| 1 |
227 |
jeremybenn |
/* Target-dependent code for the 32-bit OpenRISC 1000, for the GNU Debugger.
|
| 2 |
|
|
|
| 3 |
|
|
Copyright 1988-2008, Free Software Foundation, Inc.
|
| 4 |
|
|
Copyright (C) 2008, 2010 Embecosm Limited
|
| 5 |
|
|
|
| 6 |
|
|
Contributed by Alessandro Forin(af@cs.cmu.edu at CMU
|
| 7 |
|
|
and by Per Bothner(bothner@cs.wisc.edu) at U.Wisconsin.
|
| 8 |
|
|
Contributor Jeremy Bennett <jeremy.bennett@embecosm.com>
|
| 9 |
|
|
|
| 10 |
|
|
This file is part of GDB.
|
| 11 |
|
|
|
| 12 |
|
|
This program is free software; you can redistribute it and/or modify it
|
| 13 |
|
|
under the terms of the GNU General Public License as published by the Free
|
| 14 |
|
|
Software Foundation; either version 3 of the License, or (at your option)
|
| 15 |
|
|
any later version.
|
| 16 |
|
|
|
| 17 |
|
|
This program is distributed in the hope that it will be useful, but WITHOUT
|
| 18 |
|
|
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
| 19 |
|
|
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
|
| 20 |
|
|
more details.
|
| 21 |
|
|
|
| 22 |
|
|
You should have received a copy of the GNU General Public License along
|
| 23 |
|
|
with this program. If not, see <http://www.gnu.org/licenses/>. */
|
| 24 |
|
|
|
| 25 |
|
|
/*-----------------------------------------------------------------------------
|
| 26 |
|
|
This version for the OpenRISC 1000 architecture is a rewrite by Jeremy
|
| 27 |
|
|
Bennett of the old GDB 5.3 interface to make use of gdbarch for GDB 6.8.
|
| 28 |
|
|
|
| 29 |
|
|
The code tries to follow the GDB coding style.
|
| 30 |
|
|
|
| 31 |
|
|
Commenting is Doxygen compatible.
|
| 32 |
|
|
|
| 33 |
|
|
Much has been stripped out in the interests of getting a basic working
|
| 34 |
|
|
system. This is described as the OpenRISC 1000 target architecture, so
|
| 35 |
|
|
should work with 16, 32 and 64 bit versions of that architecture and should
|
| 36 |
|
|
work whether or not they have floating point and/or vector registers.
|
| 37 |
|
|
|
| 38 |
|
|
There was never a capability to run simulator commands (no remote target
|
| 39 |
|
|
implemented the required function), so that has been removed.
|
| 40 |
|
|
|
| 41 |
|
|
The info trace command has been removed. The meaning of this is not clear -
|
| 42 |
|
|
it relies on a value in register 255 of the debug group, which is
|
| 43 |
|
|
undocumented.
|
| 44 |
|
|
|
| 45 |
|
|
All the hardware trace has been removed for the time being. The new debug
|
| 46 |
|
|
interface does not support hardware trace, so there is no plan to reinstate
|
| 47 |
|
|
this functionality.
|
| 48 |
|
|
|
| 49 |
|
|
Support for multiple contexts (which was rudimentary, and not working) has
|
| 50 |
|
|
been removed. */
|
| 51 |
|
|
/*---------------------------------------------------------------------------*/
|
| 52 |
|
|
|
| 53 |
|
|
#include "demangle.h"
|
| 54 |
|
|
#include "defs.h"
|
| 55 |
|
|
#include "gdb_string.h"
|
| 56 |
|
|
#include "frame.h"
|
| 57 |
|
|
#include "inferior.h"
|
| 58 |
|
|
#include "symtab.h"
|
| 59 |
|
|
#include "value.h"
|
| 60 |
|
|
#include "gdbcmd.h"
|
| 61 |
|
|
#include "language.h"
|
| 62 |
|
|
#include "gdbcore.h"
|
| 63 |
|
|
#include "symfile.h"
|
| 64 |
|
|
#include "objfiles.h"
|
| 65 |
|
|
#include "gdbtypes.h"
|
| 66 |
|
|
#include "target.h"
|
| 67 |
|
|
#include "regcache.h"
|
| 68 |
|
|
|
| 69 |
|
|
#include "opcode/or32.h"
|
| 70 |
|
|
#include "or32-tdep.h"
|
| 71 |
|
|
|
| 72 |
|
|
#include "safe-ctype.h"
|
| 73 |
|
|
#include "block.h"
|
| 74 |
|
|
#include "reggroups.h"
|
| 75 |
|
|
#include "arch-utils.h"
|
| 76 |
|
|
#include "frame.h"
|
| 77 |
|
|
#include "frame-unwind.h"
|
| 78 |
|
|
#include "frame-base.h"
|
| 79 |
|
|
#include "dwarf2-frame.h"
|
| 80 |
|
|
#include "trad-frame.h"
|
| 81 |
|
|
|
| 82 |
|
|
#include <inttypes.h>
|
| 83 |
|
|
|
| 84 |
|
|
|
| 85 |
|
|
|
| 86 |
|
|
|
| 87 |
|
|
/* Support functions for the architecture definition */
|
| 88 |
|
|
|
| 89 |
|
|
|
| 90 |
|
|
/*----------------------------------------------------------------------------*/
|
| 91 |
|
|
/*!Get an instruction
|
| 92 |
|
|
|
| 93 |
|
|
This reads from memory. The old version relied on the frame, this relies
|
| 94 |
|
|
just on the architecture. The old version also guaranteed not to get a
|
| 95 |
|
|
software breakpoint if one had been set. However that seems to happen just
|
| 96 |
|
|
before execution and is removed immediately after, so we believe should not
|
| 97 |
|
|
happen. The old function from GDB 6.8 to do this has been deleted.
|
| 98 |
|
|
|
| 99 |
|
|
@param[in] gdbarch Architecture for which we are getting the instruction.
|
| 100 |
|
|
@param[in] addr Address from which to get the instruction
|
| 101 |
|
|
|
| 102 |
|
|
@return The instruction */
|
| 103 |
|
|
/*---------------------------------------------------------------------------*/
|
| 104 |
|
|
|
| 105 |
|
|
static ULONGEST
|
| 106 |
|
|
or32_fetch_instruction (struct gdbarch *gdbarch,
|
| 107 |
|
|
CORE_ADDR addr)
|
| 108 |
|
|
{
|
| 109 |
|
|
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
| 110 |
|
|
char buf[OR32_INSTLEN];
|
| 111 |
|
|
int status;
|
| 112 |
|
|
|
| 113 |
|
|
status = target_read_memory (addr, buf, OR32_INSTLEN);
|
| 114 |
|
|
|
| 115 |
|
|
if (status)
|
| 116 |
|
|
{
|
| 117 |
|
|
memory_error (status, addr);
|
| 118 |
|
|
}
|
| 119 |
|
|
|
| 120 |
|
|
return extract_unsigned_integer (buf, OR32_INSTLEN, byte_order);
|
| 121 |
|
|
|
| 122 |
|
|
} /* or32_fetch_instruction() */
|
| 123 |
|
|
|
| 124 |
|
|
|
| 125 |
|
|
/*---------------------------------------------------------------------------*/
|
| 126 |
|
|
/*!Generic function to read bits from an instruction
|
| 127 |
|
|
|
| 128 |
|
|
printf style. Basic syntax
|
| 129 |
|
|
|
| 130 |
|
|
or32_analyse_inst (inst, format, &arg1, &arg2 ...)
|
| 131 |
|
|
|
| 132 |
|
|
Format string can contain the following characters:
|
| 133 |
|
|
|
| 134 |
|
|
- SPACE: Ignored, just for layout
|
| 135 |
|
|
- 0: Match with a zero bit
|
| 136 |
|
|
- 1: Match with a one bit
|
| 137 |
|
|
- %<n>b: Match <n> bits to the next argument (n decimal)
|
| 138 |
|
|
|
| 139 |
|
|
If the arg corresponding to a bit field is non-null, the value will be
|
| 140 |
|
|
assigned to that argument (using NULL allows fields to be skipped).
|
| 141 |
|
|
|
| 142 |
|
|
Any bad string will cause a fatal error. These are constant strings, so
|
| 143 |
|
|
should be correct.
|
| 144 |
|
|
|
| 145 |
|
|
The bit field must be 32 bits long. A failure here will cause a fatal error
|
| 146 |
|
|
for the same reason.
|
| 147 |
|
|
|
| 148 |
|
|
@note The format string is presented MS field to LS field, left to
|
| 149 |
|
|
right. This means that it is read lowest numbered char first.
|
| 150 |
|
|
|
| 151 |
|
|
@note Some of the arg fields may be populated, even if recognition
|
| 152 |
|
|
ultimately fails.
|
| 153 |
|
|
|
| 154 |
|
|
@param[in] inst The instruction to analyse
|
| 155 |
|
|
@param[in] format The format string
|
| 156 |
|
|
@param[out] ... Argument fields
|
| 157 |
|
|
|
| 158 |
|
|
@return 1 (TRUE) if the instruction matches, 0 (FALSE) otherwise. */
|
| 159 |
|
|
/*---------------------------------------------------------------------------*/
|
| 160 |
|
|
static int
|
| 161 |
|
|
or32_analyse_inst (uint32_t inst,
|
| 162 |
|
|
const char *format,
|
| 163 |
|
|
...)
