OpenCores
URL https://opencores.org/ocsvn/openrisc/openrisc/trunk

Subversion Repositories openrisc

[/] [openrisc/] [trunk/] [gnu-old/] [gdb-7.1/] [gdb/] [minsyms.c] - Blame information for rev 859

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 227 jeremybenn
/* GDB routines for manipulating the minimal symbol tables.
2
   Copyright (C) 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001,
3
   2002, 2003, 2004, 2007, 2008, 2009, 2010 Free Software Foundation, Inc.
4
   Contributed by Cygnus Support, using pieces from other GDB modules.
5
 
6
   This file is part of GDB.
7
 
8
   This program is free software; you can redistribute it and/or modify
9
   it under the terms of the GNU General Public License as published by
10
   the Free Software Foundation; either version 3 of the License, or
11
   (at your option) any later version.
12
 
13
   This program is distributed in the hope that it will be useful,
14
   but WITHOUT ANY WARRANTY; without even the implied warranty of
15
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16
   GNU General Public License for more details.
17
 
18
   You should have received a copy of the GNU General Public License
19
   along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
20
 
21
 
22
/* This file contains support routines for creating, manipulating, and
23
   destroying minimal symbol tables.
24
 
25
   Minimal symbol tables are used to hold some very basic information about
26
   all defined global symbols (text, data, bss, abs, etc).  The only two
27
   required pieces of information are the symbol's name and the address
28
   associated with that symbol.
29
 
30
   In many cases, even if a file was compiled with no special options for
31
   debugging at all, as long as was not stripped it will contain sufficient
32
   information to build useful minimal symbol tables using this structure.
33
 
34
   Even when a file contains enough debugging information to build a full
35
   symbol table, these minimal symbols are still useful for quickly mapping
36
   between names and addresses, and vice versa.  They are also sometimes used
37
   to figure out what full symbol table entries need to be read in. */
38
 
39
 
40
#include "defs.h"
41
#include <ctype.h>
42
#include "gdb_string.h"
43
#include "symtab.h"
44
#include "bfd.h"
45
#include "symfile.h"
46
#include "objfiles.h"
47
#include "demangle.h"
48
#include "value.h"
49
#include "cp-abi.h"
50
#include "target.h"
51
#include "cp-support.h"
52
#include "language.h"
53
 
54
/* Accumulate the minimal symbols for each objfile in bunches of BUNCH_SIZE.
55
   At the end, copy them all into one newly allocated location on an objfile's
56
   symbol obstack.  */
57
 
58
#define BUNCH_SIZE 127
59
 
60
struct msym_bunch
61
  {
62
    struct msym_bunch *next;
63
    struct minimal_symbol contents[BUNCH_SIZE];
64
  };
65
 
66
/* Bunch currently being filled up.
67
   The next field points to chain of filled bunches.  */
68
 
69
static struct msym_bunch *msym_bunch;
70
 
71
/* Number of slots filled in current bunch.  */
72
 
73
static int msym_bunch_index;
74
 
75
/* Total number of minimal symbols recorded so far for the objfile.  */
76
 
77
static int msym_count;
78
 
79
/* Compute a hash code based using the same criteria as `strcmp_iw'.  */
80
 
81
unsigned int
82
msymbol_hash_iw (const char *string)
83
{
84
  unsigned int hash = 0;
85
  while (*string && *string != '(')
86
    {
87
      while (isspace (*string))
88
        ++string;
89
      if (*string && *string != '(')
90
        {
91
          hash = hash * 67 + *string - 113;
92
          ++string;
93
        }
94
    }
95
  return hash;
96
}
97
 
98
/* Compute a hash code for a string.  */
99
 
100
unsigned int
101
msymbol_hash (const char *string)
102
{
103
  unsigned int hash = 0;
104
  for (; *string; ++string)
105
    hash = hash * 67 + *string - 113;
106
  return hash;
107
}
108
 
109
/* Add the minimal symbol SYM to an objfile's minsym hash table, TABLE.  */
110
void
111
add_minsym_to_hash_table (struct minimal_symbol *sym,
112
                          struct minimal_symbol **table)
113
{
114
  if (sym->hash_next == NULL)
115
    {
116
      unsigned int hash
117
        = msymbol_hash (SYMBOL_LINKAGE_NAME (sym)) % MINIMAL_SYMBOL_HASH_SIZE;
118
      sym->hash_next = table[hash];
119
      table[hash] = sym;
120
    }
121
}
122
 
123
/* Add the minimal symbol SYM to an objfile's minsym demangled hash table,
124
   TABLE.  */
125
static void
126
add_minsym_to_demangled_hash_table (struct minimal_symbol *sym,
127
                                  struct minimal_symbol **table)
128
{
129
  if (sym->demangled_hash_next == NULL)
130
    {
131
      unsigned int hash
132
        = msymbol_hash_iw (SYMBOL_SEARCH_NAME (sym)) % MINIMAL_SYMBOL_HASH_SIZE;
133
      sym->demangled_hash_next = table[hash];
134
      table[hash] = sym;
135
    }
136
}
137
 
138
 
139
/* Return OBJFILE where minimal symbol SYM is defined.  */
140
struct objfile *
141
msymbol_objfile (struct minimal_symbol *sym)
142
{
143
  struct objfile *objf;
144
  struct minimal_symbol *tsym;
145
 
146
  unsigned int hash
147
    = msymbol_hash (SYMBOL_LINKAGE_NAME (sym)) % MINIMAL_SYMBOL_HASH_SIZE;
148
 
149
  for (objf = object_files; objf; objf = objf->next)
150
    for (tsym = objf->msymbol_hash[hash]; tsym; tsym = tsym->hash_next)
151
      if (tsym == sym)
152
        return objf;
153
 
154
  /* We should always be able to find the objfile ...  */
155
  internal_error (__FILE__, __LINE__, _("failed internal consistency check"));
156
}
157
 
158
 
159
/* Look through all the current minimal symbol tables and find the
160
   first minimal symbol that matches NAME.  If OBJF is non-NULL, limit
161
   the search to that objfile.  If SFILE is non-NULL, the only file-scope
162
   symbols considered will be from that source file (global symbols are
163
   still preferred).  Returns a pointer to the minimal symbol that
164
   matches, or NULL if no match is found.
165
 
166
   Note:  One instance where there may be duplicate minimal symbols with
167
   the same name is when the symbol tables for a shared library and the
168
   symbol tables for an executable contain global symbols with the same
169
   names (the dynamic linker deals with the duplication).
170
 
