
|
|
case BFD_RELOC_XTENSA_TLS_CALL:
|
431 |
|
|
TRACE ("BFD_RELOC_XTENSA_TLS_CALL");
|
432 |
|
|
return &elf_howto_table[(unsigned) R_XTENSA_TLS_CALL ];
|
433 |
|
|
|
434 |
|
|
default:
|
435 |
|
|
if (code >= BFD_RELOC_XTENSA_SLOT0_OP
|
436 |
|
|
&& code <= BFD_RELOC_XTENSA_SLOT14_OP)
|
437 |
|
|
{
|
438 |
|
|
unsigned n = (R_XTENSA_SLOT0_OP +
|
439 |
|
|
(code - BFD_RELOC_XTENSA_SLOT0_OP));
|
440 |
|
|
return &elf_howto_table[n];
|
441 |
|
|
}
|
442 |
|
|
|
443 |
|
|
if (code >= BFD_RELOC_XTENSA_SLOT0_ALT
|
444 |
|
|
&& code <= BFD_RELOC_XTENSA_SLOT14_ALT)
|
445 |
|
|
{
|
446 |
|
|
unsigned n = (R_XTENSA_SLOT0_ALT +
|
447 |
|
|
(code - BFD_RELOC_XTENSA_SLOT0_ALT));
|
448 |
|
|
return &elf_howto_table[n];
|
449 |
|
|
}
|
450 |
|
|
|
451 |
|
|
break;
|
452 |
|
|
}
|
453 |
|
|
|
454 |
|
|
TRACE ("Unknown");
|
455 |
|
|
return NULL;
|
456 |
|
|
}
|
457 |
|
|
|
458 |
|
|
static reloc_howto_type *
|
459 |
|
|
elf_xtensa_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
|
460 |
|
|
const char *r_name)
|
461 |
|
|
{
|
462 |
|
|
unsigned int i;
|
463 |
|
|
|
464 |
|
|
for (i = 0; i < sizeof (elf_howto_table) / sizeof (elf_howto_table[0]); i++)
|
465 |
|
|
if (elf_howto_table[i].name != NULL
|
466 |
|
|
&& strcasecmp (elf_howto_table[i].name, r_name) == 0)
|
467 |
|
|
return &elf_howto_table[i];
|
468 |
|
|
|
469 |
|
|
return NULL;
|
470 |
|
|
}
|
471 |
|
|
|
472 |
|
|
|
473 |
|
|
/* Given an ELF "rela" relocation, find the corresponding howto and record
|
474 |
|
|
it in the BFD internal arelent representation of the relocation. */
|
475 |
|
|
|
476 |
|
|
static void
|
477 |
|
|
elf_xtensa_info_to_howto_rela (bfd *abfd ATTRIBUTE_UNUSED,
|
478 |
|
|
arelent *cache_ptr,
|
479 |
|
|
Elf_Internal_Rela *dst)
|
480 |
|
|
{
|
481 |
|
|
unsigned int r_type = ELF32_R_TYPE (dst->r_info);
|
482 |
|
|
|
483 |
|
|
BFD_ASSERT (r_type < (unsigned int) R_XTENSA_max);
|
484 |
|
|
cache_ptr->howto = &elf_howto_table[r_type];
|
485 |
|
|
}
|
486 |
|
|
|
487 |
|
|
|
488 |
|
|
/* Functions for the Xtensa ELF linker. */
|
489 |
|
|
|
490 |
|
|
/* The name of the dynamic interpreter. This is put in the .interp
|
491 |
|
|
section. */
|
492 |
|
|
|
493 |
|
|
#define ELF_DYNAMIC_INTERPRETER "/lib/ld.so"
|
494 |
|
|
|
495 |
|
|
/* The size in bytes of an entry in the procedure linkage table.
|
496 |
|
|
(This does _not_ include the space for the literals associated with
|
497 |
|
|
the PLT entry.) */
|
498 |
|
|
|
499 |
|
|
#define PLT_ENTRY_SIZE 16
|
500 |
|
|
|
501 |
|
|
/* For _really_ large PLTs, we may need to alternate between literals
|
502 |
|
|
and code to keep the literals within the 256K range of the L32R
|
503 |
|
|
instructions in the code. It's unlikely that anyone would ever need
|
504 |
|
|
such a big PLT, but an arbitrary limit on the PLT size would be bad.
|
505 |
|
|
Thus, we split the PLT into chunks. Since there's very little
|
506 |
|
|
overhead (2 extra literals) for each chunk, the chunk size is kept
|
507 |
|
|
small so that the code for handling multiple chunks get used and
|
508 |
|
|
tested regularly. With 254 entries, there are 1K of literals for
|
509 |
|
|
each chunk, and that seems like a nice round number. */
|
510 |
|
|
|
511 |
|
|
#define PLT_ENTRIES_PER_CHUNK 254
|
512 |
|
|
|
513 |
|
|
/* PLT entries are actually used as stub functions for lazy symbol
|
514 |
|
|
resolution. Once the symbol is resolved, the stub function is never
|
515 |
|
|
invoked. Note: the 32-byte frame size used here cannot be changed
|
516 |
|
|
without a corresponding change in the runtime linker. */
|
517 |
|
|
|
518 |
|
|
static const bfd_byte elf_xtensa_be_plt_entry[PLT_ENTRY_SIZE] =
|
519 |
|
|
{
|
520 |
|
|
0x6c, 0x10, 0x04, /* entry sp, 32 */
|
521 |
|
|
0x18, 0x00, 0x00, /* l32r a8, [got entry for rtld's resolver] */
|
522 |
|
|
0x1a, 0x00, 0x00, /* l32r a10, [got entry for rtld's link map] */
|
523 |
|
|
0x1b, 0x00, 0x00, /* l32r a11, [literal for reloc index] */
|
524 |
|
|
0x0a, 0x80, 0x00, /* jx a8 */
|
525 |
|
|
|
526 |
|
|
};
|
527 |
|
|
|
528 |
|
|
static const bfd_byte elf_xtensa_le_plt_entry[PLT_ENTRY_SIZE] =
|
529 |
|
|
{
|
530 |
|
|
0x36, 0x41, 0x00, /* entry sp, 32 */
|
531 |
|
|
0x81, 0x00, 0x00, /* l32r a8, [got entry for rtld's resolver] */
|
532 |
|
|
0xa1, 0x00, 0x00, /* l32r a10, [got entry for rtld's link map] */
|
533 |
|
|
0xb1, 0x00, 0x00, /* l32r a11, [literal for reloc index] */
|
534 |
|
|
0xa0, 0x08, 0x00, /* jx a8 */
|
535 |
|
|
|
536 |
|
|
};
|
537 |
|
|
|
538 |
|
|
/* The size of the thread control block. */
|
539 |
|
|
#define TCB_SIZE 8
|
540 |
|
|
|
541 |
|
|
struct elf_xtensa_link_hash_entry
|
542 |
|
|
{
|
543 |
|
|
struct elf_link_hash_entry elf;
|
544 |
|
|
|
545 |
|
|
bfd_signed_vma tlsfunc_refcount;
|
546 |
|
|
|
547 |
|
|
#define GOT_UNKNOWN 0
|
548 |
|
|
#define GOT_NORMAL 1
|
549 |
|
|
#define GOT_TLS_GD 2 /* global or local dynamic */
|
550 |
|
|
#define GOT_TLS_IE 4 /* initial or local exec */
|
551 |
|
|
#define GOT_TLS_ANY (GOT_TLS_GD | GOT_TLS_IE)
|
552 |
|
|
unsigned char tls_type;
|
553 |
|
|
};
|
554 |
|
|
|
555 |
|
|
#define elf_xtensa_hash_entry(ent) ((struct elf_xtensa_link_hash_entry *)(ent))
|
556 |
|
|
|
557 |
|
|
struct elf_xtensa_obj_tdata
|
558 |
|
|
{
|
559 |
|
|
struct elf_obj_tdata root;
|
560 |
|
|
|
561 |
|
|
/* tls_type for each local got entry. */
|
562 |
|
|
char *local_got_tls_type;
|
563 |
|
|
|
564 |
|
|
bfd_signed_vma *local_tlsfunc_refcounts;
|
565 |
|
|
};
|
566 |
|
|
|
567 |
|
|
#define elf_xtensa_tdata(abfd) \
|
568 |
|
|
((struct elf_xtensa_obj_tdata *) (abfd)->tdata.any)
|
569 |
|
|
|
570 |
|
|
#define elf_xtensa_local_got_tls_type(abfd) \
|
571 |
|
|
(elf_xtensa_tdata (abfd)->local_got_tls_type)
|
572 |
|
|
|
573 |
|
|
#define elf_xtensa_local_tlsfunc_refcounts(abfd) \
|
574 |
|
|
(elf_xtensa_tdata (abfd)->local_tlsfunc_refcounts)
|
575 |
|
|
|
576 |
|
|
#define is_xtensa_elf(bfd) \
|
577 |
|
|
(bfd_get_flavour (bfd) == bfd_target_elf_flavour \
|
578 |
|
|
&& elf_tdata (bfd) != NULL \
|
579 |
|
|
&& elf_object_id (bfd) == XTENSA_ELF_DATA)
|
580 |
|
|
|
581 |
|
|
static bfd_boolean
|
582 |
|
|
elf_xtensa_mkobject (bfd *abfd)
|
583 |
|
|
{
|
584 |
|
|
return bfd_elf_allocate_object (abfd, sizeof (struct elf_xtensa_obj_tdata),
|
585 |
|
|
XTENSA_ELF_DATA);
|
586 |
|
|
}
|
587 |
|
|
|
588 |
|
|
/* Xtensa ELF linker hash table. */
|
589 |
|
|
|
590 |
|
|
struct elf_xtensa_link_hash_table
|
591 |
|
|
{
|
592 |
|
|
struct elf_link_hash_table elf;
|
593 |
|
|
|
594 |
|
|
/* Short-cuts to get to dynamic linker sections. */
|
595 |
|
|
asection *sgot;
|
596 |
|
|
asection *sgotplt;
|
597 |
|
|
asection *srelgot;
|
598 |
|
|
asection *splt;
|
599 |
|
|
asection *srelplt;
|
600 |
|
|
asection *sgotloc;
|
601 |
|
|
asection *spltlittbl;
|
602 |
|
|
|
603 |
|
|
/* Total count of PLT relocations seen during check_relocs.
|
604 |
|
|
The actual PLT code must be split into multiple sections and all
|
605 |
|
|
the sections have to be created before size_dynamic_sections,
|
606 |
|
|
where we figure out the exact number of PLT entries that will be
|
607 |
|
|
needed. It is OK if this count is an overestimate, e.g., some
|
608 |
|
|
relocations may be removed by GC. */
|
609 |
|
|
int plt_reloc_count;
|
610 |
|
|
|
611 |
|
|
struct elf_xtensa_link_hash_entry *tlsbase;
|
612 |
|
|
};
|
613 |
|
|
|
614 |
|
|
/* Get the Xtensa ELF linker hash table from a link_info structure. */
|
615 |
|
|
|
616 |
|
|
#define elf_xtensa_hash_table(p) \
|
617 |
|
|
(elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
|
618 |
|
|
== XTENSA_ELF_DATA ? ((struct elf_xtensa_link_hash_table *) ((p)->hash)) : NULL)
|
619 |
|
|
|
620 |
|
|
/* Create an entry in an Xtensa ELF linker hash table. */
|
621 |
|
|
|
622 |
|
|
static struct bfd_hash_entry *
|
623 |
|
|
elf_xtensa_link_hash_newfunc (struct bfd_hash_entry *entry,
|
624 |
|
|
struct bfd_hash_table *table,
|
625 |
|
|
const char *string)
|
626 |
|
|
{
|
627 |
|
|
/* Allocate the structure if it has not already been allocated by a
|
628 |
|
|
subclass. */
|
629 |
|
|
if (entry == NULL)
|
630 |
|
|
{
|
631 |
|
|
entry = bfd_hash_allocate (table,
|
632 |
|
|
sizeof (struct elf_xtensa_link_hash_entry));
|
633 |
|
|
if (entry == NULL)
|
634 |
|
|
return entry;
|
635 |
|
|
}
|
636 |
|
|
|
637 |
|
|
/* Call the allocation method of the superclass. */
|
638 |
|
|
entry = _bfd_elf_link_hash_newfunc (entry, table, string);
|
639 |
|
|
if (entry != NULL)
|
640 |
|
|
{
|
641 |
|
|
struct elf_xtensa_link_hash_entry *eh = elf_xtensa_hash_entry (entry);
|
642 |
|
|
eh->tlsfunc_refcount = 0;
|
643 |
|
|
eh->tls_type = GOT_UNKNOWN;
|
644 |
|
|
}
|
645 |
|
|
|
646 |
|
|
return entry;
|
647 |
|
|
}
|
648 |
|
|
|
649 |
|
|
/* Create an Xtensa ELF linker hash table. */
|
650 |
|
|
|
651 |
|
|
static struct bfd_link_hash_table *
|
652 |
|
|
elf_xtensa_link_hash_table_create (bfd *abfd)
|
653 |
|
|
{
|
654 |
|
|
struct elf_link_hash_entry *tlsbase;
|
655 |
|
|
struct elf_xtensa_link_hash_table *ret;
|
656 |
|
|
bfd_size_type amt = sizeof (struct elf_xtensa_link_hash_table);
|
657 |
|
|
|
658 |
|
|
ret = bfd_malloc (amt);
|
659 |
|
|
if (ret == NULL)
|
660 |
|
|
return NULL;
|
661 |
|
|
|
662 |
|
|
if (!_bfd_elf_link_hash_table_init (&ret->elf, abfd,
|
663 |
|
|
elf_xtensa_link_hash_newfunc,
|
664 |
|
|
sizeof (struct elf_xtensa_link_hash_entry),
|
665 |
|
|
XTENSA_ELF_DATA))
|
666 |
|
|
{
|
667 |
|
|
free (ret);
|
668 |
|
|
return NULL;
|
669 |
|
|
}
|
670 |
|
|
|
671 |
|
|
ret->sgot = NULL;
|
672 |
|
|
ret->sgotplt = NULL;
|
673 |
|
|
ret->srelgot = NULL;
|
674 |
|
|
ret->splt = NULL;
|
675 |
|
|
ret->srelplt = NULL;
|
676 |
|
|
ret->sgotloc = NULL;
|
677 |
|
|
ret->spltlittbl = NULL;
|
678 |
|
|
|
679 |
|
|
ret->plt_reloc_count = 0;
|
680 |
|
|
|
681 |
|
|
/* Create a hash entry for "_TLS_MODULE_BASE_" to speed up checking
|
682 |
|
|
for it later. */
|
683 |
|
|
tlsbase = elf_link_hash_lookup (&ret->elf, "_TLS_MODULE_BASE_",
|
684 |
|
|
TRUE, FALSE, FALSE);
|
685 |
|
|
tlsbase->root.type = bfd_link_hash_new;
|
686 |
|
|
tlsbase->root.u.undef.abfd = NULL;
|
687 |
|
|
tlsbase->non_elf = 0;
|
688 |
|
|
ret->tlsbase = elf_xtensa_hash_entry (tlsbase);
|
689 |
|
|
ret->tlsbase->tls_type = GOT_UNKNOWN;
|
690 |
|
|
|
691 |
|
|
return &ret->elf.root;
|
692 |
|
|
}
|
693 |
|
|
|
694 |
|
|
/* Copy the extra info we tack onto an elf_link_hash_entry. */
|
695 |
|
|
|
696 |
|
|
static void
|
697 |
|
|
elf_xtensa_copy_indirect_symbol (struct bfd_link_info *info,
|
698 |
|
|
struct elf_link_hash_entry *dir,
|
699 |
|
|
struct elf_link_hash_entry *ind)
|
700 |
|
|
{
|
701 |
|
|
struct elf_xtensa_link_hash_entry *edir, *eind;
|
702 |
|
|
|
703 |
|
|
edir = elf_xtensa_hash_entry (dir);
|
704 |
|
|
eind = elf_xtensa_hash_entry (ind);
|
705 |
|
|
|
706 |
|
|
if (ind->root.type == bfd_link_hash_indirect)
|
707 |
|
|
{
|
708 |
|
|
edir->tlsfunc_refcount += eind->tlsfunc_refcount;
|
709 |
|
|
eind->tlsfunc_refcount = 0;
|
710 |
|
|
|
711 |
|
|
if (dir->got.refcount <= 0)
|
712 |
|
|
{
|
713 |
|
|
edir->tls_type = eind->tls_type;
|
714 |
|
|
eind->tls_type = GOT_UNKNOWN;
|
715 |
|
|
}
|
716 |
|
|
}
|
717 |
|
|
|
718 |
|
|
_bfd_elf_link_hash_copy_indirect (info, dir, ind);
|
719 |
|
|
}
|
720 |
|
|
|
721 |
|
|
static inline bfd_boolean
|
722 |
|
|
elf_xtensa_dynamic_symbol_p (struct elf_link_hash_entry *h,
|
723 |
|
|
struct bfd_link_info *info)
|
724 |
|
|
{
|
725 |
|
|
/* Check if we should do dynamic things to this symbol. The
|
726 |
|
|
"ignore_protected" argument need not be set, because Xtensa code
|
727 |
|
|
does not require special handling of STV_PROTECTED to make function
|
728 |
|
|
pointer comparisons work properly. The PLT addresses are never
|
729 |
|
|
used for function pointers. */
|
730 |
|
|
|
731 |
|
|
return _bfd_elf_dynamic_symbol_p (h, info, 0);
|
732 |
|
|
}
|
733 |
|
|
|
734 |
|
|
|
735 |
|
|
static int
|
736 |
|
|
property_table_compare (const void *ap, const void *bp)
|
737 |
|
|
{
|
738 |
|
|
const property_table_entry *a = (const property_table_entry *) ap;
|
739 |
|
|
const property_table_entry *b = (const property_table_entry *) bp;
|
740 |
|
|
|
741 |
|
|
if (a->address == b->address)
|
742 |
|
|
{
|
743 |
|
|
if (a->size != b->size)
|
744 |
|
|
return (a->size - b->size);
|
745 |
|
|
|
746 |
|
|
if ((a->flags & XTENSA_PROP_ALIGN) != (b->flags & XTENSA_PROP_ALIGN))
|
747 |
|
|
return ((b->flags & XTENSA_PROP_ALIGN)
|
748 |
|
|
- (a->flags & XTENSA_PROP_ALIGN));
|
749 |
|
|
|
750 |
|
|
if ((a->flags & XTENSA_PROP_ALIGN)
|
751 |
|
|
&& (GET_XTENSA_PROP_ALIGNMENT (a->flags)
|
752 |
|
|
!= GET_XTENSA_PROP_ALIGNMENT (b->flags)))
|
753 |
|
|
return (GET_XTENSA_PROP_ALIGNMENT (a->flags)
|
754 |
|
|
- GET_XTENSA_PROP_ALIGNMENT (b->flags));
|
755 |
|
|
|
756 |
|
|
if ((a->flags & XTENSA_PROP_UNREACHABLE)
|
757 |
|
|
!= (b->flags & XTENSA_PROP_UNREACHABLE))
|
758 |
|
|
return ((b->flags & XTENSA_PROP_UNREACHABLE)
|
759 |
|
|
- (a->flags & XTENSA_PROP_UNREACHABLE));
|
760 |
|
|
|
761 |
|
|
return (a->flags - b->flags);
|
762 |
|
|
}
|
763 |
|
|
|
764 |
|
|
return (a->address - b->address);
|
765 |
|
|
}
|
766 |
|
|
|
767 |
|
|
|
768 |
|
|
static int
|
769 |
|
|
property_table_matches (const void *ap, const void *bp)
|
770 |
|
|
{
|
771 |
|
|
const property_table_entry *a = (const property_table_entry *) ap;
|
772 |
|
|
const property_table_entry *b = (const property_table_entry *) bp;
|
773 |
|
|
|
774 |
|
|
/* Check if one entry overlaps with the other. */
|
775 |
|
|
if ((b->address >= a->address && b->address < (a->address + a->size))
|
776 |
|
|
|| (a->address >= b->address && a->address < (b->address + b->size)))
|
777 |
|
|
return 0;
|
778 |
|
|
|
779 |
|
|
return (a->address - b->address);
|
780 |
|
|
}
|
781 |
|
|
|
782 |
|
|
|
783 |
|
|
/* Get the literal table or property table entries for the given
|
784 |
|
|
section. Sets TABLE_P and returns the number of entries. On
|
785 |
|
|
error, returns a negative value. */
|
786 |
|
|
|
787 |
|
|
static int
|
788 |
|
|
xtensa_read_table_entries (bfd *abfd,
|
789 |
|
|
asection *section,
|
790 |
|
|
property_table_entry **table_p,
|
791 |
|
|
const char *sec_name,
|
792 |
|
|
bfd_boolean output_addr)
|
793 |
|
|
{
|
794 |
|
|
asection *table_section;
|
795 |
|
|
bfd_size_type table_size = 0;
|
796 |
|
|
bfd_byte *table_data;
|
797 |
|
|
property_table_entry *blocks;
|
798 |
|
|
int blk, block_count;
|
799 |
|
|
bfd_size_type num_records;
|
800 |
|
|
Elf_Internal_Rela *internal_relocs, *irel, *rel_end;
|
801 |
|
|
bfd_vma section_addr, off;
|
802 |
|
|
flagword predef_flags;
|
803 |
|
|
bfd_size_type table_entry_size, section_limit;
|
804 |
|
|
|
805 |
|
|
if (!section
|
806 |
|
|
|| !(section->flags & SEC_ALLOC)
|
807 |
|
|
|| (section->flags & SEC_DEBUGGING))
|
808 |
|
|
{
|
809 |
|
|
*table_p = NULL;
|
810 |
|
|
return 0;
|
811 |
|
|
}
|
812 |
|
|
|
813 |
|
|
table_section = xtensa_get_property_section (section, sec_name);
|
814 |
|
|
if (table_section)
|
815 |
|
|
table_size = table_section->size;
|
816 |
|
|
|
817 |
|
|
if (table_size == 0)
|
818 |
|
|
{
|
819 |
|
|
*table_p = NULL;
|
820 |
|
|
return 0;
|
821 |
|
|
}
|
822 |
|
|
|
823 |
|
|
predef_flags = xtensa_get_property_predef_flags (table_section);
|
824 |
|
|
table_entry_size = 12;
|
825 |
|
|
if (predef_flags)
|
826 |
|
|
table_entry_size -= 4;
|
827 |
|
|
|
828 |
|
|
num_records = table_size / table_entry_size;
|
829 |
|
|
table_data = retrieve_contents (abfd, table_section, TRUE);
|
830 |
|
|
blocks = (property_table_entry *)
|
831 |
|
|
bfd_malloc (num_records * sizeof (property_table_entry));
|
832 |
|
|
block_count = 0;
|
833 |
|
|
|
834 |
|
|
if (output_addr)
|
835 |
|
|
section_addr = section->output_section->vma + section->output_offset;
|
836 |
|
|
else
|
837 |
|
|
section_addr = section->vma;
|
838 |
|
|
|
839 |
|
|
internal_relocs = retrieve_internal_relocs (abfd, table_section, TRUE);
|
840 |
|
|
if (internal_relocs && !table_section->reloc_done)
|
841 |
|
|
{
|
842 |
|
|
qsort (internal_relocs, table_section->reloc_count,
|
843 |
|
|
sizeof (Elf_Internal_Rela), internal_reloc_compare);
|
844 |
|
|
irel = internal_relocs;
|
845 |
|
|
}
|
846 |
|
|
else
|
847 |
|
|
irel = NULL;
|
848 |
|
|
|
849 |
|
|
section_limit = bfd_get_section_limit (abfd, section);
|
850 |
|
|
rel_end = internal_relocs + table_section->reloc_count;
|
851 |
|
|
|
852 |
|
|
for (off = 0; off < table_size; off += table_entry_size)
|
853 |
|
|
{
|
854 |
|
|
bfd_vma address = bfd_get_32 (abfd, table_data + off);
|
855 |
|
|
|
856 |
|
|
/* Skip any relocations before the current offset. This should help
|
857 |
|
|
avoid confusion caused by unexpected relocations for the preceding
|
858 |
|
|
table entry. */
|
859 |
|
|
while (irel &&
|
860 |
|
|
(irel->r_offset < off
|
861 |
|
|
|| (irel->r_offset == off
|
862 |
|
|
&& ELF32_R_TYPE (irel->r_info) == R_XTENSA_NONE)))
|
863 |
|
|
{
|
864 |
|
|
irel += 1;
|
865 |
|
|
if (irel >= rel_end)
|
866 |
|
|
irel = 0;
|
867 |
|
|
}
|
868 |
|
|
|
869 |
|
|
if (irel && irel->r_offset == off)
|
870 |
|
|
{
|
871 |
|
|
bfd_vma sym_off;
|
872 |
|
|
unsigned long r_symndx = ELF32_R_SYM (irel->r_info);
|
873 |
|
|
BFD_ASSERT (ELF32_R_TYPE (irel->r_info) == R_XTENSA_32);
|
874 |
|
|
|
875 |
|
|
if (get_elf_r_symndx_section (abfd, r_symndx) != section)
|
876 |
|
|
continue;
|
877 |
|
|
|
878 |
|
|
sym_off = get_elf_r_symndx_offset (abfd, r_symndx);
|
879 |
|
|
BFD_ASSERT (sym_off == 0);
|
880 |
|
|
address += (section_addr + sym_off + irel->r_addend);
|
881 |
|
|
}
|
882 |
|
|
else
|
883 |
|
|
{
|
884 |
|
|
if (address < section_addr
|
885 |
|
|
|| address >= section_addr + section_limit)
|
886 |
|
|
continue;
|
887 |
|
|
}
|
888 |
|
|
|
889 |
|
|
blocks[block_count].address = address;
|
890 |
|
|
blocks[block_count].size = bfd_get_32 (abfd, table_data + off + 4);
|
891 |
|
|
if (predef_flags)
|
892 |
|
|
blocks[block_count].flags = predef_flags;
|
893 |
|
|
else
|
894 |
|
|
blocks[block_count].flags = bfd_get_32 (abfd, table_data + off + 8);
|
895 |
|
|
block_count++;
|
896 |
|
|
}
|
897 |
|
|
|
898 |
|
|
release_contents (table_section, table_data);
|
899 |
|
|
release_internal_relocs (table_section, internal_relocs);
|
900 |
|
|
|
901 |
|
|
if (block_count > 0)
|
902 |
|
|
{
|
903 |
|
|
/* Now sort them into address order for easy reference. */
|
904 |
|
|
qsort (blocks, block_count, sizeof (property_table_entry),
|
905 |
|
|
property_table_compare);
|
906 |
|
|
|
907 |
|
|
/* Check that the table contents are valid. Problems may occur,
|
908 |
|
|
for example, if an unrelocated object file is stripped. */
|
909 |
|
|
for (blk = 1; blk < block_count; blk++)
|
910 |
|
|
{
|
911 |
|
|
/* The only circumstance where two entries may legitimately
|
912 |
|
|
have the same address is when one of them is a zero-size
|
913 |
|
|
placeholder to mark a place where fill can be inserted.
|
914 |
|
|
The zero-size entry should come first. */
|
915 |
|
|
if (blocks[blk - 1].address == blocks[blk].address &&
|
916 |
|
|
blocks[blk - 1].size != 0)
|
917 |
|
|
{
|
918 |
|
|
(*_bfd_error_handler) (_("%B(%A): invalid property table"),
|
919 |
|
|
abfd, section);
|
920 |
|
|
bfd_set_error (bfd_error_bad_value);
|
921 |
|
|
free (blocks);
|
922 |
|
|
return -1;
|
923 |
|
|
}
|
924 |
|
|
}
|
925 |
|
|
}
|
926 |
|
|
|
927 |
|
|
*table_p = blocks;
|
928 |
|
|
return block_count;
|
929 |
|
|
}
|
930 |
|
|
|
931 |
|
|
|
932 |
|
|
static property_table_entry *
|
933 |
|
|
elf_xtensa_find_property_entry (property_table_entry *property_table,
|
934 |
|
|
int property_table_size,
|
935 |
|
|
bfd_vma addr)
|
936 |
|
|
{
|
937 |
|
|
property_table_entry entry;
|
938 |
|
|
property_table_entry *rv;
|
939 |
|
|
|
940 |
|
|
if (property_table_size == 0)
|
941 |
|
|
return NULL;
|
942 |
|
|
|
943 |
|
|
entry.address = addr;
|
944 |
|
|
entry.size = 1;
|
945 |
|
|
entry.flags = 0;
|
946 |
|
|
|
947 |
|
|
rv = bsearch (&entry, property_table, property_table_size,
|
948 |
|
|
sizeof (property_table_entry), property_table_matches);
|
949 |
|
|
return rv;
|
950 |
|
|
}
|
951 |
|
|
|
952 |
|
|
|
953 |
|
|
static bfd_boolean
|
954 |
|
|
elf_xtensa_in_literal_pool (property_table_entry *lit_table,
|
955 |
|
|
int lit_table_size,
|
956 |
|
|
bfd_vma addr)
|
957 |
|
|
{
|
958 |
|
|
if (elf_xtensa_find_property_entry (lit_table, lit_table_size, addr))
|
959 |
|
|
return TRUE;
|
960 |
|
|
|
961 |
|
|
return FALSE;
|
962 |
|
|
}
|
963 |
|
|
|
964 |
|
|
|
965 |
|
|
/* Look through the relocs for a section during the first phase, and
|
966 |
|
|
calculate needed space in the dynamic reloc sections. */
|
967 |
|
|
|
968 |
|
|
static bfd_boolean
|
969 |
|
|
elf_xtensa_check_relocs (bfd *abfd,
|
970 |
|
|
struct bfd_link_info *info,
|
971 |
|
|
asection *sec,
|
972 |
|
|
const Elf_Internal_Rela *relocs)
|
973 |
|
|
{
|
974 |
|
|
struct elf_xtensa_link_hash_table *htab;
|
975 |
|
|
Elf_Internal_Shdr *symtab_hdr;
|
976 |
|
|
struct elf_link_hash_entry **sym_hashes;
|
977 |
|
|
const Elf_Internal_Rela *rel;
|
978 |
|
|
const Elf_Internal_Rela *rel_end;
|
979 |
|
|
|
980 |
|
|
if (info->relocatable || (sec->flags & SEC_ALLOC) == 0)
|
981 |
|
|
return TRUE;
|
982 |
|
|
|
983 |
|
|
BFD_ASSERT (is_xtensa_elf (abfd));
|
984 |
|
|
|
985 |
|
|
htab = elf_xtensa_hash_table (info);
|
986 |
|
|
if (htab == NULL)
|
987 |
|
|
return FALSE;
|
988 |
|
|
|
989 |
|
|
symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
|
990 |
|
|
sym_hashes = elf_sym_hashes (abfd);
|
991 |
|
|
|
992 |
|
|
rel_end = relocs + sec->reloc_count;
|
993 |
|
|
for (rel = relocs; rel < rel_end; rel++)
|
994 |
|
|
{
|
995 |
|
|
unsigned int r_type;
|
996 |
|
|
unsigned long r_symndx;
|
997 |
|
|
struct elf_link_hash_entry *h = NULL;
|
998 |
|
|
struct elf_xtensa_link_hash_entry *eh;
|
999 |
|
|
int tls_type, old_tls_type;
|
1000 |
|
|
bfd_boolean is_got = FALSE;
|
1001 |
|
|
bfd_boolean is_plt = FALSE;
|
1002 |
|
|
bfd_boolean is_tlsfunc = FALSE;
|
1003 |
|
|
|
1004 |
|
|
r_symndx = ELF32_R_SYM (rel->r_info);
|
1005 |
|
|
r_type = ELF32_R_TYPE (rel->r_info);
|
1006 |
|
|
|
1007 |
|
|
if (r_symndx >= NUM_SHDR_ENTRIES (symtab_hdr))
|
1008 |
|
|
{
|
1009 |
|
|
(*_bfd_error_handler) (_("%B: bad symbol index: %d"),
|
1010 |
|
|
abfd, r_symndx);
|
1011 |
|
|
return FALSE;
|
1012 |
|
|
}
|
1013 |
|
|
|
1014 |
|
|
if (r_symndx >= symtab_hdr->sh_info)
|
1015 |
|
|
{
|
1016 |
|
|
h = sym_hashes[r_symndx - symtab_hdr->sh_info];
|
1017 |
|
|
while (h->root.type == bfd_link_hash_indirect
|
1018 |
|
|
|| h->root.type == bfd_link_hash_warning)
|
1019 |
|
|
h = (struct elf_link_hash_entry *) h->root.u.i.link;
|
1020 |
|
|
}
|
1021 |
|
|
eh = elf_xtensa_hash_entry (h);
|
1022 |
|
|
|
1023 |
|
|
switch (r_type)
|
1024 |
|
|
{
|
1025 |
|
|
case R_XTENSA_TLSDESC_FN:
|
1026 |
|
|
if (info->shared)
|
1027 |
|
|
{
|
1028 |
|
|
tls_type = GOT_TLS_GD;
|
1029 |
|
|
is_got = TRUE;
|
1030 |
|
|
is_tlsfunc = TRUE;
|
1031 |
|
|
}
|
1032 |
|
|
else
|
1033 |
|
|
tls_type = GOT_TLS_IE;
|
1034 |
|
|
break;
|
1035 |
|
|
|
1036 |
|
|
case R_XTENSA_TLSDESC_ARG:
|
1037 |
|
|
if (info->shared)
|
1038 |
|
|
{
|
1039 |
|
|
tls_type = GOT_TLS_GD;
|
1040 |
|
|
is_got = TRUE;
|
1041 |
|
|
}
|
1042 |
|
|
else
|
1043 |
|
|
{
|
1044 |
|
|
tls_type = GOT_TLS_IE;
|
1045 |
|
|
if (h && elf_xtensa_hash_entry (h) != htab->tlsbase)
|
1046 |
|
|
is_got = TRUE;
|
1047 |
|
|
}
|
1048 |
|
|
break;
|
1049 |
|
|
|
1050 |
|
|
case R_XTENSA_TLS_DTPOFF:
|
1051 |
|
|
if (info->shared)
|
1052 |
|
|
tls_type = GOT_TLS_GD;
|
1053 |
|
|
else
|
1054 |
|
|
tls_type = GOT_TLS_IE;
|
1055 |
|
|
break;
|
1056 |
|
|
|
1057 |
|
|
case R_XTENSA_TLS_TPOFF:
|
1058 |
|
|
tls_type = GOT_TLS_IE;
|
1059 |
|
|
if (info->shared)
|
1060 |
|
|
info->flags |= DF_STATIC_TLS;
|
1061 |
|
|
if (info->shared || h)
|
1062 |
|
|
is_got = TRUE;
|
1063 |
|
|
break;
|
1064 |
|
|
|
1065 |
|
|
case R_XTENSA_32:
|
1066 |
|
|
tls_type = GOT_NORMAL;
|
1067 |
|
|
is_got = TRUE;
|
1068 |
|
|
break;
|
1069 |
|
|
|
1070 |
|
|
case R_XTENSA_PLT:
|
1071 |
|
|
tls_type = GOT_NORMAL;
|
1072 |
|
|
is_plt = TRUE;
|
1073 |
|
|
break;
|
1074 |
|
|
|
1075 |
|
|
case R_XTENSA_GNU_VTINHERIT:
|
1076 |
|
|
/* This relocation describes the C++ object vtable hierarchy.
|
1077 |
|
|
Reconstruct it for later use during GC. */
|
1078 |
|
|
if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
|
1079 |
|
|
return FALSE;
|
1080 |
|
|
continue;
|
1081 |
|
|
|
1082 |
|
|
case R_XTENSA_GNU_VTENTRY:
|
1083 |
|
|
/* This relocation describes which C++ vtable entries are actually
|
1084 |
|
|
used. Record for later use during GC. */
|
1085 |
|
|
BFD_ASSERT (h != NULL);
|
1086 |
|
|
if (h != NULL
|
1087 |
|
|
&& !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend))
|
1088 |
|
|
return FALSE;
|
1089 |
|
|
continue;
|
1090 |
|
|
|
1091 |
|
|
default:
|
1092 |
|
|
/* Nothing to do for any other relocations. */
|
1093 |
|
|
continue;
|
1094 |
|
|
}
|
1095 |
|
|
|
1096 |
|
|
if (h)
|
1097 |
|
|
{
|
1098 |
|
|
if (is_plt)
|
1099 |
|
|
{
|
1100 |
|
|
if (h->plt.refcount <= 0)
|
1101 |
|
|
{
|
1102 |
|
|
h->needs_plt = 1;
|
1103 |
|
|
h->plt.refcount = 1;
|
1104 |
|
|
}
|
1105 |
|
|
else
|
1106 |
|
|
h->plt.refcount += 1;
|
1107 |
|
|
|
1108 |
|
|
/* Keep track of the total PLT relocation count even if we
|
1109 |
|
|
don't yet know whether the dynamic sections will be
|
1110 |
|
|
created. */
|
1111 |
|
|
htab->plt_reloc_count += 1;
|
1112 |
|
|
|
1113 |
|
|
if (elf_hash_table (info)->dynamic_sections_created)
|
1114 |
|
|
{
|
1115 |
|
|
if (! add_extra_plt_sections (info, htab->plt_reloc_count))
|
1116 |
|
|
return FALSE;
|
1117 |
|
|
}
|
1118 |
|
|
}
|
1119 |
|
|
else if (is_got)
|
1120 |
|
|
{
|
1121 |
|
|
if (h->got.refcount <= 0)
|
1122 |
|
|
h->got.refcount = 1;
|
1123 |
|
|
else
|
1124 |
|
|
h->got.refcount += 1;
|
1125 |
|
|
}
|
1126 |
|
|
|
1127 |
|
|
if (is_tlsfunc)
|
1128 |
|
|
eh->tlsfunc_refcount += 1;
|
1129 |
|
|
|
1130 |
|
|
old_tls_type = eh->tls_type;
|
1131 |
|
|
}
|
1132 |
|
|
else
|
1133 |
|
|
{
|
1134 |
|
|
/* Allocate storage the first time. */
|
1135 |
|
|
if (elf_local_got_refcounts (abfd) == NULL)
|
1136 |
|
|
{
|
1137 |
|
|
bfd_size_type size = symtab_hdr->sh_info;
|
1138 |
|
|
void *mem;
|
1139 |
|
|
|
1140 |
|
|
mem = bfd_zalloc (abfd, size * sizeof (bfd_signed_vma));
|
1141 |
|
|
if (mem == NULL)
|
1142 |
|
|
return FALSE;
|
1143 |
|
|
elf_local_got_refcounts (abfd) = (bfd_signed_vma *) mem;
|
1144 |
|
|
|
1145 |
|
|
mem = bfd_zalloc (abfd, size);
|
1146 |
|
|
if (mem == NULL)
|
1147 |
|
|
return FALSE;
|
1148 |
|
|
elf_xtensa_local_got_tls_type (abfd) = (char *) mem;
|
1149 |
|
|
|
1150 |
|
|
mem = bfd_zalloc (abfd, size * sizeof (bfd_signed_vma));
|
1151 |
|
|
if (mem == NULL)
|
1152 |
|
|
return FALSE;
|
1153 |
|
|
elf_xtensa_local_tlsfunc_refcounts (abfd)
|
1154 |
|
|
= (bfd_signed_vma *) mem;
|
1155 |
|
|
}
|
1156 |
|
|
|
1157 |
|
|
/* This is a global offset table entry for a local symbol. */
|
1158 |
|
|
if (is_got || is_plt)
|
1159 |
|
|
elf_local_got_refcounts (abfd) [r_symndx] += 1;
|
1160 |
|
|
|
1161 |
|
|
if (is_tlsfunc)
|
1162 |
|
|
elf_xtensa_local_tlsfunc_refcounts (abfd) [r_symndx] += 1;
|
1163 |
|
|
|
1164 |
|
|
old_tls_type = elf_xtensa_local_got_tls_type (abfd) [r_symndx];
|
1165 |
|
|
}
|
1166 |
|
|
|
1167 |
|
|
if ((old_tls_type & GOT_TLS_IE) && (tls_type & GOT_TLS_IE))
|
1168 |
|
|
tls_type |= old_tls_type;
|
1169 |
|
|
/* If a TLS symbol is accessed using IE at least once,
|
1170 |
|
|
there is no point to use a dynamic model for it. */
|
1171 |
|
|
else if (old_tls_type != tls_type && old_tls_type != GOT_UNKNOWN
|
1172 |
|
|
&& ((old_tls_type & GOT_TLS_GD) == 0
|
1173 |
|
|
|| (tls_type & GOT_TLS_IE) == 0))
|
1174 |
|
|
{
|
1175 |
|
|
if ((old_tls_type & GOT_TLS_IE) && (tls_type & GOT_TLS_GD))
|
1176 |
|
|
tls_type = old_tls_type;
|
1177 |
|
|
else if ((old_tls_type & GOT_TLS_GD) && (tls_type & GOT_TLS_GD))
|
1178 |
|
|
tls_type |= old_tls_type;
|
1179 |
|
|
else
|
1180 |
|
|
{
|
1181 |
|
|
(*_bfd_error_handler)
|
1182 |
|
|
(_("%B: `%s' accessed both as normal and thread local symbol"),
|
1183 |
|
|
abfd,
|
1184 |
|
|
h ? h->root.root.string : "<local>");
|
1185 |
|
|
return FALSE;
|
1186 |
|
|
}
|
1187 |
|
|
}
|
1188 |
|
|
|
1189 |
|
|
if (old_tls_type != tls_type)
|
1190 |
|
|
{
|
1191 |
|
|
if (eh)
|
1192 |
|
|
eh->tls_type = tls_type;
|
1193 |
|
|
else
|
1194 |
|
|
elf_xtensa_local_got_tls_type (abfd) [r_symndx] = tls_type;
|
1195 |
|
|
}
|
1196 |
|
|
}
|
1197 |
|
|
|
1198 |
|
|
return TRUE;
|
1199 |
|
|
}
|
1200 |
|
|
|
1201 |
|
|
|
1202 |
|
|
static void
|
1203 |
|
|
elf_xtensa_make_sym_local (struct bfd_link_info *info,
|
1204 |
|
|
struct elf_link_hash_entry *h)
|
1205 |
|
|
{
|
1206 |
|
|
if (info->shared)
|
1207 |
|
|
{
|
1208 |
|
|
if (h->plt.refcount > 0)
|
1209 |
|
|
{
|
1210 |
|
|
/* For shared objects, there's no need for PLT entries for local
|
1211 |
|
|
symbols (use RELATIVE relocs instead of JMP_SLOT relocs). */
|
1212 |
|
|
if (h->got.refcount < 0)
|
1213 |
|
|
h->got.refcount = 0;
|
1214 |
|
|
h->got.refcount += h->plt.refcount;
|
1215 |
|
|
h->plt.refcount = 0;
|
1216 |
|
|
}
|
1217 |
|
|
}
|
1218 |
|
|
else
|
1219 |
|
|
{
|
1220 |
|
|
/* Don't need any dynamic relocations at all. */
|
1221 |
|
|
h->plt.refcount = 0;
|
1222 |
|
|
h->got.refcount = 0;
|
1223 |
|
|
}
|
1224 |
|
|
}
|
1225 |
|
|
|
1226 |
|
|
|
1227 |
|
|
static void
|
1228 |
|
|
elf_xtensa_hide_symbol (struct bfd_link_info *info,
|
1229 |
|
|
struct elf_link_hash_entry *h,
|
1230 |
|
|
bfd_boolean force_local)
|
1231 |
|
|
{
|
1232 |
|
|
/* For a shared link, move the plt refcount to the got refcount to leave
|
1233 |
|
|
space for RELATIVE relocs. */
|
1234 |
|
|
elf_xtensa_make_sym_local (info, h);
|
1235 |
|
|
|
1236 |
|
|
_bfd_elf_link_hash_hide_symbol (info, h, force_local);
|
1237 |
|
|
}
|
1238 |
|
|
|
1239 |
|
|
|
1240 |
|
|
/* Return the section that should be marked against GC for a given
|
1241 |
|
|
relocation. */
|
1242 |
|
|
|
1243 |
|
|
static asection *
|
1244 |
|
|
elf_xtensa_gc_mark_hook (asection *sec,
|
1245 |
|
|
struct bfd_link_info *info,
|
1246 |
|
|
Elf_Internal_Rela *rel,
|
1247 |
|
|
struct elf_link_hash_entry *h,
|
1248 |
|
|
Elf_Internal_Sym *sym)
|
1249 |
|
|
{
|
1250 |
|
|
/* Property sections are marked "KEEP" in the linker scripts, but they
|
1251 |
|
|
should not cause other sections to be marked. (This approach relies
|
1252 |
|
|
on elf_xtensa_discard_info to remove property table entries that
|
1253 |
|
|
describe discarded sections. Alternatively, it might be more
|
1254 |
|
|
efficient to avoid using "KEEP" in the linker scripts and instead use
|
1255 |
|
|
the gc_mark_extra_sections hook to mark only the property sections
|
1256 |
|
|
that describe marked sections. That alternative does not work well
|
1257 |
|
|
with the current property table sections, which do not correspond
|
1258 |
|
|
one-to-one with the sections they describe, but that should be fixed
|
1259 |
|
|
someday.) */
|
1260 |
|
|
if (xtensa_is_property_section (sec))
|
1261 |
|
|
return NULL;
|
1262 |
|
|
|
1263 |
|
|
if (h != NULL)
|
1264 |
|
|
switch (ELF32_R_TYPE (rel->r_info))
|
1265 |
|
|
{
|
1266 |
|
|
case R_XTENSA_GNU_VTINHERIT:
|
1267 |
|
|
case R_XTENSA_GNU_VTENTRY:
|
1268 |
|
|
return NULL;
|
1269 |
|
|
}
|
1270 |
|
|
|
1271 |
|
|
return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
|
1272 |
|
|
}
|
1273 |
|
|
|
1274 |
|
|
|
1275 |
|
|
/* Update the GOT & PLT entry reference counts
|
1276 |
|
|
for the section being removed. */
|
1277 |
|
|
|
1278 |
|
|
static bfd_boolean
|
1279 |
|
|
elf_xtensa_gc_sweep_hook (bfd *abfd,
|
1280 |
|
|
struct bfd_link_info *info,
|
1281 |
|
|
asection *sec,
|
1282 |
|
|
const Elf_Internal_Rela *relocs)
|
1283 |
|
|
{
|
1284 |
|
|
Elf_Internal_Shdr *symtab_hdr;
|
1285 |
|
|
struct elf_link_hash_entry **sym_hashes;
|
1286 |
|
|
const Elf_Internal_Rela *rel, *relend;
|
1287 |
|
|
struct elf_xtensa_link_hash_table *htab;
|
1288 |
|
|
|
1289 |
|
|
htab = elf_xtensa_hash_table (info);
|
1290 |
|
|
if (htab == NULL)
|
1291 |
|
|
return FALSE;
|
1292 |
|
|
|
1293 |
|
|
if (info->relocatable)
|
1294 |
|
|
return TRUE;
|
1295 |
|
|
|
1296 |
|
|
if ((sec->flags & SEC_ALLOC) == 0)
|
1297 |
|
|
return TRUE;
|
1298 |
|
|
|
1299 |
|
|
symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
|
1300 |
|
|
sym_hashes = elf_sym_hashes (abfd);
|
1301 |
|
|
|
1302 |
|
|
relend = relocs + sec->reloc_count;
|
1303 |
|
|
for (rel = relocs; rel < relend; rel++)
|
1304 |
|
|
{
|
1305 |
|
|
unsigned long r_symndx;
|
1306 |
|
|
unsigned int r_type;
|
1307 |
|
|
struct elf_link_hash_entry *h = NULL;
|
1308 |
|
|
struct elf_xtensa_link_hash_entry *eh;
|
1309 |
|
|
bfd_boolean is_got = FALSE;
|
1310 |
|
|
bfd_boolean is_plt = FALSE;
|
1311 |
|
|
bfd_boolean is_tlsfunc = FALSE;
|
1312 |
|
|
|
1313 |
|
|
r_symndx = ELF32_R_SYM (rel->r_info);
|
1314 |
|
|
if (r_symndx >= symtab_hdr->sh_info)
|
1315 |
|
|
{
|
1316 |
|
|
h = sym_hashes[r_symndx - symtab_hdr->sh_info];
|
1317 |
|
|
while (h->root.type == bfd_link_hash_indirect
|
1318 |
|
|
|| h->root.type == bfd_link_hash_warning)
|
1319 |
|
|
h = (struct elf_link_hash_entry *) h->root.u.i.link;
|
1320 |
|
|
}
|
1321 |
|
|
eh = elf_xtensa_hash_entry (h);
|
1322 |
|
|
|
1323 |
|
|
r_type = ELF32_R_TYPE (rel->r_info);
|
1324 |
|
|
switch (r_type)
|
1325 |
|
|
{
|
1326 |
|
|
case R_XTENSA_TLSDESC_FN:
|
1327 |
|
|
if (info->shared)
|
1328 |
|
|
{
|
1329 |
|
|
is_got = TRUE;
|
1330 |
|
|
is_tlsfunc = TRUE;
|
1331 |
|
|
}
|
1332 |
|
|
break;
|
1333 |
|
|
|
1334 |
|
|
case R_XTENSA_TLSDESC_ARG:
|
1335 |
|
|
if (info->shared)
|
1336 |
|
|
is_got = TRUE;
|
1337 |
|
|
else
|
1338 |
|
|
{
|
1339 |
|
|
if (h && elf_xtensa_hash_entry (h) != htab->tlsbase)
|
1340 |
|
|
is_got = TRUE;
|
1341 |
|
|
}
|
1342 |
|
|
break;
|
1343 |
|
|
|
1344 |
|
|
case R_XTENSA_TLS_TPOFF:
|
1345 |
|
|
if (info->shared || h)
|
1346 |
|
|
is_got = TRUE;
|
1347 |
|
|
break;
|
1348 |
|
|
|
1349 |
|
|
case R_XTENSA_32:
|
1350 |
|
|
is_got = TRUE;
|
1351 |
|
|
break;
|
1352 |
|
|
|
1353 |
|
|
case R_XTENSA_PLT:
|
1354 |
|
|
is_plt = TRUE;
|
1355 |
|
|
break;
|
1356 |
|
|
|
1357 |
|
|
default:
|
1358 |
|
|
continue;
|
1359 |
|
|
}
|
1360 |
|
|
|
1361 |
|
|
if (h)
|
1362 |
|
|
{
|
1363 |
|
|
if (is_plt)
|
1364 |
|
|
{
|
1365 |
|
|
if (h->plt.refcount > 0)
|
1366 |
|
|
h->plt.refcount--;
|
1367 |
|
|
}
|
1368 |
|
|
else if (is_got)
|
1369 |
|
|
{
|
1370 |
|
|
if (h->got.refcount > 0)
|
1371 |
|
|
h->got.refcount--;
|
1372 |
|
|
}
|
1373 |
|
|
if (is_tlsfunc)
|
1374 |
|
|
{
|
1375 |
|
|
if (eh->tlsfunc_refcount > 0)
|
1376 |
|
|
eh->tlsfunc_refcount--;
|
1377 |
|
|
}
|
1378 |
|
|
}
|
1379 |
|
|
else
|
1380 |
|
|
{
|
1381 |
|
|
if (is_got || is_plt)
|
1382 |
|
|
{
|
1383 |
|
|
bfd_signed_vma *got_refcount
|
1384 |
|
|
= &elf_local_got_refcounts (abfd) [r_symndx];
|
1385 |
|
|
if (*got_refcount > 0)
|
1386 |
|
|
*got_refcount -= 1;
|
1387 |
|
|
}
|
1388 |
|
|
if (is_tlsfunc)
|
1389 |
|
|
{
|
1390 |
|
|
bfd_signed_vma *tlsfunc_refcount
|
1391 |
|
|
= &elf_xtensa_local_tlsfunc_refcounts (abfd) [r_symndx];
|
1392 |
|
|
if (*tlsfunc_refcount > 0)
|
1393 |
|
|
*tlsfunc_refcount -= 1;
|
1394 |
|
|
}
|
1395 |
|
|
}
|
1396 |
|
|
}
|
1397 |
|
|
|
1398 |
|
|
return TRUE;
|
1399 |
|
|
}
|
1400 |
|
|
|
1401 |
|
|
|
1402 |
|
|
/* Create all the dynamic sections. */
|
1403 |
|
|
|
1404 |
|
|
static bfd_boolean
|
1405 |
|
|
elf_xtensa_create_dynamic_sections (bfd *dynobj, struct bfd_link_info *info)
|
1406 |
|
|
{
|
1407 |
|
|
struct elf_xtensa_link_hash_table *htab;
|
1408 |
|
|
flagword flags, noalloc_flags;
|
1409 |
|
|
|
1410 |
|
|
htab = elf_xtensa_hash_table (info);
|
1411 |
|
|
if (htab == NULL)
|
1412 |
|
|
return FALSE;
|
1413 |
|
|
|
1414 |
|
|
/* First do all the standard stuff. */
|
1415 |
|
|
if (! _bfd_elf_create_dynamic_sections (dynobj, info))
|
1416 |
|
|
return FALSE;
|
1417 |
|
|
htab->splt = bfd_get_section_by_name (dynobj, ".plt");
|
1418 |
|
|
htab->srelplt = bfd_get_section_by_name (dynobj, ".rela.plt");
|
1419 |
|
|
htab->sgot = bfd_get_section_by_name (dynobj, ".got");
|
1420 |
|
|
htab->sgotplt = bfd_get_section_by_name (dynobj, ".got.plt");
|
1421 |
|
|
htab->srelgot = bfd_get_section_by_name (dynobj, ".rela.got");
|
1422 |
|
|
|
1423 |
|
|
/* Create any extra PLT sections in case check_relocs has already
|
1424 |
|
|
been called on all the non-dynamic input files. */
|
1425 |
|
|
if (! add_extra_plt_sections (info, htab->plt_reloc_count))
|
1426 |
|
|
return FALSE;
|
1427 |
|
|
|
1428 |
|
|
noalloc_flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
|
1429 |
|
|
| SEC_LINKER_CREATED | SEC_READONLY);
|
1430 |
|
|
flags = noalloc_flags | SEC_ALLOC | SEC_LOAD;
|
1431 |
|
|
|
1432 |
|
|
/* Mark the ".got.plt" section READONLY. */
|
1433 |
|
|
if (htab->sgotplt == NULL
|
1434 |
|
|
|| ! bfd_set_section_flags (dynobj, htab->sgotplt, flags))
|
1435 |
|
|
return FALSE;
|
1436 |
|
|
|
1437 |
|
|
/* Create ".got.loc" (literal tables for use by dynamic linker). */
|
1438 |
|
|
htab->sgotloc = bfd_make_section_with_flags (dynobj, ".got.loc", flags);
|
1439 |
|
|
if (htab->sgotloc == NULL
|
1440 |
|
|
|| ! bfd_set_section_alignment (dynobj, htab->sgotloc, 2))
|
1441 |
|
|
return FALSE;
|
1442 |
|
|
|
1443 |
|
|
/* Create ".xt.lit.plt" (literal table for ".got.plt*"). */
|
1444 |
|
|
htab->spltlittbl = bfd_make_section_with_flags (dynobj, ".xt.lit.plt",
|
1445 |
|
|
noalloc_flags);
|
1446 |
|
|
if (htab->spltlittbl == NULL
|
1447 |
|
|
|| ! bfd_set_section_alignment (dynobj, htab->spltlittbl, 2))
|
1448 |
|
|
return FALSE;
|
1449 |
|
|
|
1450 |
|
|
return TRUE;
|
1451 |
|
|
}
|
1452 |
|
|
|
1453 |
|
|
|
1454 |
|
|
static bfd_boolean
|
1455 |
|
|
add_extra_plt_sections (struct bfd_link_info *info, int count)
|
1456 |
|
|
{
|
1457 |
|
|
bfd *dynobj = elf_hash_table (info)->dynobj;
|
1458 |
|
|
int chunk;
|
1459 |
|
|
|
1460 |
|
|
/* Iterate over all chunks except 0 which uses the standard ".plt" and
|
1461 |
|
|
".got.plt" sections. */
|
1462 |
|
|
for (chunk = count / PLT_ENTRIES_PER_CHUNK; chunk > 0; chunk--)
|
1463 |
|
|
{
|
1464 |
|
|
char *sname;
|
1465 |
|
|
flagword flags;
|
1466 |
|
|
asection *s;
|
1467 |
|
|
|
1468 |
|
|
/* Stop when we find a section has already been created. */
|
1469 |
|
|
if (elf_xtensa_get_plt_section (info, chunk))
|
1470 |
|
|
break;
|
1471 |
|
|
|
1472 |
|
|
flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
|
1473 |
|
|
| SEC_LINKER_CREATED | SEC_READONLY);
|
1474 |
|
|
|
1475 |
|
|
sname = (char *) bfd_malloc (10);
|
1476 |
|
|
sprintf (sname, ".plt.%u", chunk);
|
1477 |
|
|
s = bfd_make_section_with_flags (dynobj, sname, flags | SEC_CODE);
|
1478 |
|
|
if (s == NULL
|
1479 |
|
|
|| ! bfd_set_section_alignment (dynobj, s, 2))
|
1480 |
|
|
return FALSE;
|
1481 |
|
|
|
1482 |
|
|
sname = (char *) bfd_malloc (14);
|
1483 |
|
|
sprintf (sname, ".got.plt.%u", chunk);
|
1484 |
|
|
s = bfd_make_section_with_flags (dynobj, sname, flags);
|
1485 |
|
|
if (s == NULL
|
1486 |
|
|
|| ! bfd_set_section_alignment (dynobj, s, 2))
|
1487 |
|
|
return FALSE;
|
1488 |
|
|
}
|
1489 |
|
|
|
1490 |
|
|
return TRUE;
|
1491 |
|
|
}
|
1492 |
|
|
|
1493 |
|
|
|
1494 |
|
|
/* Adjust a symbol defined by a dynamic object and referenced by a
|
1495 |
|
|
regular object. The current definition is in some section of the
|
1496 |
|
|
dynamic object, but we're not including those sections. We have to
|
1497 |
|
|
change the definition to something the rest of the link can
|
1498 |
|
|
understand. */
|
1499 |
|
|
|
1500 |
|
|
static bfd_boolean
|
1501 |
|
|
elf_xtensa_adjust_dynamic_symbol (struct bfd_link_info *info ATTRIBUTE_UNUSED,
|
1502 |
|
|
struct elf_link_hash_entry *h)
|
1503 |
|
|
{
|
1504 |
|
|
/* If this is a weak symbol, and there is a real definition, the
|
1505 |
|
|
processor independent code will have arranged for us to see the
|
1506 |
|
|
real definition first, and we can just use the same value. */
|
1507 |
|
|
if (h->u.weakdef)
|
1508 |
|
|
{
|
1509 |
|
|
BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
|
1510 |
|
|
|| h->u.weakdef->root.type == bfd_link_hash_defweak);
|
1511 |
|
|
h->root.u.def.section = h->u.weakdef->root.u.def.section;
|
1512 |
|
|
h->root.u.def.value = h->u.weakdef->root.u.def.value;
|
1513 |
|
|
return TRUE;
|
1514 |
|
|
}
|
1515 |
|
|
|
1516 |
|
|
/* This is a reference to a symbol defined by a dynamic object. The
|
1517 |
|
|
reference must go through the GOT, so there's no need for COPY relocs,
|
1518 |
|
|
.dynbss, etc. */
|
1519 |
|
|
|
1520 |
|
|
return TRUE;
|
1521 |
|
|
}
|
1522 |
|
|
|
1523 |
|
|
|
1524 |
|
|
static bfd_boolean
|
1525 |
|
|
elf_xtensa_allocate_dynrelocs (struct elf_link_hash_entry *h, void *arg)
|
1526 |
|
|
{
|
1527 |
|
|
struct bfd_link_info *info;
|
1528 |
|
|
struct elf_xtensa_link_hash_table *htab;
|
1529 |
|
|
struct elf_xtensa_link_hash_entry *eh = elf_xtensa_hash_entry (h);
|
1530 |
|
|
|
1531 |
|
|
if (h->root.type == bfd_link_hash_indirect)
|
1532 |
|
|
return TRUE;
|
1533 |
|
|
|
1534 |
|
|
if (h->root.type == bfd_link_hash_warning)
|
1535 |
|
|
h = (struct elf_link_hash_entry *) h->root.u.i.link;
|
1536 |
|
|
|
1537 |
|
|
info = (struct bfd_link_info *) arg;
|
1538 |
|
|
htab = elf_xtensa_hash_table (info);
|
1539 |
|
|
if (htab == NULL)
|
1540 |
|
|
return FALSE;
|
1541 |
|
|
|
1542 |
|
|
/* If we saw any use of an IE model for this symbol, we can then optimize
|
1543 |
|
|
away GOT entries for any TLSDESC_FN relocs. */
|
1544 |
|
|
if ((eh->tls_type & GOT_TLS_IE) != 0)
|
1545 |
|
|
{
|
1546 |
|
|
BFD_ASSERT (h->got.refcount >= eh->tlsfunc_refcount);
|
1547 |
|
|
h->got.refcount -= eh->tlsfunc_refcount;
|
1548 |
|
|
}
|
1549 |
|
|
|
1550 |
|
|
if (! elf_xtensa_dynamic_symbol_p (h, info))
|
1551 |
|
|
elf_xtensa_make_sym_local (info, h);
|
1552 |
|
|
|
1553 |
|
|
if (h->plt.refcount > 0)
|
1554 |
|
|
htab->srelplt->size += (h->plt.refcount * sizeof (Elf32_External_Rela));
|
1555 |
|
|
|
1556 |
|
|
if (h->got.refcount > 0)
|
1557 |
|
|
htab->srelgot->size += (h->got.refcount * sizeof (Elf32_External_Rela));
|
1558 |
|
|
|
1559 |
|
|
return TRUE;
|
1560 |
|
|
}
|
1561 |
|
|
|
1562 |
|
|
|
1563 |
|
|
static void
|
1564 |
|
|
elf_xtensa_allocate_local_got_size (struct bfd_link_info *info)
|
1565 |
|
|
{
|
1566 |
|
|
struct elf_xtensa_link_hash_table *htab;
|
1567 |
|
|
bfd *i;
|
1568 |
|
|
|
1569 |
|
|
htab = elf_xtensa_hash_table (info);
|
1570 |
|
|
if (htab == NULL)
|
1571 |
|
|
return;
|
1572 |
|
|
|
1573 |
|
|
for (i = info->input_bfds; i; i = i->link_next)
|
1574 |
|
|
{
|
1575 |
|
|
bfd_signed_vma *local_got_refcounts;
|
1576 |
|
|
bfd_size_type j, cnt;
|
1577 |
|
|
Elf_Internal_Shdr *symtab_hdr;
|
1578 |
|
|
|
1579 |
|
|
local_got_refcounts = elf_local_got_refcounts (i);
|
1580 |
|
|
if (!local_got_refcounts)
|
1581 |
|
|
continue;
|
1582 |
|
|
|
1583 |
|
|
symtab_hdr = &elf_tdata (i)->symtab_hdr;
|
1584 |
|
|
cnt = symtab_hdr->sh_info;
|
1585 |
|
|
|
1586 |
|
|
for (j = 0; j < cnt; ++j)
|
1587 |
|
|
{
|
1588 |
|
|
/* If we saw any use of an IE model for this symbol, we can
|
1589 |
|
|
then optimize away GOT entries for any TLSDESC_FN relocs. */
|
1590 |
|
|
if ((elf_xtensa_local_got_tls_type (i) [j] & GOT_TLS_IE) != 0)
|
1591 |
|
|
{
|
1592 |
|
|
bfd_signed_vma *tlsfunc_refcount
|
1593 |
|
|
= &elf_xtensa_local_tlsfunc_refcounts (i) [j];
|
1594 |
|
|
BFD_ASSERT (local_got_refcounts[j] >= *tlsfunc_refcount);
|
1595 |
|
|
local_got_refcounts[j] -= *tlsfunc_refcount;
|
1596 |
|
|
}
|
1597 |
|
|
|
1598 |
|
|
if (local_got_refcounts[j] > 0)
|
1599 |
|
|
htab->srelgot->size += (local_got_refcounts[j]
|
1600 |
|
|
* sizeof (Elf32_External_Rela));
|
1601 |
|
|
}
|
1602 |
|
|
}
|
1603 |
|
|
}
|
1604 |
|
|
|
1605 |
|
|
|
1606 |
|
|
/* Set the sizes of the dynamic sections. */
|
1607 |
|
|
|
1608 |
|
|
static bfd_boolean
|
1609 |
|
|
elf_xtensa_size_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED,
|
1610 |
|
|
struct bfd_link_info *info)
|
1611 |
|
|
{
|
1612 |
|
|
struct elf_xtensa_link_hash_table *htab;
|
1613 |
|
|
bfd *dynobj, *abfd;
|
1614 |
|
|
asection *s, *srelplt, *splt, *sgotplt, *srelgot, *spltlittbl, *sgotloc;
|
1615 |
|
|
bfd_boolean relplt, relgot;
|
1616 |
|
|
int plt_entries, plt_chunks, chunk;
|
1617 |
|
|
|
1618 |
|
|
plt_entries = 0;
|
1619 |
|
|
plt_chunks = 0;
|
1620 |
|
|
|
1621 |
|
|
htab = elf_xtensa_hash_table (info);
|
1622 |
|
|
if (htab == NULL)
|
1623 |
|
|
return FALSE;
|
1624 |
|
|
|
1625 |
|
|
dynobj = elf_hash_table (info)->dynobj;
|
1626 |
|
|
if (dynobj == NULL)
|
1627 |
|
|
abort ();
|
1628 |
|
|
srelgot = htab->srelgot;
|
1629 |
|
|
srelplt = htab->srelplt;
|
1630 |
|
|
|
1631 |
|
|
if (elf_hash_table (info)->dynamic_sections_created)
|
1632 |
|
|
{
|
1633 |
|
|
BFD_ASSERT (htab->srelgot != NULL
|
1634 |
|
|
&& htab->srelplt != NULL
|
1635 |
|
|
&& htab->sgot != NULL
|
1636 |
|
|
&& htab->spltlittbl != NULL
|
1637 |
|
|
&& htab->sgotloc != NULL);
|
1638 |
|
|
|
1639 |
|
|
/* Set the contents of the .interp section to the interpreter. */
|
1640 |
|
|
if (info->executable)
|
1641 |
|
|
{
|
1642 |
|
|
s = bfd_get_section_by_name (dynobj, ".interp");
|
1643 |
|
|
if (s == NULL)
|
1644 |
|
|
abort ();
|
1645 |
|
|
s->size = sizeof ELF_DYNAMIC_INTERPRETER;
|
1646 |
|
|
s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
|
1647 |
|
|
}
|
1648 |
|
|
|
1649 |
|
|
/* Allocate room for one word in ".got". */
|
1650 |
|
|
htab->sgot->size = 4;
|
1651 |
|
|
|
1652 |
|
|
/* Allocate space in ".rela.got" for literals that reference global
|
1653 |
|
|
symbols and space in ".rela.plt" for literals that have PLT
|
1654 |
|
|
entries. */
|
1655 |
|
|
elf_link_hash_traverse (elf_hash_table (info),
|
1656 |
|
|
elf_xtensa_allocate_dynrelocs,
|
1657 |
|
|
(void *) info);
|
1658 |
|
|
|
1659 |
|
|
/* If we are generating a shared object, we also need space in
|
1660 |
|
|
".rela.got" for R_XTENSA_RELATIVE relocs for literals that
|
1661 |
|
|
reference local symbols. */
|
1662 |
|
|
if (info->shared)
|
1663 |
|
|
elf_xtensa_allocate_local_got_size (info);
|
1664 |
|
|
|
1665 |
|
|
/* Allocate space in ".plt" to match the size of ".rela.plt". For
|
1666 |
|
|
each PLT entry, we need the PLT code plus a 4-byte literal.
|
1667 |
|
|
For each chunk of ".plt", we also need two more 4-byte
|
1668 |
|
|
literals, two corresponding entries in ".rela.got", and an
|
1669 |
|
|
8-byte entry in ".xt.lit.plt". */
|
1670 |
|
|
spltlittbl = htab->spltlittbl;
|
1671 |
|
|
plt_entries = srelplt->size / sizeof (Elf32_External_Rela);
|
1672 |
|
|
plt_chunks =
|
1673 |
|
|
(plt_entries + PLT_ENTRIES_PER_CHUNK - 1) / PLT_ENTRIES_PER_CHUNK;
|
1674 |
|
|
|
1675 |
|
|
/* Iterate over all the PLT chunks, including any extra sections
|
1676 |
|
|
created earlier because the initial count of PLT relocations
|
1677 |
|
|
was an overestimate. */
|
1678 |
|
|
for (chunk = 0;
|
1679 |
|
|
(splt = elf_xtensa_get_plt_section (info, chunk)) != NULL;
|
1680 |
|
|
chunk++)
|
1681 |
|
|
{
|
1682 |
|
|
int chunk_entries;
|
1683 |
|
|
|
1684 |
|
|
sgotplt = elf_xtensa_get_gotplt_section (info, chunk);
|
1685 |
|
|
BFD_ASSERT (sgotplt != NULL);
|
1686 |
|
|
|
1687 |
|
|
if (chunk < plt_chunks - 1)
|
1688 |
|
|
chunk_entries = PLT_ENTRIES_PER_CHUNK;
|
1689 |
|
|
else if (chunk == plt_chunks - 1)
|
1690 |
|
|
chunk_entries = plt_entries - (chunk * PLT_ENTRIES_PER_CHUNK);
|
1691 |
|
|
else
|
1692 |
|
|
chunk_entries = 0;
|
1693 |
|
|
|
1694 |
|
|
if (chunk_entries != 0)
|
1695 |
|
|
{
|
1696 |
|
|
sgotplt->size = 4 * (chunk_entries + 2);
|
1697 |
|
|
splt->size = PLT_ENTRY_SIZE * chunk_entries;
|
1698 |
|
|
srelgot->size += 2 * sizeof (Elf32_External_Rela);
|
1699 |
|
|
spltlittbl->size += 8;
|
1700 |
|
|
}
|
1701 |
|
|
else
|
1702 |
|
|
{
|
1703 |
|
|
sgotplt->size = 0;
|
1704 |
|
|
splt->size = 0;
|
1705 |
|
|
}
|
1706 |
|
|
}
|
1707 |
|
|
|
1708 |
|
|
/* Allocate space in ".got.loc" to match the total size of all the
|
1709 |
|
|
literal tables. */
|
1710 |
|
|
sgotloc = htab->sgotloc;
|
1711 |
|
|
sgotloc->size = spltlittbl->size;
|
1712 |
|
|
for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link_next)
|
1713 |
|
|
{
|
1714 |
|
|
if (abfd->flags & DYNAMIC)
|
1715 |
|
|
continue;
|
1716 |
|
|
for (s = abfd->sections; s != NULL; s = s->next)
|
1717 |
|
|
{
|
1718 |
|
|
if (! elf_discarded_section (s)
|
1719 |
|
|
&& xtensa_is_littable_section (s)
|
1720 |
|
|
&& s != spltlittbl)
|
1721 |
|
|
sgotloc->size += s->size;
|
1722 |
|
|
}
|
1723 |
|
|
}
|
1724 |
|
|
}
|
1725 |
|
|
|
1726 |
|
|
/* Allocate memory for dynamic sections. */
|
1727 |
|
|
relplt = FALSE;
|
1728 |
|
|
relgot = FALSE;
|
1729 |
|
|
for (s = dynobj->sections; s != NULL; s = s->next)
|
1730 |
|
|
{
|
1731 |
|
|
const char *name;
|
1732 |
|
|
|
1733 |
|
|
if ((s->flags & SEC_LINKER_CREATED) == 0)
|
1734 |
|
|
continue;
|
1735 |
|
|
|
1736 |
|
|
/* It's OK to base decisions on the section name, because none
|
1737 |
|
|
of the dynobj section names depend upon the input files. */
|
1738 |
|
|
name = bfd_get_section_name (dynobj, s);
|
1739 |
|
|
|
1740 |
|
|
if (CONST_STRNEQ (name, ".rela"))
|
1741 |
|
|
{
|
1742 |
|
|
if (s->size != 0)
|
1743 |
|
|
{
|
1744 |
|
|
if (strcmp (name, ".rela.plt") == 0)
|
1745 |
|
|
relplt = TRUE;
|
1746 |
|
|
else if (strcmp (name, ".rela.got") == 0)
|
1747 |
|
|
relgot = TRUE;
|
1748 |
|
|
|
1749 |
|
|
/* We use the reloc_count field as a counter if we need
|
1750 |
|
|
to copy relocs into the output file. */
|
1751 |
|
|
s->reloc_count = 0;
|
1752 |
|
|
}
|
1753 |
|
|
}
|
1754 |
|
|
else if (! CONST_STRNEQ (name, ".plt.")