|
| 164 |
|
|
{
|
| 165 |
|
|
/* Break out each field in turn, validating as we go. */
|
| 166 |
|
|
va_list ap;
|
| 167 |
|
|
|
| 168 |
|
|
int i;
|
| 169 |
|
|
int iptr = 0; /* Instruction pointer */
|
| 170 |
|
|
|
| 171 |
|
|
va_start (ap, format);
|
| 172 |
|
|
|
| 173 |
|
|
for (i = 0; 0 != format[i];)
|
| 174 |
|
|
{
|
| 175 |
|
|
const char *start_ptr;
|
| 176 |
|
|
char *end_ptr;
|
| 177 |
|
|
|
| 178 |
|
|
uint32_t bits; /* Bit substring of interest */
|
| 179 |
|
|
uint32_t width; /* Substring width */
|
| 180 |
|
|
uint32_t *arg_ptr;
|
| 181 |
|
|
|
| 182 |
|
|
switch (format[i])
|
| 183 |
|
|
{
|
| 184 |
|
|
case ' ': i++; break; /* Formatting: ignored */
|
| 185 |
|
|
|
| 186 |
|
|
case '0': case '1': /* Constant bit field */
|
| 187 |
|
|
bits = (inst >> (OR32_INSTBITLEN - iptr - 1)) & 0x1;
|
| 188 |
|
|
|
| 189 |
|
|
if ((format[i] - '0') != bits)
|
| 190 |
|
|
{
|
| 191 |
|
|
return 0;
|
| 192 |
|
|
}
|
| 193 |
|
|
|
| 194 |
|
|
iptr++;
|
| 195 |
|
|
i++;
|
| 196 |
|
|
break;
|
| 197 |
|
|
|
| 198 |
|
|
case '%': /* Bit field */
|
| 199 |
|
|
i++;
|
| 200 |
|
|
start_ptr = &(format[i]);
|
| 201 |
|
|
width = strtoul (start_ptr, &end_ptr, 10);
|
| 202 |
|
|
|
| 203 |
|
|
/* Check we got something, and if so skip on */
|
| 204 |
|
|
if (start_ptr == end_ptr)
|
| 205 |
|
|
{
|
| 206 |
|
|
fatal ("bitstring \"%s\" at offset %d has no length field.\n",
|
| 207 |
|
|
format, i);
|
| 208 |
|
|
}
|
| 209 |
|
|
|
| 210 |
|
|
i += end_ptr - start_ptr;
|
| 211 |
|
|
|
| 212 |
|
|
/* Look for and skip the terminating 'b'. If it's not there, we
|
| 213 |
|
|
still give a fatal error, because these are fixed strings that
|
| 214 |
|
|
just should not be wrong. */
|
| 215 |
|
|
if ('b' != format[i++])
|
| 216 |
|
|
{
|
| 217 |
|
|
fatal ("bitstring \"%s\" at offset %d has no terminating 'b'.\n",
|
| 218 |
|
|
format, i);
|
| 219 |
|
|
}
|
| 220 |
|
|
|
| 221 |
|
|
/* Break out the field. There is a special case with a bit width of
|
| 222 |
|
|
32. */
|
| 223 |
|
|
if (32 == width)
|
| 224 |
|
|
{
|
| 225 |
|
|
bits = inst;
|
| 226 |
|
|
}
|
| 227 |
|
|
else
|
| 228 |
|
|
{
|
| 229 |
|
|
bits = (inst >> (OR32_INSTBITLEN - iptr - width)) & ((1 << width) - 1);
|
| 230 |
|
|
}
|
| 231 |
|
|
|
| 232 |
|
|
arg_ptr = va_arg (ap, uint32_t *);
|
| 233 |
|
|
*arg_ptr = bits;
|
| 234 |
|
|
iptr += width;
|
| 235 |
|
|
break;
|
| 236 |
|
|
|
| 237 |
|
|
default:
|
| 238 |
|
|
fatal ("invalid character in bitstring \"%s\" at offset %d.\n",
|
| 239 |
|
|
format, i);
|
| 240 |
|
|
break;
|
| 241 |
|
|
}
|
| 242 |
|
|
}
|
| 243 |
|
|
|
| 244 |
|
|
/* Is the length OK? */
|
| 245 |
|
|
gdb_assert (OR32_INSTBITLEN == iptr);
|
| 246 |
|
|
|
| 247 |
|
|
return 1; /* We succeeded */
|
| 248 |
|
|
|
| 249 |
|
|
} /* or32_analyse_inst () */
|
| 250 |
|
|
|
| 251 |
|
|
|
| 252 |
|
|
/*---------------------------------------------------------------------------*/
|
| 253 |
|
|
/*!Analyse a l.addi instruction
|
| 254 |
|
|
|
| 255 |
|
|
General form is:
|
| 256 |
|
|
|
| 257 |
|
|
l.addi rD,rA,I
|
| 258 |
|
|
|
| 259 |
|
|
Makes use of the generic analysis function (@see or32_analyse_inst ()).
|
| 260 |
|
|
|
| 261 |
|
|
@param[in] inst The instruction to analyse.
|
| 262 |
|
|
@param[out] rd_ptr Pointer to the rD value.
|
| 263 |
|
|
@param[out] ra_ptr Pointer to the rA value.
|
| 264 |
|
|
@param[out] simm_ptr Pointer to the signed immediate value.
|
| 265 |
|
|
|
| 266 |
|
|
@return 1 (TRUE) if the instruction matches, 0 (FALSE) otherwise. */
|
| 267 |
|
|
/*---------------------------------------------------------------------------*/
|
| 268 |
|
|
static int
|
| 269 |
|
|
or32_analyse_l_addi (uint32_t inst,
|
| 270 |
|
|
unsigned int *rd_ptr,
|
| 271 |
|
|
unsigned int *ra_ptr,
|
| 272 |
|
|
int *simm_ptr)
|
| 273 |
|
|
{
|
| 274 |
|
|
/* Instruction fields */
|
| 275 |
|
|
uint32_t rd, ra, i;
|
| 276 |
|
|
|
| 277 |
|
|
if (or32_analyse_inst (inst, "10 0111 %5b %5b %16b", &rd, &ra, &i))
|
| 278 |
|
|
{
|
| 279 |
|
|
/* Found it. Construct the result fields */
|
| 280 |
|
|
*rd_ptr = (unsigned int) rd;
|
| 281 |
|
|
*ra_ptr = (unsigned int) ra;
|
| 282 |
|
|
*simm_ptr = (int) (((i & 0x8000) == 0x8000) ? 0xffff0000 | i : i);
|
| 283 |
|
|
|
| 284 |
|
|
return 1; /* Success */
|
| 285 |
|
|
}
|
| 286 |
|
|
else
|
| 287 |
|
|
{
|
| 288 |
|
|
return 0; /* Failure */
|
| 289 |
|
|
}
|
| 290 |
|
|
} /* or32_analyse_l_addi () */
|
| 291 |
|
|
|
| 292 |
|
|
|
| 293 |
|
|
/*---------------------------------------------------------------------------*/
|
| 294 |
|
|
/*!Analyse a l.sw instruction
|
| 295 |
|
|
|
| 296 |
|
|
General form is:
|
| 297 |
|
|
|
| 298 |
|
|
l.sw I(rA),rB
|
| 299 |
|
|
|
| 300 |
|
|
Makes use of the generic analysis function (@see or32_analyse_inst ()).
|
| 301 |
|
|
|
| 302 |
|
|
@param[in] inst The instruction to analyse.
|
| 303 |
|
|
@param[out] simm_ptr Pointer to the signed immediate value.
|
| 304 |
|
|
@param[out] ra_ptr Pointer to the rA value.
|
| 305 |
|
|
@param[out] rb_ptr Pointer to the rB value.
|
| 306 |
|
|
|
| 307 |
|
|
@return 1 (TRUE) if the instruction matches, 0 (FALSE) otherwise. */
|
| 308 |
|
|
/*---------------------------------------------------------------------------*/
|
| 309 |
|
|
static int
|
| 310 |
|
|
or32_analyse_l_sw (uint32_t inst,
|
| 311 |
|
|
int *simm_ptr,
|
| 312 |
|
|
unsigned int *ra_ptr,
|
| 313 |
|
|
unsigned int *rb_ptr)
|
| 314 |
|
|
{
|
| 315 |
|
|
/* Instruction fields */
|
| 316 |
|
|
uint32_t ihi, ilo, ra, rb;
|
| 317 |
|
|
|
| 318 |
|
|
if (or32_analyse_inst (inst, "11 0101 %5b %5b %5b %11b", &ihi, &ra, &rb,
|
| 319 |
|
|
&ilo))
|
| 320 |
|
|
|
| 321 |
|
|
{
|
| 322 |
|
|
/* Found it. Construct the result fields */
|
| 323 |
|
|
*simm_ptr = (int) ((ihi << 11) | ilo);
|
| 324 |
|
|
*simm_ptr |= ((ihi & 0x10) == 0x10) ? 0xffff0000 : 0;
|
| 325 |
|
|
|
| 326 |
|
|
*ra_ptr = (unsigned int) ra;
|
| 327 |
|
|
*rb_ptr = (unsigned int) rb;
|
| 328 |
|
|
|
| 329 |
|
|
return 1; /* Success */
|
| 330 |
|
|
}
|
| 331 |
|
|
else
|
| 332 |
|
|
{
|
| 333 |
|
|
return 0; /* Failure */
|
| 334 |
|
|
}
|
| 335 |
|
|
} /* or32_analyse_l_sw () */
|
| 336 |
|
|
|
| 337 |
|
|
|
| 338 |
|
|
|
| 339 |
|
|
|
| 340 |
|
|
/* Functions defining the architecture */
|
| 341 |
|
|
|
| 342 |
|
|
|
| 343 |
|
|
/*----------------------------------------------------------------------------*/
|
| 344 |
|
|
/*!Determine the return convention used for a given type
|
| 345 |
|
|
|
| 346 |
|
|
Optionally, fetch or set the return value via "readbuf" or "writebuf"
|
| 347 |
|
|
respectively using "regcache" for the register values.
