OpenCores
URL https://opencores.org/ocsvn/openrisc/openrisc/trunk

Subversion Repositories openrisc

[/] [openrisc/] [trunk/] [gnu-old/] [gdb-7.1/] [gdb/] [gnu-v3-abi.c] - Blame information for rev 227

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 227 jeremybenn
/* Abstraction of GNU v3 abi.
2
   Contributed by Jim Blandy <jimb@redhat.com>
3
 
4
   Copyright (C) 2001, 2002, 2003, 2005, 2006, 2007, 2008, 2009, 2010
5
   Free Software Foundation, Inc.
6
 
7
   This file is part of GDB.
8
 
9
   This program is free software; you can redistribute it and/or modify
10
   it under the terms of the GNU General Public License as published by
11
   the Free Software Foundation; either version 3 of the License, or
12
   (at your option) any later version.
13
 
14
   This program is distributed in the hope that it will be useful,
15
   but WITHOUT ANY WARRANTY; without even the implied warranty of
16
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17
   GNU General Public License for more details.
18
 
19
   You should have received a copy of the GNU General Public License
20
   along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
21
 
22
#include "defs.h"
23
#include "value.h"
24
#include "cp-abi.h"
25
#include "cp-support.h"
26
#include "demangle.h"
27
#include "objfiles.h"
28
#include "valprint.h"
29
 
30
#include "gdb_assert.h"
31
#include "gdb_string.h"
32
 
33
static struct cp_abi_ops gnu_v3_abi_ops;
34
 
35
static int
36
gnuv3_is_vtable_name (const char *name)
37
{
38
  return strncmp (name, "_ZTV", 4) == 0;
39
}
40
 
41
static int
42
gnuv3_is_operator_name (const char *name)
43
{
44
  return strncmp (name, "operator", 8) == 0;
45
}
46
 
47
 
48
/* To help us find the components of a vtable, we build ourselves a
49
   GDB type object representing the vtable structure.  Following the
50
   V3 ABI, it goes something like this:
51
 
52
   struct gdb_gnu_v3_abi_vtable {
53
 
54
     / * An array of virtual call and virtual base offsets.  The real
55
         length of this array depends on the class hierarchy; we use
56
         negative subscripts to access the elements.  Yucky, but
57
         better than the alternatives.  * /
58
     ptrdiff_t vcall_and_vbase_offsets[0];
59
 
60
     / * The offset from a virtual pointer referring to this table
61
         to the top of the complete object.  * /
62
     ptrdiff_t offset_to_top;
63
 
64
     / * The type_info pointer for this class.  This is really a
65
         std::type_info *, but GDB doesn't really look at the
66
         type_info object itself, so we don't bother to get the type
67
         exactly right.  * /
68
     void *type_info;
69
 
70
     / * Virtual table pointers in objects point here.  * /
71
 
72
     / * Virtual function pointers.  Like the vcall/vbase array, the
73
         real length of this table depends on the class hierarchy.  * /
74
     void (*virtual_functions[0]) ();
75
 
76
   };
77
 
78
   The catch, of course, is that the exact layout of this table
79
   depends on the ABI --- word size, endianness, alignment, etc.  So
80
   the GDB type object is actually a per-architecture kind of thing.
81
 
82
   vtable_type_gdbarch_data is a gdbarch per-architecture data pointer
83
   which refers to the struct type * for this structure, laid out
84
   appropriately for the architecture.  */
85
static struct gdbarch_data *vtable_type_gdbarch_data;
86
 
87
 
88
/* Human-readable names for the numbers of the fields above.  */
89
enum {
90
  vtable_field_vcall_and_vbase_offsets,
91
  vtable_field_offset_to_top,
92
  vtable_field_type_info,
93
  vtable_field_virtual_functions
94
};
95
 
96
 
97
/* Return a GDB type representing `struct gdb_gnu_v3_abi_vtable',
98
   described above, laid out appropriately for ARCH.
99
 
100
   We use this function as the gdbarch per-architecture data
101
   initialization function.  */
102
static void *
103
build_gdb_vtable_type (struct gdbarch *arch)
104
{
105
  struct type *t;
106
  struct field *field_list, *field;
107
  int offset;
108
 
109
  struct type *void_ptr_type
110
    = builtin_type (arch)->builtin_data_ptr;
111
  struct type *ptr_to_void_fn_type
112
    = builtin_type (arch)->builtin_func_ptr;
113
 
114
  /* ARCH can't give us the true ptrdiff_t type, so we guess.  */
115
  struct type *ptrdiff_type
116
    = arch_integer_type (arch, gdbarch_ptr_bit (arch), 0, "ptrdiff_t");
117
 
118
  /* We assume no padding is necessary, since GDB doesn't know
119
     anything about alignment at the moment.  If this assumption bites
120
     us, we should add a gdbarch method which, given a type, returns
121
     the alignment that type requires, and then use that here.  */
122
 