171
   It's also possible to have minimal symbols with different mangled
172
   names, but identical demangled names.  For example, the GNU C++ v3
173
   ABI requires the generation of two (or perhaps three) copies of
174
   constructor functions --- "in-charge", "not-in-charge", and
175
   "allocate" copies; destructors may be duplicated as well.
176
   Obviously, there must be distinct mangled names for each of these,
177
   but the demangled names are all the same: S::S or S::~S.  */
178
 
179
struct minimal_symbol *
180
lookup_minimal_symbol (const char *name, const char *sfile,
181
                       struct objfile *objf)
182
{
183
  struct objfile *objfile;
184
  struct minimal_symbol *msymbol;
185
  struct minimal_symbol *found_symbol = NULL;
186
  struct minimal_symbol *found_file_symbol = NULL;
187
  struct minimal_symbol *trampoline_symbol = NULL;
188
 
189
  unsigned int hash = msymbol_hash (name) % MINIMAL_SYMBOL_HASH_SIZE;
190
  unsigned int dem_hash = msymbol_hash_iw (name) % MINIMAL_SYMBOL_HASH_SIZE;
191
 
192
  int needtofreename = 0;
193
  const char *modified_name;
194
 
195
  if (sfile != NULL)
196
    {
197
      char *p = strrchr (sfile, '/');
198
      if (p != NULL)
199
        sfile = p + 1;
200
    }
201
 
202
  /* For C++, canonicalize the input name. */
203
  modified_name = name;
204
  if (current_language->la_language == language_cplus)
205
    {
206
      char *cname = cp_canonicalize_string (name);
207
      if (cname)
208
        {
209
          modified_name = cname;
210
          needtofreename = 1;
211
        }
212
    }
213
 
214
  for (objfile = object_files;
215
       objfile != NULL && found_symbol == NULL;
216
       objfile = objfile->next)
217
    {
218
      if (objf == NULL || objf == objfile
219
          || objf == objfile->separate_debug_objfile_backlink)
220
        {
221
          /* Do two passes: the first over the ordinary hash table,
222
             and the second over the demangled hash table.  */
223
        int pass;
224
 
225
        for (pass = 1; pass <= 2 && found_symbol == NULL; pass++)
226
            {
227
            /* Select hash list according to pass.  */
228
            if (pass == 1)
229
              msymbol = objfile->msymbol_hash[hash];
230
            else
231
              msymbol = objfile->msymbol_demangled_hash[dem_hash];
232
 
233
            while (msymbol != NULL && found_symbol == NULL)
234
                {
235
                  int match;
236
 
237
                  if (pass == 1)
238
                    {
239
                      match = strcmp (SYMBOL_LINKAGE_NAME (msymbol),
240
                                      modified_name) == 0;
241
                    }
242
                  else
243
                    {
244
                      match = SYMBOL_MATCHES_SEARCH_NAME (msymbol,
245
                                                          modified_name);
246
                    }
247
 
248
                  if (match)
249
                    {
250
                    switch (MSYMBOL_TYPE (msymbol))
251
                      {
252
                      case mst_file_text:
253
                      case mst_file_data:
254
                      case mst_file_bss:
255
                        if (sfile == NULL
256
                            || strcmp (msymbol->filename, sfile) == 0)
257
                          found_file_symbol = msymbol;
258
                        break;
259
 
260
                      case mst_solib_trampoline:
261
 
262
                        /* If a trampoline symbol is found, we prefer to
263
                           keep looking for the *real* symbol. If the
264
                           actual symbol is not found, then we'll use the
265
                           trampoline entry. */
266
                        if (trampoline_symbol == NULL)
267
                          trampoline_symbol = msymbol;
268
                        break;
269
 
270
                      case mst_unknown:
271
                      default:
272
                        found_symbol = msymbol;
273
                        break;
274
                      }
275
                    }
276
 
277
                /* Find the next symbol on the hash chain.  */
278
                if (pass == 1)
279
                  msymbol = msymbol->hash_next;
280
                else
281
                  msymbol = msymbol->demangled_hash_next;
282
                }
283
            }
284
        }
285
    }
286
 
287
  if (needtofreename)
288
    xfree ((void *) modified_name);
289
 
290
  /* External symbols are best.  */
291
  if (found_symbol)
292
    return found_symbol;
293
 
294
  /* File-local symbols are next best.  */
295
  if (found_file_symbol)
296
    return found_file_symbol;
297
 
298
  /* Symbols for shared library trampolines are next best.  */
299
  if (trampoline_symbol)
300
    return trampoline_symbol;
301
 
302
  return NULL;
303
}
304
 
305
/* Look through all the current minimal symbol tables and find the
306
   first minimal symbol that matches NAME and has text type.  If OBJF
307
   is non-NULL, limit the search to that objfile.  Returns a pointer
308
   to the minimal symbol that matches, or NULL if no match is found.
309
 
310
   This function only searches the mangled (linkage) names.  */
311
 
312
struct minimal_symbol *
313
lookup_minimal_symbol_text (const char *name, struct objfile *objf)
314
{
315
  struct objfile *objfile;
316
  struct minimal_symbol *msymbol;
317
  struct minimal_symbol *found_symbol = NULL;
318
  struct minimal_symbol *found_file_symbol = NULL;
319
 
320
  unsigned int hash = msymbol_hash (name) % MINIMAL_SYMBOL_HASH_SIZE;
321
 
322
  for (objfile = object_files;
323
       objfile != NULL && found_symbol == NULL;
324
       objfile = objfile->next)
325
    {
326
      if (objf == NULL || objf == objfile
327
          || objf == objfile->separate_debug_objfile_backlink)
328
        {
329
          for (msymbol = objfile->msymbol_hash[hash];
330
               msymbol != NULL && found_symbol == NULL;
331
               msymbol = msymbol->hash_next)
332
            {
333
              if (strcmp (SYMBOL_LINKAGE_NAME (msymbol), name) == 0 &&
334
                  (MSYMBOL_TYPE (msymbol) == mst_text ||
335
                   MSYMBOL_TYPE (msymbol) == mst_file_text))
336
                {
337
                  switch (MSYMBOL_TYPE (msymbol))
338
                    {
339
                    case mst_file_text:
340
                      found_file_symbol = msymbol;
341
                      break;
342
                    default:
343
                      found_symbol = msymbol;
344
                      break;
345
                    }
346
                }
347
            }
348
        }
349
    }
350
  /* External symbols are best.  */
351
  if (found_symbol)
352
    return found_symbol;
353
 