|
| 348 |
|
|
|
| 349 |
|
|
The OpenRISC 1000 returns scalar values via R11 and (for 64 bit values on
|
| 350 |
|
|
32 bit architectures) R12. Structs and unions are returned by reference,
|
| 351 |
|
|
with the address in R11
|
| 352 |
|
|
|
| 353 |
|
|
The result returned is independent of the function type, so we ignore that.
|
| 354 |
|
|
|
| 355 |
|
|
Throughout use read_memory(), not target_read_memory(), since the address
|
| 356 |
|
|
may be invalid and we want an error reported (read_memory() is
|
| 357 |
|
|
target_read_memory() with error reporting).
|
| 358 |
|
|
|
| 359 |
|
|
@todo This implementation is labelled OR32, but in fact is just for the 32
|
| 360 |
|
|
bit version, OR32. This should be made explicit
|
| 361 |
|
|
|
| 362 |
|
|
@param[in] gdbarch The GDB architecture being used
|
| 363 |
|
|
@param[in] functype The type of the function to be called (may be NULL)
|
| 364 |
|
|
@param[in] valtype The type of the entity to be returned
|
| 365 |
|
|
@param[in] regcache The register cache
|
| 366 |
|
|
@param[in] readbuf Buffer into which the return value should be written
|
| 367 |
|
|
@param[out] writebuf Buffer from which the return value should be written
|
| 368 |
|
|
|
| 369 |
|
|
@return The type of return value */
|
| 370 |
|
|
/*---------------------------------------------------------------------------*/
|
| 371 |
|
|
|
| 372 |
|
|
static enum return_value_convention
|
| 373 |
|
|
or32_return_value (struct gdbarch *gdbarch,
|
| 374 |
|
|
struct type *functype,
|
| 375 |
|
|
struct type *valtype,
|
| 376 |
|
|
struct regcache *regcache,
|
| 377 |
|
|
gdb_byte *readbuf,
|
| 378 |
|
|
const gdb_byte *writebuf)
|
| 379 |
|
|
{
|
| 380 |
|
|
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
| 381 |
|
|
enum type_code rv_type = TYPE_CODE (valtype);
|
| 382 |
|
|
unsigned int rv_size = TYPE_LENGTH (valtype);
|
| 383 |
|
|
ULONGEST tmp;
|
| 384 |
|
|
|
| 385 |
|
|
/* Deal with struct/union and large scalars first. Large (> 4 byte) scalars
|
| 386 |
|
|
are returned via a pointer (despite what is says in the architecture
|
| 387 |
|
|
document). Result pointed to by R11 */
|
| 388 |
|
|
|
| 389 |
|
|
if((TYPE_CODE_STRUCT == rv_type) ||
|
| 390 |
|
|
(TYPE_CODE_UNION == rv_type) ||
|
| 391 |
|
|
(rv_size > 4))
|
| 392 |
|
|
{
|
| 393 |
|
|
if (readbuf)
|
| 394 |
|
|
{
|
| 395 |
|
|
regcache_cooked_read_unsigned (regcache, OR32_RV_REGNUM, &tmp);
|
| 396 |
|
|
read_memory (tmp, readbuf, rv_size);
|
| 397 |
|
|
}
|
| 398 |
|
|
if (writebuf)
|
| 399 |
|
|
{
|
| 400 |
|
|
regcache_cooked_read_unsigned (regcache, OR32_RV_REGNUM, &tmp);
|
| 401 |
|
|
write_memory (tmp, writebuf, rv_size);
|
| 402 |
|
|
}
|
| 403 |
|
|
|
| 404 |
|
|
return RETURN_VALUE_ABI_RETURNS_ADDRESS;
|
| 405 |
|
|
}
|
| 406 |
|
|
|
| 407 |
|
|
/* 1-4 byte scalars are returned in R11 */
|
| 408 |
|
|
|
| 409 |
|
|
if (readbuf)
|
| 410 |
|
|
{
|
| 411 |
|
|
regcache_cooked_read_unsigned (regcache, OR32_RV_REGNUM, &tmp);
|
| 412 |
|
|
store_unsigned_integer (readbuf, rv_size, byte_order, tmp);
|
| 413 |
|
|
}
|
| 414 |
|
|
if (writebuf)
|
| 415 |
|
|
{
|
| 416 |
|
|
gdb_byte buf[4];
|
| 417 |
|
|
memset (buf, 0, sizeof (buf)); /* Pad with zeros if < 4 bytes */
|
| 418 |
|
|
|
| 419 |
|
|
if (BFD_ENDIAN_BIG == byte_order)
|
| 420 |
|
|
{
|
| 421 |
|
|
memcpy (buf + sizeof (buf) - rv_size, writebuf, rv_size);
|
| 422 |
|
|
}
|
| 423 |
|
|
else
|
| 424 |
|
|
{
|
| 425 |
|
|
memcpy (buf, writebuf, rv_size);
|
| 426 |
|
|
}
|
| 427 |
|
|
|
| 428 |
|
|
regcache_cooked_write (regcache, OR32_RV_REGNUM, buf);
|
| 429 |
|
|
}
|
| 430 |
|
|
|
| 431 |
|
|
return RETURN_VALUE_REGISTER_CONVENTION;
|
| 432 |
|
|
|
| 433 |
|
|
} /* or32_return_value() */
|
| 434 |
|
|
|
| 435 |
|
|
|
| 436 |
|
|
/*----------------------------------------------------------------------------*/
|
| 437 |
|
|
/*!Determine the instruction to use for a breakpoint.
|
| 438 |
|
|
|
| 439 |
|
|
Given the address at which to insert a breakpoint (bp_addr), what will
|
| 440 |
|
|
that breakpoint be?
|
| 441 |
|
|
|
| 442 |
|
|
For or32, we have a breakpoint instruction. Since all or32 instructions
|
| 443 |
|
|
are 32 bits, this is all we need, regardless of address.
|
| 444 |
|
|
|
| 445 |
|
|
@param[in] gdbarch The GDB architecture being used
|
| 446 |
|
|
@param[in] bp_addr The breakpoint address in question
|
| 447 |
|
|
@param[out] bp_size The size of instruction selected
|
| 448 |
|
|
|
| 449 |
|
|
@return The chosen breakpoint instruction */
|
| 450 |
|
|
/*---------------------------------------------------------------------------*/
|
| 451 |
|
|
|
| 452 |
|
|
static const gdb_byte *
|
| 453 |
|
|
or32_breakpoint_from_pc (struct gdbarch *gdbarch,
|
| 454 |
|
|
CORE_ADDR *bp_addr,
|
| 455 |
|
|
int *bp_size)
|
| 456 |
|
|
{
|
| 457 |
|
|
static const gdb_byte breakpoint[] = OR32_BRK_INSTR_STRUCT;
|
| 458 |
|
|
|
| 459 |
|
|
*bp_size = OR32_INSTLEN;
|
| 460 |
|
|
return breakpoint;
|
| 461 |
|
|
|
| 462 |
|
|
} /* or32_breakpoint_from_pc() */
|
| 463 |
|
|
|
| 464 |
|
|
|
| 465 |
|
|
/*----------------------------------------------------------------------------*/
|
| 466 |
|
|
/*!Determine if we are executing a delay slot
|
| 467 |
|
|
|
| 468 |
|
|
Looks at the instruction at the previous instruction to see if it was one
|
| 469 |
|
|
with a delay slot. But it also has to be the address prior to NPC, because
|
| 470 |
|
|
we may have just taken an exception.
|
| 471 |
|
|
|
| 472 |
|
|
@param[in] gdbarch The GDB architecture being used
|
| 473 |
|
|
@param[in] this_frame Information about THIS frame
|
| 474 |
|
|
|
| 475 |
|
|
@return 1 (true) if this instruction is executing a delay slot, 0 (false)
|
| 476 |
|
|
otherwise. */
|
| 477 |
|
|
/*--------------------------------------------------------------------------*/
|
| 478 |
|
|
|
| 479 |
|
|
static int
|
| 480 |
|
|
or32_single_step_through_delay( struct gdbarch *gdbarch,
|
| 481 |
|
|
struct frame_info *this_frame )
|
| 482 |
|
|
{
|
| 483 |
|
|
struct regcache *regcache = get_current_regcache ();
|
| 484 |
|
|
ULONGEST val;
|
| 485 |
|
|
CORE_ADDR ppc;
|
| 486 |
|
|
CORE_ADDR npc;
|
| 487 |
|
|
int index;
|
| 488 |
|
|
|
| 489 |
|
|
/* Get and the previous and current instruction addresses. If they are not
|
| 490 |
|
|
adjacent, we cannot be in a delay slot. */
|
| 491 |
|
|
regcache_cooked_read_unsigned (regcache, OR32_PPC_REGNUM, &val);
|
| 492 |
|
|
ppc = (CORE_ADDR) val;
|
| 493 |
|
|
regcache_cooked_read_unsigned (regcache, OR32_NPC_REGNUM, &val);
|
| 494 |
|
|
npc = (CORE_ADDR) val;
|
| 495 |
|
|
|
| 496 |
|
|
if (0x4 != (npc - ppc))
|
| 497 |
|
|
{
|
| 498 |
|
|
return 0;
|
| 499 |
|
|
}
|
| 500 |
|
|
|
| 501 |
|
|
/* Decode the previous instruction to see if it was a branch or a jump, and
|
| 502 |
|
|
hence we are in a delay slot. */
|
| 503 |
|
|
index = insn_decode (or32_fetch_instruction (gdbarch, ppc));
|
| 504 |
|
|
return or32_opcodes[index].flags & OR32_IF_DELAY;
|
| 505 |
|
|
|
| 506 |
|
|
} /* or32_single_step_through_delay() */
|
| 507 |
|
|
|
| 508 |
|
|
|
| 509 |
|
|
/*----------------------------------------------------------------------------*/
|
| 510 |
|
|
/*!Read a pseudo register
|
| 511 |
|
|
|
| 512 |
|
|
Since we have no pseudo registers this is a null function for now.
