OpenCores
URL https://opencores.org/ocsvn/openrisc/openrisc/trunk

Subversion Repositories openrisc

[/] [openrisc/] [trunk/] [gnu-old/] [gdb-7.1/] [gdb/] [frv-tdep.c] - Blame information for rev 853

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 227 jeremybenn
/* Target-dependent code for the Fujitsu FR-V, for GDB, the GNU Debugger.
2
 
3
   Copyright (C) 2002, 2003, 2004, 2005, 2007, 2008, 2009, 2010
4
   Free Software Foundation, Inc.
5
 
6
   This file is part of GDB.
7
 
8
   This program is free software; you can redistribute it and/or modify
9
   it under the terms of the GNU General Public License as published by
10
   the Free Software Foundation; either version 3 of the License, or
11
   (at your option) any later version.
12
 
13
   This program is distributed in the hope that it will be useful,
14
   but WITHOUT ANY WARRANTY; without even the implied warranty of
15
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16
   GNU General Public License for more details.
17
 
18
   You should have received a copy of the GNU General Public License
19
   along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
20
 
21
#include "defs.h"
22
#include "gdb_string.h"
23
#include "inferior.h"
24
#include "gdbcore.h"
25
#include "arch-utils.h"
26
#include "regcache.h"
27
#include "frame.h"
28
#include "frame-unwind.h"
29
#include "frame-base.h"
30
#include "trad-frame.h"
31
#include "dis-asm.h"
32
#include "gdb_assert.h"
33
#include "sim-regno.h"
34
#include "gdb/sim-frv.h"
35
#include "opcodes/frv-desc.h"   /* for the H_SPR_... enums */
36
#include "symtab.h"
37
#include "elf-bfd.h"
38
#include "elf/frv.h"
39
#include "osabi.h"
40
#include "infcall.h"
41
#include "solib.h"
42
#include "frv-tdep.h"
43
 
44
extern void _initialize_frv_tdep (void);
45
 
46
struct frv_unwind_cache         /* was struct frame_extra_info */
47
  {
48
    /* The previous frame's inner-most stack address.  Used as this
49
       frame ID's stack_addr.  */
50
    CORE_ADDR prev_sp;
51
 
52
    /* The frame's base, optionally used by the high-level debug info.  */
53
    CORE_ADDR base;
54
 
55
    /* Table indicating the location of each and every register.  */
56
    struct trad_frame_saved_reg *saved_regs;
57
  };
58
 
59
/* A structure describing a particular variant of the FRV.
60
   We allocate and initialize one of these structures when we create
61
   the gdbarch object for a variant.
62
 
63
   At the moment, all the FR variants we support differ only in which
64
   registers are present; the portable code of GDB knows that
65
   registers whose names are the empty string don't exist, so the
66
   `register_names' array captures all the per-variant information we
67
   need.
68
 
69
   in the future, if we need to have per-variant maps for raw size,
70
   virtual type, etc., we should replace register_names with an array
71
   of structures, each of which gives all the necessary info for one
72
   register.  Don't stick parallel arrays in here --- that's so
73
   Fortran.  */
74
struct gdbarch_tdep
75
{
76
  /* Which ABI is in use?  */
77
  enum frv_abi frv_abi;
78
 
79
  /* How many general-purpose registers does this variant have?  */
80
  int num_gprs;
81
 
82
  /* How many floating-point registers does this variant have?  */
83
  int num_fprs;
84
 
85
  /* How many hardware watchpoints can it support?  */
86
  int num_hw_watchpoints;
87
 
88
  /* How many hardware breakpoints can it support?  */
89
  int num_hw_breakpoints;
90
 
91
  /* Register names.  */
92
  char **register_names;
93
};
94
 
95
/* Return the FR-V ABI associated with GDBARCH.  */
96
enum frv_abi
97
frv_abi (struct gdbarch *gdbarch)
98
{
99
  return gdbarch_tdep (gdbarch)->frv_abi;
100
}
101
 
102
/* Fetch the interpreter and executable loadmap addresses (for shared
103
   library support) for the FDPIC ABI.  Return 0 if successful, -1 if
104
   not.  (E.g, -1 will be returned if the ABI isn't the FDPIC ABI.)  */
105
int
106
frv_fdpic_loadmap_addresses (struct gdbarch *gdbarch, CORE_ADDR *interp_addr,
107
                             CORE_ADDR *exec_addr)
108
{
109
  if (frv_abi (gdbarch) != FRV_ABI_FDPIC)
110
    return -1;
111
  else
112
    {
113
      struct regcache *regcache = get_current_regcache ();
114
 
115
      if (interp_addr != NULL)
116
        {
117
          ULONGEST val;
118
          regcache_cooked_read_unsigned (regcache,
119
                                         fdpic_loadmap_interp_regnum, &val);
120
          *interp_addr = val;
121
        }
122
      if (exec_addr != NULL)
123
        {
124
          ULONGEST val;
125
          regcache_cooked_read_unsigned (regcache,
126
                                         fdpic_loadmap_exec_regnum, &val);
127
          *exec_addr = val;
128
        }
129
      return 0;
130
    }
131
}
132
 
133
/* Allocate a new variant structure, and set up default values for all
134
   the fields.  */
135
static struct gdbarch_tdep *
136
new_variant (void)
137
{
138
  struct gdbarch_tdep *var;
139
  int r;
140
  char buf[20];
141
 
142
  var = xmalloc (sizeof (*var));
143
  memset (var, 0, sizeof (*var));
144
 
145
  var->frv_abi = FRV_ABI_EABI;
146
  var->num_gprs = 64;
147
  var->num_fprs = 64;
148
  var->num_hw_watchpoints = 0;
149
  var->num_hw_breakpoints = 0;
150
 
151
  /* By default, don't supply any general-purpose or floating-point
152
     register names.  */
153
  var->register_names
154
    = (char **) xmalloc ((frv_num_regs + frv_num_pseudo_regs)
155
                         * sizeof (char *));
156
  for (r = 0; r < frv_num_regs + frv_num_pseudo_regs; r++)
157
    var->register_names[r] = "";
158
 
159
  /* Do, however, supply default names for the known special-purpose
160
     registers.  */
161
 
162
  var->register_names[pc_regnum] = "pc";
163
  var->register_names[lr_regnum] = "lr";
164
  var->register_names[lcr_regnum] = "lcr";
165
 
166
  var->register_names[psr_regnum] = "psr";
167
  var->register_names[ccr_regnum] = "ccr";
168
  var->register_names[cccr_regnum] = "cccr";
169
  var->register_names[tbr_regnum] = "tbr";
170
 
171
  /* Debug registers.  */
172
  var->register_names[brr_regnum] = "brr";
173
  var->register_names[dbar0_regnum] = "dbar0";
174
  var->register_names[dbar1_regnum] = "dbar1";
175
  var->register_names[dbar2_regnum] = "dbar2";
176
  var->register_names[dbar3_regnum] = "dbar3";
177
 
178
  /* iacc0 (Only found on MB93405.)  */
179
  var->register_names[iacc0h_regnum] = "iacc0h";
180
  var->register_names[iacc0l_regnum] = "iacc0l";
181
  var->register_names[iacc0_regnum] = "iacc0";
182
 
183
  /* fsr0 (Found on FR555 and FR501.)  */
184
  var->register_names[fsr0_regnum] = "fsr0";
185
 
186
  /* acc0 - acc7.  The architecture provides for the possibility of many
187
     more (up to 64 total), but we don't want to make that big of a hole
188
     in the G packet.  If we need more in the future, we'll add them
189
     elsewhere.  */
190
  for (r = acc0_regnum; r <= acc7_regnum; r++)
191
    {
192
      char *buf;
193
      buf = xstrprintf ("acc%d", r - acc0_regnum);
194
      var->register_names[r] = buf;
195
    }
196
 
197
  /* accg0 - accg7: These are one byte registers.  The remote protocol
198
     provides the raw values packed four into a slot.  accg0123 and
199
     accg4567 correspond to accg0 - accg3 and accg4-accg7 respectively.
200
     We don't provide names for accg0123 and accg4567 since the user will
201
     likely not want to see these raw values.  */
202
 
203
  for (r = accg0_regnum; r <= accg7_regnum; r++)
204
    {
205
      char *buf;
206
      buf = xstrprintf ("accg%d", r - accg0_regnum);
207
      var->register_names[r] = buf;
208
    }
209
 