354
  /* File-local symbols are next best.  */
355
  if (found_file_symbol)
356
    return found_file_symbol;
357
 
358
  return NULL;
359
}
360
 
361
/* Look through all the current minimal symbol tables and find the
362
   first minimal symbol that matches NAME and PC.  If OBJF is non-NULL,
363
   limit the search to that objfile.  Returns a pointer to the minimal
364
   symbol that matches, or NULL if no match is found.  */
365
 
366
struct minimal_symbol *
367
lookup_minimal_symbol_by_pc_name (CORE_ADDR pc, const char *name,
368
                                  struct objfile *objf)
369
{
370
  struct objfile *objfile;
371
  struct minimal_symbol *msymbol;
372
 
373
  unsigned int hash = msymbol_hash (name) % MINIMAL_SYMBOL_HASH_SIZE;
374
 
375
  for (objfile = object_files;
376
       objfile != NULL;
377
       objfile = objfile->next)
378
    {
379
      if (objf == NULL || objf == objfile
380
          || objf == objfile->separate_debug_objfile_backlink)
381
        {
382
          for (msymbol = objfile->msymbol_hash[hash];
383
               msymbol != NULL;
384
               msymbol = msymbol->hash_next)
385
            {
386
              if (SYMBOL_VALUE_ADDRESS (msymbol) == pc
387
                  && strcmp (SYMBOL_LINKAGE_NAME (msymbol), name) == 0)
388
                return msymbol;
389
            }
390
        }
391
    }
392
 
393
  return NULL;
394
}
395
 
396
/* Look through all the current minimal symbol tables and find the
397
   first minimal symbol that matches NAME and is a solib trampoline.
398
   If OBJF is non-NULL, limit the search to that objfile.  Returns a
399
   pointer to the minimal symbol that matches, or NULL if no match is
400
   found.
401
 
402
   This function only searches the mangled (linkage) names.  */
403
 
404
struct minimal_symbol *
405
lookup_minimal_symbol_solib_trampoline (const char *name,
406
                                        struct objfile *objf)
407
{
408
  struct objfile *objfile;
409
  struct minimal_symbol *msymbol;
410
  struct minimal_symbol *found_symbol = NULL;
411
 
412
  unsigned int hash = msymbol_hash (name) % MINIMAL_SYMBOL_HASH_SIZE;
413
 
414
  for (objfile = object_files;
415
       objfile != NULL && found_symbol == NULL;
416
       objfile = objfile->next)
417
    {
418
      if (objf == NULL || objf == objfile
419
          || objf == objfile->separate_debug_objfile_backlink)
420
        {
421
          for (msymbol = objfile->msymbol_hash[hash];
422
               msymbol != NULL && found_symbol == NULL;
423
               msymbol = msymbol->hash_next)
424
            {
425
              if (strcmp (SYMBOL_LINKAGE_NAME (msymbol), name) == 0 &&
426
                  MSYMBOL_TYPE (msymbol) == mst_solib_trampoline)
427
                return msymbol;
428
            }
429
        }
430
    }
431
 
432
  return NULL;
433
}
434
 
435
/* Search through the minimal symbol table for each objfile and find
436
   the symbol whose address is the largest address that is still less
437
   than or equal to PC, and matches SECTION (which is not NULL).
438
   Returns a pointer to the minimal symbol if such a symbol is found,
439
   or NULL if PC is not in a suitable range.
440
   Note that we need to look through ALL the minimal symbol tables
441
   before deciding on the symbol that comes closest to the specified PC.
442
   This is because objfiles can overlap, for example objfile A has .text
443
   at 0x100 and .data at 0x40000 and objfile B has .text at 0x234 and
444
   .data at 0x40048.
445
 
446
   If WANT_TRAMPOLINE is set, prefer mst_solib_trampoline symbols when
447
   there are text and trampoline symbols at the same address.
448
   Otherwise prefer mst_text symbols.  */
449
 
450
static struct minimal_symbol *
451
lookup_minimal_symbol_by_pc_section_1 (CORE_ADDR pc,
452
                                       struct obj_section *section,
453
                                       int want_trampoline)
454
{
455
  int lo;
456
  int hi;
457
  int new;
458
  struct objfile *objfile;
459
  struct minimal_symbol *msymbol;
460
  struct minimal_symbol *best_symbol = NULL;
461
  enum minimal_symbol_type want_type, other_type;
462
 
463
  want_type = want_trampoline ? mst_solib_trampoline : mst_text;
464
  other_type = want_trampoline ? mst_text : mst_solib_trampoline;
465
 
466
  /* We can not require the symbol found to be in section, because
467
     e.g. IRIX 6.5 mdebug relies on this code returning an absolute
468
     symbol - but find_pc_section won't return an absolute section and
469
     hence the code below would skip over absolute symbols.  We can
470
     still take advantage of the call to find_pc_section, though - the
471
     object file still must match.  In case we have separate debug
472
     files, search both the file and its separate debug file.  There's
473
     no telling which one will have the minimal symbols.  */
474
 
475
  gdb_assert (section != NULL);
476
 
477
  for (objfile = section->objfile;
478
       objfile != NULL;
479
       objfile = objfile_separate_debug_iterate (section->objfile, objfile))
480
    {
481
      /* If this objfile has a minimal symbol table, go search it using
482
         a binary search.  Note that a minimal symbol table always consists
483
         of at least two symbols, a "real" symbol and the terminating
484
         "null symbol".  If there are no real symbols, then there is no
485
         minimal symbol table at all. */
486
 
487
      if (objfile->minimal_symbol_count > 0)
488
        {
489
          int best_zero_sized = -1;
490
 
491
          msymbol = objfile->msymbols;
492
          lo = 0;
493
          hi = objfile->minimal_symbol_count - 1;
494
 
495
          /* This code assumes that the minimal symbols are sorted by
496
             ascending address values.  If the pc value is greater than or
497
             equal to the first symbol's address, then some symbol in this
498
             minimal symbol table is a suitable candidate for being the
499
             "best" symbol.  This includes the last real symbol, for cases
500
             where the pc value is larger than any address in this vector.
501
 
502
             By iterating until the address associated with the current
503
             hi index (the endpoint of the test interval) is less than
504
             or equal to the desired pc value, we accomplish two things:
505
             (1) the case where the pc value is larger than any minimal
506
             symbol address is trivially solved, (2) the address associated
507
             with the hi index is always the one we want when the interation
508
             terminates.  In essence, we are iterating the test interval
509
             down until the pc value is pushed out of it from the high end.
510
 