|
| 513 |
|
|
|
| 514 |
|
|
@todo The floating point and vector registers ought to be done as
|
| 515 |
|
|
pseudo-registers.
|
| 516 |
|
|
|
| 517 |
|
|
@param[in] gdbarch The GDB architecture to consider
|
| 518 |
|
|
@param[in] regcache The cached register values as an array
|
| 519 |
|
|
@param[in] regnum The register to read
|
| 520 |
|
|
@param[out] buf A buffer to put the result in */
|
| 521 |
|
|
/*---------------------------------------------------------------------------*/
|
| 522 |
|
|
|
| 523 |
|
|
static void
|
| 524 |
|
|
or32_pseudo_register_read (struct gdbarch *gdbarch,
|
| 525 |
|
|
struct regcache *regcache,
|
| 526 |
|
|
int regnum,
|
| 527 |
|
|
gdb_byte *buf)
|
| 528 |
|
|
{
|
| 529 |
|
|
return;
|
| 530 |
|
|
|
| 531 |
|
|
} /* or32_pseudo_register_read() */
|
| 532 |
|
|
|
| 533 |
|
|
|
| 534 |
|
|
/*----------------------------------------------------------------------------*/
|
| 535 |
|
|
/*!Write a pseudo register
|
| 536 |
|
|
|
| 537 |
|
|
Since we have no pseudo registers this is a null function for now.
|
| 538 |
|
|
|
| 539 |
|
|
@todo The floating point and vector registers ought to be done as
|
| 540 |
|
|
pseudo-registers.
|
| 541 |
|
|
|
| 542 |
|
|
@param[in] gdbarch The GDB architecture to consider
|
| 543 |
|
|
@param[in] regcache The cached register values as an array
|
| 544 |
|
|
@param[in] regnum The register to read
|
| 545 |
|
|
@param[in] buf A buffer with the value to write */
|
| 546 |
|
|
/*---------------------------------------------------------------------------*/
|
| 547 |
|
|
|
| 548 |
|
|
static void
|
| 549 |
|
|
or32_pseudo_register_write (struct gdbarch *gdbarch,
|
| 550 |
|
|
struct regcache *regcache,
|
| 551 |
|
|
int regnum,
|
| 552 |
|
|
const gdb_byte *buf)
|
| 553 |
|
|
{
|
| 554 |
|
|
return;
|
| 555 |
|
|
|
| 556 |
|
|
} /* or32_pseudo_register_write() */
|
| 557 |
|
|
|
| 558 |
|
|
|
| 559 |
|
|
/*----------------------------------------------------------------------------*/
|
| 560 |
|
|
/*!Return the register name for the OpenRISC 1000 architecture
|
| 561 |
|
|
|
| 562 |
|
|
This version converted to ANSI C, made static and incorporates the static
|
| 563 |
|
|
table of register names (this is the only place it is referenced).
|
| 564 |
|
|
|
| 565 |
|
|
@todo The floating point and vector registers ought to be done as
|
| 566 |
|
|
pseudo-registers.
|
| 567 |
|
|
|
| 568 |
|
|
@param[in] gdbarch The GDB architecture being used
|
| 569 |
|
|
@param[in] regnum The register number
|
| 570 |
|
|
|
| 571 |
|
|
@return The textual name of the register */
|
| 572 |
|
|
/*---------------------------------------------------------------------------*/
|
| 573 |
|
|
|
| 574 |
|
|
static const char *
|
| 575 |
|
|
or32_register_name (struct gdbarch *gdbarch,
|
| 576 |
|
|
int regnum)
|
| 577 |
|
|
{
|
| 578 |
|
|
static char *or32_gdb_reg_names[OR32_TOTAL_NUM_REGS] =
|
| 579 |
|
|
{
|
| 580 |
|
|
/* general purpose registers */
|
| 581 |
244 |
jeremybenn |
"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
|
| 582 |
|
|
"r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
|
| 583 |
|
|
"r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
|
| 584 |
|
|
"r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",
|
| 585 |
227 |
jeremybenn |
|
| 586 |
|
|
/* previous program counter, next program counter and status register */
|
| 587 |
|
|
"ppc", "npc", "sr"
|
| 588 |
|
|
|
| 589 |
|
|
/* Floating point and vector registers may appear as pseudo registers in
|
| 590 |
|
|
the future. */
|
| 591 |
|
|
};
|
| 592 |
|
|
|
| 593 |
|
|
return or32_gdb_reg_names[regnum];
|
| 594 |
|
|
|
| 595 |
|
|
} /* or32_register_name() */
|
| 596 |
|
|
|
| 597 |
|
|
|
| 598 |
|
|
/*----------------------------------------------------------------------------*/
|
| 599 |
|
|
/*!Identify the type of a register
|
| 600 |
|
|
|
| 601 |
|
|
@todo I don't fully understand exactly what this does, but I think this
|
| 602 |
|
|
makes sense!
|
| 603 |
|
|
|
| 604 |
|
|
@param[in] arch The GDB architecture to consider
|
| 605 |
|
|
@param[in] regnum The register to identify
|
| 606 |
|
|
|
| 607 |
|
|
@return The type of the register */
|
| 608 |
|
|
/*---------------------------------------------------------------------------*/
|
| 609 |
|
|
|
| 610 |
|
|
static struct type *
|
| 611 |
|
|
or32_register_type (struct gdbarch *arch,
|
| 612 |
|
|
int regnum)
|
| 613 |
|
|
{
|
| 614 |
|
|
static struct type *void_func_ptr = NULL;
|
| 615 |
|
|
static struct type *void_ptr = NULL;
|
| 616 |
|
|
|
| 617 |
|
|
/* Set up the static pointers once, the first time*/
|
| 618 |
|
|
if (NULL == void_func_ptr)
|
| 619 |
|
|
{
|
| 620 |
|
|
struct type *void_type = builtin_type (arch)->builtin_void;
|
| 621 |
|
|
|
| 622 |
|
|
void_ptr = lookup_pointer_type (void_type);
|
| 623 |
|
|
void_func_ptr = lookup_pointer_type (lookup_function_type (void_type));
|
| 624 |
|
|
}
|
| 625 |
|
|
|
| 626 |
|
|
if((regnum >= 0) && (regnum < OR32_TOTAL_NUM_REGS))
|
| 627 |
|
|
{
|
| 628 |
|
|
switch (regnum)
|
| 629 |
|
|
{
|
| 630 |
|
|
case OR32_PPC_REGNUM:
|
| 631 |
|
|
case OR32_NPC_REGNUM:
|
| 632 |
|
|
return void_func_ptr; /* Pointer to code */
|
| 633 |
|
|
|
| 634 |
|
|
case OR32_SP_REGNUM:
|
| 635 |
|
|
case OR32_FP_REGNUM:
|
| 636 |
|
|
return void_ptr; /* Pointer to data */
|
| 637 |
|
|
|
| 638 |
|
|
default:
|
| 639 |
|
|
return builtin_type (arch)->builtin_uint32; /* Data */
|
| 640 |
|
|
}
|
| 641 |
|
|
}
|
| 642 |
|
|
|
| 643 |
|
|
internal_error (__FILE__, __LINE__,
|
| 644 |
|
|
_("or32_register_type: illegal register number %d"), regnum);
|
| 645 |
|
|
|
| 646 |
|
|
} /* or32_register_type() */
|
| 647 |
|
|
|
| 648 |
|
|
|
| 649 |
|
|
/*----------------------------------------------------------------------------*/
|
| 650 |
|
|
/*!Handle the "info register" command
|
| 651 |
|
|
|
| 652 |
|
|
Print the identified register, unless it is -1, in which case print all
|
| 653 |
|
|
the registers. If all is 1 means all registers, otherwise only the core
|
| 654 |
|
|
GPRs.
|
| 655 |
|
|
|
| 656 |
|
|
@todo At present all registers are printed with the default method. Should
|
| 657 |
|
|
there be something special for FP registers?
|
| 658 |
|
|
|
| 659 |
|
|
@param[in] gdbarch The GDB architecture being used
|
| 660 |
|
|
@param[in] file File handle for use with any custom I/O
|
| 661 |
|
|
@param[in] frame Frame info for use with custom output
|
| 662 |
|
|
@param[in] regnum Register of interest, or -1 if all registers
|
| 663 |
|
|
@param[in] all 1 if all means all, 0 if all means just GPRs
|
| 664 |
|
|
|
| 665 |
|
|
@return The aligned stack frame address */
|
| 666 |
|
|
/*---------------------------------------------------------------------------*/
|
| 667 |
|
|
|
| 668 |
|
|
static void
|
| 669 |
|
|
or32_registers_info (struct gdbarch *gdbarch,
|
| 670 |
|
|
struct ui_file *file,
|
| 671 |
|
|
struct frame_info *frame,
|
| 672 |
|
|
int regnum,
|
| 673 |
|
|
int all)
|
| 674 |
|
|
{
|
| 675 |
|
|
if (-1 == regnum)
|
| 676 |
|
|
{
|
| 677 |
|
|
/* Do all (valid) registers */
|
| 678 |
|
|
unsigned int lim = all ? OR32_NUM_REGS : OR32_MAX_GPR_REGS;
|
| 679 |
|
|
|
| 680 |
|
|
for (regnum = 0; regnum < lim; regnum++) {
|
| 681 |
|
|
if ('\0' != *(or32_register_name (gdbarch, regnum)))
|
| 682 |
|
|
{
|
| 683 |
|
|
or32_registers_info (gdbarch, file, frame, regnum, all);
|
| 684 |
|
|
}
|
| 685 |
|
|
}
|
| 686 |
|
|
}
|
| 687 |
|
|
else
|
| 688 |
|
|
{
|
| 689 |
|
|
/* Do one specified register - if it is part of this architecture */
|
| 690 |
|
|
if ('\0' == *(or32_register_name (gdbarch, regnum)))
|
| 691 |
|
|
{
|
| 692 |
|
|
error ("Not a valid register for the current processor type");
|
| 693 |
|
|
}
|
| 694 |
|
|
else
|
| 695 |
|
|
{
|
| 696 |
|
|
default_print_registers_info (gdbarch, file, frame, regnum, all);
|
| 697 |
|
|
}
|
| 698 |
|
|
}
|
| 699 |
|
|
} /* or32_registers_info() */
|
| 700 |
|
|
|
| 701 |
|
|
|
| 702 |
|
|
/*----------------------------------------------------------------------------*/
|
| 703 |
|
|
/*!Identify if a register belongs to a specified group
|
| 704 |
|
|
|
| 705 |
|
|
Return true if the specified register is a member of the specified
|
| 706 |
|
|
register group.