210
  /* msr0 and msr1.  */
211
 
212
  var->register_names[msr0_regnum] = "msr0";
213
  var->register_names[msr1_regnum] = "msr1";
214
 
215
  /* gner and fner registers.  */
216
  var->register_names[gner0_regnum] = "gner0";
217
  var->register_names[gner1_regnum] = "gner1";
218
  var->register_names[fner0_regnum] = "fner0";
219
  var->register_names[fner1_regnum] = "fner1";
220
 
221
  return var;
222
}
223
 
224
 
225
/* Indicate that the variant VAR has NUM_GPRS general-purpose
226
   registers, and fill in the names array appropriately.  */
227
static void
228
set_variant_num_gprs (struct gdbarch_tdep *var, int num_gprs)
229
{
230
  int r;
231
 
232
  var->num_gprs = num_gprs;
233
 
234
  for (r = 0; r < num_gprs; ++r)
235
    {
236
      char buf[20];
237
 
238
      sprintf (buf, "gr%d", r);
239
      var->register_names[first_gpr_regnum + r] = xstrdup (buf);
240
    }
241
}
242
 
243
 
244
/* Indicate that the variant VAR has NUM_FPRS floating-point
245
   registers, and fill in the names array appropriately.  */
246
static void
247
set_variant_num_fprs (struct gdbarch_tdep *var, int num_fprs)
248
{
249
  int r;
250
 
251
  var->num_fprs = num_fprs;
252
 
253
  for (r = 0; r < num_fprs; ++r)
254
    {
255
      char buf[20];
256
 
257
      sprintf (buf, "fr%d", r);
258
      var->register_names[first_fpr_regnum + r] = xstrdup (buf);
259
    }
260
}
261
 
262
static void
263
set_variant_abi_fdpic (struct gdbarch_tdep *var)
264
{
265
  var->frv_abi = FRV_ABI_FDPIC;
266
  var->register_names[fdpic_loadmap_exec_regnum] = xstrdup ("loadmap_exec");
267
  var->register_names[fdpic_loadmap_interp_regnum] = xstrdup ("loadmap_interp");
268
}
269
 
270
static void
271
set_variant_scratch_registers (struct gdbarch_tdep *var)
272
{
273
  var->register_names[scr0_regnum] = xstrdup ("scr0");
274
  var->register_names[scr1_regnum] = xstrdup ("scr1");
275
  var->register_names[scr2_regnum] = xstrdup ("scr2");
276
  var->register_names[scr3_regnum] = xstrdup ("scr3");
277
}
278
 
279
static const char *
280
frv_register_name (struct gdbarch *gdbarch, int reg)
281
{
282
  if (reg < 0)
283
    return "?toosmall?";
284
  if (reg >= frv_num_regs + frv_num_pseudo_regs)
285
    return "?toolarge?";
286
 
287
  return gdbarch_tdep (gdbarch)->register_names[reg];
288
}
289
 
290
 
291
static struct type *
292
frv_register_type (struct gdbarch *gdbarch, int reg)
293
{
294
  if (reg >= first_fpr_regnum && reg <= last_fpr_regnum)
295
    return builtin_type (gdbarch)->builtin_float;
296
  else if (reg == iacc0_regnum)
297
    return builtin_type (gdbarch)->builtin_int64;
298
  else
299
    return builtin_type (gdbarch)->builtin_int32;
300
}
301
 
302
static void
303
frv_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
304
                          int reg, gdb_byte *buffer)
305
{
306
  if (reg == iacc0_regnum)
307
    {
308
      regcache_raw_read (regcache, iacc0h_regnum, buffer);
309
      regcache_raw_read (regcache, iacc0l_regnum, (bfd_byte *) buffer + 4);
310
    }
311
  else if (accg0_regnum <= reg && reg <= accg7_regnum)
312
    {
313
      /* The accg raw registers have four values in each slot with the
314
         lowest register number occupying the first byte.  */
315
 
316
      int raw_regnum = accg0123_regnum + (reg - accg0_regnum) / 4;
317
      int byte_num = (reg - accg0_regnum) % 4;
318
      bfd_byte buf[4];
319
 
320
      regcache_raw_read (regcache, raw_regnum, buf);
321
      memset (buffer, 0, 4);
322
      /* FR-V is big endian, so put the requested byte in the first byte
323
         of the buffer allocated to hold the pseudo-register.  */
324
      ((bfd_byte *) buffer)[0] = buf[byte_num];
325
    }
326
}
327
 
328
static void
329
frv_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
330
                          int reg, const gdb_byte *buffer)
331
{
332
  if (reg == iacc0_regnum)
333
    {
334
      regcache_raw_write (regcache, iacc0h_regnum, buffer);
335
      regcache_raw_write (regcache, iacc0l_regnum, (bfd_byte *) buffer + 4);
336
    }
337
  else if (accg0_regnum <= reg && reg <= accg7_regnum)
338
    {
339
      /* The accg raw registers have four values in each slot with the
340
         lowest register number occupying the first byte.  */
341
 
342
      int raw_regnum = accg0123_regnum + (reg - accg0_regnum) / 4;
343
      int byte_num = (reg - accg0_regnum) % 4;
344
      char buf[4];
345
 
346
      regcache_raw_read (regcache, raw_regnum, buf);
347
      buf[byte_num] = ((bfd_byte *) buffer)[0];
348
      regcache_raw_write (regcache, raw_regnum, buf);
349
    }
350
}
351
 
352
static int
353
frv_register_sim_regno (struct gdbarch *gdbarch, int reg)
354
{
355
  static const int spr_map[] =
356
    {
357
      H_SPR_PSR,                /* psr_regnum */
358
      H_SPR_CCR,                /* ccr_regnum */
359
      H_SPR_CCCR,               /* cccr_regnum */
360
      -1,                       /* fdpic_loadmap_exec_regnum */
361
      -1,                       /* fdpic_loadmap_interp_regnum */
362
      -1,                       /* 134 */
363
      H_SPR_TBR,                /* tbr_regnum */
364
      H_SPR_BRR,                /* brr_regnum */
365
      H_SPR_DBAR0,              /* dbar0_regnum */
366
      H_SPR_DBAR1,              /* dbar1_regnum */
367
      H_SPR_DBAR2,              /* dbar2_regnum */
368
      H_SPR_DBAR3,              /* dbar3_regnum */
369
      H_SPR_SCR0,               /* scr0_regnum */
370
      H_SPR_SCR1,               /* scr1_regnum */
371
      H_SPR_SCR2,               /* scr2_regnum */
372
      H_SPR_SCR3,               /* scr3_regnum */
373
      H_SPR_LR,                 /* lr_regnum */
374
      H_SPR_LCR,                /* lcr_regnum */
375
      H_SPR_IACC0H,             /* iacc0h_regnum */
376
      H_SPR_IACC0L,             /* iacc0l_regnum */
377
      H_SPR_FSR0,               /* fsr0_regnum */
378
      /* FIXME: Add infrastructure for fetching/setting ACC and ACCG regs.  */
379
      -1,                       /* acc0_regnum */
380
      -1,                       /* acc1_regnum */
381
      -1,                       /* acc2_regnum */
382
      -1,                       /* acc3_regnum */
383
      -1,                       /* acc4_regnum */
384
      -1,                       /* acc5_regnum */
385
      -1,                       /* acc6_regnum */
386
      -1,                       /* acc7_regnum */
387
      -1,                       /* acc0123_regnum */
388
      -1,                       /* acc4567_regnum */
389
      H_SPR_MSR0,               /* msr0_regnum */
390
      H_SPR_MSR1,               /* msr1_regnum */
391
      H_SPR_GNER0,              /* gner0_regnum */
392
      H_SPR_GNER1,              /* gner1_regnum */
393
      H_SPR_FNER0,              /* fner0_regnum */
394
      H_SPR_FNER1,              /* fner1_regnum */
395
    };
396
 
397
  gdb_assert (reg >= 0 && reg < gdbarch_num_regs (gdbarch));
398
 
399
  if (first_gpr_regnum <= reg && reg <= last_gpr_regnum)
400
    return reg - first_gpr_regnum + SIM_FRV_GR0_REGNUM;
401
  else if (first_fpr_regnum <= reg && reg <= last_fpr_regnum)
402
    return reg - first_fpr_regnum + SIM_FRV_FR0_REGNUM;
403
  else if (pc_regnum == reg)
404
    return SIM_FRV_PC_REGNUM;
405
  else if (reg >= first_spr_regnum
406
           && reg < first_spr_regnum + sizeof (spr_map) / sizeof (spr_map[0]))
407
    {
408
      int spr_reg_offset = spr_map[reg - first_spr_regnum];
409
 
