OpenCores
URL https://opencores.org/ocsvn/openrisc/openrisc/trunk

Subversion Repositories openrisc

[/] [openrisc/] [trunk/] [gnu-old/] [gdb-7.1/] [gdb/] [i386-linux-tdep.c] - Blame information for rev 855

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 227 jeremybenn
/* Target-dependent code for GNU/Linux i386.
2
 
3
   Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2007, 2008, 2009, 2010
4
   Free Software Foundation, Inc.
5
 
6
   This file is part of GDB.
7
 
8
   This program is free software; you can redistribute it and/or modify
9
   it under the terms of the GNU General Public License as published by
10
   the Free Software Foundation; either version 3 of the License, or
11
   (at your option) any later version.
12
 
13
   This program is distributed in the hope that it will be useful,
14
   but WITHOUT ANY WARRANTY; without even the implied warranty of
15
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16
   GNU General Public License for more details.
17
 
18
   You should have received a copy of the GNU General Public License
19
   along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
20
 
21
#include "defs.h"
22
#include "gdbcore.h"
23
#include "frame.h"
24
#include "value.h"
25
#include "regcache.h"
26
#include "inferior.h"
27
#include "osabi.h"
28
#include "reggroups.h"
29
#include "dwarf2-frame.h"
30
#include "gdb_string.h"
31
 
32
#include "i386-tdep.h"
33
#include "i386-linux-tdep.h"
34
#include "linux-tdep.h"
35
#include "glibc-tdep.h"
36
#include "solib-svr4.h"
37
#include "symtab.h"
38
#include "arch-utils.h"
39
#include "regset.h"
40
#include "xml-syscall.h"
41
 
42
/* The syscall's XML filename for i386.  */
43
#define XML_SYSCALL_FILENAME_I386 "syscalls/i386-linux.xml"
44
 
45
#include "record.h"
46
#include "linux-record.h"
47
#include <stdint.h>
48
 
49
/* Supported register note sections.  */
50
static struct core_regset_section i386_linux_regset_sections[] =
51
{
52
  { ".reg", 144, "general-purpose" },
53
  { ".reg2", 108, "floating-point" },
54
  { ".reg-xfp", 512, "extended floating-point" },
55
  { NULL, 0 }
56
};
57
 
58
/* Return the name of register REG.  */
59
 
60
static const char *
61
i386_linux_register_name (struct gdbarch *gdbarch, int reg)
62
{
63
  /* Deal with the extra "orig_eax" pseudo register.  */
64
  if (reg == I386_LINUX_ORIG_EAX_REGNUM)
65
    return "orig_eax";
66
 
67
  return i386_register_name (gdbarch, reg);
68
}
69
 
70
/* Return non-zero, when the register is in the corresponding register
71
   group.  Put the LINUX_ORIG_EAX register in the system group.  */
72
static int
73
i386_linux_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
74
                                struct reggroup *group)
75
{
76
  if (regnum == I386_LINUX_ORIG_EAX_REGNUM)
77
    return (group == system_reggroup
78
            || group == save_reggroup
79
            || group == restore_reggroup);
80
  return i386_register_reggroup_p (gdbarch, regnum, group);
81
}
82
 
83
 
84
/* Recognizing signal handler frames.  */
85
 
86
/* GNU/Linux has two flavors of signals.  Normal signal handlers, and
87
   "realtime" (RT) signals.  The RT signals can provide additional
88
   information to the signal handler if the SA_SIGINFO flag is set
89
   when establishing a signal handler using `sigaction'.  It is not
90
   unlikely that future versions of GNU/Linux will support SA_SIGINFO
91
   for normal signals too.  */
92
 
93
/* When the i386 Linux kernel calls a signal handler and the
94
   SA_RESTORER flag isn't set, the return address points to a bit of
95
   code on the stack.  This function returns whether the PC appears to
96
   be within this bit of code.
97
 
98
   The instruction sequence for normal signals is
99
       pop    %eax
100
       mov    $0x77, %eax
101
       int    $0x80
102
   or 0x58 0xb8 0x77 0x00 0x00 0x00 0xcd 0x80.
103
 
104
   Checking for the code sequence should be somewhat reliable, because
105
   the effect is to call the system call sigreturn.  This is unlikely
106
   to occur anywhere other than in a signal trampoline.
107
 
108
   It kind of sucks that we have to read memory from the process in
109
   order to identify a signal trampoline, but there doesn't seem to be
110
   any other way.  Therefore we only do the memory reads if no
111
   function name could be identified, which should be the case since
112
   the code is on the stack.
113
 
114
   Detection of signal trampolines for handlers that set the
115
   SA_RESTORER flag is in general not possible.  Unfortunately this is
116
   what the GNU C Library has been doing for quite some time now.
117
   However, as of version 2.1.2, the GNU C Library uses signal
118
   trampolines (named __restore and __restore_rt) that are identical
119
   to the ones used by the kernel.  Therefore, these trampolines are
120
   supported too.  */
121
 