|
| 707 |
|
|
|
| 708 |
|
|
These are the groups of registers that can be displayed via "info reg".
|
| 709 |
|
|
|
| 710 |
|
|
@todo The Vector and Floating Point registers ought to be displayed as
|
| 711 |
|
|
pseudo-registers.
|
| 712 |
|
|
|
| 713 |
|
|
@param[in] gdbarch The GDB architecture to consider
|
| 714 |
|
|
@param[in] regnum The register to consider
|
| 715 |
|
|
@param[in] group The group to consider
|
| 716 |
|
|
|
| 717 |
|
|
@return True (1) if regnum is a member of group */
|
| 718 |
|
|
/*---------------------------------------------------------------------------*/
|
| 719 |
|
|
|
| 720 |
|
|
static int
|
| 721 |
|
|
or32_register_reggroup_p (struct gdbarch *gdbarch,
|
| 722 |
|
|
int regnum,
|
| 723 |
|
|
struct reggroup *group)
|
| 724 |
|
|
{
|
| 725 |
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
| 726 |
|
|
|
| 727 |
|
|
/* All register group */
|
| 728 |
|
|
if (group == all_reggroup)
|
| 729 |
|
|
{
|
| 730 |
|
|
return ((regnum >= 0) &&
|
| 731 |
|
|
(regnum < OR32_TOTAL_NUM_REGS) &&
|
| 732 |
|
|
(or32_register_name (gdbarch, regnum)[0] != '\0'));
|
| 733 |
|
|
}
|
| 734 |
|
|
|
| 735 |
|
|
/* For now everything except the PC */
|
| 736 |
|
|
if (group == general_reggroup)
|
| 737 |
|
|
{
|
| 738 |
|
|
return ((regnum >= OR32_ZERO_REGNUM) &&
|
| 739 |
|
|
(regnum < tdep->num_gpr_regs) &&
|
| 740 |
|
|
(regnum != OR32_PPC_REGNUM) &&
|
| 741 |
|
|
(regnum != OR32_NPC_REGNUM));
|
| 742 |
|
|
}
|
| 743 |
|
|
|
| 744 |
|
|
if (group == float_reggroup)
|
| 745 |
|
|
{
|
| 746 |
|
|
return 0; /* No float regs. */
|
| 747 |
|
|
}
|
| 748 |
|
|
|
| 749 |
|
|
if (group == vector_reggroup)
|
| 750 |
|
|
{
|
| 751 |
|
|
return 0; /* No vector regs. */
|
| 752 |
|
|
}
|
| 753 |
|
|
|
| 754 |
|
|
/* For any that are not handled above. */
|
| 755 |
|
|
return default_register_reggroup_p (gdbarch, regnum, group);
|
| 756 |
|
|
|
| 757 |
|
|
} /* or32_register_reggroup_p() */
|
| 758 |
|
|
|
| 759 |
|
|
|
| 760 |
|
|
/*----------------------------------------------------------------------------*/
|
| 761 |
244 |
jeremybenn |
/*!Is this one of the registers used for passing arguments?
|
| 762 |
|
|
|
| 763 |
|
|
These are r3-r8 in the API.
|
| 764 |
|
|
|
| 765 |
|
|
@param[in] regnum The register to consider
|
| 766 |
|
|
|
| 767 |
|
|
@return Non-zero (TRUE) if it is an argument register, zero (FALSE)
|
| 768 |
|
|
otherwise. */
|
| 769 |
|
|
/*----------------------------------------------------------------------------*/
|
| 770 |
|
|
static int
|
| 771 |
|
|
or32_is_arg_reg (unsigned int regnum)
|
| 772 |
|
|
{
|
| 773 |
|
|
return (OR32_FIRST_ARG_REGNUM <= regnum) && (regnum <= OR32_LAST_ARG_REGNUM);
|
| 774 |
|
|
|
| 775 |
|
|
} /* or32_is_arg_reg () */
|
| 776 |
|
|
|
| 777 |
|
|
|
| 778 |
|
|
/*----------------------------------------------------------------------------*/
|
| 779 |
|
|
/*!Is this a callee saved register?
|
| 780 |
|
|
|
| 781 |
|
|
These are r10, r12, r14, r16, r18, r20, r22, r24, r26, r28 and r30 in the
|
| 782 |
|
|
API.
|
| 783 |
|
|
|
| 784 |
|
|
@param[in] regnum The register to consider
|
| 785 |
|
|
|
| 786 |
|
|
@return Non-zero (TRUE) if it is a callee saved register, zero (FALSE)
|
| 787 |
|
|
otherwise. */
|
| 788 |
|
|
/*----------------------------------------------------------------------------*/
|
| 789 |
|
|
static int
|
| 790 |
|
|
or32_is_callee_saved_reg (unsigned int regnum)
|
| 791 |
|
|
{
|
| 792 |
|
|
return (OR32_FIRST_SAVED_REGNUM <= regnum) && (0 == regnum % 2);
|
| 793 |
|
|
|
| 794 |
|
|
} /* or32_is_callee_saved_reg () */
|
| 795 |
|
|
|
| 796 |
|
|
|
| 797 |
|
|
/*----------------------------------------------------------------------------*/
|
| 798 |
227 |
jeremybenn |
/*!Skip a function prolog
|
| 799 |
|
|
|
| 800 |
|
|
If the input address, PC, is in a function prologue, return the address of
|
| 801 |
|
|
the end of the prologue, otherwise return the input address.
|
| 802 |
|
|
|
| 803 |
|
|
@see For details of the stack frame, see the function
|
| 804 |
244 |
jeremybenn |
or32_frame_cache().
|
| 805 |
227 |
jeremybenn |
|
| 806 |
244 |
jeremybenn |
@note The old version of this function used to use skip_prologue_using_sal
|
| 807 |
|
|
to skip the prologue without checking if it had actually worked. It
|
| 808 |
|
|
doesn't for STABS, so we had better check for a valid result.
|
| 809 |
|
|
|
| 810 |
227 |
jeremybenn |
This function reuses the helper functions from or32_frame_cache() to
|
| 811 |
|
|
locate the various parts of the prolog, any or all of which may be missing.