410
      if (spr_reg_offset < 0)
411
        return SIM_REGNO_DOES_NOT_EXIST;
412
      else
413
        return SIM_FRV_SPR0_REGNUM + spr_reg_offset;
414
    }
415
 
416
  internal_error (__FILE__, __LINE__, _("Bad register number %d"), reg);
417
}
418
 
419
static const unsigned char *
420
frv_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr, int *lenp)
421
{
422
  static unsigned char breakpoint[] = {0xc0, 0x70, 0x00, 0x01};
423
  *lenp = sizeof (breakpoint);
424
  return breakpoint;
425
}
426
 
427
/* Define the maximum number of instructions which may be packed into a
428
   bundle (VLIW instruction).  */
429
static const int max_instrs_per_bundle = 8;
430
 
431
/* Define the size (in bytes) of an FR-V instruction.  */
432
static const int frv_instr_size = 4;
433
 
434
/* Adjust a breakpoint's address to account for the FR-V architecture's
435
   constraint that a break instruction must not appear as any but the
436
   first instruction in the bundle.  */
437
static CORE_ADDR
438
frv_adjust_breakpoint_address (struct gdbarch *gdbarch, CORE_ADDR bpaddr)
439
{
440
  int count = max_instrs_per_bundle;
441
  CORE_ADDR addr = bpaddr - frv_instr_size;
442
  CORE_ADDR func_start = get_pc_function_start (bpaddr);
443
 
444
  /* Find the end of the previous packing sequence.  This will be indicated
445
     by either attempting to access some inaccessible memory or by finding
446
     an instruction word whose packing bit is set to one. */
447
  while (count-- > 0 && addr >= func_start)
448
    {
449
      char instr[frv_instr_size];
450
      int status;
451
 
452
      status = target_read_memory (addr, instr, sizeof instr);
453
 
454
      if (status != 0)
455
        break;
456
 
457
      /* This is a big endian architecture, so byte zero will have most
458
         significant byte.  The most significant bit of this byte is the
459
         packing bit.  */
460
      if (instr[0] & 0x80)
461
        break;
462
 
463
      addr -= frv_instr_size;
464
    }
465
 
466
  if (count > 0)
467
    bpaddr = addr + frv_instr_size;
468
 
469
  return bpaddr;
470
}
471
 
472
 
473
/* Return true if REG is a caller-saves ("scratch") register,
474
   false otherwise.  */
475
static int
476
is_caller_saves_reg (int reg)
477
{
478
  return ((4 <= reg && reg <= 7)
479
          || (14 <= reg && reg <= 15)
480
          || (32 <= reg && reg <= 47));
481
}
482
 
483
 
484
/* Return true if REG is a callee-saves register, false otherwise.  */
485
static int
486
is_callee_saves_reg (int reg)
487
{
488
  return ((16 <= reg && reg <= 31)
489
          || (48 <= reg && reg <= 63));
490
}
491
 
492
 
493
/* Return true if REG is an argument register, false otherwise.  */
494
static int
495
is_argument_reg (int reg)
496
{
497
  return (8 <= reg && reg <= 13);
498
}
499
 
500
/* Scan an FR-V prologue, starting at PC, until frame->PC.
501
   If FRAME is non-zero, fill in its saved_regs with appropriate addresses.
502
   We assume FRAME's saved_regs array has already been allocated and cleared.
503
   Return the first PC value after the prologue.
504
 
505
   Note that, for unoptimized code, we almost don't need this function
506
   at all; all arguments and locals live on the stack, so we just need
507
   the FP to find everything.  The catch: structures passed by value
508
   have their addresses living in registers; they're never spilled to
509
   the stack.  So if you ever want to be able to get to these
510
   arguments in any frame but the top, you'll need to do this serious
511
   prologue analysis.  */
512
static CORE_ADDR
513
frv_analyze_prologue (struct gdbarch *gdbarch, CORE_ADDR pc,
514
                      struct frame_info *this_frame,
515
                      struct frv_unwind_cache *info)
516
{
517
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
518
 
519
  /* When writing out instruction bitpatterns, we use the following
520
     letters to label instruction fields:
521
     P - The parallel bit.  We don't use this.
522
     J - The register number of GRj in the instruction description.
523
     K - The register number of GRk in the instruction description.
524
     I - The register number of GRi.
525
     S - a signed imediate offset.
526
     U - an unsigned immediate offset.
527
 
528
     The dots below the numbers indicate where hex digit boundaries
529
     fall, to make it easier to check the numbers.  */
530
 
531
  /* Non-zero iff we've seen the instruction that initializes the
532
     frame pointer for this function's frame.  */
533
  int fp_set = 0;
534
 
535
  /* If fp_set is non_zero, then this is the distance from
536
     the stack pointer to frame pointer: fp = sp + fp_offset.  */
537
  int fp_offset = 0;
538
 
539
  /* Total size of frame prior to any alloca operations. */
540
  int framesize = 0;
541
 
542
  /* Flag indicating if lr has been saved on the stack.  */
543
  int lr_saved_on_stack = 0;
544
 
545
  /* The number of the general-purpose register we saved the return
546
     address ("link register") in, or -1 if we haven't moved it yet.  */
547
  int lr_save_reg = -1;
548
 
549
  /* Offset (from sp) at which lr has been saved on the stack.  */
550
 
551
  int lr_sp_offset = 0;
552
 
553
  /* If gr_saved[i] is non-zero, then we've noticed that general
554
     register i has been saved at gr_sp_offset[i] from the stack
555
     pointer.  */
556
  char gr_saved[64];
557
  int gr_sp_offset[64];
558
 
559
  /* The address of the most recently scanned prologue instruction.  */
560
  CORE_ADDR last_prologue_pc;
561
 
562
  /* The address of the next instruction. */
563
  CORE_ADDR next_pc;
564
 
565
  /* The upper bound to of the pc values to scan.  */
566
  CORE_ADDR lim_pc;
567
 
568
  memset (gr_saved, 0, sizeof (gr_saved));
569
 
570
  last_prologue_pc = pc;
571
 
572
  /* Try to compute an upper limit (on how far to scan) based on the
573
     line number info.  */
574
  lim_pc = skip_prologue_using_sal (gdbarch, pc);
575
  /* If there's no line number info, lim_pc will be 0.  In that case,
576
     set the limit to be 100 instructions away from pc.  Hopefully, this
577
     will be far enough away to account for the entire prologue.  Don't
578
     worry about overshooting the end of the function.  The scan loop
579
     below contains some checks to avoid scanning unreasonably far.  */
580
  if (lim_pc == 0)
581
    lim_pc = pc + 400;
582
 
583
  /* If we have a frame, we don't want to scan past the frame's pc.  This
584
     will catch those cases where the pc is in the prologue.  */
585
  if (this_frame)
586
    {
587
      CORE_ADDR frame_pc = get_frame_pc (this_frame);
588
      if (frame_pc < lim_pc)
589
        lim_pc = frame_pc;
590
    }
591
 
592
  /* Scan the prologue.  */
593
  while (pc < lim_pc)
594
    {
595
      char buf[frv_instr_size];
596
      LONGEST op;
597
 
598
      if (target_read_memory (pc, buf, sizeof buf) != 0)
599
        break;
600
      op = extract_signed_integer (buf, sizeof buf, byte_order);
601
 
602
      next_pc = pc + 4;
603
 
604
      /* The tests in this chain of ifs should be in order of
605
         decreasing selectivity, so that more particular patterns get
606
         to fire before less particular patterns.  */
607
 