123
  /* Build the field list.  */
124
  field_list = xmalloc (sizeof (struct field [4]));
125
  memset (field_list, 0, sizeof (struct field [4]));
126
  field = &field_list[0];
127
  offset = 0;
128
 
129
  /* ptrdiff_t vcall_and_vbase_offsets[0]; */
130
  FIELD_NAME (*field) = "vcall_and_vbase_offsets";
131
  FIELD_TYPE (*field) = lookup_array_range_type (ptrdiff_type, 0, -1);
132
  FIELD_BITPOS (*field) = offset * TARGET_CHAR_BIT;
133
  offset += TYPE_LENGTH (FIELD_TYPE (*field));
134
  field++;
135
 
136
  /* ptrdiff_t offset_to_top; */
137
  FIELD_NAME (*field) = "offset_to_top";
138
  FIELD_TYPE (*field) = ptrdiff_type;
139
  FIELD_BITPOS (*field) = offset * TARGET_CHAR_BIT;
140
  offset += TYPE_LENGTH (FIELD_TYPE (*field));
141
  field++;
142
 
143
  /* void *type_info; */
144
  FIELD_NAME (*field) = "type_info";
145
  FIELD_TYPE (*field) = void_ptr_type;
146
  FIELD_BITPOS (*field) = offset * TARGET_CHAR_BIT;
147
  offset += TYPE_LENGTH (FIELD_TYPE (*field));
148
  field++;
149
 
150
  /* void (*virtual_functions[0]) (); */
151
  FIELD_NAME (*field) = "virtual_functions";
152
  FIELD_TYPE (*field) = lookup_array_range_type (ptr_to_void_fn_type, 0, -1);
153
  FIELD_BITPOS (*field) = offset * TARGET_CHAR_BIT;
154
  offset += TYPE_LENGTH (FIELD_TYPE (*field));
155
  field++;
156
 
157
  /* We assumed in the allocation above that there were four fields.  */
158
  gdb_assert (field == (field_list + 4));
159
 
160
  t = arch_type (arch, TYPE_CODE_STRUCT, offset, NULL);
161
  TYPE_NFIELDS (t) = field - field_list;
162
  TYPE_FIELDS (t) = field_list;
163
  TYPE_TAG_NAME (t) = "gdb_gnu_v3_abi_vtable";
164
  INIT_CPLUS_SPECIFIC (t);
165
 
166
  return t;
167
}
168
 
169
 
170
/* Return the ptrdiff_t type used in the vtable type.  */
171
static struct type *
172
vtable_ptrdiff_type (struct gdbarch *gdbarch)
173
{
174
  struct type *vtable_type = gdbarch_data (gdbarch, vtable_type_gdbarch_data);
175
 
176
  /* The "offset_to_top" field has the appropriate (ptrdiff_t) type.  */
177
  return TYPE_FIELD_TYPE (vtable_type, vtable_field_offset_to_top);
178
}
179
 
180
/* Return the offset from the start of the imaginary `struct
181
   gdb_gnu_v3_abi_vtable' object to the vtable's "address point"
182
   (i.e., where objects' virtual table pointers point).  */
183
static int
184
vtable_address_point_offset (struct gdbarch *gdbarch)
185
{
186
  struct type *vtable_type = gdbarch_data (gdbarch, vtable_type_gdbarch_data);
187
 
188
  return (TYPE_FIELD_BITPOS (vtable_type, vtable_field_virtual_functions)
189
          / TARGET_CHAR_BIT);
190
}
191
 
192
 
193
/* Determine whether structure TYPE is a dynamic class.  Cache the
194
   result.  */
195
 
196
static int
197
gnuv3_dynamic_class (struct type *type)
198
{
199
  int fieldnum, fieldelem;
200
 
201
  if (TYPE_CPLUS_DYNAMIC (type))
202
    return TYPE_CPLUS_DYNAMIC (type) == 1;
203
 
204
  ALLOCATE_CPLUS_STRUCT_TYPE (type);
205
 
206
  for (fieldnum = 0; fieldnum < TYPE_N_BASECLASSES (type); fieldnum++)
207
    if (BASETYPE_VIA_VIRTUAL (type, fieldnum)
208
        || gnuv3_dynamic_class (TYPE_FIELD_TYPE (type, fieldnum)))
209
      {
210
        TYPE_CPLUS_DYNAMIC (type) = 1;
211
        return 1;
212
      }
213
 
214
  for (fieldnum = 0; fieldnum < TYPE_NFN_FIELDS (type); fieldnum++)
215
    for (fieldelem = 0; fieldelem < TYPE_FN_FIELDLIST_LENGTH (type, fieldnum);
216
         fieldelem++)
217
      {
218
        struct fn_field *f = TYPE_FN_FIELDLIST1 (type, fieldnum);
219
 