|
| 812 |
|
|
|
| 813 |
|
|
@param[in] gdbarch The GDB architecture being used
|
| 814 |
|
|
@param[in] pc Current program counter
|
| 815 |
|
|
|
| 816 |
|
|
@return The address of the end of the prolog if the PC is in a function
|
| 817 |
|
|
prologue, otherwise the input address. */
|
| 818 |
|
|
/*----------------------------------------------------------------------------*/
|
| 819 |
|
|
static CORE_ADDR
|
| 820 |
|
|
or32_skip_prologue (struct gdbarch *gdbarch,
|
| 821 |
|
|
CORE_ADDR pc)
|
| 822 |
|
|
{
|
| 823 |
|
|
CORE_ADDR addr;
|
| 824 |
|
|
uint32_t inst;
|
| 825 |
|
|
|
| 826 |
|
|
unsigned int ra, rb, rd; /* For instruction analysis */
|
| 827 |
|
|
int simm;
|
| 828 |
|
|
|
| 829 |
|
|
int frame_size = 0;
|
| 830 |
|
|
|
| 831 |
|
|
/* Try using SAL first if we have symbolic information available. */
|
| 832 |
244 |
jeremybenn |
/* if (find_pc_partial_function (pc, NULL, NULL, NULL)) */
|
| 833 |
|
|
/* { */
|
| 834 |
|
|
/* CORE_ADDR prologue_end = skip_prologue_using_sal( gdbarch, pc ); */
|
| 835 |
227 |
jeremybenn |
|
| 836 |
244 |
jeremybenn |
/* if (0 != prologue_end) */
|
| 837 |
|
|
/* { */
|
| 838 |
|
|
/* return (prologue_end > pc) ? prologue_end : pc; */
|
| 839 |
|
|
/* } */
|
| 840 |
|
|
/* } */
|
| 841 |
227 |
jeremybenn |
|
| 842 |
|
|
/* Look to see if we can find any of the standard prologue sequence. All
|
| 843 |
|
|
quite difficult, since any or all of it may be missing. So this is just a
|
| 844 |
|
|
best guess! */
|
| 845 |
|
|
addr = pc; /* Where we have got to */
|
| 846 |
|
|
inst = or32_fetch_instruction (gdbarch, addr);
|
| 847 |
|
|
|
| 848 |
|
|
/* Look for the new stack pointer being set up. */
|
| 849 |
|
|
if (or32_analyse_l_addi (inst, &rd, &ra, &simm) &&
|
| 850 |
|
|
(OR32_SP_REGNUM == rd) && (OR32_SP_REGNUM == ra) &&
|
| 851 |
|
|
(simm < 0) && (0 == (simm % 4)))
|
| 852 |
|
|
{
|
| 853 |
|
|
frame_size = -simm;
|
| 854 |
|
|
addr += OR32_INSTLEN;
|
| 855 |
|
|
inst = or32_fetch_instruction (gdbarch, addr);
|
| 856 |
|
|
}
|
| 857 |
|
|
|
| 858 |
|
|
/* Look for the frame pointer being manipulated. */
|
| 859 |
|
|
if (or32_analyse_l_sw (inst, &simm, &ra, &rb) &&
|
| 860 |
|
|
(OR32_SP_REGNUM == ra) && (OR32_FP_REGNUM == rb) &&
|
| 861 |
|
|
(simm >= 0) && (0 == (simm % 4)))
|
| 862 |
|
|
{
|
| 863 |
|
|
addr += OR32_INSTLEN;
|
| 864 |
|
|
inst = or32_fetch_instruction (gdbarch, addr);
|
| 865 |
|
|
|
| 866 |
|
|
gdb_assert (or32_analyse_l_addi (inst, &rd, &ra, &simm) &&
|
| 867 |
|
|
(OR32_FP_REGNUM == rd) && (OR32_SP_REGNUM == ra) &&
|
| 868 |
|
|
(simm == frame_size));
|
| 869 |
|
|
|
| 870 |
|
|
addr += OR32_INSTLEN;
|
| 871 |
|
|
inst = or32_fetch_instruction (gdbarch, addr);
|
| 872 |
|
|
}
|
| 873 |
|
|
|
| 874 |
|
|
/* Look for the link register being saved */
|
| 875 |
|
|
if (or32_analyse_l_sw (inst, &simm, &ra, &rb) &&
|
| 876 |
|
|
(OR32_SP_REGNUM == ra) && (OR32_LR_REGNUM == rb) &&
|
| 877 |
|
|
(simm >= 0) && (0 == (simm % 4)))
|
| 878 |
|
|
{
|
| 879 |
|
|
addr += OR32_INSTLEN;
|
| 880 |
|
|
inst = or32_fetch_instruction (gdbarch, addr);
|
| 881 |
|
|
}
|
| 882 |
|
|
|
| 883 |
244 |
jeremybenn |
/* Look for arguments or callee-saved register being saved. The register
|
| 884 |
|
|
must be one of the arguments (r3-r8) or the 10 callee saved registers
|
| 885 |
|
|
(r10, r12, r14, r16, r18, r20, r22, r24, r26, r28, r30). The base
|
| 886 |
|
|
register must be the FP (for the args) or the SP (for the callee_saved
|
| 887 |
|
|
registers). */
|
| 888 |
227 |
jeremybenn |
while (1)
|
| 889 |
|
|
{
|
| 890 |
|
|
if (or32_analyse_l_sw (inst, &simm, &ra, &rb) &&
|
| 891 |
244 |
jeremybenn |
(((OR32_FP_REGNUM == ra) && or32_is_arg_reg (rb)) ||
|
| 892 |
|
|
((OR32_SP_REGNUM == ra) && or32_is_callee_saved_reg (rb))) &&
|
| 893 |
|
|
(0 == (simm % 4)))
|
| 894 |
227 |
jeremybenn |
{
|
| 895 |
|
|
addr += OR32_INSTLEN;
|
| 896 |
|
|
inst = or32_fetch_instruction (gdbarch, addr);
|
| 897 |
|
|
}
|
| 898 |
|
|
else
|
| 899 |
|
|
{
|
| 900 |
|
|
/* Nothing else to look for. We have found the end of the prologue. */
|
| 901 |
|
|
return addr;
|
| 902 |
|
|
}
|
| 903 |
|
|
}
|
| 904 |
|
|
} /* or32_skip_prologue() */
|
| 905 |
|
|
|
| 906 |
|
|
|
| 907 |
|
|
/*----------------------------------------------------------------------------*/
|
| 908 |
|
|
/*!Align the stack frame
|
| 909 |
|
|
|
| 910 |
|
|
OpenRISC 1000 uses a falling stack frame, so this aligns down to the
|
| 911 |
|
|
nearest 8 bytes. Useful when we'be building a dummy frame.
|
| 912 |
|
|
|
| 913 |
|
|
@param[in] gdbarch The GDB architecture being used
|
| 914 |
|
|
@param[in] sp Current stack pointer
|
| 915 |
|
|
|
| 916 |
|
|
@return The aligned stack frame address */
|
| 917 |
|
|
/*---------------------------------------------------------------------------*/
|
| 918 |
|
|
|
| 919 |
|
|
static CORE_ADDR
|
| 920 |
|
|
or32_frame_align (struct gdbarch *gdbarch,
|
| 921 |
|
|
CORE_ADDR sp)
|
| 922 |
|
|
{
|
| 923 |
|
|
return align_down (sp, OR32_STACK_ALIGN);
|
| 924 |
|
|
|
| 925 |
|
|
} /* or32_frame_align() */
|
| 926 |
|
|
|
| 927 |
|
|
|
| 928 |
|
|
/*----------------------------------------------------------------------------*/
|
| 929 |
|
|
/*!Unwind the program counter from a stack frame
|
| 930 |
|
|
|
| 931 |
|
|
This just uses the built in frame unwinder
|
| 932 |
|
|
|
| 933 |
|
|
@param[in] gdbarch The GDB architecture being used
|
| 934 |
|
|
@param[in] next_frame Frame info for the NEXT frame
|
| 935 |
|
|
|
| 936 |
|
|
@return The program counter for THIS frame */
|
| 937 |
|
|
/*---------------------------------------------------------------------------*/
|
| 938 |
|
|
|
| 939 |
|
|
static CORE_ADDR
|
| 940 |
|
|
or32_unwind_pc (struct gdbarch *gdbarch,
|
| 941 |
|
|
struct frame_info *next_frame)
|
| 942 |
|
|
{
|
| 943 |
|
|
CORE_ADDR pc = frame_unwind_register_unsigned (next_frame, OR32_NPC_REGNUM);
|
| 944 |
|
|
|
| 945 |
|
|
return pc;
|
| 946 |
|
|
|
| 947 |
|
|
} /* or32_unwind_pc() */
|
| 948 |
|
|
|
| 949 |
|
|
|
| 950 |
|
|
/*----------------------------------------------------------------------------*/
|
| 951 |
|
|
/*!Unwind the stack pointer from a stack frame
|
| 952 |
|
|
|
| 953 |
|
|
This just uses the built in frame unwinder
|
| 954 |
|
|
|
| 955 |
|
|
@param[in] gdbarch The GDB architecture being used
|
| 956 |
|
|
@param[in] next_frame Frame info for the NEXT frame
|
| 957 |
|
|
|
| 958 |
|
|
@return The stack pointer for THIS frame */
|
| 959 |
|
|
/*---------------------------------------------------------------------------*/
|
| 960 |
|
|
|
| 961 |
|
|
static CORE_ADDR
|
| 962 |
|
|
or32_unwind_sp (struct gdbarch *gdbarch,
|
| 963 |
|
|
struct frame_info *next_frame)
|
| 964 |
|
|
{
|
| 965 |
|
|
CORE_ADDR sp = frame_unwind_register_unsigned (next_frame, OR32_SP_REGNUM);
|
| 966 |
|
|
|
| 967 |
|
|
return sp;
|
| 968 |
|
|
|
| 969 |
|
|
} /* or32_unwind_sp() */
|
| 970 |
|
|
|
| 971 |
|
|
|
| 972 |
|
|
/*----------------------------------------------------------------------------*/
|
| 973 |
|
|
/*!Create a dummy stack frame
|
| 974 |
|
|
|
| 975 |
|
|
The arguments are placed in registers and/or pushed on the stack as per the
|
| 976 |
|
|
OR32 ABI.