|
1755 |
|
|
&& ! CONST_STRNEQ (name, ".got.plt.")
|
1756 |
|
|
&& strcmp (name, ".got") != 0
|
1757 |
|
|
&& strcmp (name, ".plt") != 0
|
1758 |
|
|
&& strcmp (name, ".got.plt") != 0
|
1759 |
|
|
&& strcmp (name, ".xt.lit.plt") != 0
|
1760 |
|
|
&& strcmp (name, ".got.loc") != 0)
|
1761 |
|
|
{
|
1762 |
|
|
/* It's not one of our sections, so don't allocate space. */
|
1763 |
|
|
continue;
|
1764 |
|
|
}
|
1765 |
|
|
|
1766 |
|
|
if (s->size == 0)
|
1767 |
|
|
{
|
1768 |
|
|
/* If we don't need this section, strip it from the output
|
1769 |
|
|
file. We must create the ".plt*" and ".got.plt*"
|
1770 |
|
|
sections in create_dynamic_sections and/or check_relocs
|
1771 |
|
|
based on a conservative estimate of the PLT relocation
|
1772 |
|
|
count, because the sections must be created before the
|
1773 |
|
|
linker maps input sections to output sections. The
|
1774 |
|
|
linker does that before size_dynamic_sections, where we
|
1775 |
|
|
compute the exact size of the PLT, so there may be more
|
1776 |
|
|
of these sections than are actually needed. */
|
1777 |
|
|
s->flags |= SEC_EXCLUDE;
|
1778 |
|
|
}
|
1779 |
|
|
else if ((s->flags & SEC_HAS_CONTENTS) != 0)
|
1780 |
|
|
{
|
1781 |
|
|
/* Allocate memory for the section contents. */
|
1782 |
|
|
s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->size);
|
1783 |
|
|
if (s->contents == NULL)
|
1784 |
|
|
return FALSE;
|
1785 |
|
|
}
|
1786 |
|
|
}
|
1787 |
|
|
|
1788 |
|
|
if (elf_hash_table (info)->dynamic_sections_created)
|
1789 |
|
|
{
|
1790 |
|
|
/* Add the special XTENSA_RTLD relocations now. The offsets won't be
|
1791 |
|
|
known until finish_dynamic_sections, but we need to get the relocs
|
1792 |
|
|
in place before they are sorted. */
|
1793 |
|
|
for (chunk = 0; chunk < plt_chunks; chunk++)
|
1794 |
|
|
{
|
1795 |
|
|
Elf_Internal_Rela irela;
|
1796 |
|
|
bfd_byte *loc;
|
1797 |
|
|
|
1798 |
|
|
irela.r_offset = 0;
|
1799 |
|
|
irela.r_info = ELF32_R_INFO (0, R_XTENSA_RTLD);
|
1800 |
|
|
irela.r_addend = 0;
|
1801 |
|
|
|
1802 |
|
|
loc = (srelgot->contents
|
1803 |
|
|
+ srelgot->reloc_count * sizeof (Elf32_External_Rela));
|
1804 |
|
|
bfd_elf32_swap_reloca_out (output_bfd, &irela, loc);
|
1805 |
|
|
bfd_elf32_swap_reloca_out (output_bfd, &irela,
|
1806 |
|
|
loc + sizeof (Elf32_External_Rela));
|
1807 |
|
|
srelgot->reloc_count += 2;
|
1808 |
|
|
}
|
1809 |
|
|
|
1810 |
|
|
/* Add some entries to the .dynamic section. We fill in the
|
1811 |
|
|
values later, in elf_xtensa_finish_dynamic_sections, but we
|
1812 |
|
|
must add the entries now so that we get the correct size for
|
1813 |
|
|
the .dynamic section. The DT_DEBUG entry is filled in by the
|
1814 |
|
|
dynamic linker and used by the debugger. */
|
1815 |
|
|
#define add_dynamic_entry(TAG, VAL) \
|
1816 |
|
|
_bfd_elf_add_dynamic_entry (info, TAG, VAL)
|
1817 |
|
|
|
1818 |
|
|
if (info->executable)
|
1819 |
|
|
{
|
1820 |
|
|
if (!add_dynamic_entry (DT_DEBUG, 0))
|
1821 |
|
|
return FALSE;
|
1822 |
|
|
}
|
1823 |
|
|
|
1824 |
|
|
if (relplt)
|
1825 |
|
|
{
|
1826 |
|
|
if (!add_dynamic_entry (DT_PLTRELSZ, 0)
|
1827 |
|
|
|| !add_dynamic_entry (DT_PLTREL, DT_RELA)
|
1828 |
|
|
|| !add_dynamic_entry (DT_JMPREL, 0))
|
1829 |
|
|
return FALSE;
|
1830 |
|
|
}
|
1831 |
|
|
|
1832 |
|
|
if (relgot)
|
1833 |
|
|
{
|
1834 |
|
|
if (!add_dynamic_entry (DT_RELA, 0)
|
1835 |
|
|
|| !add_dynamic_entry (DT_RELASZ, 0)
|
1836 |
|
|
|| !add_dynamic_entry (DT_RELAENT, sizeof (Elf32_External_Rela)))
|
1837 |
|
|
return FALSE;
|
1838 |
|
|
}
|
1839 |
|
|
|
1840 |
|
|
if (!add_dynamic_entry (DT_PLTGOT, 0)
|
1841 |
|
|
|| !add_dynamic_entry (DT_XTENSA_GOT_LOC_OFF, 0)
|
1842 |
|
|
|| !add_dynamic_entry (DT_XTENSA_GOT_LOC_SZ, 0))
|
1843 |
|
|
return FALSE;
|
1844 |
|
|
}
|
1845 |
|
|
#undef add_dynamic_entry
|
1846 |
|
|
|
1847 |
|
|
return TRUE;
|
1848 |
|
|
}
|
1849 |
|
|
|
1850 |
|
|
static bfd_boolean
|
1851 |
|
|
elf_xtensa_always_size_sections (bfd *output_bfd,
|
1852 |
|
|
struct bfd_link_info *info)
|
1853 |
|
|
{
|
1854 |
|
|
struct elf_xtensa_link_hash_table *htab;
|
1855 |
|
|
asection *tls_sec;
|
1856 |
|
|
|
1857 |
|
|
htab = elf_xtensa_hash_table (info);
|
1858 |
|
|
if (htab == NULL)
|
1859 |
|
|
return FALSE;
|
1860 |
|
|
|
1861 |
|
|
tls_sec = htab->elf.tls_sec;
|
1862 |
|
|
|
1863 |
|
|
if (tls_sec && (htab->tlsbase->tls_type & GOT_TLS_ANY) != 0)
|
1864 |
|
|
{
|
1865 |
|
|
struct elf_link_hash_entry *tlsbase = &htab->tlsbase->elf;
|
1866 |
|
|
struct bfd_link_hash_entry *bh = &tlsbase->root;
|
1867 |
|
|
const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
|
1868 |
|
|
|
1869 |
|
|
tlsbase->type = STT_TLS;
|
1870 |
|
|
if (!(_bfd_generic_link_add_one_symbol
|
1871 |
|
|
(info, output_bfd, "_TLS_MODULE_BASE_", BSF_LOCAL,
|
1872 |
|
|
tls_sec, 0, NULL, FALSE,
|
1873 |
|
|
bed->collect, &bh)))
|
1874 |
|
|
return FALSE;
|
1875 |
|
|
tlsbase->def_regular = 1;
|
1876 |
|
|
tlsbase->other = STV_HIDDEN;
|
1877 |
|
|
(*bed->elf_backend_hide_symbol) (info, tlsbase, TRUE);
|
1878 |
|
|
}
|
1879 |
|
|
|
1880 |
|
|
return TRUE;
|
1881 |
|
|
}
|
1882 |
|
|
|
1883 |
|
|
|
1884 |
|
|
/* Return the base VMA address which should be subtracted from real addresses
|
1885 |
|
|
when resolving @dtpoff relocation.
|
1886 |
|
|
This is PT_TLS segment p_vaddr. */
|
1887 |
|
|
|
1888 |
|
|
static bfd_vma
|
1889 |
|
|
dtpoff_base (struct bfd_link_info *info)
|
1890 |
|
|
{
|
1891 |
|
|
/* If tls_sec is NULL, we should have signalled an error already. */
|
1892 |
|
|
if (elf_hash_table (info)->tls_sec == NULL)
|
1893 |
|
|
return 0;
|
1894 |
|
|
return elf_hash_table (info)->tls_sec->vma;
|
1895 |
|
|
}
|
1896 |
|
|
|
1897 |
|
|
/* Return the relocation value for @tpoff relocation
|
1898 |
|
|
if STT_TLS virtual address is ADDRESS. */
|
1899 |
|
|
|
1900 |
|
|
static bfd_vma
|
1901 |
|
|
tpoff (struct bfd_link_info *info, bfd_vma address)
|
1902 |
|
|
{
|
1903 |
|
|
struct elf_link_hash_table *htab = elf_hash_table (info);
|
1904 |
|
|
bfd_vma base;
|
1905 |
|
|
|
1906 |
|
|
/* If tls_sec is NULL, we should have signalled an error already. */
|
1907 |
|
|
if (htab->tls_sec == NULL)
|
1908 |
|
|
return 0;
|
1909 |
|
|
base = align_power ((bfd_vma) TCB_SIZE, htab->tls_sec->alignment_power);
|
1910 |
|
|
return address - htab->tls_sec->vma + base;
|
1911 |
|
|
}
|
1912 |
|
|
|
1913 |
|
|
/* Perform the specified relocation. The instruction at (contents + address)
|
1914 |
|
|
is modified to set one operand to represent the value in "relocation". The
|
1915 |
|
|
operand position is determined by the relocation type recorded in the
|
1916 |
|
|
howto. */
|
1917 |
|
|
|
1918 |
|
|
#define CALL_SEGMENT_BITS (30)
|
1919 |
|
|
#define CALL_SEGMENT_SIZE (1 << CALL_SEGMENT_BITS)
|
1920 |
|
|
|
1921 |
|
|
static bfd_reloc_status_type
|
1922 |
|
|
elf_xtensa_do_reloc (reloc_howto_type *howto,
|
1923 |
|
|
bfd *abfd,
|
1924 |
|
|
asection *input_section,
|
1925 |
|
|
bfd_vma relocation,
|
1926 |
|
|
bfd_byte *contents,
|
1927 |
|
|
bfd_vma address,
|
1928 |
|
|
bfd_boolean is_weak_undef,
|
1929 |
|
|
char **error_message)
|
1930 |
|
|
{
|
1931 |
|
|
xtensa_format fmt;
|
1932 |
|
|
xtensa_opcode opcode;
|
1933 |
|
|
xtensa_isa isa = xtensa_default_isa;
|
1934 |
|
|
static xtensa_insnbuf ibuff = NULL;
|
1935 |
|
|
static xtensa_insnbuf sbuff = NULL;
|
1936 |
|
|
bfd_vma self_address;
|
1937 |
|
|
bfd_size_type input_size;
|
1938 |
|
|
int opnd, slot;
|
1939 |
|
|
uint32 newval;
|
1940 |
|
|
|
1941 |
|
|
if (!ibuff)
|
1942 |
|
|
{
|
1943 |
|
|
ibuff = xtensa_insnbuf_alloc (isa);
|
1944 |
|
|
sbuff = xtensa_insnbuf_alloc (isa);
|
1945 |
|
|
}
|
1946 |
|
|
|
1947 |
|
|
input_size = bfd_get_section_limit (abfd, input_section);
|
1948 |
|
|
|
1949 |
|
|
/* Calculate the PC address for this instruction. */
|
1950 |
|
|
self_address = (input_section->output_section->vma
|
1951 |
|
|
+ input_section->output_offset
|
1952 |
|
|
+ address);
|
1953 |
|
|
|
1954 |
|
|
switch (howto->type)
|
1955 |
|
|
{
|
1956 |
|
|
case R_XTENSA_NONE:
|
1957 |
|
|
case R_XTENSA_DIFF8:
|
1958 |
|
|
case R_XTENSA_DIFF16:
|
1959 |
|
|
case R_XTENSA_DIFF32:
|
1960 |
|
|
case R_XTENSA_TLS_FUNC:
|
1961 |
|
|
case R_XTENSA_TLS_ARG:
|
1962 |
|
|
case R_XTENSA_TLS_CALL:
|
1963 |
|
|
return bfd_reloc_ok;
|
1964 |
|
|
|
1965 |
|
|
case R_XTENSA_ASM_EXPAND:
|
1966 |
|
|
if (!is_weak_undef)
|
1967 |
|
|
{
|
1968 |
|
|
/* Check for windowed CALL across a 1GB boundary. */
|
1969 |
|
|
opcode = get_expanded_call_opcode (contents + address,
|
1970 |
|
|
input_size - address, 0);
|
1971 |
|
|
if (is_windowed_call_opcode (opcode))
|
1972 |
|
|
{
|
1973 |
|
|
if ((self_address >> CALL_SEGMENT_BITS)
|
1974 |
|
|
!= (relocation >> CALL_SEGMENT_BITS))
|
1975 |
|
|
{
|
1976 |
|
|
*error_message = "windowed longcall crosses 1GB boundary; "
|
1977 |
|
|
"return may fail";
|
1978 |
|
|
return bfd_reloc_dangerous;
|
1979 |
|
|
}
|
1980 |
|
|
}
|
1981 |
|
|
}
|
1982 |
|
|
return bfd_reloc_ok;
|
1983 |
|
|
|
1984 |
|
|
case R_XTENSA_ASM_SIMPLIFY:
|
1985 |
|
|
{
|
1986 |
|
|
/* Convert the L32R/CALLX to CALL. */
|
1987 |
|
|
bfd_reloc_status_type retval =
|
1988 |
|
|
elf_xtensa_do_asm_simplify (contents, address, input_size,
|
1989 |
|
|
error_message);
|
1990 |
|
|
if (retval != bfd_reloc_ok)
|
1991 |
|
|
return bfd_reloc_dangerous;
|
1992 |
|
|
|
1993 |
|
|
/* The CALL needs to be relocated. Continue below for that part. */
|
1994 |
|
|
address += 3;
|
1995 |
|
|
self_address += 3;
|
1996 |
|
|
howto = &elf_howto_table[(unsigned) R_XTENSA_SLOT0_OP ];
|
1997 |
|
|
}
|
1998 |
|
|
break;
|
1999 |
|
|
|
2000 |
|
|
case R_XTENSA_32:
|
2001 |
|
|
{
|
2002 |
|
|
bfd_vma x;
|
2003 |
|
|
x = bfd_get_32 (abfd, contents + address);
|
2004 |
|
|
x = x + relocation;
|
2005 |
|
|
bfd_put_32 (abfd, x, contents + address);
|
2006 |
|
|
}
|
2007 |
|
|
return bfd_reloc_ok;
|
2008 |
|
|
|
2009 |
|
|
case R_XTENSA_32_PCREL:
|
2010 |
|
|
bfd_put_32 (abfd, relocation - self_address, contents + address);
|
2011 |
|
|
return bfd_reloc_ok;
|
2012 |
|
|
|
2013 |
|
|
case R_XTENSA_PLT:
|
2014 |
|
|
case R_XTENSA_TLSDESC_FN:
|
2015 |
|
|
case R_XTENSA_TLSDESC_ARG:
|
2016 |
|
|
case R_XTENSA_TLS_DTPOFF:
|
2017 |
|
|
case R_XTENSA_TLS_TPOFF:
|
2018 |
|
|
bfd_put_32 (abfd, relocation, contents + address);
|
2019 |
|
|
return bfd_reloc_ok;
|
2020 |
|
|
}
|
2021 |
|
|
|
2022 |
|
|
/* Only instruction slot-specific relocations handled below.... */
|
2023 |
|
|
slot = get_relocation_slot (howto->type);
|
2024 |
|
|
if (slot == XTENSA_UNDEFINED)
|
2025 |
|
|
{
|
2026 |
|
|
*error_message = "unexpected relocation";
|
2027 |
|
|
return bfd_reloc_dangerous;
|
2028 |
|
|
}
|
2029 |
|
|
|
2030 |
|
|
/* Read the instruction into a buffer and decode the opcode. */
|
2031 |
|
|
xtensa_insnbuf_from_chars (isa, ibuff, contents + address,
|
2032 |
|
|
input_size - address);
|
2033 |
|
|
fmt = xtensa_format_decode (isa, ibuff);
|
2034 |
|
|
if (fmt == XTENSA_UNDEFINED)
|
2035 |
|
|
{
|
2036 |
|
|
*error_message = "cannot decode instruction format";
|
2037 |
|
|
return bfd_reloc_dangerous;
|
2038 |
|
|
}
|
2039 |
|
|
|
2040 |
|
|
xtensa_format_get_slot (isa, fmt, slot, ibuff, sbuff);
|
2041 |
|
|
|
2042 |
|
|
opcode = xtensa_opcode_decode (isa, fmt, slot, sbuff);
|
2043 |
|
|
if (opcode == XTENSA_UNDEFINED)
|
2044 |
|
|
{
|
2045 |
|
|
*error_message = "cannot decode instruction opcode";
|
2046 |
|
|
return bfd_reloc_dangerous;
|
2047 |
|
|
}
|
2048 |
|
|
|
2049 |
|
|
/* Check for opcode-specific "alternate" relocations. */
|
2050 |
|
|
if (is_alt_relocation (howto->type))
|
2051 |
|
|
{
|
2052 |
|
|
if (opcode == get_l32r_opcode ())
|
2053 |
|
|
{
|
2054 |
|
|
/* Handle the special-case of non-PC-relative L32R instructions. */
|
2055 |
|
|
bfd *output_bfd = input_section->output_section->owner;
|
2056 |
|
|
asection *lit4_sec = bfd_get_section_by_name (output_bfd, ".lit4");
|
2057 |
|
|
if (!lit4_sec)
|
2058 |
|
|
{
|
2059 |
|
|
*error_message = "relocation references missing .lit4 section";
|
2060 |
|
|
return bfd_reloc_dangerous;
|
2061 |
|
|
}
|
2062 |
|
|
self_address = ((lit4_sec->vma & ~0xfff)
|
2063 |
|
|
+ 0x40000 - 3); /* -3 to compensate for do_reloc */
|
2064 |
|
|
newval = relocation;
|
2065 |
|
|
opnd = 1;
|
2066 |
|
|
}
|
2067 |
|
|
else if (opcode == get_const16_opcode ())
|
2068 |
|
|
{
|
2069 |
|
|
/* ALT used for high 16 bits. */
|
2070 |
|
|
newval = relocation >> 16;
|
2071 |
|
|
opnd = 1;
|
2072 |
|
|
}
|
2073 |
|
|
else
|
2074 |
|
|
{
|
2075 |
|
|
/* No other "alternate" relocations currently defined. */
|
2076 |
|
|
*error_message = "unexpected relocation";
|
2077 |
|
|
return bfd_reloc_dangerous;
|
2078 |
|
|
}
|
2079 |
|
|
}
|
2080 |
|
|
else /* Not an "alternate" relocation.... */
|
2081 |
|
|
{
|
2082 |
|
|
if (opcode == get_const16_opcode ())
|
2083 |
|
|
{
|
2084 |
|
|
newval = relocation & 0xffff;
|
2085 |
|
|
opnd = 1;
|
2086 |
|
|
}
|
2087 |
|
|
else
|
2088 |
|
|
{
|
2089 |
|
|
/* ...normal PC-relative relocation.... */
|
2090 |
|
|
|
2091 |
|
|
/* Determine which operand is being relocated. */
|
2092 |
|
|
opnd = get_relocation_opnd (opcode, howto->type);
|
2093 |
|
|
if (opnd == XTENSA_UNDEFINED)
|
2094 |
|
|
{
|
2095 |
|
|
*error_message = "unexpected relocation";
|
2096 |
|
|
return bfd_reloc_dangerous;
|
2097 |
|
|
}
|
2098 |
|
|
|
2099 |
|
|
if (!howto->pc_relative)
|
2100 |
|
|
{
|
2101 |
|
|
*error_message = "expected PC-relative relocation";
|
2102 |
|
|
return bfd_reloc_dangerous;
|
2103 |
|
|
}
|
2104 |
|
|
|
2105 |
|
|
newval = relocation;
|
2106 |
|
|
}
|
2107 |
|
|
}
|
2108 |
|
|
|
2109 |
|
|
/* Apply the relocation. */
|
2110 |
|
|
if (xtensa_operand_do_reloc (isa, opcode, opnd, &newval, self_address)
|
2111 |
|
|
|| xtensa_operand_encode (isa, opcode, opnd, &newval)
|
2112 |
|
|
|| xtensa_operand_set_field (isa, opcode, opnd, fmt, slot,
|
2113 |
|
|
sbuff, newval))
|
2114 |
|
|
{
|
2115 |
|
|
const char *opname = xtensa_opcode_name (isa, opcode);
|
2116 |
|
|
const char *msg;
|
2117 |
|
|
|
2118 |
|
|
msg = "cannot encode";
|
2119 |
|
|
if (is_direct_call_opcode (opcode))
|
2120 |
|
|
{
|
2121 |
|
|
if ((relocation & 0x3) != 0)
|
2122 |
|
|
msg = "misaligned call target";
|
2123 |
|
|
else
|
2124 |
|
|
msg = "call target out of range";
|
2125 |
|
|
}
|
2126 |
|
|
else if (opcode == get_l32r_opcode ())
|
2127 |
|
|
{
|
2128 |
|
|
if ((relocation & 0x3) != 0)
|
2129 |
|
|
msg = "misaligned literal target";
|
2130 |
|
|
else if (is_alt_relocation (howto->type))
|
2131 |
|
|
msg = "literal target out of range (too many literals)";
|
2132 |
|
|
else if (self_address > relocation)
|
2133 |
|
|
msg = "literal target out of range (try using text-section-literals)";
|
2134 |
|
|
else
|
2135 |
|
|
msg = "literal placed after use";
|
2136 |
|
|
}
|
2137 |
|
|
|
2138 |
|
|
*error_message = vsprint_msg (opname, ": %s", strlen (msg) + 2, msg);
|
2139 |
|
|
return bfd_reloc_dangerous;
|
2140 |
|
|
}
|
2141 |
|
|
|
2142 |
|
|
/* Check for calls across 1GB boundaries. */
|
2143 |
|
|
if (is_direct_call_opcode (opcode)
|
2144 |
|
|
&& is_windowed_call_opcode (opcode))
|
2145 |
|
|
{
|
2146 |
|
|
if ((self_address >> CALL_SEGMENT_BITS)
|
2147 |
|
|
!= (relocation >> CALL_SEGMENT_BITS))
|
2148 |
|
|
{
|
2149 |
|
|
*error_message =
|
2150 |
|
|
"windowed call crosses 1GB boundary; return may fail";
|
2151 |
|
|
return bfd_reloc_dangerous;
|
2152 |
|
|
}
|
2153 |
|
|
}
|
2154 |
|
|
|
2155 |
|
|
/* Write the modified instruction back out of the buffer. */
|
2156 |
|
|
xtensa_format_set_slot (isa, fmt, slot, ibuff, sbuff);
|
2157 |
|
|
xtensa_insnbuf_to_chars (isa, ibuff, contents + address,
|
2158 |
|
|
input_size - address);
|
2159 |
|
|
return bfd_reloc_ok;
|
2160 |
|
|
}
|
2161 |
|
|
|
2162 |
|
|
|
2163 |
|
|
static char *
|
2164 |
|
|
vsprint_msg (const char *origmsg, const char *fmt, int arglen, ...)
|
2165 |
|
|
{
|
2166 |
|
|
/* To reduce the size of the memory leak,
|
2167 |
|
|
we only use a single message buffer. */
|
2168 |
|
|
static bfd_size_type alloc_size = 0;
|
2169 |
|
|
static char *message = NULL;
|
2170 |
|
|
bfd_size_type orig_len, len = 0;
|
2171 |
|
|
bfd_boolean is_append;
|
2172 |
|
|
|
2173 |
|
|
VA_OPEN (ap, arglen);
|
2174 |
|
|
VA_FIXEDARG (ap, const char *, origmsg);
|
2175 |
|
|
|
2176 |
|
|
is_append = (origmsg == message);
|
2177 |
|
|
|
2178 |
|
|
orig_len = strlen (origmsg);
|
2179 |
|
|
len = orig_len + strlen (fmt) + arglen + 20;
|
2180 |
|
|
if (len > alloc_size)
|
2181 |
|
|
{
|
2182 |
|
|
message = (char *) bfd_realloc_or_free (message, len);
|
2183 |
|
|
alloc_size = len;
|
2184 |
|
|
}
|
2185 |
|
|
if (message != NULL)
|
2186 |
|
|
{
|
2187 |
|
|
if (!is_append)
|
2188 |
|
|
memcpy (message, origmsg, orig_len);
|
2189 |
|
|
vsprintf (message + orig_len, fmt, ap);
|
2190 |
|
|
}
|
2191 |
|
|
VA_CLOSE (ap);
|
2192 |
|
|
return message;
|
2193 |
|
|
}
|
2194 |
|
|
|
2195 |
|
|
|
2196 |
|
|
/* This function is registered as the "special_function" in the
|
2197 |
|
|
Xtensa howto for handling simplify operations.
|
2198 |
|
|
bfd_perform_relocation / bfd_install_relocation use it to
|
2199 |
|
|
perform (install) the specified relocation. Since this replaces the code
|
2200 |
|
|
in bfd_perform_relocation, it is basically an Xtensa-specific,
|
2201 |
|
|
stripped-down version of bfd_perform_relocation. */
|
2202 |
|
|
|
2203 |
|
|
static bfd_reloc_status_type
|
2204 |
|
|
bfd_elf_xtensa_reloc (bfd *abfd,
|
2205 |
|
|
arelent *reloc_entry,
|
2206 |
|
|
asymbol *symbol,
|
2207 |
|
|
void *data,
|
2208 |
|
|
asection *input_section,
|
2209 |
|
|
bfd *output_bfd,
|
2210 |
|
|
char **error_message)
|
2211 |
|
|
{
|
2212 |
|
|
bfd_vma relocation;
|
2213 |
|
|
bfd_reloc_status_type flag;
|
2214 |
|
|
bfd_size_type octets = reloc_entry->address * bfd_octets_per_byte (abfd);
|
2215 |
|
|
bfd_vma output_base = 0;
|
2216 |
|
|
reloc_howto_type *howto = reloc_entry->howto;
|
2217 |
|
|
asection *reloc_target_output_section;
|
2218 |
|
|
bfd_boolean is_weak_undef;
|
2219 |
|
|
|
2220 |
|
|
if (!xtensa_default_isa)
|
2221 |
|
|
xtensa_default_isa = xtensa_isa_init (0, 0);
|
2222 |
|
|
|
2223 |
|
|
/* ELF relocs are against symbols. If we are producing relocatable
|
2224 |
|
|
output, and the reloc is against an external symbol, the resulting
|
2225 |
|
|
reloc will also be against the same symbol. In such a case, we
|
2226 |
|
|
don't want to change anything about the way the reloc is handled,
|
2227 |
|
|
since it will all be done at final link time. This test is similar
|
2228 |
|
|
to what bfd_elf_generic_reloc does except that it lets relocs with
|
2229 |
|
|
howto->partial_inplace go through even if the addend is non-zero.
|
2230 |
|
|
(The real problem is that partial_inplace is set for XTENSA_32
|
2231 |
|
|
relocs to begin with, but that's a long story and there's little we
|
2232 |
|
|
can do about it now....) */
|
2233 |
|
|
|
2234 |
|
|
if (output_bfd && (symbol->flags & BSF_SECTION_SYM) == 0)
|
2235 |
|
|
{
|
2236 |
|
|
reloc_entry->address += input_section->output_offset;
|
2237 |
|
|
return bfd_reloc_ok;
|
2238 |
|
|
}
|
2239 |
|
|
|
2240 |
|
|
/* Is the address of the relocation really within the section? */
|
2241 |
|
|
if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
|
2242 |
|
|
return bfd_reloc_outofrange;
|
2243 |
|
|
|
2244 |
|
|
/* Work out which section the relocation is targeted at and the
|
2245 |
|
|
initial relocation command value. */
|
2246 |
|
|
|
2247 |
|
|
/* Get symbol value. (Common symbols are special.) */
|
2248 |
|
|
if (bfd_is_com_section (symbol->section))
|
2249 |
|
|
relocation = 0;
|
2250 |
|
|
else
|
2251 |
|
|
relocation = symbol->value;
|
2252 |
|
|
|
2253 |
|
|
reloc_target_output_section = symbol->section->output_section;
|
2254 |
|
|
|
2255 |
|
|
/* Convert input-section-relative symbol value to absolute. */
|
2256 |
|
|
if ((output_bfd && !howto->partial_inplace)
|
2257 |
|
|
|| reloc_target_output_section == NULL)
|
2258 |
|
|
output_base = 0;
|
2259 |
|
|
else
|
2260 |
|
|
output_base = reloc_target_output_section->vma;
|
2261 |
|
|
|
2262 |
|
|
relocation += output_base + symbol->section->output_offset;
|
2263 |
|
|
|
2264 |
|
|
/* Add in supplied addend. */
|
2265 |
|
|
relocation += reloc_entry->addend;
|
2266 |
|
|
|
2267 |
|
|
/* Here the variable relocation holds the final address of the
|
2268 |
|
|
symbol we are relocating against, plus any addend. */
|
2269 |
|
|
if (output_bfd)
|
2270 |
|
|
{
|
2271 |
|
|
if (!howto->partial_inplace)
|
2272 |
|
|
{
|
2273 |
|
|
/* This is a partial relocation, and we want to apply the relocation
|
2274 |
|
|
to the reloc entry rather than the raw data. Everything except
|
2275 |
|
|
relocations against section symbols has already been handled
|
2276 |
|
|
above. */
|
2277 |
|
|
|
2278 |
|
|
BFD_ASSERT (symbol->flags & BSF_SECTION_SYM);
|
2279 |
|
|
reloc_entry->addend = relocation;
|
2280 |
|
|
reloc_entry->address += input_section->output_offset;
|
2281 |
|
|
return bfd_reloc_ok;
|
2282 |
|
|
}
|
2283 |
|
|
else
|
2284 |
|
|
{
|
2285 |
|
|
reloc_entry->address += input_section->output_offset;
|
2286 |
|
|
reloc_entry->addend = 0;
|
2287 |
|
|
}
|
2288 |
|
|
}
|
2289 |
|
|
|
2290 |
|
|
is_weak_undef = (bfd_is_und_section (symbol->section)
|
2291 |
|
|
&& (symbol->flags & BSF_WEAK) != 0);
|
2292 |
|
|
flag = elf_xtensa_do_reloc (howto, abfd, input_section, relocation,
|
2293 |
|
|
(bfd_byte *) data, (bfd_vma) octets,
|
2294 |
|
|
is_weak_undef, error_message);
|
2295 |
|
|
|
2296 |
|
|
if (flag == bfd_reloc_dangerous)
|
2297 |
|
|
{
|
2298 |
|
|
/* Add the symbol name to the error message. */
|
2299 |
|
|
if (! *error_message)
|
2300 |
|
|
*error_message = "";
|
2301 |
|
|
*error_message = vsprint_msg (*error_message, ": (%s + 0x%lx)",
|
2302 |
|
|
strlen (symbol->name) + 17,
|
2303 |
|
|
symbol->name,
|
2304 |
|
|
(unsigned long) reloc_entry->addend);
|
2305 |
|
|
}
|
2306 |
|
|
|
2307 |
|
|
return flag;
|
2308 |
|
|
}
|
2309 |
|
|
|
2310 |
|
|
|
2311 |
|
|
/* Set up an entry in the procedure linkage table. */
|
2312 |
|
|
|
2313 |
|
|
static bfd_vma
|
2314 |
|
|
elf_xtensa_create_plt_entry (struct bfd_link_info *info,
|
2315 |
|
|
bfd *output_bfd,
|
2316 |
|
|
unsigned reloc_index)
|
2317 |
|
|
{
|
2318 |
|
|
asection *splt, *sgotplt;
|
2319 |
|
|
bfd_vma plt_base, got_base;
|
2320 |
|
|
bfd_vma code_offset, lit_offset;
|
2321 |
|
|
int chunk;
|
2322 |
|
|
|
2323 |
|
|
chunk = reloc_index / PLT_ENTRIES_PER_CHUNK;
|
2324 |
|
|
splt = elf_xtensa_get_plt_section (info, chunk);
|
2325 |
|
|
sgotplt = elf_xtensa_get_gotplt_section (info, chunk);
|
2326 |
|
|
BFD_ASSERT (splt != NULL && sgotplt != NULL);
|
2327 |
|
|
|
2328 |
|
|
plt_base = splt->output_section->vma + splt->output_offset;
|
2329 |
|
|
got_base = sgotplt->output_section->vma + sgotplt->output_offset;
|
2330 |
|
|
|
2331 |
|
|
lit_offset = 8 + (reloc_index % PLT_ENTRIES_PER_CHUNK) * 4;
|
2332 |
|
|
code_offset = (reloc_index % PLT_ENTRIES_PER_CHUNK) * PLT_ENTRY_SIZE;
|
2333 |
|
|
|
2334 |
|
|
/* Fill in the literal entry. This is the offset of the dynamic
|
2335 |
|
|
relocation entry. */
|
2336 |
|
|
bfd_put_32 (output_bfd, reloc_index * sizeof (Elf32_External_Rela),
|
2337 |
|
|
sgotplt->contents + lit_offset);
|
2338 |
|
|
|
2339 |
|
|
/* Fill in the entry in the procedure linkage table. */
|
2340 |
|
|
memcpy (splt->contents + code_offset,
|
2341 |
|
|
(bfd_big_endian (output_bfd)
|
2342 |
|
|
? elf_xtensa_be_plt_entry
|
2343 |
|
|
: elf_xtensa_le_plt_entry),
|
2344 |
|
|
PLT_ENTRY_SIZE);
|
2345 |
|
|
bfd_put_16 (output_bfd, l32r_offset (got_base + 0,
|
2346 |
|
|
plt_base + code_offset + 3),
|
2347 |
|
|
splt->contents + code_offset + 4);
|
2348 |
|
|
bfd_put_16 (output_bfd, l32r_offset (got_base + 4,
|
2349 |
|
|
plt_base + code_offset + 6),
|
2350 |
|
|
splt->contents + code_offset + 7);
|
2351 |
|
|
bfd_put_16 (output_bfd, l32r_offset (got_base + lit_offset,
|
2352 |
|
|
plt_base + code_offset + 9),
|
2353 |
|
|
splt->contents + code_offset + 10);
|
2354 |
|
|
|
2355 |
|
|
return plt_base + code_offset;
|
2356 |
|
|
}
|
2357 |
|
|
|
2358 |
|
|
|
2359 |
|
|
static bfd_boolean get_indirect_call_dest_reg (xtensa_opcode, unsigned *);
|
2360 |
|
|
|
2361 |
|
|
static bfd_boolean
|
2362 |
|
|
replace_tls_insn (Elf_Internal_Rela *rel,
|
2363 |
|
|
bfd *abfd,
|
2364 |
|
|
asection *input_section,
|
2365 |
|
|
bfd_byte *contents,
|
2366 |
|
|
bfd_boolean is_ld_model,
|
2367 |
|
|
char **error_message)
|
2368 |
|
|
{
|
2369 |
|
|
static xtensa_insnbuf ibuff = NULL;
|
2370 |
|
|
static xtensa_insnbuf sbuff = NULL;
|
2371 |
|
|
xtensa_isa isa = xtensa_default_isa;
|
2372 |
|
|
xtensa_format fmt;
|
2373 |
|
|
xtensa_opcode old_op, new_op;
|
2374 |
|
|
bfd_size_type input_size;
|
2375 |
|
|
int r_type;
|
2376 |
|
|
unsigned dest_reg, src_reg;
|
2377 |
|
|
|
2378 |
|
|
if (ibuff == NULL)
|
2379 |
|
|
{
|
2380 |
|
|
ibuff = xtensa_insnbuf_alloc (isa);
|
2381 |
|
|
sbuff = xtensa_insnbuf_alloc (isa);
|
2382 |
|
|
}
|
2383 |
|
|
|
2384 |
|
|
input_size = bfd_get_section_limit (abfd, input_section);
|
2385 |
|
|
|
2386 |
|
|
/* Read the instruction into a buffer and decode the opcode. */
|
2387 |
|
|
xtensa_insnbuf_from_chars (isa, ibuff, contents + rel->r_offset,
|
2388 |
|
|
input_size - rel->r_offset);
|
2389 |
|
|
fmt = xtensa_format_decode (isa, ibuff);
|
2390 |
|
|
if (fmt == XTENSA_UNDEFINED)
|
2391 |
|
|
{
|
2392 |
|
|
*error_message = "cannot decode instruction format";
|
2393 |
|
|
return FALSE;
|
2394 |
|
|
}
|
2395 |
|
|
|
2396 |
|
|
BFD_ASSERT (xtensa_format_num_slots (isa, fmt) == 1);
|
2397 |
|
|
xtensa_format_get_slot (isa, fmt, 0, ibuff, sbuff);
|
2398 |
|
|
|
2399 |
|
|
old_op = xtensa_opcode_decode (isa, fmt, 0, sbuff);
|
2400 |
|
|
if (old_op == XTENSA_UNDEFINED)
|
2401 |
|
|
{
|
2402 |
|
|
*error_message = "cannot decode instruction opcode";
|
2403 |
|
|
return FALSE;
|
2404 |
|
|
}
|
2405 |
|
|
|
2406 |
|
|
r_type = ELF32_R_TYPE (rel->r_info);
|
2407 |
|
|
switch (r_type)
|
2408 |
|
|
{
|
2409 |
|
|
case R_XTENSA_TLS_FUNC:
|
2410 |
|
|
case R_XTENSA_TLS_ARG:
|
2411 |
|
|
if (old_op != get_l32r_opcode ()
|
2412 |
|
|
|| xtensa_operand_get_field (isa, old_op, 0, fmt, 0,
|
2413 |
|
|
sbuff, &dest_reg) != 0)
|
2414 |
|
|
{
|
2415 |
|
|
*error_message = "cannot extract L32R destination for TLS access";
|
2416 |
|
|
return FALSE;
|
2417 |
|
|
}
|
2418 |
|
|
break;
|
2419 |
|
|
|
2420 |
|
|
case R_XTENSA_TLS_CALL:
|
2421 |
|
|
if (! get_indirect_call_dest_reg (old_op, &dest_reg)
|
2422 |
|
|
|| xtensa_operand_get_field (isa, old_op, 0, fmt, 0,
|
2423 |
|
|
sbuff, &src_reg) != 0)
|
2424 |
|
|
{
|
2425 |
|
|
*error_message = "cannot extract CALLXn operands for TLS access";
|
2426 |
|
|
return FALSE;
|
2427 |
|
|
}
|
2428 |
|
|
break;
|
2429 |
|
|
|
2430 |
|
|
default:
|
2431 |
|
|
abort ();
|
2432 |
|
|
}
|
2433 |
|
|
|
2434 |
|
|
if (is_ld_model)
|
2435 |
|
|
{
|
2436 |
|
|
switch (r_type)
|
2437 |
|
|
{
|
2438 |
|
|
case R_XTENSA_TLS_FUNC:
|
2439 |
|
|
case R_XTENSA_TLS_ARG:
|
2440 |
|
|
/* Change the instruction to a NOP (or "OR a1, a1, a1" for older
|
2441 |
|
|
versions of Xtensa). */
|
2442 |
|
|
new_op = xtensa_opcode_lookup (isa, "nop");
|
2443 |
|
|
if (new_op == XTENSA_UNDEFINED)
|
2444 |
|
|
{
|
2445 |
|
|
new_op = xtensa_opcode_lookup (isa, "or");
|
2446 |
|
|
if (new_op == XTENSA_UNDEFINED
|
2447 |
|
|
|| xtensa_opcode_encode (isa, fmt, 0, sbuff, new_op) != 0
|
2448 |
|
|
|| xtensa_operand_set_field (isa, new_op, 0, fmt, 0,
|
2449 |
|
|
sbuff, 1) != 0
|
2450 |
|
|
|| xtensa_operand_set_field (isa, new_op, 1, fmt, 0,
|
2451 |
|
|
sbuff, 1) != 0
|
2452 |
|
|
|| xtensa_operand_set_field (isa, new_op, 2, fmt, 0,
|
2453 |
|
|
sbuff, 1) != 0)
|
2454 |
|
|
{
|
2455 |
|
|
*error_message = "cannot encode OR for TLS access";
|
2456 |
|
|
return FALSE;
|
2457 |
|
|
}
|
2458 |
|
|
}
|
2459 |
|
|
else
|
2460 |
|
|
{
|
2461 |
|
|
if (xtensa_opcode_encode (isa, fmt, 0, sbuff, new_op) != 0)
|
2462 |
|
|
{
|
2463 |
|
|
*error_message = "cannot encode NOP for TLS access";
|
2464 |
|
|
return FALSE;
|
2465 |
|
|
}
|
2466 |
|
|
}
|
2467 |
|
|
break;
|
2468 |
|
|
|
2469 |
|
|
case R_XTENSA_TLS_CALL:
|
2470 |
|
|
/* Read THREADPTR into the CALLX's return value register. */
|
2471 |
|
|
new_op = xtensa_opcode_lookup (isa, "rur.threadptr");
|
2472 |
|
|
if (new_op == XTENSA_UNDEFINED
|
2473 |
|
|
|| xtensa_opcode_encode (isa, fmt, 0, sbuff, new_op) != 0
|
2474 |
|
|
|| xtensa_operand_set_field (isa, new_op, 0, fmt, 0,
|
2475 |
|
|
sbuff, dest_reg + 2) != 0)
|
2476 |
|
|
{
|
2477 |
|
|
*error_message = "cannot encode RUR.THREADPTR for TLS access";
|
2478 |
|
|
return FALSE;
|
2479 |
|
|
}
|
2480 |
|
|
break;
|
2481 |
|
|
}
|
2482 |
|
|
}
|
2483 |
|
|
else
|
2484 |
|
|
{
|
2485 |
|
|
switch (r_type)
|
2486 |
|
|
{
|
2487 |
|
|
case R_XTENSA_TLS_FUNC:
|
2488 |
|
|
new_op = xtensa_opcode_lookup (isa, "rur.threadptr");
|
2489 |
|
|
if (new_op == XTENSA_UNDEFINED
|
2490 |
|
|
|| xtensa_opcode_encode (isa, fmt, 0, sbuff, new_op) != 0
|
2491 |
|
|
|| xtensa_operand_set_field (isa, new_op, 0, fmt, 0,
|
2492 |
|
|
sbuff, dest_reg) != 0)
|
2493 |
|
|
{
|
2494 |
|
|
*error_message = "cannot encode RUR.THREADPTR for TLS access";
|
2495 |
|
|
return FALSE;
|
2496 |
|
|
}
|
2497 |
|
|
break;
|
2498 |
|
|
|
2499 |
|
|
case R_XTENSA_TLS_ARG:
|
2500 |
|
|
/* Nothing to do. Keep the original L32R instruction. */
|
2501 |
|
|
return TRUE;
|
2502 |
|
|
|
2503 |
|
|
case R_XTENSA_TLS_CALL:
|
2504 |
|
|
/* Add the CALLX's src register (holding the THREADPTR value)
|
2505 |
|
|
to the first argument register (holding the offset) and put
|
2506 |
|
|
the result in the CALLX's return value register. */
|
2507 |
|
|
new_op = xtensa_opcode_lookup (isa, "add");
|
2508 |
|
|
if (new_op == XTENSA_UNDEFINED
|
2509 |
|
|
|| xtensa_opcode_encode (isa, fmt, 0, sbuff, new_op) != 0
|
2510 |
|
|
|| xtensa_operand_set_field (isa, new_op, 0, fmt, 0,
|
2511 |
|
|
sbuff, dest_reg + 2) != 0
|
2512 |
|
|
|| xtensa_operand_set_field (isa, new_op, 1, fmt, 0,
|
2513 |
|
|
sbuff, dest_reg + 2) != 0
|
2514 |
|
|
|| xtensa_operand_set_field (isa, new_op, 2, fmt, 0,
|
2515 |
|
|
sbuff, src_reg) != 0)
|
2516 |
|
|
{
|
2517 |
|
|
*error_message = "cannot encode ADD for TLS access";
|
2518 |
|
|
return FALSE;
|
2519 |
|
|
}
|
2520 |
|
|
break;
|
2521 |
|
|
}
|
2522 |
|
|
}
|
2523 |
|
|
|
2524 |
|
|
xtensa_format_set_slot (isa, fmt, 0, ibuff, sbuff);
|
2525 |
|
|
xtensa_insnbuf_to_chars (isa, ibuff, contents + rel->r_offset,
|
2526 |
|
|
input_size - rel->r_offset);
|
2527 |
|
|
|
2528 |
|
|
return TRUE;
|
2529 |
|
|
}
|
2530 |
|
|
|
2531 |
|
|
|
2532 |
|
|
#define IS_XTENSA_TLS_RELOC(R_TYPE) \
|
2533 |
|
|
((R_TYPE) == R_XTENSA_TLSDESC_FN \
|
2534 |
|
|
|| (R_TYPE) == R_XTENSA_TLSDESC_ARG \
|
2535 |
|
|
|| (R_TYPE) == R_XTENSA_TLS_DTPOFF \
|
2536 |
|
|
|| (R_TYPE) == R_XTENSA_TLS_TPOFF \
|
2537 |
|
|
|| (R_TYPE) == R_XTENSA_TLS_FUNC \
|
2538 |
|
|
|| (R_TYPE) == R_XTENSA_TLS_ARG \
|
2539 |
|
|
|| (R_TYPE) == R_XTENSA_TLS_CALL)
|
2540 |
|
|
|
2541 |
|
|
/* Relocate an Xtensa ELF section. This is invoked by the linker for
|
2542 |
|
|
both relocatable and final links. */
|
2543 |
|
|
|
2544 |
|
|
static bfd_boolean
|
2545 |
|
|
elf_xtensa_relocate_section (bfd *output_bfd,
|
2546 |
|
|
struct bfd_link_info *info,
|
2547 |
|
|
bfd *input_bfd,
|
2548 |
|
|
asection *input_section,
|
2549 |
|
|
bfd_byte *contents,
|
2550 |
|
|
Elf_Internal_Rela *relocs,
|
2551 |
|
|
Elf_Internal_Sym *local_syms,
|
2552 |
|
|
asection **local_sections)
|
2553 |
|
|
{
|
2554 |
|
|
struct elf_xtensa_link_hash_table *htab;
|
2555 |
|
|
Elf_Internal_Shdr *symtab_hdr;
|
2556 |
|
|
Elf_Internal_Rela *rel;
|
2557 |
|
|
Elf_Internal_Rela *relend;
|
2558 |
|
|
struct elf_link_hash_entry **sym_hashes;
|
2559 |
|
|
property_table_entry *lit_table = 0;
|
2560 |
|
|
int ltblsize = 0;
|
2561 |
|
|
char *local_got_tls_types;
|
2562 |
|
|
char *error_message = NULL;
|
2563 |
|
|
bfd_size_type input_size;
|
2564 |
|
|
int tls_type;
|
2565 |
|
|
|
2566 |
|
|
if (!xtensa_default_isa)
|
2567 |
|
|
xtensa_default_isa = xtensa_isa_init (0, 0);
|
2568 |
|
|
|
2569 |
|
|
BFD_ASSERT (is_xtensa_elf (input_bfd));
|
2570 |
|
|
|
2571 |
|
|
htab = elf_xtensa_hash_table (info);
|
2572 |
|
|
if (htab == NULL)
|
2573 |
|
|
return FALSE;
|
2574 |
|
|
|
2575 |
|
|
symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
|
2576 |
|
|
sym_hashes = elf_sym_hashes (input_bfd);
|
2577 |
|
|
local_got_tls_types = elf_xtensa_local_got_tls_type (input_bfd);
|
2578 |
|
|
|
2579 |
|
|
if (elf_hash_table (info)->dynamic_sections_created)
|
2580 |
|
|
{
|
2581 |
|
|
ltblsize = xtensa_read_table_entries (input_bfd, input_section,
|
2582 |
|
|
&lit_table, XTENSA_LIT_SEC_NAME,
|
2583 |
|
|
TRUE);
|
2584 |
|
|
if (ltblsize < 0)
|
2585 |
|
|
return FALSE;
|
2586 |
|
|
}
|
2587 |
|
|
|
2588 |
|
|
input_size = bfd_get_section_limit (input_bfd, input_section);
|
2589 |
|
|
|
2590 |
|
|
rel = relocs;
|
2591 |
|
|
relend = relocs + input_section->reloc_count;
|
2592 |
|
|
for (; rel < relend; rel++)
|
2593 |
|
|
{
|
2594 |
|
|
int r_type;
|
2595 |
|
|
reloc_howto_type *howto;
|
2596 |
|
|
unsigned long r_symndx;
|
2597 |
|
|
struct elf_link_hash_entry *h;
|
2598 |
|
|
Elf_Internal_Sym *sym;
|
2599 |
|
|
char sym_type;
|
2600 |
|
|
const char *name;
|
2601 |
|
|
asection *sec;
|
2602 |
|
|
bfd_vma relocation;
|
2603 |
|
|
bfd_reloc_status_type r;
|
2604 |
|
|
bfd_boolean is_weak_undef;
|
2605 |
|
|
bfd_boolean unresolved_reloc;
|
2606 |
|
|
bfd_boolean warned;
|
2607 |
|
|
bfd_boolean dynamic_symbol;
|
2608 |
|
|
|
2609 |
|
|
r_type = ELF32_R_TYPE (rel->r_info);
|
2610 |
|
|
if (r_type == (int) R_XTENSA_GNU_VTINHERIT
|
2611 |
|
|
|| r_type == (int) R_XTENSA_GNU_VTENTRY)
|
2612 |
|
|
continue;
|
2613 |
|
|
|
2614 |
|
|
if (r_type < 0 || r_type >= (int) R_XTENSA_max)
|
2615 |
|
|
{
|
2616 |
|
|
bfd_set_error (bfd_error_bad_value);
|
2617 |
|
|
return FALSE;
|
2618 |
|
|
}
|
2619 |
|
|
howto = &elf_howto_table[r_type];
|
2620 |
|
|
|
2621 |
|
|
r_symndx = ELF32_R_SYM (rel->r_info);
|
2622 |
|
|
|
2623 |
|
|
h = NULL;
|
2624 |
|
|
sym = NULL;
|
2625 |
|
|
sec = NULL;
|
2626 |
|
|
is_weak_undef = FALSE;
|
2627 |
|
|
unresolved_reloc = FALSE;
|
2628 |
|
|
warned = FALSE;
|
2629 |
|
|
|
2630 |
|
|
if (howto->partial_inplace && !info->relocatable)
|
2631 |
|
|
{
|
2632 |
|
|
/* Because R_XTENSA_32 was made partial_inplace to fix some
|
2633 |
|
|
problems with DWARF info in partial links, there may be
|
2634 |
|
|
an addend stored in the contents. Take it out of there
|
2635 |
|
|
and move it back into the addend field of the reloc. */
|
2636 |
|
|
rel->r_addend += bfd_get_32 (input_bfd, contents + rel->r_offset);
|
2637 |
|
|
bfd_put_32 (input_bfd, 0, contents + rel->r_offset);
|
2638 |
|
|
}
|
2639 |
|
|
|
2640 |
|
|
if (r_symndx < symtab_hdr->sh_info)
|
2641 |
|
|
{
|
2642 |
|
|
sym = local_syms + r_symndx;
|
2643 |
|
|
sym_type = ELF32_ST_TYPE (sym->st_info);
|
2644 |
|
|
sec = local_sections[r_symndx];
|
2645 |
|
|
relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
|
2646 |
|
|
}
|
2647 |
|
|
else
|
2648 |
|
|
{
|
2649 |
|
|
RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
|
2650 |
|
|
r_symndx, symtab_hdr, sym_hashes,
|
2651 |
|
|
h, sec, relocation,
|
2652 |
|
|
unresolved_reloc, warned);
|
2653 |
|
|
|
2654 |
|
|
if (relocation == 0
|
2655 |
|
|
&& !unresolved_reloc
|
2656 |
|
|
&& h->root.type == bfd_link_hash_undefweak)
|
2657 |
|
|
is_weak_undef = TRUE;
|
2658 |
|
|
|
2659 |
|
|
sym_type = h->type;
|
2660 |
|
|
}
|
2661 |
|
|
|
2662 |
|
|
if (sec != NULL && elf_discarded_section (sec))
|
2663 |
|
|
{
|
2664 |
|
|
/* For relocs against symbols from removed linkonce sections,
|
2665 |
|
|
or sections discarded by a linker script, we just want the
|
2666 |
|
|
section contents zeroed. Avoid any special processing. */
|
2667 |
|
|
_bfd_clear_contents (howto, input_bfd, contents + rel->r_offset);
|
2668 |
|
|
rel->r_info = 0;
|
2669 |
|
|
rel->r_addend = 0;
|
2670 |
|
|
continue;
|
2671 |
|
|
}
|
2672 |
|
|
|
2673 |
|
|
if (info->relocatable)
|
2674 |
|
|
{
|
2675 |
|
|
/* This is a relocatable link.
|
2676 |
|
|
1) If the reloc is against a section symbol, adjust
|
2677 |
|
|
according to the output section.
|
2678 |
|
|
2) If there is a new target for this relocation,
|
2679 |
|
|
the new target will be in the same output section.
|
2680 |
|
|
We adjust the relocation by the output section
|
2681 |
|
|
difference. */
|
2682 |
|
|
|
2683 |
|
|
if (relaxing_section)
|
2684 |
|
|
{
|
2685 |
|
|
/* Check if this references a section in another input file. */
|
2686 |
|
|
if (!do_fix_for_relocatable_link (rel, input_bfd, input_section,
|
2687 |
|
|
contents))
|
2688 |
|
|
return FALSE;
|
2689 |
|
|
}
|
2690 |
|
|
|
2691 |
|
|
if (r_type == R_XTENSA_ASM_SIMPLIFY)
|
2692 |
|
|
{
|
2693 |
|
|
error_message = NULL;
|
2694 |
|
|
/* Convert ASM_SIMPLIFY into the simpler relocation
|
2695 |
|
|
so that they never escape a relaxing link. */
|
2696 |
|
|
r = contract_asm_expansion (contents, input_size, rel,
|
2697 |
|
|
&error_message);
|
2698 |
|
|
if (r != bfd_reloc_ok)
|
2699 |
|
|
{
|
2700 |
|
|
if (!((*info->callbacks->reloc_dangerous)
|
2701 |
|
|
(info, error_message, input_bfd, input_section,
|
2702 |
|
|
rel->r_offset)))
|
2703 |
|
|
return FALSE;
|
2704 |
|
|
}
|
2705 |
|
|
r_type = ELF32_R_TYPE (rel->r_info);
|
2706 |
|
|
}
|
2707 |
|
|
|
2708 |
|
|
/* This is a relocatable link, so we don't have to change
|
2709 |
|
|
anything unless the reloc is against a section symbol,
|
2710 |
|
|
in which case we have to adjust according to where the
|
2711 |
|
|
section symbol winds up in the output section. */
|
2712 |
|
|
if (r_symndx < symtab_hdr->sh_info)
|
2713 |
|
|
{
|
2714 |
|
|
sym = local_syms + r_symndx;
|
2715 |
|
|
if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
|
2716 |
|
|
{
|
2717 |
|
|
sec = local_sections[r_symndx];
|
2718 |
|
|
rel->r_addend += sec->output_offset + sym->st_value;
|
2719 |
|
|
}
|
2720 |
|
|
}
|
2721 |
|
|
|
2722 |
|
|
/* If there is an addend with a partial_inplace howto,
|
2723 |
|
|
then move the addend to the contents. This is a hack
|
2724 |
|
|
to work around problems with DWARF in relocatable links
|
2725 |
|
|
with some previous version of BFD. Now we can't easily get
|
2726 |
|
|
rid of the hack without breaking backward compatibility.... */
|
2727 |
|
|
if (rel->r_addend)
|
2728 |
|
|
{
|
2729 |
|
|
howto = &elf_howto_table[r_type];
|
2730 |
|
|
if (howto->partial_inplace)
|
2731 |
|
|
{
|
2732 |
|
|
r = elf_xtensa_do_reloc (howto, input_bfd, input_section,
|
2733 |
|
|
rel->r_addend, contents,
|
2734 |
|
|
rel->r_offset, FALSE,
|
2735 |
|
|
&error_message);
|
2736 |
|
|
if (r != bfd_reloc_ok)
|
2737 |
|
|
{
|
2738 |
|
|
if (!((*info->callbacks->reloc_dangerous)
|
2739 |
|
|
(info, error_message, input_bfd, input_section,
|
2740 |
|
|
rel->r_offset)))
|
2741 |
|
|
return FALSE;
|
2742 |
|
|
}
|
2743 |
|
|
rel->r_addend = 0;
|
2744 |
|
|
}
|
2745 |
|
|
}
|
2746 |
|
|
|
2747 |
|
|
/* Done with work for relocatable link; continue with next reloc. */
|
2748 |
|
|
continue;
|
2749 |
|
|
}
|
2750 |
|
|
|
2751 |
|
|
/* This is a final link. */
|
2752 |
|
|
|
2753 |
|
|
if (relaxing_section)
|
2754 |
|
|
{
|
2755 |
|
|
/* Check if this references a section in another input file. */
|
2756 |
|
|
do_fix_for_final_link (rel, input_bfd, input_section, contents,
|
2757 |
|
|
&relocation);
|
2758 |
|
|
}
|
2759 |
|
|
|
2760 |
|
|
/* Sanity check the address. */
|
2761 |
|
|
if (rel->r_offset >= input_size
|
2762 |
|
|
&& ELF32_R_TYPE (rel->r_info) != R_XTENSA_NONE)
|
2763 |
|
|
{
|
2764 |
|
|
(*_bfd_error_handler)
|
2765 |
|
|
(_("%B(%A+0x%lx): relocation offset out of range (size=0x%x)"),
|
2766 |
|
|
input_bfd, input_section, rel->r_offset, input_size);
|
2767 |
|
|
bfd_set_error (bfd_error_bad_value);
|
2768 |
|
|
return FALSE;
|
2769 |
|
|
}
|
2770 |
|
|
|
2771 |
|
|
if (h != NULL)
|
2772 |
|
|
name = h->root.root.string;
|
2773 |
|
|
else
|
2774 |
|
|
{
|
2775 |
|
|
name = (bfd_elf_string_from_elf_section
|
2776 |
|
|
(input_bfd, symtab_hdr->sh_link, sym->st_name));
|
2777 |
|
|
if (name == NULL || *name == '\0')
|
2778 |
|
|
name = bfd_section_name (input_bfd, sec);
|
2779 |
|
|
}
|
2780 |
|
|
|
2781 |
|
|
if (r_symndx != 0
|
2782 |
|
|
&& r_type != R_XTENSA_NONE
|
2783 |
|
|
&& (h == NULL
|
2784 |
|
|
|| h->root.type == bfd_link_hash_defined
|
2785 |
|
|
|| h->root.type == bfd_link_hash_defweak)
|
2786 |
|
|
&& IS_XTENSA_TLS_RELOC (r_type) != (sym_type == STT_TLS))
|
2787 |
|
|
{
|
2788 |
|
|
(*_bfd_error_handler)
|
2789 |
|
|
((sym_type == STT_TLS
|
2790 |
|
|
? _("%B(%A+0x%lx): %s used with TLS symbol %s")
|
2791 |
|
|
: _("%B(%A+0x%lx): %s used with non-TLS symbol %s")),
|
2792 |
|
|
input_bfd,
|
2793 |
|
|
input_section,
|
2794 |
|
|
(long) rel->r_offset,
|
2795 |
|
|
howto->name,
|
2796 |
|
|
name);
|
2797 |
|
|
}
|
2798 |
|
|
|
2799 |
|
|
dynamic_symbol = elf_xtensa_dynamic_symbol_p (h, info);
|
2800 |
|
|
|
2801 |
|
|
tls_type = GOT_UNKNOWN;
|
2802 |
|
|
if (h)
|
2803 |
|
|
tls_type = elf_xtensa_hash_entry (h)->tls_type;
|
2804 |
|
|
else if (local_got_tls_types)
|
2805 |
|
|
tls_type = local_got_tls_types [r_symndx];
|
2806 |
|
|
|
2807 |
|
|
switch (r_type)
|
2808 |
|
|
{
|
2809 |
|
|
case R_XTENSA_32:
|
2810 |
|
|
case R_XTENSA_PLT:
|
2811 |
|
|
if (elf_hash_table (info)->dynamic_sections_created
|
2812 |
|
|
&& (input_section->flags & SEC_ALLOC) != 0
|
2813 |
|
|
&& (dynamic_symbol || info->shared))
|
2814 |
|
|
{
|
2815 |
|
|
Elf_Internal_Rela outrel;
|
2816 |
|
|
bfd_byte *loc;
|
2817 |
|
|
asection *srel;
|
2818 |
|
|
|
2819 |
|
|
if (dynamic_symbol && r_type == R_XTENSA_PLT)
|
2820 |
|
|
srel = htab->srelplt;
|
2821 |
|
|
else
|
2822 |
|
|
srel = htab->srelgot;
|
2823 |
|
|
|
2824 |
|
|
BFD_ASSERT (srel != NULL);
|
2825 |
|
|
|
2826 |
|
|
outrel.r_offset =
|
2827 |
|
|
_bfd_elf_section_offset (output_bfd, info,
|
2828 |
|
|
input_section, rel->r_offset);
|
2829 |
|
|
|
2830 |
|
|
if ((outrel.r_offset | 1) == (bfd_vma) -1)
|
2831 |
|
|
memset (&outrel, 0, sizeof outrel);
|
2832 |
|
|
else
|
2833 |
|
|
{
|
2834 |
|
|
outrel.r_offset += (input_section->output_section->vma
|
2835 |
|
|
+ input_section->output_offset);
|
2836 |
|
|
|
2837 |
|
|
/* Complain if the relocation is in a read-only section
|
2838 |
|
|
and not in a literal pool. */
|
2839 |
|
|
if ((input_section->flags & SEC_READONLY) != 0
|
2840 |
|
|
&& !elf_xtensa_in_literal_pool (lit_table, ltblsize,
|
2841 |
|
|
outrel.r_offset))
|
2842 |
|
|
{
|
2843 |
|
|
error_message =
|
2844 |
|
|
_("dynamic relocation in read-only section");
|
2845 |
|
|
if (!((*info->callbacks->reloc_dangerous)
|
2846 |
|
|
(info, error_message, input_bfd, input_section,
|
2847 |
|
|
rel->r_offset)))
|
2848 |
|
|
return FALSE;
|
2849 |
|
|
}
|
2850 |
|
|
|
2851 |
|
|
if (dynamic_symbol)
|
2852 |
|
|
{
|
2853 |
|
|
outrel.r_addend = rel->r_addend;
|
2854 |
|
|
rel->r_addend = 0;
|
2855 |
|
|
|
2856 |
|
|
if (r_type == R_XTENSA_32)
|
2857 |
|
|
{
|
2858 |
|
|
outrel.r_info =
|
2859 |
|
|
ELF32_R_INFO (h->dynindx, R_XTENSA_GLOB_DAT);
|
2860 |
|
|
relocation = 0;
|
2861 |
|
|
}
|
2862 |
|
|
else /* r_type == R_XTENSA_PLT */
|
2863 |
|
|
{
|
2864 |
|
|
outrel.r_info =
|
2865 |
|
|
ELF32_R_INFO (h->dynindx, R_XTENSA_JMP_SLOT);
|
2866 |
|
|
|
2867 |
|
|
/* Create the PLT entry and set the initial
|
2868 |
|
|
contents of the literal entry to the address of
|
2869 |
|
|
the PLT entry. */
|
2870 |
|
|
relocation =
|
2871 |
|
|
elf_xtensa_create_plt_entry (info, output_bfd,
|
2872 |
|
|
srel->reloc_count);
|
2873 |
|
|
}
|
2874 |
|
|
unresolved_reloc = FALSE;
|
2875 |
|
|
}
|
2876 |
|
|
else
|
2877 |
|
|
{
|
2878 |
|
|
/* Generate a RELATIVE relocation. */
|
2879 |
|
|
outrel.r_info = ELF32_R_INFO (0, R_XTENSA_RELATIVE);
|
2880 |
|
|
outrel.r_addend = 0;
|
2881 |
|
|
}
|
2882 |
|
|
}
|
2883 |
|
|
|
2884 |
|
|
loc = (srel->contents
|
2885 |
|
|
+ srel->reloc_count++ * sizeof (Elf32_External_Rela));
|
2886 |
|
|
bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
|
2887 |
|
|
BFD_ASSERT (sizeof (Elf32_External_Rela) * srel->reloc_count
|
2888 |
|
|
<= srel->size);
|
2889 |
|
|
}
|
2890 |
|
|
else if (r_type == R_XTENSA_ASM_EXPAND && dynamic_symbol)
|
2891 |
|
|
{
|
2892 |
|
|
/* This should only happen for non-PIC code, which is not
|
2893 |
|
|
supposed to be used on systems with dynamic linking.
|
2894 |
|
|
Just ignore these relocations. */
|
2895 |
|
|
continue;
|
2896 |
|
|
}
|
2897 |
|
|
break;
|
2898 |
|
|
|
2899 |
|
|
case R_XTENSA_TLS_TPOFF:
|
2900 |
|
|
/* Switch to LE model for local symbols in an executable. */
|
2901 |
|
|
if (! info->shared && ! dynamic_symbol)
|
2902 |
|
|
{
|
2903 |
|
|
relocation = tpoff (info, relocation);
|
2904 |
|
|
break;
|
2905 |
|
|
}
|
2906 |
|
|
/* fall through */
|
2907 |
|
|
|
2908 |
|
|
case R_XTENSA_TLSDESC_FN:
|
2909 |
|
|
case R_XTENSA_TLSDESC_ARG:
|
2910 |
|
|
{
|
2911 |
|
|
if (r_type == R_XTENSA_TLSDESC_FN)
|
2912 |
|
|
{
|
2913 |
|
|
if (! info->shared || (tls_type & GOT_TLS_IE) != 0)
|
2914 |
|
|
r_type = R_XTENSA_NONE;
|
2915 |
|
|
}
|
2916 |
|
|
else if (r_type == R_XTENSA_TLSDESC_ARG)
|
2917 |
|
|
{
|
2918 |
|
|
if (info->shared)
|
2919 |
|
|
{
|
2920 |
|
|
if ((tls_type & GOT_TLS_IE) != 0)
|
2921 |
|
|
r_type = R_XTENSA_TLS_TPOFF;
|
2922 |
|
|
}
|
2923 |
|
|
else
|
2924 |
|
|
{
|
2925 |
|
|
r_type = R_XTENSA_TLS_TPOFF;
|
2926 |
|
|
if (! dynamic_symbol)
|
2927 |
|
|
{
|
2928 |
|
|
relocation = tpoff (info, relocation);
|
2929 |
|
|
break;
|
2930 |
|
|
}
|
2931 |
|
|
}
|
2932 |
|
|
}
|
2933 |
|
|
|
2934 |
|
|
if (r_type == R_XTENSA_NONE)
|
2935 |
|
|
/* Nothing to do here; skip to the next reloc. */
|
2936 |
|
|
continue;
|
2937 |
|
|
|
2938 |
|
|
if (! elf_hash_table (info)->dynamic_sections_created)
|
2939 |
|
|
{
|
2940 |
|
|
error_message =
|
2941 |
|
|
_("TLS relocation invalid without dynamic sections");
|
2942 |
|
|
if (!((*info->callbacks->reloc_dangerous)
|
2943 |
|
|
(info, error_message, input_bfd, input_section,
|
2944 |
|
|
rel->r_offset)))
|
2945 |
|
|
return FALSE;
|
2946 |
|
|
}
|
2947 |
|
|
else
|
2948 |
|
|
{
|
2949 |
|
|
Elf_Internal_Rela outrel;
|
2950 |
|
|
bfd_byte *loc;
|
2951 |
|
|
asection *srel = htab->srelgot;
|
2952 |
|
|
int indx;
|
2953 |
|
|
|
2954 |
|
|
outrel.r_offset = (input_section->output_section->vma
|
2955 |
|
|
+ input_section->output_offset
|
2956 |
|
|
+ rel->r_offset);
|
2957 |
|
|
|
2958 |
|
|
/* Complain if the relocation is in a read-only section
|
2959 |
|
|
and not in a literal pool. */
|
2960 |
|
|
if ((input_section->flags & SEC_READONLY) != 0
|
2961 |
|
|
&& ! elf_xtensa_in_literal_pool (lit_table, ltblsize,
|
2962 |
|
|
outrel.r_offset))
|
2963 |
|
|
{
|
2964 |
|
|
error_message =
|
2965 |
|
|
_("dynamic relocation in read-only section");
|
2966 |
|
|
if (!((*info->callbacks->reloc_dangerous)
|
2967 |
|
|
(info, error_message, input_bfd, input_section,
|
2968 |
|
|
rel->r_offset)))
|
2969 |
|
|
return FALSE;
|
2970 |
|
|
}
|
2971 |
|
|
|
2972 |
|
|
indx = h && h->dynindx != -1 ? h->dynindx : 0;
|
2973 |
|
|
if (indx == 0)
|
2974 |
|
|
outrel.r_addend = relocation - dtpoff_base (info);
|
2975 |
|
|
else
|
2976 |
|
|
outrel.r_addend = 0;
|
2977 |
|
|
rel->r_addend = 0;
|
2978 |
|
|
|
2979 |
|
|
outrel.r_info = ELF32_R_INFO (indx, r_type);
|
2980 |
|
|
relocation = 0;
|
2981 |
|
|
unresolved_reloc = FALSE;
|
2982 |
|
|
|
2983 |
|
|
BFD_ASSERT (srel);
|
2984 |
|
|
loc = (srel->contents
|
2985 |
|
|
+ srel->reloc_count++ * sizeof (Elf32_External_Rela));
|
2986 |
|
|
bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
|
2987 |
|
|
BFD_ASSERT (sizeof (Elf32_External_Rela) * srel->reloc_count
|
2988 |
|
|
<= srel->size);
|
2989 |
|
|
}
|
2990 |
|
|
}
|
2991 |
|
|
break;
|
2992 |
|
|
|
2993 |
|
|
case R_XTENSA_TLS_DTPOFF:
|
2994 |
|
|
if (! info->shared)
|
2995 |
|
|
/* Switch from LD model to LE model. */
|
2996 |
|
|
relocation = tpoff (info, relocation);
|
2997 |
|
|
else
|
2998 |
|
|
relocation -= dtpoff_base (info);
|
2999 |
|
|
break;
|
3000 |
|
|
|
3001 |
|
|
case R_XTENSA_TLS_FUNC:
|
3002 |
|
|
case R_XTENSA_TLS_ARG:
|
3003 |
|
|
case R_XTENSA_TLS_CALL:
|
3004 |
|
|
/* Check if optimizing to IE or LE model. */
|
3005 |
|
|
if ((tls_type & GOT_TLS_IE) != 0)
|
3006 |
|
|
{
|
3007 |
|
|
bfd_boolean is_ld_model =
|
3008 |
|
|
(h && elf_xtensa_hash_entry (h) == htab->tlsbase);
|
3009 |
|
|
if (! replace_tls_insn (rel, input_bfd, input_section, contents,
|
3010 |
|
|
is_ld_model, &error_message))
|
3011 |
|
|
{
|
3012 |
|
|
if (!((*info->callbacks->reloc_dangerous)
|
3013 |
|
|
(info, error_message, input_bfd, input_section,
|
3014 |
|
|
rel->r_offset)))
|
3015 |
|
|
return FALSE;
|
3016 |
|
|
}
|
3017 |
|
|
|
3018 |
|
|
if (r_type != R_XTENSA_TLS_ARG || is_ld_model)
|
3019 |
|
|
{
|
3020 |
|
|
/* Skip subsequent relocations on the same instruction. */
|
3021 |
|
|
while (rel + 1 < relend && rel[1].r_offset == rel->r_offset)
|
3022 |
|
|
rel++;
|
3023 |
|
|
}
|
3024 |
|
|
}
|
3025 |
|
|
continue;
|
3026 |
|
|
|
3027 |
|
|
default:
|
3028 |
|
|
if (elf_hash_table (info)->dynamic_sections_created
|
3029 |
|
|
&& dynamic_symbol && (is_operand_relocation (r_type)
|
3030 |
|
|
|| r_type == R_XTENSA_32_PCREL))
|
3031 |
|
|
{
|
3032 |
|
|
error_message =
|
3033 |
|
|
vsprint_msg ("invalid relocation for dynamic symbol", ": %s",
|
3034 |
|
|
strlen (name) + 2, name);
|
3035 |
|
|
if (!((*info->callbacks->reloc_dangerous)
|
3036 |
|
|
(info, error_message, input_bfd, input_section,
|
3037 |
|
|
rel->r_offset)))
|
3038 |
|
|
return FALSE;
|
3039 |
|
|
continue;
|
3040 |
|
|
}
|
3041 |
|
|
break;
|
3042 |
|
|
}
|
3043 |
|
|
|
3044 |
|
|
/* Dynamic relocs are not propagated for SEC_DEBUGGING sections
|
3045 |
|
|
because such sections are not SEC_ALLOC and thus ld.so will
|
3046 |
|
|
not process them. */
|
3047 |
|
|
if (unresolved_reloc
|
3048 |
|
|
&& !((input_section->flags & SEC_DEBUGGING) != 0
|
3049 |
|
|
&& h->def_dynamic))
|
3050 |
|
|
{
|
3051 |
|
|
(*_bfd_error_handler)
|
3052 |
|
|
(_("%B(%A+0x%lx): unresolvable %s relocation against symbol `%s'"),
|
3053 |
|
|
input_bfd,
|
3054 |
|
|
input_section,
|
3055 |
|
|
(long) rel->r_offset,
|
3056 |
|
|
howto->name,
|
3057 |
|
|
name);
|
3058 |
|
|
return FALSE;
|
3059 |
|
|
}
|
3060 |
|
|
|
3061 |
|
|
/* TLS optimizations may have changed r_type; update "howto". */
|
3062 |
|
|
howto = &elf_howto_table[r_type];
|
3063 |
|
|
|
3064 |
|
|
/* There's no point in calling bfd_perform_relocation here.