511
             Warning: this code is trickier than it would appear at first. */
512
 
513
          /* Should also require that pc is <= end of objfile.  FIXME! */
514
          if (pc >= SYMBOL_VALUE_ADDRESS (&msymbol[lo]))
515
            {
516
              while (SYMBOL_VALUE_ADDRESS (&msymbol[hi]) > pc)
517
                {
518
                  /* pc is still strictly less than highest address */
519
                  /* Note "new" will always be >= lo */
520
                  new = (lo + hi) / 2;
521
                  if ((SYMBOL_VALUE_ADDRESS (&msymbol[new]) >= pc) ||
522
                      (lo == new))
523
                    {
524
                      hi = new;
525
                    }
526
                  else
527
                    {
528
                      lo = new;
529
                    }
530
                }
531
 
532
              /* If we have multiple symbols at the same address, we want
533
                 hi to point to the last one.  That way we can find the
534
                 right symbol if it has an index greater than hi.  */
535
              while (hi < objfile->minimal_symbol_count - 1
536
                     && (SYMBOL_VALUE_ADDRESS (&msymbol[hi])
537
                         == SYMBOL_VALUE_ADDRESS (&msymbol[hi + 1])))
538
                hi++;
539
 
540
              /* Skip various undesirable symbols.  */
541
              while (hi >= 0)
542
                {
543
                  /* Skip any absolute symbols.  This is apparently
544
                     what adb and dbx do, and is needed for the CM-5.
545
                     There are two known possible problems: (1) on
546
                     ELF, apparently end, edata, etc. are absolute.
547
                     Not sure ignoring them here is a big deal, but if
548
                     we want to use them, the fix would go in
549
                     elfread.c.  (2) I think shared library entry
550
                     points on the NeXT are absolute.  If we want
551
                     special handling for this it probably should be
552
                     triggered by a special mst_abs_or_lib or some
553
                     such.  */
554
 
555
                  if (MSYMBOL_TYPE (&msymbol[hi]) == mst_abs)
556
                    {
557
                      hi--;
558
                      continue;
559
                    }
560
 
561
                  /* If SECTION was specified, skip any symbol from
562
                     wrong section.  */
563
                  if (section
564
                      /* Some types of debug info, such as COFF,
565
                         don't fill the bfd_section member, so don't
566
                         throw away symbols on those platforms.  */
567
                      && SYMBOL_OBJ_SECTION (&msymbol[hi]) != NULL
568
                      && (!matching_obj_sections
569
                          (SYMBOL_OBJ_SECTION (&msymbol[hi]), section)))
570
                    {
571
                      hi--;
572
                      continue;
573
                    }
574
 
575
                  /* If we are looking for a trampoline and this is a
576
                     text symbol, or the other way around, check the
577
                     preceeding symbol too.  If they are otherwise
578
                     identical prefer that one.  */
579
                  if (hi > 0
580
                      && MSYMBOL_TYPE (&msymbol[hi]) == other_type
581
                      && MSYMBOL_TYPE (&msymbol[hi - 1]) == want_type
582
                      && (MSYMBOL_SIZE (&msymbol[hi])
583
                          == MSYMBOL_SIZE (&msymbol[hi - 1]))
584
                      && (SYMBOL_VALUE_ADDRESS (&msymbol[hi])
585
                          == SYMBOL_VALUE_ADDRESS (&msymbol[hi - 1]))
586
                      && (SYMBOL_OBJ_SECTION (&msymbol[hi])
587
                          == SYMBOL_OBJ_SECTION (&msymbol[hi - 1])))
588
                    {
589
                      hi--;
590
                      continue;
591
                    }
592
 
593
                  /* If the minimal symbol has a zero size, save it
594
                     but keep scanning backwards looking for one with
595
                     a non-zero size.  A zero size may mean that the
596
                     symbol isn't an object or function (e.g. a
597
                     label), or it may just mean that the size was not
598
                     specified.  */
599
                  if (MSYMBOL_SIZE (&msymbol[hi]) == 0
600
                      && best_zero_sized == -1)
601
                    {
602
                      best_zero_sized = hi;
603
                      hi--;
604
                      continue;
605
                    }
606
 
607
                  /* If we are past the end of the current symbol, try
608
                     the previous symbol if it has a larger overlapping
609
                     size.  This happens on i686-pc-linux-gnu with glibc;
610
                     the nocancel variants of system calls are inside
611
                     the cancellable variants, but both have sizes.  */
612
                  if (hi > 0
613
                      && MSYMBOL_SIZE (&msymbol[hi]) != 0
614
                      && pc >= (SYMBOL_VALUE_ADDRESS (&msymbol[hi])
615
                                + MSYMBOL_SIZE (&msymbol[hi]))
616
                      && pc < (SYMBOL_VALUE_ADDRESS (&msymbol[hi - 1])
617
                               + MSYMBOL_SIZE (&msymbol[hi - 1])))
618
                    {
619
                      hi--;
620
                      continue;
621
                    }
622
 
623
                  /* Otherwise, this symbol must be as good as we're going
624
                     to get.  */
625
                  break;
626
                }
627
 
628
              /* If HI has a zero size, and best_zero_sized is set,
629
                 then we had two or more zero-sized symbols; prefer
630
                 the first one we found (which may have a higher
631
                 address).  Also, if we ran off the end, be sure
632
                 to back up.  */
633
              if (best_zero_sized != -1
634
                  && (hi < 0 || MSYMBOL_SIZE (&msymbol[hi]) == 0))
635
                hi = best_zero_sized;
636
 
637
              /* If the minimal symbol has a non-zero size, and this
638
                 PC appears to be outside the symbol's contents, then
639
                 refuse to use this symbol.  If we found a zero-sized
640
                 symbol with an address greater than this symbol's,
641
                 use that instead.  We assume that if symbols have
642
                 specified sizes, they do not overlap.  */
643
 
644
              if (hi >= 0
645
                  && MSYMBOL_SIZE (&msymbol[hi]) != 0
646
                  && pc >= (SYMBOL_VALUE_ADDRESS (&msymbol[hi])
647
                            + MSYMBOL_SIZE (&msymbol[hi])))
648
                {
649
                  if (best_zero_sized != -1)
650
                    hi = best_zero_sized;
651
                  else
652
                    /* Go on to the next object file.  */
653
                    continue;
654
                }
655
 