|
| 977 |
|
|
|
| 978 |
|
|
@param[in] gdbarch The architecture to use
|
| 979 |
|
|
@param[in] function Pointer to the function that will be called
|
| 980 |
|
|
@param[in] regcache The register cache to use
|
| 981 |
|
|
@param[in] bp_addr Breakpoint address
|
| 982 |
|
|
@param[in] nargs Number of ags to push
|
| 983 |
|
|
@param[in] args The arguments
|
| 984 |
|
|
@param[in] sp The stack pointer
|
| 985 |
|
|
@param[in] struct_return True (1) if this returns a structure
|
| 986 |
|
|
@param[in] struct_addr Address for returning structures
|
| 987 |
|
|
|
| 988 |
|
|
@return The updated stack pointer */
|
| 989 |
|
|
/*---------------------------------------------------------------------------*/
|
| 990 |
|
|
|
| 991 |
|
|
static CORE_ADDR
|
| 992 |
|
|
or32_push_dummy_call (struct gdbarch *gdbarch,
|
| 993 |
|
|
struct value *function,
|
| 994 |
|
|
struct regcache *regcache,
|
| 995 |
|
|
CORE_ADDR bp_addr,
|
| 996 |
|
|
int nargs,
|
| 997 |
|
|
struct value **args,
|
| 998 |
|
|
CORE_ADDR sp,
|
| 999 |
|
|
int struct_return,
|
| 1000 |
|
|
CORE_ADDR struct_addr)
|
| 1001 |
|
|
{
|
| 1002 |
|
|
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
| 1003 |
|
|
|
| 1004 |
|
|
int argreg;
|
| 1005 |
|
|
int argnum;
|
| 1006 |
|
|
int first_stack_arg;
|
| 1007 |
|
|
int stack_offset = 0;
|
| 1008 |
|
|
|
| 1009 |
|
|
unsigned int bpa = (gdbarch_tdep (gdbarch))->bytes_per_address;
|
| 1010 |
|
|
unsigned int bpw = (gdbarch_tdep (gdbarch))->bytes_per_word;
|
| 1011 |
|
|
|
| 1012 |
|
|
/* Return address */
|
| 1013 |
|
|
regcache_cooked_write_unsigned (regcache, OR32_LR_REGNUM, bp_addr);
|
| 1014 |
|
|
|
| 1015 |
|
|
/* Register for the next argument */
|
| 1016 |
|
|
argreg = OR32_FIRST_ARG_REGNUM;
|
| 1017 |
|
|
|
| 1018 |
|
|
/* Location for a returned structure. This is passed as a silent first
|
| 1019 |
|
|
argument. */
|
| 1020 |
|
|
|
| 1021 |
|
|
if (struct_return)
|
| 1022 |
|
|
{
|
| 1023 |
|
|
regcache_cooked_write_unsigned (regcache, OR32_FIRST_ARG_REGNUM,
|
| 1024 |
|
|
struct_addr);
|
| 1025 |
|
|
argreg++;
|
| 1026 |
|
|
}
|
| 1027 |
|
|
|
| 1028 |
|
|
/* Put as many args as possible in registers */
|
| 1029 |
|
|
for (argnum = 0; argnum < nargs; argnum++)
|
| 1030 |
|
|
{
|
| 1031 |
|
|
char *val;
|
| 1032 |
|
|
char valbuf[sizeof (ULONGEST) ];
|
| 1033 |
|
|
|
| 1034 |
|
|
struct value *arg = args[argnum];
|
| 1035 |
|
|
struct type *arg_type = check_typedef (value_type (arg));
|
| 1036 |
|
|
int len = arg_type->length;
|
| 1037 |
|
|
enum type_code typecode = arg_type->main_type->code;
|
| 1038 |
|
|
|
| 1039 |
|
|
/* The EABI passes structures that do not fit in a register by
|
| 1040 |
|
|
reference. In all other cases, pass the structure by value. */
|
| 1041 |
|
|
if((len > bpw) &&
|
| 1042 |
|
|
((TYPE_CODE_STRUCT == typecode) || (TYPE_CODE_UNION == typecode)))
|
| 1043 |
|
|
{
|
| 1044 |
|
|
|
| 1045 |
|
|
store_unsigned_integer (valbuf, bpa, byte_order, value_offset (arg));
|
| 1046 |
|
|
len = bpa;
|
| 1047 |
|
|
val = valbuf;
|
| 1048 |
|
|
}
|
| 1049 |
|
|
else
|
| 1050 |
|
|
{
|
| 1051 |
|
|
val = (char *)value_contents (arg);
|
| 1052 |
|
|
}
|
| 1053 |
|
|
|
| 1054 |
|
|
if((len > bpw) && (argreg <= (OR32_LAST_ARG_REGNUM - 1)))
|
| 1055 |
|
|
{
|
| 1056 |
|
|
|
| 1057 |
249 |
jeremybenn |
/* Big scalars use two registers, but need NOT be pair aligned. This
|
| 1058 |
|
|
code breaks if we can have quad-word scalars (e.g. long
|
| 1059 |
|
|
double). */
|
| 1060 |
227 |
jeremybenn |
ULONGEST regval = extract_unsigned_integer (val, len, byte_order);
|
| 1061 |
|
|
|
| 1062 |
249 |
jeremybenn |
unsigned int bits_per_word = bpw * 8;
|
| 1063 |
|
|
ULONGEST mask = (((ULONGEST) 1) << bits_per_word) - 1;
|
| 1064 |
|
|
ULONGEST lo = regval & mask;
|
| 1065 |
|
|
ULONGEST hi = regval >> bits_per_word;
|
| 1066 |
|
|
|
| 1067 |
227 |
jeremybenn |
gdb_assert (len <= (bpw * 2));
|
| 1068 |
|
|
|
| 1069 |
249 |
jeremybenn |
regcache_cooked_write_unsigned (regcache, argreg, hi);
|
| 1070 |
|
|
regcache_cooked_write_unsigned (regcache, argreg + 1, lo);
|
| 1071 |
227 |
jeremybenn |
argreg += 2;
|
| 1072 |
|
|
}
|
| 1073 |
|
|
else if (argreg <= OR32_LAST_ARG_REGNUM)
|
| 1074 |
|
|
{
|
| 1075 |
249 |
jeremybenn |
printf ("Writing 0x%08llx to r%d\n",
|
| 1076 |
|
|
extract_unsigned_integer (val, len, byte_order), argreg);
|
| 1077 |
|
|
|
| 1078 |
227 |
jeremybenn |
regcache_cooked_write_unsigned (regcache, argreg,
|
| 1079 |
|
|
extract_unsigned_integer (val, len,
|
| 1080 |
|
|
byte_order));
|
| 1081 |
|
|
argreg++;
|
| 1082 |
|
|
}
|
| 1083 |
|
|
else
|
| 1084 |
|
|
{
|
| 1085 |
|
|
/* Run out of regs */
|
| 1086 |
|
|
break;
|
| 1087 |
|
|
}
|
| 1088 |
|
|
}
|
| 1089 |
|
|
|
| 1090 |
|
|
first_stack_arg = argnum;
|
| 1091 |
|
|
|
| 1092 |
|
|
/* If we get here with argnum < nargs, then arguments remain to be placed on
|
| 1093 |
|
|
the stack. This is tricky, since they must be pushed in reverse order and
|
| 1094 |
|
|
the stack in the end must be aligned. The only solution is to do it in
|
| 1095 |
|
|
two stages, the first to compute the stack size, the second to save the
|
| 1096 |
|
|
args. */
|
| 1097 |
|
|
|
| 1098 |
|
|
for (argnum = first_stack_arg; argnum < nargs; argnum++)
|
| 1099 |
|
|
{
|
| 1100 |
|
|
struct value *arg = args[argnum];
|
| 1101 |
|
|
struct type *arg_type = check_typedef (value_type (arg));
|
| 1102 |
|
|
int len = arg_type->length;
|
| 1103 |
|
|
enum type_code typecode = arg_type->main_type->code;
|
| 1104 |
|
|
|
| 1105 |
|
|
if((len > bpw) &&
|
| 1106 |
|
|
((TYPE_CODE_STRUCT == typecode) || (TYPE_CODE_UNION == typecode)))
|
| 1107 |
|
|
{
|
| 1108 |
|
|
/* Large structures are passed as addresses */
|
| 1109 |
|
|
sp -= bpa;
|
| 1110 |
|
|
}
|
| 1111 |
|
|
else
|
| 1112 |
|
|
{
|
| 1113 |
|
|
/* Big scalars use more than one word. Code here allows for future
|
| 1114 |
|
|
quad-word entities (e.g. long double) */
|
| 1115 |
|
|
sp -= ((len + bpw - 1) / bpw) * bpw;
|
| 1116 |
|
|
}
|
| 1117 |
|
|
}
|
| 1118 |
|
|
|
| 1119 |
|
|
sp = gdbarch_frame_align (gdbarch, sp);
|
| 1120 |
|
|
stack_offset = 0;
|
| 1121 |
|
|
|
| 1122 |
|
|
/* Push the remaining args on the stack */
|
| 1123 |
|
|
for (argnum = first_stack_arg; argnum < nargs; argnum++)
|
| 1124 |
|
|
{
|
| 1125 |
|
|
char *val;
|
| 1126 |
|
|
char valbuf[sizeof (ULONGEST) ];
|
| 1127 |
|
|
|
| 1128 |
|
|
struct value *arg = args[argnum];
|
| 1129 |
|
|
struct type *arg_type = check_typedef (value_type (arg));
|
| 1130 |
|
|
int len = arg_type->length;
|
| 1131 |
|
|
enum type_code typecode = arg_type->main_type->code;
|
| 1132 |
|
|
|
| 1133 |
|
|
/* The EABI passes structures that do not fit in a register by
|
| 1134 |
|
|
reference. In all other cases, pass the structure by value. */
|
| 1135 |
|
|
if((len > bpw) &&
|
| 1136 |
|
|
((TYPE_CODE_STRUCT == typecode) || (TYPE_CODE_UNION == typecode)))
|
| 1137 |
|
|
{
|
| 1138 |
|
|
|
| 1139 |
|
|
store_unsigned_integer (valbuf, bpa, byte_order, value_offset (arg));
|
| 1140 |
|
|
len = bpa;
|
| 1141 |
|
|
val = valbuf;
|
| 1142 |
|
|
}
|
| 1143 |
|
|
else
|
| 1144 |
|
|
{
|
| 1145 |
|
|
val = (char *)value_contents (arg);
|
| 1146 |
|
|
}
|
| 1147 |
|
|
|
| 1148 |
|
|
gdb_assert (len <= (bpw * 2));
|
| 1149 |
|
|
|
| 1150 |
|
|
write_memory (sp + stack_offset, val, len);
|
| 1151 |
|
|
stack_offset += ((len + bpw - 1) / bpw) * bpw;
|
| 1152 |
|
|
}
|
| 1153 |
|
|
|
| 1154 |
|
|
/* Save the updated stack pointer */
|
| 1155 |
|
|
regcache_cooked_write_unsigned (regcache, OR32_SP_REGNUM, sp);
|
| 1156 |
|
|
|
| 1157 |
|
|
return sp;
|
| 1158 |
|
|
|
| 1159 |
|
|
} /* or32_push_dummy_call() */
|
| 1160 |
|
|
|
| 1161 |
|
|
|
| 1162 |
|
|
/*----------------------------------------------------------------------------*/
|
| 1163 |
|
|
/*!Return the frame ID for a dummy stack frame
|
| 1164 |
|
|
|
| 1165 |
|
|
Tear down a dummy frame created by or32_push_dummy_call(). This data has to
|
| 1166 |
|
|
be constructed manually from the data in our hand.
|
| 1167 |
|
|
|
| 1168 |
|
|
The stack pointer and program counter can be obtained from the frame info.