|
3065 |
|
|
Just go directly to our "special function". */
|
3066 |
|
|
r = elf_xtensa_do_reloc (howto, input_bfd, input_section,
|
3067 |
|
|
relocation + rel->r_addend,
|
3068 |
|
|
contents, rel->r_offset, is_weak_undef,
|
3069 |
|
|
&error_message);
|
3070 |
|
|
|
3071 |
|
|
if (r != bfd_reloc_ok && !warned)
|
3072 |
|
|
{
|
3073 |
|
|
BFD_ASSERT (r == bfd_reloc_dangerous || r == bfd_reloc_other);
|
3074 |
|
|
BFD_ASSERT (error_message != NULL);
|
3075 |
|
|
|
3076 |
|
|
if (rel->r_addend == 0)
|
3077 |
|
|
error_message = vsprint_msg (error_message, ": %s",
|
3078 |
|
|
strlen (name) + 2, name);
|
3079 |
|
|
else
|
3080 |
|
|
error_message = vsprint_msg (error_message, ": (%s+0x%x)",
|
3081 |
|
|
strlen (name) + 22,
|
3082 |
|
|
name, (int) rel->r_addend);
|
3083 |
|
|
|
3084 |
|
|
if (!((*info->callbacks->reloc_dangerous)
|
3085 |
|
|
(info, error_message, input_bfd, input_section,
|
3086 |
|
|
rel->r_offset)))
|
3087 |
|
|
return FALSE;
|
3088 |
|
|
}
|
3089 |
|
|
}
|
3090 |
|
|
|
3091 |
|
|
if (lit_table)
|
3092 |
|
|
free (lit_table);
|
3093 |
|
|
|
3094 |
|
|
input_section->reloc_done = TRUE;
|
3095 |
|
|
|
3096 |
|
|
return TRUE;
|
3097 |
|
|
}
|
3098 |
|
|
|
3099 |
|
|
|
3100 |
|
|
/* Finish up dynamic symbol handling. There's not much to do here since
|
3101 |
|
|
the PLT and GOT entries are all set up by relocate_section. */
|
3102 |
|
|
|
3103 |
|
|
static bfd_boolean
|
3104 |
|
|
elf_xtensa_finish_dynamic_symbol (bfd *output_bfd ATTRIBUTE_UNUSED,
|
3105 |
|
|
struct bfd_link_info *info ATTRIBUTE_UNUSED,
|
3106 |
|
|
struct elf_link_hash_entry *h,
|
3107 |
|
|
Elf_Internal_Sym *sym)
|
3108 |
|
|
{
|
3109 |
|
|
if (h->needs_plt && !h->def_regular)
|
3110 |
|
|
{
|
3111 |
|
|
/* Mark the symbol as undefined, rather than as defined in
|
3112 |
|
|
the .plt section. Leave the value alone. */
|
3113 |
|
|
sym->st_shndx = SHN_UNDEF;
|
3114 |
|
|
/* If the symbol is weak, we do need to clear the value.
|
3115 |
|
|
Otherwise, the PLT entry would provide a definition for
|
3116 |
|
|
the symbol even if the symbol wasn't defined anywhere,
|
3117 |
|
|
and so the symbol would never be NULL. */
|
3118 |
|
|
if (!h->ref_regular_nonweak)
|
3119 |
|
|
sym->st_value = 0;
|
3120 |
|
|
}
|
3121 |
|
|
|
3122 |
|
|
/* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
|
3123 |
|
|
if (strcmp (h->root.root.string, "_DYNAMIC") == 0
|
3124 |
|
|
|| h == elf_hash_table (info)->hgot)
|
3125 |
|
|
sym->st_shndx = SHN_ABS;
|
3126 |
|
|
|
3127 |
|
|
return TRUE;
|
3128 |
|
|
}
|
3129 |
|
|
|
3130 |
|
|
|
3131 |
|
|
/* Combine adjacent literal table entries in the output. Adjacent
|
3132 |
|
|
entries within each input section may have been removed during
|
3133 |
|
|
relaxation, but we repeat the process here, even though it's too late
|
3134 |
|
|
to shrink the output section, because it's important to minimize the
|
3135 |
|
|
number of literal table entries to reduce the start-up work for the
|
3136 |
|
|
runtime linker. Returns the number of remaining table entries or -1
|
3137 |
|
|
on error. */
|
3138 |
|
|
|
3139 |
|
|
static int
|
3140 |
|
|
elf_xtensa_combine_prop_entries (bfd *output_bfd,
|
3141 |
|
|
asection *sxtlit,
|
3142 |
|
|
asection *sgotloc)
|
3143 |
|
|
{
|
3144 |
|
|
bfd_byte *contents;
|
3145 |
|
|
property_table_entry *table;
|
3146 |
|
|
bfd_size_type section_size, sgotloc_size;
|
3147 |
|
|
bfd_vma offset;
|
3148 |
|
|
int n, m, num;
|
3149 |
|
|
|
3150 |
|
|
section_size = sxtlit->size;
|
3151 |
|
|
BFD_ASSERT (section_size % 8 == 0);
|
3152 |
|
|
num = section_size / 8;
|
3153 |
|
|
|
3154 |
|
|
sgotloc_size = sgotloc->size;
|
3155 |
|
|
if (sgotloc_size != section_size)
|
3156 |
|
|
{
|
3157 |
|
|
(*_bfd_error_handler)
|
3158 |
|
|
(_("internal inconsistency in size of .got.loc section"));
|
3159 |
|
|
return -1;
|
3160 |
|
|
}
|
3161 |
|
|
|
3162 |
|
|
table = bfd_malloc (num * sizeof (property_table_entry));
|
3163 |
|
|
if (table == 0)
|
3164 |
|
|
return -1;
|
3165 |
|
|
|
3166 |
|
|
/* The ".xt.lit.plt" section has the SEC_IN_MEMORY flag set and this
|
3167 |
|
|
propagates to the output section, where it doesn't really apply and
|
3168 |
|
|
where it breaks the following call to bfd_malloc_and_get_section. */
|
3169 |
|
|
sxtlit->flags &= ~SEC_IN_MEMORY;
|
3170 |
|
|
|
3171 |
|
|
if (!bfd_malloc_and_get_section (output_bfd, sxtlit, &contents))
|
3172 |
|
|
{
|
3173 |
|
|
if (contents != 0)
|
3174 |
|
|
free (contents);
|
3175 |
|
|
free (table);
|
3176 |
|
|
return -1;
|
3177 |
|
|
}
|
3178 |
|
|
|
3179 |
|
|
/* There should never be any relocations left at this point, so this
|
3180 |
|
|
is quite a bit easier than what is done during relaxation. */
|
3181 |
|
|
|
3182 |
|
|
/* Copy the raw contents into a property table array and sort it. */
|
3183 |
|
|
offset = 0;
|
3184 |
|
|
for (n = 0; n < num; n++)
|
3185 |
|
|
{
|
3186 |
|
|
table[n].address = bfd_get_32 (output_bfd, &contents[offset]);
|
3187 |
|
|
table[n].size = bfd_get_32 (output_bfd, &contents[offset + 4]);
|
3188 |
|
|
offset += 8;
|
3189 |
|
|
}
|
3190 |
|
|
qsort (table, num, sizeof (property_table_entry), property_table_compare);
|
3191 |
|
|
|
3192 |
|
|
for (n = 0; n < num; n++)
|
3193 |
|
|
{
|
3194 |
|
|
bfd_boolean remove_entry = FALSE;
|
3195 |
|
|
|
3196 |
|
|
if (table[n].size == 0)
|
3197 |
|
|
remove_entry = TRUE;
|
3198 |
|
|
else if (n > 0
|
3199 |
|
|
&& (table[n-1].address + table[n-1].size == table[n].address))
|
3200 |
|
|
{
|
3201 |
|
|
table[n-1].size += table[n].size;
|
3202 |
|
|
remove_entry = TRUE;
|
3203 |
|
|
}
|
3204 |
|
|
|
3205 |
|
|
if (remove_entry)
|
3206 |
|
|
{
|
3207 |
|
|
for (m = n; m < num - 1; m++)
|
3208 |
|
|
{
|
3209 |
|
|
table[m].address = table[m+1].address;
|
3210 |
|
|
table[m].size = table[m+1].size;
|
3211 |
|
|
}
|
3212 |
|
|
|
3213 |
|
|
n--;
|
3214 |
|
|
num--;
|
3215 |
|
|
}
|
3216 |
|
|
}
|
3217 |
|
|
|
3218 |
|
|
/* Copy the data back to the raw contents. */
|
3219 |
|
|
offset = 0;
|
3220 |
|
|
for (n = 0; n < num; n++)
|
3221 |
|
|
{
|
3222 |
|
|
bfd_put_32 (output_bfd, table[n].address, &contents[offset]);
|
3223 |
|
|
bfd_put_32 (output_bfd, table[n].size, &contents[offset + 4]);
|
3224 |
|
|
offset += 8;
|
3225 |
|
|
}
|
3226 |
|
|
|
3227 |
|
|
/* Clear the removed bytes. */
|
3228 |
|
|
if ((bfd_size_type) (num * 8) < section_size)
|
3229 |
|
|
memset (&contents[num * 8], 0, section_size - num * 8);
|
3230 |
|
|
|
3231 |
|
|
if (! bfd_set_section_contents (output_bfd, sxtlit, contents, 0,
|
3232 |
|
|
section_size))
|
3233 |
|
|
return -1;
|
3234 |
|
|
|
3235 |
|
|
/* Copy the contents to ".got.loc". */
|
3236 |
|
|
memcpy (sgotloc->contents, contents, section_size);
|
3237 |
|
|
|
3238 |
|
|
free (contents);
|
3239 |
|
|
free (table);
|
3240 |
|
|
return num;
|
3241 |
|
|
}
|
3242 |
|
|
|
3243 |
|
|
|
3244 |
|
|
/* Finish up the dynamic sections. */
|
3245 |
|
|
|
3246 |
|
|
static bfd_boolean
|
3247 |
|
|
elf_xtensa_finish_dynamic_sections (bfd *output_bfd,
|
3248 |
|
|
struct bfd_link_info *info)
|
3249 |
|
|
{
|
3250 |
|
|
struct elf_xtensa_link_hash_table *htab;
|
3251 |
|
|
bfd *dynobj;
|
3252 |
|
|
asection *sdyn, *srelplt, *sgot, *sxtlit, *sgotloc;
|
3253 |
|
|
Elf32_External_Dyn *dyncon, *dynconend;
|
3254 |
|
|
int num_xtlit_entries = 0;
|
3255 |
|
|
|
3256 |
|
|
if (! elf_hash_table (info)->dynamic_sections_created)
|
3257 |
|
|
return TRUE;
|
3258 |
|
|
|
3259 |
|
|
htab = elf_xtensa_hash_table (info);
|
3260 |
|
|
if (htab == NULL)
|
3261 |
|
|
return FALSE;
|
3262 |
|
|
|
3263 |
|
|
dynobj = elf_hash_table (info)->dynobj;
|
3264 |
|
|
sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
|
3265 |
|
|
BFD_ASSERT (sdyn != NULL);
|
3266 |
|
|
|
3267 |
|
|
/* Set the first entry in the global offset table to the address of
|
3268 |
|
|
the dynamic section. */
|
3269 |
|
|
sgot = htab->sgot;
|
3270 |
|
|
if (sgot)
|
3271 |
|
|
{
|
3272 |
|
|
BFD_ASSERT (sgot->size == 4);
|
3273 |
|
|
if (sdyn == NULL)
|
3274 |
|
|
bfd_put_32 (output_bfd, 0, sgot->contents);
|
3275 |
|
|
else
|
3276 |
|
|
bfd_put_32 (output_bfd,
|
3277 |
|
|
sdyn->output_section->vma + sdyn->output_offset,
|
3278 |
|
|
sgot->contents);
|
3279 |
|
|
}
|
3280 |
|
|
|
3281 |
|
|
srelplt = htab->srelplt;
|
3282 |
|
|
if (srelplt && srelplt->size != 0)
|
3283 |
|
|
{
|
3284 |
|
|
asection *sgotplt, *srelgot, *spltlittbl;
|
3285 |
|
|
int chunk, plt_chunks, plt_entries;
|
3286 |
|
|
Elf_Internal_Rela irela;
|
3287 |
|
|
bfd_byte *loc;
|
3288 |
|
|
unsigned rtld_reloc;
|
3289 |
|
|
|
3290 |
|
|
srelgot = htab->srelgot;
|
3291 |
|
|
spltlittbl = htab->spltlittbl;
|
3292 |
|
|
BFD_ASSERT (srelgot != NULL && spltlittbl != NULL);
|
3293 |
|
|
|
3294 |
|
|
/* Find the first XTENSA_RTLD relocation. Presumably the rest
|
3295 |
|
|
of them follow immediately after.... */
|
3296 |
|
|
for (rtld_reloc = 0; rtld_reloc < srelgot->reloc_count; rtld_reloc++)
|
3297 |
|
|
{
|
3298 |
|
|
loc = srelgot->contents + rtld_reloc * sizeof (Elf32_External_Rela);
|
3299 |
|
|
bfd_elf32_swap_reloca_in (output_bfd, loc, &irela);
|
3300 |
|
|
if (ELF32_R_TYPE (irela.r_info) == R_XTENSA_RTLD)
|
3301 |
|
|
break;
|
3302 |
|
|
}
|
3303 |
|
|
BFD_ASSERT (rtld_reloc < srelgot->reloc_count);
|
3304 |
|
|
|
3305 |
|
|
plt_entries = srelplt->size / sizeof (Elf32_External_Rela);
|
3306 |
|
|
plt_chunks =
|
3307 |
|
|
(plt_entries + PLT_ENTRIES_PER_CHUNK - 1) / PLT_ENTRIES_PER_CHUNK;
|
3308 |
|
|
|
3309 |
|
|
for (chunk = 0; chunk < plt_chunks; chunk++)
|
3310 |
|
|
{
|
3311 |
|
|
int chunk_entries = 0;
|
3312 |
|
|
|
3313 |
|
|
sgotplt = elf_xtensa_get_gotplt_section (info, chunk);
|
3314 |
|
|
BFD_ASSERT (sgotplt != NULL);
|
3315 |
|
|
|
3316 |
|
|
/* Emit special RTLD relocations for the first two entries in
|
3317 |
|
|
each chunk of the .got.plt section. */
|
3318 |
|
|
|
3319 |
|
|
loc = srelgot->contents + rtld_reloc * sizeof (Elf32_External_Rela);
|
3320 |
|
|
bfd_elf32_swap_reloca_in (output_bfd, loc, &irela);
|
3321 |
|
|
BFD_ASSERT (ELF32_R_TYPE (irela.r_info) == R_XTENSA_RTLD);
|
3322 |
|
|
irela.r_offset = (sgotplt->output_section->vma
|
3323 |
|
|
+ sgotplt->output_offset);
|
3324 |
|
|
irela.r_addend = 1; /* tell rtld to set value to resolver function */
|
3325 |
|
|
bfd_elf32_swap_reloca_out (output_bfd, &irela, loc);
|
3326 |
|
|
rtld_reloc += 1;
|
3327 |
|
|
BFD_ASSERT (rtld_reloc <= srelgot->reloc_count);
|
3328 |
|
|
|
3329 |
|
|
/* Next literal immediately follows the first. */
|
3330 |
|
|
loc += sizeof (Elf32_External_Rela);
|
3331 |
|
|
bfd_elf32_swap_reloca_in (output_bfd, loc, &irela);
|
3332 |
|
|
BFD_ASSERT (ELF32_R_TYPE (irela.r_info) == R_XTENSA_RTLD);
|
3333 |
|
|
irela.r_offset = (sgotplt->output_section->vma
|
3334 |
|
|
+ sgotplt->output_offset + 4);
|
3335 |
|
|
/* Tell rtld to set value to object's link map. */
|
3336 |
|
|
irela.r_addend = 2;
|
3337 |
|
|
bfd_elf32_swap_reloca_out (output_bfd, &irela, loc);
|
3338 |
|
|
rtld_reloc += 1;
|
3339 |
|
|
BFD_ASSERT (rtld_reloc <= srelgot->reloc_count);
|
3340 |
|
|
|
3341 |
|
|
/* Fill in the literal table. */
|
3342 |
|
|
if (chunk < plt_chunks - 1)
|
3343 |
|
|
chunk_entries = PLT_ENTRIES_PER_CHUNK;
|
3344 |
|
|
else
|
3345 |
|
|
chunk_entries = plt_entries - (chunk * PLT_ENTRIES_PER_CHUNK);
|
3346 |
|
|
|
3347 |
|
|
BFD_ASSERT ((unsigned) (chunk + 1) * 8 <= spltlittbl->size);
|
3348 |
|
|
bfd_put_32 (output_bfd,
|
3349 |
|
|
sgotplt->output_section->vma + sgotplt->output_offset,
|
3350 |
|
|
spltlittbl->contents + (chunk * 8) + 0);
|
3351 |
|
|
bfd_put_32 (output_bfd,
|
3352 |
|
|
8 + (chunk_entries * 4),
|
3353 |
|
|
spltlittbl->contents + (chunk * 8) + 4);
|
3354 |
|
|
}
|
3355 |
|
|
|
3356 |
|
|
/* All the dynamic relocations have been emitted at this point.
|
3357 |
|
|
Make sure the relocation sections are the correct size. */
|
3358 |
|
|
if (srelgot->size != (sizeof (Elf32_External_Rela)
|
3359 |
|
|
* srelgot->reloc_count)
|
3360 |
|
|
|| srelplt->size != (sizeof (Elf32_External_Rela)
|
3361 |
|
|
* srelplt->reloc_count))
|
3362 |
|
|
abort ();
|
3363 |
|
|
|
3364 |
|
|
/* The .xt.lit.plt section has just been modified. This must
|
3365 |
|
|
happen before the code below which combines adjacent literal
|
3366 |
|
|
table entries, and the .xt.lit.plt contents have to be forced to
|
3367 |
|
|
the output here. */
|
3368 |
|
|
if (! bfd_set_section_contents (output_bfd,
|
3369 |
|
|
spltlittbl->output_section,
|
3370 |
|
|
spltlittbl->contents,
|
3371 |
|
|
spltlittbl->output_offset,
|
3372 |
|
|
spltlittbl->size))
|
3373 |
|
|
return FALSE;
|
3374 |
|
|
/* Clear SEC_HAS_CONTENTS so the contents won't be output again. */
|
3375 |
|
|
spltlittbl->flags &= ~SEC_HAS_CONTENTS;
|
3376 |
|
|
}
|
3377 |
|
|
|
3378 |
|
|
/* Combine adjacent literal table entries. */
|
3379 |
|
|
BFD_ASSERT (! info->relocatable);
|
3380 |
|
|
sxtlit = bfd_get_section_by_name (output_bfd, ".xt.lit");
|
3381 |
|
|
sgotloc = htab->sgotloc;
|
3382 |
|
|
BFD_ASSERT (sgotloc);
|
3383 |
|
|
if (sxtlit)
|
3384 |
|
|
{
|
3385 |
|
|
num_xtlit_entries =
|
3386 |
|
|
elf_xtensa_combine_prop_entries (output_bfd, sxtlit, sgotloc);
|
3387 |
|
|
if (num_xtlit_entries < 0)
|
3388 |
|
|
return FALSE;
|
3389 |
|
|
}
|
3390 |
|
|
|
3391 |
|
|
dyncon = (Elf32_External_Dyn *) sdyn->contents;
|
3392 |
|
|
dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->size);
|
3393 |
|
|
for (; dyncon < dynconend; dyncon++)
|
3394 |
|
|
{
|
3395 |
|
|
Elf_Internal_Dyn dyn;
|
3396 |
|
|
|
3397 |
|
|
bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
|
3398 |
|
|
|
3399 |
|
|
switch (dyn.d_tag)
|
3400 |
|
|
{
|
3401 |
|
|
default:
|
3402 |
|
|
break;
|
3403 |
|
|
|
3404 |
|
|
case DT_XTENSA_GOT_LOC_SZ:
|
3405 |
|
|
dyn.d_un.d_val = num_xtlit_entries;
|
3406 |
|
|
break;
|
3407 |
|
|
|
3408 |
|
|
case DT_XTENSA_GOT_LOC_OFF:
|
3409 |
|
|
dyn.d_un.d_ptr = htab->sgotloc->output_section->vma;
|
3410 |
|
|
break;
|
3411 |
|
|
|
3412 |
|
|
case DT_PLTGOT:
|
3413 |
|
|
dyn.d_un.d_ptr = htab->sgot->output_section->vma;
|
3414 |
|
|
break;
|
3415 |
|
|
|
3416 |
|
|
case DT_JMPREL:
|
3417 |
|
|
dyn.d_un.d_ptr = htab->srelplt->output_section->vma;
|
3418 |
|
|
break;
|
3419 |
|
|
|
3420 |
|
|
case DT_PLTRELSZ:
|
3421 |
|
|
dyn.d_un.d_val = htab->srelplt->output_section->size;
|
3422 |
|
|
break;
|
3423 |
|
|
|
3424 |
|
|
case DT_RELASZ:
|
3425 |
|
|
/* Adjust RELASZ to not include JMPREL. This matches what
|
3426 |
|
|
glibc expects and what is done for several other ELF
|
3427 |
|
|
targets (e.g., i386, alpha), but the "correct" behavior
|
3428 |
|
|
seems to be unresolved. Since the linker script arranges
|
3429 |
|
|
for .rela.plt to follow all other relocation sections, we
|
3430 |
|
|
don't have to worry about changing the DT_RELA entry. */
|
3431 |
|
|
if (htab->srelplt)
|
3432 |
|
|
dyn.d_un.d_val -= htab->srelplt->output_section->size;
|
3433 |
|
|
break;
|
3434 |
|
|
}
|
3435 |
|
|
|
3436 |
|
|
bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
|
3437 |
|
|
}
|
3438 |
|
|
|
3439 |
|
|
return TRUE;
|
3440 |
|
|
}
|
3441 |
|
|
|
3442 |
|
|
|
3443 |
|
|
/* Functions for dealing with the e_flags field. */
|
3444 |
|
|
|
3445 |
|
|
/* Merge backend specific data from an object file to the output
|
3446 |
|
|
object file when linking. */
|
3447 |
|
|
|
3448 |
|
|
static bfd_boolean
|
3449 |
|
|
elf_xtensa_merge_private_bfd_data (bfd *ibfd, bfd *obfd)
|
3450 |
|
|
{
|
3451 |
|
|
unsigned out_mach, in_mach;
|
3452 |
|
|
flagword out_flag, in_flag;
|
3453 |
|
|
|
3454 |
|
|
/* Check if we have the same endianess. */
|
3455 |
|
|
if (!_bfd_generic_verify_endian_match (ibfd, obfd))
|
3456 |
|
|
return FALSE;
|
3457 |
|
|
|
3458 |
|
|
/* Don't even pretend to support mixed-format linking. */
|
3459 |
|
|
if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
|
3460 |
|
|
|| bfd_get_flavour (obfd) != bfd_target_elf_flavour)
|
3461 |
|
|
return FALSE;
|
3462 |
|
|
|
3463 |
|
|
out_flag = elf_elfheader (obfd)->e_flags;
|
3464 |
|
|
in_flag = elf_elfheader (ibfd)->e_flags;
|
3465 |
|
|
|
3466 |
|
|
out_mach = out_flag & EF_XTENSA_MACH;
|
3467 |
|
|
in_mach = in_flag & EF_XTENSA_MACH;
|
3468 |
|
|
if (out_mach != in_mach)
|
3469 |
|
|
{
|
3470 |
|
|
(*_bfd_error_handler)
|
3471 |
|
|
(_("%B: incompatible machine type. Output is 0x%x. Input is 0x%x"),
|
3472 |
|
|
ibfd, out_mach, in_mach);
|
3473 |
|
|
bfd_set_error (bfd_error_wrong_format);
|
3474 |
|
|
return FALSE;
|
3475 |
|
|
}
|
3476 |
|
|
|
3477 |
|
|
if (! elf_flags_init (obfd))
|
3478 |
|
|
{
|
3479 |
|
|
elf_flags_init (obfd) = TRUE;
|
3480 |
|
|
elf_elfheader (obfd)->e_flags = in_flag;
|
3481 |
|
|
|
3482 |
|
|
if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
|
3483 |
|
|
&& bfd_get_arch_info (obfd)->the_default)
|
3484 |
|
|
return bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
|
3485 |
|
|
bfd_get_mach (ibfd));
|
3486 |
|
|
|
3487 |
|
|
return TRUE;
|
3488 |
|
|
}
|
3489 |
|
|
|
3490 |
|
|
if ((out_flag & EF_XTENSA_XT_INSN) != (in_flag & EF_XTENSA_XT_INSN))
|
3491 |
|
|
elf_elfheader (obfd)->e_flags &= (~ EF_XTENSA_XT_INSN);
|
3492 |
|
|
|
3493 |
|
|
if ((out_flag & EF_XTENSA_XT_LIT) != (in_flag & EF_XTENSA_XT_LIT))
|
3494 |
|
|
elf_elfheader (obfd)->e_flags &= (~ EF_XTENSA_XT_LIT);
|
3495 |
|
|
|
3496 |
|
|
return TRUE;
|
3497 |
|
|
}
|
3498 |
|
|
|
3499 |
|
|
|
3500 |
|
|
static bfd_boolean
|
3501 |
|
|
elf_xtensa_set_private_flags (bfd *abfd, flagword flags)
|
3502 |
|
|
{
|
3503 |
|
|
BFD_ASSERT (!elf_flags_init (abfd)
|
3504 |
|
|
|| elf_elfheader (abfd)->e_flags == flags);
|
3505 |
|
|
|
3506 |
|
|
elf_elfheader (abfd)->e_flags |= flags;
|
3507 |
|
|
elf_flags_init (abfd) = TRUE;
|
3508 |
|
|
|
3509 |
|
|
return TRUE;
|
3510 |
|
|
}
|
3511 |
|
|
|
3512 |
|
|
|
3513 |
|
|
static bfd_boolean
|
3514 |
|
|
elf_xtensa_print_private_bfd_data (bfd *abfd, void *farg)
|
3515 |
|
|
{
|
3516 |
|
|
FILE *f = (FILE *) farg;
|
3517 |
|
|
flagword e_flags = elf_elfheader (abfd)->e_flags;
|
3518 |
|
|
|
3519 |
|
|
fprintf (f, "\nXtensa header:\n");
|
3520 |
|
|
if ((e_flags & EF_XTENSA_MACH) == E_XTENSA_MACH)
|
3521 |
|
|
fprintf (f, "\nMachine = Base\n");
|
3522 |
|
|
else
|
3523 |
|
|
fprintf (f, "\nMachine Id = 0x%x\n", e_flags & EF_XTENSA_MACH);
|
3524 |
|
|
|
3525 |
|
|
fprintf (f, "Insn tables = %s\n",
|
3526 |
|
|
(e_flags & EF_XTENSA_XT_INSN) ? "true" : "false");
|
3527 |
|
|
|
3528 |
|
|
fprintf (f, "Literal tables = %s\n",
|
3529 |
|
|
(e_flags & EF_XTENSA_XT_LIT) ? "true" : "false");
|
3530 |
|
|
|
3531 |
|
|
return _bfd_elf_print_private_bfd_data (abfd, farg);
|
3532 |
|
|
}
|
3533 |
|
|
|
3534 |
|
|
|
3535 |
|
|
/* Set the right machine number for an Xtensa ELF file. */
|
3536 |
|
|
|
3537 |
|
|
static bfd_boolean
|
3538 |
|
|
elf_xtensa_object_p (bfd *abfd)
|
3539 |
|
|
{
|
3540 |
|
|
int mach;
|
3541 |
|
|
unsigned long arch = elf_elfheader (abfd)->e_flags & EF_XTENSA_MACH;
|
3542 |
|
|
|
3543 |
|
|
switch (arch)
|
3544 |
|
|
{
|
3545 |
|
|
case E_XTENSA_MACH:
|
3546 |
|
|
mach = bfd_mach_xtensa;
|
3547 |
|
|
break;
|
3548 |
|
|
default:
|
3549 |
|
|
return FALSE;
|
3550 |
|
|
}
|
3551 |
|
|
|
3552 |
|
|
(void) bfd_default_set_arch_mach (abfd, bfd_arch_xtensa, mach);
|
3553 |
|
|
return TRUE;
|
3554 |
|
|
}
|
3555 |
|
|
|
3556 |
|
|
|
3557 |
|
|
/* The final processing done just before writing out an Xtensa ELF object
|
3558 |
|
|
file. This gets the Xtensa architecture right based on the machine
|
3559 |
|
|
number. */
|
3560 |
|
|
|
3561 |
|
|
static void
|
3562 |
|
|
elf_xtensa_final_write_processing (bfd *abfd,
|
3563 |
|
|
bfd_boolean linker ATTRIBUTE_UNUSED)
|
3564 |
|
|
{
|
3565 |
|
|
int mach;
|
3566 |
|
|
unsigned long val;
|
3567 |
|
|
|
3568 |
|
|
switch (mach = bfd_get_mach (abfd))
|
3569 |
|
|
{
|
3570 |
|
|
case bfd_mach_xtensa:
|
3571 |
|
|
val = E_XTENSA_MACH;
|
3572 |
|
|
break;
|
3573 |
|
|
default:
|
3574 |
|
|
return;
|
3575 |
|
|
}
|
3576 |
|
|
|
3577 |
|
|
elf_elfheader (abfd)->e_flags &= (~ EF_XTENSA_MACH);
|
3578 |
|
|
elf_elfheader (abfd)->e_flags |= val;
|
3579 |
|
|
}
|
3580 |
|
|
|
3581 |
|
|
|
3582 |
|
|
static enum elf_reloc_type_class
|
3583 |
|
|
elf_xtensa_reloc_type_class (const Elf_Internal_Rela *rela)
|
3584 |
|
|
{
|
3585 |
|
|
switch ((int) ELF32_R_TYPE (rela->r_info))
|
3586 |
|
|
{
|
3587 |
|
|
case R_XTENSA_RELATIVE:
|
3588 |
|
|
return reloc_class_relative;
|
3589 |
|
|
case R_XTENSA_JMP_SLOT:
|
3590 |
|
|
return reloc_class_plt;
|
3591 |
|
|
default:
|
3592 |
|
|
return reloc_class_normal;
|
3593 |
|
|
}
|
3594 |
|
|
}
|
3595 |
|
|
|
3596 |
|
|
|
3597 |
|
|
static bfd_boolean
|
3598 |
|
|
elf_xtensa_discard_info_for_section (bfd *abfd,
|
3599 |
|
|
struct elf_reloc_cookie *cookie,
|
3600 |
|
|
struct bfd_link_info *info,
|
3601 |
|
|
asection *sec)
|
3602 |
|
|
{
|
3603 |
|
|
bfd_byte *contents;
|
3604 |
|
|
bfd_vma offset, actual_offset;
|
3605 |
|
|
bfd_size_type removed_bytes = 0;
|
3606 |
|
|
bfd_size_type entry_size;
|
3607 |
|
|
|
3608 |
|
|
if (sec->output_section
|
3609 |
|
|
&& bfd_is_abs_section (sec->output_section))
|
3610 |
|
|
return FALSE;
|
3611 |
|
|
|
3612 |
|
|
if (xtensa_is_proptable_section (sec))
|
3613 |
|
|
entry_size = 12;
|
3614 |
|
|
else
|
3615 |
|
|
entry_size = 8;
|
3616 |
|
|
|
3617 |
|
|
if (sec->size == 0 || sec->size % entry_size != 0)
|
3618 |
|
|
return FALSE;
|
3619 |
|
|
|
3620 |
|
|
contents = retrieve_contents (abfd, sec, info->keep_memory);
|
3621 |
|
|
if (!contents)
|
3622 |
|
|
return FALSE;
|
3623 |
|
|
|
3624 |
|
|
cookie->rels = retrieve_internal_relocs (abfd, sec, info->keep_memory);
|
3625 |
|
|
if (!cookie->rels)
|
3626 |
|
|
{
|
3627 |
|
|
release_contents (sec, contents);
|
3628 |
|
|
return FALSE;
|
3629 |
|
|
}
|
3630 |
|
|
|
3631 |
|
|
/* Sort the relocations. They should already be in order when
|
3632 |
|
|
relaxation is enabled, but it might not be. */
|
3633 |
|
|
qsort (cookie->rels, sec->reloc_count, sizeof (Elf_Internal_Rela),
|
3634 |
|
|
internal_reloc_compare);
|
3635 |
|
|
|
3636 |
|
|
cookie->rel = cookie->rels;
|
3637 |
|
|
cookie->relend = cookie->rels + sec->reloc_count;
|
3638 |
|
|
|
3639 |
|
|
for (offset = 0; offset < sec->size; offset += entry_size)
|
3640 |
|
|
{
|
3641 |
|
|
actual_offset = offset - removed_bytes;
|
3642 |
|
|
|
3643 |
|
|
/* The ...symbol_deleted_p function will skip over relocs but it
|
3644 |
|
|
won't adjust their offsets, so do that here. */
|
3645 |
|
|
while (cookie->rel < cookie->relend
|
3646 |
|
|
&& cookie->rel->r_offset < offset)
|
3647 |
|
|
{
|
3648 |
|
|
cookie->rel->r_offset -= removed_bytes;
|
3649 |
|
|
cookie->rel++;
|
3650 |
|
|
}
|
3651 |
|
|
|
3652 |
|
|
while (cookie->rel < cookie->relend
|
3653 |
|
|
&& cookie->rel->r_offset == offset)
|
3654 |
|
|
{
|
3655 |
|
|
if (bfd_elf_reloc_symbol_deleted_p (offset, cookie))
|
3656 |
|
|
{
|
3657 |
|
|
/* Remove the table entry. (If the reloc type is NONE, then
|
3658 |
|
|
the entry has already been merged with another and deleted
|
3659 |
|
|
during relaxation.) */
|
3660 |
|
|
if (ELF32_R_TYPE (cookie->rel->r_info) != R_XTENSA_NONE)
|
3661 |
|
|
{
|
3662 |
|
|
/* Shift the contents up. */
|
3663 |
|
|
if (offset + entry_size < sec->size)
|
3664 |
|
|
memmove (&contents[actual_offset],
|
3665 |
|
|
&contents[actual_offset + entry_size],
|
3666 |
|
|
sec->size - offset - entry_size);
|
3667 |
|
|
removed_bytes += entry_size;
|
3668 |
|
|
}
|
3669 |
|
|
|
3670 |
|
|
/* Remove this relocation. */
|
3671 |
|
|
cookie->rel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
|
3672 |
|
|
}
|
3673 |
|
|
|
3674 |
|
|
/* Adjust the relocation offset for previous removals. This
|
3675 |
|
|
should not be done before calling ...symbol_deleted_p
|
3676 |
|
|
because it might mess up the offset comparisons there.
|
3677 |
|
|
Make sure the offset doesn't underflow in the case where
|
3678 |
|
|
the first entry is removed. */
|
3679 |
|
|
if (cookie->rel->r_offset >= removed_bytes)
|
3680 |
|
|
cookie->rel->r_offset -= removed_bytes;
|
3681 |
|
|
else
|
3682 |
|
|
cookie->rel->r_offset = 0;
|
3683 |
|
|
|
3684 |
|
|
cookie->rel++;
|
3685 |
|
|
}
|
3686 |
|
|
}
|
3687 |
|
|
|
3688 |
|
|
if (removed_bytes != 0)
|
3689 |
|
|
{
|
3690 |
|
|
/* Adjust any remaining relocs (shouldn't be any). */
|
3691 |
|
|
for (; cookie->rel < cookie->relend; cookie->rel++)
|
3692 |
|
|
{
|
3693 |
|
|
if (cookie->rel->r_offset >= removed_bytes)
|
3694 |
|
|
cookie->rel->r_offset -= removed_bytes;
|
3695 |
|
|
else
|
3696 |
|
|
cookie->rel->r_offset = 0;
|
3697 |
|
|
}
|
3698 |
|
|
|
3699 |
|
|
/* Clear the removed bytes. */
|
3700 |
|
|
memset (&contents[sec->size - removed_bytes], 0, removed_bytes);
|
3701 |
|
|
|
3702 |
|
|
pin_contents (sec, contents);
|
3703 |
|
|
pin_internal_relocs (sec, cookie->rels);
|
3704 |
|
|
|
3705 |
|
|
/* Shrink size. */
|
3706 |
|
|
if (sec->rawsize == 0)
|
3707 |
|
|
sec->rawsize = sec->size;
|
3708 |
|
|
sec->size -= removed_bytes;
|
3709 |
|
|
|
3710 |
|
|
if (xtensa_is_littable_section (sec))
|
3711 |
|
|
{
|
3712 |
|
|
asection *sgotloc = elf_xtensa_hash_table (info)->sgotloc;
|
3713 |
|
|
if (sgotloc)
|
3714 |
|
|
sgotloc->size -= removed_bytes;
|
3715 |
|
|
}
|
3716 |
|
|
}
|
3717 |
|
|
else
|
3718 |
|
|
{
|
3719 |
|
|
release_contents (sec, contents);
|
3720 |
|
|
release_internal_relocs (sec, cookie->rels);
|
3721 |
|
|
}
|
3722 |
|
|
|
3723 |
|
|
return (removed_bytes != 0);
|
3724 |
|
|
}
|
3725 |
|
|
|
3726 |
|
|
|
3727 |
|
|
static bfd_boolean
|
3728 |
|
|
elf_xtensa_discard_info (bfd *abfd,
|
3729 |
|
|
struct elf_reloc_cookie *cookie,
|
3730 |
|
|
struct bfd_link_info *info)
|
3731 |
|
|
{
|
3732 |
|
|
asection *sec;
|
3733 |
|
|
bfd_boolean changed = FALSE;
|
3734 |
|
|
|
3735 |
|
|
for (sec = abfd->sections; sec != NULL; sec = sec->next)
|
3736 |
|
|
{
|
3737 |
|
|
if (xtensa_is_property_section (sec))
|
3738 |
|
|
{
|
3739 |
|
|
if (elf_xtensa_discard_info_for_section (abfd, cookie, info, sec))
|
3740 |
|
|
changed = TRUE;
|
3741 |
|
|
}
|
3742 |
|
|
}
|
3743 |
|
|
|
3744 |
|
|
return changed;
|
3745 |
|
|
}
|
3746 |
|
|
|
3747 |
|
|
|
3748 |
|
|
static bfd_boolean
|
3749 |
|
|
elf_xtensa_ignore_discarded_relocs (asection *sec)
|
3750 |
|
|
{
|
3751 |
|
|
return xtensa_is_property_section (sec);
|
3752 |
|
|
}
|
3753 |
|
|
|
3754 |
|
|
|
3755 |
|
|
static unsigned int
|
3756 |
|
|
elf_xtensa_action_discarded (asection *sec)
|
3757 |
|
|
{
|
3758 |
|
|
if (strcmp (".xt_except_table", sec->name) == 0)
|
3759 |
|
|
return 0;
|
3760 |
|
|
|
3761 |
|
|
if (strcmp (".xt_except_desc", sec->name) == 0)
|
3762 |
|
|
return 0;
|
3763 |
|
|
|
3764 |
|
|
return _bfd_elf_default_action_discarded (sec);
|
3765 |
|
|
}
|
3766 |
|
|
|
3767 |
|
|
|
3768 |
|
|
/* Support for core dump NOTE sections. */
|
3769 |
|
|
|
3770 |
|
|
static bfd_boolean
|
3771 |
|
|
elf_xtensa_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
|
3772 |
|
|
{
|
3773 |
|
|
int offset;
|
3774 |
|
|
unsigned int size;
|
3775 |
|
|
|
3776 |
|
|
/* The size for Xtensa is variable, so don't try to recognize the format
|
3777 |
|
|
based on the size. Just assume this is GNU/Linux. */
|
3778 |
|
|
|
3779 |
|
|
/* pr_cursig */
|
3780 |
|
|
elf_tdata (abfd)->core_signal = bfd_get_16 (abfd, note->descdata + 12);
|
3781 |
|
|
|
3782 |
|
|
/* pr_pid */
|
3783 |
|
|
elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, note->descdata + 24);
|
3784 |
|
|
|
3785 |
|
|
/* pr_reg */
|
3786 |
|
|
offset = 72;
|
3787 |
|
|
size = note->descsz - offset - 4;
|
3788 |
|
|
|
3789 |
|
|
/* Make a ".reg/999" section. */
|
3790 |
|
|
return _bfd_elfcore_make_pseudosection (abfd, ".reg",
|
3791 |
|
|
size, note->descpos + offset);
|
3792 |
|
|
}
|
3793 |
|
|
|
3794 |
|
|
|
3795 |
|
|
static bfd_boolean
|
3796 |
|
|
elf_xtensa_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
|
3797 |
|
|
{
|
3798 |
|
|
switch (note->descsz)
|
3799 |
|
|
{
|
3800 |
|
|
default:
|
3801 |
|
|
return FALSE;
|
3802 |
|
|
|
3803 |
|
|
case 128: /* GNU/Linux elf_prpsinfo */
|
3804 |
|
|
elf_tdata (abfd)->core_program
|
3805 |
|
|
= _bfd_elfcore_strndup (abfd, note->descdata + 32, 16);
|
3806 |
|
|
elf_tdata (abfd)->core_command
|
3807 |
|
|
= _bfd_elfcore_strndup (abfd, note->descdata + 48, 80);
|
3808 |
|
|
}
|
3809 |
|
|
|
3810 |
|
|
/* Note that for some reason, a spurious space is tacked
|
3811 |
|
|
onto the end of the args in some (at least one anyway)
|
3812 |
|
|
implementations, so strip it off if it exists. */
|
3813 |
|
|
|
3814 |
|
|
{
|
3815 |
|
|
char *command = elf_tdata (abfd)->core_command;
|
3816 |
|
|
int n = strlen (command);
|
3817 |
|
|
|
3818 |
|
|
if (0 < n && command[n - 1] == ' ')
|
3819 |
|
|
command[n - 1] = '\0';
|
3820 |
|
|
}
|
3821 |
|
|
|
3822 |
|
|
return TRUE;
|
3823 |
|
|
}
|
3824 |
|
|
|
3825 |
|
|
|
3826 |
|
|
/* Generic Xtensa configurability stuff. */
|
3827 |
|
|
|
3828 |
|
|
static xtensa_opcode callx0_op = XTENSA_UNDEFINED;
|
3829 |
|
|
static xtensa_opcode callx4_op = XTENSA_UNDEFINED;
|
3830 |
|
|
static xtensa_opcode callx8_op = XTENSA_UNDEFINED;
|
3831 |
|
|
static xtensa_opcode callx12_op = XTENSA_UNDEFINED;
|
3832 |
|
|
static xtensa_opcode call0_op = XTENSA_UNDEFINED;
|
3833 |
|
|
static xtensa_opcode call4_op = XTENSA_UNDEFINED;
|
3834 |
|
|
static xtensa_opcode call8_op = XTENSA_UNDEFINED;
|
3835 |
|
|
static xtensa_opcode call12_op = XTENSA_UNDEFINED;
|
3836 |
|
|
|
3837 |
|
|
static void
|
3838 |
|
|
init_call_opcodes (void)
|
3839 |
|
|
{
|
3840 |
|
|
if (callx0_op == XTENSA_UNDEFINED)
|
3841 |
|
|
{
|
3842 |
|
|
callx0_op = xtensa_opcode_lookup (xtensa_default_isa, "callx0");
|
3843 |
|
|
callx4_op = xtensa_opcode_lookup (xtensa_default_isa, "callx4");
|
3844 |
|
|
callx8_op = xtensa_opcode_lookup (xtensa_default_isa, "callx8");
|
3845 |
|
|
callx12_op = xtensa_opcode_lookup (xtensa_default_isa, "callx12");
|
3846 |
|
|
call0_op = xtensa_opcode_lookup (xtensa_default_isa, "call0");
|
3847 |
|
|
call4_op = xtensa_opcode_lookup (xtensa_default_isa, "call4");
|
3848 |
|
|
call8_op = xtensa_opcode_lookup (xtensa_default_isa, "call8");
|
3849 |
|
|
call12_op = xtensa_opcode_lookup (xtensa_default_isa, "call12");
|
3850 |
|
|
}
|
3851 |
|
|
}
|
3852 |
|
|
|
3853 |
|
|
|
3854 |
|
|
static bfd_boolean
|
3855 |
|
|
is_indirect_call_opcode (xtensa_opcode opcode)
|
3856 |
|
|
{
|
3857 |
|
|
init_call_opcodes ();
|
3858 |
|
|
return (opcode == callx0_op
|
3859 |
|
|
|| opcode == callx4_op
|
3860 |
|
|
|| opcode == callx8_op
|
3861 |
|
|
|| opcode == callx12_op);
|
3862 |
|
|
}
|
3863 |
|
|
|
3864 |
|
|
|
3865 |
|
|
static bfd_boolean
|
3866 |
|
|
is_direct_call_opcode (xtensa_opcode opcode)
|
3867 |
|
|
{
|
3868 |
|
|
init_call_opcodes ();
|
3869 |
|
|
return (opcode == call0_op
|
3870 |
|
|
|| opcode == call4_op
|
3871 |
|
|
|| opcode == call8_op
|
3872 |
|
|
|| opcode == call12_op);
|
3873 |
|
|
}
|
3874 |
|
|
|
3875 |
|
|
|
3876 |
|
|
static bfd_boolean
|
3877 |
|
|
is_windowed_call_opcode (xtensa_opcode opcode)
|
3878 |
|
|
{
|
3879 |
|
|
init_call_opcodes ();
|
3880 |
|
|
return (opcode == call4_op
|
3881 |
|
|
|| opcode == call8_op
|
3882 |
|
|
|| opcode == call12_op
|
3883 |
|
|
|| opcode == callx4_op
|
3884 |
|
|
|| opcode == callx8_op
|
3885 |
|
|
|| opcode == callx12_op);
|
3886 |
|
|
}
|
3887 |
|
|
|
3888 |
|
|
|
3889 |
|
|
static bfd_boolean
|
3890 |
|
|
get_indirect_call_dest_reg (xtensa_opcode opcode, unsigned *pdst)
|
3891 |
|
|
{
|
3892 |
|
|
unsigned dst = (unsigned) -1;
|
3893 |
|
|
|
3894 |
|
|
init_call_opcodes ();
|
3895 |
|
|
if (opcode == callx0_op)
|
3896 |
|
|
dst = 0;
|
3897 |
|
|
else if (opcode == callx4_op)
|
3898 |
|
|
dst = 4;
|
3899 |
|
|
else if (opcode == callx8_op)
|
3900 |
|
|
dst = 8;
|
3901 |
|
|
else if (opcode == callx12_op)
|
3902 |
|
|
dst = 12;
|
3903 |
|
|
|
3904 |
|
|
if (dst == (unsigned) -1)
|
3905 |
|
|
return FALSE;
|
3906 |
|
|
|
3907 |
|
|
*pdst = dst;
|
3908 |
|
|
return TRUE;
|
3909 |
|
|
}
|
3910 |
|
|
|
3911 |
|
|
|
3912 |
|
|
static xtensa_opcode
|
3913 |
|
|
get_const16_opcode (void)
|
3914 |
|
|
{
|
3915 |
|
|
static bfd_boolean done_lookup = FALSE;
|
3916 |
|
|
static xtensa_opcode const16_opcode = XTENSA_UNDEFINED;
|
3917 |
|
|
if (!done_lookup)
|
3918 |
|
|
{
|
3919 |
|
|
const16_opcode = xtensa_opcode_lookup (xtensa_default_isa, "const16");
|
3920 |
|
|
done_lookup = TRUE;
|
3921 |
|
|
}
|
3922 |
|
|
return const16_opcode;
|
3923 |
|
|
}
|
3924 |
|
|
|
3925 |
|
|
|
3926 |
|
|
static xtensa_opcode
|
3927 |
|
|
get_l32r_opcode (void)
|
3928 |
|
|
{
|
3929 |
|
|
static xtensa_opcode l32r_opcode = XTENSA_UNDEFINED;
|
3930 |
|
|
static bfd_boolean done_lookup = FALSE;
|
3931 |
|
|
|
3932 |
|
|
if (!done_lookup)
|
3933 |
|
|
{
|
3934 |
|
|
l32r_opcode = xtensa_opcode_lookup (xtensa_default_isa, "l32r");
|
3935 |
|
|
done_lookup = TRUE;
|
3936 |
|
|
}
|
3937 |
|
|
return l32r_opcode;
|
3938 |
|
|
}
|
3939 |
|
|
|
3940 |
|
|
|
3941 |
|
|
static bfd_vma
|
3942 |
|
|
l32r_offset (bfd_vma addr, bfd_vma pc)
|
3943 |
|
|
{
|
3944 |
|
|
bfd_vma offset;
|
3945 |
|
|
|
3946 |
|
|
offset = addr - ((pc+3) & -4);
|
3947 |
|
|
BFD_ASSERT ((offset & ((1 << 2) - 1)) == 0);
|
3948 |
|
|
offset = (signed int) offset >> 2;
|
3949 |
|
|
BFD_ASSERT ((signed int) offset >> 16 == -1);
|
3950 |
|
|
return offset;
|
3951 |
|
|
}
|
3952 |
|
|
|
3953 |
|
|
|
3954 |
|
|
static int
|
3955 |
|
|
get_relocation_opnd (xtensa_opcode opcode, int r_type)
|
3956 |
|
|
{
|
3957 |
|
|
xtensa_isa isa = xtensa_default_isa;
|
3958 |
|
|
int last_immed, last_opnd, opi;
|
3959 |
|
|
|
3960 |
|
|
if (opcode == XTENSA_UNDEFINED)
|
3961 |
|
|
return XTENSA_UNDEFINED;
|
3962 |
|
|
|
3963 |
|
|
/* Find the last visible PC-relative immediate operand for the opcode.
|
3964 |
|
|
If there are no PC-relative immediates, then choose the last visible
|
3965 |
|
|
immediate; otherwise, fail and return XTENSA_UNDEFINED. */
|
3966 |
|
|
last_immed = XTENSA_UNDEFINED;
|
3967 |
|
|
last_opnd = xtensa_opcode_num_operands (isa, opcode);
|
3968 |
|
|
for (opi = last_opnd - 1; opi >= 0; opi--)
|
3969 |
|
|
{
|
3970 |
|
|
if (xtensa_operand_is_visible (isa, opcode, opi) == 0)
|
3971 |
|
|
continue;
|
3972 |
|
|
if (xtensa_operand_is_PCrelative (isa, opcode, opi) == 1)
|
3973 |
|
|
{
|
3974 |
|
|
last_immed = opi;
|
3975 |
|
|
break;
|
3976 |
|
|
}
|
3977 |
|
|
if (last_immed == XTENSA_UNDEFINED
|
3978 |
|
|
&& xtensa_operand_is_register (isa, opcode, opi) == 0)
|
3979 |
|
|
last_immed = opi;
|
3980 |
|
|
}
|
3981 |
|
|
if (last_immed < 0)
|
3982 |
|
|
return XTENSA_UNDEFINED;
|
3983 |
|
|
|
3984 |
|
|
/* If the operand number was specified in an old-style relocation,
|
3985 |
|
|
check for consistency with the operand computed above. */
|
3986 |
|
|
if (r_type >= R_XTENSA_OP0 && r_type <= R_XTENSA_OP2)
|
3987 |
|
|
{
|
3988 |
|
|
int reloc_opnd = r_type - R_XTENSA_OP0;
|
3989 |
|
|
if (reloc_opnd != last_immed)
|
3990 |
|
|
return XTENSA_UNDEFINED;
|
3991 |
|
|
}
|
3992 |
|
|
|
3993 |
|
|
return last_immed;
|
3994 |
|
|
}
|
3995 |
|
|
|
3996 |
|
|
|
3997 |
|
|
int
|
3998 |
|
|
get_relocation_slot (int r_type)
|
3999 |
|
|
{
|
4000 |
|
|
switch (r_type)
|
4001 |
|
|
{
|
4002 |
|
|
case R_XTENSA_OP0:
|
4003 |
|
|
case R_XTENSA_OP1:
|
4004 |
|
|
case R_XTENSA_OP2:
|
4005 |
|
|
return 0;
|
4006 |
|
|
|
4007 |
|
|
default:
|
4008 |
|
|
if (r_type >= R_XTENSA_SLOT0_OP && r_type <= R_XTENSA_SLOT14_OP)
|
4009 |
|
|
return r_type - R_XTENSA_SLOT0_OP;
|
4010 |
|
|
if (r_type >= R_XTENSA_SLOT0_ALT && r_type <= R_XTENSA_SLOT14_ALT)
|
4011 |
|
|
return r_type - R_XTENSA_SLOT0_ALT;
|
4012 |
|
|
break;
|
4013 |
|
|
}
|
4014 |
|
|
|
4015 |
|
|
return XTENSA_UNDEFINED;
|
4016 |
|
|
}
|
4017 |
|
|
|
4018 |
|
|
|
4019 |
|
|
/* Get the opcode for a relocation. */
|
4020 |
|
|
|
4021 |
|
|
static xtensa_opcode
|
4022 |
|
|
get_relocation_opcode (bfd *abfd,
|
4023 |
|
|
asection *sec,
|
4024 |
|
|
bfd_byte *contents,
|
4025 |
|
|
Elf_Internal_Rela *irel)
|
4026 |
|
|
{
|
4027 |
|
|
static xtensa_insnbuf ibuff = NULL;
|
4028 |
|
|
static xtensa_insnbuf sbuff = NULL;
|
4029 |
|
|
xtensa_isa isa = xtensa_default_isa;
|
4030 |
|
|
xtensa_format fmt;
|
4031 |
|
|
int slot;
|
4032 |
|
|
|
4033 |
|
|
if (contents == NULL)
|
4034 |
|
|
return XTENSA_UNDEFINED;
|
4035 |
|
|
|
4036 |
|
|
if (bfd_get_section_limit (abfd, sec) <= irel->r_offset)
|
4037 |
|
|
return XTENSA_UNDEFINED;
|
4038 |
|
|
|
4039 |
|
|
if (ibuff == NULL)
|
4040 |
|
|
{
|
4041 |
|
|
ibuff = xtensa_insnbuf_alloc (isa);
|
4042 |
|
|
sbuff = xtensa_insnbuf_alloc (isa);
|
4043 |
|
|
}
|
4044 |
|
|
|
4045 |
|
|
/* Decode the instruction. */
|
4046 |
|
|
xtensa_insnbuf_from_chars (isa, ibuff, &contents[irel->r_offset],
|
4047 |
|
|
sec->size - irel->r_offset);
|
4048 |
|
|
fmt = xtensa_format_decode (isa, ibuff);
|
4049 |
|
|
slot = get_relocation_slot (ELF32_R_TYPE (irel->r_info));
|
4050 |
|
|
if (slot == XTENSA_UNDEFINED)
|
4051 |
|
|
return XTENSA_UNDEFINED;
|
4052 |
|
|
xtensa_format_get_slot (isa, fmt, slot, ibuff, sbuff);
|
4053 |
|
|
return xtensa_opcode_decode (isa, fmt, slot, sbuff);
|
4054 |
|
|
}
|
4055 |
|
|
|
4056 |
|
|
|
4057 |
|
|
bfd_boolean
|
4058 |
|
|
is_l32r_relocation (bfd *abfd,
|
4059 |
|
|
asection *sec,
|
4060 |
|
|
bfd_byte *contents,
|
4061 |
|
|
Elf_Internal_Rela *irel)
|
4062 |
|
|
{
|
4063 |
|
|
xtensa_opcode opcode;
|
4064 |
|
|
if (!is_operand_relocation (ELF32_R_TYPE (irel->r_info)))
|
4065 |
|
|
return FALSE;
|
4066 |
|
|
opcode = get_relocation_opcode (abfd, sec, contents, irel);
|
4067 |
|
|
return (opcode == get_l32r_opcode ());
|
4068 |
|
|
}
|
4069 |
|
|
|
4070 |
|
|
|
4071 |
|
|
static bfd_size_type
|
4072 |
|
|
get_asm_simplify_size (bfd_byte *contents,
|
4073 |
|
|
bfd_size_type content_len,
|
4074 |
|
|
bfd_size_type offset)
|
4075 |
|
|
{
|
4076 |
|
|
bfd_size_type insnlen, size = 0;
|
4077 |
|
|
|
4078 |
|
|
/* Decode the size of the next two instructions. */
|
4079 |
|
|
insnlen = insn_decode_len (contents, content_len, offset);
|
4080 |
|
|
if (insnlen == 0)
|
4081 |
|
|
return 0;
|
4082 |
|
|
|
4083 |
|
|
size += insnlen;
|
4084 |
|
|
|
4085 |
|
|
insnlen = insn_decode_len (contents, content_len, offset + size);
|
4086 |
|
|
if (insnlen == 0)
|
4087 |
|
|
return 0;
|
4088 |
|
|
|
4089 |
|
|
size += insnlen;
|
4090 |
|
|
return size;
|
4091 |
|
|
}
|
4092 |
|
|
|
4093 |
|
|
|
4094 |
|
|
bfd_boolean
|
4095 |
|
|
is_alt_relocation (int r_type)
|
4096 |
|
|
{
|
4097 |
|
|
return (r_type >= R_XTENSA_SLOT0_ALT
|
4098 |
|
|
&& r_type <= R_XTENSA_SLOT14_ALT);
|
4099 |
|
|
}
|
4100 |
|
|
|
4101 |
|
|
|
4102 |
|
|
bfd_boolean
|
4103 |
|
|
is_operand_relocation (int r_type)
|
4104 |
|
|
{
|
4105 |
|
|
switch (r_type)
|
4106 |
|
|
{
|
4107 |
|
|
case R_XTENSA_OP0:
|
4108 |
|
|
case R_XTENSA_OP1:
|
4109 |
|
|
case R_XTENSA_OP2:
|
4110 |
|
|
return TRUE;
|
4111 |
|
|
|
4112 |
|
|
default:
|
4113 |
|
|
if (r_type >= R_XTENSA_SLOT0_OP && r_type <= R_XTENSA_SLOT14_OP)
|
4114 |
|
|
return TRUE;
|
4115 |
|
|
if (r_type >= R_XTENSA_SLOT0_ALT && r_type <= R_XTENSA_SLOT14_ALT)
|
4116 |
|
|
return TRUE;
|
4117 |
|
|
break;
|
4118 |
|
|
}
|
4119 |
|
|
|
4120 |
|
|
return FALSE;
|
4121 |
|
|
}
|
4122 |
|
|
|
4123 |
|
|
|
4124 |
|
|
#define MIN_INSN_LENGTH 2
|
4125 |
|
|
|
4126 |
|
|
/* Return 0 if it fails to decode. */
|
4127 |
|
|
|
4128 |
|
|
bfd_size_type
|
4129 |
|
|
insn_decode_len (bfd_byte *contents,
|
4130 |
|
|
bfd_size_type content_len,
|
4131 |
|
|
bfd_size_type offset)
|
4132 |
|
|
{
|
4133 |
|
|
int insn_len;
|
4134 |
|
|
xtensa_isa isa = xtensa_default_isa;
|
4135 |
|
|
xtensa_format fmt;
|
4136 |
|
|
static xtensa_insnbuf ibuff = NULL;
|
4137 |
|
|
|
4138 |
|
|
if (offset + MIN_INSN_LENGTH > content_len)
|
4139 |
|
|
return 0;
|
4140 |
|
|
|
4141 |
|
|
if (ibuff == NULL)
|
4142 |
|
|
ibuff = xtensa_insnbuf_alloc (isa);
|
4143 |
|
|
xtensa_insnbuf_from_chars (isa, ibuff, &contents[offset],
|
4144 |
|
|
content_len - offset);
|
4145 |
|
|
fmt = xtensa_format_decode (isa, ibuff);
|
4146 |
|
|
if (fmt == XTENSA_UNDEFINED)
|
4147 |
|
|
return 0;
|
4148 |
|
|
insn_len = xtensa_format_length (isa, fmt);
|
4149 |
|
|
if (insn_len == XTENSA_UNDEFINED)
|
4150 |
|
|
return 0;
|
4151 |
|
|
return insn_len;
|
4152 |
|
|
}
|
4153 |
|
|
|
4154 |
|
|
|
4155 |
|
|
/* Decode the opcode for a single slot instruction.
|
4156 |
|
|
Return 0 if it fails to decode or the instruction is multi-slot. */
|
4157 |
|
|
|
4158 |
|
|
xtensa_opcode
|
4159 |
|
|
insn_decode_opcode (bfd_byte *contents,
|
4160 |
|
|
bfd_size_type content_len,
|
4161 |
|
|
bfd_size_type offset,
|
4162 |
|
|
int slot)
|
4163 |
|
|
{
|
4164 |
|
|
xtensa_isa isa = xtensa_default_isa;
|
4165 |
|
|
xtensa_format fmt;
|
4166 |
|
|
static xtensa_insnbuf insnbuf = NULL;
|
4167 |
|
|
static xtensa_insnbuf slotbuf = NULL;
|
4168 |
|
|
|
4169 |
|
|
if (offset + MIN_INSN_LENGTH > content_len)
|
4170 |
|
|
return XTENSA_UNDEFINED;
|
4171 |
|
|
|
4172 |
|
|
if (insnbuf == NULL)
|
4173 |
|
|
{
|
4174 |
|
|
insnbuf = xtensa_insnbuf_alloc (isa);
|
4175 |
|
|
slotbuf = xtensa_insnbuf_alloc (isa);
|
4176 |
|
|
}
|
4177 |
|
|
|
4178 |
|
|
xtensa_insnbuf_from_chars (isa, insnbuf, &contents[offset],
|
4179 |
|
|
content_len - offset);
|
4180 |
|
|
fmt = xtensa_format_decode (isa, insnbuf);
|
4181 |
|
|
if (fmt == XTENSA_UNDEFINED)
|
4182 |
|
|
return XTENSA_UNDEFINED;
|
4183 |
|
|
|
4184 |
|
|
if (slot >= xtensa_format_num_slots (isa, fmt))
|
4185 |
|
|
return XTENSA_UNDEFINED;
|
4186 |
|
|
|
4187 |
|
|
xtensa_format_get_slot (isa, fmt, slot, insnbuf, slotbuf);
|
4188 |
|
|
return xtensa_opcode_decode (isa, fmt, slot, slotbuf);
|
4189 |
|
|
}
|
4190 |
|
|
|
4191 |
|
|
|
4192 |
|
|
/* The offset is the offset in the contents.