656
              /* The minimal symbol indexed by hi now is the best one in this
657
                 objfile's minimal symbol table.  See if it is the best one
658
                 overall. */
659
 
660
              if (hi >= 0
661
                  && ((best_symbol == NULL) ||
662
                      (SYMBOL_VALUE_ADDRESS (best_symbol) <
663
                       SYMBOL_VALUE_ADDRESS (&msymbol[hi]))))
664
                {
665
                  best_symbol = &msymbol[hi];
666
                }
667
            }
668
        }
669
    }
670
  return (best_symbol);
671
}
672
 
673
struct minimal_symbol *
674
lookup_minimal_symbol_by_pc_section (CORE_ADDR pc, struct obj_section *section)
675
{
676
  if (section == NULL)
677
    {
678
      /* NOTE: cagney/2004-01-27: This was using find_pc_mapped_section to
679
         force the section but that (well unless you're doing overlay
680
         debugging) always returns NULL making the call somewhat useless.  */
681
      section = find_pc_section (pc);
682
      if (section == NULL)
683
        return NULL;
684
    }
685
  return lookup_minimal_symbol_by_pc_section_1 (pc, section, 0);
686
}
687
 
688
/* Backward compatibility: search through the minimal symbol table
689
   for a matching PC (no section given) */
690
 
691
struct minimal_symbol *
692
lookup_minimal_symbol_by_pc (CORE_ADDR pc)
693
{
694
  return lookup_minimal_symbol_by_pc_section (pc, NULL);
695
}
696
 
697
/* Find the minimal symbol named NAME, and return both the minsym
698
   struct and its objfile.  This only checks the linkage name.  Sets
699
   *OBJFILE_P and returns the minimal symbol, if it is found.  If it
700
   is not found, returns NULL.  */
701
 
702
struct minimal_symbol *
703
lookup_minimal_symbol_and_objfile (const char *name,
704
                                   struct objfile **objfile_p)
705
{
706
  struct objfile *objfile;
707
  unsigned int hash = msymbol_hash (name) % MINIMAL_SYMBOL_HASH_SIZE;
708
 
709
  ALL_OBJFILES (objfile)
710
    {
711
      struct minimal_symbol *msym;
712
 
713
      for (msym = objfile->msymbol_hash[hash];
714
           msym != NULL;
715
           msym = msym->hash_next)
716
        {
717
          if (strcmp (SYMBOL_LINKAGE_NAME (msym), name) == 0)
718
            {
719
              *objfile_p = objfile;
720
              return msym;
721
            }
722
        }
723
    }
724
 
725
  return 0;
726
}
727
 
728
 
729
/* Return leading symbol character for a BFD. If BFD is NULL,
730
   return the leading symbol character from the main objfile.  */
731
 
732
static int get_symbol_leading_char (bfd *);
733
 
734
static int
735
get_symbol_leading_char (bfd *abfd)
736
{
737
  if (abfd != NULL)
738
    return bfd_get_symbol_leading_char (abfd);
739
  if (symfile_objfile != NULL && symfile_objfile->obfd != NULL)
740
    return bfd_get_symbol_leading_char (symfile_objfile->obfd);
741
  return 0;
742
}
743
 
744
/* Prepare to start collecting minimal symbols.  Note that presetting
745
   msym_bunch_index to BUNCH_SIZE causes the first call to save a minimal
746
   symbol to allocate the memory for the first bunch. */
747
 
748
void
749
init_minimal_symbol_collection (void)
750
{
751
  msym_count = 0;
752
  msym_bunch = NULL;
753
  msym_bunch_index = BUNCH_SIZE;
754
}
755
 
756
void
757
prim_record_minimal_symbol (const char *name, CORE_ADDR address,
758
                            enum minimal_symbol_type ms_type,
759
                            struct objfile *objfile)
760
{
761
  int section;
762
 
763
  switch (ms_type)
764
    {
765
    case mst_text:
766
    case mst_file_text:
767
    case mst_solib_trampoline:
768
      section = SECT_OFF_TEXT (objfile);
769
      break;
770
    case mst_data:
771
    case mst_file_data:
772
      section = SECT_OFF_DATA (objfile);
773
      break;
774
    case mst_bss:
775
    case mst_file_bss:
776
      section = SECT_OFF_BSS (objfile);
777
      break;
778
    default:
779
      section = -1;
780
    }
781
 
782
  prim_record_minimal_symbol_and_info (name, address, ms_type,
783
                                       section, NULL, objfile);
784
}
785
 
786
/* Record a minimal symbol in the msym bunches.  Returns the symbol
787
   newly created.  */
788
 
789
struct minimal_symbol *
790
prim_record_minimal_symbol_full (const char *name, int name_len, int copy_name,
791
                                 CORE_ADDR address,
792
                                 enum minimal_symbol_type ms_type,
793
                                 int section,
794
                                 asection *bfd_section,
795
                                 struct objfile *objfile)
796
{
797
  struct obj_section *obj_section;
798
  struct msym_bunch *new;
799
  struct minimal_symbol *msymbol;
800
 
801
  /* Don't put gcc_compiled, __gnu_compiled_cplus, and friends into
802
     the minimal symbols, because if there is also another symbol
803
     at the same address (e.g. the first function of the file),
804
     lookup_minimal_symbol_by_pc would have no way of getting the
805
     right one.  */
806
  if (ms_type == mst_file_text && name[0] == 'g'
807
      && (strcmp (name, GCC_COMPILED_FLAG_SYMBOL) == 0
808
          || strcmp (name, GCC2_COMPILED_FLAG_SYMBOL) == 0))
809
    return (NULL);
810
 
811
  /* It's safe to strip the leading char here once, since the name
812
     is also stored stripped in the minimal symbol table. */
813
  if (name[0] == get_symbol_leading_char (objfile->obfd))
814
    {
815
      ++name;
816
      --name_len;
817
    }
818
 
819
  if (ms_type == mst_file_text && strncmp (name, "__gnu_compiled", 14) == 0)
820
    return (NULL);
821
 
822
  if (msym_bunch_index == BUNCH_SIZE)
823
    {
824
      new = XCALLOC (1, struct msym_bunch);
825
      msym_bunch_index = 0;
826
      new->next = msym_bunch;
827
      msym_bunch = new;
828
    }
829
  msymbol = &msym_bunch->contents[msym_bunch_index];
830
  SYMBOL_INIT_LANGUAGE_SPECIFIC (msymbol, language_unknown);
831
  SYMBOL_LANGUAGE (msymbol) = language_auto;
832
  SYMBOL_SET_NAMES (msymbol, name, name_len, copy_name, objfile);
833
 