220
        if (TYPE_FN_FIELD_VIRTUAL_P (f, fieldelem))
221
          {
222
            TYPE_CPLUS_DYNAMIC (type) = 1;
223
            return 1;
224
          }
225
      }
226
 
227
  TYPE_CPLUS_DYNAMIC (type) = -1;
228
  return 0;
229
}
230
 
231
/* Find the vtable for a value of CONTAINER_TYPE located at
232
   CONTAINER_ADDR.  Return a value of the correct vtable type for this
233
   architecture, or NULL if CONTAINER does not have a vtable.  */
234
 
235
static struct value *
236
gnuv3_get_vtable (struct gdbarch *gdbarch,
237
                  struct type *container_type, CORE_ADDR container_addr)
238
{
239
  struct type *vtable_type = gdbarch_data (gdbarch,
240
                                           vtable_type_gdbarch_data);
241
  struct type *vtable_pointer_type;
242
  struct value *vtable_pointer;
243
  CORE_ADDR vtable_address;
244
 
245
  /* If this type does not have a virtual table, don't read the first
246
     field.  */
247
  if (!gnuv3_dynamic_class (check_typedef (container_type)))
248
    return NULL;
249
 
250
  /* We do not consult the debug information to find the virtual table.
251
     The ABI specifies that it is always at offset zero in any class,
252
     and debug information may not represent it.
253
 
254
     We avoid using value_contents on principle, because the object might
255
     be large.  */
256
 
257
  /* Find the type "pointer to virtual table".  */
258
  vtable_pointer_type = lookup_pointer_type (vtable_type);
259
 
260
  /* Load it from the start of the class.  */
261
  vtable_pointer = value_at (vtable_pointer_type, container_addr);
262
  vtable_address = value_as_address (vtable_pointer);
263
 
264
  /* Correct it to point at the start of the virtual table, rather
265
     than the address point.  */
266
  return value_at_lazy (vtable_type,
267
                        vtable_address - vtable_address_point_offset (gdbarch));
268
}
269
 
270
 
271
static struct type *
272
gnuv3_rtti_type (struct value *value,
273
                 int *full_p, int *top_p, int *using_enc_p)
274
{
275
  struct gdbarch *gdbarch;
276
  struct type *values_type = check_typedef (value_type (value));
277
  struct value *vtable;
278
  struct minimal_symbol *vtable_symbol;
279
  const char *vtable_symbol_name;
280
  const char *class_name;
281
  struct type *run_time_type;
282
  LONGEST offset_to_top;
283
 
284
  /* We only have RTTI for class objects.  */
285
  if (TYPE_CODE (values_type) != TYPE_CODE_CLASS)
286
    return NULL;
287
 
288
  /* Determine architecture.  */
289
  gdbarch = get_type_arch (values_type);
290
 
291
  if (using_enc_p)
292
    *using_enc_p = 0;
293
 
294
  vtable = gnuv3_get_vtable (gdbarch, value_type (value),
295
                             value_as_address (value_addr (value)));
296
  if (vtable == NULL)
297
    return NULL;
298
 
299
  /* Find the linker symbol for this vtable.  */
300
  vtable_symbol
301
    = lookup_minimal_symbol_by_pc (value_address (vtable)
302
                                   + value_embedded_offset (vtable));
303
  if (! vtable_symbol)
304
    return NULL;
305
 
306
  /* The symbol's demangled name should be something like "vtable for
307
     CLASS", where CLASS is the name of the run-time type of VALUE.
308
     If we didn't like this approach, we could instead look in the
309
     type_info object itself to get the class name.  But this way
310
     should work just as well, and doesn't read target memory.  */
311
  vtable_symbol_name = SYMBOL_DEMANGLED_NAME (vtable_symbol);
312
  if (vtable_symbol_name == NULL
313
      || strncmp (vtable_symbol_name, "vtable for ", 11))
314
    {
315
      warning (_("can't find linker symbol for virtual table for `%s' value"),
316
               TYPE_NAME (values_type));
317
      if (vtable_symbol_name)
318
        warning (_("  found `%s' instead"), vtable_symbol_name);
319
      return NULL;
320
    }
321
  class_name = vtable_symbol_name + 11;
322
 
323
  /* Try to look up the class name as a type name.  */
324
  /* FIXME: chastain/2003-11-26: block=NULL is bogus.  See pr gdb/1465. */
325
  run_time_type = cp_lookup_rtti_type (class_name, NULL);
326
  if (run_time_type == NULL)
327
    return NULL;
328
 
329
  /* Get the offset from VALUE to the top of the complete object.
330
     NOTE: this is the reverse of the meaning of *TOP_P.  */
331
  offset_to_top
332
    = value_as_long (value_field (vtable, vtable_field_offset_to_top));
333
 