|
4193 |
|
|
The address is the address of that offset. */
|
4194 |
|
|
|
4195 |
|
|
static bfd_boolean
|
4196 |
|
|
check_branch_target_aligned (bfd_byte *contents,
|
4197 |
|
|
bfd_size_type content_length,
|
4198 |
|
|
bfd_vma offset,
|
4199 |
|
|
bfd_vma address)
|
4200 |
|
|
{
|
4201 |
|
|
bfd_size_type insn_len = insn_decode_len (contents, content_length, offset);
|
4202 |
|
|
if (insn_len == 0)
|
4203 |
|
|
return FALSE;
|
4204 |
|
|
return check_branch_target_aligned_address (address, insn_len);
|
4205 |
|
|
}
|
4206 |
|
|
|
4207 |
|
|
|
4208 |
|
|
static bfd_boolean
|
4209 |
|
|
check_loop_aligned (bfd_byte *contents,
|
4210 |
|
|
bfd_size_type content_length,
|
4211 |
|
|
bfd_vma offset,
|
4212 |
|
|
bfd_vma address)
|
4213 |
|
|
{
|
4214 |
|
|
bfd_size_type loop_len, insn_len;
|
4215 |
|
|
xtensa_opcode opcode;
|
4216 |
|
|
|
4217 |
|
|
opcode = insn_decode_opcode (contents, content_length, offset, 0);
|
4218 |
|
|
if (opcode == XTENSA_UNDEFINED
|
4219 |
|
|
|| xtensa_opcode_is_loop (xtensa_default_isa, opcode) != 1)
|
4220 |
|
|
{
|
4221 |
|
|
BFD_ASSERT (FALSE);
|
4222 |
|
|
return FALSE;
|
4223 |
|
|
}
|
4224 |
|
|
|
4225 |
|
|
loop_len = insn_decode_len (contents, content_length, offset);
|
4226 |
|
|
insn_len = insn_decode_len (contents, content_length, offset + loop_len);
|
4227 |
|
|
if (loop_len == 0 || insn_len == 0)
|
4228 |
|
|
{
|
4229 |
|
|
BFD_ASSERT (FALSE);
|
4230 |
|
|
return FALSE;
|
4231 |
|
|
}
|
4232 |
|
|
|
4233 |
|
|
return check_branch_target_aligned_address (address + loop_len, insn_len);
|
4234 |
|
|
}
|
4235 |
|
|
|
4236 |
|
|
|
4237 |
|
|
static bfd_boolean
|
4238 |
|
|
check_branch_target_aligned_address (bfd_vma addr, int len)
|
4239 |
|
|
{
|
4240 |
|
|
if (len == 8)
|
4241 |
|
|
return (addr % 8 == 0);
|
4242 |
|
|
return ((addr >> 2) == ((addr + len - 1) >> 2));
|
4243 |
|
|
}
|
4244 |
|
|
|
4245 |
|
|
|
4246 |
|
|
/* Instruction widening and narrowing. */
|
4247 |
|
|
|
4248 |
|
|
/* When FLIX is available we need to access certain instructions only
|
4249 |
|
|
when they are 16-bit or 24-bit instructions. This table caches
|
4250 |
|
|
information about such instructions by walking through all the
|
4251 |
|
|
opcodes and finding the smallest single-slot format into which each
|
4252 |
|
|
can be encoded. */
|
4253 |
|
|
|
4254 |
|
|
static xtensa_format *op_single_fmt_table = NULL;
|
4255 |
|
|
|
4256 |
|
|
|
4257 |
|
|
static void
|
4258 |
|
|
init_op_single_format_table (void)
|
4259 |
|
|
{
|
4260 |
|
|
xtensa_isa isa = xtensa_default_isa;
|
4261 |
|
|
xtensa_insnbuf ibuf;
|
4262 |
|
|
xtensa_opcode opcode;
|
4263 |
|
|
xtensa_format fmt;
|
4264 |
|
|
int num_opcodes;
|
4265 |
|
|
|
4266 |
|
|
if (op_single_fmt_table)
|
4267 |
|
|
return;
|
4268 |
|
|
|
4269 |
|
|
ibuf = xtensa_insnbuf_alloc (isa);
|
4270 |
|
|
num_opcodes = xtensa_isa_num_opcodes (isa);
|
4271 |
|
|
|
4272 |
|
|
op_single_fmt_table = (xtensa_format *)
|
4273 |
|
|
bfd_malloc (sizeof (xtensa_format) * num_opcodes);
|
4274 |
|
|
for (opcode = 0; opcode < num_opcodes; opcode++)
|
4275 |
|
|
{
|
4276 |
|
|
op_single_fmt_table[opcode] = XTENSA_UNDEFINED;
|
4277 |
|
|
for (fmt = 0; fmt < xtensa_isa_num_formats (isa); fmt++)
|
4278 |
|
|
{
|
4279 |
|
|
if (xtensa_format_num_slots (isa, fmt) == 1
|
4280 |
|
|
&& xtensa_opcode_encode (isa, fmt, 0, ibuf, opcode) == 0)
|
4281 |
|
|
{
|
4282 |
|
|
xtensa_opcode old_fmt = op_single_fmt_table[opcode];
|
4283 |
|
|
int fmt_length = xtensa_format_length (isa, fmt);
|
4284 |
|
|
if (old_fmt == XTENSA_UNDEFINED
|
4285 |
|
|
|| fmt_length < xtensa_format_length (isa, old_fmt))
|
4286 |
|
|
op_single_fmt_table[opcode] = fmt;
|
4287 |
|
|
}
|
4288 |
|
|
}
|
4289 |
|
|
}
|
4290 |
|
|
xtensa_insnbuf_free (isa, ibuf);
|
4291 |
|
|
}
|
4292 |
|
|
|
4293 |
|
|
|
4294 |
|
|
static xtensa_format
|
4295 |
|
|
get_single_format (xtensa_opcode opcode)
|
4296 |
|
|
{
|
4297 |
|
|
init_op_single_format_table ();
|
4298 |
|
|
return op_single_fmt_table[opcode];
|
4299 |
|
|
}
|
4300 |
|
|
|
4301 |
|
|
|
4302 |
|
|
/* For the set of narrowable instructions we do NOT include the
|
4303 |
|
|
narrowings beqz -> beqz.n or bnez -> bnez.n because of complexities
|
4304 |
|
|
involved during linker relaxation that may require these to
|
4305 |
|
|
re-expand in some conditions. Also, the narrowing "or" -> mov.n
|
4306 |
|
|
requires special case code to ensure it only works when op1 == op2. */
|
4307 |
|
|
|
4308 |
|
|
struct string_pair
|
4309 |
|
|
{
|
4310 |
|
|
const char *wide;
|
4311 |
|
|
const char *narrow;
|
4312 |
|
|
};
|
4313 |
|
|
|
4314 |
|
|
struct string_pair narrowable[] =
|
4315 |
|
|
{
|
4316 |
|
|
{ "add", "add.n" },
|
4317 |
|
|
{ "addi", "addi.n" },
|
4318 |
|
|
{ "addmi", "addi.n" },
|
4319 |
|
|
{ "l32i", "l32i.n" },
|
4320 |
|
|
{ "movi", "movi.n" },
|
4321 |
|
|
{ "ret", "ret.n" },
|
4322 |
|
|
{ "retw", "retw.n" },
|
4323 |
|
|
{ "s32i", "s32i.n" },
|
4324 |
|
|
{ "or", "mov.n" } /* special case only when op1 == op2 */
|
4325 |
|
|
};
|
4326 |
|
|
|
4327 |
|
|
struct string_pair widenable[] =
|
4328 |
|
|
{
|
4329 |
|
|
{ "add", "add.n" },
|
4330 |
|
|
{ "addi", "addi.n" },
|
4331 |
|
|
{ "addmi", "addi.n" },
|
4332 |
|
|
{ "beqz", "beqz.n" },
|
4333 |
|
|
{ "bnez", "bnez.n" },
|
4334 |
|
|
{ "l32i", "l32i.n" },
|
4335 |
|
|
{ "movi", "movi.n" },
|
4336 |
|
|
{ "ret", "ret.n" },
|
4337 |
|
|
{ "retw", "retw.n" },
|
4338 |
|
|
{ "s32i", "s32i.n" },
|
4339 |
|
|
{ "or", "mov.n" } /* special case only when op1 == op2 */
|
4340 |
|
|
};
|
4341 |
|
|
|
4342 |
|
|
|
4343 |
|
|
/* Check if an instruction can be "narrowed", i.e., changed from a standard
|
4344 |
|
|
3-byte instruction to a 2-byte "density" instruction. If it is valid,
|
4345 |
|
|
return the instruction buffer holding the narrow instruction. Otherwise,
|
4346 |
|
|
return 0. The set of valid narrowing are specified by a string table
|
4347 |
|
|
but require some special case operand checks in some cases. */
|
4348 |
|
|
|
4349 |
|
|
static xtensa_insnbuf
|
4350 |
|
|
can_narrow_instruction (xtensa_insnbuf slotbuf,
|
4351 |
|
|
xtensa_format fmt,
|
4352 |
|
|
xtensa_opcode opcode)
|
4353 |
|
|
{
|
4354 |
|
|
xtensa_isa isa = xtensa_default_isa;
|
4355 |
|
|
xtensa_format o_fmt;
|
4356 |
|
|
unsigned opi;
|
4357 |
|
|
|
4358 |
|
|
static xtensa_insnbuf o_insnbuf = NULL;
|
4359 |
|
|
static xtensa_insnbuf o_slotbuf = NULL;
|
4360 |
|
|
|
4361 |
|
|
if (o_insnbuf == NULL)
|
4362 |
|
|
{
|
4363 |
|
|
o_insnbuf = xtensa_insnbuf_alloc (isa);
|
4364 |
|
|
o_slotbuf = xtensa_insnbuf_alloc (isa);
|
4365 |
|
|
}
|
4366 |
|
|
|
4367 |
|
|
for (opi = 0; opi < (sizeof (narrowable)/sizeof (struct string_pair)); opi++)
|
4368 |
|
|
{
|
4369 |
|
|
bfd_boolean is_or = (strcmp ("or", narrowable[opi].wide) == 0);
|
4370 |
|
|
|
4371 |
|
|
if (opcode == xtensa_opcode_lookup (isa, narrowable[opi].wide))
|
4372 |
|
|
{
|
4373 |
|
|
uint32 value, newval;
|
4374 |
|
|
int i, operand_count, o_operand_count;
|
4375 |
|
|
xtensa_opcode o_opcode;
|
4376 |
|
|
|
4377 |
|
|
/* Address does not matter in this case. We might need to
|
4378 |
|
|
fix it to handle branches/jumps. */
|
4379 |
|
|
bfd_vma self_address = 0;
|
4380 |
|
|
|
4381 |
|
|
o_opcode = xtensa_opcode_lookup (isa, narrowable[opi].narrow);
|
4382 |
|
|
if (o_opcode == XTENSA_UNDEFINED)
|
4383 |
|
|
return 0;
|
4384 |
|
|
o_fmt = get_single_format (o_opcode);
|
4385 |
|
|
if (o_fmt == XTENSA_UNDEFINED)
|
4386 |
|
|
return 0;
|
4387 |
|
|
|
4388 |
|
|
if (xtensa_format_length (isa, fmt) != 3
|
4389 |
|
|
|| xtensa_format_length (isa, o_fmt) != 2)
|
4390 |
|
|
return 0;
|
4391 |
|
|
|
4392 |
|
|
xtensa_format_encode (isa, o_fmt, o_insnbuf);
|
4393 |
|
|
operand_count = xtensa_opcode_num_operands (isa, opcode);
|
4394 |
|
|
o_operand_count = xtensa_opcode_num_operands (isa, o_opcode);
|
4395 |
|
|
|
4396 |
|
|
if (xtensa_opcode_encode (isa, o_fmt, 0, o_slotbuf, o_opcode) != 0)
|
4397 |
|
|
return 0;
|
4398 |
|
|
|
4399 |
|
|
if (!is_or)
|
4400 |
|
|
{
|
4401 |
|
|
if (xtensa_opcode_num_operands (isa, o_opcode) != operand_count)
|
4402 |
|
|
return 0;
|
4403 |
|
|
}
|
4404 |
|
|
else
|
4405 |
|
|
{
|
4406 |
|
|
uint32 rawval0, rawval1, rawval2;
|
4407 |
|
|
|
4408 |
|
|
if (o_operand_count + 1 != operand_count
|
4409 |
|
|
|| xtensa_operand_get_field (isa, opcode, 0,
|
4410 |
|
|
fmt, 0, slotbuf, &rawval0) != 0
|
4411 |
|
|
|| xtensa_operand_get_field (isa, opcode, 1,
|
4412 |
|
|
fmt, 0, slotbuf, &rawval1) != 0
|
4413 |
|
|
|| xtensa_operand_get_field (isa, opcode, 2,
|
4414 |
|
|
fmt, 0, slotbuf, &rawval2) != 0
|
4415 |
|
|
|| rawval1 != rawval2
|
4416 |
|
|
|| rawval0 == rawval1 /* it is a nop */)
|
4417 |
|
|
return 0;
|
4418 |
|
|
}
|
4419 |
|
|
|
4420 |
|
|
for (i = 0; i < o_operand_count; ++i)
|
4421 |
|
|
{
|
4422 |
|
|
if (xtensa_operand_get_field (isa, opcode, i, fmt, 0,
|
4423 |
|
|
slotbuf, &value)
|
4424 |
|
|
|| xtensa_operand_decode (isa, opcode, i, &value))
|
4425 |
|
|
return 0;
|
4426 |
|
|
|
4427 |
|
|
/* PC-relative branches need adjustment, but
|
4428 |
|
|
the PC-rel operand will always have a relocation. */
|
4429 |
|
|
newval = value;
|
4430 |
|
|
if (xtensa_operand_do_reloc (isa, o_opcode, i, &newval,
|
4431 |
|
|
self_address)
|
4432 |
|
|
|| xtensa_operand_encode (isa, o_opcode, i, &newval)
|
4433 |
|
|
|| xtensa_operand_set_field (isa, o_opcode, i, o_fmt, 0,
|
4434 |
|
|
o_slotbuf, newval))
|
4435 |
|
|
return 0;
|
4436 |
|
|
}
|
4437 |
|
|
|
4438 |
|
|
if (xtensa_format_set_slot (isa, o_fmt, 0, o_insnbuf, o_slotbuf))
|
4439 |
|
|
return 0;
|
4440 |
|
|
|
4441 |
|
|
return o_insnbuf;
|
4442 |
|
|
}
|
4443 |
|
|
}
|
4444 |
|
|
return 0;
|
4445 |
|
|
}
|
4446 |
|
|
|
4447 |
|
|
|
4448 |
|
|
/* Attempt to narrow an instruction. If the narrowing is valid, perform
|
4449 |
|
|
the action in-place directly into the contents and return TRUE. Otherwise,
|
4450 |
|
|
the return value is FALSE and the contents are not modified. */
|
4451 |
|
|
|
4452 |
|
|
static bfd_boolean
|
4453 |
|
|
narrow_instruction (bfd_byte *contents,
|
4454 |
|
|
bfd_size_type content_length,
|
4455 |
|
|
bfd_size_type offset)
|
4456 |
|
|
{
|
4457 |
|
|
xtensa_opcode opcode;
|
4458 |
|
|
bfd_size_type insn_len;
|
4459 |
|
|
xtensa_isa isa = xtensa_default_isa;
|
4460 |
|
|
xtensa_format fmt;
|
4461 |
|
|
xtensa_insnbuf o_insnbuf;
|
4462 |
|
|
|
4463 |
|
|
static xtensa_insnbuf insnbuf = NULL;
|
4464 |
|
|
static xtensa_insnbuf slotbuf = NULL;
|
4465 |
|
|
|
4466 |
|
|
if (insnbuf == NULL)
|
4467 |
|
|
{
|
4468 |
|
|
insnbuf = xtensa_insnbuf_alloc (isa);
|
4469 |
|
|
slotbuf = xtensa_insnbuf_alloc (isa);
|
4470 |
|
|
}
|
4471 |
|
|
|
4472 |
|
|
BFD_ASSERT (offset < content_length);
|
4473 |
|
|
|
4474 |
|
|
if (content_length < 2)
|
4475 |
|
|
return FALSE;
|
4476 |
|
|
|
4477 |
|
|
/* We will hand-code a few of these for a little while.
|
4478 |
|
|
These have all been specified in the assembler aleady. */
|
4479 |
|
|
xtensa_insnbuf_from_chars (isa, insnbuf, &contents[offset],
|
4480 |
|
|
content_length - offset);
|
4481 |
|
|
fmt = xtensa_format_decode (isa, insnbuf);
|
4482 |
|
|
if (xtensa_format_num_slots (isa, fmt) != 1)
|
4483 |
|
|
return FALSE;
|
4484 |
|
|
|
4485 |
|
|
if (xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf) != 0)
|
4486 |
|
|
return FALSE;
|
4487 |
|
|
|
4488 |
|
|
opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
|
4489 |
|
|
if (opcode == XTENSA_UNDEFINED)
|
4490 |
|
|
return FALSE;
|
4491 |
|
|
insn_len = xtensa_format_length (isa, fmt);
|
4492 |
|
|
if (insn_len > content_length)
|
4493 |
|
|
return FALSE;
|
4494 |
|
|
|
4495 |
|
|
o_insnbuf = can_narrow_instruction (slotbuf, fmt, opcode);
|
4496 |
|
|
if (o_insnbuf)
|
4497 |
|
|
{
|
4498 |
|
|
xtensa_insnbuf_to_chars (isa, o_insnbuf, contents + offset,
|
4499 |
|
|
content_length - offset);
|
4500 |
|
|
return TRUE;
|
4501 |
|
|
}
|
4502 |
|
|
|
4503 |
|
|
return FALSE;
|
4504 |
|
|
}
|
4505 |
|
|
|
4506 |
|
|
|
4507 |
|
|
/* Check if an instruction can be "widened", i.e., changed from a 2-byte
|
4508 |
|
|
"density" instruction to a standard 3-byte instruction. If it is valid,
|
4509 |
|
|
return the instruction buffer holding the wide instruction. Otherwise,
|
4510 |
|
|
return 0. The set of valid widenings are specified by a string table
|
4511 |
|
|
but require some special case operand checks in some cases. */
|
4512 |
|
|
|
4513 |
|
|
static xtensa_insnbuf
|
4514 |
|
|
can_widen_instruction (xtensa_insnbuf slotbuf,
|
4515 |
|
|
xtensa_format fmt,
|
4516 |
|
|
xtensa_opcode opcode)
|
4517 |
|
|
{
|
4518 |
|
|
xtensa_isa isa = xtensa_default_isa;
|
4519 |
|
|
xtensa_format o_fmt;
|
4520 |
|
|
unsigned opi;
|
4521 |
|
|
|
4522 |
|
|
static xtensa_insnbuf o_insnbuf = NULL;
|
4523 |
|
|
static xtensa_insnbuf o_slotbuf = NULL;
|
4524 |
|
|
|
4525 |
|
|
if (o_insnbuf == NULL)
|
4526 |
|
|
{
|
4527 |
|
|
o_insnbuf = xtensa_insnbuf_alloc (isa);
|
4528 |
|
|
o_slotbuf = xtensa_insnbuf_alloc (isa);
|
4529 |
|
|
}
|
4530 |
|
|
|
4531 |
|
|
for (opi = 0; opi < (sizeof (widenable)/sizeof (struct string_pair)); opi++)
|
4532 |
|
|
{
|
4533 |
|
|
bfd_boolean is_or = (strcmp ("or", widenable[opi].wide) == 0);
|
4534 |
|
|
bfd_boolean is_branch = (strcmp ("beqz", widenable[opi].wide) == 0
|
4535 |
|
|
|| strcmp ("bnez", widenable[opi].wide) == 0);
|
4536 |
|
|
|
4537 |
|
|
if (opcode == xtensa_opcode_lookup (isa, widenable[opi].narrow))
|
4538 |
|
|
{
|
4539 |
|
|
uint32 value, newval;
|
4540 |
|
|
int i, operand_count, o_operand_count, check_operand_count;
|
4541 |
|
|
xtensa_opcode o_opcode;
|
4542 |
|
|
|
4543 |
|
|
/* Address does not matter in this case. We might need to fix it
|
4544 |
|
|
to handle branches/jumps. */
|
4545 |
|
|
bfd_vma self_address = 0;
|
4546 |
|
|
|
4547 |
|
|
o_opcode = xtensa_opcode_lookup (isa, widenable[opi].wide);
|
4548 |
|
|
if (o_opcode == XTENSA_UNDEFINED)
|
4549 |
|
|
return 0;
|
4550 |
|
|
o_fmt = get_single_format (o_opcode);
|
4551 |
|
|
if (o_fmt == XTENSA_UNDEFINED)
|
4552 |
|
|
return 0;
|
4553 |
|
|
|
4554 |
|
|
if (xtensa_format_length (isa, fmt) != 2
|
4555 |
|
|
|| xtensa_format_length (isa, o_fmt) != 3)
|
4556 |
|
|
return 0;
|
4557 |
|
|
|
4558 |
|
|
xtensa_format_encode (isa, o_fmt, o_insnbuf);
|
4559 |
|
|
operand_count = xtensa_opcode_num_operands (isa, opcode);
|
4560 |
|
|
o_operand_count = xtensa_opcode_num_operands (isa, o_opcode);
|
4561 |
|
|
check_operand_count = o_operand_count;
|
4562 |
|
|
|
4563 |
|
|
if (xtensa_opcode_encode (isa, o_fmt, 0, o_slotbuf, o_opcode) != 0)
|
4564 |
|
|
return 0;
|
4565 |
|
|
|
4566 |
|
|
if (!is_or)
|
4567 |
|
|
{
|
4568 |
|
|
if (xtensa_opcode_num_operands (isa, o_opcode) != operand_count)
|
4569 |
|
|
return 0;
|
4570 |
|
|
}
|
4571 |
|
|
else
|
4572 |
|
|
{
|
4573 |
|
|
uint32 rawval0, rawval1;
|
4574 |
|
|
|
4575 |
|
|
if (o_operand_count != operand_count + 1
|
4576 |
|
|
|| xtensa_operand_get_field (isa, opcode, 0,
|
4577 |
|
|
fmt, 0, slotbuf, &rawval0) != 0
|
4578 |
|
|
|| xtensa_operand_get_field (isa, opcode, 1,
|
4579 |
|
|
fmt, 0, slotbuf, &rawval1) != 0
|
4580 |
|
|
|| rawval0 == rawval1 /* it is a nop */)
|
4581 |
|
|
return 0;
|
4582 |
|
|
}
|
4583 |
|
|
if (is_branch)
|
4584 |
|
|
check_operand_count--;
|
4585 |
|
|
|
4586 |
|
|
for (i = 0; i < check_operand_count; i++)
|
4587 |
|
|
{
|
4588 |
|
|
int new_i = i;
|
4589 |
|
|
if (is_or && i == o_operand_count - 1)
|
4590 |
|
|
new_i = i - 1;
|
4591 |
|
|
if (xtensa_operand_get_field (isa, opcode, new_i, fmt, 0,
|
4592 |
|
|
slotbuf, &value)
|
4593 |
|
|
|| xtensa_operand_decode (isa, opcode, new_i, &value))
|
4594 |
|
|
return 0;
|
4595 |
|
|
|
4596 |
|
|
/* PC-relative branches need adjustment, but
|
4597 |
|
|
the PC-rel operand will always have a relocation. */
|
4598 |
|
|
newval = value;
|
4599 |
|
|
if (xtensa_operand_do_reloc (isa, o_opcode, i, &newval,
|
4600 |
|
|
self_address)
|
4601 |
|
|
|| xtensa_operand_encode (isa, o_opcode, i, &newval)
|
4602 |
|
|
|| xtensa_operand_set_field (isa, o_opcode, i, o_fmt, 0,
|
4603 |
|
|
o_slotbuf, newval))
|
4604 |
|
|
return 0;
|
4605 |
|
|
}
|
4606 |
|
|
|
4607 |
|
|
if (xtensa_format_set_slot (isa, o_fmt, 0, o_insnbuf, o_slotbuf))
|
4608 |
|
|
return 0;
|
4609 |
|
|
|
4610 |
|
|
return o_insnbuf;
|
4611 |
|
|
}
|
4612 |
|
|
}
|
4613 |
|
|
return 0;
|
4614 |
|
|
}
|
4615 |
|
|
|
4616 |
|
|
|
4617 |
|
|
/* Attempt to widen an instruction. If the widening is valid, perform
|
4618 |
|
|
the action in-place directly into the contents and return TRUE. Otherwise,
|
4619 |
|
|
the return value is FALSE and the contents are not modified. */
|
4620 |
|
|
|
4621 |
|
|
static bfd_boolean
|
4622 |
|
|
widen_instruction (bfd_byte *contents,
|
4623 |
|
|
bfd_size_type content_length,
|
4624 |
|
|
bfd_size_type offset)
|
4625 |
|
|
{
|
4626 |
|
|
xtensa_opcode opcode;
|
4627 |
|
|
bfd_size_type insn_len;
|
4628 |
|
|
xtensa_isa isa = xtensa_default_isa;
|
4629 |
|
|
xtensa_format fmt;
|
4630 |
|
|
xtensa_insnbuf o_insnbuf;
|
4631 |
|
|
|
4632 |
|
|
static xtensa_insnbuf insnbuf = NULL;
|
4633 |
|
|
static xtensa_insnbuf slotbuf = NULL;
|
4634 |
|
|
|
4635 |
|
|
if (insnbuf == NULL)
|
4636 |
|
|
{
|
4637 |
|
|
insnbuf = xtensa_insnbuf_alloc (isa);
|
4638 |
|
|
slotbuf = xtensa_insnbuf_alloc (isa);
|
4639 |
|
|
}
|
4640 |
|
|
|
4641 |
|
|
BFD_ASSERT (offset < content_length);
|
4642 |
|
|
|
4643 |
|
|
if (content_length < 2)
|
4644 |
|
|
return FALSE;
|
4645 |
|
|
|
4646 |
|
|
/* We will hand-code a few of these for a little while.
|
4647 |
|
|
These have all been specified in the assembler aleady. */
|
4648 |
|
|
xtensa_insnbuf_from_chars (isa, insnbuf, &contents[offset],
|
4649 |
|
|
content_length - offset);
|
4650 |
|
|
fmt = xtensa_format_decode (isa, insnbuf);
|
4651 |
|
|
if (xtensa_format_num_slots (isa, fmt) != 1)
|
4652 |
|
|
return FALSE;
|
4653 |
|
|
|
4654 |
|
|
if (xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf) != 0)
|
4655 |
|
|
return FALSE;
|
4656 |
|
|
|
4657 |
|
|
opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
|
4658 |
|
|
if (opcode == XTENSA_UNDEFINED)
|
4659 |
|
|
return FALSE;
|
4660 |
|
|
insn_len = xtensa_format_length (isa, fmt);
|
4661 |
|
|
if (insn_len > content_length)
|
4662 |
|
|
return FALSE;
|
4663 |
|
|
|
4664 |
|
|
o_insnbuf = can_widen_instruction (slotbuf, fmt, opcode);
|
4665 |
|
|
if (o_insnbuf)
|
4666 |
|
|
{
|
4667 |
|
|
xtensa_insnbuf_to_chars (isa, o_insnbuf, contents + offset,
|
4668 |
|
|
content_length - offset);
|
4669 |
|
|
return TRUE;
|
4670 |
|
|
}
|
4671 |
|
|
return FALSE;
|
4672 |
|
|
}
|
4673 |
|
|
|
4674 |
|
|
|
4675 |
|
|
/* Code for transforming CALLs at link-time. */
|
4676 |
|
|
|
4677 |
|
|
static bfd_reloc_status_type
|
4678 |
|
|
elf_xtensa_do_asm_simplify (bfd_byte *contents,
|
4679 |
|
|
bfd_vma address,
|
4680 |
|
|
bfd_vma content_length,
|
4681 |
|
|
char **error_message)
|
4682 |
|
|
{
|
4683 |
|
|
static xtensa_insnbuf insnbuf = NULL;
|
4684 |
|
|
static xtensa_insnbuf slotbuf = NULL;
|
4685 |
|
|
xtensa_format core_format = XTENSA_UNDEFINED;
|
4686 |
|
|
xtensa_opcode opcode;
|
4687 |
|
|
xtensa_opcode direct_call_opcode;
|
4688 |
|
|
xtensa_isa isa = xtensa_default_isa;
|
4689 |
|
|
bfd_byte *chbuf = contents + address;
|
4690 |
|
|
int opn;
|
4691 |
|
|
|
4692 |
|
|
if (insnbuf == NULL)
|
4693 |
|
|
{
|
4694 |
|
|
insnbuf = xtensa_insnbuf_alloc (isa);
|
4695 |
|
|
slotbuf = xtensa_insnbuf_alloc (isa);
|
4696 |
|
|
}
|
4697 |
|
|
|
4698 |
|
|
if (content_length < address)
|
4699 |
|
|
{
|
4700 |
|
|
*error_message = _("Attempt to convert L32R/CALLX to CALL failed");
|
4701 |
|
|
return bfd_reloc_other;
|
4702 |
|
|
}
|
4703 |
|
|
|
4704 |
|
|
opcode = get_expanded_call_opcode (chbuf, content_length - address, 0);
|
4705 |
|
|
direct_call_opcode = swap_callx_for_call_opcode (opcode);
|
4706 |
|
|
if (direct_call_opcode == XTENSA_UNDEFINED)
|
4707 |
|
|
{
|
4708 |
|
|
*error_message = _("Attempt to convert L32R/CALLX to CALL failed");
|
4709 |
|
|
return bfd_reloc_other;
|
4710 |
|
|
}
|
4711 |
|
|
|
4712 |
|
|
/* Assemble a NOP ("or a1, a1, a1") into the 0 byte offset. */
|
4713 |
|
|
core_format = xtensa_format_lookup (isa, "x24");
|
4714 |
|
|
opcode = xtensa_opcode_lookup (isa, "or");
|
4715 |
|
|
xtensa_opcode_encode (isa, core_format, 0, slotbuf, opcode);
|
4716 |
|
|
for (opn = 0; opn < 3; opn++)
|
4717 |
|
|
{
|
4718 |
|
|
uint32 regno = 1;
|
4719 |
|
|
xtensa_operand_encode (isa, opcode, opn, ®no);
|
4720 |
|
|
xtensa_operand_set_field (isa, opcode, opn, core_format, 0,
|
4721 |
|
|
slotbuf, regno);
|
4722 |
|
|
}
|
4723 |
|
|
xtensa_format_encode (isa, core_format, insnbuf);
|
4724 |
|
|
xtensa_format_set_slot (isa, core_format, 0, insnbuf, slotbuf);
|
4725 |
|
|
xtensa_insnbuf_to_chars (isa, insnbuf, chbuf, content_length - address);
|
4726 |
|
|
|
4727 |
|
|
/* Assemble a CALL ("callN 0") into the 3 byte offset. */
|
4728 |
|
|
xtensa_opcode_encode (isa, core_format, 0, slotbuf, direct_call_opcode);
|
4729 |
|
|
xtensa_operand_set_field (isa, opcode, 0, core_format, 0, slotbuf, 0);
|
4730 |
|
|
|
4731 |
|
|
xtensa_format_encode (isa, core_format, insnbuf);
|
4732 |
|
|
xtensa_format_set_slot (isa, core_format, 0, insnbuf, slotbuf);
|
4733 |
|
|
xtensa_insnbuf_to_chars (isa, insnbuf, chbuf + 3,
|
4734 |
|
|
content_length - address - 3);
|
4735 |
|
|
|
4736 |
|
|
return bfd_reloc_ok;
|
4737 |
|
|
}
|
4738 |
|
|
|
4739 |
|
|
|
4740 |
|
|
static bfd_reloc_status_type
|
4741 |
|
|
contract_asm_expansion (bfd_byte *contents,
|
4742 |
|
|
bfd_vma content_length,
|
4743 |
|
|
Elf_Internal_Rela *irel,
|
4744 |
|
|
char **error_message)
|
4745 |
|
|
{
|
4746 |
|
|
bfd_reloc_status_type retval =
|
4747 |
|
|
elf_xtensa_do_asm_simplify (contents, irel->r_offset, content_length,
|
4748 |
|
|
error_message);
|
4749 |
|
|
|
4750 |
|
|
if (retval != bfd_reloc_ok)
|
4751 |
|
|
return bfd_reloc_dangerous;
|
4752 |
|
|
|
4753 |
|
|
/* Update the irel->r_offset field so that the right immediate and
|
4754 |
|
|
the right instruction are modified during the relocation. */
|
4755 |
|
|
irel->r_offset += 3;
|
4756 |
|
|
irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info), R_XTENSA_SLOT0_OP);
|
4757 |
|
|
return bfd_reloc_ok;
|
4758 |
|
|
}
|
4759 |
|
|
|
4760 |
|
|
|
4761 |
|
|
static xtensa_opcode
|
4762 |
|
|
swap_callx_for_call_opcode (xtensa_opcode opcode)
|
4763 |
|
|
{
|
4764 |
|
|
init_call_opcodes ();
|
4765 |
|
|
|
4766 |
|
|
if (opcode == callx0_op) return call0_op;
|
4767 |
|
|
if (opcode == callx4_op) return call4_op;
|
4768 |
|
|
if (opcode == callx8_op) return call8_op;
|
4769 |
|
|
if (opcode == callx12_op) return call12_op;
|
4770 |
|
|
|
4771 |
|
|
/* Return XTENSA_UNDEFINED if the opcode is not an indirect call. */
|
4772 |
|
|
return XTENSA_UNDEFINED;
|
4773 |
|
|
}
|
4774 |
|
|
|
4775 |
|
|
|
4776 |
|
|
/* Check if "buf" is pointing to a "L32R aN; CALLX aN" or "CONST16 aN;
|
4777 |
|
|
CONST16 aN; CALLX aN" sequence, and if so, return the CALLX opcode.
|
4778 |
|
|
If not, return XTENSA_UNDEFINED. */
|
4779 |
|
|
|
4780 |
|
|
#define L32R_TARGET_REG_OPERAND 0
|
4781 |
|
|
#define CONST16_TARGET_REG_OPERAND 0
|
4782 |
|
|
#define CALLN_SOURCE_OPERAND 0
|
4783 |
|
|
|
4784 |
|
|
static xtensa_opcode
|
4785 |
|
|
get_expanded_call_opcode (bfd_byte *buf, int bufsize, bfd_boolean *p_uses_l32r)
|
4786 |
|
|
{
|
4787 |
|
|
static xtensa_insnbuf insnbuf = NULL;
|
4788 |
|
|
static xtensa_insnbuf slotbuf = NULL;
|
4789 |
|
|
xtensa_format fmt;
|
4790 |
|
|
xtensa_opcode opcode;
|
4791 |
|
|
xtensa_isa isa = xtensa_default_isa;
|
4792 |
|
|
uint32 regno, const16_regno, call_regno;
|
4793 |
|
|
int offset = 0;
|
4794 |
|
|
|
4795 |
|
|
if (insnbuf == NULL)
|
4796 |
|
|
{
|
4797 |
|
|
insnbuf = xtensa_insnbuf_alloc (isa);
|
4798 |
|
|
slotbuf = xtensa_insnbuf_alloc (isa);
|
4799 |
|
|
}
|
4800 |
|
|
|
4801 |
|
|
xtensa_insnbuf_from_chars (isa, insnbuf, buf, bufsize);
|
4802 |
|
|
fmt = xtensa_format_decode (isa, insnbuf);
|
4803 |
|
|
if (fmt == XTENSA_UNDEFINED
|
4804 |
|
|
|| xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf))
|
4805 |
|
|
return XTENSA_UNDEFINED;
|
4806 |
|
|
|
4807 |
|
|
opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
|
4808 |
|
|
if (opcode == XTENSA_UNDEFINED)
|
4809 |
|
|
return XTENSA_UNDEFINED;
|
4810 |
|
|
|
4811 |
|
|
if (opcode == get_l32r_opcode ())
|
4812 |
|
|
{
|
4813 |
|
|
if (p_uses_l32r)
|
4814 |
|
|
*p_uses_l32r = TRUE;
|
4815 |
|
|
if (xtensa_operand_get_field (isa, opcode, L32R_TARGET_REG_OPERAND,
|
4816 |
|
|
fmt, 0, slotbuf, ®no)
|
4817 |
|
|
|| xtensa_operand_decode (isa, opcode, L32R_TARGET_REG_OPERAND,
|
4818 |
|
|
®no))
|
4819 |
|
|
return XTENSA_UNDEFINED;
|
4820 |
|
|
}
|
4821 |
|
|
else if (opcode == get_const16_opcode ())
|
4822 |
|
|
{
|
4823 |
|
|
if (p_uses_l32r)
|
4824 |
|
|
*p_uses_l32r = FALSE;
|
4825 |
|
|
if (xtensa_operand_get_field (isa, opcode, CONST16_TARGET_REG_OPERAND,
|
4826 |
|
|
fmt, 0, slotbuf, ®no)
|
4827 |
|
|
|| xtensa_operand_decode (isa, opcode, CONST16_TARGET_REG_OPERAND,
|
4828 |
|
|
®no))
|
4829 |
|
|
return XTENSA_UNDEFINED;
|
4830 |
|
|
|
4831 |
|
|
/* Check that the next instruction is also CONST16. */
|
4832 |
|
|
offset += xtensa_format_length (isa, fmt);
|
4833 |
|
|
xtensa_insnbuf_from_chars (isa, insnbuf, buf + offset, bufsize - offset);
|
4834 |
|
|
fmt = xtensa_format_decode (isa, insnbuf);
|
4835 |
|
|
if (fmt == XTENSA_UNDEFINED
|
4836 |
|
|
|| xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf))
|
4837 |
|
|
return XTENSA_UNDEFINED;
|
4838 |
|
|
opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
|
4839 |
|
|
if (opcode != get_const16_opcode ())
|
4840 |
|
|
return XTENSA_UNDEFINED;
|
4841 |
|
|
|
4842 |
|
|
if (xtensa_operand_get_field (isa, opcode, CONST16_TARGET_REG_OPERAND,
|
4843 |
|
|
fmt, 0, slotbuf, &const16_regno)
|
4844 |
|
|
|| xtensa_operand_decode (isa, opcode, CONST16_TARGET_REG_OPERAND,
|
4845 |
|
|
&const16_regno)
|
4846 |
|
|
|| const16_regno != regno)
|
4847 |
|
|
return XTENSA_UNDEFINED;
|
4848 |
|
|
}
|
4849 |
|
|
else
|
4850 |
|
|
return XTENSA_UNDEFINED;
|
4851 |
|
|
|
4852 |
|
|
/* Next instruction should be an CALLXn with operand 0 == regno. */
|
4853 |
|
|
offset += xtensa_format_length (isa, fmt);
|
4854 |
|
|
xtensa_insnbuf_from_chars (isa, insnbuf, buf + offset, bufsize - offset);
|
4855 |
|
|
fmt = xtensa_format_decode (isa, insnbuf);
|
4856 |
|
|
if (fmt == XTENSA_UNDEFINED
|
4857 |
|
|
|| xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf))
|
4858 |
|
|
return XTENSA_UNDEFINED;
|
4859 |
|
|
opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
|
4860 |
|
|
if (opcode == XTENSA_UNDEFINED
|
4861 |
|
|
|| !is_indirect_call_opcode (opcode))
|
4862 |
|
|
return XTENSA_UNDEFINED;
|
4863 |
|
|
|
4864 |
|
|
if (xtensa_operand_get_field (isa, opcode, CALLN_SOURCE_OPERAND,
|
4865 |
|
|
fmt, 0, slotbuf, &call_regno)
|
4866 |
|
|
|| xtensa_operand_decode (isa, opcode, CALLN_SOURCE_OPERAND,
|
4867 |
|
|
&call_regno))
|
4868 |
|
|
return XTENSA_UNDEFINED;
|
4869 |
|
|
|
4870 |
|
|
if (call_regno != regno)
|
4871 |
|
|
return XTENSA_UNDEFINED;
|
4872 |
|
|
|
4873 |
|
|
return opcode;
|
4874 |
|
|
}
|
4875 |
|
|
|
4876 |
|
|
|
4877 |
|
|
/* Data structures used during relaxation. */
|
4878 |
|
|
|
4879 |
|
|
/* r_reloc: relocation values. */
|
4880 |
|
|
|
4881 |
|
|
/* Through the relaxation process, we need to keep track of the values
|
4882 |
|
|
that will result from evaluating relocations. The standard ELF
|
4883 |
|
|
relocation structure is not sufficient for this purpose because we're
|
4884 |
|
|
operating on multiple input files at once, so we need to know which
|
4885 |
|
|
input file a relocation refers to. The r_reloc structure thus
|
4886 |
|
|
records both the input file (bfd) and ELF relocation.
|
4887 |
|
|
|
4888 |
|
|
For efficiency, an r_reloc also contains a "target_offset" field to
|
4889 |
|
|
cache the target-section-relative offset value that is represented by
|
4890 |
|
|
the relocation.
|
4891 |
|
|
|
4892 |
|
|
The r_reloc also contains a virtual offset that allows multiple
|
4893 |
|
|
inserted literals to be placed at the same "address" with
|
4894 |
|
|
different offsets. */
|
4895 |
|
|
|
4896 |
|
|
typedef struct r_reloc_struct r_reloc;
|
4897 |
|
|
|
4898 |
|
|
struct r_reloc_struct
|
4899 |
|
|
{
|
4900 |
|
|
bfd *abfd;
|
4901 |
|
|
Elf_Internal_Rela rela;
|
4902 |
|
|
bfd_vma target_offset;
|
4903 |
|
|
bfd_vma virtual_offset;
|
4904 |
|
|
};
|
4905 |
|
|
|
4906 |
|
|
|
4907 |
|
|
/* The r_reloc structure is included by value in literal_value, but not
|
4908 |
|
|
every literal_value has an associated relocation -- some are simple
|
4909 |
|
|
constants. In such cases, we set all the fields in the r_reloc
|
4910 |
|
|
struct to zero. The r_reloc_is_const function should be used to
|
4911 |
|
|
detect this case. */
|
4912 |
|
|
|
4913 |
|
|
static bfd_boolean
|
4914 |
|
|
r_reloc_is_const (const r_reloc *r_rel)
|
4915 |
|
|
{
|
4916 |
|
|
return (r_rel->abfd == NULL);
|
4917 |
|
|
}
|
4918 |
|
|
|
4919 |
|
|
|
4920 |
|
|
static bfd_vma
|
4921 |
|
|
r_reloc_get_target_offset (const r_reloc *r_rel)
|
4922 |
|
|
{
|
4923 |
|
|
bfd_vma target_offset;
|
4924 |
|
|
unsigned long r_symndx;
|
4925 |
|
|
|
4926 |
|
|
BFD_ASSERT (!r_reloc_is_const (r_rel));
|
4927 |
|
|
r_symndx = ELF32_R_SYM (r_rel->rela.r_info);
|
4928 |
|
|
target_offset = get_elf_r_symndx_offset (r_rel->abfd, r_symndx);
|
4929 |
|
|
return (target_offset + r_rel->rela.r_addend);
|
4930 |
|
|
}
|
4931 |
|
|
|
4932 |
|
|
|
4933 |
|
|
static struct elf_link_hash_entry *
|
4934 |
|
|
r_reloc_get_hash_entry (const r_reloc *r_rel)
|
4935 |
|
|
{
|
4936 |
|
|
unsigned long r_symndx = ELF32_R_SYM (r_rel->rela.r_info);
|
4937 |
|
|
return get_elf_r_symndx_hash_entry (r_rel->abfd, r_symndx);
|
4938 |
|
|
}
|
4939 |
|
|
|
4940 |
|
|
|
4941 |
|
|
static asection *
|
4942 |
|
|
r_reloc_get_section (const r_reloc *r_rel)
|
4943 |
|
|
{
|
4944 |
|
|
unsigned long r_symndx = ELF32_R_SYM (r_rel->rela.r_info);
|
4945 |
|
|
return get_elf_r_symndx_section (r_rel->abfd, r_symndx);
|
4946 |
|
|
}
|
4947 |
|
|
|
4948 |
|
|
|
4949 |
|
|
static bfd_boolean
|
4950 |
|
|
r_reloc_is_defined (const r_reloc *r_rel)
|
4951 |
|
|
{
|
4952 |
|
|
asection *sec;
|
4953 |
|
|
if (r_rel == NULL)
|
4954 |
|
|
return FALSE;
|
4955 |
|
|
|
4956 |
|
|
sec = r_reloc_get_section (r_rel);
|
4957 |
|
|
if (sec == bfd_abs_section_ptr
|
4958 |
|
|
|| sec == bfd_com_section_ptr
|
4959 |
|
|
|| sec == bfd_und_section_ptr)
|
4960 |
|
|
return FALSE;
|
4961 |
|
|
return TRUE;
|
4962 |
|
|
}
|
4963 |
|
|
|
4964 |
|
|
|
4965 |
|
|
static void
|
4966 |
|
|
r_reloc_init (r_reloc *r_rel,
|
4967 |
|
|
bfd *abfd,
|
4968 |
|
|
Elf_Internal_Rela *irel,
|
4969 |
|
|
bfd_byte *contents,
|
4970 |
|
|
bfd_size_type content_length)
|
4971 |
|
|
{
|
4972 |
|
|
int r_type;
|
4973 |
|
|
reloc_howto_type *howto;
|
4974 |
|
|
|
4975 |
|
|
if (irel)
|
4976 |
|
|
{
|
4977 |
|
|
r_rel->rela = *irel;
|
4978 |
|
|
r_rel->abfd = abfd;
|
4979 |
|
|
r_rel->target_offset = r_reloc_get_target_offset (r_rel);
|
4980 |
|
|
r_rel->virtual_offset = 0;
|
4981 |
|
|
r_type = ELF32_R_TYPE (r_rel->rela.r_info);
|
4982 |
|
|
howto = &elf_howto_table[r_type];
|
4983 |
|
|
if (howto->partial_inplace)
|
4984 |
|
|
{
|
4985 |
|
|
bfd_vma inplace_val;
|
4986 |
|
|
BFD_ASSERT (r_rel->rela.r_offset < content_length);
|
4987 |
|
|
|
4988 |
|
|
inplace_val = bfd_get_32 (abfd, &contents[r_rel->rela.r_offset]);
|
4989 |
|
|
r_rel->target_offset += inplace_val;
|
4990 |
|
|
}
|
4991 |
|
|
}
|
4992 |
|
|
else
|
4993 |
|
|
memset (r_rel, 0, sizeof (r_reloc));
|
4994 |
|
|
}
|
4995 |
|
|
|
4996 |
|
|
|
4997 |
|
|
#if DEBUG
|
4998 |
|
|
|
4999 |
|
|
static void
|
5000 |
|
|
print_r_reloc (FILE *fp, const r_reloc *r_rel)
|
5001 |
|
|
{
|
5002 |
|
|
if (r_reloc_is_defined (r_rel))
|
5003 |
|
|
{
|
5004 |
|
|
asection *sec = r_reloc_get_section (r_rel);
|
5005 |
|
|
fprintf (fp, " %s(%s + ", sec->owner->filename, sec->name);
|
5006 |
|
|
}
|
5007 |
|
|
else if (r_reloc_get_hash_entry (r_rel))
|
5008 |
|
|
fprintf (fp, " %s + ", r_reloc_get_hash_entry (r_rel)->root.root.string);
|
5009 |
|
|
else
|
5010 |
|
|
fprintf (fp, " ?? + ");
|
5011 |
|
|
|
5012 |
|
|
fprintf_vma (fp, r_rel->target_offset);
|
5013 |
|
|
if (r_rel->virtual_offset)
|
5014 |
|
|
{
|
5015 |
|
|
fprintf (fp, " + ");
|
5016 |
|
|
fprintf_vma (fp, r_rel->virtual_offset);
|
5017 |
|
|
}
|
5018 |
|
|
|
5019 |
|
|
fprintf (fp, ")");
|
5020 |
|
|
}
|
5021 |
|
|
|
5022 |
|
|
#endif /* DEBUG */
|
5023 |
|
|
|
5024 |
|
|
|
5025 |
|
|
/* source_reloc: relocations that reference literals. */
|
5026 |
|
|
|
5027 |
|
|
/* To determine whether literals can be coalesced, we need to first
|
5028 |
|
|
record all the relocations that reference the literals. The
|
5029 |
|
|
source_reloc structure below is used for this purpose. The
|
5030 |
|
|
source_reloc entries are kept in a per-literal-section array, sorted
|
5031 |
|
|
by offset within the literal section (i.e., target offset).
|
5032 |
|
|
|
5033 |
|
|
The source_sec and r_rel.rela.r_offset fields identify the source of
|
5034 |
|
|
the relocation. The r_rel field records the relocation value, i.e.,
|
5035 |
|
|
the offset of the literal being referenced. The opnd field is needed
|
5036 |
|
|
to determine the range of the immediate field to which the relocation
|
5037 |
|
|
applies, so we can determine whether another literal with the same
|
5038 |
|
|
value is within range. The is_null field is true when the relocation
|
5039 |
|
|
is being removed (e.g., when an L32R is being removed due to a CALLX
|
5040 |
|
|
that is converted to a direct CALL). */
|
5041 |
|
|
|
5042 |
|
|
typedef struct source_reloc_struct source_reloc;
|
5043 |
|
|
|
5044 |
|
|
struct source_reloc_struct
|
5045 |
|
|
{
|
5046 |
|
|
asection *source_sec;
|
5047 |
|
|
r_reloc r_rel;
|
5048 |
|
|
xtensa_opcode opcode;
|
5049 |
|
|
int opnd;
|
5050 |
|
|
bfd_boolean is_null;
|
5051 |
|
|
bfd_boolean is_abs_literal;
|
5052 |
|
|
};
|
5053 |
|
|
|
5054 |
|
|
|
5055 |
|
|
static void
|
5056 |
|
|
init_source_reloc (source_reloc *reloc,
|
5057 |
|
|
asection *source_sec,
|
5058 |
|
|
const r_reloc *r_rel,
|
5059 |
|
|
xtensa_opcode opcode,
|
5060 |
|
|
int opnd,
|
5061 |
|
|
bfd_boolean is_abs_literal)
|
5062 |
|
|
{
|
5063 |
|
|
reloc->source_sec = source_sec;
|
5064 |
|
|
reloc->r_rel = *r_rel;
|
5065 |
|
|
reloc->opcode = opcode;
|
5066 |
|
|
reloc->opnd = opnd;
|
5067 |
|
|
reloc->is_null = FALSE;
|
5068 |
|
|
reloc->is_abs_literal = is_abs_literal;
|
5069 |
|
|
}
|
5070 |
|
|
|
5071 |
|
|
|
5072 |
|
|
/* Find the source_reloc for a particular source offset and relocation
|
5073 |
|
|
type. Note that the array is sorted by _target_ offset, so this is
|
5074 |
|
|
just a linear search. */
|
5075 |
|
|
|
5076 |
|
|
static source_reloc *
|
5077 |
|
|
find_source_reloc (source_reloc *src_relocs,
|
5078 |
|
|
int src_count,
|
5079 |
|
|
asection *sec,
|
5080 |
|
|
Elf_Internal_Rela *irel)
|
5081 |
|
|
{
|
5082 |
|
|
int i;
|
5083 |
|
|
|
5084 |
|
|
for (i = 0; i < src_count; i++)
|
5085 |
|
|
{
|
5086 |
|
|
if (src_relocs[i].source_sec == sec
|
5087 |
|
|
&& src_relocs[i].r_rel.rela.r_offset == irel->r_offset
|
5088 |
|
|
&& (ELF32_R_TYPE (src_relocs[i].r_rel.rela.r_info)
|
5089 |
|
|
== ELF32_R_TYPE (irel->r_info)))
|
5090 |
|
|
return &src_relocs[i];
|
5091 |
|
|
}
|
5092 |
|
|
|
5093 |
|
|
return NULL;
|
5094 |
|
|
}
|
5095 |
|
|
|
5096 |
|
|
|
5097 |
|
|
static int
|
5098 |
|
|
source_reloc_compare (const void *ap, const void *bp)
|
5099 |
|
|
{
|
5100 |
|
|
const source_reloc *a = (const source_reloc *) ap;
|
5101 |
|
|
const source_reloc *b = (const source_reloc *) bp;
|
5102 |
|
|
|
5103 |
|
|
if (a->r_rel.target_offset != b->r_rel.target_offset)
|
5104 |
|
|
return (a->r_rel.target_offset - b->r_rel.target_offset);
|
5105 |
|
|
|
5106 |
|
|
/* We don't need to sort on these criteria for correctness,
|
5107 |
|
|
but enforcing a more strict ordering prevents unstable qsort
|
5108 |
|
|
from behaving differently with different implementations.
|
5109 |
|
|
Without the code below we get correct but different results
|
5110 |
|
|
on Solaris 2.7 and 2.8. We would like to always produce the
|
5111 |
|
|
same results no matter the host. */
|
5112 |
|
|
|
5113 |
|
|
if ((!a->is_null) - (!b->is_null))
|
5114 |
|
|
return ((!a->is_null) - (!b->is_null));
|
5115 |
|
|
return internal_reloc_compare (&a->r_rel.rela, &b->r_rel.rela);
|
5116 |
|
|
}
|
5117 |
|
|
|
5118 |
|
|
|
5119 |
|
|
/* Literal values and value hash tables. */
|
5120 |
|
|
|
5121 |
|
|
/* Literals with the same value can be coalesced. The literal_value
|
5122 |
|
|
structure records the value of a literal: the "r_rel" field holds the
|
5123 |
|
|
information from the relocation on the literal (if there is one) and
|
5124 |
|
|
the "value" field holds the contents of the literal word itself.
|
5125 |
|
|
|
5126 |
|
|
The value_map structure records a literal value along with the
|
5127 |
|
|
location of a literal holding that value. The value_map hash table
|
5128 |
|
|
is indexed by the literal value, so that we can quickly check if a
|
5129 |
|
|
particular literal value has been seen before and is thus a candidate
|
5130 |
|
|
for coalescing. */
|
5131 |
|
|
|
5132 |
|
|
typedef struct literal_value_struct literal_value;
|
5133 |
|
|
typedef struct value_map_struct value_map;
|
5134 |
|
|
typedef struct value_map_hash_table_struct value_map_hash_table;
|
5135 |
|
|
|
5136 |
|
|
struct literal_value_struct
|
5137 |
|
|
{
|
5138 |
|
|
r_reloc r_rel;
|
5139 |
|
|
unsigned long value;
|
5140 |
|
|
bfd_boolean is_abs_literal;
|
5141 |
|
|
};
|
5142 |
|
|
|
5143 |
|
|
struct value_map_struct
|
5144 |
|
|
{
|
5145 |
|
|
literal_value val; /* The literal value. */
|
5146 |
|
|
r_reloc loc; /* Location of the literal. */
|
5147 |
|
|
value_map *next;
|
5148 |
|
|
};
|
5149 |
|
|
|
5150 |
|
|
struct value_map_hash_table_struct
|
5151 |
|
|
{
|
5152 |
|
|
unsigned bucket_count;
|
5153 |
|
|
value_map **buckets;
|
5154 |
|
|
unsigned count;
|
5155 |
|
|
bfd_boolean has_last_loc;
|
5156 |
|
|
r_reloc last_loc;
|
5157 |
|
|
};
|
5158 |
|
|
|
5159 |
|
|
|
5160 |
|
|
static void
|
5161 |
|
|
init_literal_value (literal_value *lit,
|
5162 |
|
|
const r_reloc *r_rel,
|
5163 |
|
|
unsigned long value,
|
5164 |
|
|
bfd_boolean is_abs_literal)
|
5165 |
|
|
{
|
5166 |
|
|
lit->r_rel = *r_rel;
|
5167 |
|
|
lit->value = value;
|
5168 |
|
|
lit->is_abs_literal = is_abs_literal;
|
5169 |
|
|
}
|
5170 |
|
|
|
5171 |
|
|
|
5172 |
|
|
static bfd_boolean
|
5173 |
|
|
literal_value_equal (const literal_value *src1,
|
5174 |
|
|
const literal_value *src2,
|
5175 |
|
|
bfd_boolean final_static_link)
|
5176 |
|
|
{
|
5177 |
|
|
struct elf_link_hash_entry *h1, *h2;
|
5178 |
|
|
|
5179 |
|
|
if (r_reloc_is_const (&src1->r_rel) != r_reloc_is_const (&src2->r_rel))
|
5180 |
|
|
return FALSE;
|
5181 |
|
|
|
5182 |
|
|
if (r_reloc_is_const (&src1->r_rel))
|
5183 |
|
|
return (src1->value == src2->value);
|
5184 |
|
|
|
5185 |
|
|
if (ELF32_R_TYPE (src1->r_rel.rela.r_info)
|
5186 |
|
|
!= ELF32_R_TYPE (src2->r_rel.rela.r_info))
|
5187 |
|
|
return FALSE;
|
5188 |
|
|
|
5189 |
|
|
if (src1->r_rel.target_offset != src2->r_rel.target_offset)
|
5190 |
|
|
return FALSE;
|
5191 |
|
|
|
5192 |
|
|
if (src1->r_rel.virtual_offset != src2->r_rel.virtual_offset)
|
5193 |
|
|
return FALSE;
|
5194 |
|
|
|
5195 |
|
|
if (src1->value != src2->value)
|
5196 |
|
|
return FALSE;
|
5197 |
|
|
|
5198 |
|
|
/* Now check for the same section (if defined) or the same elf_hash
|
5199 |
|
|
(if undefined or weak). */
|
5200 |
|
|
h1 = r_reloc_get_hash_entry (&src1->r_rel);
|
5201 |
|
|
h2 = r_reloc_get_hash_entry (&src2->r_rel);
|
5202 |
|
|
if (r_reloc_is_defined (&src1->r_rel)
|
5203 |
|
|
&& (final_static_link
|
5204 |
|
|
|| ((!h1 || h1->root.type != bfd_link_hash_defweak)
|
5205 |
|
|
&& (!h2 || h2->root.type != bfd_link_hash_defweak))))
|
5206 |
|
|
{
|
5207 |
|
|
if (r_reloc_get_section (&src1->r_rel)
|
5208 |
|
|
!= r_reloc_get_section (&src2->r_rel))
|
5209 |
|
|
return FALSE;
|
5210 |
|
|
}
|
5211 |
|
|
else
|
5212 |
|
|
{
|
5213 |
|
|
/* Require that the hash entries (i.e., symbols) be identical. */
|
5214 |
|
|
if (h1 != h2 || h1 == 0)
|
5215 |
|
|
return FALSE;
|
5216 |
|
|
}
|
5217 |
|
|
|
5218 |
|
|
if (src1->is_abs_literal != src2->is_abs_literal)
|
5219 |
|
|
return FALSE;
|
5220 |
|
|
|
5221 |
|
|
return TRUE;
|
5222 |
|
|
}
|
5223 |
|
|
|
5224 |
|
|
|
5225 |
|
|
/* Must be power of 2. */
|
5226 |
|
|
#define INITIAL_HASH_RELOC_BUCKET_COUNT 1024
|
5227 |
|
|
|
5228 |
|
|
static value_map_hash_table *
|
5229 |
|
|
value_map_hash_table_init (void)
|
5230 |
|
|
{
|
5231 |
|
|
value_map_hash_table *values;
|
5232 |
|
|
|
5233 |
|
|
values = (value_map_hash_table *)
|
5234 |
|
|
bfd_zmalloc (sizeof (value_map_hash_table));
|
5235 |
|
|
values->bucket_count = INITIAL_HASH_RELOC_BUCKET_COUNT;
|
5236 |
|
|
values->count = 0;
|
5237 |
|
|
values->buckets = (value_map **)
|
5238 |
|
|
bfd_zmalloc (sizeof (value_map *) * values->bucket_count);
|
5239 |
|
|
if (values->buckets == NULL)
|
5240 |
|
|
{
|
5241 |
|
|
free (values);
|
5242 |
|
|
return NULL;
|
5243 |
|
|
}
|
5244 |
|
|
values->has_last_loc = FALSE;
|
5245 |
|
|
|
5246 |
|
|
return values;
|
5247 |
|
|
}
|
5248 |
|
|
|
5249 |
|
|
|
5250 |
|
|
static void
|
5251 |
|
|
value_map_hash_table_delete (value_map_hash_table *table)
|
5252 |
|
|
{
|
5253 |
|
|
free (table->buckets);
|
5254 |
|
|
free (table);
|
5255 |
|
|
}
|
5256 |
|
|
|
5257 |
|
|
|
5258 |
|
|
static unsigned
|
5259 |
|
|
hash_bfd_vma (bfd_vma val)
|
5260 |
|
|
{
|
5261 |
|
|
return (val >> 2) + (val >> 10);
|
5262 |
|
|
}
|
5263 |
|
|
|
5264 |
|
|
|
5265 |
|
|
static unsigned
|
5266 |
|
|
literal_value_hash (const literal_value *src)
|
5267 |
|
|
{
|
5268 |
|
|
unsigned hash_val;
|
5269 |
|
|
|
5270 |
|
|
hash_val = hash_bfd_vma (src->value);
|
5271 |
|
|
if (!r_reloc_is_const (&src->r_rel))
|
5272 |
|
|
{
|
5273 |
|
|
void *sec_or_hash;
|
5274 |
|
|
|
5275 |
|
|
hash_val += hash_bfd_vma (src->is_abs_literal * 1000);
|
5276 |
|
|
hash_val += hash_bfd_vma (src->r_rel.target_offset);
|
5277 |
|
|
hash_val += hash_bfd_vma (src->r_rel.virtual_offset);
|
5278 |
|
|
|
5279 |
|
|
/* Now check for the same section and the same elf_hash. */
|
5280 |
|
|
if (r_reloc_is_defined (&src->r_rel))
|
5281 |
|
|
sec_or_hash = r_reloc_get_section (&src->r_rel);
|
5282 |
|
|
else
|
5283 |
|
|
sec_or_hash = r_reloc_get_hash_entry (&src->r_rel);
|
5284 |
|
|
hash_val += hash_bfd_vma ((bfd_vma) (size_t) sec_or_hash);
|
5285 |
|
|
}
|
5286 |
|
|
return hash_val;
|
5287 |
|
|
}
|
5288 |
|
|
|
5289 |
|
|
|
5290 |
|
|
/* Check if the specified literal_value has been seen before. */
|
5291 |
|
|
|
5292 |
|
|
static value_map *
|
5293 |
|
|
value_map_get_cached_value (value_map_hash_table *map,
|
5294 |
|
|
const literal_value *val,
|
5295 |
|
|
bfd_boolean final_static_link)
|
5296 |
|
|
{
|
5297 |
|
|
value_map *map_e;
|
5298 |
|
|
value_map *bucket;
|
5299 |
|
|
unsigned idx;
|
5300 |
|
|
|
5301 |
|
|
idx = literal_value_hash (val);
|
5302 |
|
|
idx = idx & (map->bucket_count - 1);
|
5303 |
|
|
bucket = map->buckets[idx];
|
5304 |
|
|
for (map_e = bucket; map_e; map_e = map_e->next)
|
5305 |
|
|
{
|
5306 |
|
|
if (literal_value_equal (&map_e->val, val, final_static_link))
|
5307 |
|
|
return map_e;
|
5308 |
|
|
}
|
5309 |
|
|
return NULL;
|
5310 |
|
|
}
|
5311 |
|
|
|
5312 |
|
|
|
5313 |
|
|
/* Record a new literal value. It is illegal to call this if VALUE
|
5314 |
|
|
already has an entry here. */
|
5315 |
|
|
|
5316 |
|
|
static value_map *
|
5317 |
|
|
add_value_map (value_map_hash_table *map,
|
5318 |
|
|
const literal_value *val,
|
5319 |
|
|
const r_reloc *loc,
|
5320 |
|
|
bfd_boolean final_static_link)
|
5321 |
|
|
{
|
5322 |
|
|
value_map **bucket_p;
|
5323 |
|
|
unsigned idx;
|
5324 |
|
|
|
5325 |
|
|
value_map *val_e = (value_map *) bfd_zmalloc (sizeof (value_map));
|
5326 |
|
|
if (val_e == NULL)
|
5327 |
|
|
{
|
5328 |
|
|
bfd_set_error (bfd_error_no_memory);
|
5329 |
|
|
return NULL;
|
5330 |
|
|
}
|
5331 |
|
|
|
5332 |
|
|
BFD_ASSERT (!value_map_get_cached_value (map, val, final_static_link));
|
5333 |
|
|
val_e->val = *val;
|
5334 |
|
|
val_e->loc = *loc;
|
5335 |
|
|
|
5336 |
|
|
idx = literal_value_hash (val);
|
5337 |
|
|
idx = idx & (map->bucket_count - 1);
|
5338 |
|
|
bucket_p = &map->buckets[idx];
|
5339 |
|
|
|
5340 |
|
|
val_e->next = *bucket_p;
|
5341 |
|
|
*bucket_p = val_e;
|
5342 |
|
|
map->count++;
|
5343 |
|
|
/* FIXME: Consider resizing the hash table if we get too many entries. */
|
5344 |
|
|
|
5345 |
|
|
return val_e;
|
5346 |
|
|
}
|
5347 |
|
|
|
5348 |
|
|
|
5349 |
|
|
/* Lists of text actions (ta_) for narrowing, widening, longcall
|
5350 |
|
|
conversion, space fill, code & literal removal, etc. */
|
5351 |
|
|
|
5352 |
|
|
/* The following text actions are generated:
|
5353 |
|
|
|
5354 |
|
|
"ta_remove_insn" remove an instruction or instructions
|
5355 |
|
|
"ta_remove_longcall" convert longcall to call
|
5356 |
|
|
"ta_convert_longcall" convert longcall to nop/call
|
5357 |
|
|
"ta_narrow_insn" narrow a wide instruction
|
5358 |
|
|
"ta_widen" widen a narrow instruction
|
5359 |
|
|
"ta_fill" add fill or remove fill
|
5360 |
|
|
removed < 0 is a fill; branches to the fill address will be
|
5361 |
|
|
changed to address + fill size (e.g., address - removed)
|
5362 |
|
|
removed >= 0 branches to the fill address will stay unchanged
|
5363 |
|
|
"ta_remove_literal" remove a literal; this action is
|
5364 |
|
|
indicated when a literal is removed
|
5365 |
|
|
or replaced.
|
5366 |
|
|
"ta_add_literal" insert a new literal; this action is
|
5367 |
|
|
indicated when a literal has been moved.
|
5368 |
|
|
It may use a virtual_offset because
|
5369 |
|
|
multiple literals can be placed at the
|
5370 |
|
|
same location.
|
5371 |
|
|
|
5372 |
|
|
For each of these text actions, we also record the number of bytes
|
5373 |
|
|
removed by performing the text action. In the case of a "ta_widen"
|
5374 |
|
|
or a "ta_fill" that adds space, the removed_bytes will be negative. */
|
5375 |
|
|
|
5376 |
|
|
typedef struct text_action_struct text_action;
|
5377 |
|
|
typedef struct text_action_list_struct text_action_list;
|
5378 |
|
|
typedef enum text_action_enum_t text_action_t;
|
5379 |
|
|
|
5380 |
|
|
enum text_action_enum_t
|
5381 |
|
|
{
|
5382 |
|
|
ta_none,
|
5383 |
|
|
ta_remove_insn, /* removed = -size */
|
5384 |
|
|
ta_remove_longcall, /* removed = -size */
|
5385 |
|
|
ta_convert_longcall, /* removed = 0 */
|
5386 |
|
|
ta_narrow_insn, /* removed = -1 */
|
5387 |
|
|
ta_widen_insn, /* removed = +1 */
|
5388 |
|
|
ta_fill, /* removed = +size */
|
5389 |
|
|
ta_remove_literal,
|
5390 |
|
|
ta_add_literal
|
5391 |
|
|
};
|
5392 |
|
|
|
5393 |
|
|
|
5394 |
|
|
/* Structure for a text action record. */
|
5395 |
|
|
struct text_action_struct
|
5396 |
|
|
{
|
5397 |
|
|
text_action_t action;
|
5398 |
|
|
asection *sec; /* Optional */
|
5399 |
|
|
bfd_vma offset;
|
5400 |
|
|
bfd_vma virtual_offset; /* Zero except for adding literals. */
|
5401 |
|
|
int removed_bytes;
|
5402 |
|
|
literal_value value; /* Only valid when adding literals. */
|
5403 |
|
|
|
5404 |
|
|
text_action *next;
|
5405 |
|
|
};
|
5406 |
|
|
|
5407 |
|
|
|
5408 |
|
|
/* List of all of the actions taken on a text section. */
|
5409 |
|
|
struct text_action_list_struct
|
5410 |
|
|
{
|
5411 |
|
|
text_action *head;
|
5412 |
|
|
};
|
5413 |
|
|
|
5414 |
|
|
|
5415 |
|
|
static text_action *
|
5416 |
|
|
find_fill_action (text_action_list *l, asection *sec, bfd_vma offset)
|
5417 |
|
|
{
|
5418 |
|
|
text_action **m_p;
|
5419 |
|
|
|
5420 |
|
|
/* It is not necessary to fill at the end of a section. */
|
5421 |
|
|
if (sec->size == offset)
|
5422 |
|
|
return NULL;
|
5423 |
|
|
|
5424 |
|
|
for (m_p = &l->head; *m_p && (*m_p)->offset <= offset; m_p = &(*m_p)->next)
|
5425 |
|
|
{
|
5426 |
|
|
text_action *t = *m_p;
|
5427 |
|
|
/* When the action is another fill at the same address,
|
5428 |
|
|
just increase the size. */
|
5429 |
|
|
if (t->offset == offset && t->action == ta_fill)
|
5430 |
|
|
return t;
|
5431 |
|
|
}
|
5432 |
|
|
return NULL;
|
5433 |
|
|
}
|
5434 |
|
|
|
5435 |
|
|
|
5436 |
|
|
static int
|
5437 |
|
|
compute_removed_action_diff (const text_action *ta,
|
5438 |
|
|
asection *sec,
|
5439 |
|
|
bfd_vma offset,
|
5440 |
|
|
int removed,
|
5441 |
|
|
int removable_space)
|
5442 |
|
|
{
|
5443 |
|
|
int new_removed;
|
5444 |
|
|
int current_removed = 0;
|
5445 |
|
|
|
5446 |
|
|
if (ta)
|
5447 |
|
|
current_removed = ta->removed_bytes;
|
5448 |
|
|
|
5449 |
|
|
BFD_ASSERT (ta == NULL || ta->offset == offset);
|
5450 |
|
|
BFD_ASSERT (ta == NULL || ta->action == ta_fill);
|
5451 |
|
|
|
5452 |
|
|
/* It is not necessary to fill at the end of a section. Clean this up. */
|
5453 |
|
|
if (sec->size == offset)
|
5454 |
|
|
new_removed = removable_space - 0;
|
5455 |
|
|
else
|
5456 |
|
|
{
|
5457 |
|
|
int space;
|
5458 |
|
|
int added = -removed - current_removed;
|
5459 |
|
|
/* Ignore multiples of the section alignment. */
|
5460 |
|
|
added = ((1 << sec->alignment_power) - 1) & added;
|
5461 |
|
|
new_removed = (-added);
|
5462 |
|
|
|
5463 |
|
|
/* Modify for removable. */
|
5464 |
|
|
space = removable_space - new_removed;
|
5465 |
|
|
new_removed = (removable_space
|
5466 |
|
|
- (((1 << sec->alignment_power) - 1) & space));
|
5467 |
|
|
}
|
5468 |
|
|
return (new_removed - current_removed);
|
5469 |
|
|
}
|
5470 |
|
|
|
5471 |
|
|
|
5472 |
|
|
static void
|
5473 |
|
|
adjust_fill_action (text_action *ta, int fill_diff)
|
5474 |
|
|
{
|
5475 |
|
|
ta->removed_bytes += fill_diff;
|
5476 |
|
|
}
|
5477 |
|
|
|
5478 |
|
|
|
5479 |
|
|
/* Add a modification action to the text. For the case of adding or
|
5480 |
|
|
removing space, modify any current fill and assume that
|
5481 |
|
|
"unreachable_space" bytes can be freely contracted. Note that a
|
5482 |
|
|
negative removed value is a fill. */
|
5483 |
|
|
|
5484 |
|
|
static void
|
5485 |
|
|
text_action_add (text_action_list *l,
|
5486 |
|
|
text_action_t action,
|
5487 |
|
|
asection *sec,
|
5488 |
|
|
bfd_vma offset,
|
5489 |
|
|
int removed)
|
5490 |
|
|
{
|
5491 |
|
|
text_action **m_p;
|
5492 |
|
|
text_action *ta;
|
5493 |
|
|
|
5494 |
|
|
/* It is not necessary to fill at the end of a section. */
|
5495 |
|
|
if (action == ta_fill && sec->size == offset)
|
5496 |
|
|
return;
|
5497 |
|
|
|
5498 |
|
|
/* It is not necessary to fill 0 bytes. */
|
5499 |
|
|
if (action == ta_fill && removed == 0)
|
5500 |
|
|
return;
|
5501 |
|
|
|
5502 |
|
|
for (m_p = &l->head; *m_p && (*m_p)->offset <= offset; m_p = &(*m_p)->next)
|
5503 |
|
|
{
|
5504 |
|
|
text_action *t = *m_p;
|
5505 |
|
|
|
5506 |
|
|
if (action == ta_fill)
|
5507 |
|
|
{
|
5508 |
|
|
/* When the action is another fill at the same address,
|
5509 |
|
|
just increase the size. */
|
5510 |
|
|
if (t->offset == offset && t->action == ta_fill)
|
5511 |
|
|
{
|
5512 |
|
|
t->removed_bytes += removed;
|
5513 |
|
|
return;
|
5514 |
|
|
}
|
5515 |
|
|
/* Fills need to happen before widens so that we don't
|
5516 |
|
|
insert fill bytes into the instruction stream. */
|
5517 |
|
|
if (t->offset == offset && t->action == ta_widen_insn)
|
5518 |
|
|
break;
|
5519 |
|
|
}
|
5520 |
|
|
}
|
5521 |
|
|
|
5522 |
|
|
/* Create a new record and fill it up. */
|
5523 |
|
|
ta = (text_action *) bfd_zmalloc (sizeof (text_action));
|
5524 |
|
|
ta->action = action;
|
5525 |
|
|
ta->sec = sec;
|
5526 |
|
|
ta->offset = offset;
|
5527 |
|
|
ta->removed_bytes = removed;
|
5528 |
|
|
ta->next = (*m_p);
|
5529 |
|
|
*m_p = ta;
|
5530 |
|
|
}
|
5531 |
|
|
|
5532 |
|
|
|
5533 |
|
|
static void
|
5534 |
|
|
text_action_add_literal (text_action_list *l,
|
5535 |
|
|
text_action_t action,
|
5536 |
|
|
const r_reloc *loc,
|
5537 |
|
|
const literal_value *value,
|
5538 |
|
|
int removed)
|
5539 |
|
|
{
|
5540 |
|
|
text_action **m_p;
|
5541 |
|
|
text_action *ta;
|
5542 |
|
|
asection *sec = r_reloc_get_section (loc);
|
5543 |
|
|
bfd_vma offset = loc->target_offset;
|
5544 |
|
|
bfd_vma virtual_offset = loc->virtual_offset;
|
5545 |
|
|
|
5546 |
|
|
BFD_ASSERT (action == ta_add_literal);
|
5547 |
|
|
|
5548 |
|
|
for (m_p = &l->head; *m_p != NULL; m_p = &(*m_p)->next)
|
5549 |
|
|
{
|
5550 |
|
|
if ((*m_p)->offset > offset
|
5551 |
|
|
&& ((*m_p)->offset != offset
|
5552 |
|
|
|| (*m_p)->virtual_offset > virtual_offset))
|
5553 |
|
|
break;
|
5554 |
|
|
}
|
5555 |
|
|
|
5556 |
|
|
/* Create a new record and fill it up. */
|
5557 |
|
|
ta = (text_action *) bfd_zmalloc (sizeof (text_action));
|
5558 |
|
|
ta->action = action;
|
5559 |
|
|
ta->sec = sec;
|
5560 |
|
|
ta->offset = offset;
|
5561 |
|
|
ta->virtual_offset = virtual_offset;
|
5562 |
|
|
ta->value = *value;
|
5563 |
|
|
ta->removed_bytes = removed;
|
5564 |
|
|
ta->next = (*m_p);
|
5565 |
|
|
*m_p = ta;
|
5566 |
|
|
}
|
5567 |
|
|
|
5568 |
|
|
|
5569 |
|
|
/* Find the total offset adjustment for the relaxations specified by
|
5570 |
|
|
text_actions, beginning from a particular starting action. This is
|
5571 |
|
|
typically used from offset_with_removed_text to search an entire list of
|
5572 |
|
|
actions, but it may also be called directly when adjusting adjacent offsets
|
5573 |
|
|
so that each search may begin where the previous one left off. */
|
5574 |
|
|
|
5575 |
|
|
static int
|
5576 |
|
|
removed_by_actions (text_action **p_start_action,
|
5577 |
|
|
bfd_vma offset,
|
5578 |
|
|
bfd_boolean before_fill)
|
5579 |
|
|
{
|
5580 |
|
|
text_action *r;
|
5581 |
|
|
int removed = 0;
|
5582 |
|
|
|
5583 |
|
|
r = *p_start_action;
|
5584 |
|
|
while (r)
|
5585 |
|
|
{
|
5586 |
|
|
if (r->offset > offset)
|
5587 |
|
|
break;
|
5588 |
|
|
|
5589 |
|
|
if (r->offset == offset
|
5590 |
|
|
&& (before_fill || r->action != ta_fill || r->removed_bytes >= 0))
|
5591 |
|
|
break;
|
5592 |
|
|
|
5593 |
|
|
removed += r->removed_bytes;
|
5594 |
|
|
|
5595 |
|
|
r = r->next;
|
5596 |
|
|
}
|
5597 |
|
|
|
5598 |
|
|
*p_start_action = r;
|
5599 |
|
|
return removed;
|
5600 |
|
|
}
|
5601 |
|
|
|
5602 |
|
|
|
5603 |
|
|
static bfd_vma
|
5604 |
|
|
offset_with_removed_text (text_action_list *action_list, bfd_vma offset)
|
5605 |
|
|
{
|
5606 |
|
|
text_action *r = action_list->head;
|
5607 |
|
|
return offset - removed_by_actions (&r, offset, FALSE);
|
5608 |
|
|
}
|
5609 |
|
|
|
5610 |
|
|
|
5611 |
|
|
static unsigned
|
5612 |
|
|
action_list_count (text_action_list *action_list)
|
5613 |
|
|
{
|
5614 |
|
|
text_action *r = action_list->head;
|
5615 |
|
|
unsigned count = 0;
|
5616 |
|
|
for (r = action_list->head; r != NULL; r = r->next)
|
5617 |
|
|
{
|
5618 |
|
|
count++;
|
5619 |
|
|
}
|
5620 |
|
|
return count;
|
5621 |
|
|
}
|
5622 |
|
|
|
5623 |
|
|
|
5624 |
|
|
/* The find_insn_action routine will only find non-fill actions. */
|
5625 |
|
|
|
5626 |
|
|
static text_action *
|
5627 |
|
|
find_insn_action (text_action_list *action_list, bfd_vma offset)
|
5628 |
|
|
{
|
5629 |
|
|
text_action *t;
|
5630 |
|
|
for (t = action_list->head; t; t = t->next)
|
5631 |
|
|
{
|
5632 |
|
|
if (t->offset == offset)
|
5633 |
|
|
{
|
5634 |
|
|
switch (t->action)
|
5635 |
|
|
{
|
5636 |
|
|
case ta_none:
|
5637 |
|
|
case ta_fill:
|
5638 |
|
|
break;
|
5639 |
|
|
case ta_remove_insn:
|
5640 |
|
|
case ta_remove_longcall:
|
5641 |
|
|
case ta_convert_longcall:
|
5642 |
|
|
case ta_narrow_insn:
|
5643 |
|
|
case ta_widen_insn:
|
5644 |
|
|
return t;
|
5645 |
|
|
case ta_remove_literal:
|
5646 |
|
|
case ta_add_literal:
|
5647 |
|
|
BFD_ASSERT (0);
|
5648 |
|
|
break;
|
5649 |
|
|
}
|
5650 |
|
|
}
|
5651 |
|
|
}
|
5652 |
|
|
return NULL;
|
5653 |
|
|
}
|
5654 |
|
|
|
5655 |
|
|
|
5656 |
|
|
#if DEBUG
|
5657 |
|
|
|
5658 |
|
|
static void
|
5659 |
|
|
print_action_list (FILE *fp, text_action_list *action_list)
|
5660 |
|
|
{
|
5661 |
|
|
text_action *r;
|
5662 |
|
|
|
5663 |
|
|
fprintf (fp, "Text Action\n");
|
5664 |
|
|
for (r = action_list->head; r != NULL; r = r->next)
|
5665 |
|
|
{
|
5666 |
|
|
const char *t = "unknown";
|
5667 |
|
|
switch (r->action)
|
5668 |
|
|
{
|
5669 |
|
|
case ta_remove_insn:
|
5670 |
|
|
t = "remove_insn"; break;
|
5671 |
|
|
case ta_remove_longcall:
|
5672 |
|
|
t = "remove_longcall"; break;
|
5673 |
|
|
case ta_convert_longcall:
|
5674 |
|
|
t = "convert_longcall"; break;
|
5675 |
|
|
case ta_narrow_insn:
|
5676 |
|
|
t = "narrow_insn"; break;
|
5677 |
|
|
case ta_widen_insn:
|
5678 |
|
|
t = "widen_insn"; break;
|
5679 |
|
|
case ta_fill:
|
5680 |
|
|
t = "fill"; break;
|
5681 |
|
|
case ta_none:
|
5682 |
|
|
t = "none"; break;
|
5683 |
|
|
case ta_remove_literal:
|
5684 |
|
|
t = "remove_literal"; break;
|
5685 |
|
|
case ta_add_literal:
|
5686 |
|
|
t = "add_literal"; break;
|
5687 |
|
|
}
|
5688 |
|
|
|
5689 |
|
|
fprintf (fp, "%s: %s[0x%lx] \"%s\" %d\n",
|
5690 |
|
|
r->sec->owner->filename,
|
5691 |
|
|
r->sec->name, r->offset, t, r->removed_bytes);
|
5692 |
|
|
}
|
5693 |
|
|
}
|
5694 |
|
|
|
5695 |
|
|
#endif /* DEBUG */
|
5696 |
|
|
|
5697 |
|
|
|
5698 |
|
|
/* Lists of literals being coalesced or removed. */
|
5699 |
|
|
|
5700 |
|
|
/* In the usual case, the literal identified by "from" is being
|
5701 |
|
|
coalesced with another literal identified by "to". If the literal is
|
5702 |
|
|
unused and is being removed altogether, "to.abfd" will be NULL.