834
  SYMBOL_VALUE_ADDRESS (msymbol) = address;
835
  SYMBOL_SECTION (msymbol) = section;
836
  SYMBOL_OBJ_SECTION (msymbol) = NULL;
837
 
838
  /* Find obj_section corresponding to bfd_section.  */
839
  if (bfd_section)
840
    ALL_OBJFILE_OSECTIONS (objfile, obj_section)
841
      {
842
        if (obj_section->the_bfd_section == bfd_section)
843
          {
844
            SYMBOL_OBJ_SECTION (msymbol) = obj_section;
845
            break;
846
          }
847
      }
848
 
849
  MSYMBOL_TYPE (msymbol) = ms_type;
850
  MSYMBOL_TARGET_FLAG_1 (msymbol) = 0;
851
  MSYMBOL_TARGET_FLAG_2 (msymbol) = 0;
852
  MSYMBOL_SIZE (msymbol) = 0;
853
 
854
  /* The hash pointers must be cleared! If they're not,
855
     add_minsym_to_hash_table will NOT add this msymbol to the hash table. */
856
  msymbol->hash_next = NULL;
857
  msymbol->demangled_hash_next = NULL;
858
 
859
  msym_bunch_index++;
860
  msym_count++;
861
  OBJSTAT (objfile, n_minsyms++);
862
  return msymbol;
863
}
864
 
865
/* Record a minimal symbol in the msym bunches.  Returns the symbol
866
   newly created.  */
867
 
868
struct minimal_symbol *
869
prim_record_minimal_symbol_and_info (const char *name, CORE_ADDR address,
870
                                     enum minimal_symbol_type ms_type,
871
                                     int section,
872
                                     asection *bfd_section,
873
                                     struct objfile *objfile)
874
{
875
  return prim_record_minimal_symbol_full (name, strlen (name), 1,
876
                                          address, ms_type, section,
877
                                          bfd_section, objfile);
878
}
879
 
880
/* Compare two minimal symbols by address and return a signed result based
881
   on unsigned comparisons, so that we sort into unsigned numeric order.
882
   Within groups with the same address, sort by name.  */
883
 
884
static int
885
compare_minimal_symbols (const void *fn1p, const void *fn2p)
886
{
887
  const struct minimal_symbol *fn1;
888
  const struct minimal_symbol *fn2;
889
 
890
  fn1 = (const struct minimal_symbol *) fn1p;
891
  fn2 = (const struct minimal_symbol *) fn2p;
892
 
893
  if (SYMBOL_VALUE_ADDRESS (fn1) < SYMBOL_VALUE_ADDRESS (fn2))
894
    {
895
      return (-1);              /* addr 1 is less than addr 2 */
896
    }
897
  else if (SYMBOL_VALUE_ADDRESS (fn1) > SYMBOL_VALUE_ADDRESS (fn2))
898
    {
899
      return (1);               /* addr 1 is greater than addr 2 */
900
    }
901
  else
902
    /* addrs are equal: sort by name */
903
    {
904
      char *name1 = SYMBOL_LINKAGE_NAME (fn1);
905
      char *name2 = SYMBOL_LINKAGE_NAME (fn2);
906
 
907
      if (name1 && name2)       /* both have names */
908
        return strcmp (name1, name2);
909
      else if (name2)
910
        return 1;               /* fn1 has no name, so it is "less" */
911
      else if (name1)           /* fn2 has no name, so it is "less" */
912
        return -1;
913
      else
914
        return (0);              /* neither has a name, so they're equal. */
915
    }
916
}
917
 
918
/* Discard the currently collected minimal symbols, if any.  If we wish
919
   to save them for later use, we must have already copied them somewhere
920
   else before calling this function.
921
 
922
   FIXME:  We could allocate the minimal symbol bunches on their own
923
   obstack and then simply blow the obstack away when we are done with
924
   it.  Is it worth the extra trouble though? */
925
 
926
static void
927
do_discard_minimal_symbols_cleanup (void *arg)
928
{
929
  struct msym_bunch *next;
930
 
931
  while (msym_bunch != NULL)
932
    {
933
      next = msym_bunch->next;
934
      xfree (msym_bunch);
935
      msym_bunch = next;
936
    }
937
}
938
 
939
struct cleanup *
940
make_cleanup_discard_minimal_symbols (void)
941
{
942
  return make_cleanup (do_discard_minimal_symbols_cleanup, 0);
943
}
944
 
945
 
946
 
947
/* Compact duplicate entries out of a minimal symbol table by walking
948
   through the table and compacting out entries with duplicate addresses
949
   and matching names.  Return the number of entries remaining.
950
 
951
   On entry, the table resides between msymbol[0] and msymbol[mcount].
952
   On exit, it resides between msymbol[0] and msymbol[result_count].
953
 
954
   When files contain multiple sources of symbol information, it is
955
   possible for the minimal symbol table to contain many duplicate entries.
956
   As an example, SVR4 systems use ELF formatted object files, which
957
   usually contain at least two different types of symbol tables (a
958
   standard ELF one and a smaller dynamic linking table), as well as
959
   DWARF debugging information for files compiled with -g.
960
 
961
   Without compacting, the minimal symbol table for gdb itself contains
962
   over a 1000 duplicates, about a third of the total table size.  Aside
963
   from the potential trap of not noticing that two successive entries
964
   identify the same location, this duplication impacts the time required
965
   to linearly scan the table, which is done in a number of places.  So we
966
   just do one linear scan here and toss out the duplicates.
967
 
968
   Note that we are not concerned here about recovering the space that
969
   is potentially freed up, because the strings themselves are allocated
970
   on the objfile_obstack, and will get automatically freed when the symbol
971
   table is freed.  The caller can free up the unused minimal symbols at
972
   the end of the compacted region if their allocation strategy allows it.
973
 
974
   Also note we only go up to the next to last entry within the loop
975
   and then copy the last entry explicitly after the loop terminates.
976
 
977
   Since the different sources of information for each symbol may
978
   have different levels of "completeness", we may have duplicates
979
   that have one entry with type "mst_unknown" and the other with a
980
   known type.  So if the one we are leaving alone has type mst_unknown,
981
   overwrite its type with the type from the one we are compacting out.  */
982
 