122
#define LINUX_SIGTRAMP_INSN0    0x58    /* pop %eax */
123
#define LINUX_SIGTRAMP_OFFSET0  0
124
#define LINUX_SIGTRAMP_INSN1    0xb8    /* mov $NNNN, %eax */
125
#define LINUX_SIGTRAMP_OFFSET1  1
126
#define LINUX_SIGTRAMP_INSN2    0xcd    /* int */
127
#define LINUX_SIGTRAMP_OFFSET2  6
128
 
129
static const gdb_byte linux_sigtramp_code[] =
130
{
131
  LINUX_SIGTRAMP_INSN0,                                 /* pop %eax */
132
  LINUX_SIGTRAMP_INSN1, 0x77, 0x00, 0x00, 0x00,         /* mov $0x77, %eax */
133
  LINUX_SIGTRAMP_INSN2, 0x80                            /* int $0x80 */
134
};
135
 
136
#define LINUX_SIGTRAMP_LEN (sizeof linux_sigtramp_code)
137
 
138
/* If THIS_FRAME is a sigtramp routine, return the address of the
139
   start of the routine.  Otherwise, return 0.  */
140
 
141
static CORE_ADDR
142
i386_linux_sigtramp_start (struct frame_info *this_frame)
143
{
144
  CORE_ADDR pc = get_frame_pc (this_frame);
145
  gdb_byte buf[LINUX_SIGTRAMP_LEN];
146
 
147
  /* We only recognize a signal trampoline if PC is at the start of
148
     one of the three instructions.  We optimize for finding the PC at
149
     the start, as will be the case when the trampoline is not the
150
     first frame on the stack.  We assume that in the case where the
151
     PC is not at the start of the instruction sequence, there will be
152
     a few trailing readable bytes on the stack.  */
153
 
154
  if (!safe_frame_unwind_memory (this_frame, pc, buf, LINUX_SIGTRAMP_LEN))
155
    return 0;
156
 
157
  if (buf[0] != LINUX_SIGTRAMP_INSN0)
158
    {
159
      int adjust;
160
 
161
      switch (buf[0])
162
        {
163
        case LINUX_SIGTRAMP_INSN1:
164
          adjust = LINUX_SIGTRAMP_OFFSET1;
165
          break;
166
        case LINUX_SIGTRAMP_INSN2:
167
          adjust = LINUX_SIGTRAMP_OFFSET2;
168
          break;
169
        default:
170
          return 0;
171
        }
172
 
173
      pc -= adjust;
174
 
175
      if (!safe_frame_unwind_memory (this_frame, pc, buf, LINUX_SIGTRAMP_LEN))
176
        return 0;
177
    }
178
 
179
  if (memcmp (buf, linux_sigtramp_code, LINUX_SIGTRAMP_LEN) != 0)
180
    return 0;
181
 
182
  return pc;
183
}
184
 
185
/* This function does the same for RT signals.  Here the instruction
186
   sequence is
187
       mov    $0xad, %eax
188
       int    $0x80
189
   or 0xb8 0xad 0x00 0x00 0x00 0xcd 0x80.
190
 
191
   The effect is to call the system call rt_sigreturn.  */
192
 
193
#define LINUX_RT_SIGTRAMP_INSN0         0xb8 /* mov $NNNN, %eax */
194
#define LINUX_RT_SIGTRAMP_OFFSET0       0
195
#define LINUX_RT_SIGTRAMP_INSN1         0xcd /* int */
196
#define LINUX_RT_SIGTRAMP_OFFSET1       5
197
 
198
static const gdb_byte linux_rt_sigtramp_code[] =
199
{
200
  LINUX_RT_SIGTRAMP_INSN0, 0xad, 0x00, 0x00, 0x00,      /* mov $0xad, %eax */
201
  LINUX_RT_SIGTRAMP_INSN1, 0x80                         /* int $0x80 */
202
};
203
 
204
#define LINUX_RT_SIGTRAMP_LEN (sizeof linux_rt_sigtramp_code)
205
 
206
/* If THIS_FRAME is an RT sigtramp routine, return the address of the
207
   start of the routine.  Otherwise, return 0.  */
208
 
209
static CORE_ADDR
210
i386_linux_rt_sigtramp_start (struct frame_info *this_frame)
211
{
212
  CORE_ADDR pc = get_frame_pc (this_frame);
213
  gdb_byte buf[LINUX_RT_SIGTRAMP_LEN];
214
 
215
  /* We only recognize a signal trampoline if PC is at the start of
216
     one of the two instructions.  We optimize for finding the PC at
217
     the start, as will be the case when the trampoline is not the
218
     first frame on the stack.  We assume that in the case where the
219
     PC is not at the start of the instruction sequence, there will be
220
     a few trailing readable bytes on the stack.  */
221
 
222
  if (!safe_frame_unwind_memory (this_frame, pc, buf, LINUX_RT_SIGTRAMP_LEN))
223
    return 0;
224
 