|
5703 |
|
|
The removed_literal entries are kept on a per-section list, sorted
|
5704 |
|
|
by the "from" offset field. */
|
5705 |
|
|
|
5706 |
|
|
typedef struct removed_literal_struct removed_literal;
|
5707 |
|
|
typedef struct removed_literal_list_struct removed_literal_list;
|
5708 |
|
|
|
5709 |
|
|
struct removed_literal_struct
|
5710 |
|
|
{
|
5711 |
|
|
r_reloc from;
|
5712 |
|
|
r_reloc to;
|
5713 |
|
|
removed_literal *next;
|
5714 |
|
|
};
|
5715 |
|
|
|
5716 |
|
|
struct removed_literal_list_struct
|
5717 |
|
|
{
|
5718 |
|
|
removed_literal *head;
|
5719 |
|
|
removed_literal *tail;
|
5720 |
|
|
};
|
5721 |
|
|
|
5722 |
|
|
|
5723 |
|
|
/* Record that the literal at "from" is being removed. If "to" is not
|
5724 |
|
|
NULL, the "from" literal is being coalesced with the "to" literal. */
|
5725 |
|
|
|
5726 |
|
|
static void
|
5727 |
|
|
add_removed_literal (removed_literal_list *removed_list,
|
5728 |
|
|
const r_reloc *from,
|
5729 |
|
|
const r_reloc *to)
|
5730 |
|
|
{
|
5731 |
|
|
removed_literal *r, *new_r, *next_r;
|
5732 |
|
|
|
5733 |
|
|
new_r = (removed_literal *) bfd_zmalloc (sizeof (removed_literal));
|
5734 |
|
|
|
5735 |
|
|
new_r->from = *from;
|
5736 |
|
|
if (to)
|
5737 |
|
|
new_r->to = *to;
|
5738 |
|
|
else
|
5739 |
|
|
new_r->to.abfd = NULL;
|
5740 |
|
|
new_r->next = NULL;
|
5741 |
|
|
|
5742 |
|
|
r = removed_list->head;
|
5743 |
|
|
if (r == NULL)
|
5744 |
|
|
{
|
5745 |
|
|
removed_list->head = new_r;
|
5746 |
|
|
removed_list->tail = new_r;
|
5747 |
|
|
}
|
5748 |
|
|
/* Special check for common case of append. */
|
5749 |
|
|
else if (removed_list->tail->from.target_offset < from->target_offset)
|
5750 |
|
|
{
|
5751 |
|
|
removed_list->tail->next = new_r;
|
5752 |
|
|
removed_list->tail = new_r;
|
5753 |
|
|
}
|
5754 |
|
|
else
|
5755 |
|
|
{
|
5756 |
|
|
while (r->from.target_offset < from->target_offset && r->next)
|
5757 |
|
|
{
|
5758 |
|
|
r = r->next;
|
5759 |
|
|
}
|
5760 |
|
|
next_r = r->next;
|
5761 |
|
|
r->next = new_r;
|
5762 |
|
|
new_r->next = next_r;
|
5763 |
|
|
if (next_r == NULL)
|
5764 |
|
|
removed_list->tail = new_r;
|
5765 |
|
|
}
|
5766 |
|
|
}
|
5767 |
|
|
|
5768 |
|
|
|
5769 |
|
|
/* Check if the list of removed literals contains an entry for the
|
5770 |
|
|
given address. Return the entry if found. */
|
5771 |
|
|
|
5772 |
|
|
static removed_literal *
|
5773 |
|
|
find_removed_literal (removed_literal_list *removed_list, bfd_vma addr)
|
5774 |
|
|
{
|
5775 |
|
|
removed_literal *r = removed_list->head;
|
5776 |
|
|
while (r && r->from.target_offset < addr)
|
5777 |
|
|
r = r->next;
|
5778 |
|
|
if (r && r->from.target_offset == addr)
|
5779 |
|
|
return r;
|
5780 |
|
|
return NULL;
|
5781 |
|
|
}
|
5782 |
|
|
|
5783 |
|
|
|
5784 |
|
|
#if DEBUG
|
5785 |
|
|
|
5786 |
|
|
static void
|
5787 |
|
|
print_removed_literals (FILE *fp, removed_literal_list *removed_list)
|
5788 |
|
|
{
|
5789 |
|
|
removed_literal *r;
|
5790 |
|
|
r = removed_list->head;
|
5791 |
|
|
if (r)
|
5792 |
|
|
fprintf (fp, "Removed Literals\n");
|
5793 |
|
|
for (; r != NULL; r = r->next)
|
5794 |
|
|
{
|
5795 |
|
|
print_r_reloc (fp, &r->from);
|
5796 |
|
|
fprintf (fp, " => ");
|
5797 |
|
|
if (r->to.abfd == NULL)
|
5798 |
|
|
fprintf (fp, "REMOVED");
|
5799 |
|
|
else
|
5800 |
|
|
print_r_reloc (fp, &r->to);
|
5801 |
|
|
fprintf (fp, "\n");
|
5802 |
|
|
}
|
5803 |
|
|
}
|
5804 |
|
|
|
5805 |
|
|
#endif /* DEBUG */
|
5806 |
|
|
|
5807 |
|
|
|
5808 |
|
|
/* Per-section data for relaxation. */
|
5809 |
|
|
|
5810 |
|
|
typedef struct reloc_bfd_fix_struct reloc_bfd_fix;
|
5811 |
|
|
|
5812 |
|
|
struct xtensa_relax_info_struct
|
5813 |
|
|
{
|
5814 |
|
|
bfd_boolean is_relaxable_literal_section;
|
5815 |
|
|
bfd_boolean is_relaxable_asm_section;
|
5816 |
|
|
int visited; /* Number of times visited. */
|
5817 |
|
|
|
5818 |
|
|
source_reloc *src_relocs; /* Array[src_count]. */
|
5819 |
|
|
int src_count;
|
5820 |
|
|
int src_next; /* Next src_relocs entry to assign. */
|
5821 |
|
|
|
5822 |
|
|
removed_literal_list removed_list;
|
5823 |
|
|
text_action_list action_list;
|
5824 |
|
|
|
5825 |
|
|
reloc_bfd_fix *fix_list;
|
5826 |
|
|
reloc_bfd_fix *fix_array;
|
5827 |
|
|
unsigned fix_array_count;
|
5828 |
|
|
|
5829 |
|
|
/* Support for expanding the reloc array that is stored
|
5830 |
|
|
in the section structure. If the relocations have been
|
5831 |
|
|
reallocated, the newly allocated relocations will be referenced
|
5832 |
|
|
here along with the actual size allocated. The relocation
|
5833 |
|
|
count will always be found in the section structure. */
|
5834 |
|
|
Elf_Internal_Rela *allocated_relocs;
|
5835 |
|
|
unsigned relocs_count;
|
5836 |
|
|
unsigned allocated_relocs_count;
|
5837 |
|
|
};
|
5838 |
|
|
|
5839 |
|
|
struct elf_xtensa_section_data
|
5840 |
|
|
{
|
5841 |
|
|
struct bfd_elf_section_data elf;
|
5842 |
|
|
xtensa_relax_info relax_info;
|
5843 |
|
|
};
|
5844 |
|
|
|
5845 |
|
|
|
5846 |
|
|
static bfd_boolean
|
5847 |
|
|
elf_xtensa_new_section_hook (bfd *abfd, asection *sec)
|
5848 |
|
|
{
|
5849 |
|
|
if (!sec->used_by_bfd)
|
5850 |
|
|
{
|
5851 |
|
|
struct elf_xtensa_section_data *sdata;
|
5852 |
|
|
bfd_size_type amt = sizeof (*sdata);
|
5853 |
|
|
|
5854 |
|
|
sdata = bfd_zalloc (abfd, amt);
|
5855 |
|
|
if (sdata == NULL)
|
5856 |
|
|
return FALSE;
|
5857 |
|
|
sec->used_by_bfd = sdata;
|
5858 |
|
|
}
|
5859 |
|
|
|
5860 |
|
|
return _bfd_elf_new_section_hook (abfd, sec);
|
5861 |
|
|
}
|
5862 |
|
|
|
5863 |
|
|
|
5864 |
|
|
static xtensa_relax_info *
|
5865 |
|
|
get_xtensa_relax_info (asection *sec)
|
5866 |
|
|
{
|
5867 |
|
|
struct elf_xtensa_section_data *section_data;
|
5868 |
|
|
|
5869 |
|
|
/* No info available if no section or if it is an output section. */
|
5870 |
|
|
if (!sec || sec == sec->output_section)
|
5871 |
|
|
return NULL;
|
5872 |
|
|
|
5873 |
|
|
section_data = (struct elf_xtensa_section_data *) elf_section_data (sec);
|
5874 |
|
|
return §ion_data->relax_info;
|
5875 |
|
|
}
|
5876 |
|
|
|
5877 |
|
|
|
5878 |
|
|
static void
|
5879 |
|
|
init_xtensa_relax_info (asection *sec)
|
5880 |
|
|
{
|
5881 |
|
|
xtensa_relax_info *relax_info = get_xtensa_relax_info (sec);
|
5882 |
|
|
|
5883 |
|
|
relax_info->is_relaxable_literal_section = FALSE;
|
5884 |
|
|
relax_info->is_relaxable_asm_section = FALSE;
|
5885 |
|
|
relax_info->visited = 0;
|
5886 |
|
|
|
5887 |
|
|
relax_info->src_relocs = NULL;
|
5888 |
|
|
relax_info->src_count = 0;
|
5889 |
|
|
relax_info->src_next = 0;
|
5890 |
|
|
|
5891 |
|
|
relax_info->removed_list.head = NULL;
|
5892 |
|
|
relax_info->removed_list.tail = NULL;
|
5893 |
|
|
|
5894 |
|
|
relax_info->action_list.head = NULL;
|
5895 |
|
|
|
5896 |
|
|
relax_info->fix_list = NULL;
|
5897 |
|
|
relax_info->fix_array = NULL;
|
5898 |
|
|
relax_info->fix_array_count = 0;
|
5899 |
|
|
|
5900 |
|
|
relax_info->allocated_relocs = NULL;
|
5901 |
|
|
relax_info->relocs_count = 0;
|
5902 |
|
|
relax_info->allocated_relocs_count = 0;
|
5903 |
|
|
}
|
5904 |
|
|
|
5905 |
|
|
|
5906 |
|
|
/* Coalescing literals may require a relocation to refer to a section in
|
5907 |
|
|
a different input file, but the standard relocation information
|
5908 |
|
|
cannot express that. Instead, the reloc_bfd_fix structures are used
|
5909 |
|
|
to "fix" the relocations that refer to sections in other input files.
|
5910 |
|
|
These structures are kept on per-section lists. The "src_type" field
|
5911 |
|
|
records the relocation type in case there are multiple relocations on
|
5912 |
|
|
the same location. FIXME: This is ugly; an alternative might be to
|
5913 |
|
|
add new symbols with the "owner" field to some other input file. */
|
5914 |
|
|
|
5915 |
|
|
struct reloc_bfd_fix_struct
|
5916 |
|
|
{
|
5917 |
|
|
asection *src_sec;
|
5918 |
|
|
bfd_vma src_offset;
|
5919 |
|
|
unsigned src_type; /* Relocation type. */
|
5920 |
|
|
|
5921 |
|
|
asection *target_sec;
|
5922 |
|
|
bfd_vma target_offset;
|
5923 |
|
|
bfd_boolean translated;
|
5924 |
|
|
|
5925 |
|
|
reloc_bfd_fix *next;
|
5926 |
|
|
};
|
5927 |
|
|
|
5928 |
|
|
|
5929 |
|
|
static reloc_bfd_fix *
|
5930 |
|
|
reloc_bfd_fix_init (asection *src_sec,
|
5931 |
|
|
bfd_vma src_offset,
|
5932 |
|
|
unsigned src_type,
|
5933 |
|
|
asection *target_sec,
|
5934 |
|
|
bfd_vma target_offset,
|
5935 |
|
|
bfd_boolean translated)
|
5936 |
|
|
{
|
5937 |
|
|
reloc_bfd_fix *fix;
|
5938 |
|
|
|
5939 |
|
|
fix = (reloc_bfd_fix *) bfd_malloc (sizeof (reloc_bfd_fix));
|
5940 |
|
|
fix->src_sec = src_sec;
|
5941 |
|
|
fix->src_offset = src_offset;
|
5942 |
|
|
fix->src_type = src_type;
|
5943 |
|
|
fix->target_sec = target_sec;
|
5944 |
|
|
fix->target_offset = target_offset;
|
5945 |
|
|
fix->translated = translated;
|
5946 |
|
|
|
5947 |
|
|
return fix;
|
5948 |
|
|
}
|
5949 |
|
|
|
5950 |
|
|
|
5951 |
|
|
static void
|
5952 |
|
|
add_fix (asection *src_sec, reloc_bfd_fix *fix)
|
5953 |
|
|
{
|
5954 |
|
|
xtensa_relax_info *relax_info;
|
5955 |
|
|
|
5956 |
|
|
relax_info = get_xtensa_relax_info (src_sec);
|
5957 |
|
|
fix->next = relax_info->fix_list;
|
5958 |
|
|
relax_info->fix_list = fix;
|
5959 |
|
|
}
|
5960 |
|
|
|
5961 |
|
|
|
5962 |
|
|
static int
|
5963 |
|
|
fix_compare (const void *ap, const void *bp)
|
5964 |
|
|
{
|
5965 |
|
|
const reloc_bfd_fix *a = (const reloc_bfd_fix *) ap;
|
5966 |
|
|
const reloc_bfd_fix *b = (const reloc_bfd_fix *) bp;
|
5967 |
|
|
|
5968 |
|
|
if (a->src_offset != b->src_offset)
|
5969 |
|
|
return (a->src_offset - b->src_offset);
|
5970 |
|
|
return (a->src_type - b->src_type);
|
5971 |
|
|
}
|
5972 |
|
|
|
5973 |
|
|
|
5974 |
|
|
static void
|
5975 |
|
|
cache_fix_array (asection *sec)
|
5976 |
|
|
{
|
5977 |
|
|
unsigned i, count = 0;
|
5978 |
|
|
reloc_bfd_fix *r;
|
5979 |
|
|
xtensa_relax_info *relax_info = get_xtensa_relax_info (sec);
|
5980 |
|
|
|
5981 |
|
|
if (relax_info == NULL)
|
5982 |
|
|
return;
|
5983 |
|
|
if (relax_info->fix_list == NULL)
|
5984 |
|
|
return;
|
5985 |
|
|
|
5986 |
|
|
for (r = relax_info->fix_list; r != NULL; r = r->next)
|
5987 |
|
|
count++;
|
5988 |
|
|
|
5989 |
|
|
relax_info->fix_array =
|
5990 |
|
|
(reloc_bfd_fix *) bfd_malloc (sizeof (reloc_bfd_fix) * count);
|
5991 |
|
|
relax_info->fix_array_count = count;
|
5992 |
|
|
|
5993 |
|
|
r = relax_info->fix_list;
|
5994 |
|
|
for (i = 0; i < count; i++, r = r->next)
|
5995 |
|
|
{
|
5996 |
|
|
relax_info->fix_array[count - 1 - i] = *r;
|
5997 |
|
|
relax_info->fix_array[count - 1 - i].next = NULL;
|
5998 |
|
|
}
|
5999 |
|
|
|
6000 |
|
|
qsort (relax_info->fix_array, relax_info->fix_array_count,
|
6001 |
|
|
sizeof (reloc_bfd_fix), fix_compare);
|
6002 |
|
|
}
|
6003 |
|
|
|
6004 |
|
|
|
6005 |
|
|
static reloc_bfd_fix *
|
6006 |
|
|
get_bfd_fix (asection *sec, bfd_vma offset, unsigned type)
|
6007 |
|
|
{
|
6008 |
|
|
xtensa_relax_info *relax_info = get_xtensa_relax_info (sec);
|
6009 |
|
|
reloc_bfd_fix *rv;
|
6010 |
|
|
reloc_bfd_fix key;
|
6011 |
|
|
|
6012 |
|
|
if (relax_info == NULL)
|
6013 |
|
|
return NULL;
|
6014 |
|
|
if (relax_info->fix_list == NULL)
|
6015 |
|
|
return NULL;
|
6016 |
|
|
|
6017 |
|
|
if (relax_info->fix_array == NULL)
|
6018 |
|
|
cache_fix_array (sec);
|
6019 |
|
|
|
6020 |
|
|
key.src_offset = offset;
|
6021 |
|
|
key.src_type = type;
|
6022 |
|
|
rv = bsearch (&key, relax_info->fix_array, relax_info->fix_array_count,
|
6023 |
|
|
sizeof (reloc_bfd_fix), fix_compare);
|
6024 |
|
|
return rv;
|
6025 |
|
|
}
|
6026 |
|
|
|
6027 |
|
|
|
6028 |
|
|
/* Section caching. */
|
6029 |
|
|
|
6030 |
|
|
typedef struct section_cache_struct section_cache_t;
|
6031 |
|
|
|
6032 |
|
|
struct section_cache_struct
|
6033 |
|
|
{
|
6034 |
|
|
asection *sec;
|
6035 |
|
|
|
6036 |
|
|
bfd_byte *contents; /* Cache of the section contents. */
|
6037 |
|
|
bfd_size_type content_length;
|
6038 |
|
|
|
6039 |
|
|
property_table_entry *ptbl; /* Cache of the section property table. */
|
6040 |
|
|
unsigned pte_count;
|
6041 |
|
|
|
6042 |
|
|
Elf_Internal_Rela *relocs; /* Cache of the section relocations. */
|
6043 |
|
|
unsigned reloc_count;
|
6044 |
|
|
};
|
6045 |
|
|
|
6046 |
|
|
|
6047 |
|
|
static void
|
6048 |
|
|
init_section_cache (section_cache_t *sec_cache)
|
6049 |
|
|
{
|
6050 |
|
|
memset (sec_cache, 0, sizeof (*sec_cache));
|
6051 |
|
|
}
|
6052 |
|
|
|
6053 |
|
|
|
6054 |
|
|
static void
|
6055 |
|
|
clear_section_cache (section_cache_t *sec_cache)
|
6056 |
|
|
{
|
6057 |
|
|
if (sec_cache->sec)
|
6058 |
|
|
{
|
6059 |
|
|
release_contents (sec_cache->sec, sec_cache->contents);
|
6060 |
|
|
release_internal_relocs (sec_cache->sec, sec_cache->relocs);
|
6061 |
|
|
if (sec_cache->ptbl)
|
6062 |
|
|
free (sec_cache->ptbl);
|
6063 |
|
|
memset (sec_cache, 0, sizeof (sec_cache));
|
6064 |
|
|
}
|
6065 |
|
|
}
|
6066 |
|
|
|
6067 |
|
|
|
6068 |
|
|
static bfd_boolean
|
6069 |
|
|
section_cache_section (section_cache_t *sec_cache,
|
6070 |
|
|
asection *sec,
|
6071 |
|
|
struct bfd_link_info *link_info)
|
6072 |
|
|
{
|
6073 |
|
|
bfd *abfd;
|
6074 |
|
|
property_table_entry *prop_table = NULL;
|
6075 |
|
|
int ptblsize = 0;
|
6076 |
|
|
bfd_byte *contents = NULL;
|
6077 |
|
|
Elf_Internal_Rela *internal_relocs = NULL;
|
6078 |
|
|
bfd_size_type sec_size;
|
6079 |
|
|
|
6080 |
|
|
if (sec == NULL)
|
6081 |
|
|
return FALSE;
|
6082 |
|
|
if (sec == sec_cache->sec)
|
6083 |
|
|
return TRUE;
|
6084 |
|
|
|
6085 |
|
|
abfd = sec->owner;
|
6086 |
|
|
sec_size = bfd_get_section_limit (abfd, sec);
|
6087 |
|
|
|
6088 |
|
|
/* Get the contents. */
|
6089 |
|
|
contents = retrieve_contents (abfd, sec, link_info->keep_memory);
|
6090 |
|
|
if (contents == NULL && sec_size != 0)
|
6091 |
|
|
goto err;
|
6092 |
|
|
|
6093 |
|
|
/* Get the relocations. */
|
6094 |
|
|
internal_relocs = retrieve_internal_relocs (abfd, sec,
|
6095 |
|
|
link_info->keep_memory);
|
6096 |
|
|
|
6097 |
|
|
/* Get the entry table. */
|
6098 |
|
|
ptblsize = xtensa_read_table_entries (abfd, sec, &prop_table,
|
6099 |
|
|
XTENSA_PROP_SEC_NAME, FALSE);
|
6100 |
|
|
if (ptblsize < 0)
|
6101 |
|
|
goto err;
|
6102 |
|
|
|
6103 |
|
|
/* Fill in the new section cache. */
|
6104 |
|
|
clear_section_cache (sec_cache);
|
6105 |
|
|
memset (sec_cache, 0, sizeof (sec_cache));
|
6106 |
|
|
|
6107 |
|
|
sec_cache->sec = sec;
|
6108 |
|
|
sec_cache->contents = contents;
|
6109 |
|
|
sec_cache->content_length = sec_size;
|
6110 |
|
|
sec_cache->relocs = internal_relocs;
|
6111 |
|
|
sec_cache->reloc_count = sec->reloc_count;
|
6112 |
|
|
sec_cache->pte_count = ptblsize;
|
6113 |
|
|
sec_cache->ptbl = prop_table;
|
6114 |
|
|
|
6115 |
|
|
return TRUE;
|
6116 |
|
|
|
6117 |
|
|
err:
|
6118 |
|
|
release_contents (sec, contents);
|
6119 |
|
|
release_internal_relocs (sec, internal_relocs);
|
6120 |
|
|
if (prop_table)
|
6121 |
|
|
free (prop_table);
|
6122 |
|
|
return FALSE;
|
6123 |
|
|
}
|
6124 |
|
|
|
6125 |
|
|
|
6126 |
|
|
/* Extended basic blocks. */
|
6127 |
|
|
|
6128 |
|
|
/* An ebb_struct represents an Extended Basic Block. Within this
|
6129 |
|
|
range, we guarantee that all instructions are decodable, the
|
6130 |
|
|
property table entries are contiguous, and no property table
|
6131 |
|
|
specifies a segment that cannot have instructions moved. This
|
6132 |
|
|
structure contains caches of the contents, property table and
|
6133 |
|
|
relocations for the specified section for easy use. The range is
|
6134 |
|
|
specified by ranges of indices for the byte offset, property table
|
6135 |
|
|
offsets and relocation offsets. These must be consistent. */
|
6136 |
|
|
|
6137 |
|
|
typedef struct ebb_struct ebb_t;
|
6138 |
|
|
|
6139 |
|
|
struct ebb_struct
|
6140 |
|
|
{
|
6141 |
|
|
asection *sec;
|
6142 |
|
|
|
6143 |
|
|
bfd_byte *contents; /* Cache of the section contents. */
|
6144 |
|
|
bfd_size_type content_length;
|
6145 |
|
|
|
6146 |
|
|
property_table_entry *ptbl; /* Cache of the section property table. */
|
6147 |
|
|
unsigned pte_count;
|
6148 |
|
|
|
6149 |
|
|
Elf_Internal_Rela *relocs; /* Cache of the section relocations. */
|
6150 |
|
|
unsigned reloc_count;
|
6151 |
|
|
|
6152 |
|
|
bfd_vma start_offset; /* Offset in section. */
|
6153 |
|
|
unsigned start_ptbl_idx; /* Offset in the property table. */
|
6154 |
|
|
unsigned start_reloc_idx; /* Offset in the relocations. */
|
6155 |
|
|
|
6156 |
|
|
bfd_vma end_offset;
|
6157 |
|
|
unsigned end_ptbl_idx;
|
6158 |
|
|
unsigned end_reloc_idx;
|
6159 |
|
|
|
6160 |
|
|
bfd_boolean ends_section; /* Is this the last ebb in a section? */
|
6161 |
|
|
|
6162 |
|
|
/* The unreachable property table at the end of this set of blocks;
|
6163 |
|
|
NULL if the end is not an unreachable block. */
|
6164 |
|
|
property_table_entry *ends_unreachable;
|
6165 |
|
|
};
|
6166 |
|
|
|
6167 |
|
|
|
6168 |
|
|
enum ebb_target_enum
|
6169 |
|
|
{
|
6170 |
|
|
EBB_NO_ALIGN = 0,
|
6171 |
|
|
EBB_DESIRE_TGT_ALIGN,
|
6172 |
|
|
EBB_REQUIRE_TGT_ALIGN,
|
6173 |
|
|
EBB_REQUIRE_LOOP_ALIGN,
|
6174 |
|
|
EBB_REQUIRE_ALIGN
|
6175 |
|
|
};
|
6176 |
|
|
|
6177 |
|
|
|
6178 |
|
|
/* proposed_action_struct is similar to the text_action_struct except
|
6179 |
|
|
that is represents a potential transformation, not one that will
|
6180 |
|
|
occur. We build a list of these for an extended basic block
|
6181 |
|
|
and use them to compute the actual actions desired. We must be
|
6182 |
|
|
careful that the entire set of actual actions we perform do not
|
6183 |
|
|
break any relocations that would fit if the actions were not
|
6184 |
|
|
performed. */
|
6185 |
|
|
|
6186 |
|
|
typedef struct proposed_action_struct proposed_action;
|
6187 |
|
|
|
6188 |
|
|
struct proposed_action_struct
|
6189 |
|
|
{
|
6190 |
|
|
enum ebb_target_enum align_type; /* for the target alignment */
|
6191 |
|
|
bfd_vma alignment_pow;
|
6192 |
|
|
text_action_t action;
|
6193 |
|
|
bfd_vma offset;
|
6194 |
|
|
int removed_bytes;
|
6195 |
|
|
bfd_boolean do_action; /* If false, then we will not perform the action. */
|
6196 |
|
|
};
|
6197 |
|
|
|
6198 |
|
|
|
6199 |
|
|
/* The ebb_constraint_struct keeps a set of proposed actions for an
|
6200 |
|
|
extended basic block. */
|
6201 |
|
|
|
6202 |
|
|
typedef struct ebb_constraint_struct ebb_constraint;
|
6203 |
|
|
|
6204 |
|
|
struct ebb_constraint_struct
|
6205 |
|
|
{
|
6206 |
|
|
ebb_t ebb;
|
6207 |
|
|
bfd_boolean start_movable;
|
6208 |
|
|
|
6209 |
|
|
/* Bytes of extra space at the beginning if movable. */
|
6210 |
|
|
int start_extra_space;
|
6211 |
|
|
|
6212 |
|
|
enum ebb_target_enum start_align;
|
6213 |
|
|
|
6214 |
|
|
bfd_boolean end_movable;
|
6215 |
|
|
|
6216 |
|
|
/* Bytes of extra space at the end if movable. */
|
6217 |
|
|
int end_extra_space;
|
6218 |
|
|
|
6219 |
|
|
unsigned action_count;
|
6220 |
|
|
unsigned action_allocated;
|
6221 |
|
|
|
6222 |
|
|
/* Array of proposed actions. */
|
6223 |
|
|
proposed_action *actions;
|
6224 |
|
|
|
6225 |
|
|
/* Action alignments -- one for each proposed action. */
|
6226 |
|
|
enum ebb_target_enum *action_aligns;
|
6227 |
|
|
};
|
6228 |
|
|
|
6229 |
|
|
|
6230 |
|
|
static void
|
6231 |
|
|
init_ebb_constraint (ebb_constraint *c)
|
6232 |
|
|
{
|
6233 |
|
|
memset (c, 0, sizeof (ebb_constraint));
|
6234 |
|
|
}
|
6235 |
|
|
|
6236 |
|
|
|
6237 |
|
|
static void
|
6238 |
|
|
free_ebb_constraint (ebb_constraint *c)
|
6239 |
|
|
{
|
6240 |
|
|
if (c->actions)
|
6241 |
|
|
free (c->actions);
|
6242 |
|
|
}
|
6243 |
|
|
|
6244 |
|
|
|
6245 |
|
|
static void
|
6246 |
|
|
init_ebb (ebb_t *ebb,
|
6247 |
|
|
asection *sec,
|
6248 |
|
|
bfd_byte *contents,
|
6249 |
|
|
bfd_size_type content_length,
|
6250 |
|
|
property_table_entry *prop_table,
|
6251 |
|
|
unsigned ptblsize,
|
6252 |
|
|
Elf_Internal_Rela *internal_relocs,
|
6253 |
|
|
unsigned reloc_count)
|
6254 |
|
|
{
|
6255 |
|
|
memset (ebb, 0, sizeof (ebb_t));
|
6256 |
|
|
ebb->sec = sec;
|
6257 |
|
|
ebb->contents = contents;
|
6258 |
|
|
ebb->content_length = content_length;
|
6259 |
|
|
ebb->ptbl = prop_table;
|
6260 |
|
|
ebb->pte_count = ptblsize;
|
6261 |
|
|
ebb->relocs = internal_relocs;
|
6262 |
|
|
ebb->reloc_count = reloc_count;
|
6263 |
|
|
ebb->start_offset = 0;
|
6264 |
|
|
ebb->end_offset = ebb->content_length - 1;
|
6265 |
|
|
ebb->start_ptbl_idx = 0;
|
6266 |
|
|
ebb->end_ptbl_idx = ptblsize;
|
6267 |
|
|
ebb->start_reloc_idx = 0;
|
6268 |
|
|
ebb->end_reloc_idx = reloc_count;
|
6269 |
|
|
}
|
6270 |
|
|
|
6271 |
|
|
|
6272 |
|
|
/* Extend the ebb to all decodable contiguous sections. The algorithm
|
6273 |
|
|
for building a basic block around an instruction is to push it
|
6274 |
|
|
forward until we hit the end of a section, an unreachable block or
|
6275 |
|
|
a block that cannot be transformed. Then we push it backwards
|
6276 |
|
|
searching for similar conditions. */
|
6277 |
|
|
|
6278 |
|
|
static bfd_boolean extend_ebb_bounds_forward (ebb_t *);
|
6279 |
|
|
static bfd_boolean extend_ebb_bounds_backward (ebb_t *);
|
6280 |
|
|
static bfd_size_type insn_block_decodable_len
|
6281 |
|
|
(bfd_byte *, bfd_size_type, bfd_vma, bfd_size_type);
|
6282 |
|
|
|
6283 |
|
|
static bfd_boolean
|
6284 |
|
|
extend_ebb_bounds (ebb_t *ebb)
|
6285 |
|
|
{
|
6286 |
|
|
if (!extend_ebb_bounds_forward (ebb))
|
6287 |
|
|
return FALSE;
|
6288 |
|
|
if (!extend_ebb_bounds_backward (ebb))
|
6289 |
|
|
return FALSE;
|
6290 |
|
|
return TRUE;
|
6291 |
|
|
}
|
6292 |
|
|
|
6293 |
|
|
|
6294 |
|
|
static bfd_boolean
|
6295 |
|
|
extend_ebb_bounds_forward (ebb_t *ebb)
|
6296 |
|
|
{
|
6297 |
|
|
property_table_entry *the_entry, *new_entry;
|
6298 |
|
|
|
6299 |
|
|
the_entry = &ebb->ptbl[ebb->end_ptbl_idx];
|
6300 |
|
|
|
6301 |
|
|
/* Stop when (1) we cannot decode an instruction, (2) we are at
|
6302 |
|
|
the end of the property tables, (3) we hit a non-contiguous property
|
6303 |
|
|
table entry, (4) we hit a NO_TRANSFORM region. */
|
6304 |
|
|
|
6305 |
|
|
while (1)
|
6306 |
|
|
{
|
6307 |
|
|
bfd_vma entry_end;
|
6308 |
|
|
bfd_size_type insn_block_len;
|
6309 |
|
|
|
6310 |
|
|
entry_end = the_entry->address - ebb->sec->vma + the_entry->size;
|
6311 |
|
|
insn_block_len =
|
6312 |
|
|
insn_block_decodable_len (ebb->contents, ebb->content_length,
|
6313 |
|
|
ebb->end_offset,
|
6314 |
|
|
entry_end - ebb->end_offset);
|
6315 |
|
|
if (insn_block_len != (entry_end - ebb->end_offset))
|
6316 |
|
|
{
|
6317 |
|
|
(*_bfd_error_handler)
|
6318 |
|
|
(_("%B(%A+0x%lx): could not decode instruction; possible configuration mismatch"),
|
6319 |
|
|
ebb->sec->owner, ebb->sec, ebb->end_offset + insn_block_len);
|
6320 |
|
|
return FALSE;
|
6321 |
|
|
}
|
6322 |
|
|
ebb->end_offset += insn_block_len;
|
6323 |
|
|
|
6324 |
|
|
if (ebb->end_offset == ebb->sec->size)
|
6325 |
|
|
ebb->ends_section = TRUE;
|
6326 |
|
|
|
6327 |
|
|
/* Update the reloc counter. */
|
6328 |
|
|
while (ebb->end_reloc_idx + 1 < ebb->reloc_count
|
6329 |
|
|
&& (ebb->relocs[ebb->end_reloc_idx + 1].r_offset
|
6330 |
|
|
< ebb->end_offset))
|
6331 |
|
|
{
|
6332 |
|
|
ebb->end_reloc_idx++;
|
6333 |
|
|
}
|
6334 |
|
|
|
6335 |
|
|
if (ebb->end_ptbl_idx + 1 == ebb->pte_count)
|
6336 |
|
|
return TRUE;
|
6337 |
|
|
|
6338 |
|
|
new_entry = &ebb->ptbl[ebb->end_ptbl_idx + 1];
|
6339 |
|
|
if (((new_entry->flags & XTENSA_PROP_INSN) == 0)
|
6340 |
|
|
|| ((new_entry->flags & XTENSA_PROP_NO_TRANSFORM) != 0)
|
6341 |
|
|
|| ((the_entry->flags & XTENSA_PROP_ALIGN) != 0))
|
6342 |
|
|
break;
|
6343 |
|
|
|
6344 |
|
|
if (the_entry->address + the_entry->size != new_entry->address)
|
6345 |
|
|
break;
|
6346 |
|
|
|
6347 |
|
|
the_entry = new_entry;
|
6348 |
|
|
ebb->end_ptbl_idx++;
|
6349 |
|
|
}
|
6350 |
|
|
|
6351 |
|
|
/* Quick check for an unreachable or end of file just at the end. */
|
6352 |
|
|
if (ebb->end_ptbl_idx + 1 == ebb->pte_count)
|
6353 |
|
|
{
|
6354 |
|
|
if (ebb->end_offset == ebb->content_length)
|
6355 |
|
|
ebb->ends_section = TRUE;
|
6356 |
|
|
}
|
6357 |
|
|
else
|
6358 |
|
|
{
|
6359 |
|
|
new_entry = &ebb->ptbl[ebb->end_ptbl_idx + 1];
|
6360 |
|
|
if ((new_entry->flags & XTENSA_PROP_UNREACHABLE) != 0
|
6361 |
|
|
&& the_entry->address + the_entry->size == new_entry->address)
|
6362 |
|
|
ebb->ends_unreachable = new_entry;
|
6363 |
|
|
}
|
6364 |
|
|
|
6365 |
|
|
/* Any other ending requires exact alignment. */
|
6366 |
|
|
return TRUE;
|
6367 |
|
|
}
|
6368 |
|
|
|
6369 |
|
|
|
6370 |
|
|
static bfd_boolean
|
6371 |
|
|
extend_ebb_bounds_backward (ebb_t *ebb)
|
6372 |
|
|
{
|
6373 |
|
|
property_table_entry *the_entry, *new_entry;
|
6374 |
|
|
|
6375 |
|
|
the_entry = &ebb->ptbl[ebb->start_ptbl_idx];
|
6376 |
|
|
|
6377 |
|
|
/* Stop when (1) we cannot decode the instructions in the current entry.
|
6378 |
|
|
(2) we are at the beginning of the property tables, (3) we hit a
|
6379 |
|
|
non-contiguous property table entry, (4) we hit a NO_TRANSFORM region. */
|
6380 |
|
|
|
6381 |
|
|
while (1)
|
6382 |
|
|
{
|
6383 |
|
|
bfd_vma block_begin;
|
6384 |
|
|
bfd_size_type insn_block_len;
|
6385 |
|
|
|
6386 |
|
|
block_begin = the_entry->address - ebb->sec->vma;
|
6387 |
|
|
insn_block_len =
|
6388 |
|
|
insn_block_decodable_len (ebb->contents, ebb->content_length,
|
6389 |
|
|
block_begin,
|
6390 |
|
|
ebb->start_offset - block_begin);
|
6391 |
|
|
if (insn_block_len != ebb->start_offset - block_begin)
|
6392 |
|
|
{
|
6393 |
|
|
(*_bfd_error_handler)
|
6394 |
|
|
(_("%B(%A+0x%lx): could not decode instruction; possible configuration mismatch"),
|
6395 |
|
|
ebb->sec->owner, ebb->sec, ebb->end_offset + insn_block_len);
|
6396 |
|
|
return FALSE;
|
6397 |
|
|
}
|
6398 |
|
|
ebb->start_offset -= insn_block_len;
|
6399 |
|
|
|
6400 |
|
|
/* Update the reloc counter. */
|
6401 |
|
|
while (ebb->start_reloc_idx > 0
|
6402 |
|
|
&& (ebb->relocs[ebb->start_reloc_idx - 1].r_offset
|
6403 |
|
|
>= ebb->start_offset))
|
6404 |
|
|
{
|
6405 |
|
|
ebb->start_reloc_idx--;
|
6406 |
|
|
}
|
6407 |
|
|
|
6408 |
|
|
if (ebb->start_ptbl_idx == 0)
|
6409 |
|
|
return TRUE;
|
6410 |
|
|
|
6411 |
|
|
new_entry = &ebb->ptbl[ebb->start_ptbl_idx - 1];
|
6412 |
|
|
if ((new_entry->flags & XTENSA_PROP_INSN) == 0
|
6413 |
|
|
|| ((new_entry->flags & XTENSA_PROP_NO_TRANSFORM) != 0)
|
6414 |
|
|
|| ((new_entry->flags & XTENSA_PROP_ALIGN) != 0))
|
6415 |
|
|
return TRUE;
|
6416 |
|
|
if (new_entry->address + new_entry->size != the_entry->address)
|
6417 |
|
|
return TRUE;
|
6418 |
|
|
|
6419 |
|
|
the_entry = new_entry;
|
6420 |
|
|
ebb->start_ptbl_idx--;
|
6421 |
|
|
}
|
6422 |
|
|
return TRUE;
|
6423 |
|
|
}
|
6424 |
|
|
|
6425 |
|
|
|
6426 |
|
|
static bfd_size_type
|
6427 |
|
|
insn_block_decodable_len (bfd_byte *contents,
|
6428 |
|
|
bfd_size_type content_len,
|
6429 |
|
|
bfd_vma block_offset,
|
6430 |
|
|
bfd_size_type block_len)
|
6431 |
|
|
{
|
6432 |
|
|
bfd_vma offset = block_offset;
|
6433 |
|
|
|
6434 |
|
|
while (offset < block_offset + block_len)
|
6435 |
|
|
{
|
6436 |
|
|
bfd_size_type insn_len = 0;
|
6437 |
|
|
|
6438 |
|
|
insn_len = insn_decode_len (contents, content_len, offset);
|
6439 |
|
|
if (insn_len == 0)
|
6440 |
|
|
return (offset - block_offset);
|
6441 |
|
|
offset += insn_len;
|
6442 |
|
|
}
|
6443 |
|
|
return (offset - block_offset);
|
6444 |
|
|
}
|
6445 |
|
|
|
6446 |
|
|
|
6447 |
|
|
static void
|
6448 |
|
|
ebb_propose_action (ebb_constraint *c,
|
6449 |
|
|
enum ebb_target_enum align_type,
|
6450 |
|
|
bfd_vma alignment_pow,
|
6451 |
|
|
text_action_t action,
|
6452 |
|
|
bfd_vma offset,
|
6453 |
|
|
int removed_bytes,
|
6454 |
|
|
bfd_boolean do_action)
|
6455 |
|
|
{
|
6456 |
|
|
proposed_action *act;
|
6457 |
|
|
|
6458 |
|
|
if (c->action_allocated <= c->action_count)
|
6459 |
|
|
{
|
6460 |
|
|
unsigned new_allocated, i;
|
6461 |
|
|
proposed_action *new_actions;
|
6462 |
|
|
|
6463 |
|
|
new_allocated = (c->action_count + 2) * 2;
|
6464 |
|
|
new_actions = (proposed_action *)
|
6465 |
|
|
bfd_zmalloc (sizeof (proposed_action) * new_allocated);
|
6466 |
|
|
|
6467 |
|
|
for (i = 0; i < c->action_count; i++)
|
6468 |
|
|
new_actions[i] = c->actions[i];
|
6469 |
|
|
if (c->actions)
|
6470 |
|
|
free (c->actions);
|
6471 |
|
|
c->actions = new_actions;
|
6472 |
|
|
c->action_allocated = new_allocated;
|
6473 |
|
|
}
|
6474 |
|
|
|
6475 |
|
|
act = &c->actions[c->action_count];
|
6476 |
|
|
act->align_type = align_type;
|
6477 |
|
|
act->alignment_pow = alignment_pow;
|
6478 |
|
|
act->action = action;
|
6479 |
|
|
act->offset = offset;
|
6480 |
|
|
act->removed_bytes = removed_bytes;
|
6481 |
|
|
act->do_action = do_action;
|
6482 |
|
|
|
6483 |
|
|
c->action_count++;
|
6484 |
|
|
}
|
6485 |
|
|
|
6486 |
|
|
|
6487 |
|
|
/* Access to internal relocations, section contents and symbols. */
|
6488 |
|
|
|
6489 |
|
|
/* During relaxation, we need to modify relocations, section contents,
|
6490 |
|
|
and symbol definitions, and we need to keep the original values from
|
6491 |
|
|
being reloaded from the input files, i.e., we need to "pin" the
|
6492 |
|
|
modified values in memory. We also want to continue to observe the
|
6493 |
|
|
setting of the "keep-memory" flag. The following functions wrap the
|
6494 |
|
|
standard BFD functions to take care of this for us. */
|
6495 |
|
|
|
6496 |
|
|
static Elf_Internal_Rela *
|
6497 |
|
|
retrieve_internal_relocs (bfd *abfd, asection *sec, bfd_boolean keep_memory)
|
6498 |
|
|
{
|
6499 |
|
|
Elf_Internal_Rela *internal_relocs;
|
6500 |
|
|
|
6501 |
|
|
if ((sec->flags & SEC_LINKER_CREATED) != 0)
|
6502 |
|
|
return NULL;
|
6503 |
|
|
|
6504 |
|
|
internal_relocs = elf_section_data (sec)->relocs;
|
6505 |
|
|
if (internal_relocs == NULL)
|
6506 |
|
|
internal_relocs = (_bfd_elf_link_read_relocs
|
6507 |
|
|
(abfd, sec, NULL, NULL, keep_memory));
|
6508 |
|
|
return internal_relocs;
|
6509 |
|
|
}
|
6510 |
|
|
|
6511 |
|
|
|
6512 |
|
|
static void
|
6513 |
|
|
pin_internal_relocs (asection *sec, Elf_Internal_Rela *internal_relocs)
|
6514 |
|
|
{
|
6515 |
|
|
elf_section_data (sec)->relocs = internal_relocs;
|
6516 |
|
|
}
|
6517 |
|
|
|
6518 |
|
|
|
6519 |
|
|
static void
|
6520 |
|
|
release_internal_relocs (asection *sec, Elf_Internal_Rela *internal_relocs)
|
6521 |
|
|
{
|
6522 |
|
|
if (internal_relocs
|
6523 |
|
|
&& elf_section_data (sec)->relocs != internal_relocs)
|
6524 |
|
|
free (internal_relocs);
|
6525 |
|
|
}
|
6526 |
|
|
|
6527 |
|
|
|
6528 |
|
|
static bfd_byte *
|
6529 |
|
|
retrieve_contents (bfd *abfd, asection *sec, bfd_boolean keep_memory)
|
6530 |
|
|
{
|
6531 |
|
|
bfd_byte *contents;
|
6532 |
|
|
bfd_size_type sec_size;
|
6533 |
|
|
|
6534 |
|
|
sec_size = bfd_get_section_limit (abfd, sec);
|
6535 |
|
|
contents = elf_section_data (sec)->this_hdr.contents;
|
6536 |
|
|
|
6537 |
|
|
if (contents == NULL && sec_size != 0)
|
6538 |
|
|
{
|
6539 |
|
|
if (!bfd_malloc_and_get_section (abfd, sec, &contents))
|
6540 |
|
|
{
|
6541 |
|
|
if (contents)
|
6542 |
|
|
free (contents);
|
6543 |
|
|
return NULL;
|
6544 |
|
|
}
|
6545 |
|
|
if (keep_memory)
|
6546 |
|
|
elf_section_data (sec)->this_hdr.contents = contents;
|
6547 |
|
|
}
|
6548 |
|
|
return contents;
|
6549 |
|
|
}
|
6550 |
|
|
|
6551 |
|
|
|
6552 |
|
|
static void
|
6553 |
|
|
pin_contents (asection *sec, bfd_byte *contents)
|
6554 |
|
|
{
|
6555 |
|
|
elf_section_data (sec)->this_hdr.contents = contents;
|
6556 |
|
|
}
|
6557 |
|
|
|
6558 |
|
|
|
6559 |
|
|
static void
|
6560 |
|
|
release_contents (asection *sec, bfd_byte *contents)
|
6561 |
|
|
{
|
6562 |
|
|
if (contents && elf_section_data (sec)->this_hdr.contents != contents)
|
6563 |
|
|
free (contents);
|
6564 |
|
|
}
|
6565 |
|
|
|
6566 |
|
|
|
6567 |
|
|
static Elf_Internal_Sym *
|
6568 |
|
|
retrieve_local_syms (bfd *input_bfd)
|
6569 |
|
|
{
|
6570 |
|
|
Elf_Internal_Shdr *symtab_hdr;
|
6571 |
|
|
Elf_Internal_Sym *isymbuf;
|
6572 |
|
|
size_t locsymcount;
|
6573 |
|
|
|
6574 |
|
|
symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
|
6575 |
|
|
locsymcount = symtab_hdr->sh_info;
|
6576 |
|
|
|
6577 |
|
|
isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
|
6578 |
|
|
if (isymbuf == NULL && locsymcount != 0)
|
6579 |
|
|
isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0,
|
6580 |
|
|
NULL, NULL, NULL);
|
6581 |
|
|
|
6582 |
|
|
/* Save the symbols for this input file so they won't be read again. */
|
6583 |
|
|
if (isymbuf && isymbuf != (Elf_Internal_Sym *) symtab_hdr->contents)
|
6584 |
|
|
symtab_hdr->contents = (unsigned char *) isymbuf;
|
6585 |
|
|
|
6586 |
|
|
return isymbuf;
|
6587 |
|
|
}
|
6588 |
|
|
|
6589 |
|
|
|
6590 |
|
|
/* Code for link-time relaxation. */
|
6591 |
|
|
|
6592 |
|
|
/* Initialization for relaxation: */
|
6593 |
|
|
static bfd_boolean analyze_relocations (struct bfd_link_info *);
|
6594 |
|
|
static bfd_boolean find_relaxable_sections
|
6595 |
|
|
(bfd *, asection *, struct bfd_link_info *, bfd_boolean *);
|
6596 |
|
|
static bfd_boolean collect_source_relocs
|
6597 |
|
|
(bfd *, asection *, struct bfd_link_info *);
|
6598 |
|
|
static bfd_boolean is_resolvable_asm_expansion
|
6599 |
|
|
(bfd *, asection *, bfd_byte *, Elf_Internal_Rela *, struct bfd_link_info *,
|
6600 |
|
|
bfd_boolean *);
|
6601 |
|
|
static Elf_Internal_Rela *find_associated_l32r_irel
|
6602 |
|
|
(bfd *, asection *, bfd_byte *, Elf_Internal_Rela *, Elf_Internal_Rela *);
|
6603 |
|
|
static bfd_boolean compute_text_actions
|
6604 |
|
|
(bfd *, asection *, struct bfd_link_info *);
|
6605 |
|
|
static bfd_boolean compute_ebb_proposed_actions (ebb_constraint *);
|
6606 |
|
|
static bfd_boolean compute_ebb_actions (ebb_constraint *);
|
6607 |
|
|
static bfd_boolean check_section_ebb_pcrels_fit
|
6608 |
|
|
(bfd *, asection *, bfd_byte *, Elf_Internal_Rela *, const ebb_constraint *,
|
6609 |
|
|
const xtensa_opcode *);
|
6610 |
|
|
static bfd_boolean check_section_ebb_reduces (const ebb_constraint *);
|
6611 |
|
|
static void text_action_add_proposed
|
6612 |
|
|
(text_action_list *, const ebb_constraint *, asection *);
|
6613 |
|
|
static int compute_fill_extra_space (property_table_entry *);
|
6614 |
|
|
|
6615 |
|
|
/* First pass: */
|
6616 |
|
|
static bfd_boolean compute_removed_literals
|
6617 |
|
|
(bfd *, asection *, struct bfd_link_info *, value_map_hash_table *);
|
6618 |
|
|
static Elf_Internal_Rela *get_irel_at_offset
|
6619 |
|
|
(asection *, Elf_Internal_Rela *, bfd_vma);
|
6620 |
|
|
static bfd_boolean is_removable_literal
|
6621 |
|
|
(const source_reloc *, int, const source_reloc *, int, asection *,
|
6622 |
|
|
property_table_entry *, int);
|
6623 |
|
|
static bfd_boolean remove_dead_literal
|
6624 |
|
|
(bfd *, asection *, struct bfd_link_info *, Elf_Internal_Rela *,
|
6625 |
|
|
Elf_Internal_Rela *, source_reloc *, property_table_entry *, int);
|
6626 |
|
|
static bfd_boolean identify_literal_placement
|
6627 |
|
|
(bfd *, asection *, bfd_byte *, struct bfd_link_info *,
|
6628 |
|
|
value_map_hash_table *, bfd_boolean *, Elf_Internal_Rela *, int,
|
6629 |
|
|
source_reloc *, property_table_entry *, int, section_cache_t *,
|
6630 |
|
|
bfd_boolean);
|
6631 |
|
|
static bfd_boolean relocations_reach (source_reloc *, int, const r_reloc *);
|
6632 |
|
|
static bfd_boolean coalesce_shared_literal
|
6633 |
|
|
(asection *, source_reloc *, property_table_entry *, int, value_map *);
|
6634 |
|
|
static bfd_boolean move_shared_literal
|
6635 |
|
|
(asection *, struct bfd_link_info *, source_reloc *, property_table_entry *,
|
6636 |
|
|
int, const r_reloc *, const literal_value *, section_cache_t *);
|
6637 |
|
|
|
6638 |
|
|
/* Second pass: */
|
6639 |
|
|
static bfd_boolean relax_section (bfd *, asection *, struct bfd_link_info *);
|
6640 |
|
|
static bfd_boolean translate_section_fixes (asection *);
|
6641 |
|
|
static bfd_boolean translate_reloc_bfd_fix (reloc_bfd_fix *);
|
6642 |
|
|
static asection *translate_reloc (const r_reloc *, r_reloc *, asection *);
|
6643 |
|
|
static void shrink_dynamic_reloc_sections
|
6644 |
|
|
(struct bfd_link_info *, bfd *, asection *, Elf_Internal_Rela *);
|
6645 |
|
|
static bfd_boolean move_literal
|
6646 |
|
|
(bfd *, struct bfd_link_info *, asection *, bfd_vma, bfd_byte *,
|
6647 |
|
|
xtensa_relax_info *, Elf_Internal_Rela **, const literal_value *);
|
6648 |
|
|
static bfd_boolean relax_property_section
|
6649 |
|
|
(bfd *, asection *, struct bfd_link_info *);
|
6650 |
|
|
|
6651 |
|
|
/* Third pass: */
|
6652 |
|
|
static bfd_boolean relax_section_symbols (bfd *, asection *);
|
6653 |
|
|
|
6654 |
|
|
|
6655 |
|
|
static bfd_boolean
|
6656 |
|
|
elf_xtensa_relax_section (bfd *abfd,
|
6657 |
|
|
asection *sec,
|
6658 |
|
|
struct bfd_link_info *link_info,
|
6659 |
|
|
bfd_boolean *again)
|
6660 |
|
|
{
|
6661 |
|
|
static value_map_hash_table *values = NULL;
|
6662 |
|
|
static bfd_boolean relocations_analyzed = FALSE;
|
6663 |
|
|
xtensa_relax_info *relax_info;
|
6664 |
|
|
|
6665 |
|
|
if (!relocations_analyzed)
|
6666 |
|
|
{
|
6667 |
|
|
/* Do some overall initialization for relaxation. */
|
6668 |
|
|
values = value_map_hash_table_init ();
|
6669 |
|
|
if (values == NULL)
|
6670 |
|
|
return FALSE;
|
6671 |
|
|
relaxing_section = TRUE;
|
6672 |
|
|
if (!analyze_relocations (link_info))
|
6673 |
|
|
return FALSE;
|
6674 |
|
|
relocations_analyzed = TRUE;
|
6675 |
|
|
}
|
6676 |
|
|
*again = FALSE;
|
6677 |
|
|
|
6678 |
|
|
/* Don't mess with linker-created sections. */
|
6679 |
|
|
if ((sec->flags & SEC_LINKER_CREATED) != 0)
|
6680 |
|
|
return TRUE;
|
6681 |
|
|
|
6682 |
|
|
relax_info = get_xtensa_relax_info (sec);
|
6683 |
|
|
BFD_ASSERT (relax_info != NULL);
|
6684 |
|
|
|
6685 |
|
|
switch (relax_info->visited)
|
6686 |
|
|
{
|
6687 |
|
|
case 0:
|
6688 |
|
|
/* Note: It would be nice to fold this pass into
|
6689 |
|
|
analyze_relocations, but it is important for this step that the
|
6690 |
|
|
sections be examined in link order. */
|
6691 |
|
|
if (!compute_removed_literals (abfd, sec, link_info, values))
|
6692 |
|
|
return FALSE;
|
6693 |
|
|
*again = TRUE;
|
6694 |
|
|
break;
|
6695 |
|
|
|
6696 |
|
|
case 1:
|
6697 |
|
|
if (values)
|
6698 |
|
|
value_map_hash_table_delete (values);
|
6699 |
|
|
values = NULL;
|
6700 |
|
|
if (!relax_section (abfd, sec, link_info))
|
6701 |
|
|
return FALSE;
|
6702 |
|
|
*again = TRUE;
|
6703 |
|
|
break;
|
6704 |
|
|
|
6705 |
|
|
case 2:
|
6706 |
|
|
if (!relax_section_symbols (abfd, sec))
|
6707 |
|
|
return FALSE;
|
6708 |
|
|
break;
|
6709 |
|
|
}
|
6710 |
|
|
|
6711 |
|
|
relax_info->visited++;
|
6712 |
|
|
return TRUE;
|
6713 |
|
|
}
|
6714 |
|
|
|
6715 |
|
|
|
6716 |
|
|
/* Initialization for relaxation. */
|
6717 |
|
|
|
6718 |
|
|
/* This function is called once at the start of relaxation. It scans
|
6719 |
|
|
all the input sections and marks the ones that are relaxable (i.e.,
|
6720 |
|
|
literal sections with L32R relocations against them), and then
|
6721 |
|
|
collects source_reloc information for all the relocations against
|
6722 |
|
|
those relaxable sections. During this process, it also detects
|
6723 |
|
|
longcalls, i.e., calls relaxed by the assembler into indirect
|
6724 |
|
|
calls, that can be optimized back into direct calls. Within each
|
6725 |
|
|
extended basic block (ebb) containing an optimized longcall, it
|
6726 |
|
|
computes a set of "text actions" that can be performed to remove
|
6727 |
|
|
the L32R associated with the longcall while optionally preserving
|
6728 |
|
|
branch target alignments. */
|
6729 |
|
|
|
6730 |
|
|
static bfd_boolean
|
6731 |
|
|
analyze_relocations (struct bfd_link_info *link_info)
|
6732 |
|
|
{
|
6733 |
|
|
bfd *abfd;
|
6734 |
|
|
asection *sec;
|
6735 |
|
|
bfd_boolean is_relaxable = FALSE;
|
6736 |
|
|
|
6737 |
|
|
/* Initialize the per-section relaxation info. */
|
6738 |
|
|
for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link_next)
|
6739 |
|
|
for (sec = abfd->sections; sec != NULL; sec = sec->next)
|
6740 |
|
|
{
|
6741 |
|
|
init_xtensa_relax_info (sec);
|
6742 |
|
|
}
|
6743 |
|
|
|
6744 |
|
|
/* Mark relaxable sections (and count relocations against each one). */
|
6745 |
|
|
for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link_next)
|
6746 |
|
|
for (sec = abfd->sections; sec != NULL; sec = sec->next)
|
6747 |
|
|
{
|
6748 |
|
|
if (!find_relaxable_sections (abfd, sec, link_info, &is_relaxable))
|
6749 |
|
|
return FALSE;
|
6750 |
|
|
}
|
6751 |
|
|
|
6752 |
|
|
/* Bail out if there are no relaxable sections. */
|
6753 |
|
|
if (!is_relaxable)
|
6754 |
|
|
return TRUE;
|
6755 |
|
|
|
6756 |
|
|
/* Allocate space for source_relocs. */
|
6757 |
|
|
for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link_next)
|
6758 |
|
|
for (sec = abfd->sections; sec != NULL; sec = sec->next)
|
6759 |
|
|
{
|
6760 |
|
|
xtensa_relax_info *relax_info;
|
6761 |
|
|
|
6762 |
|
|
relax_info = get_xtensa_relax_info (sec);
|
6763 |
|
|
if (relax_info->is_relaxable_literal_section
|
6764 |
|
|
|| relax_info->is_relaxable_asm_section)
|
6765 |
|
|
{
|
6766 |
|
|
relax_info->src_relocs = (source_reloc *)
|
6767 |
|
|
bfd_malloc (relax_info->src_count * sizeof (source_reloc));
|
6768 |
|
|
}
|
6769 |
|
|
else
|
6770 |
|
|
relax_info->src_count = 0;
|
6771 |
|
|
}
|
6772 |
|
|
|
6773 |
|
|
/* Collect info on relocations against each relaxable section. */
|
6774 |
|
|
for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link_next)
|
6775 |
|
|
for (sec = abfd->sections; sec != NULL; sec = sec->next)
|
6776 |
|
|
{
|
6777 |
|
|
if (!collect_source_relocs (abfd, sec, link_info))
|
6778 |
|
|
return FALSE;
|
6779 |
|
|
}
|
6780 |
|
|
|
6781 |
|
|
/* Compute the text actions. */
|
6782 |
|
|
for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link_next)
|
6783 |
|
|
for (sec = abfd->sections; sec != NULL; sec = sec->next)
|
6784 |
|
|
{
|
6785 |
|
|
if (!compute_text_actions (abfd, sec, link_info))
|
6786 |
|
|
return FALSE;
|
6787 |
|
|
}
|
6788 |
|
|
|
6789 |
|
|
return TRUE;
|
6790 |
|
|
}
|
6791 |
|
|
|
6792 |
|
|
|
6793 |
|
|
/* Find all the sections that might be relaxed. The motivation for
|
6794 |
|
|
this pass is that collect_source_relocs() needs to record _all_ the
|
6795 |
|
|
relocations that target each relaxable section. That is expensive
|
6796 |
|
|
and unnecessary unless the target section is actually going to be
|
6797 |
|
|
relaxed. This pass identifies all such sections by checking if
|
6798 |
|
|
they have L32Rs pointing to them. In the process, the total number
|
6799 |
|
|
of relocations targeting each section is also counted so that we
|
6800 |
|
|
know how much space to allocate for source_relocs against each
|
6801 |
|
|
relaxable literal section. */
|
6802 |
|
|
|
6803 |
|
|
static bfd_boolean
|
6804 |
|
|
find_relaxable_sections (bfd *abfd,
|
6805 |
|
|
asection *sec,
|
6806 |
|
|
struct bfd_link_info *link_info,
|
6807 |
|
|
bfd_boolean *is_relaxable_p)
|
6808 |
|
|
{
|
6809 |
|
|
Elf_Internal_Rela *internal_relocs;
|
6810 |
|
|
bfd_byte *contents;
|
6811 |
|
|
bfd_boolean ok = TRUE;
|
6812 |
|
|
unsigned i;
|
6813 |
|
|
xtensa_relax_info *source_relax_info;
|
6814 |
|
|
bfd_boolean is_l32r_reloc;
|
6815 |
|
|
|
6816 |
|
|
internal_relocs = retrieve_internal_relocs (abfd, sec,
|
6817 |
|
|
link_info->keep_memory);
|
6818 |
|
|
if (internal_relocs == NULL)
|
6819 |
|
|
return ok;
|
6820 |
|
|
|
6821 |
|
|
contents = retrieve_contents (abfd, sec, link_info->keep_memory);
|
6822 |
|
|
if (contents == NULL && sec->size != 0)
|
6823 |
|
|
{
|
6824 |
|
|
ok = FALSE;
|
6825 |
|
|
goto error_return;
|
6826 |
|
|
}
|
6827 |
|
|
|
6828 |
|
|
source_relax_info = get_xtensa_relax_info (sec);
|
6829 |
|
|
for (i = 0; i < sec->reloc_count; i++)
|
6830 |
|
|
{
|
6831 |
|
|
Elf_Internal_Rela *irel = &internal_relocs[i];
|
6832 |
|
|
r_reloc r_rel;
|
6833 |
|
|
asection *target_sec;
|
6834 |
|
|
xtensa_relax_info *target_relax_info;
|
6835 |
|
|
|
6836 |
|
|
/* If this section has not already been marked as "relaxable", and
|
6837 |
|
|
if it contains any ASM_EXPAND relocations (marking expanded
|
6838 |
|
|
longcalls) that can be optimized into direct calls, then mark
|
6839 |
|
|
the section as "relaxable". */
|
6840 |
|
|
if (source_relax_info
|
6841 |
|
|
&& !source_relax_info->is_relaxable_asm_section
|
6842 |
|
|
&& ELF32_R_TYPE (irel->r_info) == R_XTENSA_ASM_EXPAND)
|
6843 |
|
|
{
|
6844 |
|
|
bfd_boolean is_reachable = FALSE;
|
6845 |
|
|
if (is_resolvable_asm_expansion (abfd, sec, contents, irel,
|
6846 |
|
|
link_info, &is_reachable)
|
6847 |
|
|
&& is_reachable)
|
6848 |
|
|
{
|
6849 |
|
|
source_relax_info->is_relaxable_asm_section = TRUE;
|
6850 |
|
|
*is_relaxable_p = TRUE;
|
6851 |
|
|
}
|
6852 |
|
|
}
|
6853 |
|
|
|
6854 |
|
|
r_reloc_init (&r_rel, abfd, irel, contents,
|
6855 |
|
|
bfd_get_section_limit (abfd, sec));
|
6856 |
|
|
|
6857 |
|
|
target_sec = r_reloc_get_section (&r_rel);
|
6858 |
|
|
target_relax_info = get_xtensa_relax_info (target_sec);
|
6859 |
|
|
if (!target_relax_info)
|
6860 |
|
|
continue;
|
6861 |
|
|
|
6862 |
|
|
/* Count PC-relative operand relocations against the target section.