334
  if (full_p)
335
    *full_p = (- offset_to_top == value_embedded_offset (value)
336
               && (TYPE_LENGTH (value_enclosing_type (value))
337
                   >= TYPE_LENGTH (run_time_type)));
338
  if (top_p)
339
    *top_p = - offset_to_top;
340
  return run_time_type;
341
}
342
 
343
/* Return a function pointer for CONTAINER's VTABLE_INDEX'th virtual
344
   function, of type FNTYPE.  */
345
 
346
static struct value *
347
gnuv3_get_virtual_fn (struct gdbarch *gdbarch, struct value *container,
348
                      struct type *fntype, int vtable_index)
349
{
350
  struct value *vtable, *vfn;
351
 
352
  /* Every class with virtual functions must have a vtable.  */
353
  vtable = gnuv3_get_vtable (gdbarch, value_type (container),
354
                             value_as_address (value_addr (container)));
355
  gdb_assert (vtable != NULL);
356
 
357
  /* Fetch the appropriate function pointer from the vtable.  */
358
  vfn = value_subscript (value_field (vtable, vtable_field_virtual_functions),
359
                         vtable_index);
360
 
361
  /* If this architecture uses function descriptors directly in the vtable,
362
     then the address of the vtable entry is actually a "function pointer"
363
     (i.e. points to the descriptor).  We don't need to scale the index
364
     by the size of a function descriptor; GCC does that before outputing
365
     debug information.  */
366
  if (gdbarch_vtable_function_descriptors (gdbarch))
367
    vfn = value_addr (vfn);
368
 
369
  /* Cast the function pointer to the appropriate type.  */
370
  vfn = value_cast (lookup_pointer_type (fntype), vfn);
371
 
372
  return vfn;
373
}
374
 
375
/* GNU v3 implementation of value_virtual_fn_field.  See cp-abi.h
376
   for a description of the arguments.  */
377
 
378
static struct value *
379
gnuv3_virtual_fn_field (struct value **value_p,
380
                        struct fn_field *f, int j,
381
                        struct type *vfn_base, int offset)
382
{
383
  struct type *values_type = check_typedef (value_type (*value_p));
384
  struct gdbarch *gdbarch;
385
 
386
  /* Some simple sanity checks.  */
387
  if (TYPE_CODE (values_type) != TYPE_CODE_CLASS)
388
    error (_("Only classes can have virtual functions."));
389
 
390
  /* Determine architecture.  */
391
  gdbarch = get_type_arch (values_type);
392
 
393
  /* Cast our value to the base class which defines this virtual
394
     function.  This takes care of any necessary `this'
395
     adjustments.  */
396
  if (vfn_base != values_type)
397
    *value_p = value_cast (vfn_base, *value_p);
398
 
399
  return gnuv3_get_virtual_fn (gdbarch, *value_p, TYPE_FN_FIELD_TYPE (f, j),
400
                               TYPE_FN_FIELD_VOFFSET (f, j));
401
}
402
 
403
/* Compute the offset of the baseclass which is
404
   the INDEXth baseclass of class TYPE,
405
   for value at VALADDR (in host) at ADDRESS (in target).
406
   The result is the offset of the baseclass value relative
407
   to (the address of)(ARG) + OFFSET.
408
 
409
   -1 is returned on error. */
410
static int
411
gnuv3_baseclass_offset (struct type *type, int index, const bfd_byte *valaddr,
412
                        CORE_ADDR address)
413
{
414
  struct gdbarch *gdbarch;
415
  struct type *ptr_type;
416
  struct value *vtable;
417
  struct value *vbase_array;
418
  long int cur_base_offset, base_offset;
419
 
420
  /* Determine architecture.  */
421
  gdbarch = get_type_arch (type);
422
  ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
423
 
424
  /* If it isn't a virtual base, this is easy.  The offset is in the
425
     type definition.  */
426
  if (!BASETYPE_VIA_VIRTUAL (type, index))
427
    return TYPE_BASECLASS_BITPOS (type, index) / 8;
428
 
429
  /* To access a virtual base, we need to use the vbase offset stored in
430
     our vtable.  Recent GCC versions provide this information.  If it isn't
431
     available, we could get what we needed from RTTI, or from drawing the
432
     complete inheritance graph based on the debug info.  Neither is
433
     worthwhile.  */
434
  cur_base_offset = TYPE_BASECLASS_BITPOS (type, index) / 8;
435
  if (cur_base_offset >= - vtable_address_point_offset (gdbarch))
436
    error (_("Expected a negative vbase offset (old compiler?)"));
437
 
438
  cur_base_offset = cur_base_offset + vtable_address_point_offset (gdbarch);
439
  if ((- cur_base_offset) % TYPE_LENGTH (ptr_type) != 0)
440
    error (_("Misaligned vbase offset."));
441
  cur_base_offset = cur_base_offset / ((int) TYPE_LENGTH (ptr_type));
442
 