225
  if (buf[0] != LINUX_RT_SIGTRAMP_INSN0)
226
    {
227
      if (buf[0] != LINUX_RT_SIGTRAMP_INSN1)
228
        return 0;
229
 
230
      pc -= LINUX_RT_SIGTRAMP_OFFSET1;
231
 
232
      if (!safe_frame_unwind_memory (this_frame, pc, buf,
233
                                     LINUX_RT_SIGTRAMP_LEN))
234
        return 0;
235
    }
236
 
237
  if (memcmp (buf, linux_rt_sigtramp_code, LINUX_RT_SIGTRAMP_LEN) != 0)
238
    return 0;
239
 
240
  return pc;
241
}
242
 
243
/* Return whether THIS_FRAME corresponds to a GNU/Linux sigtramp
244
   routine.  */
245
 
246
static int
247
i386_linux_sigtramp_p (struct frame_info *this_frame)
248
{
249
  CORE_ADDR pc = get_frame_pc (this_frame);
250
  char *name;
251
 
252
  find_pc_partial_function (pc, &name, NULL, NULL);
253
 
254
  /* If we have NAME, we can optimize the search.  The trampolines are
255
     named __restore and __restore_rt.  However, they aren't dynamically
256
     exported from the shared C library, so the trampoline may appear to
257
     be part of the preceding function.  This should always be sigaction,
258
     __sigaction, or __libc_sigaction (all aliases to the same function).  */
259
  if (name == NULL || strstr (name, "sigaction") != NULL)
260
    return (i386_linux_sigtramp_start (this_frame) != 0
261
            || i386_linux_rt_sigtramp_start (this_frame) != 0);
262
 
263
  return (strcmp ("__restore", name) == 0
264
          || strcmp ("__restore_rt", name) == 0);
265
}
266
 
267
/* Return one if the PC of THIS_FRAME is in a signal trampoline which
268
   may have DWARF-2 CFI.  */
269
 
270
static int
271
i386_linux_dwarf_signal_frame_p (struct gdbarch *gdbarch,
272
                                 struct frame_info *this_frame)
273
{
274
  CORE_ADDR pc = get_frame_pc (this_frame);
275
  char *name;
276
 
277
  find_pc_partial_function (pc, &name, NULL, NULL);
278
 
279
  /* If a vsyscall DSO is in use, the signal trampolines may have these
280
     names.  */
281
  if (name && (strcmp (name, "__kernel_sigreturn") == 0
282
               || strcmp (name, "__kernel_rt_sigreturn") == 0))
283
    return 1;
284
 
285
  return 0;
286
}
287
 
288
/* Offset to struct sigcontext in ucontext, from <asm/ucontext.h>.  */
289
#define I386_LINUX_UCONTEXT_SIGCONTEXT_OFFSET 20
290
 
291
/* Assuming THIS_FRAME is a GNU/Linux sigtramp routine, return the
292
   address of the associated sigcontext structure.  */
293
 
294
static CORE_ADDR
295
i386_linux_sigcontext_addr (struct frame_info *this_frame)
296
{
297
  struct gdbarch *gdbarch = get_frame_arch (this_frame);
298
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
299
  CORE_ADDR pc;
300
  CORE_ADDR sp;
301
  gdb_byte buf[4];
302
 
303
  get_frame_register (this_frame, I386_ESP_REGNUM, buf);
304
  sp = extract_unsigned_integer (buf, 4, byte_order);
305
 
306
  pc = i386_linux_sigtramp_start (this_frame);
307
  if (pc)
308
    {
309
      /* The sigcontext structure lives on the stack, right after
310
         the signum argument.  We determine the address of the
311
         sigcontext structure by looking at the frame's stack
312
         pointer.  Keep in mind that the first instruction of the
313
         sigtramp code is "pop %eax".  If the PC is after this
314
         instruction, adjust the returned value accordingly.  */
315
      if (pc == get_frame_pc (this_frame))
316
        return sp + 4;
317
      return sp;
318
    }
319
 
320
  pc = i386_linux_rt_sigtramp_start (this_frame);
321
  if (pc)
322
    {
323
      CORE_ADDR ucontext_addr;
324
 
325
      /* The sigcontext structure is part of the user context.  A
326
         pointer to the user context is passed as the third argument
327
         to the signal handler.  */
328
      read_memory (sp + 8, buf, 4);
329
      ucontext_addr = extract_unsigned_integer (buf, 4, byte_order);
330
      return ucontext_addr + I386_LINUX_UCONTEXT_SIGCONTEXT_OFFSET;
331
    }
332
 
333
  error (_("Couldn't recognize signal trampoline."));
334
  return 0;
335
}
336
 
337
/* Set the program counter for process PTID to PC.  */
338
 
339
static void
340
i386_linux_write_pc (struct regcache *regcache, CORE_ADDR pc)
341
{
342
  regcache_cooked_write_unsigned (regcache, I386_EIP_REGNUM, pc);
343
 