608
      /* Some sort of control transfer instruction: stop scanning prologue.
609
         Integer Conditional Branch:
610
          X XXXX XX 0000110 XX XXXXXXXXXXXXXXXX
611
         Floating-point / media Conditional Branch:
612
          X XXXX XX 0000111 XX XXXXXXXXXXXXXXXX
613
         LCR Conditional Branch to LR
614
          X XXXX XX 0001110 XX XX 001 X XXXXXXXXXX
615
         Integer conditional Branches to LR
616
          X XXXX XX 0001110 XX XX 010 X XXXXXXXXXX
617
          X XXXX XX 0001110 XX XX 011 X XXXXXXXXXX
618
         Floating-point/Media Branches to LR
619
          X XXXX XX 0001110 XX XX 110 X XXXXXXXXXX
620
          X XXXX XX 0001110 XX XX 111 X XXXXXXXXXX
621
         Jump and Link
622
          X XXXXX X 0001100 XXXXXX XXXXXX XXXXXX
623
          X XXXXX X 0001101 XXXXXX XXXXXX XXXXXX
624
         Call
625
          X XXXXXX 0001111 XXXXXXXXXXXXXXXXXX
626
         Return from Trap
627
          X XXXXX X 0000101 XXXXXX XXXXXX XXXXXX
628
         Integer Conditional Trap
629
          X XXXX XX 0000100 XXXXXX XXXX 00 XXXXXX
630
          X XXXX XX 0011100 XXXXXX XXXXXXXXXXXX
631
         Floating-point /media Conditional Trap
632
          X XXXX XX 0000100 XXXXXX XXXX 01 XXXXXX
633
          X XXXX XX 0011101 XXXXXX XXXXXXXXXXXX
634
         Break
635
          X XXXX XX 0000100 XXXXXX XXXX 11 XXXXXX
636
         Media Trap
637
          X XXXX XX 0000100 XXXXXX XXXX 10 XXXXXX */
638
      if ((op & 0x01d80000) == 0x00180000 /* Conditional branches and Call */
639
          || (op & 0x01f80000) == 0x00300000  /* Jump and Link */
640
          || (op & 0x01f80000) == 0x00100000  /* Return from Trap, Trap */
641
          || (op & 0x01f80000) == 0x00700000) /* Trap immediate */
642
        {
643
          /* Stop scanning; not in prologue any longer.  */
644
          break;
645
        }
646
 
647
      /* Loading something from memory into fp probably means that
648
         we're in the epilogue.  Stop scanning the prologue.
649
         ld @(GRi, GRk), fp
650
         X 000010 0000010 XXXXXX 000100 XXXXXX
651
         ldi @(GRi, d12), fp
652
         X 000010 0110010 XXXXXX XXXXXXXXXXXX */
653
      else if ((op & 0x7ffc0fc0) == 0x04080100
654
               || (op & 0x7ffc0000) == 0x04c80000)
655
        {
656
          break;
657
        }
658
 
659
      /* Setting the FP from the SP:
660
         ori sp, 0, fp
661
         P 000010 0100010 000001 000000000000 = 0x04881000
662
 
663
             .    .   .    .   .    .   .   .
664
         We treat this as part of the prologue.  */
665
      else if ((op & 0x7fffffff) == 0x04881000)
666
        {
667
          fp_set = 1;
668
          fp_offset = 0;
669
          last_prologue_pc = next_pc;
670
        }
671
 
672
      /* Move the link register to the scratch register grJ, before saving:
673
         movsg lr, grJ
674
         P 000100 0000011 010000 000111 JJJJJJ = 0x080d01c0
675
 
676
             .    .   .    .   .    .    .   .
677
         We treat this as part of the prologue.  */
678
      else if ((op & 0x7fffffc0) == 0x080d01c0)
679
        {
680
          int gr_j = op & 0x3f;
681
 
682
          /* If we're moving it to a scratch register, that's fine.  */
683
          if (is_caller_saves_reg (gr_j))
684
            {
685
              lr_save_reg = gr_j;
686
              last_prologue_pc = next_pc;
687
            }
688
        }
689
 
690
      /* To save multiple callee-saves registers on the stack, at
691
         offset zero:
692
 
693
         std grK,@(sp,gr0)
694
         P KKKKKK 0000011 000001 000011 000000 = 0x000c10c0
695
 
696
 
697
         stq grK,@(sp,gr0)
698
         P KKKKKK 0000011 000001 000100 000000 = 0x000c1100
699
 
700
             .    .   .    .   .    .    .   .
701
         We treat this as part of the prologue, and record the register's
702
         saved address in the frame structure.  */
703
      else if ((op & 0x01ffffff) == 0x000c10c0
704
            || (op & 0x01ffffff) == 0x000c1100)
705
        {
706
          int gr_k = ((op >> 25) & 0x3f);
707
          int ope  = ((op >> 6)  & 0x3f);
708
          int count;
709
          int i;
710
 
711
          /* Is it an std or an stq?  */
712
          if (ope == 0x03)
713
            count = 2;
714
          else
715
            count = 4;
716
 
717
          /* Is it really a callee-saves register?  */
718
          if (is_callee_saves_reg (gr_k))
719
            {
720
              for (i = 0; i < count; i++)
721
                {
722
                  gr_saved[gr_k + i] = 1;
723
                  gr_sp_offset[gr_k + i] = 4 * i;
724
                }
725
              last_prologue_pc = next_pc;
726
            }
727
        }
728
 
729
      /* Adjusting the stack pointer.  (The stack pointer is GR1.)
730
         addi sp, S, sp
731
         P 000001 0010000 000001 SSSSSSSSSSSS = 0x02401000
732
 
733
             .    .   .    .   .    .   .   .
734
         We treat this as part of the prologue.  */
735
      else if ((op & 0x7ffff000) == 0x02401000)
736
        {
737
          if (framesize == 0)
738
            {
739
              /* Sign-extend the twelve-bit field.
740
                 (Isn't there a better way to do this?)  */
741
              int s = (((op & 0xfff) - 0x800) & 0xfff) - 0x800;
742
 
743
              framesize -= s;
744
              last_prologue_pc = pc;
745
            }
746
          else
747
            {
748
              /* If the prologue is being adjusted again, we've
749
                 likely gone too far; i.e. we're probably in the
750
                 epilogue.  */
751
              break;
752
            }
753
        }
754
 
755
      /* Setting the FP to a constant distance from the SP:
756
         addi sp, S, fp
757
         P 000010 0010000 000001 SSSSSSSSSSSS = 0x04401000
758
 
759
             .    .   .    .   .    .   .   .
760
         We treat this as part of the prologue.  */
761
      else if ((op & 0x7ffff000) == 0x04401000)
762
        {
763
          /* Sign-extend the twelve-bit field.
764
             (Isn't there a better way to do this?)  */
765
          int s = (((op & 0xfff) - 0x800) & 0xfff) - 0x800;
766
          fp_set = 1;
767
          fp_offset = s;
768
          last_prologue_pc = pc;
769
        }
770
 
771
      /* To spill an argument register to a scratch register:
772
            ori GRi, 0, GRk
773
         P KKKKKK 0100010 IIIIII 000000000000 = 0x00880000
774
 
775
             .    .   .    .   .    .   .   .
776
         For the time being, we treat this as a prologue instruction,
777
         assuming that GRi is an argument register.  This one's kind
778
         of suspicious, because it seems like it could be part of a
779
         legitimate body instruction.  But we only come here when the
780
         source info wasn't helpful, so we have to do the best we can.
781
         Hopefully once GCC and GDB agree on how to emit line number
782
         info for prologues, then this code will never come into play.  */
783
      else if ((op & 0x01fc0fff) == 0x00880000)
784
        {
785
          int gr_i = ((op >> 12) & 0x3f);
786
 
787
          /* Make sure that the source is an arg register; if it is, we'll
788
             treat it as a prologue instruction.  */
789
          if (is_argument_reg (gr_i))
790
            last_prologue_pc = next_pc;
791
        }
792
 
793
      /* To spill 16-bit values to the stack:
794
             sthi GRk, @(fp, s)
795
         P KKKKKK 1010001 000010 SSSSSSSSSSSS = 0x01442000
796
 
797
             .    .   .    .   .    .   .   .
798
         And for 8-bit values, we use STB instructions.
799
             stbi GRk, @(fp, s)
800
         P KKKKKK 1010000 000010 SSSSSSSSSSSS = 0x01402000
801
 
802
             .    .   .    .   .    .   .   .
803
         We check that GRk is really an argument register, and treat
804
         all such as part of the prologue.  */
805
      else if (   (op & 0x01fff000) == 0x01442000
806
               || (op & 0x01fff000) == 0x01402000)
807
        {
808
          int gr_k = ((op >> 25) & 0x3f);
809
 
810
          /* Make sure that GRk is really an argument register; treat
811
             it as a prologue instruction if so.  */
812
          if (is_argument_reg (gr_k))
813
            last_prologue_pc = next_pc;
814
        }
815
 
816
      /* To save multiple callee-saves register on the stack, at a
817
         non-zero offset:
818
 