443
  vtable = gnuv3_get_vtable (gdbarch, type, address);
444
  gdb_assert (vtable != NULL);
445
  vbase_array = value_field (vtable, vtable_field_vcall_and_vbase_offsets);
446
  base_offset = value_as_long (value_subscript (vbase_array, cur_base_offset));
447
  return base_offset;
448
}
449
 
450
/* Locate a virtual method in DOMAIN or its non-virtual base classes
451
   which has virtual table index VOFFSET.  The method has an associated
452
   "this" adjustment of ADJUSTMENT bytes.  */
453
 
454
static const char *
455
gnuv3_find_method_in (struct type *domain, CORE_ADDR voffset,
456
                      LONGEST adjustment)
457
{
458
  int i;
459
  const char *physname;
460
 
461
  /* Search this class first.  */
462
  physname = NULL;
463
  if (adjustment == 0)
464
    {
465
      int len;
466
 
467
      len = TYPE_NFN_FIELDS (domain);
468
      for (i = 0; i < len; i++)
469
        {
470
          int len2, j;
471
          struct fn_field *f;
472
 
473
          f = TYPE_FN_FIELDLIST1 (domain, i);
474
          len2 = TYPE_FN_FIELDLIST_LENGTH (domain, i);
475
 
476
          check_stub_method_group (domain, i);
477
          for (j = 0; j < len2; j++)
478
            if (TYPE_FN_FIELD_VOFFSET (f, j) == voffset)
479
              return TYPE_FN_FIELD_PHYSNAME (f, j);
480
        }
481
    }
482
 
483
  /* Next search non-virtual bases.  If it's in a virtual base,
484
     we're out of luck.  */
485
  for (i = 0; i < TYPE_N_BASECLASSES (domain); i++)
486
    {
487
      int pos;
488
      struct type *basetype;
489
 
490
      if (BASETYPE_VIA_VIRTUAL (domain, i))
491
        continue;
492
 
493
      pos = TYPE_BASECLASS_BITPOS (domain, i) / 8;
494
      basetype = TYPE_FIELD_TYPE (domain, i);
495
      /* Recurse with a modified adjustment.  We don't need to adjust
496
         voffset.  */
497
      if (adjustment >= pos && adjustment < pos + TYPE_LENGTH (basetype))
498
        return gnuv3_find_method_in (basetype, voffset, adjustment - pos);
499
    }
500
 
501
  return NULL;
502
}
503
 
504
/* Decode GNU v3 method pointer.  */
505
 
506
static int
507
gnuv3_decode_method_ptr (struct gdbarch *gdbarch,
508
                         const gdb_byte *contents,
509
                         CORE_ADDR *value_p,
510
                         LONGEST *adjustment_p)
511
{
512
  struct type *funcptr_type = builtin_type (gdbarch)->builtin_func_ptr;
513
  struct type *offset_type = vtable_ptrdiff_type (gdbarch);
514
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
515
  CORE_ADDR ptr_value;
516
  LONGEST voffset, adjustment;
517
  int vbit;
518
 
519
  /* Extract the pointer to member.  The first element is either a pointer
520
     or a vtable offset.  For pointers, we need to use extract_typed_address
521
     to allow the back-end to convert the pointer to a GDB address -- but
522
     vtable offsets we must handle as integers.  At this point, we do not
523
     yet know which case we have, so we extract the value under both
524
     interpretations and choose the right one later on.  */
525
  ptr_value = extract_typed_address (contents, funcptr_type);
526
  voffset = extract_signed_integer (contents,
527
                                    TYPE_LENGTH (funcptr_type), byte_order);
528
  contents += TYPE_LENGTH (funcptr_type);
529
  adjustment = extract_signed_integer (contents,
530
                                       TYPE_LENGTH (offset_type), byte_order);
531
 
532
  if (!gdbarch_vbit_in_delta (gdbarch))
533
    {
534
      vbit = voffset & 1;
535
      voffset = voffset ^ vbit;
536
    }
537
  else
538
    {
539
      vbit = adjustment & 1;
540
      adjustment = adjustment >> 1;
541
    }
542
 
543
  *value_p = vbit? voffset : ptr_value;
544
  *adjustment_p = adjustment;
545
  return vbit;
546
}
547
 
548
/* GNU v3 implementation of cplus_print_method_ptr.  */
549
 
550
static void
551
gnuv3_print_method_ptr (const gdb_byte *contents,
552
                        struct type *type,
553
                        struct ui_file *stream)
554
{
555
  struct type *domain = TYPE_DOMAIN_TYPE (type);
556
  struct gdbarch *gdbarch = get_type_arch (domain);
557
  CORE_ADDR ptr_value;
558
  LONGEST adjustment;
559
  int vbit;
560
 