344
  /* We must be careful with modifying the program counter.  If we
345
     just interrupted a system call, the kernel might try to restart
346
     it when we resume the inferior.  On restarting the system call,
347
     the kernel will try backing up the program counter even though it
348
     no longer points at the system call.  This typically results in a
349
     SIGSEGV or SIGILL.  We can prevent this by writing `-1' in the
350
     "orig_eax" pseudo-register.
351
 
352
     Note that "orig_eax" is saved when setting up a dummy call frame.
353
     This means that it is properly restored when that frame is
354
     popped, and that the interrupted system call will be restarted
355
     when we resume the inferior on return from a function call from
356
     within GDB.  In all other cases the system call will not be
357
     restarted.  */
358
  regcache_cooked_write_unsigned (regcache, I386_LINUX_ORIG_EAX_REGNUM, -1);
359
}
360
 
361
/* Record all registers but IP register for process-record.  */
362
 
363
static int
364
i386_all_but_ip_registers_record (struct regcache *regcache)
365
{
366
  if (record_arch_list_add_reg (regcache, I386_EAX_REGNUM))
367
    return -1;
368
  if (record_arch_list_add_reg (regcache, I386_ECX_REGNUM))
369
    return -1;
370
  if (record_arch_list_add_reg (regcache, I386_EDX_REGNUM))
371
    return -1;
372
  if (record_arch_list_add_reg (regcache, I386_EBX_REGNUM))
373
    return -1;
374
  if (record_arch_list_add_reg (regcache, I386_ESP_REGNUM))
375
    return -1;
376
  if (record_arch_list_add_reg (regcache, I386_EBP_REGNUM))
377
    return -1;
378
  if (record_arch_list_add_reg (regcache, I386_ESI_REGNUM))
379
    return -1;
380
  if (record_arch_list_add_reg (regcache, I386_EDI_REGNUM))
381
    return -1;
382
  if (record_arch_list_add_reg (regcache, I386_EFLAGS_REGNUM))
383
    return -1;
384
 
385
  return 0;
386
}
387
 
388
/* i386_canonicalize_syscall maps from the native i386 Linux set
389
   of syscall ids into a canonical set of syscall ids used by
390
   process record (a mostly trivial mapping, since the canonical
391
   set was originally taken from the i386 set).  */
392
 
393
static enum gdb_syscall
394
i386_canonicalize_syscall (int syscall)
395
{
396
  enum { i386_syscall_max = 499 };
397
 
398
  if (syscall <= i386_syscall_max)
399
    return syscall;
400
  else
401
    return -1;
402
}
403
 
404
/* Parse the arguments of current system call instruction and record
405
   the values of the registers and memory that will be changed into
406
   "record_arch_list".  This instruction is "int 0x80" (Linux
407
   Kernel2.4) or "sysenter" (Linux Kernel 2.6).
408
 
409
   Return -1 if something wrong.  */
410
 
411
static struct linux_record_tdep i386_linux_record_tdep;
412
 
413
static int
414
i386_linux_intx80_sysenter_record (struct regcache *regcache)
415
{
416
  int ret;
417
  LONGEST syscall_native;
418
  enum gdb_syscall syscall_gdb;
419
 
420
  regcache_raw_read_signed (regcache, I386_EAX_REGNUM, &syscall_native);
421
 
422
  syscall_gdb = i386_canonicalize_syscall (syscall_native);
423
 
424
  if (syscall_gdb < 0)
425
    {
426
      printf_unfiltered (_("Process record and replay target doesn't "
427
                           "support syscall number %s\n"),
428
                         plongest (syscall_native));
429
      return -1;
430
    }
431
 
432
  if (syscall_gdb == gdb_sys_sigreturn
433
      || syscall_gdb == gdb_sys_rt_sigreturn)
434
   {
435
     if (i386_all_but_ip_registers_record (regcache))
436
       return -1;
437
     return 0;
438
   }
439
 
440
  ret = record_linux_system_call (syscall_gdb, regcache,
441
                                  &i386_linux_record_tdep);
442
  if (ret)
443
    return ret;
444
 
445
  /* Record the return value of the system call.  */
446
  if (record_arch_list_add_reg (regcache, I386_EAX_REGNUM))
447
    return -1;
448
 
449
  return 0;
450
}
451
 
452
#define I386_LINUX_xstate       270
453
#define I386_LINUX_frame_size   732
454
 
455
int
456
i386_linux_record_signal (struct gdbarch *gdbarch,
457
                          struct regcache *regcache,
458
                          enum target_signal signal)
459
{
460
  ULONGEST esp;
461
 
462
  if (i386_all_but_ip_registers_record (regcache))
463
    return -1;
464
 
465
  if (record_arch_list_add_reg (regcache, I386_EIP_REGNUM))
466
    return -1;
467
 
468
  /* Record the change in the stack.  */
469
  regcache_raw_read_unsigned (regcache, I386_ESP_REGNUM, &esp);
470
  /* This is for xstate.
471
     sp -= sizeof (struct _fpstate);  */
472
  esp -= I386_LINUX_xstate;
473
  /* This is for frame_size.
474
     sp -= sizeof (struct rt_sigframe);  */
475
  esp -= I386_LINUX_frame_size;
476
  if (record_arch_list_add_mem (esp,
477
                                I386_LINUX_xstate + I386_LINUX_frame_size))
478
    return -1;
479
 