819
         stdi GRk, @(sp, s)
820
         P KKKKKK 1010011 000001 SSSSSSSSSSSS = 0x014c1000
821
 
822
             .    .   .    .   .    .   .   .
823
         stqi GRk, @(sp, s)
824
         P KKKKKK 1010100 000001 SSSSSSSSSSSS = 0x01501000
825
 
826
             .    .   .    .   .    .   .   .
827
         We treat this as part of the prologue, and record the register's
828
         saved address in the frame structure.  */
829
      else if ((op & 0x01fff000) == 0x014c1000
830
            || (op & 0x01fff000) == 0x01501000)
831
        {
832
          int gr_k = ((op >> 25) & 0x3f);
833
          int count;
834
          int i;
835
 
836
          /* Is it a stdi or a stqi?  */
837
          if ((op & 0x01fff000) == 0x014c1000)
838
            count = 2;
839
          else
840
            count = 4;
841
 
842
          /* Is it really a callee-saves register?  */
843
          if (is_callee_saves_reg (gr_k))
844
            {
845
              /* Sign-extend the twelve-bit field.
846
                 (Isn't there a better way to do this?)  */
847
              int s = (((op & 0xfff) - 0x800) & 0xfff) - 0x800;
848
 
849
              for (i = 0; i < count; i++)
850
                {
851
                  gr_saved[gr_k + i] = 1;
852
                  gr_sp_offset[gr_k + i] = s + (4 * i);
853
                }
854
              last_prologue_pc = next_pc;
855
            }
856
        }
857
 
858
      /* Storing any kind of integer register at any constant offset
859
         from any other register.
860
 
861
         st GRk, @(GRi, gr0)
862
         P KKKKKK 0000011 IIIIII 000010 000000 = 0x000c0080
863
 
864
             .    .   .    .   .    .    .   .
865
         sti GRk, @(GRi, d12)
866
         P KKKKKK 1010010 IIIIII SSSSSSSSSSSS = 0x01480000
867
 
868
             .    .   .    .   .    .   .   .
869
         These could be almost anything, but a lot of prologue
870
         instructions fall into this pattern, so let's decode the
871
         instruction once, and then work at a higher level.  */
872
      else if (((op & 0x01fc0fff) == 0x000c0080)
873
            || ((op & 0x01fc0000) == 0x01480000))
874
        {
875
          int gr_k = ((op >> 25) & 0x3f);
876
          int gr_i = ((op >> 12) & 0x3f);
877
          int offset;
878
 
879
          /* Are we storing with gr0 as an offset, or using an
880
             immediate value?  */
881
          if ((op & 0x01fc0fff) == 0x000c0080)
882
            offset = 0;
883
          else
884
            offset = (((op & 0xfff) - 0x800) & 0xfff) - 0x800;
885
 
886
          /* If the address isn't relative to the SP or FP, it's not a
887
             prologue instruction.  */
888
          if (gr_i != sp_regnum && gr_i != fp_regnum)
889
            {
890
              /* Do nothing; not a prologue instruction.  */
891
            }
892
 
893
          /* Saving the old FP in the new frame (relative to the SP).  */
894
          else if (gr_k == fp_regnum && gr_i == sp_regnum)
895
            {
896
              gr_saved[fp_regnum] = 1;
897
              gr_sp_offset[fp_regnum] = offset;
898
              last_prologue_pc = next_pc;
899
            }
900
 
901
          /* Saving callee-saves register(s) on the stack, relative to
902
             the SP.  */
903
          else if (gr_i == sp_regnum
904
                   && is_callee_saves_reg (gr_k))
905
            {
906
              gr_saved[gr_k] = 1;
907
              if (gr_i == sp_regnum)
908
                gr_sp_offset[gr_k] = offset;
909
              else
910
                gr_sp_offset[gr_k] = offset + fp_offset;
911
              last_prologue_pc = next_pc;
912
            }
913
 
914
          /* Saving the scratch register holding the return address.  */
915
          else if (lr_save_reg != -1
916
                   && gr_k == lr_save_reg)
917
            {
918
              lr_saved_on_stack = 1;
919
              if (gr_i == sp_regnum)
920
                lr_sp_offset = offset;
921
              else
922
                lr_sp_offset = offset + fp_offset;
923
              last_prologue_pc = next_pc;
924
            }
925
 
926
          /* Spilling int-sized arguments to the stack.  */
927
          else if (is_argument_reg (gr_k))
928
            last_prologue_pc = next_pc;
929
        }
930
      pc = next_pc;
931
    }
932
 
933
  if (this_frame && info)
934
    {
935
      int i;
936
      ULONGEST this_base;
937
 
938
      /* If we know the relationship between the stack and frame
939
         pointers, record the addresses of the registers we noticed.
940
         Note that we have to do this as a separate step at the end,
941
         because instructions may save relative to the SP, but we need
942
         their addresses relative to the FP.  */
943
      if (fp_set)
944
        this_base = get_frame_register_unsigned (this_frame, fp_regnum);
945
      else
946
        this_base = get_frame_register_unsigned (this_frame, sp_regnum);
947
 
948
      for (i = 0; i < 64; i++)
949
        if (gr_saved[i])
950
          info->saved_regs[i].addr = this_base - fp_offset + gr_sp_offset[i];
951
 
952
      info->prev_sp = this_base - fp_offset + framesize;
953
      info->base = this_base;
954
 
955
      /* If LR was saved on the stack, record its location.  */
956
      if (lr_saved_on_stack)
957
        info->saved_regs[lr_regnum].addr = this_base - fp_offset + lr_sp_offset;
958
 
959
      /* The call instruction moves the caller's PC in the callee's LR.
960
         Since this is an unwind, do the reverse.  Copy the location of LR
961
         into PC (the address / regnum) so that a request for PC will be
962
         converted into a request for the LR.  */
963
      info->saved_regs[pc_regnum] = info->saved_regs[lr_regnum];
964
 
965
      /* Save the previous frame's computed SP value.  */
966
      trad_frame_set_value (info->saved_regs, sp_regnum, info->prev_sp);
967
    }
968
 
969
  return last_prologue_pc;
970
}
971
 
972
 
973
static CORE_ADDR
974
frv_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
975
{
976
  CORE_ADDR func_addr, func_end, new_pc;
977
 
978
  new_pc = pc;
979
 
980
  /* If the line table has entry for a line *within* the function
981
     (i.e., not in the prologue, and not past the end), then that's
982
     our location.  */
983
  if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
984
    {
985
      struct symtab_and_line sal;
986
 
987
      sal = find_pc_line (func_addr, 0);
988
 
989
      if (sal.line != 0 && sal.end < func_end)
990
        {
991
          new_pc = sal.end;
992
        }
993
    }
994
 
995
  /* The FR-V prologue is at least five instructions long (twenty bytes).
996
     If we didn't find a real source location past that, then
997
     do a full analysis of the prologue.  */
998
  if (new_pc < pc + 20)
999
    new_pc = frv_analyze_prologue (gdbarch, pc, 0, 0);
1000
 
1001
  return new_pc;
1002
}
1003
 
1004
 
1005
/* Examine the instruction pointed to by PC.  If it corresponds to
1006
   a call to __main, return the address of the next instruction.
1007
   Otherwise, return PC.  */
1008
 
1009
static CORE_ADDR
1010
frv_skip_main_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
1011
{
1012
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1013
  gdb_byte buf[4];
1014
  unsigned long op;
1015
  CORE_ADDR orig_pc = pc;
1016
 
1017
  if (target_read_memory (pc, buf, 4))
1018
    return pc;
1019
  op = extract_unsigned_integer (buf, 4, byte_order);
1020
 
1021
  /* In PIC code, GR15 may be loaded from some offset off of FP prior
1022
     to the call instruction.
1023
 
1024
     Skip over this instruction if present.  It won't be present in
1025
     non-PIC code, and even in PIC code, it might not be present.
1026
     (This is due to the fact that GR15, the FDPIC register, already
1027
     contains the correct value.)
1028
 
1029
     The general form of the LDI is given first, followed by the
1030
     specific instruction with the GRi and GRk filled in as FP and
1031
     GR15.
1032
 
1033
     ldi @(GRi, d12), GRk
1034
     P KKKKKK 0110010 IIIIII SSSSSSSSSSSS = 0x00c80000
1035
 
1036
         .    .   .    .   .    .   .   .
1037
     ldi @(FP, d12), GR15
1038
     P KKKKKK 0110010 IIIIII SSSSSSSSSSSS = 0x1ec82000
1039
 