561
  /* Extract the pointer to member.  */
562
  vbit = gnuv3_decode_method_ptr (gdbarch, contents, &ptr_value, &adjustment);
563
 
564
  /* Check for NULL.  */
565
  if (ptr_value == 0 && vbit == 0)
566
    {
567
      fprintf_filtered (stream, "NULL");
568
      return;
569
    }
570
 
571
  /* Search for a virtual method.  */
572
  if (vbit)
573
    {
574
      CORE_ADDR voffset;
575
      const char *physname;
576
 
577
      /* It's a virtual table offset, maybe in this class.  Search
578
         for a field with the correct vtable offset.  First convert it
579
         to an index, as used in TYPE_FN_FIELD_VOFFSET.  */
580
      voffset = ptr_value / TYPE_LENGTH (vtable_ptrdiff_type (gdbarch));
581
 
582
      physname = gnuv3_find_method_in (domain, voffset, adjustment);
583
 
584
      /* If we found a method, print that.  We don't bother to disambiguate
585
         possible paths to the method based on the adjustment.  */
586
      if (physname)
587
        {
588
          char *demangled_name = cplus_demangle (physname,
589
                                                 DMGL_ANSI | DMGL_PARAMS);
590
          if (demangled_name != NULL)
591
            {
592
              fprintf_filtered (stream, "&virtual ");
593
              fputs_filtered (demangled_name, stream);
594
              xfree (demangled_name);
595
              return;
596
            }
597
        }
598
    }
599
 
600
  /* We didn't find it; print the raw data.  */
601
  if (vbit)
602
    {
603
      fprintf_filtered (stream, "&virtual table offset ");
604
      print_longest (stream, 'd', 1, ptr_value);
605
    }
606
  else
607
    print_address_demangle (gdbarch, ptr_value, stream, demangle);
608
 
609
  if (adjustment)
610
    {
611
      fprintf_filtered (stream, ", this adjustment ");
612
      print_longest (stream, 'd', 1, adjustment);
613
    }
614
}
615
 
616
/* GNU v3 implementation of cplus_method_ptr_size.  */
617
 
618
static int
619
gnuv3_method_ptr_size (struct type *type)
620
{
621
  struct type *domain_type = check_typedef (TYPE_DOMAIN_TYPE (type));
622
  struct gdbarch *gdbarch = get_type_arch (domain_type);
623
  return 2 * TYPE_LENGTH (builtin_type (gdbarch)->builtin_data_ptr);
624
}
625
 
626
/* GNU v3 implementation of cplus_make_method_ptr.  */
627
 
628
static void
629
gnuv3_make_method_ptr (struct type *type, gdb_byte *contents,
630
                       CORE_ADDR value, int is_virtual)
631
{
632
  struct type *domain_type = check_typedef (TYPE_DOMAIN_TYPE (type));
633
  struct gdbarch *gdbarch = get_type_arch (domain_type);
634
  int size = TYPE_LENGTH (builtin_type (gdbarch)->builtin_data_ptr);
635
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
636
 
637
  /* FIXME drow/2006-12-24: The adjustment of "this" is currently
638
     always zero, since the method pointer is of the correct type.
639
     But if the method pointer came from a base class, this is
640
     incorrect - it should be the offset to the base.  The best
641
     fix might be to create the pointer to member pointing at the
642
     base class and cast it to the derived class, but that requires
643
     support for adjusting pointers to members when casting them -
644
     not currently supported by GDB.  */
645
 
646
  if (!gdbarch_vbit_in_delta (gdbarch))
647
    {
648
      store_unsigned_integer (contents, size, byte_order, value | is_virtual);
649
      store_unsigned_integer (contents + size, size, byte_order, 0);
650
    }
651
  else
652
    {
653
      store_unsigned_integer (contents, size, byte_order, value);
654
      store_unsigned_integer (contents + size, size, byte_order, is_virtual);
655
    }
656
}
657
 
658
/* GNU v3 implementation of cplus_method_ptr_to_value.  */
659
 
660
static struct value *
661
gnuv3_method_ptr_to_value (struct value **this_p, struct value *method_ptr)
662
{
663
  struct gdbarch *gdbarch;
664
  const gdb_byte *contents = value_contents (method_ptr);
665
  CORE_ADDR ptr_value;
666
  struct type *domain_type, *final_type, *method_type;
667
  LONGEST adjustment;
668
  int vbit;
669
 
670
  domain_type = TYPE_DOMAIN_TYPE (check_typedef (value_type (method_ptr)));
671
  final_type = lookup_pointer_type (domain_type);
672
 
673
  method_type = TYPE_TARGET_TYPE (check_typedef (value_type (method_ptr)));
674
 
675
  /* Extract the pointer to member.  */
676
  gdbarch = get_type_arch (domain_type);
677
  vbit = gnuv3_decode_method_ptr (gdbarch, contents, &ptr_value, &adjustment);
678
 