480
  if (record_arch_list_add_end ())
481
    return -1;
482
 
483
  return 0;
484
}
485
 
486
 
487
static LONGEST
488
i386_linux_get_syscall_number (struct gdbarch *gdbarch,
489
                               ptid_t ptid)
490
{
491
  struct regcache *regcache = get_thread_regcache (ptid);
492
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
493
  /* The content of a register.  */
494
  gdb_byte buf[4];
495
  /* The result.  */
496
  LONGEST ret;
497
 
498
  /* Getting the system call number from the register.
499
     When dealing with x86 architecture, this information
500
     is stored at %eax register.  */
501
  regcache_cooked_read (regcache, I386_LINUX_ORIG_EAX_REGNUM, buf);
502
 
503
  ret = extract_signed_integer (buf, 4, byte_order);
504
 
505
  return ret;
506
}
507
 
508
/* The register sets used in GNU/Linux ELF core-dumps are identical to
509
   the register sets in `struct user' that are used for a.out
510
   core-dumps.  These are also used by ptrace(2).  The corresponding
511
   types are `elf_gregset_t' for the general-purpose registers (with
512
   `elf_greg_t' the type of a single GP register) and `elf_fpregset_t'
513
   for the floating-point registers.
514
 
515
   Those types used to be available under the names `gregset_t' and
516
   `fpregset_t' too, and GDB used those names in the past.  But those
517
   names are now used for the register sets used in the `mcontext_t'
518
   type, which have a different size and layout.  */
519
 
520
/* Mapping between the general-purpose registers in `struct user'
521
   format and GDB's register cache layout.  */
522
 
523
/* From <sys/reg.h>.  */
524
static int i386_linux_gregset_reg_offset[] =
525
{
526
  6 * 4,                        /* %eax */
527
  1 * 4,                        /* %ecx */
528
  2 * 4,                        /* %edx */
529
 
530
  15 * 4,                       /* %esp */
531
  5 * 4,                        /* %ebp */
532
  3 * 4,                        /* %esi */
533
  4 * 4,                        /* %edi */
534
  12 * 4,                       /* %eip */
535
  14 * 4,                       /* %eflags */
536
  13 * 4,                       /* %cs */
537
  16 * 4,                       /* %ss */
538
  7 * 4,                        /* %ds */
539
  8 * 4,                        /* %es */
540
  9 * 4,                        /* %fs */
541
  10 * 4,                       /* %gs */
542
  -1, -1, -1, -1, -1, -1, -1, -1,
543
  -1, -1, -1, -1, -1, -1, -1, -1,
544
  -1, -1, -1, -1, -1, -1, -1, -1,
545
  -1,
546
  11 * 4                        /* "orig_eax" */
547
};
548
 
549
/* Mapping between the general-purpose registers in `struct
550
   sigcontext' format and GDB's register cache layout.  */
551
 
552
/* From <asm/sigcontext.h>.  */
553
static int i386_linux_sc_reg_offset[] =
554
{
555
  11 * 4,                       /* %eax */
556
  10 * 4,                       /* %ecx */
557
  9 * 4,                        /* %edx */
558
  8 * 4,                        /* %ebx */
559
  7 * 4,                        /* %esp */
560
  6 * 4,                        /* %ebp */
561
  5 * 4,                        /* %esi */
562
  4 * 4,                        /* %edi */
563
  14 * 4,                       /* %eip */
564
  16 * 4,                       /* %eflags */
565
  15 * 4,                       /* %cs */
566
  18 * 4,                       /* %ss */
567
  3 * 4,                        /* %ds */
568
  2 * 4,                        /* %es */
569
  1 * 4,                        /* %fs */
570
 
571
};
572
 
573
static void
574
i386_linux_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
575
{
576
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
577
 
578
  /* GNU/Linux uses ELF.  */
579
  i386_elf_init_abi (info, gdbarch);
580
 
581
  /* Since we have the extra "orig_eax" register on GNU/Linux, we have
582
     to adjust a few things.  */
583
 
584
  set_gdbarch_write_pc (gdbarch, i386_linux_write_pc);
585
  set_gdbarch_num_regs (gdbarch, I386_LINUX_NUM_REGS);
586
  set_gdbarch_register_name (gdbarch, i386_linux_register_name);
587
  set_gdbarch_register_reggroup_p (gdbarch, i386_linux_register_reggroup_p);
588
 
589
  tdep->gregset_reg_offset = i386_linux_gregset_reg_offset;
590
  tdep->gregset_num_regs = ARRAY_SIZE (i386_linux_gregset_reg_offset);
591
  tdep->sizeof_gregset = 17 * 4;
592
 