1040
         .    .   .    .   .    .   .   .               */
1041
 
1042
  if ((op & 0x7ffff000) == 0x1ec82000)
1043
    {
1044
      pc += 4;
1045
      if (target_read_memory (pc, buf, 4))
1046
        return orig_pc;
1047
      op = extract_unsigned_integer (buf, 4, byte_order);
1048
    }
1049
 
1050
  /* The format of an FRV CALL instruction is as follows:
1051
 
1052
     call label24
1053
     P HHHHHH 0001111 LLLLLLLLLLLLLLLLLL = 0x003c0000
1054
 
1055
         .    .   .    .   .   .   .   .
1056
 
1057
     where label24 is constructed by concatenating the H bits with the
1058
     L bits.  The call target is PC + (4 * sign_ext(label24)).  */
1059
 
1060
  if ((op & 0x01fc0000) == 0x003c0000)
1061
    {
1062
      LONGEST displ;
1063
      CORE_ADDR call_dest;
1064
      struct minimal_symbol *s;
1065
 
1066
      displ = ((op & 0xfe000000) >> 7) | (op & 0x0003ffff);
1067
      if ((displ & 0x00800000) != 0)
1068
        displ |= ~((LONGEST) 0x00ffffff);
1069
 
1070
      call_dest = pc + 4 * displ;
1071
      s = lookup_minimal_symbol_by_pc (call_dest);
1072
 
1073
      if (s != NULL
1074
          && SYMBOL_LINKAGE_NAME (s) != NULL
1075
          && strcmp (SYMBOL_LINKAGE_NAME (s), "__main") == 0)
1076
        {
1077
          pc += 4;
1078
          return pc;
1079
        }
1080
    }
1081
  return orig_pc;
1082
}
1083
 
1084
 
1085
static struct frv_unwind_cache *
1086
frv_frame_unwind_cache (struct frame_info *this_frame,
1087
                         void **this_prologue_cache)
1088
{
1089
  struct gdbarch *gdbarch = get_frame_arch (this_frame);
1090
  CORE_ADDR pc;
1091
  ULONGEST this_base;
1092
  struct frv_unwind_cache *info;
1093
 
1094
  if ((*this_prologue_cache))
1095
    return (*this_prologue_cache);
1096
 
1097
  info = FRAME_OBSTACK_ZALLOC (struct frv_unwind_cache);
1098
  (*this_prologue_cache) = info;
1099
  info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
1100
 
1101
  /* Prologue analysis does the rest...  */
1102
  frv_analyze_prologue (gdbarch,
1103
                        get_frame_func (this_frame), this_frame, info);
1104
 
1105
  return info;
1106
}
1107
 
1108
static void
1109
frv_extract_return_value (struct type *type, struct regcache *regcache,
1110
                          gdb_byte *valbuf)
1111
{
1112
  struct gdbarch *gdbarch = get_regcache_arch (regcache);
1113
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1114
  int len = TYPE_LENGTH (type);
1115
 
1116
  if (len <= 4)
1117
    {
1118
      ULONGEST gpr8_val;
1119
      regcache_cooked_read_unsigned (regcache, 8, &gpr8_val);
1120
      store_unsigned_integer (valbuf, len, byte_order, gpr8_val);
1121
    }
1122
  else if (len == 8)
1123
    {
1124
      ULONGEST regval;
1125
      regcache_cooked_read_unsigned (regcache, 8, &regval);
1126
      store_unsigned_integer (valbuf, 4, byte_order, regval);
1127
      regcache_cooked_read_unsigned (regcache, 9, &regval);
1128
      store_unsigned_integer ((bfd_byte *) valbuf + 4, 4, byte_order, regval);
1129
    }
1130
  else
1131
    internal_error (__FILE__, __LINE__, _("Illegal return value length: %d"), len);
1132
}
1133
 
1134
static CORE_ADDR
1135
frv_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
1136
{
1137
  /* Require dword alignment.  */
1138
  return align_down (sp, 8);
1139
}
1140
 
1141
static CORE_ADDR
1142
find_func_descr (struct gdbarch *gdbarch, CORE_ADDR entry_point)
1143
{
1144
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1145
  CORE_ADDR descr;
1146
  char valbuf[4];
1147
  CORE_ADDR start_addr;
1148
 
1149
  /* If we can't find the function in the symbol table, then we assume
1150
     that the function address is already in descriptor form.  */
1151
  if (!find_pc_partial_function (entry_point, NULL, &start_addr, NULL)
1152
      || entry_point != start_addr)
1153
    return entry_point;
1154
 
1155
  descr = frv_fdpic_find_canonical_descriptor (entry_point);
1156
 
1157
  if (descr != 0)
1158
    return descr;
1159
 
1160
  /* Construct a non-canonical descriptor from space allocated on
1161
     the stack.  */
1162
 
1163
  descr = value_as_long (value_allocate_space_in_inferior (8));
1164
  store_unsigned_integer (valbuf, 4, byte_order, entry_point);
1165
  write_memory (descr, valbuf, 4);
1166
  store_unsigned_integer (valbuf, 4, byte_order,
1167
                          frv_fdpic_find_global_pointer (entry_point));
1168
  write_memory (descr + 4, valbuf, 4);
1169
  return descr;
1170
}
1171
 
1172
static CORE_ADDR
1173
frv_convert_from_func_ptr_addr (struct gdbarch *gdbarch, CORE_ADDR addr,
1174
                                struct target_ops *targ)
1175
{
1176
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1177
  CORE_ADDR entry_point;
1178
  CORE_ADDR got_address;
1179
 
1180
  entry_point = get_target_memory_unsigned (targ, addr, 4, byte_order);
1181
  got_address = get_target_memory_unsigned (targ, addr + 4, 4, byte_order);
1182
 
1183
  if (got_address == frv_fdpic_find_global_pointer (entry_point))
1184
    return entry_point;
1185
  else
1186
    return addr;
1187
}
1188
 
1189
static CORE_ADDR
1190
frv_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
1191
                     struct regcache *regcache, CORE_ADDR bp_addr,
1192
                     int nargs, struct value **args, CORE_ADDR sp,
1193
                     int struct_return, CORE_ADDR struct_addr)
1194
{
1195
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1196
  int argreg;
1197
  int argnum;
1198
  char *val;
1199
  char valbuf[4];
1200
  struct value *arg;
1201
  struct type *arg_type;
1202
  int len;
1203
  enum type_code typecode;
1204
  CORE_ADDR regval;
1205
  int stack_space;
1206
  int stack_offset;
1207
  enum frv_abi abi = frv_abi (gdbarch);
1208
  CORE_ADDR func_addr = find_function_addr (function, NULL);
1209
 
1210
#if 0
1211
  printf("Push %d args at sp = %x, struct_return=%d (%x)\n",
1212
         nargs, (int) sp, struct_return, struct_addr);
1213
#endif
1214
 
1215
  stack_space = 0;
1216
  for (argnum = 0; argnum < nargs; ++argnum)
1217
    stack_space += align_up (TYPE_LENGTH (value_type (args[argnum])), 4);
1218
 
1219
  stack_space -= (6 * 4);
1220
  if (stack_space > 0)
1221
    sp -= stack_space;
1222
 
1223
  /* Make sure stack is dword aligned. */
1224
  sp = align_down (sp, 8);
1225
 
1226
  stack_offset = 0;
1227
 
1228
  argreg = 8;
1229
 
1230
  if (struct_return)
1231
    regcache_cooked_write_unsigned (regcache, struct_return_regnum,
1232
                                    struct_addr);
1233
 
1234
  for (argnum = 0; argnum < nargs; ++argnum)
1235
    {
1236
      arg = args[argnum];
1237
      arg_type = check_typedef (value_type (arg));
1238
      len = TYPE_LENGTH (arg_type);
1239
      typecode = TYPE_CODE (arg_type);
1240
 