|
6863 |
|
|
Note: The conditions tested here must match the conditions under
|
6864 |
|
|
which init_source_reloc is called in collect_source_relocs(). */
|
6865 |
|
|
is_l32r_reloc = FALSE;
|
6866 |
|
|
if (is_operand_relocation (ELF32_R_TYPE (irel->r_info)))
|
6867 |
|
|
{
|
6868 |
|
|
xtensa_opcode opcode =
|
6869 |
|
|
get_relocation_opcode (abfd, sec, contents, irel);
|
6870 |
|
|
if (opcode != XTENSA_UNDEFINED)
|
6871 |
|
|
{
|
6872 |
|
|
is_l32r_reloc = (opcode == get_l32r_opcode ());
|
6873 |
|
|
if (!is_alt_relocation (ELF32_R_TYPE (irel->r_info))
|
6874 |
|
|
|| is_l32r_reloc)
|
6875 |
|
|
target_relax_info->src_count++;
|
6876 |
|
|
}
|
6877 |
|
|
}
|
6878 |
|
|
|
6879 |
|
|
if (is_l32r_reloc && r_reloc_is_defined (&r_rel))
|
6880 |
|
|
{
|
6881 |
|
|
/* Mark the target section as relaxable. */
|
6882 |
|
|
target_relax_info->is_relaxable_literal_section = TRUE;
|
6883 |
|
|
*is_relaxable_p = TRUE;
|
6884 |
|
|
}
|
6885 |
|
|
}
|
6886 |
|
|
|
6887 |
|
|
error_return:
|
6888 |
|
|
release_contents (sec, contents);
|
6889 |
|
|
release_internal_relocs (sec, internal_relocs);
|
6890 |
|
|
return ok;
|
6891 |
|
|
}
|
6892 |
|
|
|
6893 |
|
|
|
6894 |
|
|
/* Record _all_ the relocations that point to relaxable sections, and
|
6895 |
|
|
get rid of ASM_EXPAND relocs by either converting them to
|
6896 |
|
|
ASM_SIMPLIFY or by removing them. */
|
6897 |
|
|
|
6898 |
|
|
static bfd_boolean
|
6899 |
|
|
collect_source_relocs (bfd *abfd,
|
6900 |
|
|
asection *sec,
|
6901 |
|
|
struct bfd_link_info *link_info)
|
6902 |
|
|
{
|
6903 |
|
|
Elf_Internal_Rela *internal_relocs;
|
6904 |
|
|
bfd_byte *contents;
|
6905 |
|
|
bfd_boolean ok = TRUE;
|
6906 |
|
|
unsigned i;
|
6907 |
|
|
bfd_size_type sec_size;
|
6908 |
|
|
|
6909 |
|
|
internal_relocs = retrieve_internal_relocs (abfd, sec,
|
6910 |
|
|
link_info->keep_memory);
|
6911 |
|
|
if (internal_relocs == NULL)
|
6912 |
|
|
return ok;
|
6913 |
|
|
|
6914 |
|
|
sec_size = bfd_get_section_limit (abfd, sec);
|
6915 |
|
|
contents = retrieve_contents (abfd, sec, link_info->keep_memory);
|
6916 |
|
|
if (contents == NULL && sec_size != 0)
|
6917 |
|
|
{
|
6918 |
|
|
ok = FALSE;
|
6919 |
|
|
goto error_return;
|
6920 |
|
|
}
|
6921 |
|
|
|
6922 |
|
|
/* Record relocations against relaxable literal sections. */
|
6923 |
|
|
for (i = 0; i < sec->reloc_count; i++)
|
6924 |
|
|
{
|
6925 |
|
|
Elf_Internal_Rela *irel = &internal_relocs[i];
|
6926 |
|
|
r_reloc r_rel;
|
6927 |
|
|
asection *target_sec;
|
6928 |
|
|
xtensa_relax_info *target_relax_info;
|
6929 |
|
|
|
6930 |
|
|
r_reloc_init (&r_rel, abfd, irel, contents, sec_size);
|
6931 |
|
|
|
6932 |
|
|
target_sec = r_reloc_get_section (&r_rel);
|
6933 |
|
|
target_relax_info = get_xtensa_relax_info (target_sec);
|
6934 |
|
|
|
6935 |
|
|
if (target_relax_info
|
6936 |
|
|
&& (target_relax_info->is_relaxable_literal_section
|
6937 |
|
|
|| target_relax_info->is_relaxable_asm_section))
|
6938 |
|
|
{
|
6939 |
|
|
xtensa_opcode opcode = XTENSA_UNDEFINED;
|
6940 |
|
|
int opnd = -1;
|
6941 |
|
|
bfd_boolean is_abs_literal = FALSE;
|
6942 |
|
|
|
6943 |
|
|
if (is_alt_relocation (ELF32_R_TYPE (irel->r_info)))
|
6944 |
|
|
{
|
6945 |
|
|
/* None of the current alternate relocs are PC-relative,
|
6946 |
|
|
and only PC-relative relocs matter here. However, we
|
6947 |
|
|
still need to record the opcode for literal
|
6948 |
|
|
coalescing. */
|
6949 |
|
|
opcode = get_relocation_opcode (abfd, sec, contents, irel);
|
6950 |
|
|
if (opcode == get_l32r_opcode ())
|
6951 |
|
|
{
|
6952 |
|
|
is_abs_literal = TRUE;
|
6953 |
|
|
opnd = 1;
|
6954 |
|
|
}
|
6955 |
|
|
else
|
6956 |
|
|
opcode = XTENSA_UNDEFINED;
|
6957 |
|
|
}
|
6958 |
|
|
else if (is_operand_relocation (ELF32_R_TYPE (irel->r_info)))
|
6959 |
|
|
{
|
6960 |
|
|
opcode = get_relocation_opcode (abfd, sec, contents, irel);
|
6961 |
|
|
opnd = get_relocation_opnd (opcode, ELF32_R_TYPE (irel->r_info));
|
6962 |
|
|
}
|
6963 |
|
|
|
6964 |
|
|
if (opcode != XTENSA_UNDEFINED)
|
6965 |
|
|
{
|
6966 |
|
|
int src_next = target_relax_info->src_next++;
|
6967 |
|
|
source_reloc *s_reloc = &target_relax_info->src_relocs[src_next];
|
6968 |
|
|
|
6969 |
|
|
init_source_reloc (s_reloc, sec, &r_rel, opcode, opnd,
|
6970 |
|
|
is_abs_literal);
|
6971 |
|
|
}
|
6972 |
|
|
}
|
6973 |
|
|
}
|
6974 |
|
|
|
6975 |
|
|
/* Now get rid of ASM_EXPAND relocations. At this point, the
|
6976 |
|
|
src_relocs array for the target literal section may still be
|
6977 |
|
|
incomplete, but it must at least contain the entries for the L32R
|
6978 |
|
|
relocations associated with ASM_EXPANDs because they were just
|
6979 |
|
|
added in the preceding loop over the relocations. */
|
6980 |
|
|
|
6981 |
|
|
for (i = 0; i < sec->reloc_count; i++)
|
6982 |
|
|
{
|
6983 |
|
|
Elf_Internal_Rela *irel = &internal_relocs[i];
|
6984 |
|
|
bfd_boolean is_reachable;
|
6985 |
|
|
|
6986 |
|
|
if (!is_resolvable_asm_expansion (abfd, sec, contents, irel, link_info,
|
6987 |
|
|
&is_reachable))
|
6988 |
|
|
continue;
|
6989 |
|
|
|
6990 |
|
|
if (is_reachable)
|
6991 |
|
|
{
|
6992 |
|
|
Elf_Internal_Rela *l32r_irel;
|
6993 |
|
|
r_reloc r_rel;
|
6994 |
|
|
asection *target_sec;
|
6995 |
|
|
xtensa_relax_info *target_relax_info;
|
6996 |
|
|
|
6997 |
|
|
/* Mark the source_reloc for the L32R so that it will be
|
6998 |
|
|
removed in compute_removed_literals(), along with the
|
6999 |
|
|
associated literal. */
|
7000 |
|
|
l32r_irel = find_associated_l32r_irel (abfd, sec, contents,
|
7001 |
|
|
irel, internal_relocs);
|
7002 |
|
|
if (l32r_irel == NULL)
|
7003 |
|
|
continue;
|
7004 |
|
|
|
7005 |
|
|
r_reloc_init (&r_rel, abfd, l32r_irel, contents, sec_size);
|
7006 |
|
|
|
7007 |
|
|
target_sec = r_reloc_get_section (&r_rel);
|
7008 |
|
|
target_relax_info = get_xtensa_relax_info (target_sec);
|
7009 |
|
|
|
7010 |
|
|
if (target_relax_info
|
7011 |
|
|
&& (target_relax_info->is_relaxable_literal_section
|
7012 |
|
|
|| target_relax_info->is_relaxable_asm_section))
|
7013 |
|
|
{
|
7014 |
|
|
source_reloc *s_reloc;
|
7015 |
|
|
|
7016 |
|
|
/* Search the source_relocs for the entry corresponding to
|
7017 |
|
|
the l32r_irel. Note: The src_relocs array is not yet
|
7018 |
|
|
sorted, but it wouldn't matter anyway because we're
|
7019 |
|
|
searching by source offset instead of target offset. */
|
7020 |
|
|
s_reloc = find_source_reloc (target_relax_info->src_relocs,
|
7021 |
|
|
target_relax_info->src_next,
|
7022 |
|
|
sec, l32r_irel);
|
7023 |
|
|
BFD_ASSERT (s_reloc);
|
7024 |
|
|
s_reloc->is_null = TRUE;
|
7025 |
|
|
}
|
7026 |
|
|
|
7027 |
|
|
/* Convert this reloc to ASM_SIMPLIFY. */
|
7028 |
|
|
irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info),
|
7029 |
|
|
R_XTENSA_ASM_SIMPLIFY);
|
7030 |
|
|
l32r_irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
|
7031 |
|
|
|
7032 |
|
|
pin_internal_relocs (sec, internal_relocs);
|
7033 |
|
|
}
|
7034 |
|
|
else
|
7035 |
|
|
{
|
7036 |
|
|
/* It is resolvable but doesn't reach. We resolve now
|
7037 |
|
|
by eliminating the relocation -- the call will remain
|
7038 |
|
|
expanded into L32R/CALLX. */
|
7039 |
|
|
irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
|
7040 |
|
|
pin_internal_relocs (sec, internal_relocs);
|
7041 |
|
|
}
|
7042 |
|
|
}
|
7043 |
|
|
|
7044 |
|
|
error_return:
|
7045 |
|
|
release_contents (sec, contents);
|
7046 |
|
|
release_internal_relocs (sec, internal_relocs);
|
7047 |
|
|
return ok;
|
7048 |
|
|
}
|
7049 |
|
|
|
7050 |
|
|
|
7051 |
|
|
/* Return TRUE if the asm expansion can be resolved. Generally it can
|
7052 |
|
|
be resolved on a final link or when a partial link locates it in the
|
7053 |
|
|
same section as the target. Set "is_reachable" flag if the target of
|
7054 |
|
|
the call is within the range of a direct call, given the current VMA
|
7055 |
|
|
for this section and the target section. */
|
7056 |
|
|
|
7057 |
|
|
bfd_boolean
|
7058 |
|
|
is_resolvable_asm_expansion (bfd *abfd,
|
7059 |
|
|
asection *sec,
|
7060 |
|
|
bfd_byte *contents,
|
7061 |
|
|
Elf_Internal_Rela *irel,
|
7062 |
|
|
struct bfd_link_info *link_info,
|
7063 |
|
|
bfd_boolean *is_reachable_p)
|
7064 |
|
|
{
|
7065 |
|
|
asection *target_sec;
|
7066 |
|
|
bfd_vma target_offset;
|
7067 |
|
|
r_reloc r_rel;
|
7068 |
|
|
xtensa_opcode opcode, direct_call_opcode;
|
7069 |
|
|
bfd_vma self_address;
|
7070 |
|
|
bfd_vma dest_address;
|
7071 |
|
|
bfd_boolean uses_l32r;
|
7072 |
|
|
bfd_size_type sec_size;
|
7073 |
|
|
|
7074 |
|
|
*is_reachable_p = FALSE;
|
7075 |
|
|
|
7076 |
|
|
if (contents == NULL)
|
7077 |
|
|
return FALSE;
|
7078 |
|
|
|
7079 |
|
|
if (ELF32_R_TYPE (irel->r_info) != R_XTENSA_ASM_EXPAND)
|
7080 |
|
|
return FALSE;
|
7081 |
|
|
|
7082 |
|
|
sec_size = bfd_get_section_limit (abfd, sec);
|
7083 |
|
|
opcode = get_expanded_call_opcode (contents + irel->r_offset,
|
7084 |
|
|
sec_size - irel->r_offset, &uses_l32r);
|
7085 |
|
|
/* Optimization of longcalls that use CONST16 is not yet implemented. */
|
7086 |
|
|
if (!uses_l32r)
|
7087 |
|
|
return FALSE;
|
7088 |
|
|
|
7089 |
|
|
direct_call_opcode = swap_callx_for_call_opcode (opcode);
|
7090 |
|
|
if (direct_call_opcode == XTENSA_UNDEFINED)
|
7091 |
|
|
return FALSE;
|
7092 |
|
|
|
7093 |
|
|
/* Check and see that the target resolves. */
|
7094 |
|
|
r_reloc_init (&r_rel, abfd, irel, contents, sec_size);
|
7095 |
|
|
if (!r_reloc_is_defined (&r_rel))
|
7096 |
|
|
return FALSE;
|
7097 |
|
|
|
7098 |
|
|
target_sec = r_reloc_get_section (&r_rel);
|
7099 |
|
|
target_offset = r_rel.target_offset;
|
7100 |
|
|
|
7101 |
|
|
/* If the target is in a shared library, then it doesn't reach. This
|
7102 |
|
|
isn't supposed to come up because the compiler should never generate
|
7103 |
|
|
non-PIC calls on systems that use shared libraries, but the linker
|
7104 |
|
|
shouldn't crash regardless. */
|
7105 |
|
|
if (!target_sec->output_section)
|
7106 |
|
|
return FALSE;
|
7107 |
|
|
|
7108 |
|
|
/* For relocatable sections, we can only simplify when the output
|
7109 |
|
|
section of the target is the same as the output section of the
|
7110 |
|
|
source. */
|
7111 |
|
|
if (link_info->relocatable
|
7112 |
|
|
&& (target_sec->output_section != sec->output_section
|
7113 |
|
|
|| is_reloc_sym_weak (abfd, irel)))
|
7114 |
|
|
return FALSE;
|
7115 |
|
|
|
7116 |
|
|
self_address = (sec->output_section->vma
|
7117 |
|
|
+ sec->output_offset + irel->r_offset + 3);
|
7118 |
|
|
dest_address = (target_sec->output_section->vma
|
7119 |
|
|
+ target_sec->output_offset + target_offset);
|
7120 |
|
|
|
7121 |
|
|
*is_reachable_p = pcrel_reloc_fits (direct_call_opcode, 0,
|
7122 |
|
|
self_address, dest_address);
|
7123 |
|
|
|
7124 |
|
|
if ((self_address >> CALL_SEGMENT_BITS) !=
|
7125 |
|
|
(dest_address >> CALL_SEGMENT_BITS))
|
7126 |
|
|
return FALSE;
|
7127 |
|
|
|
7128 |
|
|
return TRUE;
|
7129 |
|
|
}
|
7130 |
|
|
|
7131 |
|
|
|
7132 |
|
|
static Elf_Internal_Rela *
|
7133 |
|
|
find_associated_l32r_irel (bfd *abfd,
|
7134 |
|
|
asection *sec,
|
7135 |
|
|
bfd_byte *contents,
|
7136 |
|
|
Elf_Internal_Rela *other_irel,
|
7137 |
|
|
Elf_Internal_Rela *internal_relocs)
|
7138 |
|
|
{
|
7139 |
|
|
unsigned i;
|
7140 |
|
|
|
7141 |
|
|
for (i = 0; i < sec->reloc_count; i++)
|
7142 |
|
|
{
|
7143 |
|
|
Elf_Internal_Rela *irel = &internal_relocs[i];
|
7144 |
|
|
|
7145 |
|
|
if (irel == other_irel)
|
7146 |
|
|
continue;
|
7147 |
|
|
if (irel->r_offset != other_irel->r_offset)
|
7148 |
|
|
continue;
|
7149 |
|
|
if (is_l32r_relocation (abfd, sec, contents, irel))
|
7150 |
|
|
return irel;
|
7151 |
|
|
}
|
7152 |
|
|
|
7153 |
|
|
return NULL;
|
7154 |
|
|
}
|
7155 |
|
|
|
7156 |
|
|
|
7157 |
|
|
static xtensa_opcode *
|
7158 |
|
|
build_reloc_opcodes (bfd *abfd,
|
7159 |
|
|
asection *sec,
|
7160 |
|
|
bfd_byte *contents,
|
7161 |
|
|
Elf_Internal_Rela *internal_relocs)
|
7162 |
|
|
{
|
7163 |
|
|
unsigned i;
|
7164 |
|
|
xtensa_opcode *reloc_opcodes =
|
7165 |
|
|
(xtensa_opcode *) bfd_malloc (sizeof (xtensa_opcode) * sec->reloc_count);
|
7166 |
|
|
for (i = 0; i < sec->reloc_count; i++)
|
7167 |
|
|
{
|
7168 |
|
|
Elf_Internal_Rela *irel = &internal_relocs[i];
|
7169 |
|
|
reloc_opcodes[i] = get_relocation_opcode (abfd, sec, contents, irel);
|
7170 |
|
|
}
|
7171 |
|
|
return reloc_opcodes;
|
7172 |
|
|
}
|
7173 |
|
|
|
7174 |
|
|
|
7175 |
|
|
/* The compute_text_actions function will build a list of potential
|
7176 |
|
|
transformation actions for code in the extended basic block of each
|
7177 |
|
|
longcall that is optimized to a direct call. From this list we
|
7178 |
|
|
generate a set of actions to actually perform that optimizes for
|
7179 |
|
|
space and, if not using size_opt, maintains branch target
|
7180 |
|
|
alignments.
|
7181 |
|
|
|
7182 |
|
|
These actions to be performed are placed on a per-section list.
|
7183 |
|
|
The actual changes are performed by relax_section() in the second
|
7184 |
|
|
pass. */
|
7185 |
|
|
|
7186 |
|
|
bfd_boolean
|
7187 |
|
|
compute_text_actions (bfd *abfd,
|
7188 |
|
|
asection *sec,
|
7189 |
|
|
struct bfd_link_info *link_info)
|
7190 |
|
|
{
|
7191 |
|
|
xtensa_opcode *reloc_opcodes = NULL;
|
7192 |
|
|
xtensa_relax_info *relax_info;
|
7193 |
|
|
bfd_byte *contents;
|
7194 |
|
|
Elf_Internal_Rela *internal_relocs;
|
7195 |
|
|
bfd_boolean ok = TRUE;
|
7196 |
|
|
unsigned i;
|
7197 |
|
|
property_table_entry *prop_table = 0;
|
7198 |
|
|
int ptblsize = 0;
|
7199 |
|
|
bfd_size_type sec_size;
|
7200 |
|
|
|
7201 |
|
|
relax_info = get_xtensa_relax_info (sec);
|
7202 |
|
|
BFD_ASSERT (relax_info);
|
7203 |
|
|
BFD_ASSERT (relax_info->src_next == relax_info->src_count);
|
7204 |
|
|
|
7205 |
|
|
/* Do nothing if the section contains no optimized longcalls. */
|
7206 |
|
|
if (!relax_info->is_relaxable_asm_section)
|
7207 |
|
|
return ok;
|
7208 |
|
|
|
7209 |
|
|
internal_relocs = retrieve_internal_relocs (abfd, sec,
|
7210 |
|
|
link_info->keep_memory);
|
7211 |
|
|
|
7212 |
|
|
if (internal_relocs)
|
7213 |
|
|
qsort (internal_relocs, sec->reloc_count, sizeof (Elf_Internal_Rela),
|
7214 |
|
|
internal_reloc_compare);
|
7215 |
|
|
|
7216 |
|
|
sec_size = bfd_get_section_limit (abfd, sec);
|
7217 |
|
|
contents = retrieve_contents (abfd, sec, link_info->keep_memory);
|
7218 |
|
|
if (contents == NULL && sec_size != 0)
|
7219 |
|
|
{
|
7220 |
|
|
ok = FALSE;
|
7221 |
|
|
goto error_return;
|
7222 |
|
|
}
|
7223 |
|
|
|
7224 |
|
|
ptblsize = xtensa_read_table_entries (abfd, sec, &prop_table,
|
7225 |
|
|
XTENSA_PROP_SEC_NAME, FALSE);
|
7226 |
|
|
if (ptblsize < 0)
|
7227 |
|
|
{
|
7228 |
|
|
ok = FALSE;
|
7229 |
|
|
goto error_return;
|
7230 |
|
|
}
|
7231 |
|
|
|
7232 |
|
|
for (i = 0; i < sec->reloc_count; i++)
|
7233 |
|
|
{
|
7234 |
|
|
Elf_Internal_Rela *irel = &internal_relocs[i];
|
7235 |
|
|
bfd_vma r_offset;
|
7236 |
|
|
property_table_entry *the_entry;
|
7237 |
|
|
int ptbl_idx;
|
7238 |
|
|
ebb_t *ebb;
|
7239 |
|
|
ebb_constraint ebb_table;
|
7240 |
|
|
bfd_size_type simplify_size;
|
7241 |
|
|
|
7242 |
|
|
if (irel && ELF32_R_TYPE (irel->r_info) != R_XTENSA_ASM_SIMPLIFY)
|
7243 |
|
|
continue;
|
7244 |
|
|
r_offset = irel->r_offset;
|
7245 |
|
|
|
7246 |
|
|
simplify_size = get_asm_simplify_size (contents, sec_size, r_offset);
|
7247 |
|
|
if (simplify_size == 0)
|
7248 |
|
|
{
|
7249 |
|
|
(*_bfd_error_handler)
|
7250 |
|
|
(_("%B(%A+0x%lx): could not decode instruction for XTENSA_ASM_SIMPLIFY relocation; possible configuration mismatch"),
|
7251 |
|
|
sec->owner, sec, r_offset);
|
7252 |
|
|
continue;
|
7253 |
|
|
}
|
7254 |
|
|
|
7255 |
|
|
/* If the instruction table is not around, then don't do this
|
7256 |
|
|
relaxation. */
|
7257 |
|
|
the_entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
|
7258 |
|
|
sec->vma + irel->r_offset);
|
7259 |
|
|
if (the_entry == NULL || XTENSA_NO_NOP_REMOVAL)
|
7260 |
|
|
{
|
7261 |
|
|
text_action_add (&relax_info->action_list,
|
7262 |
|
|
ta_convert_longcall, sec, r_offset,
|
7263 |
|
|
0);
|
7264 |
|
|
continue;
|
7265 |
|
|
}
|
7266 |
|
|
|
7267 |
|
|
/* If the next longcall happens to be at the same address as an
|
7268 |
|
|
unreachable section of size 0, then skip forward. */
|
7269 |
|
|
ptbl_idx = the_entry - prop_table;
|
7270 |
|
|
while ((the_entry->flags & XTENSA_PROP_UNREACHABLE)
|
7271 |
|
|
&& the_entry->size == 0
|
7272 |
|
|
&& ptbl_idx + 1 < ptblsize
|
7273 |
|
|
&& (prop_table[ptbl_idx + 1].address
|
7274 |
|
|
== prop_table[ptbl_idx].address))
|
7275 |
|
|
{
|
7276 |
|
|
ptbl_idx++;
|
7277 |
|
|
the_entry++;
|
7278 |
|
|
}
|
7279 |
|
|
|
7280 |
|
|
if (the_entry->flags & XTENSA_PROP_NO_TRANSFORM)
|
7281 |
|
|
/* NO_REORDER is OK */
|
7282 |
|
|
continue;
|
7283 |
|
|
|
7284 |
|
|
init_ebb_constraint (&ebb_table);
|
7285 |
|
|
ebb = &ebb_table.ebb;
|
7286 |
|
|
init_ebb (ebb, sec, contents, sec_size, prop_table, ptblsize,
|
7287 |
|
|
internal_relocs, sec->reloc_count);
|
7288 |
|
|
ebb->start_offset = r_offset + simplify_size;
|
7289 |
|
|
ebb->end_offset = r_offset + simplify_size;
|
7290 |
|
|
ebb->start_ptbl_idx = ptbl_idx;
|
7291 |
|
|
ebb->end_ptbl_idx = ptbl_idx;
|
7292 |
|
|
ebb->start_reloc_idx = i;
|
7293 |
|
|
ebb->end_reloc_idx = i;
|
7294 |
|
|
|
7295 |
|
|
/* Precompute the opcode for each relocation. */
|
7296 |
|
|
if (reloc_opcodes == NULL)
|
7297 |
|
|
reloc_opcodes = build_reloc_opcodes (abfd, sec, contents,
|
7298 |
|
|
internal_relocs);
|
7299 |
|
|
|
7300 |
|
|
if (!extend_ebb_bounds (ebb)
|
7301 |
|
|
|| !compute_ebb_proposed_actions (&ebb_table)
|
7302 |
|
|
|| !compute_ebb_actions (&ebb_table)
|
7303 |
|
|
|| !check_section_ebb_pcrels_fit (abfd, sec, contents,
|
7304 |
|
|
internal_relocs, &ebb_table,
|
7305 |
|
|
reloc_opcodes)
|
7306 |
|
|
|| !check_section_ebb_reduces (&ebb_table))
|
7307 |
|
|
{
|
7308 |
|
|
/* If anything goes wrong or we get unlucky and something does
|
7309 |
|
|
not fit, with our plan because of expansion between
|
7310 |
|
|
critical branches, just convert to a NOP. */
|
7311 |
|
|
|
7312 |
|
|
text_action_add (&relax_info->action_list,
|
7313 |
|
|
ta_convert_longcall, sec, r_offset, 0);
|
7314 |
|
|
i = ebb_table.ebb.end_reloc_idx;
|
7315 |
|
|
free_ebb_constraint (&ebb_table);
|
7316 |
|
|
continue;
|
7317 |
|
|
}
|
7318 |
|
|
|
7319 |
|
|
text_action_add_proposed (&relax_info->action_list, &ebb_table, sec);
|
7320 |
|
|
|
7321 |
|
|
/* Update the index so we do not go looking at the relocations
|
7322 |
|
|
we have already processed. */
|
7323 |
|
|
i = ebb_table.ebb.end_reloc_idx;
|
7324 |
|
|
free_ebb_constraint (&ebb_table);
|
7325 |
|
|
}
|
7326 |
|
|
|
7327 |
|
|
#if DEBUG
|
7328 |
|
|
if (relax_info->action_list.head)
|
7329 |
|
|
print_action_list (stderr, &relax_info->action_list);
|
7330 |
|
|
#endif
|
7331 |
|
|
|
7332 |
|
|
error_return:
|
7333 |
|
|
release_contents (sec, contents);
|
7334 |
|
|
release_internal_relocs (sec, internal_relocs);
|
7335 |
|
|
if (prop_table)
|
7336 |
|
|
free (prop_table);
|
7337 |
|
|
if (reloc_opcodes)
|
7338 |
|
|
free (reloc_opcodes);
|
7339 |
|
|
|
7340 |
|
|
return ok;
|
7341 |
|
|
}
|
7342 |
|
|
|
7343 |
|
|
|
7344 |
|
|
/* Do not widen an instruction if it is preceeded by a
|
7345 |
|
|
loop opcode. It might cause misalignment. */
|
7346 |
|
|
|
7347 |
|
|
static bfd_boolean
|
7348 |
|
|
prev_instr_is_a_loop (bfd_byte *contents,
|
7349 |
|
|
bfd_size_type content_length,
|
7350 |
|
|
bfd_size_type offset)
|
7351 |
|
|
{
|
7352 |
|
|
xtensa_opcode prev_opcode;
|
7353 |
|
|
|
7354 |
|
|
if (offset < 3)
|
7355 |
|
|
return FALSE;
|
7356 |
|
|
prev_opcode = insn_decode_opcode (contents, content_length, offset-3, 0);
|
7357 |
|
|
return (xtensa_opcode_is_loop (xtensa_default_isa, prev_opcode) == 1);
|
7358 |
|
|
}
|
7359 |
|
|
|
7360 |
|
|
|
7361 |
|
|
/* Find all of the possible actions for an extended basic block. */
|
7362 |
|
|
|
7363 |
|
|
bfd_boolean
|
7364 |
|
|
compute_ebb_proposed_actions (ebb_constraint *ebb_table)
|
7365 |
|
|
{
|
7366 |
|
|
const ebb_t *ebb = &ebb_table->ebb;
|
7367 |
|
|
unsigned rel_idx = ebb->start_reloc_idx;
|
7368 |
|
|
property_table_entry *entry, *start_entry, *end_entry;
|
7369 |
|
|
bfd_vma offset = 0;
|
7370 |
|
|
xtensa_isa isa = xtensa_default_isa;
|
7371 |
|
|
xtensa_format fmt;
|
7372 |
|
|
static xtensa_insnbuf insnbuf = NULL;
|
7373 |
|
|
static xtensa_insnbuf slotbuf = NULL;
|
7374 |
|
|
|
7375 |
|
|
if (insnbuf == NULL)
|
7376 |
|
|
{
|
7377 |
|
|
insnbuf = xtensa_insnbuf_alloc (isa);
|
7378 |
|
|
slotbuf = xtensa_insnbuf_alloc (isa);
|
7379 |
|
|
}
|
7380 |
|
|
|
7381 |
|
|
start_entry = &ebb->ptbl[ebb->start_ptbl_idx];
|
7382 |
|
|
end_entry = &ebb->ptbl[ebb->end_ptbl_idx];
|
7383 |
|
|
|
7384 |
|
|
for (entry = start_entry; entry <= end_entry; entry++)
|
7385 |
|
|
{
|
7386 |
|
|
bfd_vma start_offset, end_offset;
|
7387 |
|
|
bfd_size_type insn_len;
|
7388 |
|
|
|
7389 |
|
|
start_offset = entry->address - ebb->sec->vma;
|
7390 |
|
|
end_offset = entry->address + entry->size - ebb->sec->vma;
|
7391 |
|
|
|
7392 |
|
|
if (entry == start_entry)
|
7393 |
|
|
start_offset = ebb->start_offset;
|
7394 |
|
|
if (entry == end_entry)
|
7395 |
|
|
end_offset = ebb->end_offset;
|
7396 |
|
|
offset = start_offset;
|
7397 |
|
|
|
7398 |
|
|
if (offset == entry->address - ebb->sec->vma
|
7399 |
|
|
&& (entry->flags & XTENSA_PROP_INSN_BRANCH_TARGET) != 0)
|
7400 |
|
|
{
|
7401 |
|
|
enum ebb_target_enum align_type = EBB_DESIRE_TGT_ALIGN;
|
7402 |
|
|
BFD_ASSERT (offset != end_offset);
|
7403 |
|
|
if (offset == end_offset)
|
7404 |
|
|
return FALSE;
|
7405 |
|
|
|
7406 |
|
|
insn_len = insn_decode_len (ebb->contents, ebb->content_length,
|
7407 |
|
|
offset);
|
7408 |
|
|
if (insn_len == 0)
|
7409 |
|
|
goto decode_error;
|
7410 |
|
|
|
7411 |
|
|
if (check_branch_target_aligned_address (offset, insn_len))
|
7412 |
|
|
align_type = EBB_REQUIRE_TGT_ALIGN;
|
7413 |
|
|
|
7414 |
|
|
ebb_propose_action (ebb_table, align_type, 0,
|
7415 |
|
|
ta_none, offset, 0, TRUE);
|
7416 |
|
|
}
|
7417 |
|
|
|
7418 |
|
|
while (offset != end_offset)
|
7419 |
|
|
{
|
7420 |
|
|
Elf_Internal_Rela *irel;
|
7421 |
|
|
xtensa_opcode opcode;
|
7422 |
|
|
|
7423 |
|
|
while (rel_idx < ebb->end_reloc_idx
|
7424 |
|
|
&& (ebb->relocs[rel_idx].r_offset < offset
|
7425 |
|
|
|| (ebb->relocs[rel_idx].r_offset == offset
|
7426 |
|
|
&& (ELF32_R_TYPE (ebb->relocs[rel_idx].r_info)
|
7427 |
|
|
!= R_XTENSA_ASM_SIMPLIFY))))
|
7428 |
|
|
rel_idx++;
|
7429 |
|
|
|
7430 |
|
|
/* Check for longcall. */
|
7431 |
|
|
irel = &ebb->relocs[rel_idx];
|
7432 |
|
|
if (irel->r_offset == offset
|
7433 |
|
|
&& ELF32_R_TYPE (irel->r_info) == R_XTENSA_ASM_SIMPLIFY)
|
7434 |
|
|
{
|
7435 |
|
|
bfd_size_type simplify_size;
|
7436 |
|
|
|
7437 |
|
|
simplify_size = get_asm_simplify_size (ebb->contents,
|
7438 |
|
|
ebb->content_length,
|
7439 |
|
|
irel->r_offset);
|
7440 |
|
|
if (simplify_size == 0)
|
7441 |
|
|
goto decode_error;
|
7442 |
|
|
|
7443 |
|
|
ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0,
|
7444 |
|
|
ta_convert_longcall, offset, 0, TRUE);
|
7445 |
|
|
|
7446 |
|
|
offset += simplify_size;
|
7447 |
|
|
continue;
|
7448 |
|
|
}
|
7449 |
|
|
|
7450 |
|
|
if (offset + MIN_INSN_LENGTH > ebb->content_length)
|
7451 |
|
|
goto decode_error;
|
7452 |
|
|
xtensa_insnbuf_from_chars (isa, insnbuf, &ebb->contents[offset],
|
7453 |
|
|
ebb->content_length - offset);
|
7454 |
|
|
fmt = xtensa_format_decode (isa, insnbuf);
|
7455 |
|
|
if (fmt == XTENSA_UNDEFINED)
|
7456 |
|
|
goto decode_error;
|
7457 |
|
|
insn_len = xtensa_format_length (isa, fmt);
|
7458 |
|
|
if (insn_len == (bfd_size_type) XTENSA_UNDEFINED)
|
7459 |
|
|
goto decode_error;
|
7460 |
|
|
|
7461 |
|
|
if (xtensa_format_num_slots (isa, fmt) != 1)
|
7462 |
|
|
{
|
7463 |
|
|
offset += insn_len;
|
7464 |
|
|
continue;
|
7465 |
|
|
}
|
7466 |
|
|
|
7467 |
|
|
xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf);
|
7468 |
|
|
opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
|
7469 |
|
|
if (opcode == XTENSA_UNDEFINED)
|
7470 |
|
|
goto decode_error;
|
7471 |
|
|
|
7472 |
|
|
if ((entry->flags & XTENSA_PROP_INSN_NO_DENSITY) == 0
|
7473 |
|
|
&& (entry->flags & XTENSA_PROP_NO_TRANSFORM) == 0
|
7474 |
|
|
&& can_narrow_instruction (slotbuf, fmt, opcode) != 0)
|
7475 |
|
|
{
|
7476 |
|
|
/* Add an instruction narrow action. */
|
7477 |
|
|
ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0,
|
7478 |
|
|
ta_narrow_insn, offset, 0, FALSE);
|
7479 |
|
|
}
|
7480 |
|
|
else if ((entry->flags & XTENSA_PROP_NO_TRANSFORM) == 0
|
7481 |
|
|
&& can_widen_instruction (slotbuf, fmt, opcode) != 0
|
7482 |
|
|
&& ! prev_instr_is_a_loop (ebb->contents,
|
7483 |
|
|
ebb->content_length, offset))
|
7484 |
|
|
{
|
7485 |
|
|
/* Add an instruction widen action. */
|
7486 |
|
|
ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0,
|
7487 |
|
|
ta_widen_insn, offset, 0, FALSE);
|
7488 |
|
|
}
|
7489 |
|
|
else if (xtensa_opcode_is_loop (xtensa_default_isa, opcode) == 1)
|
7490 |
|
|
{
|
7491 |
|
|
/* Check for branch targets. */
|
7492 |
|
|
ebb_propose_action (ebb_table, EBB_REQUIRE_LOOP_ALIGN, 0,
|
7493 |
|
|
ta_none, offset, 0, TRUE);
|
7494 |
|
|
}
|
7495 |
|
|
|
7496 |
|
|
offset += insn_len;
|
7497 |
|
|
}
|
7498 |
|
|
}
|
7499 |
|
|
|
7500 |
|
|
if (ebb->ends_unreachable)
|
7501 |
|
|
{
|
7502 |
|
|
ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0,
|
7503 |
|
|
ta_fill, ebb->end_offset, 0, TRUE);
|
7504 |
|
|
}
|
7505 |
|
|
|
7506 |
|
|
return TRUE;
|
7507 |
|
|
|
7508 |
|
|
decode_error:
|
7509 |
|
|
(*_bfd_error_handler)
|
7510 |
|
|
(_("%B(%A+0x%lx): could not decode instruction; possible configuration mismatch"),
|
7511 |
|
|
ebb->sec->owner, ebb->sec, offset);
|
7512 |
|
|
return FALSE;
|
7513 |
|
|
}
|
7514 |
|
|
|
7515 |
|
|
|
7516 |
|
|
/* After all of the information has collected about the
|
7517 |
|
|
transformations possible in an EBB, compute the appropriate actions
|
7518 |
|
|
here in compute_ebb_actions. We still must check later to make
|
7519 |
|
|
sure that the actions do not break any relocations. The algorithm
|
7520 |
|
|
used here is pretty greedy. Basically, it removes as many no-ops
|
7521 |
|
|
as possible so that the end of the EBB has the same alignment
|
7522 |
|
|
characteristics as the original. First, it uses narrowing, then
|
7523 |
|
|
fill space at the end of the EBB, and finally widenings. If that
|
7524 |
|
|
does not work, it tries again with one fewer no-op removed. The
|
7525 |
|
|
optimization will only be performed if all of the branch targets
|
7526 |
|
|
that were aligned before transformation are also aligned after the
|
7527 |
|
|
transformation.
|
7528 |
|
|
|
7529 |
|
|
When the size_opt flag is set, ignore the branch target alignments,
|
7530 |
|
|
narrow all wide instructions, and remove all no-ops unless the end
|
7531 |
|
|
of the EBB prevents it. */
|
7532 |
|
|
|
7533 |
|
|
bfd_boolean
|
7534 |
|
|
compute_ebb_actions (ebb_constraint *ebb_table)
|
7535 |
|
|
{
|
7536 |
|
|
unsigned i = 0;
|
7537 |
|
|
unsigned j;
|
7538 |
|
|
int removed_bytes = 0;
|
7539 |
|
|
ebb_t *ebb = &ebb_table->ebb;
|
7540 |
|
|
unsigned seg_idx_start = 0;
|
7541 |
|
|
unsigned seg_idx_end = 0;
|
7542 |
|
|
|
7543 |
|
|
/* We perform this like the assembler relaxation algorithm: Start by
|
7544 |
|
|
assuming all instructions are narrow and all no-ops removed; then
|
7545 |
|
|
walk through.... */
|
7546 |
|
|
|
7547 |
|
|
/* For each segment of this that has a solid constraint, check to
|
7548 |
|
|
see if there are any combinations that will keep the constraint.
|
7549 |
|
|
If so, use it. */
|
7550 |
|
|
for (seg_idx_end = 0; seg_idx_end < ebb_table->action_count; seg_idx_end++)
|
7551 |
|
|
{
|
7552 |
|
|
bfd_boolean requires_text_end_align = FALSE;
|
7553 |
|
|
unsigned longcall_count = 0;
|
7554 |
|
|
unsigned longcall_convert_count = 0;
|
7555 |
|
|
unsigned narrowable_count = 0;
|
7556 |
|
|
unsigned narrowable_convert_count = 0;
|
7557 |
|
|
unsigned widenable_count = 0;
|
7558 |
|
|
unsigned widenable_convert_count = 0;
|
7559 |
|
|
|
7560 |
|
|
proposed_action *action = NULL;
|
7561 |
|
|
int align = (1 << ebb_table->ebb.sec->alignment_power);
|
7562 |
|
|
|
7563 |
|
|
seg_idx_start = seg_idx_end;
|
7564 |
|
|
|
7565 |
|
|
for (i = seg_idx_start; i < ebb_table->action_count; i++)
|
7566 |
|
|
{
|
7567 |
|
|
action = &ebb_table->actions[i];
|
7568 |
|
|
if (action->action == ta_convert_longcall)
|
7569 |
|
|
longcall_count++;
|
7570 |
|
|
if (action->action == ta_narrow_insn)
|
7571 |
|
|
narrowable_count++;
|
7572 |
|
|
if (action->action == ta_widen_insn)
|
7573 |
|
|
widenable_count++;
|
7574 |
|
|
if (action->action == ta_fill)
|
7575 |
|
|
break;
|
7576 |
|
|
if (action->align_type == EBB_REQUIRE_LOOP_ALIGN)
|
7577 |
|
|
break;
|
7578 |
|
|
if (action->align_type == EBB_REQUIRE_TGT_ALIGN
|
7579 |
|
|
&& !elf32xtensa_size_opt)
|
7580 |
|
|
break;
|
7581 |
|
|
}
|
7582 |
|
|
seg_idx_end = i;
|
7583 |
|
|
|
7584 |
|
|
if (seg_idx_end == ebb_table->action_count && !ebb->ends_unreachable)
|
7585 |
|
|
requires_text_end_align = TRUE;
|
7586 |
|
|
|
7587 |
|
|
if (elf32xtensa_size_opt && !requires_text_end_align
|
7588 |
|
|
&& action->align_type != EBB_REQUIRE_LOOP_ALIGN
|
7589 |
|
|
&& action->align_type != EBB_REQUIRE_TGT_ALIGN)
|
7590 |
|
|
{
|
7591 |
|
|
longcall_convert_count = longcall_count;
|
7592 |
|
|
narrowable_convert_count = narrowable_count;
|
7593 |
|
|
widenable_convert_count = 0;
|
7594 |
|
|
}
|
7595 |
|
|
else
|
7596 |
|
|
{
|
7597 |
|
|
/* There is a constraint. Convert the max number of longcalls. */
|
7598 |
|
|
narrowable_convert_count = 0;
|
7599 |
|
|
longcall_convert_count = 0;
|
7600 |
|
|
widenable_convert_count = 0;
|
7601 |
|
|
|
7602 |
|
|
for (j = 0; j < longcall_count; j++)
|
7603 |
|
|
{
|
7604 |
|
|
int removed = (longcall_count - j) * 3 & (align - 1);
|
7605 |
|
|
unsigned desire_narrow = (align - removed) & (align - 1);
|
7606 |
|
|
unsigned desire_widen = removed;
|
7607 |
|
|
if (desire_narrow <= narrowable_count)
|
7608 |
|
|
{
|
7609 |
|
|
narrowable_convert_count = desire_narrow;
|
7610 |
|
|
narrowable_convert_count +=
|
7611 |
|
|
(align * ((narrowable_count - narrowable_convert_count)
|
7612 |
|
|
/ align));
|
7613 |
|
|
longcall_convert_count = (longcall_count - j);
|
7614 |
|
|
widenable_convert_count = 0;
|
7615 |
|
|
break;
|
7616 |
|
|
}
|
7617 |
|
|
if (desire_widen <= widenable_count && !elf32xtensa_size_opt)
|
7618 |
|
|
{
|
7619 |
|
|
narrowable_convert_count = 0;
|
7620 |
|
|
longcall_convert_count = longcall_count - j;
|
7621 |
|
|
widenable_convert_count = desire_widen;
|
7622 |
|
|
break;
|
7623 |
|
|
}
|
7624 |
|
|
}
|
7625 |
|
|
}
|
7626 |
|
|
|
7627 |
|
|
/* Now the number of conversions are saved. Do them. */
|
7628 |
|
|
for (i = seg_idx_start; i < seg_idx_end; i++)
|
7629 |
|
|
{
|
7630 |
|
|
action = &ebb_table->actions[i];
|
7631 |
|
|
switch (action->action)
|
7632 |
|
|
{
|
7633 |
|
|
case ta_convert_longcall:
|
7634 |
|
|
if (longcall_convert_count != 0)
|
7635 |
|
|
{
|
7636 |
|
|
action->action = ta_remove_longcall;
|
7637 |
|
|
action->do_action = TRUE;
|
7638 |
|
|
action->removed_bytes += 3;
|
7639 |
|
|
longcall_convert_count--;
|
7640 |
|
|
}
|
7641 |
|
|
break;
|
7642 |
|
|
case ta_narrow_insn:
|
7643 |
|
|
if (narrowable_convert_count != 0)
|
7644 |
|
|
{
|
7645 |
|
|
action->do_action = TRUE;
|
7646 |
|
|
action->removed_bytes += 1;
|
7647 |
|
|
narrowable_convert_count--;
|
7648 |
|
|
}
|
7649 |
|
|
break;
|
7650 |
|
|
case ta_widen_insn:
|
7651 |
|
|
if (widenable_convert_count != 0)
|
7652 |
|
|
{
|
7653 |
|
|
action->do_action = TRUE;
|
7654 |
|
|
action->removed_bytes -= 1;
|
7655 |
|
|
widenable_convert_count--;
|
7656 |
|
|
}
|
7657 |
|
|
break;
|
7658 |
|
|
default:
|
7659 |
|
|
break;
|
7660 |
|
|
}
|
7661 |
|
|
}
|
7662 |
|
|
}
|
7663 |
|
|
|
7664 |
|
|
/* Now we move on to some local opts. Try to remove each of the
|
7665 |
|
|
remaining longcalls. */
|
7666 |
|
|
|
7667 |
|
|
if (ebb_table->ebb.ends_section || ebb_table->ebb.ends_unreachable)
|
7668 |
|
|
{
|
7669 |
|
|
removed_bytes = 0;
|
7670 |
|
|
for (i = 0; i < ebb_table->action_count; i++)
|
7671 |
|
|
{
|
7672 |
|
|
int old_removed_bytes = removed_bytes;
|
7673 |
|
|
proposed_action *action = &ebb_table->actions[i];
|
7674 |
|
|
|
7675 |
|
|
if (action->do_action && action->action == ta_convert_longcall)
|
7676 |
|
|
{
|
7677 |
|
|
bfd_boolean bad_alignment = FALSE;
|
7678 |
|
|
removed_bytes += 3;
|
7679 |
|
|
for (j = i + 1; j < ebb_table->action_count; j++)
|
7680 |
|
|
{
|
7681 |
|
|
proposed_action *new_action = &ebb_table->actions[j];
|
7682 |
|
|
bfd_vma offset = new_action->offset;
|
7683 |
|
|
if (new_action->align_type == EBB_REQUIRE_TGT_ALIGN)
|
7684 |
|
|
{
|
7685 |
|
|
if (!check_branch_target_aligned
|
7686 |
|
|
(ebb_table->ebb.contents,
|
7687 |
|
|
ebb_table->ebb.content_length,
|
7688 |
|
|
offset, offset - removed_bytes))
|
7689 |
|
|
{
|
7690 |
|
|
bad_alignment = TRUE;
|
7691 |
|
|
break;
|
7692 |
|
|
}
|
7693 |
|
|
}
|
7694 |
|
|
if (new_action->align_type == EBB_REQUIRE_LOOP_ALIGN)
|
7695 |
|
|
{
|
7696 |
|
|
if (!check_loop_aligned (ebb_table->ebb.contents,
|
7697 |
|
|
ebb_table->ebb.content_length,
|
7698 |
|
|
offset,
|
7699 |
|
|
offset - removed_bytes))
|
7700 |
|
|
{
|
7701 |
|
|
bad_alignment = TRUE;
|
7702 |
|
|
break;
|
7703 |
|
|
}
|
7704 |
|
|
}
|
7705 |
|
|
if (new_action->action == ta_narrow_insn
|
7706 |
|
|
&& !new_action->do_action
|
7707 |
|
|
&& ebb_table->ebb.sec->alignment_power == 2)
|
7708 |
|
|
{
|
7709 |
|
|
/* Narrow an instruction and we are done. */
|
7710 |
|
|
new_action->do_action = TRUE;
|
7711 |
|
|
new_action->removed_bytes += 1;
|
7712 |
|
|
bad_alignment = FALSE;
|
7713 |
|
|
break;
|
7714 |
|
|
}
|
7715 |
|
|
if (new_action->action == ta_widen_insn
|
7716 |
|
|
&& new_action->do_action
|
7717 |
|
|
&& ebb_table->ebb.sec->alignment_power == 2)
|
7718 |
|
|
{
|
7719 |
|
|
/* Narrow an instruction and we are done. */
|
7720 |
|
|
new_action->do_action = FALSE;
|
7721 |
|
|
new_action->removed_bytes += 1;
|
7722 |
|
|
bad_alignment = FALSE;
|
7723 |
|
|
break;
|
7724 |
|
|
}
|
7725 |
|
|
if (new_action->do_action)
|
7726 |
|
|
removed_bytes += new_action->removed_bytes;
|
7727 |
|
|
}
|
7728 |
|
|
if (!bad_alignment)
|
7729 |
|
|
{
|
7730 |
|
|
action->removed_bytes += 3;
|
7731 |
|
|
action->action = ta_remove_longcall;
|
7732 |
|
|
action->do_action = TRUE;
|
7733 |
|
|
}
|
7734 |
|
|
}
|
7735 |
|
|
removed_bytes = old_removed_bytes;
|
7736 |
|
|
if (action->do_action)
|
7737 |
|
|
removed_bytes += action->removed_bytes;
|
7738 |
|
|
}
|
7739 |
|
|
}
|
7740 |
|
|
|
7741 |
|
|
removed_bytes = 0;
|
7742 |
|
|
for (i = 0; i < ebb_table->action_count; ++i)
|
7743 |
|
|
{
|
7744 |
|
|
proposed_action *action = &ebb_table->actions[i];
|
7745 |
|
|
if (action->do_action)
|
7746 |
|
|
removed_bytes += action->removed_bytes;
|
7747 |
|
|
}
|
7748 |
|
|
|
7749 |
|
|
if ((removed_bytes % (1 << ebb_table->ebb.sec->alignment_power)) != 0
|
7750 |
|
|
&& ebb->ends_unreachable)
|
7751 |
|
|
{
|
7752 |
|
|
proposed_action *action;
|
7753 |
|
|
int br;
|
7754 |
|
|
int extra_space;
|
7755 |
|
|
|
7756 |
|
|
BFD_ASSERT (ebb_table->action_count != 0);
|
7757 |
|
|
action = &ebb_table->actions[ebb_table->action_count - 1];
|
7758 |
|
|
BFD_ASSERT (action->action == ta_fill);
|
7759 |
|
|
BFD_ASSERT (ebb->ends_unreachable->flags & XTENSA_PROP_UNREACHABLE);
|
7760 |
|
|
|
7761 |
|
|
extra_space = compute_fill_extra_space (ebb->ends_unreachable);
|
7762 |
|
|
br = action->removed_bytes + removed_bytes + extra_space;
|
7763 |
|
|
br = br & ((1 << ebb->sec->alignment_power ) - 1);
|
7764 |
|
|
|
7765 |
|
|
action->removed_bytes = extra_space - br;
|
7766 |
|
|
}
|
7767 |
|
|
return TRUE;
|
7768 |
|
|
}
|
7769 |
|
|
|
7770 |
|
|
|
7771 |
|
|
/* The xlate_map is a sorted array of address mappings designed to
|
7772 |
|
|
answer the offset_with_removed_text() query with a binary search instead
|
7773 |
|
|
of a linear search through the section's action_list. */
|
7774 |
|
|
|
7775 |
|
|
typedef struct xlate_map_entry xlate_map_entry_t;
|
7776 |
|
|
typedef struct xlate_map xlate_map_t;
|
7777 |
|
|
|
7778 |
|
|
struct xlate_map_entry
|
7779 |
|
|
{
|
7780 |
|
|
unsigned orig_address;
|
7781 |
|
|
unsigned new_address;
|
7782 |
|
|
unsigned size;
|
7783 |
|
|
};
|
7784 |
|
|
|
7785 |
|
|
struct xlate_map
|
7786 |
|
|
{
|
7787 |
|
|
unsigned entry_count;
|
7788 |
|
|
xlate_map_entry_t *entry;
|
7789 |
|
|
};
|
7790 |
|
|
|
7791 |
|
|
|
7792 |
|
|
static int
|
7793 |
|
|
xlate_compare (const void *a_v, const void *b_v)
|
7794 |
|
|
{
|
7795 |
|
|
const xlate_map_entry_t *a = (const xlate_map_entry_t *) a_v;
|
7796 |
|
|
const xlate_map_entry_t *b = (const xlate_map_entry_t *) b_v;
|
7797 |
|
|
if (a->orig_address < b->orig_address)
|
7798 |
|
|
return -1;
|
7799 |
|
|
if (a->orig_address > (b->orig_address + b->size - 1))
|
7800 |
|
|
return 1;
|
7801 |
|
|
return 0;
|
7802 |
|
|
}
|
7803 |
|
|
|
7804 |
|
|
|
7805 |
|
|
static bfd_vma
|
7806 |
|
|
xlate_offset_with_removed_text (const xlate_map_t *map,
|
7807 |
|
|
text_action_list *action_list,
|
7808 |
|
|
bfd_vma offset)
|
7809 |
|
|
{
|
7810 |
|
|
xlate_map_entry_t tmp;
|
7811 |
|
|
void *r;
|
7812 |
|
|
xlate_map_entry_t *e;
|
7813 |
|
|
|
7814 |
|
|
if (map == NULL)
|
7815 |
|
|
return offset_with_removed_text (action_list, offset);
|
7816 |
|
|
|
7817 |
|
|
if (map->entry_count == 0)
|
7818 |
|
|
return offset;
|
7819 |
|
|
|
7820 |
|
|
tmp.orig_address = offset;
|
7821 |
|
|
tmp.new_address = offset;
|
7822 |
|
|
tmp.size = 1;
|
7823 |
|
|
|
7824 |
|
|
r = bsearch (&offset, map->entry, map->entry_count,
|
7825 |
|
|
sizeof (xlate_map_entry_t), &xlate_compare);
|
7826 |
|
|
e = (xlate_map_entry_t *) r;
|
7827 |
|
|
|
7828 |
|
|
BFD_ASSERT (e != NULL);
|
7829 |
|
|
if (e == NULL)
|
7830 |
|
|
return offset;
|
7831 |
|
|
return e->new_address - e->orig_address + offset;
|
7832 |
|
|
}
|
7833 |
|
|
|
7834 |
|
|
|
7835 |
|
|
/* Build a binary searchable offset translation map from a section's
|
7836 |
|
|
action list. */
|
7837 |
|
|
|
7838 |
|
|
static xlate_map_t *
|
7839 |
|
|
build_xlate_map (asection *sec, xtensa_relax_info *relax_info)
|
7840 |
|
|
{
|
7841 |
|
|
xlate_map_t *map = (xlate_map_t *) bfd_malloc (sizeof (xlate_map_t));
|
7842 |
|
|
text_action_list *action_list = &relax_info->action_list;
|
7843 |
|
|
unsigned num_actions = 0;
|
7844 |
|
|
text_action *r;
|
7845 |
|
|
int removed;
|
7846 |
|
|
xlate_map_entry_t *current_entry;
|
7847 |
|
|
|
7848 |
|
|
if (map == NULL)
|
7849 |
|
|
return NULL;
|
7850 |
|
|
|
7851 |
|
|
num_actions = action_list_count (action_list);
|
7852 |
|
|
map->entry = (xlate_map_entry_t *)
|
7853 |
|
|
bfd_malloc (sizeof (xlate_map_entry_t) * (num_actions + 1));
|
7854 |
|
|
if (map->entry == NULL)
|
7855 |
|
|
{
|
7856 |
|
|
free (map);
|
7857 |
|
|
return NULL;
|
7858 |
|
|
}
|
7859 |
|
|
map->entry_count = 0;
|
7860 |
|
|
|
7861 |
|
|
removed = 0;
|
7862 |
|
|
current_entry = &map->entry[0];
|
7863 |
|
|
|
7864 |
|
|
current_entry->orig_address = 0;
|
7865 |
|
|
current_entry->new_address = 0;
|
7866 |
|
|
current_entry->size = 0;
|
7867 |
|
|
|
7868 |
|
|
for (r = action_list->head; r != NULL; r = r->next)
|
7869 |
|
|
{
|
7870 |
|
|
unsigned orig_size = 0;
|
7871 |
|
|
switch (r->action)
|
7872 |
|
|
{
|
7873 |
|
|
case ta_none:
|
7874 |
|
|
case ta_remove_insn:
|
7875 |
|
|
case ta_convert_longcall:
|
7876 |
|
|
case ta_remove_literal:
|
7877 |
|
|
case ta_add_literal:
|
7878 |
|
|
break;
|
7879 |
|
|
case ta_remove_longcall:
|
7880 |
|
|
orig_size = 6;
|
7881 |
|
|
break;
|
7882 |
|
|
case ta_narrow_insn:
|
7883 |
|
|
orig_size = 3;
|
7884 |
|
|
break;
|
7885 |
|
|
case ta_widen_insn:
|
7886 |
|
|
orig_size = 2;
|
7887 |
|
|
break;
|
7888 |
|
|
case ta_fill:
|
7889 |
|
|
break;
|
7890 |
|
|
}
|
7891 |
|
|
current_entry->size =
|
7892 |
|
|
r->offset + orig_size - current_entry->orig_address;
|
7893 |
|
|
if (current_entry->size != 0)
|
7894 |
|
|
{
|
7895 |
|
|
current_entry++;
|
7896 |
|
|
map->entry_count++;
|
7897 |
|
|
}
|
7898 |
|
|
current_entry->orig_address = r->offset + orig_size;
|
7899 |
|
|
removed += r->removed_bytes;
|
7900 |
|
|
current_entry->new_address = r->offset + orig_size - removed;
|
7901 |
|
|
current_entry->size = 0;
|
7902 |
|
|
}
|
7903 |
|
|
|
7904 |
|
|
current_entry->size = (bfd_get_section_limit (sec->owner, sec)
|
7905 |
|
|
- current_entry->orig_address);
|
7906 |
|
|
if (current_entry->size != 0)
|
7907 |
|
|
map->entry_count++;
|
7908 |
|
|
|
7909 |
|
|
return map;
|
7910 |
|
|
}
|
7911 |
|
|
|
7912 |
|
|
|
7913 |
|
|
/* Free an offset translation map. */
|
7914 |
|
|
|
7915 |
|
|
static void
|
7916 |
|
|
free_xlate_map (xlate_map_t *map)
|
7917 |
|
|
{
|
7918 |
|
|
if (map && map->entry)
|
7919 |
|
|
free (map->entry);
|
7920 |
|
|
if (map)
|
7921 |
|
|
free (map);
|
7922 |
|
|
}
|
7923 |
|
|
|
7924 |
|
|
|
7925 |
|
|
/* Use check_section_ebb_pcrels_fit to make sure that all of the
|
7926 |
|
|
relocations in a section will fit if a proposed set of actions
|
7927 |
|
|
are performed. */
|
7928 |
|
|
|
7929 |
|
|
static bfd_boolean
|
7930 |
|
|
check_section_ebb_pcrels_fit (bfd *abfd,
|
7931 |
|
|
asection *sec,
|
7932 |
|
|
bfd_byte *contents,
|
7933 |
|
|
Elf_Internal_Rela *internal_relocs,
|
7934 |
|
|
const ebb_constraint *constraint,
|
7935 |
|
|
const xtensa_opcode *reloc_opcodes)
|
7936 |
|
|
{
|
7937 |
|
|
unsigned i, j;
|
7938 |
|
|
Elf_Internal_Rela *irel;
|
7939 |
|
|
xlate_map_t *xmap = NULL;
|
7940 |
|
|
bfd_boolean ok = TRUE;
|
7941 |
|
|
xtensa_relax_info *relax_info;
|
7942 |
|
|
|
7943 |
|
|
relax_info = get_xtensa_relax_info (sec);
|
7944 |
|
|
|
7945 |
|
|
if (relax_info && sec->reloc_count > 100)
|
7946 |
|
|
{
|
7947 |
|
|
xmap = build_xlate_map (sec, relax_info);
|
7948 |
|
|
/* NULL indicates out of memory, but the slow version
|
7949 |
|
|
can still be used. */
|
7950 |
|
|
}
|
7951 |
|
|
|
7952 |
|
|
for (i = 0; i < sec->reloc_count; i++)
|
7953 |
|
|
{
|
7954 |
|
|
r_reloc r_rel;
|
7955 |
|
|
bfd_vma orig_self_offset, orig_target_offset;
|
7956 |
|
|
bfd_vma self_offset, target_offset;
|
7957 |
|
|
int r_type;
|
7958 |
|
|
reloc_howto_type *howto;
|
7959 |
|
|
int self_removed_bytes, target_removed_bytes;
|
7960 |
|
|
|
7961 |
|
|
irel = &internal_relocs[i];
|
7962 |
|
|
r_type = ELF32_R_TYPE (irel->r_info);
|
7963 |
|
|
|
7964 |
|
|
howto = &elf_howto_table[r_type];
|
7965 |
|
|
/* We maintain the required invariant: PC-relative relocations
|
7966 |
|
|
that fit before linking must fit after linking. Thus we only
|
7967 |
|
|
need to deal with relocations to the same section that are
|
7968 |
|
|
PC-relative. */
|
7969 |
|
|
if (r_type == R_XTENSA_ASM_SIMPLIFY
|
7970 |
|
|
|| r_type == R_XTENSA_32_PCREL
|
7971 |
|
|
|| !howto->pc_relative)
|
7972 |
|
|
continue;
|
7973 |
|
|
|
7974 |
|
|
r_reloc_init (&r_rel, abfd, irel, contents,
|
7975 |
|
|
bfd_get_section_limit (abfd, sec));
|
7976 |
|
|
|
7977 |
|
|
if (r_reloc_get_section (&r_rel) != sec)
|
7978 |
|
|
continue;
|
7979 |
|
|
|
7980 |
|
|
orig_self_offset = irel->r_offset;
|
7981 |
|
|
orig_target_offset = r_rel.target_offset;
|
7982 |
|
|
|
7983 |
|
|
self_offset = orig_self_offset;
|
7984 |
|
|
target_offset = orig_target_offset;
|
7985 |
|
|
|
7986 |
|
|
if (relax_info)
|
7987 |
|
|
{
|
7988 |
|
|
self_offset =
|
7989 |
|
|
xlate_offset_with_removed_text (xmap, &relax_info->action_list,
|
7990 |
|
|
orig_self_offset);
|
7991 |
|
|
target_offset =
|
7992 |
|
|
xlate_offset_with_removed_text (xmap, &relax_info->action_list,
|
7993 |
|
|
orig_target_offset);
|
7994 |
|
|
}
|
7995 |
|
|
|
7996 |
|
|
self_removed_bytes = 0;
|
7997 |
|
|
target_removed_bytes = 0;
|
7998 |
|
|
|
7999 |
|
|
for (j = 0; j < constraint->action_count; ++j)
|
8000 |
|
|
{
|
8001 |
|
|
proposed_action *action = &constraint->actions[j];
|
8002 |
|
|
bfd_vma offset = action->offset;
|
8003 |
|
|
int removed_bytes = action->removed_bytes;
|
8004 |
|
|
if (offset < orig_self_offset
|
8005 |
|
|
|| (offset == orig_self_offset && action->action == ta_fill
|
8006 |
|
|
&& action->removed_bytes < 0))
|
8007 |
|
|
self_removed_bytes += removed_bytes;
|
8008 |
|
|
if (offset < orig_target_offset
|
8009 |
|
|
|| (offset == orig_target_offset && action->action == ta_fill
|
8010 |
|
|
&& action->removed_bytes < 0))
|
8011 |
|
|
target_removed_bytes += removed_bytes;
|
8012 |
|
|
}
|
8013 |
|
|
self_offset -= self_removed_bytes;
|
8014 |
|
|
target_offset -= target_removed_bytes;
|
8015 |
|
|
|
8016 |
|
|
/* Try to encode it. Get the operand and check. */
|
8017 |
|
|
if (is_alt_relocation (ELF32_R_TYPE (irel->r_info)))
|
8018 |
|
|
{
|
8019 |
|
|
/* None of the current alternate relocs are PC-relative,
|
8020 |
|
|
and only PC-relative relocs matter here. */
|
8021 |
|
|
}
|
8022 |
|
|
else
|
8023 |
|
|
{
|
8024 |
|
|
xtensa_opcode opcode;
|
8025 |
|
|
int opnum;
|
8026 |
|
|
|
8027 |
|
|
if (reloc_opcodes)
|
8028 |
|
|
opcode = reloc_opcodes[i];
|
8029 |
|
|
else
|
8030 |
|
|
opcode = get_relocation_opcode (abfd, sec, contents, irel);
|
8031 |
|
|
if (opcode == XTENSA_UNDEFINED)
|
8032 |
|
|
{
|
8033 |
|
|
ok = FALSE;
|
8034 |
|
|
break;
|
8035 |
|
|
}
|
8036 |
|
|
|
8037 |
|
|
opnum = get_relocation_opnd (opcode, ELF32_R_TYPE (irel->r_info));
|
8038 |
|
|
if (opnum == XTENSA_UNDEFINED)
|
8039 |
|
|
{
|
8040 |
|
|
ok = FALSE;
|
8041 |
|
|
break;
|
8042 |
|
|
}
|
8043 |
|
|
|
8044 |
|
|
if (!pcrel_reloc_fits (opcode, opnum, self_offset, target_offset))
|
8045 |
|
|
{
|
8046 |
|
|
ok = FALSE;
|
8047 |
|
|
break;
|
8048 |
|
|
}
|
8049 |
|
|
}
|
8050 |
|
|
}
|
8051 |
|
|
|
8052 |
|
|
if (xmap)
|
8053 |
|
|
free_xlate_map (xmap);
|
8054 |
|
|
|
8055 |
|
|
return ok;
|
8056 |
|
|
}
|
8057 |
|
|
|
8058 |
|
|
|
8059 |
|
|
static bfd_boolean
|
8060 |
|
|
check_section_ebb_reduces (const ebb_constraint *constraint)
|
8061 |
|
|
{
|
8062 |
|
|
int removed = 0;
|
8063 |
|
|
unsigned i;
|
8064 |
|
|
|
8065 |
|
|
for (i = 0; i < constraint->action_count; i++)
|
8066 |
|
|
{
|
8067 |
|
|
const proposed_action *action = &constraint->actions[i];
|
8068 |
|
|
if (action->do_action)
|
8069 |
|
|
removed += action->removed_bytes;
|
8070 |
|
|
}
|
8071 |
|
|
if (removed < 0)
|
8072 |
|
|
return FALSE;
|
8073 |
|
|
|
8074 |
|
|
return TRUE;
|
8075 |
|
|
}
|
8076 |
|
|
|
8077 |
|
|
|
8078 |
|
|
void
|
8079 |
|
|
text_action_add_proposed (text_action_list *l,
|
8080 |
|
|
const ebb_constraint *ebb_table,
|
8081 |
|
|
asection *sec)
|
8082 |
|
|
{
|
8083 |
|
|
unsigned i;
|
8084 |
|
|
|
8085 |
|
|
for (i = 0; i < ebb_table->action_count; i++)
|
8086 |
|
|
{
|
8087 |
|
|
proposed_action *action = &ebb_table->actions[i];
|
8088 |
|
|
|
8089 |
|
|
if (!action->do_action)
|
8090 |
|
|
continue;
|
8091 |
|
|
switch (action->action)
|
8092 |
|
|
{
|
8093 |
|
|
case ta_remove_insn:
|
8094 |
|
|
case ta_remove_longcall:
|
8095 |
|
|
case ta_convert_longcall:
|
8096 |
|
|
case ta_narrow_insn:
|
8097 |
|
|
case ta_widen_insn:
|
8098 |
|
|
case ta_fill:
|
8099 |
|
|
case ta_remove_literal:
|
8100 |
|
|
text_action_add (l, action->action, sec, action->offset,
|
8101 |
|
|
action->removed_bytes);
|
8102 |
|
|
break;
|
8103 |
|
|
case ta_none:
|
8104 |
|
|
break;
|
8105 |
|
|
default:
|
8106 |
|
|
BFD_ASSERT (0);
|
8107 |
|
|
break;
|
8108 |
|
|
}
|
8109 |
|
|
}
|
8110 |
|
|
}
|
8111 |
|
|
|
8112 |
|
|
|
8113 |
|
|
int
|
8114 |
|
|
compute_fill_extra_space (property_table_entry *entry)
|
8115 |
|
|
{
|
8116 |
|
|
int fill_extra_space;
|
8117 |
|
|
|
8118 |
|
|
if (!entry)
|
8119 |
|
|
return 0;
|
8120 |
|
|
|
8121 |
|
|
if ((entry->flags & XTENSA_PROP_UNREACHABLE) == 0)
|
8122 |
|
|
return 0;
|
8123 |
|
|
|
8124 |
|
|
fill_extra_space = entry->size;
|
8125 |
|
|
if ((entry->flags & XTENSA_PROP_ALIGN) != 0)
|
8126 |
|
|
{
|
8127 |
|
|
/* Fill bytes for alignment:
|
8128 |
|
|
(2**n)-1 - (addr + (2**n)-1) & (2**n -1) */
|
8129 |
|
|
int pow = GET_XTENSA_PROP_ALIGNMENT (entry->flags);
|
8130 |
|
|
int nsm = (1 << pow) - 1;
|
8131 |
|
|
bfd_vma addr = entry->address + entry->size;
|
8132 |
|
|
bfd_vma align_fill = nsm - ((addr + nsm) & nsm);
|
8133 |
|
|
fill_extra_space += align_fill;
|
8134 |
|
|
}
|
8135 |
|
|
return fill_extra_space;
|
8136 |
|
|
}
|
8137 |
|
|
|
8138 |
|
|
|
8139 |
|
|
/* First relaxation pass. */
|
8140 |
|
|
|
8141 |
|
|
/* If the section contains relaxable literals, check each literal to
|
8142 |
|
|
see if it has the same value as another literal that has already
|
8143 |
|
|
been seen, either in the current section or a previous one. If so,
|
8144 |
|
|
add an entry to the per-section list of removed literals. The
|
8145 |
|
|
actual changes are deferred until the next pass. */
|
8146 |
|
|
|
8147 |
|
|
static bfd_boolean
|
8148 |
|
|
compute_removed_literals (bfd *abfd,
|
8149 |
|
|
asection *sec,
|
8150 |
|
|
struct bfd_link_info *link_info,
|
8151 |
|
|
value_map_hash_table *values)
|
8152 |
|
|
{
|
8153 |
|
|
xtensa_relax_info *relax_info;
|
8154 |
|
|
bfd_byte *contents;
|
8155 |
|
|
Elf_Internal_Rela *internal_relocs;
|
8156 |
|
|
source_reloc *src_relocs, *rel;
|
8157 |
|
|
bfd_boolean ok = TRUE;
|
8158 |
|
|
property_table_entry *prop_table = NULL;
|
8159 |
|
|
int ptblsize;
|
8160 |
|
|
int i, prev_i;
|
8161 |
|
|
bfd_boolean last_loc_is_prev = FALSE;
|
8162 |
|
|
bfd_vma last_target_offset = 0;
|
8163 |
|
|
section_cache_t target_sec_cache;
|
8164 |
|
|
bfd_size_type sec_size;
|
8165 |
|
|
|
8166 |
|
|
init_section_cache (&target_sec_cache);
|
8167 |
|
|
|
8168 |
|
|
/* Do nothing if it is not a relaxable literal section. */
|
8169 |
|
|
relax_info = get_xtensa_relax_info (sec);
|
8170 |
|
|
BFD_ASSERT (relax_info);
|
8171 |
|
|
if (!relax_info->is_relaxable_literal_section)
|
8172 |
|
|
return ok;
|
8173 |
|
|
|
8174 |
|
|
internal_relocs = retrieve_internal_relocs (abfd, sec,
|
8175 |
|
|
link_info->keep_memory);
|
8176 |
|
|
|
8177 |
|
|
sec_size = bfd_get_section_limit (abfd, sec);
|
8178 |
|
|
contents = retrieve_contents (abfd, sec, link_info->keep_memory);
|
8179 |
|
|
if (contents == NULL && sec_size != 0)
|
8180 |
|
|
{
|
8181 |
|
|
ok = FALSE;
|
8182 |
|
|
goto error_return;
|
8183 |
|
|
}
|
8184 |
|
|
|
8185 |
|
|
/* Sort the source_relocs by target offset. */
|
8186 |
|
|
src_relocs = relax_info->src_relocs;
|
8187 |
|
|
qsort (src_relocs, relax_info->src_count,
|
8188 |
|
|
sizeof (source_reloc), source_reloc_compare);
|
8189 |
|
|
qsort (internal_relocs, sec->reloc_count, sizeof (Elf_Internal_Rela),
|
8190 |
|
|
internal_reloc_compare);
|
8191 |
|
|
|
8192 |
|
|
ptblsize = xtensa_read_table_entries (abfd, sec, &prop_table,
|
8193 |
|
|
XTENSA_PROP_SEC_NAME, FALSE);
|
8194 |
|
|
if (ptblsize < 0)
|
8195 |
|
|
{
|
8196 |
|
|
ok = FALSE;
|
8197 |
|
|
goto error_return;
|
8198 |
|
|
}
|
8199 |
|
|
|
8200 |
|
|
prev_i = -1;
|
8201 |
|
|
for (i = 0; i < relax_info->src_count; i++)
|
8202 |
|
|
{
|
8203 |
|
|
Elf_Internal_Rela *irel = NULL;
|
8204 |
|
|
|
8205 |
|
|
rel = &src_relocs[i];
|
8206 |
|
|
if (get_l32r_opcode () != rel->opcode)
|
8207 |
|
|
continue;
|
8208 |
|
|
irel = get_irel_at_offset (sec, internal_relocs,
|
8209 |
|
|
rel->r_rel.target_offset);
|
8210 |
|
|
|
8211 |
|
|
/* If the relocation on this is not a simple R_XTENSA_32 or
|
8212 |
|
|
R_XTENSA_PLT then do not consider it. This may happen when
|
8213 |
|
|
the difference of two symbols is used in a literal. */
|
8214 |
|
|
if (irel && (ELF32_R_TYPE (irel->r_info) != R_XTENSA_32
|
8215 |
|
|
&& ELF32_R_TYPE (irel->r_info) != R_XTENSA_PLT))
|
8216 |
|
|
continue;
|
8217 |
|
|
|
8218 |
|
|
/* If the target_offset for this relocation is the same as the
|
8219 |
|
|
previous relocation, then we've already considered whether the
|
8220 |
|
|
literal can be coalesced. Skip to the next one.... */
|
8221 |
|
|
if (i != 0 && prev_i != -1
|
8222 |
|
|
&& src_relocs[i-1].r_rel.target_offset == rel->r_rel.target_offset)
|
8223 |
|
|
continue;
|
8224 |
|
|
prev_i = i;
|
8225 |
|
|
|
8226 |
|
|
if (last_loc_is_prev &&
|
8227 |
|
|
last_target_offset + 4 != rel->r_rel.target_offset)
|
8228 |
|
|
last_loc_is_prev = FALSE;
|
8229 |
|
|
|
8230 |
|
|
/* Check if the relocation was from an L32R that is being removed
|
8231 |
|
|
because a CALLX was converted to a direct CALL, and check if
|
8232 |
|
|
there are no other relocations to the literal. */
|
8233 |
|
|
if (is_removable_literal (rel, i, src_relocs, relax_info->src_count,
|
8234 |
|
|
sec, prop_table, ptblsize))
|
8235 |
|
|
{
|
8236 |
|
|
if (!remove_dead_literal (abfd, sec, link_info, internal_relocs,
|
8237 |
|
|
irel, rel, prop_table, ptblsize))
|
8238 |
|
|
{
|
8239 |
|
|
ok = FALSE;
|
8240 |
|
|
goto error_return;
|
8241 |
|
|
}
|
8242 |
|
|
last_target_offset = rel->r_rel.target_offset;
|
8243 |
|
|
continue;
|
8244 |
|
|
}
|
8245 |
|
|
|
8246 |
|
|
if (!identify_literal_placement (abfd, sec, contents, link_info,
|
8247 |
|
|
values,
|
8248 |
|
|
&last_loc_is_prev, irel,
|
8249 |
|
|
relax_info->src_count - i, rel,
|
8250 |
|
|
prop_table, ptblsize,
|
8251 |
|
|
&target_sec_cache, rel->is_abs_literal))
|
8252 |
|
|
{
|
8253 |
|
|
ok = FALSE;
|
8254 |
|
|
goto error_return;
|
8255 |
|
|
}
|
8256 |
|
|
last_target_offset = rel->r_rel.target_offset;
|
8257 |
|
|
}
|
8258 |
|
|
|
8259 |
|
|
#if DEBUG
|
8260 |
|
|
print_removed_literals (stderr, &relax_info->removed_list);
|
8261 |
|
|
print_action_list (stderr, &relax_info->action_list);
|
8262 |
|
|
#endif /* DEBUG */
|
8263 |
|
|
|
8264 |
|
|
error_return:
|
8265 |
|
|
if (prop_table) free (prop_table);
|
8266 |
|
|
clear_section_cache (&target_sec_cache);
|
8267 |
|
|
|
8268 |
|
|
release_contents (sec, contents);
|
8269 |
|
|
release_internal_relocs (sec, internal_relocs);
|
8270 |
|
|
return ok;
|
8271 |
|
|
}
|
8272 |
|
|
|
8273 |
|
|
|
8274 |
|
|
static Elf_Internal_Rela *
|
8275 |
|
|
get_irel_at_offset (asection *sec,
|
8276 |
|
|
Elf_Internal_Rela *internal_relocs,
|
8277 |
|
|
bfd_vma offset)
|
8278 |
|
|
{
|
8279 |
|
|
unsigned i;
|
8280 |
|
|
Elf_Internal_Rela *irel;
|
8281 |
|
|
unsigned r_type;
|
8282 |
|
|
Elf_Internal_Rela key;
|
8283 |
|
|
|
8284 |
|
|
if (!internal_relocs)
|
8285 |
|
|
return NULL;
|
8286 |
|
|
|
8287 |
|
|
key.r_offset = offset;
|
8288 |
|
|
irel = bsearch (&key, internal_relocs, sec->reloc_count,
|
8289 |
|
|
sizeof (Elf_Internal_Rela), internal_reloc_matches);
|
8290 |
|
|
if (!irel)
|
8291 |
|
|
return NULL;
|
8292 |
|
|
|
8293 |
|
|
/* bsearch does not guarantee which will be returned if there are
|
8294 |
|
|
multiple matches. We need the first that is not an alignment. */
|
8295 |
|
|
i = irel - internal_relocs;
|
8296 |
|
|
while (i > 0)
|
8297 |
|
|
{
|
8298 |
|
|
if (internal_relocs[i-1].r_offset != offset)
|
8299 |
|
|
break;
|
8300 |
|
|
i--;
|
8301 |
|
|
}
|
8302 |
|
|
for ( ; i < sec->reloc_count; i++)
|
8303 |
|
|
{
|
8304 |
|
|
irel = &internal_relocs[i];
|
8305 |
|
|
r_type = ELF32_R_TYPE (irel->r_info);
|
8306 |
|
|
if (irel->r_offset == offset && r_type != R_XTENSA_NONE)
|
8307 |
|
|
return irel;
|
8308 |
|
|
}
|
8309 |
|
|
|
8310 |
|
|
return NULL;
|
8311 |
|
|
}
|
8312 |
|
|
|
8313 |
|
|
|
8314 |
|
|
bfd_boolean
|
8315 |
|
|
is_removable_literal (const source_reloc *rel,
|
8316 |
|
|
int i,
|
8317 |
|
|
const source_reloc *src_relocs,
|
8318 |
|
|
int src_count,
|
8319 |
|
|
asection *sec,
|
8320 |
|
|
property_table_entry *prop_table,
|
8321 |
|
|
int ptblsize)
|
8322 |
|
|
{
|
8323 |
|
|
const source_reloc *curr_rel;
|
8324 |
|
|
property_table_entry *entry;
|
8325 |
|
|
|
8326 |
|
|
if (!rel->is_null)
|
8327 |
|
|
return FALSE;
|
8328 |
|
|
|
8329 |
|
|
entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
|
8330 |
|
|
sec->vma + rel->r_rel.target_offset);
|
8331 |
|
|
if (entry && (entry->flags & XTENSA_PROP_NO_TRANSFORM))
|
8332 |
|
|
return FALSE;
|
8333 |
|
|
|
8334 |
|
|
for (++i; i < src_count; ++i)
|
8335 |
|
|
{
|
8336 |
|
|
curr_rel = &src_relocs[i];
|
8337 |
|
|
/* If all others have the same target offset.... */
|
8338 |
|
|
if (curr_rel->r_rel.target_offset != rel->r_rel.target_offset)
|
8339 |
|
|
return TRUE;
|
8340 |
|
|
|
8341 |
|
|
if (!curr_rel->is_null
|
8342 |
|
|
&& !xtensa_is_property_section (curr_rel->source_sec)
|
8343 |
|
|
&& !(curr_rel->source_sec->flags & SEC_DEBUGGING))
|
8344 |
|
|
return FALSE;
|
8345 |
|
|
}
|
8346 |
|
|
return TRUE;
|
8347 |
|
|
}
|
8348 |
|
|
|
8349 |
|
|
|
8350 |
|
|
bfd_boolean
|
8351 |
|
|
remove_dead_literal (bfd *abfd,
|
8352 |
|
|
asection *sec,
|
8353 |
|
|
struct bfd_link_info *link_info,
|
8354 |
|
|
Elf_Internal_Rela *internal_relocs,
|
8355 |
|
|
Elf_Internal_Rela *irel,
|
8356 |
|
|
source_reloc *rel,
|
8357 |
|
|
property_table_entry *prop_table,
|
8358 |
|
|
int ptblsize)
|
8359 |
|
|
{
|
8360 |
|
|
property_table_entry *entry;
|
8361 |
|
|
xtensa_relax_info *relax_info;
|
8362 |
|
|
|
8363 |
|
|
relax_info = get_xtensa_relax_info (sec);
|
8364 |
|
|
if (!relax_info)
|
8365 |
|
|
return FALSE;
|
8366 |
|
|
|
8367 |
|
|
entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
|
8368 |
|
|
sec->vma + rel->r_rel.target_offset);
|
8369 |
|
|
|
8370 |
|
|
/* Mark the unused literal so that it will be removed. */
|
8371 |
|
|
add_removed_literal (&relax_info->removed_list, &rel->r_rel, NULL);
|
8372 |
|
|
|
8373 |
|
|
text_action_add (&relax_info->action_list,
|
8374 |
|
|
ta_remove_literal, sec, rel->r_rel.target_offset, 4);
|
8375 |
|
|
|
8376 |
|
|
/* If the section is 4-byte aligned, do not add fill. */
|
8377 |
|
|
if (sec->alignment_power > 2)
|
8378 |
|
|
{
|
8379 |
|
|
int fill_extra_space;
|
8380 |
|
|
bfd_vma entry_sec_offset;
|
8381 |
|
|
text_action *fa;
|
8382 |
|
|
property_table_entry *the_add_entry;
|
8383 |
|
|
int removed_diff;
|
8384 |
|
|
|
8385 |
|
|
if (entry)
|
8386 |
|
|
entry_sec_offset = entry->address - sec->vma + entry->size;
|
8387 |
|
|
else
|
8388 |
|
|
entry_sec_offset = rel->r_rel.target_offset + 4;
|
8389 |
|
|
|
8390 |
|
|
/* If the literal range is at the end of the section,
|
8391 |
|
|
do not add fill. */
|
8392 |
|
|
the_add_entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
|
8393 |
|
|
entry_sec_offset);
|
8394 |
|
|
fill_extra_space = compute_fill_extra_space (the_add_entry);
|
8395 |
|
|
|
8396 |
|
|
fa = find_fill_action (&relax_info->action_list, sec, entry_sec_offset);
|
8397 |
|
|
removed_diff = compute_removed_action_diff (fa, sec, entry_sec_offset,
|
8398 |
|
|
-4, fill_extra_space);
|
8399 |
|
|
if (fa)
|
8400 |
|
|
adjust_fill_action (fa, removed_diff);
|
8401 |
|
|
else
|
8402 |
|
|
text_action_add (&relax_info->action_list,
|
8403 |
|
|
ta_fill, sec, entry_sec_offset, removed_diff);
|
8404 |
|
|
}
|
8405 |
|
|
|
8406 |
|
|
/* Zero out the relocation on this literal location. */
|
8407 |
|
|
if (irel)
|
8408 |
|
|
{
|
8409 |
|
|
if (elf_hash_table (link_info)->dynamic_sections_created)
|
8410 |
|
|
shrink_dynamic_reloc_sections (link_info, abfd, sec, irel);
|
8411 |
|
|
|
8412 |
|
|
irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
|
8413 |
|
|
pin_internal_relocs (sec, internal_relocs);
|
8414 |
|
|
}
|
8415 |
|
|
|
8416 |
|
|
/* Do not modify "last_loc_is_prev". */
|
8417 |
|
|
return TRUE;
|
8418 |
|
|
}
|
8419 |
|
|
|
8420 |
|
|
|
8421 |
|
|
bfd_boolean
|
8422 |
|
|
identify_literal_placement (bfd *abfd,
|
8423 |
|
|
asection *sec,
|
8424 |
|
|
bfd_byte *contents,
|
8425 |
|
|
struct bfd_link_info *link_info,
|
8426 |
|
|
value_map_hash_table *values,
|
8427 |
|
|
bfd_boolean *last_loc_is_prev_p,
|
8428 |
|
|
Elf_Internal_Rela *irel,
|
8429 |
|
|
int remaining_src_rels,
|
8430 |
|
|
source_reloc *rel,
|
8431 |
|
|
property_table_entry *prop_table,
|
8432 |
|
|
int ptblsize,
|
8433 |
|
|
section_cache_t *target_sec_cache,
|
8434 |
|
|
bfd_boolean is_abs_literal)
|
8435 |
|
|
{
|
8436 |
|
|
literal_value val;
|
8437 |
|
|
value_map *val_map;
|
8438 |
|
|
xtensa_relax_info *relax_info;
|
8439 |
|
|
bfd_boolean literal_placed = FALSE;
|
8440 |
|
|
r_reloc r_rel;
|
8441 |
|
|
unsigned long value;
|
8442 |
|
|
bfd_boolean final_static_link;
|
8443 |
|
|
bfd_size_type sec_size;
|
8444 |
|
|
|
8445 |
|
|
relax_info = get_xtensa_relax_info (sec);
|
8446 |
|
|
if (!relax_info)
|
8447 |
|
|
return FALSE;
|
8448 |
|
|
|
8449 |
|
|
sec_size = bfd_get_section_limit (abfd, sec);
|
8450 |
|
|
|
8451 |
|
|
final_static_link =
|
8452 |
|
|
(!link_info->relocatable
|
8453 |
|
|
&& !elf_hash_table (link_info)->dynamic_sections_created);
|
8454 |
|
|
|
8455 |
|
|
/* The placement algorithm first checks to see if the literal is
|
8456 |
|
|
already in the value map. If so and the value map is reachable
|
8457 |
|
|
from all uses, then the literal is moved to that location. If
|
8458 |
|
|
not, then we identify the last location where a fresh literal was
|
8459 |
|
|
placed. If the literal can be safely moved there, then we do so.