593
  tdep->jb_pc_offset = 20;      /* From <bits/setjmp.h>.  */
594
 
595
  tdep->sigtramp_p = i386_linux_sigtramp_p;
596
  tdep->sigcontext_addr = i386_linux_sigcontext_addr;
597
  tdep->sc_reg_offset = i386_linux_sc_reg_offset;
598
  tdep->sc_num_regs = ARRAY_SIZE (i386_linux_sc_reg_offset);
599
 
600
  set_gdbarch_process_record (gdbarch, i386_process_record);
601
  set_gdbarch_process_record_signal (gdbarch, i386_linux_record_signal);
602
 
603
  /* Initialize the i386_linux_record_tdep.  */
604
  /* These values are the size of the type that will be used in a system
605
     call.  They are obtained from Linux Kernel source.  */
606
  i386_linux_record_tdep.size_pointer
607
    = gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT;
608
  i386_linux_record_tdep.size__old_kernel_stat = 32;
609
  i386_linux_record_tdep.size_tms = 16;
610
  i386_linux_record_tdep.size_loff_t = 8;
611
  i386_linux_record_tdep.size_flock = 16;
612
  i386_linux_record_tdep.size_oldold_utsname = 45;
613
  i386_linux_record_tdep.size_ustat = 20;
614
  i386_linux_record_tdep.size_old_sigaction = 140;
615
  i386_linux_record_tdep.size_old_sigset_t = 128;
616
  i386_linux_record_tdep.size_rlimit = 8;
617
  i386_linux_record_tdep.size_rusage = 72;
618
  i386_linux_record_tdep.size_timeval = 8;
619
  i386_linux_record_tdep.size_timezone = 8;
620
  i386_linux_record_tdep.size_old_gid_t = 2;
621
  i386_linux_record_tdep.size_old_uid_t = 2;
622
  i386_linux_record_tdep.size_fd_set = 128;
623
  i386_linux_record_tdep.size_dirent = 268;
624
  i386_linux_record_tdep.size_dirent64 = 276;
625
  i386_linux_record_tdep.size_statfs = 64;
626
  i386_linux_record_tdep.size_statfs64 = 84;
627
  i386_linux_record_tdep.size_sockaddr = 16;
628
  i386_linux_record_tdep.size_int
629
    = gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT;
630
  i386_linux_record_tdep.size_long
631
    = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
632
  i386_linux_record_tdep.size_ulong
633
    = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
634
  i386_linux_record_tdep.size_msghdr = 28;
635
  i386_linux_record_tdep.size_itimerval = 16;
636
  i386_linux_record_tdep.size_stat = 88;
637
  i386_linux_record_tdep.size_old_utsname = 325;
638
  i386_linux_record_tdep.size_sysinfo = 64;
639
  i386_linux_record_tdep.size_msqid_ds = 88;
640
  i386_linux_record_tdep.size_shmid_ds = 84;
641
  i386_linux_record_tdep.size_new_utsname = 390;
642
  i386_linux_record_tdep.size_timex = 128;
643
  i386_linux_record_tdep.size_mem_dqinfo = 24;
644
  i386_linux_record_tdep.size_if_dqblk = 68;
645
  i386_linux_record_tdep.size_fs_quota_stat = 68;
646
  i386_linux_record_tdep.size_timespec = 8;
647
  i386_linux_record_tdep.size_pollfd = 8;
648
  i386_linux_record_tdep.size_NFS_FHSIZE = 32;
649
  i386_linux_record_tdep.size_knfsd_fh = 132;
650
  i386_linux_record_tdep.size_TASK_COMM_LEN = 16;
651
  i386_linux_record_tdep.size_sigaction = 140;
652
  i386_linux_record_tdep.size_sigset_t = 8;
653
  i386_linux_record_tdep.size_siginfo_t = 128;
654
  i386_linux_record_tdep.size_cap_user_data_t = 12;
655
  i386_linux_record_tdep.size_stack_t = 12;
656
  i386_linux_record_tdep.size_off_t = i386_linux_record_tdep.size_long;
657
  i386_linux_record_tdep.size_stat64 = 96;
658
  i386_linux_record_tdep.size_gid_t = 2;
659
  i386_linux_record_tdep.size_uid_t = 2;
660
  i386_linux_record_tdep.size_PAGE_SIZE = 4096;
661
  i386_linux_record_tdep.size_flock64 = 24;
662
  i386_linux_record_tdep.size_user_desc = 16;
663
  i386_linux_record_tdep.size_io_event = 32;
664
  i386_linux_record_tdep.size_iocb = 64;
665
  i386_linux_record_tdep.size_epoll_event = 12;
666
  i386_linux_record_tdep.size_itimerspec
667
    = i386_linux_record_tdep.size_timespec * 2;
668
  i386_linux_record_tdep.size_mq_attr = 32;
669
  i386_linux_record_tdep.size_siginfo = 128;
670
  i386_linux_record_tdep.size_termios = 36;
671
  i386_linux_record_tdep.size_termios2 = 44;
672
  i386_linux_record_tdep.size_pid_t = 4;
673
  i386_linux_record_tdep.size_winsize = 8;
674
  i386_linux_record_tdep.size_serial_struct = 60;
675
  i386_linux_record_tdep.size_serial_icounter_struct = 80;
676
  i386_linux_record_tdep.size_hayes_esp_config = 12;
677
  i386_linux_record_tdep.size_size_t = 4;
678
  i386_linux_record_tdep.size_iovec = 8;
679
 