1241
      if (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION)
1242
        {
1243
          store_unsigned_integer (valbuf, 4, byte_order,
1244
                                  value_address (arg));
1245
          typecode = TYPE_CODE_PTR;
1246
          len = 4;
1247
          val = valbuf;
1248
        }
1249
      else if (abi == FRV_ABI_FDPIC
1250
               && len == 4
1251
               && typecode == TYPE_CODE_PTR
1252
               && TYPE_CODE (TYPE_TARGET_TYPE (arg_type)) == TYPE_CODE_FUNC)
1253
        {
1254
          /* The FDPIC ABI requires function descriptors to be passed instead
1255
             of entry points.  */
1256
          CORE_ADDR addr = extract_unsigned_integer
1257
                             (value_contents (arg), 4, byte_order);
1258
          addr = find_func_descr (gdbarch, addr);
1259
          store_unsigned_integer (valbuf, 4, byte_order, addr);
1260
          typecode = TYPE_CODE_PTR;
1261
          len = 4;
1262
          val = valbuf;
1263
        }
1264
      else
1265
        {
1266
          val = (char *) value_contents (arg);
1267
        }
1268
 
1269
      while (len > 0)
1270
        {
1271
          int partial_len = (len < 4 ? len : 4);
1272
 
1273
          if (argreg < 14)
1274
            {
1275
              regval = extract_unsigned_integer (val, partial_len, byte_order);
1276
#if 0
1277
              printf("  Argnum %d data %x -> reg %d\n",
1278
                     argnum, (int) regval, argreg);
1279
#endif
1280
              regcache_cooked_write_unsigned (regcache, argreg, regval);
1281
              ++argreg;
1282
            }
1283
          else
1284
            {
1285
#if 0
1286
              printf("  Argnum %d data %x -> offset %d (%x)\n",
1287
                     argnum, *((int *)val), stack_offset, (int) (sp + stack_offset));
1288
#endif
1289
              write_memory (sp + stack_offset, val, partial_len);
1290
              stack_offset += align_up (partial_len, 4);
1291
            }
1292
          len -= partial_len;
1293
          val += partial_len;
1294
        }
1295
    }
1296
 
1297
  /* Set the return address.  For the frv, the return breakpoint is
1298
     always at BP_ADDR.  */
1299
  regcache_cooked_write_unsigned (regcache, lr_regnum, bp_addr);
1300
 
1301
  if (abi == FRV_ABI_FDPIC)
1302
    {
1303
      /* Set the GOT register for the FDPIC ABI.  */
1304
      regcache_cooked_write_unsigned
1305
        (regcache, first_gpr_regnum + 15,
1306
         frv_fdpic_find_global_pointer (func_addr));
1307
    }
1308
 
1309
  /* Finally, update the SP register.  */
1310
  regcache_cooked_write_unsigned (regcache, sp_regnum, sp);
1311
 
1312
  return sp;
1313
}
1314
 
1315
static void
1316
frv_store_return_value (struct type *type, struct regcache *regcache,
1317
                        const gdb_byte *valbuf)
1318
{
1319
  int len = TYPE_LENGTH (type);
1320
 
1321
  if (len <= 4)
1322
    {
1323
      bfd_byte val[4];
1324
      memset (val, 0, sizeof (val));
1325
      memcpy (val + (4 - len), valbuf, len);
1326
      regcache_cooked_write (regcache, 8, val);
1327
    }
1328
  else if (len == 8)
1329
    {
1330
      regcache_cooked_write (regcache, 8, valbuf);
1331
      regcache_cooked_write (regcache, 9, (bfd_byte *) valbuf + 4);
1332
    }
1333
  else
1334
    internal_error (__FILE__, __LINE__,
1335
                    _("Don't know how to return a %d-byte value."), len);
1336
}
1337
 
1338
static enum return_value_convention
1339
frv_return_value (struct gdbarch *gdbarch, struct type *func_type,
1340
                  struct type *valtype, struct regcache *regcache,
1341
                  gdb_byte *readbuf, const gdb_byte *writebuf)
1342
{
1343
  int struct_return = TYPE_CODE (valtype) == TYPE_CODE_STRUCT
1344
                      || TYPE_CODE (valtype) == TYPE_CODE_UNION
1345
                      || TYPE_CODE (valtype) == TYPE_CODE_ARRAY;
1346
 
1347
  if (writebuf != NULL)
1348
    {
1349
      gdb_assert (!struct_return);
1350
      frv_store_return_value (valtype, regcache, writebuf);
1351
    }
1352
 
1353
  if (readbuf != NULL)
1354
    {
1355
      gdb_assert (!struct_return);
1356
      frv_extract_return_value (valtype, regcache, readbuf);
1357
    }
1358
 
1359
  if (struct_return)
1360
    return RETURN_VALUE_STRUCT_CONVENTION;
1361
  else
1362
    return RETURN_VALUE_REGISTER_CONVENTION;
1363
}
1364
 
1365
 
1366
/* Hardware watchpoint / breakpoint support for the FR500
1367
   and FR400.  */
1368
 
1369
int
1370
frv_check_watch_resources (struct gdbarch *gdbarch, int type, int cnt, int ot)
1371
{
1372
  struct gdbarch_tdep *var = gdbarch_tdep (gdbarch);
1373
 
1374
  /* Watchpoints not supported on simulator.  */
1375
  if (strcmp (target_shortname, "sim") == 0)
1376
    return 0;
1377
 
1378
  if (type == bp_hardware_breakpoint)
1379
    {
1380
      if (var->num_hw_breakpoints == 0)
1381
        return 0;
1382
      else if (cnt <= var->num_hw_breakpoints)
1383
        return 1;
1384
    }
1385
  else
1386
    {
1387
      if (var->num_hw_watchpoints == 0)
1388
        return 0;
1389
      else if (ot)
1390
        return -1;
1391
      else if (cnt <= var->num_hw_watchpoints)
1392
        return 1;
1393
    }
1394
  return -1;
1395
}
1396
 
1397
 
1398
int
1399
frv_stopped_data_address (CORE_ADDR *addr_p)
1400
{
1401
  struct frame_info *frame = get_current_frame ();
1402
  CORE_ADDR brr, dbar0, dbar1, dbar2, dbar3;
1403
 
1404
  brr = get_frame_register_unsigned (frame, brr_regnum);
1405
  dbar0 = get_frame_register_unsigned (frame, dbar0_regnum);
1406
  dbar1 = get_frame_register_unsigned (frame, dbar1_regnum);
1407
  dbar2 = get_frame_register_unsigned (frame, dbar2_regnum);
1408
  dbar3 = get_frame_register_unsigned (frame, dbar3_regnum);
1409
 
1410
  if (brr & (1<<11))
1411
    *addr_p = dbar0;
1412
  else if (brr & (1<<10))
1413
    *addr_p = dbar1;
1414
  else if (brr & (1<<9))
1415
    *addr_p = dbar2;
1416
  else if (brr & (1<<8))
1417
    *addr_p = dbar3;
1418
  else
1419
    return 0;
1420
 
1421
  return 1;
1422
}
1423
 
1424
int
1425
frv_have_stopped_data_address (void)
1426
{
1427
  CORE_ADDR addr = 0;
1428
  return frv_stopped_data_address (&addr);
1429
}
1430
 
1431
static CORE_ADDR
1432
frv_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1433
{
1434
  return frame_unwind_register_unsigned (next_frame, pc_regnum);
1435
}
1436
 
1437
/* Given a GDB frame, determine the address of the calling function's
1438
   frame.  This will be used to create a new GDB frame struct.  */
1439
 
1440
static void
1441
frv_frame_this_id (struct frame_info *this_frame,
1442
                    void **this_prologue_cache, struct frame_id *this_id)
1443
{
1444
  struct frv_unwind_cache *info
1445
    = frv_frame_unwind_cache (this_frame, this_prologue_cache);
1446
  CORE_ADDR base;
1447
  CORE_ADDR func;
1448
  struct minimal_symbol *msym_stack;
1449
  struct frame_id id;
1450
 
1451
  /* The FUNC is easy.  */
1452
  func = get_frame_func (this_frame);
1453
 
1454
  /* Check if the stack is empty.  */
1455
  msym_stack = lookup_minimal_symbol ("_stack", NULL, NULL);
1456
  if (msym_stack && info->base == SYMBOL_VALUE_ADDRESS (msym_stack))
1457
    return;
1458
 
1459
  /* Hopefully the prologue analysis either correctly determined the
1460
     frame's base (which is the SP from the previous frame), or set
1461
     that base to "NULL".  */
1462
  base = info->prev_sp;
1463
  if (base == 0)
1464
    return;
1465
 
1466
  id = frame_id_build (base, func);
1467
  (*this_id) = id;
1468
}
1469
 
1470
static struct value *
1471
frv_frame_prev_register (struct frame_info *this_frame,
1472
                         void **this_prologue_cache, int regnum)
1473
{
1474
  struct frv_unwind_cache *info
1475
    = frv_frame_unwind_cache (this_frame, this_prologue_cache);
1476
  return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
1477
}
1478
 