983
static int
984
compact_minimal_symbols (struct minimal_symbol *msymbol, int mcount,
985
                         struct objfile *objfile)
986
{
987
  struct minimal_symbol *copyfrom;
988
  struct minimal_symbol *copyto;
989
 
990
  if (mcount > 0)
991
    {
992
      copyfrom = copyto = msymbol;
993
      while (copyfrom < msymbol + mcount - 1)
994
        {
995
          if (SYMBOL_VALUE_ADDRESS (copyfrom)
996
              == SYMBOL_VALUE_ADDRESS ((copyfrom + 1))
997
              && strcmp (SYMBOL_LINKAGE_NAME (copyfrom),
998
                         SYMBOL_LINKAGE_NAME ((copyfrom + 1))) == 0)
999
            {
1000
              if (MSYMBOL_TYPE ((copyfrom + 1)) == mst_unknown)
1001
                {
1002
                  MSYMBOL_TYPE ((copyfrom + 1)) = MSYMBOL_TYPE (copyfrom);
1003
                }
1004
              copyfrom++;
1005
            }
1006
          else
1007
            *copyto++ = *copyfrom++;
1008
        }
1009
      *copyto++ = *copyfrom++;
1010
      mcount = copyto - msymbol;
1011
    }
1012
  return (mcount);
1013
}
1014
 
1015
/* Build (or rebuild) the minimal symbol hash tables.  This is necessary
1016
   after compacting or sorting the table since the entries move around
1017
   thus causing the internal minimal_symbol pointers to become jumbled. */
1018
 
1019
static void
1020
build_minimal_symbol_hash_tables (struct objfile *objfile)
1021
{
1022
  int i;
1023
  struct minimal_symbol *msym;
1024
 
1025
  /* Clear the hash tables. */
1026
  for (i = 0; i < MINIMAL_SYMBOL_HASH_SIZE; i++)
1027
    {
1028
      objfile->msymbol_hash[i] = 0;
1029
      objfile->msymbol_demangled_hash[i] = 0;
1030
    }
1031
 
1032
  /* Now, (re)insert the actual entries. */
1033
  for (i = objfile->minimal_symbol_count, msym = objfile->msymbols;
1034
       i > 0;
1035
       i--, msym++)
1036
    {
1037
      msym->hash_next = 0;
1038
      add_minsym_to_hash_table (msym, objfile->msymbol_hash);
1039
 
1040
      msym->demangled_hash_next = 0;
1041
      if (SYMBOL_SEARCH_NAME (msym) != SYMBOL_LINKAGE_NAME (msym))
1042
        add_minsym_to_demangled_hash_table (msym,
1043
                                            objfile->msymbol_demangled_hash);
1044
    }
1045
}
1046
 
1047
/* Add the minimal symbols in the existing bunches to the objfile's official
1048
   minimal symbol table.  In most cases there is no minimal symbol table yet
1049
   for this objfile, and the existing bunches are used to create one.  Once
1050
   in a while (for shared libraries for example), we add symbols (e.g. common
1051
   symbols) to an existing objfile.
1052
 
1053
   Because of the way minimal symbols are collected, we generally have no way
1054
   of knowing what source language applies to any particular minimal symbol.
1055
   Specifically, we have no way of knowing if the minimal symbol comes from a
1056
   C++ compilation unit or not.  So for the sake of supporting cached
1057
   demangled C++ names, we have no choice but to try and demangle each new one
1058
   that comes in.  If the demangling succeeds, then we assume it is a C++
1059
   symbol and set the symbol's language and demangled name fields
1060
   appropriately.  Note that in order to avoid unnecessary demanglings, and
1061
   allocating obstack space that subsequently can't be freed for the demangled
1062
   names, we mark all newly added symbols with language_auto.  After
1063
   compaction of the minimal symbols, we go back and scan the entire minimal
1064
   symbol table looking for these new symbols.  For each new symbol we attempt
1065
   to demangle it, and if successful, record it as a language_cplus symbol
1066
   and cache the demangled form on the symbol obstack.  Symbols which don't
1067
   demangle are marked as language_unknown symbols, which inhibits future
1068
   attempts to demangle them if we later add more minimal symbols. */
1069
 
1070
void
1071
install_minimal_symbols (struct objfile *objfile)
1072
{
1073
  int bindex;
1074
  int mcount;
1075
  struct msym_bunch *bunch;
1076
  struct minimal_symbol *msymbols;
1077
  int alloc_count;
1078
 
1079
  if (msym_count > 0)
1080
    {
1081
      /* Allocate enough space in the obstack, into which we will gather the
1082
         bunches of new and existing minimal symbols, sort them, and then
1083
         compact out the duplicate entries.  Once we have a final table,
1084
         we will give back the excess space.  */
1085
 
1086
      alloc_count = msym_count + objfile->minimal_symbol_count + 1;
1087
      obstack_blank (&objfile->objfile_obstack,
1088
                     alloc_count * sizeof (struct minimal_symbol));
1089
      msymbols = (struct minimal_symbol *)
1090
        obstack_base (&objfile->objfile_obstack);
1091
 
1092
      /* Copy in the existing minimal symbols, if there are any.  */
1093
 
1094
      if (objfile->minimal_symbol_count)
1095
        memcpy ((char *) msymbols, (char *) objfile->msymbols,
1096
            objfile->minimal_symbol_count * sizeof (struct minimal_symbol));
1097
 
1098
      /* Walk through the list of minimal symbol bunches, adding each symbol
1099
         to the new contiguous array of symbols.  Note that we start with the
1100
         current, possibly partially filled bunch (thus we use the current
1101
         msym_bunch_index for the first bunch we copy over), and thereafter
1102
         each bunch is full. */
1103
 
1104
      mcount = objfile->minimal_symbol_count;
1105
 
1106
      for (bunch = msym_bunch; bunch != NULL; bunch = bunch->next)
1107
        {
1108
          for (bindex = 0; bindex < msym_bunch_index; bindex++, mcount++)
1109
            msymbols[mcount] = bunch->contents[bindex];
1110
          msym_bunch_index = BUNCH_SIZE;
1111
        }
1112
 
1113
      /* Sort the minimal symbols by address.  */
1114
 
1115
      qsort (msymbols, mcount, sizeof (struct minimal_symbol),
1116
             compare_minimal_symbols);
1117
 
1118
      /* Compact out any duplicates, and free up whatever space we are
1119
         no longer using.  */
1120
 