679
  /* First convert THIS to match the containing type of the pointer to
680
     member.  This cast may adjust the value of THIS.  */
681
  *this_p = value_cast (final_type, *this_p);
682
 
683
  /* Then apply whatever adjustment is necessary.  This creates a somewhat
684
     strange pointer: it claims to have type FINAL_TYPE, but in fact it
685
     might not be a valid FINAL_TYPE.  For instance, it might be a
686
     base class of FINAL_TYPE.  And if it's not the primary base class,
687
     then printing it out as a FINAL_TYPE object would produce some pretty
688
     garbage.
689
 
690
     But we don't really know the type of the first argument in
691
     METHOD_TYPE either, which is why this happens.  We can't
692
     dereference this later as a FINAL_TYPE, but once we arrive in the
693
     called method we'll have debugging information for the type of
694
     "this" - and that'll match the value we produce here.
695
 
696
     You can provoke this case by casting a Base::* to a Derived::*, for
697
     instance.  */
698
  *this_p = value_cast (builtin_type (gdbarch)->builtin_data_ptr, *this_p);
699
  *this_p = value_ptradd (*this_p, adjustment);
700
  *this_p = value_cast (final_type, *this_p);
701
 
702
  if (vbit)
703
    {
704
      LONGEST voffset;
705
      voffset = ptr_value / TYPE_LENGTH (vtable_ptrdiff_type (gdbarch));
706
      return gnuv3_get_virtual_fn (gdbarch, value_ind (*this_p),
707
                                   method_type, voffset);
708
    }
709
  else
710
    return value_from_pointer (lookup_pointer_type (method_type), ptr_value);
711
}
712
 
713
/* Determine if we are currently in a C++ thunk.  If so, get the address
714
   of the routine we are thunking to and continue to there instead.  */
715
 
716
static CORE_ADDR
717
gnuv3_skip_trampoline (struct frame_info *frame, CORE_ADDR stop_pc)
718
{
719
  CORE_ADDR real_stop_pc, method_stop_pc;
720
  struct gdbarch *gdbarch = get_frame_arch (frame);
721
  struct minimal_symbol *thunk_sym, *fn_sym;
722
  struct obj_section *section;
723
  char *thunk_name, *fn_name;
724
 
725
  real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
726
  if (real_stop_pc == 0)
727
    real_stop_pc = stop_pc;
728
 
729
  /* Find the linker symbol for this potential thunk.  */
730
  thunk_sym = lookup_minimal_symbol_by_pc (real_stop_pc);
731
  section = find_pc_section (real_stop_pc);
732
  if (thunk_sym == NULL || section == NULL)
733
    return 0;
734
 
735
  /* The symbol's demangled name should be something like "virtual
736
     thunk to FUNCTION", where FUNCTION is the name of the function
737
     being thunked to.  */
738
  thunk_name = SYMBOL_DEMANGLED_NAME (thunk_sym);
739
  if (thunk_name == NULL || strstr (thunk_name, " thunk to ") == NULL)
740
    return 0;
741
 
742
  fn_name = strstr (thunk_name, " thunk to ") + strlen (" thunk to ");
743
  fn_sym = lookup_minimal_symbol (fn_name, NULL, section->objfile);
744
  if (fn_sym == NULL)
745
    return 0;
746
 
747
  method_stop_pc = SYMBOL_VALUE_ADDRESS (fn_sym);
748
  real_stop_pc = gdbarch_skip_trampoline_code
749
                   (gdbarch, frame, method_stop_pc);
750
  if (real_stop_pc == 0)
751
    real_stop_pc = method_stop_pc;
752
 
753
  return real_stop_pc;
754
}
755
 
756
/* Return nonzero if a type should be passed by reference.
757
 
758
   The rule in the v3 ABI document comes from section 3.1.1.  If the
759
   type has a non-trivial copy constructor or destructor, then the
760
   caller must make a copy (by calling the copy constructor if there
761
   is one or perform the copy itself otherwise), pass the address of
762
   the copy, and then destroy the temporary (if necessary).
763
 
764
   For return values with non-trivial copy constructors or
765
   destructors, space will be allocated in the caller, and a pointer
766
   will be passed as the first argument (preceding "this").
767
 
768
   We don't have a bulletproof mechanism for determining whether a
769
   constructor or destructor is trivial.  For GCC and DWARF2 debug
770
   information, we can check the artificial flag.
771
 
772
   We don't do anything with the constructors or destructors,
773
   but we have to get the argument passing right anyway.  */
774
static int
775
gnuv3_pass_by_reference (struct type *type)
776
{
777
  int fieldnum, fieldelem;
778
 
779
  CHECK_TYPEDEF (type);
780
 
781
  /* We're only interested in things that can have methods.  */
782
  if (TYPE_CODE (type) != TYPE_CODE_STRUCT
783
      && TYPE_CODE (type) != TYPE_CODE_CLASS
784
      && TYPE_CODE (type) != TYPE_CODE_UNION)
785
    return 0;
786
 