680
  /* These values are the second argument of system call "sys_ioctl".
681
     They are obtained from Linux Kernel source.  */
682
  i386_linux_record_tdep.ioctl_TCGETS = 0x5401;
683
  i386_linux_record_tdep.ioctl_TCSETS = 0x5402;
684
  i386_linux_record_tdep.ioctl_TCSETSW = 0x5403;
685
  i386_linux_record_tdep.ioctl_TCSETSF = 0x5404;
686
  i386_linux_record_tdep.ioctl_TCGETA = 0x5405;
687
  i386_linux_record_tdep.ioctl_TCSETA = 0x5406;
688
  i386_linux_record_tdep.ioctl_TCSETAW = 0x5407;
689
  i386_linux_record_tdep.ioctl_TCSETAF = 0x5408;
690
  i386_linux_record_tdep.ioctl_TCSBRK = 0x5409;
691
  i386_linux_record_tdep.ioctl_TCXONC = 0x540A;
692
  i386_linux_record_tdep.ioctl_TCFLSH = 0x540B;
693
  i386_linux_record_tdep.ioctl_TIOCEXCL = 0x540C;
694
  i386_linux_record_tdep.ioctl_TIOCNXCL = 0x540D;
695
  i386_linux_record_tdep.ioctl_TIOCSCTTY = 0x540E;
696
  i386_linux_record_tdep.ioctl_TIOCGPGRP = 0x540F;
697
  i386_linux_record_tdep.ioctl_TIOCSPGRP = 0x5410;
698
  i386_linux_record_tdep.ioctl_TIOCOUTQ = 0x5411;
699
  i386_linux_record_tdep.ioctl_TIOCSTI = 0x5412;
700
  i386_linux_record_tdep.ioctl_TIOCGWINSZ = 0x5413;
701
  i386_linux_record_tdep.ioctl_TIOCSWINSZ = 0x5414;
702
  i386_linux_record_tdep.ioctl_TIOCMGET = 0x5415;
703
  i386_linux_record_tdep.ioctl_TIOCMBIS = 0x5416;
704
  i386_linux_record_tdep.ioctl_TIOCMBIC = 0x5417;
705
  i386_linux_record_tdep.ioctl_TIOCMSET = 0x5418;
706
  i386_linux_record_tdep.ioctl_TIOCGSOFTCAR = 0x5419;
707
  i386_linux_record_tdep.ioctl_TIOCSSOFTCAR = 0x541A;
708
  i386_linux_record_tdep.ioctl_FIONREAD = 0x541B;
709
  i386_linux_record_tdep.ioctl_TIOCINQ = i386_linux_record_tdep.ioctl_FIONREAD;
710
  i386_linux_record_tdep.ioctl_TIOCLINUX = 0x541C;
711
  i386_linux_record_tdep.ioctl_TIOCCONS = 0x541D;
712
  i386_linux_record_tdep.ioctl_TIOCGSERIAL = 0x541E;
713
  i386_linux_record_tdep.ioctl_TIOCSSERIAL = 0x541F;
714
  i386_linux_record_tdep.ioctl_TIOCPKT = 0x5420;
715
  i386_linux_record_tdep.ioctl_FIONBIO = 0x5421;
716
  i386_linux_record_tdep.ioctl_TIOCNOTTY = 0x5422;
717
  i386_linux_record_tdep.ioctl_TIOCSETD = 0x5423;
718
  i386_linux_record_tdep.ioctl_TIOCGETD = 0x5424;
719
  i386_linux_record_tdep.ioctl_TCSBRKP = 0x5425;
720
  i386_linux_record_tdep.ioctl_TIOCTTYGSTRUCT = 0x5426;
721
  i386_linux_record_tdep.ioctl_TIOCSBRK = 0x5427;
722
  i386_linux_record_tdep.ioctl_TIOCCBRK = 0x5428;
723
  i386_linux_record_tdep.ioctl_TIOCGSID = 0x5429;
724
  i386_linux_record_tdep.ioctl_TCGETS2 = 0x802c542a;
725
  i386_linux_record_tdep.ioctl_TCSETS2 = 0x402c542b;
726
  i386_linux_record_tdep.ioctl_TCSETSW2 = 0x402c542c;
727
  i386_linux_record_tdep.ioctl_TCSETSF2 = 0x402c542d;
728
  i386_linux_record_tdep.ioctl_TIOCGPTN = 0x80045430;
729
  i386_linux_record_tdep.ioctl_TIOCSPTLCK = 0x40045431;
730
  i386_linux_record_tdep.ioctl_FIONCLEX = 0x5450;
731
  i386_linux_record_tdep.ioctl_FIOCLEX = 0x5451;
732
  i386_linux_record_tdep.ioctl_FIOASYNC = 0x5452;
733
  i386_linux_record_tdep.ioctl_TIOCSERCONFIG = 0x5453;
734
  i386_linux_record_tdep.ioctl_TIOCSERGWILD = 0x5454;
735
  i386_linux_record_tdep.ioctl_TIOCSERSWILD = 0x5455;
736
  i386_linux_record_tdep.ioctl_TIOCGLCKTRMIOS = 0x5456;
737
  i386_linux_record_tdep.ioctl_TIOCSLCKTRMIOS = 0x5457;
738
  i386_linux_record_tdep.ioctl_TIOCSERGSTRUCT = 0x5458;
739
  i386_linux_record_tdep.ioctl_TIOCSERGETLSR = 0x5459;
740
  i386_linux_record_tdep.ioctl_TIOCSERGETMULTI = 0x545A;
741
  i386_linux_record_tdep.ioctl_TIOCSERSETMULTI = 0x545B;
742
  i386_linux_record_tdep.ioctl_TIOCMIWAIT = 0x545C;
743
  i386_linux_record_tdep.ioctl_TIOCGICOUNT = 0x545D;
744
  i386_linux_record_tdep.ioctl_TIOCGHAYESESP = 0x545E;
745
  i386_linux_record_tdep.ioctl_TIOCSHAYESESP = 0x545F;
746
  i386_linux_record_tdep.ioctl_FIOQSIZE = 0x5460;
747
 