1479
static const struct frame_unwind frv_frame_unwind = {
1480
  NORMAL_FRAME,
1481
  frv_frame_this_id,
1482
  frv_frame_prev_register,
1483
  NULL,
1484
  default_frame_sniffer
1485
};
1486
 
1487
static CORE_ADDR
1488
frv_frame_base_address (struct frame_info *this_frame, void **this_cache)
1489
{
1490
  struct frv_unwind_cache *info
1491
    = frv_frame_unwind_cache (this_frame, this_cache);
1492
  return info->base;
1493
}
1494
 
1495
static const struct frame_base frv_frame_base = {
1496
  &frv_frame_unwind,
1497
  frv_frame_base_address,
1498
  frv_frame_base_address,
1499
  frv_frame_base_address
1500
};
1501
 
1502
static CORE_ADDR
1503
frv_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
1504
{
1505
  return frame_unwind_register_unsigned (next_frame, sp_regnum);
1506
}
1507
 
1508
 
1509
/* Assuming THIS_FRAME is a dummy, return the frame ID of that dummy
1510
   frame.  The frame ID's base needs to match the TOS value saved by
1511
   save_dummy_frame_tos(), and the PC match the dummy frame's breakpoint.  */
1512
 
1513
static struct frame_id
1514
frv_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
1515
{
1516
  CORE_ADDR sp = get_frame_register_unsigned (this_frame, sp_regnum);
1517
  return frame_id_build (sp, get_frame_pc (this_frame));
1518
}
1519
 
1520
static struct gdbarch *
1521
frv_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1522
{
1523
  struct gdbarch *gdbarch;
1524
  struct gdbarch_tdep *var;
1525
  int elf_flags = 0;
1526
 
1527
  /* Check to see if we've already built an appropriate architecture
1528
     object for this executable.  */
1529
  arches = gdbarch_list_lookup_by_info (arches, &info);
1530
  if (arches)
1531
    return arches->gdbarch;
1532
 
1533
  /* Select the right tdep structure for this variant.  */
1534
  var = new_variant ();
1535
  switch (info.bfd_arch_info->mach)
1536
    {
1537
    case bfd_mach_frv:
1538
    case bfd_mach_frvsimple:
1539
    case bfd_mach_fr500:
1540
    case bfd_mach_frvtomcat:
1541
    case bfd_mach_fr550:
1542
      set_variant_num_gprs (var, 64);
1543
      set_variant_num_fprs (var, 64);
1544
      break;
1545
 
1546
    case bfd_mach_fr400:
1547
    case bfd_mach_fr450:
1548
      set_variant_num_gprs (var, 32);
1549
      set_variant_num_fprs (var, 32);
1550
      break;
1551
 
1552
    default:
1553
      /* Never heard of this variant.  */
1554
      return 0;
1555
    }
1556
 
1557
  /* Extract the ELF flags, if available.  */
1558
  if (info.abfd && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
1559
    elf_flags = elf_elfheader (info.abfd)->e_flags;
1560
 
1561
  if (elf_flags & EF_FRV_FDPIC)
1562
    set_variant_abi_fdpic (var);
1563
 
1564
  if (elf_flags & EF_FRV_CPU_FR450)
1565
    set_variant_scratch_registers (var);
1566
 
1567
  gdbarch = gdbarch_alloc (&info, var);
1568
 
1569
  set_gdbarch_short_bit (gdbarch, 16);
1570
  set_gdbarch_int_bit (gdbarch, 32);
1571
  set_gdbarch_long_bit (gdbarch, 32);
1572
  set_gdbarch_long_long_bit (gdbarch, 64);
1573
  set_gdbarch_float_bit (gdbarch, 32);
1574
  set_gdbarch_double_bit (gdbarch, 64);
1575
  set_gdbarch_long_double_bit (gdbarch, 64);
1576
  set_gdbarch_ptr_bit (gdbarch, 32);
1577
 
1578
  set_gdbarch_num_regs (gdbarch, frv_num_regs);
1579
  set_gdbarch_num_pseudo_regs (gdbarch, frv_num_pseudo_regs);
1580
 
1581
  set_gdbarch_sp_regnum (gdbarch, sp_regnum);
1582
  set_gdbarch_deprecated_fp_regnum (gdbarch, fp_regnum);
1583
  set_gdbarch_pc_regnum (gdbarch, pc_regnum);
1584
 
1585
  set_gdbarch_register_name (gdbarch, frv_register_name);
1586
  set_gdbarch_register_type (gdbarch, frv_register_type);
1587
  set_gdbarch_register_sim_regno (gdbarch, frv_register_sim_regno);
1588
 
1589
  set_gdbarch_pseudo_register_read (gdbarch, frv_pseudo_register_read);
1590
  set_gdbarch_pseudo_register_write (gdbarch, frv_pseudo_register_write);
1591
 
1592
  set_gdbarch_skip_prologue (gdbarch, frv_skip_prologue);
1593
  set_gdbarch_skip_main_prologue (gdbarch, frv_skip_main_prologue);
1594
  set_gdbarch_breakpoint_from_pc (gdbarch, frv_breakpoint_from_pc);
1595
  set_gdbarch_adjust_breakpoint_address
1596
    (gdbarch, frv_adjust_breakpoint_address);
1597
 
1598
  set_gdbarch_return_value (gdbarch, frv_return_value);
1599
 
1600
  /* Frame stuff.  */
1601
  set_gdbarch_unwind_pc (gdbarch, frv_unwind_pc);
1602
  set_gdbarch_unwind_sp (gdbarch, frv_unwind_sp);
1603
  set_gdbarch_frame_align (gdbarch, frv_frame_align);
1604
  frame_base_set_default (gdbarch, &frv_frame_base);
1605
  /* We set the sniffer lower down after the OSABI hooks have been
1606
     established.  */
1607
 
1608
  /* Settings for calling functions in the inferior.  */
1609
  set_gdbarch_push_dummy_call (gdbarch, frv_push_dummy_call);
1610
  set_gdbarch_dummy_id (gdbarch, frv_dummy_id);
1611
 
1612
  /* Settings that should be unnecessary.  */
1613
  set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1614
 
1615
  /* Hardware watchpoint / breakpoint support.  */
1616
  switch (info.bfd_arch_info->mach)
1617
    {
1618
    case bfd_mach_frv:
1619
    case bfd_mach_frvsimple:
1620
    case bfd_mach_fr500:
1621
    case bfd_mach_frvtomcat:
1622
      /* fr500-style hardware debugging support.  */
1623
      var->num_hw_watchpoints = 4;
1624
      var->num_hw_breakpoints = 4;
1625
      break;
1626
 
1627
    case bfd_mach_fr400:
1628
    case bfd_mach_fr450:
1629
      /* fr400-style hardware debugging support.  */
1630
      var->num_hw_watchpoints = 2;
1631
      var->num_hw_breakpoints = 4;
1632
      break;
1633
 
1634
    default:
1635
      /* Otherwise, assume we don't have hardware debugging support.  */
1636
      var->num_hw_watchpoints = 0;
1637
      var->num_hw_breakpoints = 0;
1638
      break;
1639
    }
1640
 
1641
  set_gdbarch_print_insn (gdbarch, print_insn_frv);
1642
  if (frv_abi (gdbarch) == FRV_ABI_FDPIC)
1643
    set_gdbarch_convert_from_func_ptr_addr (gdbarch,
1644
                                            frv_convert_from_func_ptr_addr);
1645
 
1646
  set_solib_ops (gdbarch, &frv_so_ops);
1647
 
1648
  /* Hook in ABI-specific overrides, if they have been registered.  */
1649
  gdbarch_init_osabi (info, gdbarch);
1650
 
1651
  /* Set the fallback (prologue based) frame sniffer.  */
1652
  frame_unwind_append_unwinder (gdbarch, &frv_frame_unwind);
1653
 
1654
  /* Enable TLS support.  */
1655
  set_gdbarch_fetch_tls_load_module_address (gdbarch,
1656
                                             frv_fetch_objfile_link_map);
1657
 
1658
  return gdbarch;
1659
}
1660
 
1661
void
1662
_initialize_frv_tdep (void)
1663
{
1664
  register_gdbarch_init (bfd_arch_frv, frv_gdbarch_init);
1665
}

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.