1121
      mcount = compact_minimal_symbols (msymbols, mcount, objfile);
1122
 
1123
      obstack_blank (&objfile->objfile_obstack,
1124
               (mcount + 1 - alloc_count) * sizeof (struct minimal_symbol));
1125
      msymbols = (struct minimal_symbol *)
1126
        obstack_finish (&objfile->objfile_obstack);
1127
 
1128
      /* We also terminate the minimal symbol table with a "null symbol",
1129
         which is *not* included in the size of the table.  This makes it
1130
         easier to find the end of the table when we are handed a pointer
1131
         to some symbol in the middle of it.  Zero out the fields in the
1132
         "null symbol" allocated at the end of the array.  Note that the
1133
         symbol count does *not* include this null symbol, which is why it
1134
         is indexed by mcount and not mcount-1. */
1135
 
1136
      SYMBOL_LINKAGE_NAME (&msymbols[mcount]) = NULL;
1137
      SYMBOL_VALUE_ADDRESS (&msymbols[mcount]) = 0;
1138
      MSYMBOL_TARGET_FLAG_1 (&msymbols[mcount]) = 0;
1139
      MSYMBOL_TARGET_FLAG_2 (&msymbols[mcount]) = 0;
1140
      MSYMBOL_SIZE (&msymbols[mcount]) = 0;
1141
      MSYMBOL_TYPE (&msymbols[mcount]) = mst_unknown;
1142
      SYMBOL_INIT_LANGUAGE_SPECIFIC (&msymbols[mcount], language_unknown);
1143
 
1144
      /* Attach the minimal symbol table to the specified objfile.
1145
         The strings themselves are also located in the objfile_obstack
1146
         of this objfile.  */
1147
 
1148
      objfile->minimal_symbol_count = mcount;
1149
      objfile->msymbols = msymbols;
1150
 
1151
      /* Try to guess the appropriate C++ ABI by looking at the names
1152
         of the minimal symbols in the table.  */
1153
      {
1154
        int i;
1155
 
1156
        for (i = 0; i < mcount; i++)
1157
          {
1158
            /* If a symbol's name starts with _Z and was successfully
1159
               demangled, then we can assume we've found a GNU v3 symbol.
1160
               For now we set the C++ ABI globally; if the user is
1161
               mixing ABIs then the user will need to "set cp-abi"
1162
               manually.  */
1163
            const char *name = SYMBOL_LINKAGE_NAME (&objfile->msymbols[i]);
1164
            if (name[0] == '_' && name[1] == 'Z'
1165
                && SYMBOL_DEMANGLED_NAME (&objfile->msymbols[i]) != NULL)
1166
              {
1167
                set_cp_abi_as_auto_default ("gnu-v3");
1168
                break;
1169
              }
1170
          }
1171
      }
1172
 
1173
      /* Now build the hash tables; we can't do this incrementally
1174
         at an earlier point since we weren't finished with the obstack
1175
         yet.  (And if the msymbol obstack gets moved, all the internal
1176
         pointers to other msymbols need to be adjusted.) */
1177
      build_minimal_symbol_hash_tables (objfile);
1178
    }
1179
}
1180
 
1181
/* Sort all the minimal symbols in OBJFILE.  */
1182
 
1183
void
1184
msymbols_sort (struct objfile *objfile)
1185
{
1186
  qsort (objfile->msymbols, objfile->minimal_symbol_count,
1187
         sizeof (struct minimal_symbol), compare_minimal_symbols);
1188
  build_minimal_symbol_hash_tables (objfile);
1189
}
1190
 
1191
/* Check if PC is in a shared library trampoline code stub.
1192
   Return minimal symbol for the trampoline entry or NULL if PC is not
1193
   in a trampoline code stub.  */
1194
 
1195
struct minimal_symbol *
1196
lookup_solib_trampoline_symbol_by_pc (CORE_ADDR pc)
1197
{
1198
  struct obj_section *section = find_pc_section (pc);
1199
  struct minimal_symbol *msymbol;
1200
 
1201
  if (section == NULL)
1202
    return NULL;
1203
  msymbol = lookup_minimal_symbol_by_pc_section_1 (pc, section, 1);
1204
 
1205
  if (msymbol != NULL && MSYMBOL_TYPE (msymbol) == mst_solib_trampoline)
1206
    return msymbol;
1207
  return NULL;
1208
}
1209
 
1210
/* If PC is in a shared library trampoline code stub, return the
1211
   address of the `real' function belonging to the stub.
1212
   Return 0 if PC is not in a trampoline code stub or if the real
1213
   function is not found in the minimal symbol table.
1214
 
1215
   We may fail to find the right function if a function with the
1216
   same name is defined in more than one shared library, but this
1217
   is considered bad programming style. We could return 0 if we find
1218
   a duplicate function in case this matters someday.  */
1219
 
1220
CORE_ADDR
1221
find_solib_trampoline_target (struct frame_info *frame, CORE_ADDR pc)
1222
{
1223
  struct objfile *objfile;
1224
  struct minimal_symbol *msymbol;
1225
  struct minimal_symbol *tsymbol = lookup_solib_trampoline_symbol_by_pc (pc);
1226
 
1227
  if (tsymbol != NULL)
1228
    {
1229
      ALL_MSYMBOLS (objfile, msymbol)
1230
      {
1231
        if (MSYMBOL_TYPE (msymbol) == mst_text
1232
            && strcmp (SYMBOL_LINKAGE_NAME (msymbol),
1233
                       SYMBOL_LINKAGE_NAME (tsymbol)) == 0)
1234
          return SYMBOL_VALUE_ADDRESS (msymbol);
1235
 
1236
        /* Also handle minimal symbols pointing to function descriptors.  */
1237
        if (MSYMBOL_TYPE (msymbol) == mst_data
1238
            && strcmp (SYMBOL_LINKAGE_NAME (msymbol),
1239
                       SYMBOL_LINKAGE_NAME (tsymbol)) == 0)
1240
          {
1241
            CORE_ADDR func;
1242
            func = gdbarch_convert_from_func_ptr_addr
1243
                    (get_objfile_arch (objfile),
1244
                     SYMBOL_VALUE_ADDRESS (msymbol),
1245
                     &current_target);
1246
 
1247
            /* Ignore data symbols that are not function descriptors.  */
1248
            if (func != SYMBOL_VALUE_ADDRESS (msymbol))
1249
              return func;
1250
          }
1251
      }
1252
    }
1253
  return 0;
1254
}

powered by: WebSVN 2.1.0

© copyright 1999-2025 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.