|
8460 |
|
|
If not, then we assume that the literal is not to move and leave
|
8461 |
|
|
the literal where it is, marking it as the last literal
|
8462 |
|
|
location. */
|
8463 |
|
|
|
8464 |
|
|
/* Find the literal value. */
|
8465 |
|
|
value = 0;
|
8466 |
|
|
r_reloc_init (&r_rel, abfd, irel, contents, sec_size);
|
8467 |
|
|
if (!irel)
|
8468 |
|
|
{
|
8469 |
|
|
BFD_ASSERT (rel->r_rel.target_offset < sec_size);
|
8470 |
|
|
value = bfd_get_32 (abfd, contents + rel->r_rel.target_offset);
|
8471 |
|
|
}
|
8472 |
|
|
init_literal_value (&val, &r_rel, value, is_abs_literal);
|
8473 |
|
|
|
8474 |
|
|
/* Check if we've seen another literal with the same value that
|
8475 |
|
|
is in the same output section. */
|
8476 |
|
|
val_map = value_map_get_cached_value (values, &val, final_static_link);
|
8477 |
|
|
|
8478 |
|
|
if (val_map
|
8479 |
|
|
&& (r_reloc_get_section (&val_map->loc)->output_section
|
8480 |
|
|
== sec->output_section)
|
8481 |
|
|
&& relocations_reach (rel, remaining_src_rels, &val_map->loc)
|
8482 |
|
|
&& coalesce_shared_literal (sec, rel, prop_table, ptblsize, val_map))
|
8483 |
|
|
{
|
8484 |
|
|
/* No change to last_loc_is_prev. */
|
8485 |
|
|
literal_placed = TRUE;
|
8486 |
|
|
}
|
8487 |
|
|
|
8488 |
|
|
/* For relocatable links, do not try to move literals. To do it
|
8489 |
|
|
correctly might increase the number of relocations in an input
|
8490 |
|
|
section making the default relocatable linking fail. */
|
8491 |
|
|
if (!link_info->relocatable && !literal_placed
|
8492 |
|
|
&& values->has_last_loc && !(*last_loc_is_prev_p))
|
8493 |
|
|
{
|
8494 |
|
|
asection *target_sec = r_reloc_get_section (&values->last_loc);
|
8495 |
|
|
if (target_sec && target_sec->output_section == sec->output_section)
|
8496 |
|
|
{
|
8497 |
|
|
/* Increment the virtual offset. */
|
8498 |
|
|
r_reloc try_loc = values->last_loc;
|
8499 |
|
|
try_loc.virtual_offset += 4;
|
8500 |
|
|
|
8501 |
|
|
/* There is a last loc that was in the same output section. */
|
8502 |
|
|
if (relocations_reach (rel, remaining_src_rels, &try_loc)
|
8503 |
|
|
&& move_shared_literal (sec, link_info, rel,
|
8504 |
|
|
prop_table, ptblsize,
|
8505 |
|
|
&try_loc, &val, target_sec_cache))
|
8506 |
|
|
{
|
8507 |
|
|
values->last_loc.virtual_offset += 4;
|
8508 |
|
|
literal_placed = TRUE;
|
8509 |
|
|
if (!val_map)
|
8510 |
|
|
val_map = add_value_map (values, &val, &try_loc,
|
8511 |
|
|
final_static_link);
|
8512 |
|
|
else
|
8513 |
|
|
val_map->loc = try_loc;
|
8514 |
|
|
}
|
8515 |
|
|
}
|
8516 |
|
|
}
|
8517 |
|
|
|
8518 |
|
|
if (!literal_placed)
|
8519 |
|
|
{
|
8520 |
|
|
/* Nothing worked, leave the literal alone but update the last loc. */
|
8521 |
|
|
values->has_last_loc = TRUE;
|
8522 |
|
|
values->last_loc = rel->r_rel;
|
8523 |
|
|
if (!val_map)
|
8524 |
|
|
val_map = add_value_map (values, &val, &rel->r_rel, final_static_link);
|
8525 |
|
|
else
|
8526 |
|
|
val_map->loc = rel->r_rel;
|
8527 |
|
|
*last_loc_is_prev_p = TRUE;
|
8528 |
|
|
}
|
8529 |
|
|
|
8530 |
|
|
return TRUE;
|
8531 |
|
|
}
|
8532 |
|
|
|
8533 |
|
|
|
8534 |
|
|
/* Check if the original relocations (presumably on L32R instructions)
|
8535 |
|
|
identified by reloc[0..N] can be changed to reference the literal
|
8536 |
|
|
identified by r_rel. If r_rel is out of range for any of the
|
8537 |
|
|
original relocations, then we don't want to coalesce the original
|
8538 |
|
|
literal with the one at r_rel. We only check reloc[0..N], where the
|
8539 |
|
|
offsets are all the same as for reloc[0] (i.e., they're all
|
8540 |
|
|
referencing the same literal) and where N is also bounded by the
|
8541 |
|
|
number of remaining entries in the "reloc" array. The "reloc" array
|
8542 |
|
|
is sorted by target offset so we know all the entries for the same
|
8543 |
|
|
literal will be contiguous. */
|
8544 |
|
|
|
8545 |
|
|
static bfd_boolean
|
8546 |
|
|
relocations_reach (source_reloc *reloc,
|
8547 |
|
|
int remaining_relocs,
|
8548 |
|
|
const r_reloc *r_rel)
|
8549 |
|
|
{
|
8550 |
|
|
bfd_vma from_offset, source_address, dest_address;
|
8551 |
|
|
asection *sec;
|
8552 |
|
|
int i;
|
8553 |
|
|
|
8554 |
|
|
if (!r_reloc_is_defined (r_rel))
|
8555 |
|
|
return FALSE;
|
8556 |
|
|
|
8557 |
|
|
sec = r_reloc_get_section (r_rel);
|
8558 |
|
|
from_offset = reloc[0].r_rel.target_offset;
|
8559 |
|
|
|
8560 |
|
|
for (i = 0; i < remaining_relocs; i++)
|
8561 |
|
|
{
|
8562 |
|
|
if (reloc[i].r_rel.target_offset != from_offset)
|
8563 |
|
|
break;
|
8564 |
|
|
|
8565 |
|
|
/* Ignore relocations that have been removed. */
|
8566 |
|
|
if (reloc[i].is_null)
|
8567 |
|
|
continue;
|
8568 |
|
|
|
8569 |
|
|
/* The original and new output section for these must be the same
|
8570 |
|
|
in order to coalesce. */
|
8571 |
|
|
if (r_reloc_get_section (&reloc[i].r_rel)->output_section
|
8572 |
|
|
!= sec->output_section)
|
8573 |
|
|
return FALSE;
|
8574 |
|
|
|
8575 |
|
|
/* Absolute literals in the same output section can always be
|
8576 |
|
|
combined. */
|
8577 |
|
|
if (reloc[i].is_abs_literal)
|
8578 |
|
|
continue;
|
8579 |
|
|
|
8580 |
|
|
/* A literal with no PC-relative relocations can be moved anywhere. */
|
8581 |
|
|
if (reloc[i].opnd != -1)
|
8582 |
|
|
{
|
8583 |
|
|
/* Otherwise, check to see that it fits. */
|
8584 |
|
|
source_address = (reloc[i].source_sec->output_section->vma
|
8585 |
|
|
+ reloc[i].source_sec->output_offset
|
8586 |
|
|
+ reloc[i].r_rel.rela.r_offset);
|
8587 |
|
|
dest_address = (sec->output_section->vma
|
8588 |
|
|
+ sec->output_offset
|
8589 |
|
|
+ r_rel->target_offset);
|
8590 |
|
|
|
8591 |
|
|
if (!pcrel_reloc_fits (reloc[i].opcode, reloc[i].opnd,
|
8592 |
|
|
source_address, dest_address))
|
8593 |
|
|
return FALSE;
|
8594 |
|
|
}
|
8595 |
|
|
}
|
8596 |
|
|
|
8597 |
|
|
return TRUE;
|
8598 |
|
|
}
|
8599 |
|
|
|
8600 |
|
|
|
8601 |
|
|
/* Move a literal to another literal location because it is
|
8602 |
|
|
the same as the other literal value. */
|
8603 |
|
|
|
8604 |
|
|
static bfd_boolean
|
8605 |
|
|
coalesce_shared_literal (asection *sec,
|
8606 |
|
|
source_reloc *rel,
|
8607 |
|
|
property_table_entry *prop_table,
|
8608 |
|
|
int ptblsize,
|
8609 |
|
|
value_map *val_map)
|
8610 |
|
|
{
|
8611 |
|
|
property_table_entry *entry;
|
8612 |
|
|
text_action *fa;
|
8613 |
|
|
property_table_entry *the_add_entry;
|
8614 |
|
|
int removed_diff;
|
8615 |
|
|
xtensa_relax_info *relax_info;
|
8616 |
|
|
|
8617 |
|
|
relax_info = get_xtensa_relax_info (sec);
|
8618 |
|
|
if (!relax_info)
|
8619 |
|
|
return FALSE;
|
8620 |
|
|
|
8621 |
|
|
entry = elf_xtensa_find_property_entry
|
8622 |
|
|
(prop_table, ptblsize, sec->vma + rel->r_rel.target_offset);
|
8623 |
|
|
if (entry && (entry->flags & XTENSA_PROP_NO_TRANSFORM))
|
8624 |
|
|
return TRUE;
|
8625 |
|
|
|
8626 |
|
|
/* Mark that the literal will be coalesced. */
|
8627 |
|
|
add_removed_literal (&relax_info->removed_list, &rel->r_rel, &val_map->loc);
|
8628 |
|
|
|
8629 |
|
|
text_action_add (&relax_info->action_list,
|
8630 |
|
|
ta_remove_literal, sec, rel->r_rel.target_offset, 4);
|
8631 |
|
|
|
8632 |
|
|
/* If the section is 4-byte aligned, do not add fill. */
|
8633 |
|
|
if (sec->alignment_power > 2)
|
8634 |
|
|
{
|
8635 |
|
|
int fill_extra_space;
|
8636 |
|
|
bfd_vma entry_sec_offset;
|
8637 |
|
|
|
8638 |
|
|
if (entry)
|
8639 |
|
|
entry_sec_offset = entry->address - sec->vma + entry->size;
|
8640 |
|
|
else
|
8641 |
|
|
entry_sec_offset = rel->r_rel.target_offset + 4;
|
8642 |
|
|
|
8643 |
|
|
/* If the literal range is at the end of the section,
|
8644 |
|
|
do not add fill. */
|
8645 |
|
|
fill_extra_space = 0;
|
8646 |
|
|
the_add_entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
|
8647 |
|
|
entry_sec_offset);
|
8648 |
|
|
if (the_add_entry && (the_add_entry->flags & XTENSA_PROP_UNREACHABLE))
|
8649 |
|
|
fill_extra_space = the_add_entry->size;
|
8650 |
|
|
|
8651 |
|
|
fa = find_fill_action (&relax_info->action_list, sec, entry_sec_offset);
|
8652 |
|
|
removed_diff = compute_removed_action_diff (fa, sec, entry_sec_offset,
|
8653 |
|
|
-4, fill_extra_space);
|
8654 |
|
|
if (fa)
|
8655 |
|
|
adjust_fill_action (fa, removed_diff);
|
8656 |
|
|
else
|
8657 |
|
|
text_action_add (&relax_info->action_list,
|
8658 |
|
|
ta_fill, sec, entry_sec_offset, removed_diff);
|
8659 |
|
|
}
|
8660 |
|
|
|
8661 |
|
|
return TRUE;
|
8662 |
|
|
}
|
8663 |
|
|
|
8664 |
|
|
|
8665 |
|
|
/* Move a literal to another location. This may actually increase the
|
8666 |
|
|
total amount of space used because of alignments so we need to do
|
8667 |
|
|
this carefully. Also, it may make a branch go out of range. */
|
8668 |
|
|
|
8669 |
|
|
static bfd_boolean
|
8670 |
|
|
move_shared_literal (asection *sec,
|
8671 |
|
|
struct bfd_link_info *link_info,
|
8672 |
|
|
source_reloc *rel,
|
8673 |
|
|
property_table_entry *prop_table,
|
8674 |
|
|
int ptblsize,
|
8675 |
|
|
const r_reloc *target_loc,
|
8676 |
|
|
const literal_value *lit_value,
|
8677 |
|
|
section_cache_t *target_sec_cache)
|
8678 |
|
|
{
|
8679 |
|
|
property_table_entry *the_add_entry, *src_entry, *target_entry = NULL;
|
8680 |
|
|
text_action *fa, *target_fa;
|
8681 |
|
|
int removed_diff;
|
8682 |
|
|
xtensa_relax_info *relax_info, *target_relax_info;
|
8683 |
|
|
asection *target_sec;
|
8684 |
|
|
ebb_t *ebb;
|
8685 |
|
|
ebb_constraint ebb_table;
|
8686 |
|
|
bfd_boolean relocs_fit;
|
8687 |
|
|
|
8688 |
|
|
/* If this routine always returns FALSE, the literals that cannot be
|
8689 |
|
|
coalesced will not be moved. */
|
8690 |
|
|
if (elf32xtensa_no_literal_movement)
|
8691 |
|
|
return FALSE;
|
8692 |
|
|
|
8693 |
|
|
relax_info = get_xtensa_relax_info (sec);
|
8694 |
|
|
if (!relax_info)
|
8695 |
|
|
return FALSE;
|
8696 |
|
|
|
8697 |
|
|
target_sec = r_reloc_get_section (target_loc);
|
8698 |
|
|
target_relax_info = get_xtensa_relax_info (target_sec);
|
8699 |
|
|
|
8700 |
|
|
/* Literals to undefined sections may not be moved because they
|
8701 |
|
|
must report an error. */
|
8702 |
|
|
if (bfd_is_und_section (target_sec))
|
8703 |
|
|
return FALSE;
|
8704 |
|
|
|
8705 |
|
|
src_entry = elf_xtensa_find_property_entry
|
8706 |
|
|
(prop_table, ptblsize, sec->vma + rel->r_rel.target_offset);
|
8707 |
|
|
|
8708 |
|
|
if (!section_cache_section (target_sec_cache, target_sec, link_info))
|
8709 |
|
|
return FALSE;
|
8710 |
|
|
|
8711 |
|
|
target_entry = elf_xtensa_find_property_entry
|
8712 |
|
|
(target_sec_cache->ptbl, target_sec_cache->pte_count,
|
8713 |
|
|
target_sec->vma + target_loc->target_offset);
|
8714 |
|
|
|
8715 |
|
|
if (!target_entry)
|
8716 |
|
|
return FALSE;
|
8717 |
|
|
|
8718 |
|
|
/* Make sure that we have not broken any branches. */
|
8719 |
|
|
relocs_fit = FALSE;
|
8720 |
|
|
|
8721 |
|
|
init_ebb_constraint (&ebb_table);
|
8722 |
|
|
ebb = &ebb_table.ebb;
|
8723 |
|
|
init_ebb (ebb, target_sec_cache->sec, target_sec_cache->contents,
|
8724 |
|
|
target_sec_cache->content_length,
|
8725 |
|
|
target_sec_cache->ptbl, target_sec_cache->pte_count,
|
8726 |
|
|
target_sec_cache->relocs, target_sec_cache->reloc_count);
|
8727 |
|
|
|
8728 |
|
|
/* Propose to add 4 bytes + worst-case alignment size increase to
|
8729 |
|
|
destination. */
|
8730 |
|
|
ebb_propose_action (&ebb_table, EBB_NO_ALIGN, 0,
|
8731 |
|
|
ta_fill, target_loc->target_offset,
|
8732 |
|
|
-4 - (1 << target_sec->alignment_power), TRUE);
|
8733 |
|
|
|
8734 |
|
|
/* Check all of the PC-relative relocations to make sure they still fit. */
|
8735 |
|
|
relocs_fit = check_section_ebb_pcrels_fit (target_sec->owner, target_sec,
|
8736 |
|
|
target_sec_cache->contents,
|
8737 |
|
|
target_sec_cache->relocs,
|
8738 |
|
|
&ebb_table, NULL);
|
8739 |
|
|
|
8740 |
|
|
if (!relocs_fit)
|
8741 |
|
|
return FALSE;
|
8742 |
|
|
|
8743 |
|
|
text_action_add_literal (&target_relax_info->action_list,
|
8744 |
|
|
ta_add_literal, target_loc, lit_value, -4);
|
8745 |
|
|
|
8746 |
|
|
if (target_sec->alignment_power > 2 && target_entry != src_entry)
|
8747 |
|
|
{
|
8748 |
|
|
/* May need to add or remove some fill to maintain alignment. */
|
8749 |
|
|
int fill_extra_space;
|
8750 |
|
|
bfd_vma entry_sec_offset;
|
8751 |
|
|
|
8752 |
|
|
entry_sec_offset =
|
8753 |
|
|
target_entry->address - target_sec->vma + target_entry->size;
|
8754 |
|
|
|
8755 |
|
|
/* If the literal range is at the end of the section,
|
8756 |
|
|
do not add fill. */
|
8757 |
|
|
fill_extra_space = 0;
|
8758 |
|
|
the_add_entry =
|
8759 |
|
|
elf_xtensa_find_property_entry (target_sec_cache->ptbl,
|
8760 |
|
|
target_sec_cache->pte_count,
|
8761 |
|
|
entry_sec_offset);
|
8762 |
|
|
if (the_add_entry && (the_add_entry->flags & XTENSA_PROP_UNREACHABLE))
|
8763 |
|
|
fill_extra_space = the_add_entry->size;
|
8764 |
|
|
|
8765 |
|
|
target_fa = find_fill_action (&target_relax_info->action_list,
|
8766 |
|
|
target_sec, entry_sec_offset);
|
8767 |
|
|
removed_diff = compute_removed_action_diff (target_fa, target_sec,
|
8768 |
|
|
entry_sec_offset, 4,
|
8769 |
|
|
fill_extra_space);
|
8770 |
|
|
if (target_fa)
|
8771 |
|
|
adjust_fill_action (target_fa, removed_diff);
|
8772 |
|
|
else
|
8773 |
|
|
text_action_add (&target_relax_info->action_list,
|
8774 |
|
|
ta_fill, target_sec, entry_sec_offset, removed_diff);
|
8775 |
|
|
}
|
8776 |
|
|
|
8777 |
|
|
/* Mark that the literal will be moved to the new location. */
|
8778 |
|
|
add_removed_literal (&relax_info->removed_list, &rel->r_rel, target_loc);
|
8779 |
|
|
|
8780 |
|
|
/* Remove the literal. */
|
8781 |
|
|
text_action_add (&relax_info->action_list,
|
8782 |
|
|
ta_remove_literal, sec, rel->r_rel.target_offset, 4);
|
8783 |
|
|
|
8784 |
|
|
/* If the section is 4-byte aligned, do not add fill. */
|
8785 |
|
|
if (sec->alignment_power > 2 && target_entry != src_entry)
|
8786 |
|
|
{
|
8787 |
|
|
int fill_extra_space;
|
8788 |
|
|
bfd_vma entry_sec_offset;
|
8789 |
|
|
|
8790 |
|
|
if (src_entry)
|
8791 |
|
|
entry_sec_offset = src_entry->address - sec->vma + src_entry->size;
|
8792 |
|
|
else
|
8793 |
|
|
entry_sec_offset = rel->r_rel.target_offset+4;
|
8794 |
|
|
|
8795 |
|
|
/* If the literal range is at the end of the section,
|
8796 |
|
|
do not add fill. */
|
8797 |
|
|
fill_extra_space = 0;
|
8798 |
|
|
the_add_entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
|
8799 |
|
|
entry_sec_offset);
|
8800 |
|
|
if (the_add_entry && (the_add_entry->flags & XTENSA_PROP_UNREACHABLE))
|
8801 |
|
|
fill_extra_space = the_add_entry->size;
|
8802 |
|
|
|
8803 |
|
|
fa = find_fill_action (&relax_info->action_list, sec, entry_sec_offset);
|
8804 |
|
|
removed_diff = compute_removed_action_diff (fa, sec, entry_sec_offset,
|
8805 |
|
|
-4, fill_extra_space);
|
8806 |
|
|
if (fa)
|
8807 |
|
|
adjust_fill_action (fa, removed_diff);
|
8808 |
|
|
else
|
8809 |
|
|
text_action_add (&relax_info->action_list,
|
8810 |
|
|
ta_fill, sec, entry_sec_offset, removed_diff);
|
8811 |
|
|
}
|
8812 |
|
|
|
8813 |
|
|
return TRUE;
|
8814 |
|
|
}
|
8815 |
|
|
|
8816 |
|
|
|
8817 |
|
|
/* Second relaxation pass. */
|
8818 |
|
|
|
8819 |
|
|
/* Modify all of the relocations to point to the right spot, and if this
|
8820 |
|
|
is a relaxable section, delete the unwanted literals and fix the
|
8821 |
|
|
section size. */
|
8822 |
|
|
|
8823 |
|
|
bfd_boolean
|
8824 |
|
|
relax_section (bfd *abfd, asection *sec, struct bfd_link_info *link_info)
|
8825 |
|
|
{
|
8826 |
|
|
Elf_Internal_Rela *internal_relocs;
|
8827 |
|
|
xtensa_relax_info *relax_info;
|
8828 |
|
|
bfd_byte *contents;
|
8829 |
|
|
bfd_boolean ok = TRUE;
|
8830 |
|
|
unsigned i;
|
8831 |
|
|
bfd_boolean rv = FALSE;
|
8832 |
|
|
bfd_boolean virtual_action;
|
8833 |
|
|
bfd_size_type sec_size;
|
8834 |
|
|
|
8835 |
|
|
sec_size = bfd_get_section_limit (abfd, sec);
|
8836 |
|
|
relax_info = get_xtensa_relax_info (sec);
|
8837 |
|
|
BFD_ASSERT (relax_info);
|
8838 |
|
|
|
8839 |
|
|
/* First translate any of the fixes that have been added already. */
|
8840 |
|
|
translate_section_fixes (sec);
|
8841 |
|
|
|
8842 |
|
|
/* Handle property sections (e.g., literal tables) specially. */
|
8843 |
|
|
if (xtensa_is_property_section (sec))
|
8844 |
|
|
{
|
8845 |
|
|
BFD_ASSERT (!relax_info->is_relaxable_literal_section);
|
8846 |
|
|
return relax_property_section (abfd, sec, link_info);
|
8847 |
|
|
}
|
8848 |
|
|
|
8849 |
|
|
internal_relocs = retrieve_internal_relocs (abfd, sec,
|
8850 |
|
|
link_info->keep_memory);
|
8851 |
|
|
contents = retrieve_contents (abfd, sec, link_info->keep_memory);
|
8852 |
|
|
if (contents == NULL && sec_size != 0)
|
8853 |
|
|
{
|
8854 |
|
|
ok = FALSE;
|
8855 |
|
|
goto error_return;
|
8856 |
|
|
}
|
8857 |
|
|
|
8858 |
|
|
if (internal_relocs)
|
8859 |
|
|
{
|
8860 |
|
|
for (i = 0; i < sec->reloc_count; i++)
|
8861 |
|
|
{
|
8862 |
|
|
Elf_Internal_Rela *irel;
|
8863 |
|
|
xtensa_relax_info *target_relax_info;
|
8864 |
|
|
bfd_vma source_offset, old_source_offset;
|
8865 |
|
|
r_reloc r_rel;
|
8866 |
|
|
unsigned r_type;
|
8867 |
|
|
asection *target_sec;
|
8868 |
|
|
|
8869 |
|
|
/* Locally change the source address.
|
8870 |
|
|
Translate the target to the new target address.
|
8871 |
|
|
If it points to this section and has been removed,
|
8872 |
|
|
NULLify it.
|
8873 |
|
|
Write it back. */
|
8874 |
|
|
|
8875 |
|
|
irel = &internal_relocs[i];
|
8876 |
|
|
source_offset = irel->r_offset;
|
8877 |
|
|
old_source_offset = source_offset;
|
8878 |
|
|
|
8879 |
|
|
r_type = ELF32_R_TYPE (irel->r_info);
|
8880 |
|
|
r_reloc_init (&r_rel, abfd, irel, contents,
|
8881 |
|
|
bfd_get_section_limit (abfd, sec));
|
8882 |
|
|
|
8883 |
|
|
/* If this section could have changed then we may need to
|
8884 |
|
|
change the relocation's offset. */
|
8885 |
|
|
|
8886 |
|
|
if (relax_info->is_relaxable_literal_section
|
8887 |
|
|
|| relax_info->is_relaxable_asm_section)
|
8888 |
|
|
{
|
8889 |
|
|
pin_internal_relocs (sec, internal_relocs);
|
8890 |
|
|
|
8891 |
|
|
if (r_type != R_XTENSA_NONE
|
8892 |
|
|
&& find_removed_literal (&relax_info->removed_list,
|
8893 |
|
|
irel->r_offset))
|
8894 |
|
|
{
|
8895 |
|
|
/* Remove this relocation. */
|
8896 |
|
|
if (elf_hash_table (link_info)->dynamic_sections_created)
|
8897 |
|
|
shrink_dynamic_reloc_sections (link_info, abfd, sec, irel);
|
8898 |
|
|
irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
|
8899 |
|
|
irel->r_offset = offset_with_removed_text
|
8900 |
|
|
(&relax_info->action_list, irel->r_offset);
|
8901 |
|
|
continue;
|
8902 |
|
|
}
|
8903 |
|
|
|
8904 |
|
|
if (r_type == R_XTENSA_ASM_SIMPLIFY)
|
8905 |
|
|
{
|
8906 |
|
|
text_action *action =
|
8907 |
|
|
find_insn_action (&relax_info->action_list,
|
8908 |
|
|
irel->r_offset);
|
8909 |
|
|
if (action && (action->action == ta_convert_longcall
|
8910 |
|
|
|| action->action == ta_remove_longcall))
|
8911 |
|
|
{
|
8912 |
|
|
bfd_reloc_status_type retval;
|
8913 |
|
|
char *error_message = NULL;
|
8914 |
|
|
|
8915 |
|
|
retval = contract_asm_expansion (contents, sec_size,
|
8916 |
|
|
irel, &error_message);
|
8917 |
|
|
if (retval != bfd_reloc_ok)
|
8918 |
|
|
{
|
8919 |
|
|
(*link_info->callbacks->reloc_dangerous)
|
8920 |
|
|
(link_info, error_message, abfd, sec,
|
8921 |
|
|
irel->r_offset);
|
8922 |
|
|
goto error_return;
|
8923 |
|
|
}
|
8924 |
|
|
/* Update the action so that the code that moves
|
8925 |
|
|
the contents will do the right thing. */
|
8926 |
|
|
if (action->action == ta_remove_longcall)
|
8927 |
|
|
action->action = ta_remove_insn;
|
8928 |
|
|
else
|
8929 |
|
|
action->action = ta_none;
|
8930 |
|
|
/* Refresh the info in the r_rel. */
|
8931 |
|
|
r_reloc_init (&r_rel, abfd, irel, contents, sec_size);
|
8932 |
|
|
r_type = ELF32_R_TYPE (irel->r_info);
|
8933 |
|
|
}
|
8934 |
|
|
}
|
8935 |
|
|
|
8936 |
|
|
source_offset = offset_with_removed_text
|
8937 |
|
|
(&relax_info->action_list, irel->r_offset);
|
8938 |
|
|
irel->r_offset = source_offset;
|
8939 |
|
|
}
|
8940 |
|
|
|
8941 |
|
|
/* If the target section could have changed then
|
8942 |
|
|
we may need to change the relocation's target offset. */
|
8943 |
|
|
|
8944 |
|
|
target_sec = r_reloc_get_section (&r_rel);
|
8945 |
|
|
|
8946 |
|
|
/* For a reference to a discarded section from a DWARF section,
|
8947 |
|
|
i.e., where action_discarded is PRETEND, the symbol will
|
8948 |
|
|
eventually be modified to refer to the kept section (at least if
|
8949 |
|
|
the kept and discarded sections are the same size). Anticipate
|
8950 |
|
|
that here and adjust things accordingly. */
|
8951 |
|
|
if (! elf_xtensa_ignore_discarded_relocs (sec)
|
8952 |
|
|
&& elf_xtensa_action_discarded (sec) == PRETEND
|
8953 |
|
|
&& sec->sec_info_type != ELF_INFO_TYPE_STABS
|
8954 |
|
|
&& target_sec != NULL
|
8955 |
|
|
&& elf_discarded_section (target_sec))
|
8956 |
|
|
{
|
8957 |
|
|
/* It would be natural to call _bfd_elf_check_kept_section
|
8958 |
|
|
here, but it's not exported from elflink.c. It's also a
|
8959 |
|
|
fairly expensive check. Adjusting the relocations to the
|
8960 |
|
|
discarded section is fairly harmless; it will only adjust
|
8961 |
|
|
some addends and difference values. If it turns out that
|
8962 |
|
|
_bfd_elf_check_kept_section fails later, it won't matter,
|
8963 |
|
|
so just compare the section names to find the right group
|
8964 |
|
|
member. */
|
8965 |
|
|
asection *kept = target_sec->kept_section;
|
8966 |
|
|
if (kept != NULL)
|
8967 |
|
|
{
|
8968 |
|
|
if ((kept->flags & SEC_GROUP) != 0)
|
8969 |
|
|
{
|
8970 |
|
|
asection *first = elf_next_in_group (kept);
|
8971 |
|
|
asection *s = first;
|
8972 |
|
|
|
8973 |
|
|
kept = NULL;
|
8974 |
|
|
while (s != NULL)
|
8975 |
|
|
{
|
8976 |
|
|
if (strcmp (s->name, target_sec->name) == 0)
|
8977 |
|
|
{
|
8978 |
|
|
kept = s;
|
8979 |
|
|
break;
|
8980 |
|
|
}
|
8981 |
|
|
s = elf_next_in_group (s);
|
8982 |
|
|
if (s == first)
|
8983 |
|
|
break;
|
8984 |
|
|
}
|
8985 |
|
|
}
|
8986 |
|
|
}
|
8987 |
|
|
if (kept != NULL
|
8988 |
|
|
&& ((target_sec->rawsize != 0
|
8989 |
|
|
? target_sec->rawsize : target_sec->size)
|
8990 |
|
|
== (kept->rawsize != 0 ? kept->rawsize : kept->size)))
|
8991 |
|
|
target_sec = kept;
|
8992 |
|
|
}
|
8993 |
|
|
|
8994 |
|
|
target_relax_info = get_xtensa_relax_info (target_sec);
|
8995 |
|
|
if (target_relax_info
|
8996 |
|
|
&& (target_relax_info->is_relaxable_literal_section
|
8997 |
|
|
|| target_relax_info->is_relaxable_asm_section))
|
8998 |
|
|
{
|
8999 |
|
|
r_reloc new_reloc;
|
9000 |
|
|
target_sec = translate_reloc (&r_rel, &new_reloc, target_sec);
|
9001 |
|
|
|
9002 |
|
|
if (r_type == R_XTENSA_DIFF8
|
9003 |
|
|
|| r_type == R_XTENSA_DIFF16
|
9004 |
|
|
|| r_type == R_XTENSA_DIFF32)
|
9005 |
|
|
{
|
9006 |
|
|
bfd_vma diff_value = 0, new_end_offset, diff_mask = 0;
|
9007 |
|
|
|
9008 |
|
|
if (bfd_get_section_limit (abfd, sec) < old_source_offset)
|
9009 |
|
|
{
|
9010 |
|
|
(*link_info->callbacks->reloc_dangerous)
|
9011 |
|
|
(link_info, _("invalid relocation address"),
|
9012 |
|
|
abfd, sec, old_source_offset);
|
9013 |
|
|
goto error_return;
|
9014 |
|
|
}
|
9015 |
|
|
|
9016 |
|
|
switch (r_type)
|
9017 |
|
|
{
|
9018 |
|
|
case R_XTENSA_DIFF8:
|
9019 |
|
|
diff_value =
|
9020 |
|
|
bfd_get_8 (abfd, &contents[old_source_offset]);
|
9021 |
|
|
break;
|
9022 |
|
|
case R_XTENSA_DIFF16:
|
9023 |
|
|
diff_value =
|
9024 |
|
|
bfd_get_16 (abfd, &contents[old_source_offset]);
|
9025 |
|
|
break;
|
9026 |
|
|
case R_XTENSA_DIFF32:
|
9027 |
|
|
diff_value =
|
9028 |
|
|
bfd_get_32 (abfd, &contents[old_source_offset]);
|
9029 |
|
|
break;
|
9030 |
|
|
}
|
9031 |
|
|
|
9032 |
|
|
new_end_offset = offset_with_removed_text
|
9033 |
|
|
(&target_relax_info->action_list,
|
9034 |
|
|
r_rel.target_offset + diff_value);
|
9035 |
|
|
diff_value = new_end_offset - new_reloc.target_offset;
|
9036 |
|
|
|
9037 |
|
|
switch (r_type)
|
9038 |
|
|
{
|
9039 |
|
|
case R_XTENSA_DIFF8:
|
9040 |
|
|
diff_mask = 0xff;
|
9041 |
|
|
bfd_put_8 (abfd, diff_value,
|
9042 |
|
|
&contents[old_source_offset]);
|
9043 |
|
|
break;
|
9044 |
|
|
case R_XTENSA_DIFF16:
|
9045 |
|
|
diff_mask = 0xffff;
|
9046 |
|
|
bfd_put_16 (abfd, diff_value,
|
9047 |
|
|
&contents[old_source_offset]);
|
9048 |
|
|
break;
|
9049 |
|
|
case R_XTENSA_DIFF32:
|
9050 |
|
|
diff_mask = 0xffffffff;
|
9051 |
|
|
bfd_put_32 (abfd, diff_value,
|
9052 |
|
|
&contents[old_source_offset]);
|
9053 |
|
|
break;
|
9054 |
|
|
}
|
9055 |
|
|
|
9056 |
|
|
/* Check for overflow. */
|
9057 |
|
|
if ((diff_value & ~diff_mask) != 0)
|
9058 |
|
|
{
|
9059 |
|
|
(*link_info->callbacks->reloc_dangerous)
|
9060 |
|
|
(link_info, _("overflow after relaxation"),
|
9061 |
|
|
abfd, sec, old_source_offset);
|
9062 |
|
|
goto error_return;
|
9063 |
|
|
}
|
9064 |
|
|
|
9065 |
|
|
pin_contents (sec, contents);
|
9066 |
|
|
}
|
9067 |
|
|
|
9068 |
|
|
/* If the relocation still references a section in the same
|
9069 |
|
|
input file, modify the relocation directly instead of
|
9070 |
|
|
adding a "fix" record. */
|
9071 |
|
|
if (target_sec->owner == abfd)
|
9072 |
|
|
{
|
9073 |
|
|
unsigned r_symndx = ELF32_R_SYM (new_reloc.rela.r_info);
|
9074 |
|
|
irel->r_info = ELF32_R_INFO (r_symndx, r_type);
|
9075 |
|
|
irel->r_addend = new_reloc.rela.r_addend;
|
9076 |
|
|
pin_internal_relocs (sec, internal_relocs);
|
9077 |
|
|
}
|
9078 |
|
|
else
|
9079 |
|
|
{
|
9080 |
|
|
bfd_vma addend_displacement;
|
9081 |
|
|
reloc_bfd_fix *fix;
|
9082 |
|
|
|
9083 |
|
|
addend_displacement =
|
9084 |
|
|
new_reloc.target_offset + new_reloc.virtual_offset;
|
9085 |
|
|
fix = reloc_bfd_fix_init (sec, source_offset, r_type,
|
9086 |
|
|
target_sec,
|
9087 |
|
|
addend_displacement, TRUE);
|
9088 |
|
|
add_fix (sec, fix);
|
9089 |
|
|
}
|
9090 |
|
|
}
|
9091 |
|
|
}
|
9092 |
|
|
}
|
9093 |
|
|
|
9094 |
|
|
if ((relax_info->is_relaxable_literal_section
|
9095 |
|
|
|| relax_info->is_relaxable_asm_section)
|
9096 |
|
|
&& relax_info->action_list.head)
|
9097 |
|
|
{
|
9098 |
|
|
/* Walk through the planned actions and build up a table
|
9099 |
|
|
of move, copy and fill records. Use the move, copy and
|
9100 |
|
|
fill records to perform the actions once. */
|
9101 |
|
|
|
9102 |
|
|
int removed = 0;
|
9103 |
|
|
bfd_size_type final_size, copy_size, orig_insn_size;
|
9104 |
|
|
bfd_byte *scratch = NULL;
|
9105 |
|
|
bfd_byte *dup_contents = NULL;
|
9106 |
|
|
bfd_size_type orig_size = sec->size;
|
9107 |
|
|
bfd_vma orig_dot = 0;
|
9108 |
|
|
bfd_vma orig_dot_copied = 0; /* Byte copied already from
|
9109 |
|
|
orig dot in physical memory. */
|
9110 |
|
|
bfd_vma orig_dot_vo = 0; /* Virtual offset from orig_dot. */
|
9111 |
|
|
bfd_vma dup_dot = 0;
|
9112 |
|
|
|
9113 |
|
|
text_action *action = relax_info->action_list.head;
|
9114 |
|
|
|
9115 |
|
|
final_size = sec->size;
|
9116 |
|
|
for (action = relax_info->action_list.head; action;
|
9117 |
|
|
action = action->next)
|
9118 |
|
|
{
|
9119 |
|
|
final_size -= action->removed_bytes;
|
9120 |
|
|
}
|
9121 |
|
|
|
9122 |
|
|
scratch = (bfd_byte *) bfd_zmalloc (final_size);
|
9123 |
|
|
dup_contents = (bfd_byte *) bfd_zmalloc (final_size);
|
9124 |
|
|
|
9125 |
|
|
/* The dot is the current fill location. */
|
9126 |
|
|
#if DEBUG
|
9127 |
|
|
print_action_list (stderr, &relax_info->action_list);
|
9128 |
|
|
#endif
|
9129 |
|
|
|
9130 |
|
|
for (action = relax_info->action_list.head; action;
|
9131 |
|
|
action = action->next)
|
9132 |
|
|
{
|
9133 |
|
|
virtual_action = FALSE;
|
9134 |
|
|
if (action->offset > orig_dot)
|
9135 |
|
|
{
|
9136 |
|
|
orig_dot += orig_dot_copied;
|
9137 |
|
|
orig_dot_copied = 0;
|
9138 |
|
|
orig_dot_vo = 0;
|
9139 |
|
|
/* Out of the virtual world. */
|
9140 |
|
|
}
|
9141 |
|
|
|
9142 |
|
|
if (action->offset > orig_dot)
|
9143 |
|
|
{
|
9144 |
|
|
copy_size = action->offset - orig_dot;
|
9145 |
|
|
memmove (&dup_contents[dup_dot], &contents[orig_dot], copy_size);
|
9146 |
|
|
orig_dot += copy_size;
|
9147 |
|
|
dup_dot += copy_size;
|
9148 |
|
|
BFD_ASSERT (action->offset == orig_dot);
|
9149 |
|
|
}
|
9150 |
|
|
else if (action->offset < orig_dot)
|
9151 |
|
|
{
|
9152 |
|
|
if (action->action == ta_fill
|
9153 |
|
|
&& action->offset - action->removed_bytes == orig_dot)
|
9154 |
|
|
{
|
9155 |
|
|
/* This is OK because the fill only effects the dup_dot. */
|
9156 |
|
|
}
|
9157 |
|
|
else if (action->action == ta_add_literal)
|
9158 |
|
|
{
|
9159 |
|
|
/* TBD. Might need to handle this. */
|
9160 |
|
|
}
|
9161 |
|
|
}
|
9162 |
|
|
if (action->offset == orig_dot)
|
9163 |
|
|
{
|
9164 |
|
|
if (action->virtual_offset > orig_dot_vo)
|
9165 |
|
|
{
|
9166 |
|
|
if (orig_dot_vo == 0)
|
9167 |
|
|
{
|
9168 |
|
|
/* Need to copy virtual_offset bytes. Probably four. */
|
9169 |
|
|
copy_size = action->virtual_offset - orig_dot_vo;
|
9170 |
|
|
memmove (&dup_contents[dup_dot],
|
9171 |
|
|
&contents[orig_dot], copy_size);
|
9172 |
|
|
orig_dot_copied = copy_size;
|
9173 |
|
|
dup_dot += copy_size;
|
9174 |
|
|
}
|
9175 |
|
|
virtual_action = TRUE;
|
9176 |
|
|
}
|
9177 |
|
|
else
|
9178 |
|
|
BFD_ASSERT (action->virtual_offset <= orig_dot_vo);
|
9179 |
|
|
}
|
9180 |
|
|
switch (action->action)
|
9181 |
|
|
{
|
9182 |
|
|
case ta_remove_literal:
|
9183 |
|
|
case ta_remove_insn:
|
9184 |
|
|
BFD_ASSERT (action->removed_bytes >= 0);
|
9185 |
|
|
orig_dot += action->removed_bytes;
|
9186 |
|
|
break;
|
9187 |
|
|
|
9188 |
|
|
case ta_narrow_insn:
|
9189 |
|
|
orig_insn_size = 3;
|
9190 |
|
|
copy_size = 2;
|
9191 |
|
|
memmove (scratch, &contents[orig_dot], orig_insn_size);
|
9192 |
|
|
BFD_ASSERT (action->removed_bytes == 1);
|
9193 |
|
|
rv = narrow_instruction (scratch, final_size, 0);
|
9194 |
|
|
BFD_ASSERT (rv);
|
9195 |
|
|
memmove (&dup_contents[dup_dot], scratch, copy_size);
|
9196 |
|
|
orig_dot += orig_insn_size;
|
9197 |
|
|
dup_dot += copy_size;
|
9198 |
|
|
break;
|
9199 |
|
|
|
9200 |
|
|
case ta_fill:
|
9201 |
|
|
if (action->removed_bytes >= 0)
|
9202 |
|
|
orig_dot += action->removed_bytes;
|
9203 |
|
|
else
|
9204 |
|
|
{
|
9205 |
|
|
/* Already zeroed in dup_contents. Just bump the
|
9206 |
|
|
counters. */
|
9207 |
|
|
dup_dot += (-action->removed_bytes);
|
9208 |
|
|
}
|
9209 |
|
|
break;
|
9210 |
|
|
|
9211 |
|
|
case ta_none:
|
9212 |
|
|
BFD_ASSERT (action->removed_bytes == 0);
|
9213 |
|
|
break;
|
9214 |
|
|
|
9215 |
|
|
case ta_convert_longcall:
|
9216 |
|
|
case ta_remove_longcall:
|
9217 |
|
|
/* These will be removed or converted before we get here. */
|
9218 |
|
|
BFD_ASSERT (0);
|
9219 |
|
|
break;
|
9220 |
|
|
|
9221 |
|
|
case ta_widen_insn:
|
9222 |
|
|
orig_insn_size = 2;
|
9223 |
|
|
copy_size = 3;
|
9224 |
|
|
memmove (scratch, &contents[orig_dot], orig_insn_size);
|
9225 |
|
|
BFD_ASSERT (action->removed_bytes == -1);
|
9226 |
|
|
rv = widen_instruction (scratch, final_size, 0);
|
9227 |
|
|
BFD_ASSERT (rv);
|
9228 |
|
|
memmove (&dup_contents[dup_dot], scratch, copy_size);
|
9229 |
|
|
orig_dot += orig_insn_size;
|
9230 |
|
|
dup_dot += copy_size;
|
9231 |
|
|
break;
|
9232 |
|
|
|
9233 |
|
|
case ta_add_literal:
|
9234 |
|
|
orig_insn_size = 0;
|
9235 |
|
|
copy_size = 4;
|
9236 |
|
|
BFD_ASSERT (action->removed_bytes == -4);
|
9237 |
|
|
/* TBD -- place the literal value here and insert
|
9238 |
|
|
into the table. */
|
9239 |
|
|
memset (&dup_contents[dup_dot], 0, 4);
|
9240 |
|
|
pin_internal_relocs (sec, internal_relocs);
|
9241 |
|
|
pin_contents (sec, contents);
|
9242 |
|
|
|
9243 |
|
|
if (!move_literal (abfd, link_info, sec, dup_dot, dup_contents,
|
9244 |
|
|
relax_info, &internal_relocs, &action->value))
|
9245 |
|
|
goto error_return;
|
9246 |
|
|
|
9247 |
|
|
if (virtual_action)
|
9248 |
|
|
orig_dot_vo += copy_size;
|
9249 |
|
|
|
9250 |
|
|
orig_dot += orig_insn_size;
|
9251 |
|
|
dup_dot += copy_size;
|
9252 |
|
|
break;
|
9253 |
|
|
|
9254 |
|
|
default:
|
9255 |
|
|
/* Not implemented yet. */
|
9256 |
|
|
BFD_ASSERT (0);
|
9257 |
|
|
break;
|
9258 |
|
|
}
|
9259 |
|
|
|
9260 |
|
|
removed += action->removed_bytes;
|
9261 |
|
|
BFD_ASSERT (dup_dot <= final_size);
|
9262 |
|
|
BFD_ASSERT (orig_dot <= orig_size);
|
9263 |
|
|
}
|
9264 |
|
|
|
9265 |
|
|
orig_dot += orig_dot_copied;
|
9266 |
|
|
orig_dot_copied = 0;
|
9267 |
|
|
|
9268 |
|
|
if (orig_dot != orig_size)
|
9269 |
|
|
{
|
9270 |
|
|
copy_size = orig_size - orig_dot;
|
9271 |
|
|
BFD_ASSERT (orig_size > orig_dot);
|
9272 |
|
|
BFD_ASSERT (dup_dot + copy_size == final_size);
|
9273 |
|
|
memmove (&dup_contents[dup_dot], &contents[orig_dot], copy_size);
|
9274 |
|
|
orig_dot += copy_size;
|
9275 |
|
|
dup_dot += copy_size;
|
9276 |
|
|
}
|
9277 |
|
|
BFD_ASSERT (orig_size == orig_dot);
|
9278 |
|
|
BFD_ASSERT (final_size == dup_dot);
|
9279 |
|
|
|
9280 |
|
|
/* Move the dup_contents back. */
|
9281 |
|
|
if (final_size > orig_size)
|
9282 |
|
|
{
|
9283 |
|
|
/* Contents need to be reallocated. Swap the dup_contents into
|
9284 |
|
|
contents. */
|
9285 |
|
|
sec->contents = dup_contents;
|
9286 |
|
|
free (contents);
|
9287 |
|
|
contents = dup_contents;
|
9288 |
|
|
pin_contents (sec, contents);
|
9289 |
|
|
}
|
9290 |
|
|
else
|
9291 |
|
|
{
|
9292 |
|
|
BFD_ASSERT (final_size <= orig_size);
|
9293 |
|
|
memset (contents, 0, orig_size);
|
9294 |
|
|
memcpy (contents, dup_contents, final_size);
|
9295 |
|
|
free (dup_contents);
|
9296 |
|
|
}
|
9297 |
|
|
free (scratch);
|
9298 |
|
|
pin_contents (sec, contents);
|
9299 |
|
|
|
9300 |
|
|
if (sec->rawsize == 0)
|
9301 |
|
|
sec->rawsize = sec->size;
|
9302 |
|
|
sec->size = final_size;
|
9303 |
|
|
}
|
9304 |
|
|
|
9305 |
|
|
error_return:
|
9306 |
|
|
release_internal_relocs (sec, internal_relocs);
|
9307 |
|
|
release_contents (sec, contents);
|
9308 |
|
|
return ok;
|
9309 |
|
|
}
|
9310 |
|
|
|
9311 |
|
|
|
9312 |
|
|
static bfd_boolean
|
9313 |
|
|
translate_section_fixes (asection *sec)
|
9314 |
|
|
{
|
9315 |
|
|
xtensa_relax_info *relax_info;
|
9316 |
|
|
reloc_bfd_fix *r;
|
9317 |
|
|
|
9318 |
|
|
relax_info = get_xtensa_relax_info (sec);
|
9319 |
|
|
if (!relax_info)
|
9320 |
|
|
return TRUE;
|
9321 |
|
|
|
9322 |
|
|
for (r = relax_info->fix_list; r != NULL; r = r->next)
|
9323 |
|
|
if (!translate_reloc_bfd_fix (r))
|
9324 |
|
|
return FALSE;
|
9325 |
|
|
|
9326 |
|
|
return TRUE;
|
9327 |
|
|
}
|
9328 |
|
|
|
9329 |
|
|
|
9330 |
|
|
/* Translate a fix given the mapping in the relax info for the target
|
9331 |
|
|
section. If it has already been translated, no work is required. */
|
9332 |
|
|
|
9333 |
|
|
static bfd_boolean
|
9334 |
|
|
translate_reloc_bfd_fix (reloc_bfd_fix *fix)
|
9335 |
|
|
{
|
9336 |
|
|
reloc_bfd_fix new_fix;
|
9337 |
|
|
asection *sec;
|
9338 |
|
|
xtensa_relax_info *relax_info;
|
9339 |
|
|
removed_literal *removed;
|
9340 |
|
|
bfd_vma new_offset, target_offset;
|
9341 |
|
|
|
9342 |
|
|
if (fix->translated)
|
9343 |
|
|
return TRUE;
|
9344 |
|
|
|
9345 |
|
|
sec = fix->target_sec;
|
9346 |
|
|
target_offset = fix->target_offset;
|
9347 |
|
|
|
9348 |
|
|
relax_info = get_xtensa_relax_info (sec);
|
9349 |
|
|
if (!relax_info)
|
9350 |
|
|
{
|
9351 |
|
|
fix->translated = TRUE;
|
9352 |
|
|
return TRUE;
|
9353 |
|
|
}
|
9354 |
|
|
|
9355 |
|
|
new_fix = *fix;
|
9356 |
|
|
|
9357 |
|
|
/* The fix does not need to be translated if the section cannot change. */
|
9358 |
|
|
if (!relax_info->is_relaxable_literal_section
|
9359 |
|
|
&& !relax_info->is_relaxable_asm_section)
|
9360 |
|
|
{
|
9361 |
|
|
fix->translated = TRUE;
|
9362 |
|
|
return TRUE;
|
9363 |
|
|
}
|
9364 |
|
|
|
9365 |
|
|
/* If the literal has been moved and this relocation was on an
|
9366 |
|
|
opcode, then the relocation should move to the new literal
|
9367 |
|
|
location. Otherwise, the relocation should move within the
|
9368 |
|
|
section. */
|
9369 |
|
|
|
9370 |
|
|
removed = FALSE;
|
9371 |
|
|
if (is_operand_relocation (fix->src_type))
|
9372 |
|
|
{
|
9373 |
|
|
/* Check if the original relocation is against a literal being
|
9374 |
|
|
removed. */
|
9375 |
|
|
removed = find_removed_literal (&relax_info->removed_list,
|
9376 |
|
|
target_offset);
|
9377 |
|
|
}
|
9378 |
|
|
|
9379 |
|
|
if (removed)
|
9380 |
|
|
{
|
9381 |
|
|
asection *new_sec;
|
9382 |
|
|
|
9383 |
|
|
/* The fact that there is still a relocation to this literal indicates
|
9384 |
|
|
that the literal is being coalesced, not simply removed. */
|
9385 |
|
|
BFD_ASSERT (removed->to.abfd != NULL);
|
9386 |
|
|
|
9387 |
|
|
/* This was moved to some other address (possibly another section). */
|
9388 |
|
|
new_sec = r_reloc_get_section (&removed->to);
|
9389 |
|
|
if (new_sec != sec)
|
9390 |
|
|
{
|
9391 |
|
|
sec = new_sec;
|
9392 |
|
|
relax_info = get_xtensa_relax_info (sec);
|
9393 |
|
|
if (!relax_info ||
|
9394 |
|
|
(!relax_info->is_relaxable_literal_section
|
9395 |
|
|
&& !relax_info->is_relaxable_asm_section))
|
9396 |
|
|
{
|
9397 |
|
|
target_offset = removed->to.target_offset;
|
9398 |
|
|
new_fix.target_sec = new_sec;
|
9399 |
|
|
new_fix.target_offset = target_offset;
|
9400 |
|
|
new_fix.translated = TRUE;
|
9401 |
|
|
*fix = new_fix;
|
9402 |
|
|
return TRUE;
|
9403 |
|
|
}
|
9404 |
|
|
}
|
9405 |
|
|
target_offset = removed->to.target_offset;
|
9406 |
|
|
new_fix.target_sec = new_sec;
|
9407 |
|
|
}
|
9408 |
|
|
|
9409 |
|
|
/* The target address may have been moved within its section. */
|
9410 |
|
|
new_offset = offset_with_removed_text (&relax_info->action_list,
|
9411 |
|
|
target_offset);
|
9412 |
|
|
|
9413 |
|
|
new_fix.target_offset = new_offset;
|
9414 |
|
|
new_fix.target_offset = new_offset;
|
9415 |
|
|
new_fix.translated = TRUE;
|
9416 |
|
|
*fix = new_fix;
|
9417 |
|
|
return TRUE;
|
9418 |
|
|
}
|
9419 |
|
|
|
9420 |
|
|
|
9421 |
|
|
/* Fix up a relocation to take account of removed literals. */
|
9422 |
|
|
|
9423 |
|
|
static asection *
|
9424 |
|
|
translate_reloc (const r_reloc *orig_rel, r_reloc *new_rel, asection *sec)
|
9425 |
|
|
{
|
9426 |
|
|
xtensa_relax_info *relax_info;
|
9427 |
|
|
removed_literal *removed;
|
9428 |
|
|
bfd_vma target_offset, base_offset;
|
9429 |
|
|
text_action *act;
|
9430 |
|
|
|
9431 |
|
|
*new_rel = *orig_rel;
|
9432 |
|
|
|
9433 |
|
|
if (!r_reloc_is_defined (orig_rel))
|
9434 |
|
|
return sec ;
|
9435 |
|
|
|
9436 |
|
|
relax_info = get_xtensa_relax_info (sec);
|
9437 |
|
|
BFD_ASSERT (relax_info && (relax_info->is_relaxable_literal_section
|
9438 |
|
|
|| relax_info->is_relaxable_asm_section));
|
9439 |
|
|
|
9440 |
|
|
target_offset = orig_rel->target_offset;
|
9441 |
|
|
|
9442 |
|
|
removed = FALSE;
|
9443 |
|
|
if (is_operand_relocation (ELF32_R_TYPE (orig_rel->rela.r_info)))
|
9444 |
|
|
{
|
9445 |
|
|
/* Check if the original relocation is against a literal being
|
9446 |
|
|
removed. */
|
9447 |
|
|
removed = find_removed_literal (&relax_info->removed_list,
|
9448 |
|
|
target_offset);
|
9449 |
|
|
}
|
9450 |
|
|
if (removed && removed->to.abfd)
|
9451 |
|
|
{
|
9452 |
|
|
asection *new_sec;
|
9453 |
|
|
|
9454 |
|
|
/* The fact that there is still a relocation to this literal indicates
|
9455 |
|
|
that the literal is being coalesced, not simply removed. */
|
9456 |
|
|
BFD_ASSERT (removed->to.abfd != NULL);
|
9457 |
|
|
|
9458 |
|
|
/* This was moved to some other address
|
9459 |
|
|
(possibly in another section). */
|
9460 |
|
|
*new_rel = removed->to;
|
9461 |
|
|
new_sec = r_reloc_get_section (new_rel);
|
9462 |
|
|
if (new_sec != sec)
|
9463 |
|
|
{
|
9464 |
|
|
sec = new_sec;
|
9465 |
|
|
relax_info = get_xtensa_relax_info (sec);
|
9466 |
|
|
if (!relax_info
|
9467 |
|
|
|| (!relax_info->is_relaxable_literal_section
|
9468 |
|
|
&& !relax_info->is_relaxable_asm_section))
|
9469 |
|
|
return sec;
|
9470 |
|
|
}
|
9471 |
|
|
target_offset = new_rel->target_offset;
|
9472 |
|
|
}
|
9473 |
|
|
|
9474 |
|
|
/* Find the base offset of the reloc symbol, excluding any addend from the
|
9475 |
|
|
reloc or from the section contents (for a partial_inplace reloc). Then
|
9476 |
|
|
find the adjusted values of the offsets due to relaxation. The base
|
9477 |
|
|
offset is needed to determine the change to the reloc's addend; the reloc
|
9478 |
|
|
addend should not be adjusted due to relaxations located before the base
|
9479 |
|
|
offset. */
|
9480 |
|
|
|
9481 |
|
|
base_offset = r_reloc_get_target_offset (new_rel) - new_rel->rela.r_addend;
|
9482 |
|
|
act = relax_info->action_list.head;
|
9483 |
|
|
if (base_offset <= target_offset)
|
9484 |
|
|
{
|
9485 |
|
|
int base_removed = removed_by_actions (&act, base_offset, FALSE);
|
9486 |
|
|
int addend_removed = removed_by_actions (&act, target_offset, FALSE);
|
9487 |
|
|
new_rel->target_offset = target_offset - base_removed - addend_removed;
|
9488 |
|
|
new_rel->rela.r_addend -= addend_removed;
|
9489 |
|
|
}
|
9490 |
|
|
else
|
9491 |
|
|
{
|
9492 |
|
|
/* Handle a negative addend. The base offset comes first. */
|
9493 |
|
|
int tgt_removed = removed_by_actions (&act, target_offset, FALSE);
|
9494 |
|
|
int addend_removed = removed_by_actions (&act, base_offset, FALSE);
|
9495 |
|
|
new_rel->target_offset = target_offset - tgt_removed;
|
9496 |
|
|
new_rel->rela.r_addend += addend_removed;
|
9497 |
|
|
}
|
9498 |
|
|
|
9499 |
|
|
return sec;
|
9500 |
|
|
}
|
9501 |
|
|
|
9502 |
|
|
|
9503 |
|
|
/* For dynamic links, there may be a dynamic relocation for each
|
9504 |
|
|
literal. The number of dynamic relocations must be computed in
|
9505 |
|
|
size_dynamic_sections, which occurs before relaxation. When a
|
9506 |
|
|
literal is removed, this function checks if there is a corresponding
|
9507 |
|
|
dynamic relocation and shrinks the size of the appropriate dynamic
|
9508 |
|
|
relocation section accordingly. At this point, the contents of the
|
9509 |
|
|
dynamic relocation sections have not yet been filled in, so there's
|
9510 |
|
|
nothing else that needs to be done. */
|
9511 |
|
|
|
9512 |
|
|
static void
|
9513 |
|
|
shrink_dynamic_reloc_sections (struct bfd_link_info *info,
|
9514 |
|
|
bfd *abfd,
|
9515 |
|
|
asection *input_section,
|
9516 |
|
|
Elf_Internal_Rela *rel)
|
9517 |
|
|
{
|
9518 |
|
|
struct elf_xtensa_link_hash_table *htab;
|
9519 |
|
|
Elf_Internal_Shdr *symtab_hdr;
|
9520 |
|
|
struct elf_link_hash_entry **sym_hashes;
|
9521 |
|
|
unsigned long r_symndx;
|
9522 |
|
|
int r_type;
|
9523 |
|
|
struct elf_link_hash_entry *h;
|
9524 |
|
|
bfd_boolean dynamic_symbol;
|
9525 |
|
|
|
9526 |
|
|
htab = elf_xtensa_hash_table (info);
|
9527 |
|
|
if (htab == NULL)
|
9528 |
|
|
return;
|
9529 |
|
|
|
9530 |
|
|
symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
|
9531 |
|
|
sym_hashes = elf_sym_hashes (abfd);
|
9532 |
|
|
|
9533 |
|
|
r_type = ELF32_R_TYPE (rel->r_info);
|
9534 |
|
|
r_symndx = ELF32_R_SYM (rel->r_info);
|
9535 |
|
|
|
9536 |
|
|
if (r_symndx < symtab_hdr->sh_info)
|
9537 |
|
|
h = NULL;
|
9538 |
|
|
else
|
9539 |
|
|
h = sym_hashes[r_symndx - symtab_hdr->sh_info];
|
9540 |
|
|
|
9541 |
|
|
dynamic_symbol = elf_xtensa_dynamic_symbol_p (h, info);
|
9542 |
|
|
|
9543 |
|
|
if ((r_type == R_XTENSA_32 || r_type == R_XTENSA_PLT)
|
9544 |
|
|
&& (input_section->flags & SEC_ALLOC) != 0
|
9545 |
|
|
&& (dynamic_symbol || info->shared))
|
9546 |
|
|
{
|
9547 |
|
|
asection *srel;
|
9548 |
|
|
bfd_boolean is_plt = FALSE;
|
9549 |
|
|
|
9550 |
|
|
if (dynamic_symbol && r_type == R_XTENSA_PLT)
|
9551 |
|
|
{
|
9552 |
|
|
srel = htab->srelplt;
|
9553 |
|
|
is_plt = TRUE;
|
9554 |
|
|
}
|
9555 |
|
|
else
|
9556 |
|
|
srel = htab->srelgot;
|
9557 |
|
|
|
9558 |
|
|
/* Reduce size of the .rela.* section by one reloc. */
|
9559 |
|
|
BFD_ASSERT (srel != NULL);
|
9560 |
|
|
BFD_ASSERT (srel->size >= sizeof (Elf32_External_Rela));
|
9561 |
|
|
srel->size -= sizeof (Elf32_External_Rela);
|
9562 |
|
|
|
9563 |
|
|
if (is_plt)
|
9564 |
|
|
{
|
9565 |
|
|
asection *splt, *sgotplt, *srelgot;
|
9566 |
|
|
int reloc_index, chunk;
|
9567 |
|
|
|
9568 |
|
|
/* Find the PLT reloc index of the entry being removed. This
|
9569 |
|
|
is computed from the size of ".rela.plt". It is needed to
|
9570 |
|
|
figure out which PLT chunk to resize. Usually "last index
|
9571 |
|
|
= size - 1" since the index starts at zero, but in this
|
9572 |
|
|
context, the size has just been decremented so there's no
|
9573 |
|
|
need to subtract one. */
|
9574 |
|
|
reloc_index = srel->size / sizeof (Elf32_External_Rela);
|
9575 |
|
|
|
9576 |
|
|
chunk = reloc_index / PLT_ENTRIES_PER_CHUNK;
|
9577 |
|
|
splt = elf_xtensa_get_plt_section (info, chunk);
|
9578 |
|
|
sgotplt = elf_xtensa_get_gotplt_section (info, chunk);
|
9579 |
|
|
BFD_ASSERT (splt != NULL && sgotplt != NULL);
|
9580 |
|
|
|
9581 |
|
|
/* Check if an entire PLT chunk has just been eliminated. */
|
9582 |
|
|
if (reloc_index % PLT_ENTRIES_PER_CHUNK == 0)
|
9583 |
|
|
{
|
9584 |
|
|
/* The two magic GOT entries for that chunk can go away. */
|
9585 |
|
|
srelgot = htab->srelgot;
|
9586 |
|
|
BFD_ASSERT (srelgot != NULL);
|
9587 |
|
|
srelgot->reloc_count -= 2;
|
9588 |
|
|
srelgot->size -= 2 * sizeof (Elf32_External_Rela);
|
9589 |
|
|
sgotplt->size -= 8;
|
9590 |
|
|
|
9591 |
|
|
/* There should be only one entry left (and it will be
|
9592 |
|
|
removed below). */
|
9593 |
|
|
BFD_ASSERT (sgotplt->size == 4);
|
9594 |
|
|
BFD_ASSERT (splt->size == PLT_ENTRY_SIZE);
|
9595 |
|
|
}
|
9596 |
|
|
|
9597 |
|
|
BFD_ASSERT (sgotplt->size >= 4);
|
9598 |
|
|
BFD_ASSERT (splt->size >= PLT_ENTRY_SIZE);
|
9599 |
|
|
|
9600 |
|
|
sgotplt->size -= 4;
|
9601 |
|
|
splt->size -= PLT_ENTRY_SIZE;
|
9602 |
|
|
}
|
9603 |
|
|
}
|
9604 |
|
|
}
|
9605 |
|
|
|
9606 |
|
|
|
9607 |
|
|
/* Take an r_rel and move it to another section. This usually
|
9608 |
|
|
requires extending the interal_relocation array and pinning it. If
|
9609 |
|
|
the original r_rel is from the same BFD, we can complete this here.