748
  /* These values are the second argument of system call "sys_fcntl"
749
     and "sys_fcntl64".  They are obtained from Linux Kernel source.  */
750
  i386_linux_record_tdep.fcntl_F_GETLK = 5;
751
  i386_linux_record_tdep.fcntl_F_GETLK64 = 12;
752
  i386_linux_record_tdep.fcntl_F_SETLK64 = 13;
753
  i386_linux_record_tdep.fcntl_F_SETLKW64 = 14;
754
 
755
  i386_linux_record_tdep.arg1 = I386_EBX_REGNUM;
756
  i386_linux_record_tdep.arg2 = I386_ECX_REGNUM;
757
  i386_linux_record_tdep.arg3 = I386_EDX_REGNUM;
758
  i386_linux_record_tdep.arg4 = I386_ESI_REGNUM;
759
  i386_linux_record_tdep.arg5 = I386_EDI_REGNUM;
760
  i386_linux_record_tdep.arg6 = I386_EBP_REGNUM;
761
 
762
  tdep->i386_intx80_record = i386_linux_intx80_sysenter_record;
763
  tdep->i386_sysenter_record = i386_linux_intx80_sysenter_record;
764
 
765
  /* N_FUN symbols in shared libaries have 0 for their values and need
766
     to be relocated. */
767
  set_gdbarch_sofun_address_maybe_missing (gdbarch, 1);
768
 
769
  /* GNU/Linux uses SVR4-style shared libraries.  */
770
  set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
771
  set_solib_svr4_fetch_link_map_offsets
772
    (gdbarch, svr4_ilp32_fetch_link_map_offsets);
773
 
774
  /* GNU/Linux uses the dynamic linker included in the GNU C Library.  */
775
  set_gdbarch_skip_solib_resolver (gdbarch, glibc_skip_solib_resolver);
776
 
777
  dwarf2_frame_set_signal_frame_p (gdbarch, i386_linux_dwarf_signal_frame_p);
778
 
779
  /* Enable TLS support.  */
780
  set_gdbarch_fetch_tls_load_module_address (gdbarch,
781
                                             svr4_fetch_objfile_link_map);
782
 
783
  /* Install supported register note sections.  */
784
  set_gdbarch_core_regset_sections (gdbarch, i386_linux_regset_sections);
785
 
786
  /* Displaced stepping.  */
787
  set_gdbarch_displaced_step_copy_insn (gdbarch,
788
                                        simple_displaced_step_copy_insn);
789
  set_gdbarch_displaced_step_fixup (gdbarch, i386_displaced_step_fixup);
790
  set_gdbarch_displaced_step_free_closure (gdbarch,
791
                                           simple_displaced_step_free_closure);
792
  set_gdbarch_displaced_step_location (gdbarch,
793
                                       displaced_step_at_entry_point);
794
 
795
  /* Functions for 'catch syscall'.  */
796
  set_xml_syscall_file_name (XML_SYSCALL_FILENAME_I386);
797
  set_gdbarch_get_syscall_number (gdbarch,
798
                                  i386_linux_get_syscall_number);
799
 
800
  set_gdbarch_get_siginfo_type (gdbarch, linux_get_siginfo_type);
801
}
802
 
803
/* Provide a prototype to silence -Wmissing-prototypes.  */
804
extern void _initialize_i386_linux_tdep (void);
805
 
806
void
807
_initialize_i386_linux_tdep (void)
808
{
809
  gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_LINUX,
810
                          i386_linux_init_abi);
811
}

powered by: WebSVN 2.1.0

© copyright 1999-2025 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.