787
  for (fieldnum = 0; fieldnum < TYPE_NFN_FIELDS (type); fieldnum++)
788
    for (fieldelem = 0; fieldelem < TYPE_FN_FIELDLIST_LENGTH (type, fieldnum);
789
         fieldelem++)
790
      {
791
        struct fn_field *fn = TYPE_FN_FIELDLIST1 (type, fieldnum);
792
        char *name = TYPE_FN_FIELDLIST_NAME (type, fieldnum);
793
        struct type *fieldtype = TYPE_FN_FIELD_TYPE (fn, fieldelem);
794
 
795
        /* If this function is marked as artificial, it is compiler-generated,
796
           and we assume it is trivial.  */
797
        if (TYPE_FN_FIELD_ARTIFICIAL (fn, fieldelem))
798
          continue;
799
 
800
        /* If we've found a destructor, we must pass this by reference.  */
801
        if (name[0] == '~')
802
          return 1;
803
 
804
        /* If the mangled name of this method doesn't indicate that it
805
           is a constructor, we're not interested.
806
 
807
           FIXME drow/2007-09-23: We could do this using the name of
808
           the method and the name of the class instead of dealing
809
           with the mangled name.  We don't have a convenient function
810
           to strip off both leading scope qualifiers and trailing
811
           template arguments yet.  */
812
        if (!is_constructor_name (TYPE_FN_FIELD_PHYSNAME (fn, fieldelem)))
813
          continue;
814
 
815
        /* If this method takes two arguments, and the second argument is
816
           a reference to this class, then it is a copy constructor.  */
817
        if (TYPE_NFIELDS (fieldtype) == 2
818
            && TYPE_CODE (TYPE_FIELD_TYPE (fieldtype, 1)) == TYPE_CODE_REF
819
            && check_typedef (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (fieldtype, 1))) == type)
820
          return 1;
821
      }
822
 
823
  /* Even if all the constructors and destructors were artificial, one
824
     of them may have invoked a non-artificial constructor or
825
     destructor in a base class.  If any base class needs to be passed
826
     by reference, so does this class.  Similarly for members, which
827
     are constructed whenever this class is.  We do not need to worry
828
     about recursive loops here, since we are only looking at members
829
     of complete class type.  */
830
  for (fieldnum = 0; fieldnum < TYPE_NFIELDS (type); fieldnum++)
831
    if (gnuv3_pass_by_reference (TYPE_FIELD_TYPE (type, fieldnum)))
832
      return 1;
833
 
834
  return 0;
835
}
836
 
837
static void
838
init_gnuv3_ops (void)
839
{
840
  vtable_type_gdbarch_data = gdbarch_data_register_post_init (build_gdb_vtable_type);
841
 
842
  gnu_v3_abi_ops.shortname = "gnu-v3";
843
  gnu_v3_abi_ops.longname = "GNU G++ Version 3 ABI";
844
  gnu_v3_abi_ops.doc = "G++ Version 3 ABI";
845
  gnu_v3_abi_ops.is_destructor_name =
846
    (enum dtor_kinds (*) (const char *))is_gnu_v3_mangled_dtor;
847
  gnu_v3_abi_ops.is_constructor_name =
848
    (enum ctor_kinds (*) (const char *))is_gnu_v3_mangled_ctor;
849
  gnu_v3_abi_ops.is_vtable_name = gnuv3_is_vtable_name;
850
  gnu_v3_abi_ops.is_operator_name = gnuv3_is_operator_name;
851
  gnu_v3_abi_ops.rtti_type = gnuv3_rtti_type;
852
  gnu_v3_abi_ops.virtual_fn_field = gnuv3_virtual_fn_field;
853
  gnu_v3_abi_ops.baseclass_offset = gnuv3_baseclass_offset;
854
  gnu_v3_abi_ops.print_method_ptr = gnuv3_print_method_ptr;
855
  gnu_v3_abi_ops.method_ptr_size = gnuv3_method_ptr_size;
856
  gnu_v3_abi_ops.make_method_ptr = gnuv3_make_method_ptr;
857
  gnu_v3_abi_ops.method_ptr_to_value = gnuv3_method_ptr_to_value;
858
  gnu_v3_abi_ops.skip_trampoline = gnuv3_skip_trampoline;
859
  gnu_v3_abi_ops.pass_by_reference = gnuv3_pass_by_reference;
860
}
861
 
862
extern initialize_file_ftype _initialize_gnu_v3_abi; /* -Wmissing-prototypes */
863
 
864
void
865
_initialize_gnu_v3_abi (void)
866
{
867
  init_gnuv3_ops ();
868
 
869
  register_cp_abi (&gnu_v3_abi_ops);
870
}

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.