|
9610 |
|
|
Otherwise, we add a fix record to let the final link fix the
|
9611 |
|
|
appropriate address. Contents and internal relocations for the
|
9612 |
|
|
section must be pinned after calling this routine. */
|
9613 |
|
|
|
9614 |
|
|
static bfd_boolean
|
9615 |
|
|
move_literal (bfd *abfd,
|
9616 |
|
|
struct bfd_link_info *link_info,
|
9617 |
|
|
asection *sec,
|
9618 |
|
|
bfd_vma offset,
|
9619 |
|
|
bfd_byte *contents,
|
9620 |
|
|
xtensa_relax_info *relax_info,
|
9621 |
|
|
Elf_Internal_Rela **internal_relocs_p,
|
9622 |
|
|
const literal_value *lit)
|
9623 |
|
|
{
|
9624 |
|
|
Elf_Internal_Rela *new_relocs = NULL;
|
9625 |
|
|
size_t new_relocs_count = 0;
|
9626 |
|
|
Elf_Internal_Rela this_rela;
|
9627 |
|
|
const r_reloc *r_rel;
|
9628 |
|
|
|
9629 |
|
|
r_rel = &lit->r_rel;
|
9630 |
|
|
BFD_ASSERT (elf_section_data (sec)->relocs == *internal_relocs_p);
|
9631 |
|
|
|
9632 |
|
|
if (r_reloc_is_const (r_rel))
|
9633 |
|
|
bfd_put_32 (abfd, lit->value, contents + offset);
|
9634 |
|
|
else
|
9635 |
|
|
{
|
9636 |
|
|
int r_type;
|
9637 |
|
|
unsigned i;
|
9638 |
|
|
asection *target_sec;
|
9639 |
|
|
reloc_bfd_fix *fix;
|
9640 |
|
|
unsigned insert_at;
|
9641 |
|
|
|
9642 |
|
|
r_type = ELF32_R_TYPE (r_rel->rela.r_info);
|
9643 |
|
|
target_sec = r_reloc_get_section (r_rel);
|
9644 |
|
|
|
9645 |
|
|
/* This is the difficult case. We have to create a fix up. */
|
9646 |
|
|
this_rela.r_offset = offset;
|
9647 |
|
|
this_rela.r_info = ELF32_R_INFO (0, r_type);
|
9648 |
|
|
this_rela.r_addend =
|
9649 |
|
|
r_rel->target_offset - r_reloc_get_target_offset (r_rel);
|
9650 |
|
|
bfd_put_32 (abfd, lit->value, contents + offset);
|
9651 |
|
|
|
9652 |
|
|
/* Currently, we cannot move relocations during a relocatable link. */
|
9653 |
|
|
BFD_ASSERT (!link_info->relocatable);
|
9654 |
|
|
fix = reloc_bfd_fix_init (sec, offset, r_type,
|
9655 |
|
|
r_reloc_get_section (r_rel),
|
9656 |
|
|
r_rel->target_offset + r_rel->virtual_offset,
|
9657 |
|
|
FALSE);
|
9658 |
|
|
/* We also need to mark that relocations are needed here. */
|
9659 |
|
|
sec->flags |= SEC_RELOC;
|
9660 |
|
|
|
9661 |
|
|
translate_reloc_bfd_fix (fix);
|
9662 |
|
|
/* This fix has not yet been translated. */
|
9663 |
|
|
add_fix (sec, fix);
|
9664 |
|
|
|
9665 |
|
|
/* Add the relocation. If we have already allocated our own
|
9666 |
|
|
space for the relocations and we have room for more, then use
|
9667 |
|
|
it. Otherwise, allocate new space and move the literals. */
|
9668 |
|
|
insert_at = sec->reloc_count;
|
9669 |
|
|
for (i = 0; i < sec->reloc_count; ++i)
|
9670 |
|
|
{
|
9671 |
|
|
if (this_rela.r_offset < (*internal_relocs_p)[i].r_offset)
|
9672 |
|
|
{
|
9673 |
|
|
insert_at = i;
|
9674 |
|
|
break;
|
9675 |
|
|
}
|
9676 |
|
|
}
|
9677 |
|
|
|
9678 |
|
|
if (*internal_relocs_p != relax_info->allocated_relocs
|
9679 |
|
|
|| sec->reloc_count + 1 > relax_info->allocated_relocs_count)
|
9680 |
|
|
{
|
9681 |
|
|
BFD_ASSERT (relax_info->allocated_relocs == NULL
|
9682 |
|
|
|| sec->reloc_count == relax_info->relocs_count);
|
9683 |
|
|
|
9684 |
|
|
if (relax_info->allocated_relocs_count == 0)
|
9685 |
|
|
new_relocs_count = (sec->reloc_count + 2) * 2;
|
9686 |
|
|
else
|
9687 |
|
|
new_relocs_count = (relax_info->allocated_relocs_count + 2) * 2;
|
9688 |
|
|
|
9689 |
|
|
new_relocs = (Elf_Internal_Rela *)
|
9690 |
|
|
bfd_zmalloc (sizeof (Elf_Internal_Rela) * (new_relocs_count));
|
9691 |
|
|
if (!new_relocs)
|
9692 |
|
|
return FALSE;
|
9693 |
|
|
|
9694 |
|
|
/* We could handle this more quickly by finding the split point. */
|
9695 |
|
|
if (insert_at != 0)
|
9696 |
|
|
memcpy (new_relocs, *internal_relocs_p,
|
9697 |
|
|
insert_at * sizeof (Elf_Internal_Rela));
|
9698 |
|
|
|
9699 |
|
|
new_relocs[insert_at] = this_rela;
|
9700 |
|
|
|
9701 |
|
|
if (insert_at != sec->reloc_count)
|
9702 |
|
|
memcpy (new_relocs + insert_at + 1,
|
9703 |
|
|
(*internal_relocs_p) + insert_at,
|
9704 |
|
|
(sec->reloc_count - insert_at)
|
9705 |
|
|
* sizeof (Elf_Internal_Rela));
|
9706 |
|
|
|
9707 |
|
|
if (*internal_relocs_p != relax_info->allocated_relocs)
|
9708 |
|
|
{
|
9709 |
|
|
/* The first time we re-allocate, we can only free the
|
9710 |
|
|
old relocs if they were allocated with bfd_malloc.
|
9711 |
|
|
This is not true when keep_memory is in effect. */
|
9712 |
|
|
if (!link_info->keep_memory)
|
9713 |
|
|
free (*internal_relocs_p);
|
9714 |
|
|
}
|
9715 |
|
|
else
|
9716 |
|
|
free (*internal_relocs_p);
|
9717 |
|
|
relax_info->allocated_relocs = new_relocs;
|
9718 |
|
|
relax_info->allocated_relocs_count = new_relocs_count;
|
9719 |
|
|
elf_section_data (sec)->relocs = new_relocs;
|
9720 |
|
|
sec->reloc_count++;
|
9721 |
|
|
relax_info->relocs_count = sec->reloc_count;
|
9722 |
|
|
*internal_relocs_p = new_relocs;
|
9723 |
|
|
}
|
9724 |
|
|
else
|
9725 |
|
|
{
|
9726 |
|
|
if (insert_at != sec->reloc_count)
|
9727 |
|
|
{
|
9728 |
|
|
unsigned idx;
|
9729 |
|
|
for (idx = sec->reloc_count; idx > insert_at; idx--)
|
9730 |
|
|
(*internal_relocs_p)[idx] = (*internal_relocs_p)[idx-1];
|
9731 |
|
|
}
|
9732 |
|
|
(*internal_relocs_p)[insert_at] = this_rela;
|
9733 |
|
|
sec->reloc_count++;
|
9734 |
|
|
if (relax_info->allocated_relocs)
|
9735 |
|
|
relax_info->relocs_count = sec->reloc_count;
|
9736 |
|
|
}
|
9737 |
|
|
}
|
9738 |
|
|
return TRUE;
|
9739 |
|
|
}
|
9740 |
|
|
|
9741 |
|
|
|
9742 |
|
|
/* This is similar to relax_section except that when a target is moved,
|
9743 |
|
|
we shift addresses up. We also need to modify the size. This
|
9744 |
|
|
algorithm does NOT allow for relocations into the middle of the
|
9745 |
|
|
property sections. */
|
9746 |
|
|
|
9747 |
|
|
static bfd_boolean
|
9748 |
|
|
relax_property_section (bfd *abfd,
|
9749 |
|
|
asection *sec,
|
9750 |
|
|
struct bfd_link_info *link_info)
|
9751 |
|
|
{
|
9752 |
|
|
Elf_Internal_Rela *internal_relocs;
|
9753 |
|
|
bfd_byte *contents;
|
9754 |
|
|
unsigned i;
|
9755 |
|
|
bfd_boolean ok = TRUE;
|
9756 |
|
|
bfd_boolean is_full_prop_section;
|
9757 |
|
|
size_t last_zfill_target_offset = 0;
|
9758 |
|
|
asection *last_zfill_target_sec = NULL;
|
9759 |
|
|
bfd_size_type sec_size;
|
9760 |
|
|
bfd_size_type entry_size;
|
9761 |
|
|
|
9762 |
|
|
sec_size = bfd_get_section_limit (abfd, sec);
|
9763 |
|
|
internal_relocs = retrieve_internal_relocs (abfd, sec,
|
9764 |
|
|
link_info->keep_memory);
|
9765 |
|
|
contents = retrieve_contents (abfd, sec, link_info->keep_memory);
|
9766 |
|
|
if (contents == NULL && sec_size != 0)
|
9767 |
|
|
{
|
9768 |
|
|
ok = FALSE;
|
9769 |
|
|
goto error_return;
|
9770 |
|
|
}
|
9771 |
|
|
|
9772 |
|
|
is_full_prop_section = xtensa_is_proptable_section (sec);
|
9773 |
|
|
if (is_full_prop_section)
|
9774 |
|
|
entry_size = 12;
|
9775 |
|
|
else
|
9776 |
|
|
entry_size = 8;
|
9777 |
|
|
|
9778 |
|
|
if (internal_relocs)
|
9779 |
|
|
{
|
9780 |
|
|
for (i = 0; i < sec->reloc_count; i++)
|
9781 |
|
|
{
|
9782 |
|
|
Elf_Internal_Rela *irel;
|
9783 |
|
|
xtensa_relax_info *target_relax_info;
|
9784 |
|
|
unsigned r_type;
|
9785 |
|
|
asection *target_sec;
|
9786 |
|
|
literal_value val;
|
9787 |
|
|
bfd_byte *size_p, *flags_p;
|
9788 |
|
|
|
9789 |
|
|
/* Locally change the source address.
|
9790 |
|
|
Translate the target to the new target address.
|
9791 |
|
|
If it points to this section and has been removed, MOVE IT.
|
9792 |
|
|
Also, don't forget to modify the associated SIZE at
|
9793 |
|
|
(offset + 4). */
|
9794 |
|
|
|
9795 |
|
|
irel = &internal_relocs[i];
|
9796 |
|
|
r_type = ELF32_R_TYPE (irel->r_info);
|
9797 |
|
|
if (r_type == R_XTENSA_NONE)
|
9798 |
|
|
continue;
|
9799 |
|
|
|
9800 |
|
|
/* Find the literal value. */
|
9801 |
|
|
r_reloc_init (&val.r_rel, abfd, irel, contents, sec_size);
|
9802 |
|
|
size_p = &contents[irel->r_offset + 4];
|
9803 |
|
|
flags_p = NULL;
|
9804 |
|
|
if (is_full_prop_section)
|
9805 |
|
|
flags_p = &contents[irel->r_offset + 8];
|
9806 |
|
|
BFD_ASSERT (irel->r_offset + entry_size <= sec_size);
|
9807 |
|
|
|
9808 |
|
|
target_sec = r_reloc_get_section (&val.r_rel);
|
9809 |
|
|
target_relax_info = get_xtensa_relax_info (target_sec);
|
9810 |
|
|
|
9811 |
|
|
if (target_relax_info
|
9812 |
|
|
&& (target_relax_info->is_relaxable_literal_section
|
9813 |
|
|
|| target_relax_info->is_relaxable_asm_section ))
|
9814 |
|
|
{
|
9815 |
|
|
/* Translate the relocation's destination. */
|
9816 |
|
|
bfd_vma old_offset = val.r_rel.target_offset;
|
9817 |
|
|
bfd_vma new_offset;
|
9818 |
|
|
long old_size, new_size;
|
9819 |
|
|
text_action *act = target_relax_info->action_list.head;
|
9820 |
|
|
new_offset = old_offset -
|
9821 |
|
|
removed_by_actions (&act, old_offset, FALSE);
|
9822 |
|
|
|
9823 |
|
|
/* Assert that we are not out of bounds. */
|
9824 |
|
|
old_size = bfd_get_32 (abfd, size_p);
|
9825 |
|
|
new_size = old_size;
|
9826 |
|
|
|
9827 |
|
|
if (old_size == 0)
|
9828 |
|
|
{
|
9829 |
|
|
/* Only the first zero-sized unreachable entry is
|
9830 |
|
|
allowed to expand. In this case the new offset
|
9831 |
|
|
should be the offset before the fill and the new
|
9832 |
|
|
size is the expansion size. For other zero-sized
|
9833 |
|
|
entries the resulting size should be zero with an
|
9834 |
|
|
offset before or after the fill address depending
|
9835 |
|
|
on whether the expanding unreachable entry
|
9836 |
|
|
preceeds it. */
|
9837 |
|
|
if (last_zfill_target_sec == 0
|
9838 |
|
|
|| last_zfill_target_sec != target_sec
|
9839 |
|
|
|| last_zfill_target_offset != old_offset)
|
9840 |
|
|
{
|
9841 |
|
|
bfd_vma new_end_offset = new_offset;
|
9842 |
|
|
|
9843 |
|
|
/* Recompute the new_offset, but this time don't
|
9844 |
|
|
include any fill inserted by relaxation. */
|
9845 |
|
|
act = target_relax_info->action_list.head;
|
9846 |
|
|
new_offset = old_offset -
|
9847 |
|
|
removed_by_actions (&act, old_offset, TRUE);
|
9848 |
|
|
|
9849 |
|
|
/* If it is not unreachable and we have not yet
|
9850 |
|
|
seen an unreachable at this address, place it
|
9851 |
|
|
before the fill address. */
|
9852 |
|
|
if (flags_p && (bfd_get_32 (abfd, flags_p)
|
9853 |
|
|
& XTENSA_PROP_UNREACHABLE) != 0)
|
9854 |
|
|
{
|
9855 |
|
|
new_size = new_end_offset - new_offset;
|
9856 |
|
|
|
9857 |
|
|
last_zfill_target_sec = target_sec;
|
9858 |
|
|
last_zfill_target_offset = old_offset;
|
9859 |
|
|
}
|
9860 |
|
|
}
|
9861 |
|
|
}
|
9862 |
|
|
else
|
9863 |
|
|
new_size -=
|
9864 |
|
|
removed_by_actions (&act, old_offset + old_size, TRUE);
|
9865 |
|
|
|
9866 |
|
|
if (new_size != old_size)
|
9867 |
|
|
{
|
9868 |
|
|
bfd_put_32 (abfd, new_size, size_p);
|
9869 |
|
|
pin_contents (sec, contents);
|
9870 |
|
|
}
|
9871 |
|
|
|
9872 |
|
|
if (new_offset != old_offset)
|
9873 |
|
|
{
|
9874 |
|
|
bfd_vma diff = new_offset - old_offset;
|
9875 |
|
|
irel->r_addend += diff;
|
9876 |
|
|
pin_internal_relocs (sec, internal_relocs);
|
9877 |
|
|
}
|
9878 |
|
|
}
|
9879 |
|
|
}
|
9880 |
|
|
}
|
9881 |
|
|
|
9882 |
|
|
/* Combine adjacent property table entries. This is also done in
|
9883 |
|
|
finish_dynamic_sections() but at that point it's too late to
|
9884 |
|
|
reclaim the space in the output section, so we do this twice. */
|
9885 |
|
|
|
9886 |
|
|
if (internal_relocs && (!link_info->relocatable
|
9887 |
|
|
|| xtensa_is_littable_section (sec)))
|
9888 |
|
|
{
|
9889 |
|
|
Elf_Internal_Rela *last_irel = NULL;
|
9890 |
|
|
Elf_Internal_Rela *irel, *next_rel, *rel_end;
|
9891 |
|
|
int removed_bytes = 0;
|
9892 |
|
|
bfd_vma offset;
|
9893 |
|
|
flagword predef_flags;
|
9894 |
|
|
|
9895 |
|
|
predef_flags = xtensa_get_property_predef_flags (sec);
|
9896 |
|
|
|
9897 |
|
|
/* Walk over memory and relocations at the same time.
|
9898 |
|
|
This REQUIRES that the internal_relocs be sorted by offset. */
|
9899 |
|
|
qsort (internal_relocs, sec->reloc_count, sizeof (Elf_Internal_Rela),
|
9900 |
|
|
internal_reloc_compare);
|
9901 |
|
|
|
9902 |
|
|
pin_internal_relocs (sec, internal_relocs);
|
9903 |
|
|
pin_contents (sec, contents);
|
9904 |
|
|
|
9905 |
|
|
next_rel = internal_relocs;
|
9906 |
|
|
rel_end = internal_relocs + sec->reloc_count;
|
9907 |
|
|
|
9908 |
|
|
BFD_ASSERT (sec->size % entry_size == 0);
|
9909 |
|
|
|
9910 |
|
|
for (offset = 0; offset < sec->size; offset += entry_size)
|
9911 |
|
|
{
|
9912 |
|
|
Elf_Internal_Rela *offset_rel, *extra_rel;
|
9913 |
|
|
bfd_vma bytes_to_remove, size, actual_offset;
|
9914 |
|
|
bfd_boolean remove_this_rel;
|
9915 |
|
|
flagword flags;
|
9916 |
|
|
|
9917 |
|
|
/* Find the first relocation for the entry at the current offset.
|
9918 |
|
|
Adjust the offsets of any extra relocations for the previous
|
9919 |
|
|
entry. */
|
9920 |
|
|
offset_rel = NULL;
|
9921 |
|
|
if (next_rel)
|
9922 |
|
|
{
|
9923 |
|
|
for (irel = next_rel; irel < rel_end; irel++)
|
9924 |
|
|
{
|
9925 |
|
|
if ((irel->r_offset == offset
|
9926 |
|
|
&& ELF32_R_TYPE (irel->r_info) != R_XTENSA_NONE)
|
9927 |
|
|
|| irel->r_offset > offset)
|
9928 |
|
|
{
|
9929 |
|
|
offset_rel = irel;
|
9930 |
|
|
break;
|
9931 |
|
|
}
|
9932 |
|
|
irel->r_offset -= removed_bytes;
|
9933 |
|
|
}
|
9934 |
|
|
}
|
9935 |
|
|
|
9936 |
|
|
/* Find the next relocation (if there are any left). */
|
9937 |
|
|
extra_rel = NULL;
|
9938 |
|
|
if (offset_rel)
|
9939 |
|
|
{
|
9940 |
|
|
for (irel = offset_rel + 1; irel < rel_end; irel++)
|
9941 |
|
|
{
|
9942 |
|
|
if (ELF32_R_TYPE (irel->r_info) != R_XTENSA_NONE)
|
9943 |
|
|
{
|
9944 |
|
|
extra_rel = irel;
|
9945 |
|
|
break;
|
9946 |
|
|
}
|
9947 |
|
|
}
|
9948 |
|
|
}
|
9949 |
|
|
|
9950 |
|
|
/* Check if there are relocations on the current entry. There
|
9951 |
|
|
should usually be a relocation on the offset field. If there
|
9952 |
|
|
are relocations on the size or flags, then we can't optimize
|
9953 |
|
|
this entry. Also, find the next relocation to examine on the
|
9954 |
|
|
next iteration. */
|
9955 |
|
|
if (offset_rel)
|
9956 |
|
|
{
|
9957 |
|
|
if (offset_rel->r_offset >= offset + entry_size)
|
9958 |
|
|
{
|
9959 |
|
|
next_rel = offset_rel;
|
9960 |
|
|
/* There are no relocations on the current entry, but we
|
9961 |
|
|
might still be able to remove it if the size is zero. */
|
9962 |
|
|
offset_rel = NULL;
|
9963 |
|
|
}
|
9964 |
|
|
else if (offset_rel->r_offset > offset
|
9965 |
|
|
|| (extra_rel
|
9966 |
|
|
&& extra_rel->r_offset < offset + entry_size))
|
9967 |
|
|
{
|
9968 |
|
|
/* There is a relocation on the size or flags, so we can't
|
9969 |
|
|
do anything with this entry. Continue with the next. */
|
9970 |
|
|
next_rel = offset_rel;
|
9971 |
|
|
continue;
|
9972 |
|
|
}
|
9973 |
|
|
else
|
9974 |
|
|
{
|
9975 |
|
|
BFD_ASSERT (offset_rel->r_offset == offset);
|
9976 |
|
|
offset_rel->r_offset -= removed_bytes;
|
9977 |
|
|
next_rel = offset_rel + 1;
|
9978 |
|
|
}
|
9979 |
|
|
}
|
9980 |
|
|
else
|
9981 |
|
|
next_rel = NULL;
|
9982 |
|
|
|
9983 |
|
|
remove_this_rel = FALSE;
|
9984 |
|
|
bytes_to_remove = 0;
|
9985 |
|
|
actual_offset = offset - removed_bytes;
|
9986 |
|
|
size = bfd_get_32 (abfd, &contents[actual_offset + 4]);
|
9987 |
|
|
|
9988 |
|
|
if (is_full_prop_section)
|
9989 |
|
|
flags = bfd_get_32 (abfd, &contents[actual_offset + 8]);
|
9990 |
|
|
else
|
9991 |
|
|
flags = predef_flags;
|
9992 |
|
|
|
9993 |
|
|
if (size == 0
|
9994 |
|
|
&& (flags & XTENSA_PROP_ALIGN) == 0
|
9995 |
|
|
&& (flags & XTENSA_PROP_UNREACHABLE) == 0)
|
9996 |
|
|
{
|
9997 |
|
|
/* Always remove entries with zero size and no alignment. */
|
9998 |
|
|
bytes_to_remove = entry_size;
|
9999 |
|
|
if (offset_rel)
|
10000 |
|
|
remove_this_rel = TRUE;
|
10001 |
|
|
}
|
10002 |
|
|
else if (offset_rel
|
10003 |
|
|
&& ELF32_R_TYPE (offset_rel->r_info) == R_XTENSA_32)
|
10004 |
|
|
{
|
10005 |
|
|
if (last_irel)
|
10006 |
|
|
{
|
10007 |
|
|
flagword old_flags;
|
10008 |
|
|
bfd_vma old_size =
|
10009 |
|
|
bfd_get_32 (abfd, &contents[last_irel->r_offset + 4]);
|
10010 |
|
|
bfd_vma old_address =
|
10011 |
|
|
(last_irel->r_addend
|
10012 |
|
|
+ bfd_get_32 (abfd, &contents[last_irel->r_offset]));
|
10013 |
|
|
bfd_vma new_address =
|
10014 |
|
|
(offset_rel->r_addend
|
10015 |
|
|
+ bfd_get_32 (abfd, &contents[actual_offset]));
|
10016 |
|
|
if (is_full_prop_section)
|
10017 |
|
|
old_flags = bfd_get_32
|
10018 |
|
|
(abfd, &contents[last_irel->r_offset + 8]);
|
10019 |
|
|
else
|
10020 |
|
|
old_flags = predef_flags;
|
10021 |
|
|
|
10022 |
|
|
if ((ELF32_R_SYM (offset_rel->r_info)
|
10023 |
|
|
== ELF32_R_SYM (last_irel->r_info))
|
10024 |
|
|
&& old_address + old_size == new_address
|
10025 |
|
|
&& old_flags == flags
|
10026 |
|
|
&& (old_flags & XTENSA_PROP_INSN_BRANCH_TARGET) == 0
|
10027 |
|
|
&& (old_flags & XTENSA_PROP_INSN_LOOP_TARGET) == 0)
|
10028 |
|
|
{
|
10029 |
|
|
/* Fix the old size. */
|
10030 |
|
|
bfd_put_32 (abfd, old_size + size,
|
10031 |
|
|
&contents[last_irel->r_offset + 4]);
|
10032 |
|
|
bytes_to_remove = entry_size;
|
10033 |
|
|
remove_this_rel = TRUE;
|
10034 |
|
|
}
|
10035 |
|
|
else
|
10036 |
|
|
last_irel = offset_rel;
|
10037 |
|
|
}
|
10038 |
|
|
else
|
10039 |
|
|
last_irel = offset_rel;
|
10040 |
|
|
}
|
10041 |
|
|
|
10042 |
|
|
if (remove_this_rel)
|
10043 |
|
|
{
|
10044 |
|
|
offset_rel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
|
10045 |
|
|
offset_rel->r_offset = 0;
|
10046 |
|
|
}
|
10047 |
|
|
|
10048 |
|
|
if (bytes_to_remove != 0)
|
10049 |
|
|
{
|
10050 |
|
|
removed_bytes += bytes_to_remove;
|
10051 |
|
|
if (offset + bytes_to_remove < sec->size)
|
10052 |
|
|
memmove (&contents[actual_offset],
|
10053 |
|
|
&contents[actual_offset + bytes_to_remove],
|
10054 |
|
|
sec->size - offset - bytes_to_remove);
|
10055 |
|
|
}
|
10056 |
|
|
}
|
10057 |
|
|
|
10058 |
|
|
if (removed_bytes)
|
10059 |
|
|
{
|
10060 |
|
|
/* Fix up any extra relocations on the last entry. */
|
10061 |
|
|
for (irel = next_rel; irel < rel_end; irel++)
|
10062 |
|
|
irel->r_offset -= removed_bytes;
|
10063 |
|
|
|
10064 |
|
|
/* Clear the removed bytes. */
|
10065 |
|
|
memset (&contents[sec->size - removed_bytes], 0, removed_bytes);
|
10066 |
|
|
|
10067 |
|
|
if (sec->rawsize == 0)
|
10068 |
|
|
sec->rawsize = sec->size;
|
10069 |
|
|
sec->size -= removed_bytes;
|
10070 |
|
|
|
10071 |
|
|
if (xtensa_is_littable_section (sec))
|
10072 |
|
|
{
|
10073 |
|
|
asection *sgotloc = elf_xtensa_hash_table (link_info)->sgotloc;
|
10074 |
|
|
if (sgotloc)
|
10075 |
|
|
sgotloc->size -= removed_bytes;
|
10076 |
|
|
}
|
10077 |
|
|
}
|
10078 |
|
|
}
|
10079 |
|
|
|
10080 |
|
|
error_return:
|
10081 |
|
|
release_internal_relocs (sec, internal_relocs);
|
10082 |
|
|
release_contents (sec, contents);
|
10083 |
|
|
return ok;
|
10084 |
|
|
}
|
10085 |
|
|
|
10086 |
|
|
|
10087 |
|
|
/* Third relaxation pass. */
|
10088 |
|
|
|
10089 |
|
|
/* Change symbol values to account for removed literals. */
|
10090 |
|
|
|
10091 |
|
|
bfd_boolean
|
10092 |
|
|
relax_section_symbols (bfd *abfd, asection *sec)
|
10093 |
|
|
{
|
10094 |
|
|
xtensa_relax_info *relax_info;
|
10095 |
|
|
unsigned int sec_shndx;
|
10096 |
|
|
Elf_Internal_Shdr *symtab_hdr;
|
10097 |
|
|
Elf_Internal_Sym *isymbuf;
|
10098 |
|
|
unsigned i, num_syms, num_locals;
|
10099 |
|
|
|
10100 |
|
|
relax_info = get_xtensa_relax_info (sec);
|
10101 |
|
|
BFD_ASSERT (relax_info);
|
10102 |
|
|
|
10103 |
|
|
if (!relax_info->is_relaxable_literal_section
|
10104 |
|
|
&& !relax_info->is_relaxable_asm_section)
|
10105 |
|
|
return TRUE;
|
10106 |
|
|
|
10107 |
|
|
sec_shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
|
10108 |
|
|
|
10109 |
|
|
symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
|
10110 |
|
|
isymbuf = retrieve_local_syms (abfd);
|
10111 |
|
|
|
10112 |
|
|
num_syms = symtab_hdr->sh_size / sizeof (Elf32_External_Sym);
|
10113 |
|
|
num_locals = symtab_hdr->sh_info;
|
10114 |
|
|
|
10115 |
|
|
/* Adjust the local symbols defined in this section. */
|
10116 |
|
|
for (i = 0; i < num_locals; i++)
|
10117 |
|
|
{
|
10118 |
|
|
Elf_Internal_Sym *isym = &isymbuf[i];
|
10119 |
|
|
|
10120 |
|
|
if (isym->st_shndx == sec_shndx)
|
10121 |
|
|
{
|
10122 |
|
|
text_action *act = relax_info->action_list.head;
|
10123 |
|
|
bfd_vma orig_addr = isym->st_value;
|
10124 |
|
|
|
10125 |
|
|
isym->st_value -= removed_by_actions (&act, orig_addr, FALSE);
|
10126 |
|
|
|
10127 |
|
|
if (ELF32_ST_TYPE (isym->st_info) == STT_FUNC)
|
10128 |
|
|
isym->st_size -=
|
10129 |
|
|
removed_by_actions (&act, orig_addr + isym->st_size, FALSE);
|
10130 |
|
|
}
|
10131 |
|
|
}
|
10132 |
|
|
|
10133 |
|
|
/* Now adjust the global symbols defined in this section. */
|
10134 |
|
|
for (i = 0; i < (num_syms - num_locals); i++)
|
10135 |
|
|
{
|
10136 |
|
|
struct elf_link_hash_entry *sym_hash;
|
10137 |
|
|
|
10138 |
|
|
sym_hash = elf_sym_hashes (abfd)[i];
|
10139 |
|
|
|
10140 |
|
|
if (sym_hash->root.type == bfd_link_hash_warning)
|
10141 |
|
|
sym_hash = (struct elf_link_hash_entry *) sym_hash->root.u.i.link;
|
10142 |
|
|
|
10143 |
|
|
if ((sym_hash->root.type == bfd_link_hash_defined
|
10144 |
|
|
|| sym_hash->root.type == bfd_link_hash_defweak)
|
10145 |
|
|
&& sym_hash->root.u.def.section == sec)
|
10146 |
|
|
{
|
10147 |
|
|
text_action *act = relax_info->action_list.head;
|
10148 |
|
|
bfd_vma orig_addr = sym_hash->root.u.def.value;
|
10149 |
|
|
|
10150 |
|
|
sym_hash->root.u.def.value -=
|
10151 |
|
|
removed_by_actions (&act, orig_addr, FALSE);
|
10152 |
|
|
|
10153 |
|
|
if (sym_hash->type == STT_FUNC)
|
10154 |
|
|
sym_hash->size -=
|
10155 |
|
|
removed_by_actions (&act, orig_addr + sym_hash->size, FALSE);
|
10156 |
|
|
}
|
10157 |
|
|
}
|
10158 |
|
|
|
10159 |
|
|
return TRUE;
|
10160 |
|
|
}
|
10161 |
|
|
|
10162 |
|
|
|
10163 |
|
|
/* "Fix" handling functions, called while performing relocations. */
|
10164 |
|
|
|
10165 |
|
|
static bfd_boolean
|
10166 |
|
|
do_fix_for_relocatable_link (Elf_Internal_Rela *rel,
|
10167 |
|
|
bfd *input_bfd,
|
10168 |
|
|
asection *input_section,
|
10169 |
|
|
bfd_byte *contents)
|
10170 |
|
|
{
|
10171 |
|
|
r_reloc r_rel;
|
10172 |
|
|
asection *sec, *old_sec;
|
10173 |
|
|
bfd_vma old_offset;
|
10174 |
|
|
int r_type = ELF32_R_TYPE (rel->r_info);
|
10175 |
|
|
reloc_bfd_fix *fix;
|
10176 |
|
|
|
10177 |
|
|
if (r_type == R_XTENSA_NONE)
|
10178 |
|
|
return TRUE;
|
10179 |
|
|
|
10180 |
|
|
fix = get_bfd_fix (input_section, rel->r_offset, r_type);
|
10181 |
|
|
if (!fix)
|
10182 |
|
|
return TRUE;
|
10183 |
|
|
|
10184 |
|
|
r_reloc_init (&r_rel, input_bfd, rel, contents,
|
10185 |
|
|
bfd_get_section_limit (input_bfd, input_section));
|
10186 |
|
|
old_sec = r_reloc_get_section (&r_rel);
|
10187 |
|
|
old_offset = r_rel.target_offset;
|
10188 |
|
|
|
10189 |
|
|
if (!old_sec || !r_reloc_is_defined (&r_rel))
|
10190 |
|
|
{
|
10191 |
|
|
if (r_type != R_XTENSA_ASM_EXPAND)
|
10192 |
|
|
{
|
10193 |
|
|
(*_bfd_error_handler)
|
10194 |
|
|
(_("%B(%A+0x%lx): unexpected fix for %s relocation"),
|
10195 |
|
|
input_bfd, input_section, rel->r_offset,
|
10196 |
|
|
elf_howto_table[r_type].name);
|
10197 |
|
|
return FALSE;
|
10198 |
|
|
}
|
10199 |
|
|
/* Leave it be. Resolution will happen in a later stage. */
|
10200 |
|
|
}
|
10201 |
|
|
else
|
10202 |
|
|
{
|
10203 |
|
|
sec = fix->target_sec;
|
10204 |
|
|
rel->r_addend += ((sec->output_offset + fix->target_offset)
|
10205 |
|
|
- (old_sec->output_offset + old_offset));
|
10206 |
|
|
}
|
10207 |
|
|
return TRUE;
|
10208 |
|
|
}
|
10209 |
|
|
|
10210 |
|
|
|
10211 |
|
|
static void
|
10212 |
|
|
do_fix_for_final_link (Elf_Internal_Rela *rel,
|
10213 |
|
|
bfd *input_bfd,
|
10214 |
|
|
asection *input_section,
|
10215 |
|
|
bfd_byte *contents,
|
10216 |
|
|
bfd_vma *relocationp)
|
10217 |
|
|
{
|
10218 |
|
|
asection *sec;
|
10219 |
|
|
int r_type = ELF32_R_TYPE (rel->r_info);
|
10220 |
|
|
reloc_bfd_fix *fix;
|
10221 |
|
|
bfd_vma fixup_diff;
|
10222 |
|
|
|
10223 |
|
|
if (r_type == R_XTENSA_NONE)
|
10224 |
|
|
return;
|
10225 |
|
|
|
10226 |
|
|
fix = get_bfd_fix (input_section, rel->r_offset, r_type);
|
10227 |
|
|
if (!fix)
|
10228 |
|
|
return;
|
10229 |
|
|
|
10230 |
|
|
sec = fix->target_sec;
|
10231 |
|
|
|
10232 |
|
|
fixup_diff = rel->r_addend;
|
10233 |
|
|
if (elf_howto_table[fix->src_type].partial_inplace)
|
10234 |
|
|
{
|
10235 |
|
|
bfd_vma inplace_val;
|
10236 |
|
|
BFD_ASSERT (fix->src_offset
|
10237 |
|
|
< bfd_get_section_limit (input_bfd, input_section));
|
10238 |
|
|
inplace_val = bfd_get_32 (input_bfd, &contents[fix->src_offset]);
|
10239 |
|
|
fixup_diff += inplace_val;
|
10240 |
|
|
}
|
10241 |
|
|
|
10242 |
|
|
*relocationp = (sec->output_section->vma
|
10243 |
|
|
+ sec->output_offset
|
10244 |
|
|
+ fix->target_offset - fixup_diff);
|
10245 |
|
|
}
|
10246 |
|
|
|
10247 |
|
|
|
10248 |
|
|
/* Miscellaneous utility functions.... */
|
10249 |
|
|
|
10250 |
|
|
static asection *
|
10251 |
|
|
elf_xtensa_get_plt_section (struct bfd_link_info *info, int chunk)
|
10252 |
|
|
{
|
10253 |
|
|
struct elf_xtensa_link_hash_table *htab;
|
10254 |
|
|
bfd *dynobj;
|
10255 |
|
|
char plt_name[10];
|
10256 |
|
|
|
10257 |
|
|
if (chunk == 0)
|
10258 |
|
|
{
|
10259 |
|
|
htab = elf_xtensa_hash_table (info);
|
10260 |
|
|
if (htab == NULL)
|
10261 |
|
|
return NULL;
|
10262 |
|
|
|
10263 |
|
|
return htab->splt;
|
10264 |
|
|
}
|
10265 |
|
|
|
10266 |
|
|
dynobj = elf_hash_table (info)->dynobj;
|
10267 |
|
|
sprintf (plt_name, ".plt.%u", chunk);
|
10268 |
|
|
return bfd_get_section_by_name (dynobj, plt_name);
|
10269 |
|
|
}
|
10270 |
|
|
|
10271 |
|
|
|
10272 |
|
|
static asection *
|
10273 |
|
|
elf_xtensa_get_gotplt_section (struct bfd_link_info *info, int chunk)
|
10274 |
|
|
{
|
10275 |
|
|
struct elf_xtensa_link_hash_table *htab;
|
10276 |
|
|
bfd *dynobj;
|
10277 |
|
|
char got_name[14];
|
10278 |
|
|
|
10279 |
|
|
if (chunk == 0)
|
10280 |
|
|
{
|
10281 |
|
|
htab = elf_xtensa_hash_table (info);
|
10282 |
|
|
if (htab == NULL)
|
10283 |
|
|
return NULL;
|
10284 |
|
|
return htab->sgotplt;
|
10285 |
|
|
}
|
10286 |
|
|
|
10287 |
|
|
dynobj = elf_hash_table (info)->dynobj;
|
10288 |
|
|
sprintf (got_name, ".got.plt.%u", chunk);
|
10289 |
|
|
return bfd_get_section_by_name (dynobj, got_name);
|
10290 |
|
|
}
|
10291 |
|
|
|
10292 |
|
|
|
10293 |
|
|
/* Get the input section for a given symbol index.
|
10294 |
|
|
If the symbol is:
|
10295 |
|
|
. a section symbol, return the section;
|
10296 |
|
|
. a common symbol, return the common section;
|
10297 |
|
|
. an undefined symbol, return the undefined section;
|
10298 |
|
|
. an indirect symbol, follow the links;
|
10299 |
|
|
. an absolute value, return the absolute section. */
|
10300 |
|
|
|
10301 |
|
|
static asection *
|
10302 |
|
|
get_elf_r_symndx_section (bfd *abfd, unsigned long r_symndx)
|
10303 |
|
|
{
|
10304 |
|
|
Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
|
10305 |
|
|
asection *target_sec = NULL;
|
10306 |
|
|
if (r_symndx < symtab_hdr->sh_info)
|
10307 |
|
|
{
|
10308 |
|
|
Elf_Internal_Sym *isymbuf;
|
10309 |
|
|
unsigned int section_index;
|
10310 |
|
|
|
10311 |
|
|
isymbuf = retrieve_local_syms (abfd);
|
10312 |
|
|
section_index = isymbuf[r_symndx].st_shndx;
|
10313 |
|
|
|
10314 |
|
|
if (section_index == SHN_UNDEF)
|
10315 |
|
|
target_sec = bfd_und_section_ptr;
|
10316 |
|
|
else if (section_index == SHN_ABS)
|
10317 |
|
|
target_sec = bfd_abs_section_ptr;
|
10318 |
|
|
else if (section_index == SHN_COMMON)
|
10319 |
|
|
target_sec = bfd_com_section_ptr;
|
10320 |
|
|
else
|
10321 |
|
|
target_sec = bfd_section_from_elf_index (abfd, section_index);
|
10322 |
|
|
}
|
10323 |
|
|
else
|
10324 |
|
|
{
|
10325 |
|
|
unsigned long indx = r_symndx - symtab_hdr->sh_info;
|
10326 |
|
|
struct elf_link_hash_entry *h = elf_sym_hashes (abfd)[indx];
|
10327 |
|
|
|
10328 |
|
|
while (h->root.type == bfd_link_hash_indirect
|
10329 |
|
|
|| h->root.type == bfd_link_hash_warning)
|
10330 |
|
|
h = (struct elf_link_hash_entry *) h->root.u.i.link;
|
10331 |
|
|
|
10332 |
|
|
switch (h->root.type)
|
10333 |
|
|
{
|
10334 |
|
|
case bfd_link_hash_defined:
|
10335 |
|
|
case bfd_link_hash_defweak:
|
10336 |
|
|
target_sec = h->root.u.def.section;
|
10337 |
|
|
break;
|
10338 |
|
|
case bfd_link_hash_common:
|
10339 |
|
|
target_sec = bfd_com_section_ptr;
|
10340 |
|
|
break;
|
10341 |
|
|
case bfd_link_hash_undefined:
|
10342 |
|
|
case bfd_link_hash_undefweak:
|
10343 |
|
|
target_sec = bfd_und_section_ptr;
|
10344 |
|
|
break;
|
10345 |
|
|
default: /* New indirect warning. */
|
10346 |
|
|
target_sec = bfd_und_section_ptr;
|
10347 |
|
|
break;
|
10348 |
|
|
}
|
10349 |
|
|
}
|
10350 |
|
|
return target_sec;
|
10351 |
|
|
}
|
10352 |
|
|
|
10353 |
|
|
|
10354 |
|
|
static struct elf_link_hash_entry *
|
10355 |
|
|
get_elf_r_symndx_hash_entry (bfd *abfd, unsigned long r_symndx)
|
10356 |
|
|
{
|
10357 |
|
|
unsigned long indx;
|
10358 |
|
|
struct elf_link_hash_entry *h;
|
10359 |
|
|
Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
|
10360 |
|
|
|
10361 |
|
|
if (r_symndx < symtab_hdr->sh_info)
|
10362 |
|
|
return NULL;
|
10363 |
|
|
|
10364 |
|
|
indx = r_symndx - symtab_hdr->sh_info;
|
10365 |
|
|
h = elf_sym_hashes (abfd)[indx];
|
10366 |
|
|
while (h->root.type == bfd_link_hash_indirect
|
10367 |
|
|
|| h->root.type == bfd_link_hash_warning)
|
10368 |
|
|
h = (struct elf_link_hash_entry *) h->root.u.i.link;
|
10369 |
|
|
return h;
|
10370 |
|
|
}
|
10371 |
|
|
|
10372 |
|
|
|
10373 |
|
|
/* Get the section-relative offset for a symbol number. */
|
10374 |
|
|
|
10375 |
|
|
static bfd_vma
|
10376 |
|
|
get_elf_r_symndx_offset (bfd *abfd, unsigned long r_symndx)
|
10377 |
|
|
{
|
10378 |
|
|
Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
|
10379 |
|
|
bfd_vma offset = 0;
|
10380 |
|
|
|
10381 |
|
|
if (r_symndx < symtab_hdr->sh_info)
|
10382 |
|
|
{
|
10383 |
|
|
Elf_Internal_Sym *isymbuf;
|
10384 |
|
|
isymbuf = retrieve_local_syms (abfd);
|
10385 |
|
|
offset = isymbuf[r_symndx].st_value;
|
10386 |
|
|
}
|
10387 |
|
|
else
|
10388 |
|
|
{
|
10389 |
|
|
unsigned long indx = r_symndx - symtab_hdr->sh_info;
|
10390 |
|
|
struct elf_link_hash_entry *h =
|
10391 |
|
|
elf_sym_hashes (abfd)[indx];
|
10392 |
|
|
|
10393 |
|
|
while (h->root.type == bfd_link_hash_indirect
|
10394 |
|
|
|| h->root.type == bfd_link_hash_warning)
|
10395 |
|
|
h = (struct elf_link_hash_entry *) h->root.u.i.link;
|
10396 |
|
|
if (h->root.type == bfd_link_hash_defined
|
10397 |
|
|
|| h->root.type == bfd_link_hash_defweak)
|
10398 |
|
|
offset = h->root.u.def.value;
|
10399 |
|
|
}
|
10400 |
|
|
return offset;
|
10401 |
|
|
}
|
10402 |
|
|
|
10403 |
|
|
|
10404 |
|
|
static bfd_boolean
|
10405 |
|
|
is_reloc_sym_weak (bfd *abfd, Elf_Internal_Rela *rel)
|
10406 |
|
|
{
|
10407 |
|
|
unsigned long r_symndx = ELF32_R_SYM (rel->r_info);
|
10408 |
|
|
struct elf_link_hash_entry *h;
|
10409 |
|
|
|
10410 |
|
|
h = get_elf_r_symndx_hash_entry (abfd, r_symndx);
|
10411 |
|
|
if (h && h->root.type == bfd_link_hash_defweak)
|
10412 |
|
|
return TRUE;
|
10413 |
|
|
return FALSE;
|
10414 |
|
|
}
|
10415 |
|
|
|
10416 |
|
|
|
10417 |
|
|
static bfd_boolean
|
10418 |
|
|
pcrel_reloc_fits (xtensa_opcode opc,
|
10419 |
|
|
int opnd,
|
10420 |
|
|
bfd_vma self_address,
|
10421 |
|
|
bfd_vma dest_address)
|
10422 |
|
|
{
|
10423 |
|
|
xtensa_isa isa = xtensa_default_isa;
|
10424 |
|
|
uint32 valp = dest_address;
|
10425 |
|
|
if (xtensa_operand_do_reloc (isa, opc, opnd, &valp, self_address)
|
10426 |
|
|
|| xtensa_operand_encode (isa, opc, opnd, &valp))
|
10427 |
|
|
return FALSE;
|
10428 |
|
|
return TRUE;
|
10429 |
|
|
}
|
10430 |
|
|
|
10431 |
|
|
|
10432 |
|
|
static bfd_boolean
|
10433 |
|
|
xtensa_is_property_section (asection *sec)
|
10434 |
|
|
{
|
10435 |
|
|
if (xtensa_is_insntable_section (sec)
|
10436 |
|
|
|| xtensa_is_littable_section (sec)
|
10437 |
|
|
|| xtensa_is_proptable_section (sec))
|
10438 |
|
|
return TRUE;
|
10439 |
|
|
|
10440 |
|
|
return FALSE;
|
10441 |
|
|
}
|
10442 |
|
|
|
10443 |
|
|
|
10444 |
|
|
static bfd_boolean
|
10445 |
|
|
xtensa_is_insntable_section (asection *sec)
|
10446 |
|
|
{
|
10447 |
|
|
if (CONST_STRNEQ (sec->name, XTENSA_INSN_SEC_NAME)
|
10448 |
|
|
|| CONST_STRNEQ (sec->name, ".gnu.linkonce.x."))
|
10449 |
|
|
return TRUE;
|
10450 |
|
|
|
10451 |
|
|
return FALSE;
|
10452 |
|
|
}
|
10453 |
|
|
|
10454 |
|
|
|
10455 |
|
|
static bfd_boolean
|
10456 |
|
|
xtensa_is_littable_section (asection *sec)
|
10457 |
|
|
{
|
10458 |
|
|
if (CONST_STRNEQ (sec->name, XTENSA_LIT_SEC_NAME)
|
10459 |
|
|
|| CONST_STRNEQ (sec->name, ".gnu.linkonce.p."))
|
10460 |
|
|
return TRUE;
|
10461 |
|
|
|
10462 |
|
|
return FALSE;
|
10463 |
|
|
}
|
10464 |
|
|
|
10465 |
|
|
|
10466 |
|
|
static bfd_boolean
|
10467 |
|
|
xtensa_is_proptable_section (asection *sec)
|
10468 |
|
|
{
|
10469 |
|
|
if (CONST_STRNEQ (sec->name, XTENSA_PROP_SEC_NAME)
|
10470 |
|
|
|| CONST_STRNEQ (sec->name, ".gnu.linkonce.prop."))
|
10471 |
|
|
return TRUE;
|
10472 |
|
|
|
10473 |
|
|
return FALSE;
|
10474 |
|
|
}
|
10475 |
|
|
|
10476 |
|
|
|
10477 |
|
|
static int
|
10478 |
|
|
internal_reloc_compare (const void *ap, const void *bp)
|
10479 |
|
|
{
|
10480 |
|
|
const Elf_Internal_Rela *a = (const Elf_Internal_Rela *) ap;
|
10481 |
|
|
const Elf_Internal_Rela *b = (const Elf_Internal_Rela *) bp;
|
10482 |
|
|
|
10483 |
|
|
if (a->r_offset != b->r_offset)
|
10484 |
|
|
return (a->r_offset - b->r_offset);
|
10485 |
|
|
|
10486 |
|
|
/* We don't need to sort on these criteria for correctness,
|
10487 |
|
|
but enforcing a more strict ordering prevents unstable qsort
|
10488 |
|
|
from behaving differently with different implementations.
|
10489 |
|
|
Without the code below we get correct but different results
|
10490 |
|
|
on Solaris 2.7 and 2.8. We would like to always produce the
|
10491 |
|
|
same results no matter the host. */
|
10492 |
|
|
|
10493 |
|
|
if (a->r_info != b->r_info)
|
10494 |
|
|
return (a->r_info - b->r_info);
|
10495 |
|
|
|
10496 |
|
|
return (a->r_addend - b->r_addend);
|
10497 |
|
|
}
|
10498 |
|
|
|
10499 |
|
|
|
10500 |
|
|
static int
|
10501 |
|
|
internal_reloc_matches (const void *ap, const void *bp)
|
10502 |
|
|
{
|
10503 |
|
|
const Elf_Internal_Rela *a = (const Elf_Internal_Rela *) ap;
|
10504 |
|
|
const Elf_Internal_Rela *b = (const Elf_Internal_Rela *) bp;
|
10505 |
|
|
|
10506 |
|
|
/* Check if one entry overlaps with the other; this shouldn't happen
|
10507 |
|
|
except when searching for a match. */
|
10508 |
|
|
return (a->r_offset - b->r_offset);
|
10509 |
|
|
}
|
10510 |
|
|
|
10511 |
|
|
|
10512 |
|
|
/* Predicate function used to look up a section in a particular group. */
|
10513 |
|
|
|
10514 |
|
|
static bfd_boolean
|
10515 |
|
|
match_section_group (bfd *abfd ATTRIBUTE_UNUSED, asection *sec, void *inf)
|
10516 |
|
|
{
|
10517 |
|
|
const char *gname = inf;
|
10518 |
|
|
const char *group_name = elf_group_name (sec);
|
10519 |
|
|
|
10520 |
|
|
return (group_name == gname
|
10521 |
|
|
|| (group_name != NULL
|
10522 |
|
|
&& gname != NULL
|
10523 |
|
|
&& strcmp (group_name, gname) == 0));
|
10524 |
|
|
}
|
10525 |
|
|
|
10526 |
|
|
|
10527 |
|
|
static int linkonce_len = sizeof (".gnu.linkonce.") - 1;
|
10528 |
|
|
|
10529 |
|
|
static char *
|
10530 |
|
|
xtensa_property_section_name (asection *sec, const char *base_name)
|
10531 |
|
|
{
|
10532 |
|
|
const char *suffix, *group_name;
|
10533 |
|
|
char *prop_sec_name;
|
10534 |
|
|
|
10535 |
|
|
group_name = elf_group_name (sec);
|
10536 |
|
|
if (group_name)
|
10537 |
|
|
{
|
10538 |
|
|
suffix = strrchr (sec->name, '.');
|
10539 |
|
|
if (suffix == sec->name)
|
10540 |
|
|
suffix = 0;
|
10541 |
|
|
prop_sec_name = (char *) bfd_malloc (strlen (base_name) + 1
|
10542 |
|
|
+ (suffix ? strlen (suffix) : 0));
|
10543 |
|
|
strcpy (prop_sec_name, base_name);
|
10544 |
|
|
if (suffix)
|
10545 |
|
|
strcat (prop_sec_name, suffix);
|
10546 |
|
|
}
|
10547 |
|
|
else if (strncmp (sec->name, ".gnu.linkonce.", linkonce_len) == 0)
|
10548 |
|
|
{
|
10549 |
|
|
char *linkonce_kind = 0;
|
10550 |
|
|
|
10551 |
|
|
if (strcmp (base_name, XTENSA_INSN_SEC_NAME) == 0)
|
10552 |
|
|
linkonce_kind = "x.";
|
10553 |
|
|
else if (strcmp (base_name, XTENSA_LIT_SEC_NAME) == 0)
|
10554 |
|
|
linkonce_kind = "p.";
|
10555 |
|
|
else if (strcmp (base_name, XTENSA_PROP_SEC_NAME) == 0)
|
10556 |
|
|
linkonce_kind = "prop.";
|
10557 |
|
|
else
|
10558 |
|
|
abort ();
|
10559 |
|
|
|
10560 |
|
|
prop_sec_name = (char *) bfd_malloc (strlen (sec->name)
|
10561 |
|
|
+ strlen (linkonce_kind) + 1);
|
10562 |
|
|
memcpy (prop_sec_name, ".gnu.linkonce.", linkonce_len);
|
10563 |
|
|
strcpy (prop_sec_name + linkonce_len, linkonce_kind);
|
10564 |
|
|
|
10565 |
|
|
suffix = sec->name + linkonce_len;
|
10566 |
|
|
/* For backward compatibility, replace "t." instead of inserting
|
10567 |
|
|
the new linkonce_kind (but not for "prop" sections). */
|
10568 |
|
|
if (CONST_STRNEQ (suffix, "t.") && linkonce_kind[1] == '.')
|
10569 |
|
|
suffix += 2;
|
10570 |
|
|
strcat (prop_sec_name + linkonce_len, suffix);
|
10571 |
|
|
}
|
10572 |
|
|
else
|
10573 |
|
|
prop_sec_name = strdup (base_name);
|
10574 |
|
|
|
10575 |
|
|
return prop_sec_name;
|
10576 |
|
|
}
|
10577 |
|
|
|
10578 |
|
|
|
10579 |
|
|
static asection *
|
10580 |
|
|
xtensa_get_property_section (asection *sec, const char *base_name)
|
10581 |
|
|
{
|
10582 |
|
|
char *prop_sec_name;
|
10583 |
|
|
asection *prop_sec;
|
10584 |
|
|
|
10585 |
|
|
prop_sec_name = xtensa_property_section_name (sec, base_name);
|
10586 |
|
|
prop_sec = bfd_get_section_by_name_if (sec->owner, prop_sec_name,
|
10587 |
|
|
match_section_group,
|
10588 |
|
|
(void *) elf_group_name (sec));
|
10589 |
|
|
free (prop_sec_name);
|
10590 |
|
|
return prop_sec;
|
10591 |
|
|
}
|
10592 |
|
|
|
10593 |
|
|
|
10594 |
|
|
asection *
|
10595 |
|
|
xtensa_make_property_section (asection *sec, const char *base_name)
|
10596 |
|
|
{
|
10597 |
|
|
char *prop_sec_name;
|
10598 |
|
|
asection *prop_sec;
|
10599 |
|
|
|
10600 |
|
|
/* Check if the section already exists. */
|
10601 |
|
|
prop_sec_name = xtensa_property_section_name (sec, base_name);
|
10602 |
|
|
prop_sec = bfd_get_section_by_name_if (sec->owner, prop_sec_name,
|
10603 |
|
|
match_section_group,
|
10604 |
|
|
(void *) elf_group_name (sec));
|
10605 |
|
|
/* If not, create it. */
|
10606 |
|
|
if (! prop_sec)
|
10607 |
|
|
{
|
10608 |
|
|
flagword flags = (SEC_RELOC | SEC_HAS_CONTENTS | SEC_READONLY);
|
10609 |
|
|
flags |= (bfd_get_section_flags (sec->owner, sec)
|
10610 |
|
|
& (SEC_LINK_ONCE | SEC_LINK_DUPLICATES));
|
10611 |
|
|
|
10612 |
|
|
prop_sec = bfd_make_section_anyway_with_flags
|
10613 |
|
|
(sec->owner, strdup (prop_sec_name), flags);
|
10614 |
|
|
if (! prop_sec)
|
10615 |
|
|
return 0;
|
10616 |
|
|
|
10617 |
|
|
elf_group_name (prop_sec) = elf_group_name (sec);
|
10618 |
|
|
}
|
10619 |
|
|
|
10620 |
|
|
free (prop_sec_name);
|
10621 |
|
|
return prop_sec;
|
10622 |
|
|
}
|
10623 |
|
|
|
10624 |
|
|
|
10625 |
|
|
flagword
|
10626 |
|
|
xtensa_get_property_predef_flags (asection *sec)
|
10627 |
|
|
{
|
10628 |
|
|
if (xtensa_is_insntable_section (sec))
|
10629 |
|
|
return (XTENSA_PROP_INSN
|
10630 |
|
|
| XTENSA_PROP_NO_TRANSFORM
|
10631 |
|
|
| XTENSA_PROP_INSN_NO_REORDER);
|
10632 |
|
|
|
10633 |
|
|
if (xtensa_is_littable_section (sec))
|
10634 |
|
|
return (XTENSA_PROP_LITERAL
|
10635 |
|
|
| XTENSA_PROP_NO_TRANSFORM
|
10636 |
|
|
| XTENSA_PROP_INSN_NO_REORDER);
|
10637 |
|
|
|
10638 |
|
|
return 0;
|
10639 |
|
|
}
|
10640 |
|
|
|
10641 |
|
|
|
10642 |
|
|
/* Other functions called directly by the linker. */
|
10643 |
|
|
|
10644 |
|
|
bfd_boolean
|
10645 |
|
|
xtensa_callback_required_dependence (bfd *abfd,
|
10646 |
|
|
asection *sec,
|
10647 |
|
|
struct bfd_link_info *link_info,
|
10648 |
|
|
deps_callback_t callback,
|
10649 |
|
|
void *closure)
|
10650 |
|
|
{
|
10651 |
|
|
Elf_Internal_Rela *internal_relocs;
|
10652 |
|
|
bfd_byte *contents;
|
10653 |
|
|
unsigned i;
|
10654 |
|
|
bfd_boolean ok = TRUE;
|
10655 |
|
|
bfd_size_type sec_size;
|
10656 |
|
|
|
10657 |
|
|
sec_size = bfd_get_section_limit (abfd, sec);
|
10658 |
|
|
|
10659 |
|
|
/* ".plt*" sections have no explicit relocations but they contain L32R
|
10660 |
|
|
instructions that reference the corresponding ".got.plt*" sections. */
|
10661 |
|
|
if ((sec->flags & SEC_LINKER_CREATED) != 0
|
10662 |
|
|
&& CONST_STRNEQ (sec->name, ".plt"))
|
10663 |
|
|
{
|
10664 |
|
|
asection *sgotplt;
|
10665 |
|
|
|
10666 |
|
|
/* Find the corresponding ".got.plt*" section. */
|
10667 |
|
|
if (sec->name[4] == '\0')
|
10668 |
|
|
sgotplt = bfd_get_section_by_name (sec->owner, ".got.plt");
|
10669 |
|
|
else
|
10670 |
|
|
{
|
10671 |
|
|
char got_name[14];
|
10672 |
|
|
int chunk = 0;
|
10673 |
|
|
|
10674 |
|
|
BFD_ASSERT (sec->name[4] == '.');
|
10675 |
|
|
chunk = strtol (&sec->name[5], NULL, 10);
|
10676 |
|
|
|
10677 |
|
|
sprintf (got_name, ".got.plt.%u", chunk);
|
10678 |
|
|
sgotplt = bfd_get_section_by_name (sec->owner, got_name);
|
10679 |
|
|
}
|
10680 |
|
|
BFD_ASSERT (sgotplt);
|
10681 |
|
|
|
10682 |
|
|
/* Assume worst-case offsets: L32R at the very end of the ".plt"
|
10683 |
|
|
section referencing a literal at the very beginning of
|
10684 |
|
|
".got.plt". This is very close to the real dependence, anyway. */
|
10685 |
|
|
(*callback) (sec, sec_size, sgotplt, 0, closure);
|
10686 |
|
|
}
|
10687 |
|
|
|
10688 |
|
|
/* Only ELF files are supported for Xtensa. Check here to avoid a segfault
|
10689 |
|
|
when building uclibc, which runs "ld -b binary /dev/null". */
|
10690 |
|
|
if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
|
10691 |
|
|
return ok;
|
10692 |
|
|
|
10693 |
|
|
internal_relocs = retrieve_internal_relocs (abfd, sec,
|
10694 |
|
|
link_info->keep_memory);
|
10695 |
|
|
if (internal_relocs == NULL
|
10696 |
|
|
|| sec->reloc_count == 0)
|
10697 |
|
|
return ok;
|
10698 |
|
|
|
10699 |
|
|
/* Cache the contents for the duration of this scan. */
|
10700 |
|
|
contents = retrieve_contents (abfd, sec, link_info->keep_memory);
|
10701 |
|
|
if (contents == NULL && sec_size != 0)
|
10702 |
|
|
{
|
10703 |
|
|
ok = FALSE;
|
10704 |
|
|
goto error_return;
|
10705 |
|
|
}
|
10706 |
|
|
|
10707 |
|
|
if (!xtensa_default_isa)
|
10708 |
|
|
xtensa_default_isa = xtensa_isa_init (0, 0);
|
10709 |
|
|
|
10710 |
|
|
for (i = 0; i < sec->reloc_count; i++)
|
10711 |
|
|
{
|
10712 |
|
|
Elf_Internal_Rela *irel = &internal_relocs[i];
|
10713 |
|
|
if (is_l32r_relocation (abfd, sec, contents, irel))
|
10714 |
|
|
{
|
10715 |
|
|
r_reloc l32r_rel;
|
10716 |
|
|
asection *target_sec;
|
10717 |
|
|
bfd_vma target_offset;
|
10718 |
|
|
|
10719 |
|
|
r_reloc_init (&l32r_rel, abfd, irel, contents, sec_size);
|
10720 |
|
|
target_sec = NULL;
|
10721 |
|
|
target_offset = 0;
|
10722 |
|
|
/* L32Rs must be local to the input file. */
|
10723 |
|
|
if (r_reloc_is_defined (&l32r_rel))
|
10724 |
|
|
{
|
10725 |
|
|
target_sec = r_reloc_get_section (&l32r_rel);
|
10726 |
|
|
target_offset = l32r_rel.target_offset;
|
10727 |
|
|
}
|
10728 |
|
|
(*callback) (sec, irel->r_offset, target_sec, target_offset,
|
10729 |
|
|
closure);
|
10730 |
|
|
}
|
10731 |
|
|
}
|
10732 |
|
|
|
10733 |
|
|
error_return:
|
10734 |
|
|
release_internal_relocs (sec, internal_relocs);
|
10735 |
|
|
release_contents (sec, contents);
|
10736 |
|
|
return ok;
|
10737 |
|
|
}
|
10738 |
|
|
|
10739 |
|
|
/* The default literal sections should always be marked as "code" (i.e.,
|
10740 |
|
|
SHF_EXECINSTR). This is particularly important for the Linux kernel
|
10741 |
|
|
module loader so that the literals are not placed after the text. */
|
10742 |
|
|
static const struct bfd_elf_special_section elf_xtensa_special_sections[] =
|
10743 |
|
|
{
|
10744 |
|
|
{ STRING_COMMA_LEN (".fini.literal"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
|
10745 |
|
|
{ STRING_COMMA_LEN (".init.literal"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
|
10746 |
|
|
{ STRING_COMMA_LEN (".literal"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
|
10747 |
|
|
{ STRING_COMMA_LEN (".xtensa.info"), 0, SHT_NOTE, 0 },
|
10748 |
|
|
{ NULL, 0, 0, 0, 0 }
|
10749 |
|
|
};
|
10750 |
|
|
|
10751 |
|
|
#ifndef ELF_ARCH
|
10752 |
|
|
#define TARGET_LITTLE_SYM bfd_elf32_xtensa_le_vec
|
10753 |
|
|
#define TARGET_LITTLE_NAME "elf32-xtensa-le"
|
10754 |
|
|
#define TARGET_BIG_SYM bfd_elf32_xtensa_be_vec
|
10755 |
|
|
#define TARGET_BIG_NAME "elf32-xtensa-be"
|
10756 |
|
|
#define ELF_ARCH bfd_arch_xtensa
|
10757 |
|
|
|
10758 |
|
|
#define ELF_MACHINE_CODE EM_XTENSA
|
10759 |
|
|
#define ELF_MACHINE_ALT1 EM_XTENSA_OLD
|
10760 |
|
|
|
10761 |
|
|
#if XCHAL_HAVE_MMU
|
10762 |
|
|
#define ELF_MAXPAGESIZE (1 << XCHAL_MMU_MIN_PTE_PAGE_SIZE)
|
10763 |
|
|
#else /* !XCHAL_HAVE_MMU */
|
10764 |
|
|
#define ELF_MAXPAGESIZE 1
|
10765 |
|
|
#endif /* !XCHAL_HAVE_MMU */
|
10766 |
|
|
#endif /* ELF_ARCH */
|
10767 |
|
|
|
10768 |
|
|
#define elf_backend_can_gc_sections 1
|
10769 |
|
|
#define elf_backend_can_refcount 1
|
10770 |
|
|
#define elf_backend_plt_readonly 1
|
10771 |
|
|
#define elf_backend_got_header_size 4
|
10772 |
|
|
#define elf_backend_want_dynbss 0
|
10773 |
|
|
#define elf_backend_want_got_plt 1
|
10774 |
|
|
|
10775 |
|
|
#define elf_info_to_howto elf_xtensa_info_to_howto_rela
|
10776 |
|
|
|
10777 |
|
|
#define bfd_elf32_mkobject elf_xtensa_mkobject
|
10778 |
|
|
|
10779 |
|
|
#define bfd_elf32_bfd_merge_private_bfd_data elf_xtensa_merge_private_bfd_data
|
10780 |
|
|
#define bfd_elf32_new_section_hook elf_xtensa_new_section_hook
|
10781 |
|
|
#define bfd_elf32_bfd_print_private_bfd_data elf_xtensa_print_private_bfd_data
|
10782 |
|
|
#define bfd_elf32_bfd_relax_section elf_xtensa_relax_section
|
10783 |
|
|
#define bfd_elf32_bfd_reloc_type_lookup elf_xtensa_reloc_type_lookup
|
10784 |
|
|
#define bfd_elf32_bfd_reloc_name_lookup \
|
10785 |
|
|
elf_xtensa_reloc_name_lookup
|
10786 |
|
|
#define bfd_elf32_bfd_set_private_flags elf_xtensa_set_private_flags
|
10787 |
|
|
#define bfd_elf32_bfd_link_hash_table_create elf_xtensa_link_hash_table_create
|
10788 |
|
|
|
10789 |
|
|
#define elf_backend_adjust_dynamic_symbol elf_xtensa_adjust_dynamic_symbol
|
10790 |
|
|
#define elf_backend_check_relocs elf_xtensa_check_relocs
|
10791 |
|
|
#define elf_backend_create_dynamic_sections elf_xtensa_create_dynamic_sections
|
10792 |
|
|
#define elf_backend_discard_info elf_xtensa_discard_info
|
10793 |
|
|
#define elf_backend_ignore_discarded_relocs elf_xtensa_ignore_discarded_relocs
|
10794 |
|
|
#define elf_backend_final_write_processing elf_xtensa_final_write_processing
|
10795 |
|
|
#define elf_backend_finish_dynamic_sections elf_xtensa_finish_dynamic_sections
|
10796 |
|
|
#define elf_backend_finish_dynamic_symbol elf_xtensa_finish_dynamic_symbol
|
10797 |
|
|
#define elf_backend_gc_mark_hook elf_xtensa_gc_mark_hook
|
10798 |
|
|
#define elf_backend_gc_sweep_hook elf_xtensa_gc_sweep_hook
|
10799 |
|
|
#define elf_backend_grok_prstatus elf_xtensa_grok_prstatus
|
10800 |
|
|
#define elf_backend_grok_psinfo elf_xtensa_grok_psinfo
|
10801 |
|
|
#define elf_backend_hide_symbol elf_xtensa_hide_symbol
|
10802 |
|
|
#define elf_backend_object_p elf_xtensa_object_p
|
10803 |
|
|
#define elf_backend_reloc_type_class elf_xtensa_reloc_type_class
|
10804 |
|
|
#define elf_backend_relocate_section elf_xtensa_relocate_section
|
10805 |
|
|
#define elf_backend_size_dynamic_sections elf_xtensa_size_dynamic_sections
|
10806 |
|
|
#define elf_backend_always_size_sections elf_xtensa_always_size_sections
|
10807 |
|
|
#define elf_backend_omit_section_dynsym \
|
10808 |
|
|
((bfd_boolean (*) (bfd *, struct bfd_link_info *, asection *)) bfd_true)
|
10809 |
|
|
#define elf_backend_special_sections elf_xtensa_special_sections
|
10810 |
|
|
#define elf_backend_action_discarded elf_xtensa_action_discarded
|
10811 |
|
|
#define elf_backend_copy_indirect_symbol elf_xtensa_copy_indirect_symbol
|
10812 |
|
|
|
10813 |
|
|
#include "elf32-target.h"
|