|
| 1169 |
|
|
|
| 1170 |
|
|
@param[in] gdbarch The architecture to use
|
| 1171 |
|
|
@param[in] this_frame Information about this frame
|
| 1172 |
|
|
|
| 1173 |
|
|
@return Frame ID of this frame */
|
| 1174 |
|
|
/*---------------------------------------------------------------------------*/
|
| 1175 |
|
|
|
| 1176 |
|
|
static struct frame_id
|
| 1177 |
|
|
or32_dummy_id (struct gdbarch *gdbarch,
|
| 1178 |
|
|
struct frame_info *this_frame)
|
| 1179 |
|
|
{
|
| 1180 |
|
|
return frame_id_build (get_frame_sp (this_frame), get_frame_pc (this_frame));
|
| 1181 |
|
|
|
| 1182 |
|
|
} /* or32_dummy_id() */
|
| 1183 |
|
|
|
| 1184 |
|
|
|
| 1185 |
|
|
|
| 1186 |
|
|
|
| 1187 |
|
|
/* Support functions for frame handling */
|
| 1188 |
|
|
|
| 1189 |
|
|
/* -------------------------------------------------------------------------- */
|
| 1190 |
|
|
/*!Initialize a prologue cache
|
| 1191 |
|
|
|
| 1192 |
|
|
This function is changed from its GDB 6.8 version (named
|
| 1193 |
|
|
or32_frame_unwind_cache), in that it is based on THIS frame, not the NEXT
|
| 1194 |
|
|
frame.
|
| 1195 |
|
|
|
| 1196 |
249 |
jeremybenn |
We build a cache, saying where registers of the PREV frame can be found
|
| 1197 |
|
|
from the data so far set up in this THIS.
|
| 1198 |
227 |
jeremybenn |
|
| 1199 |
249 |
jeremybenn |
We also compute a unique ID for this frame, based on the function start
|
| 1200 |
|
|
address and the stack pointer (as it will be, even if it has yet to be
|
| 1201 |
|
|
computed.
|
| 1202 |
|
|
|
| 1203 |
227 |
jeremybenn |
STACK FORMAT
|
| 1204 |
|
|
============
|
| 1205 |
|
|
|
| 1206 |
|
|
The OR32 has a falling stack frame and a simple prolog. The Stack pointer
|
| 1207 |
|
|
is R1 and the frame pointer R2. The frame base is therefore the address
|
| 1208 |
|
|
held in R2 and the stack pointer (R1) is the frame base of the NEXT frame.
|
| 1209 |
|
|
|
| 1210 |
|
|
@verbatim
|
| 1211 |
|
|
l.addi r1,r1,-frame_size # SP now points to end of new stack frame
|
| 1212 |
|
|
@endverbatim
|
| 1213 |
|
|
|
| 1214 |
|
|
The stack pointer may not be set up in a frameless function (e.g. a simple
|
| 1215 |
|
|
leaf function).
|
| 1216 |
|
|
|
| 1217 |
|
|
@verbatim
|
| 1218 |
|
|
l.sw fp_loc(r1),r2 # old FP saved in new stack frame
|
| 1219 |
|
|
l.addi r2,r1,frame_size # FP now points to base of new stack frame
|
| 1220 |
|
|
@endverbatim
|
| 1221 |
|
|
|
| 1222 |
|
|
The frame pointer is not necessarily saved right at the end of the stack
|
| 1223 |
|
|
frame - OR32 saves enough space for any args to called functions right at
|
| 1224 |
|
|
the end (this is a difference from the Architecture Manual).
|
| 1225 |
|
|
|
| 1226 |
|
|
@verbatim
|
| 1227 |
|
|
l.sw lr_loc(r1),r9 # Link (return) address
|
| 1228 |
|
|
@endverbatim
|
| 1229 |
|
|
|
| 1230 |
|
|
The link register is usally saved at fp_loc - 4. It may not be saved at all
|
| 1231 |
|
|
in a leaf function.
|
| 1232 |
|
|
|
| 1233 |
|
|
@verbatim
|
| 1234 |
|
|
l.sw reg_loc(r1),ry # Save any callee saved regs
|
| 1235 |
|
|
@endverbatim
|
| 1236 |
|
|
|
| 1237 |
|
|
The offsets x for the callee saved registers generally (always?) rise in
|
| 1238 |
|
|
increments of 4, starting at fp_loc + 4. If the frame pointer is omitted
|
| 1239 |
|
|
(an option to GCC), then it may not be saved at all. There may be no callee
|
| 1240 |
|
|
saved registers.
|
| 1241 |
|
|
|
| 1242 |
|
|
So in summary none of this may be present. However what is present seems
|
| 1243 |
|
|
always to follow this fixed order, and occur before any substantive code
|
| 1244 |
|
|
(it is possible for GCC to have more flexible scheduling of the prologue,
|
| 1245 |
|
|
but this does not seem to occur for OR32).
|
| 1246 |
|
|
|
| 1247 |
|
|
ANALYSIS
|
| 1248 |
|
|
========
|
| 1249 |
|
|
|
| 1250 |
|
|
This prolog is used, even for -O3 with GCC.
|
| 1251 |
|
|
|
| 1252 |
|
|
All this analysis must allow for the possibility that the PC is in the
|
| 1253 |
249 |
jeremybenn |
middle of the prologue. Data in the cache should only be set up insofar as
|
| 1254 |
|
|
it has been computed.
|
| 1255 |
227 |
jeremybenn |
|
| 1256 |
249 |
jeremybenn |
HOWEVER. The frame_id must be created with the SP *as it will be* at the
|
| 1257 |
|
|
end of the Prologue. Otherwise a recursive call, checking the frame with
|
| 1258 |
|
|
the PC at the start address will end up with the same frame_id as the
|
| 1259 |
|
|
caller.
|
| 1260 |
|
|
|
| 1261 |
227 |
jeremybenn |
A suite of "helper" routines are used, allowing reuse for
|
| 1262 |
|
|
or32_skip_prologue().
|
| 1263 |
|
|
|
| 1264 |
|
|
Reportedly, this is only valid for frames less than 0x7fff in size.
|
| 1265 |
|
|
|
| 1266 |
|
|
@param[in] this_frame Our stack frame.
|
| 1267 |
|
|
@param[in,out] prologue_cache The prologue cache. If not supplied, we
|
| 1268 |
|
|
build it.
|
| 1269 |
|
|
|
| 1270 |
|
|
@return The prolog cache (duplicates the return through the argument) */
|
| 1271 |
|
|
/* ---------------------------------------------------------------------------*/
|
| 1272 |
|
|
static struct trad_frame_cache *
|
| 1273 |
|
|
or32_frame_cache (struct frame_info *this_frame,
|
| 1274 |
|
|
void **prologue_cache)
|
| 1275 |
|
|
{
|
| 1276 |
|
|
struct gdbarch *gdbarch;
|
| 1277 |
|
|
struct trad_frame_cache *info;
|
| 1278 |
|
|
|
| 1279 |
|
|
CORE_ADDR this_pc;
|
| 1280 |
|
|
CORE_ADDR this_sp;
|
| 1281 |
249 |
jeremybenn |
CORE_ADDR this_sp_for_id;
|
| 1282 |
227 |
jeremybenn |
int frame_size = 0;
|
| 1283 |
|
|
|
| 1284 |
|
|
CORE_ADDR start_addr;
|
| 1285 |
|
|
CORE_ADDR end_addr;
|
| 1286 |
|
|
|
| 1287 |
|
|
/* Nothing to do if we already have this info */
|
| 1288 |
|
|
if (NULL != *prologue_cache)
|
| 1289 |
|
|
{
|
| 1290 |
|
|
return *prologue_cache;
|
| 1291 |
|
|
}
|
| 1292 |
|
|
|
| 1293 |
|
|
/* Get a new prologue cache and populate it with default values */
|
| 1294 |
|
|
info = trad_frame_cache_zalloc (this_frame);
|
| 1295 |
|
|
*prologue_cache = info;
|
| 1296 |
|
|
|
| 1297 |
|
|
/* Find the start address of THIS function (which is a NORMAL frame, even if
|
| 1298 |
|
|
the NEXT frame is the sentinel frame) and the end of its prologue. */
|
| 1299 |
|
|
this_pc = get_frame_pc (this_frame);
|
| 1300 |
|
|
find_pc_partial_function (this_pc, NULL, &start_addr, NULL);
|
| 1301 |
|
|
|
| 1302 |
|
|
/* Return early if GDB couldn't find the function. */
|
| 1303 |
|
|
if (start_addr == 0)
|
| 1304 |
|
|
{
|
| 1305 |
|
|
return info;
|
| 1306 |
|
|
}
|
| 1307 |
|
|
|
| 1308 |
|
|
/* Get the stack pointer if we have one (if there's no process executing yet
|
| 1309 |
|
|
we won't have a frame. */
|
| 1310 |
|
|
this_sp = (NULL == this_frame) ? 0 :
|
| 1311 |
|
|
get_frame_register_unsigned (this_frame,
|
| 1312 |
|
|
OR32_SP_REGNUM);
|
| 1313 |
|
|
|
| 1314 |
249 |
jeremybenn |
/* The default frame base of THIS frame (for ID purposes only - frame base
|
| 1315 |
|
|
is an overloaded term) is its stack pointer. For now we use the value of
|
| 1316 |
|
|
the SP register in THIS frame. However if the PC is in the prologue of
|
| 1317 |
|
|
THIS frame, before the SP has been set up, then the value will actually
|
| 1318 |
|
|
be that of the PREV frame, and we'll need to adjust it later. */
|
| 1319 |
227 |
jeremybenn |
trad_frame_set_this_base (info, this_sp);
|
| 1320 |
249 |
jeremybenn |
this_sp_for_id = this_sp;
|
| 1321 |
227 |
jeremybenn |
|
| 1322 |
|
|
/* The default is to find the PC of the PREVIOUS frame in the link register
|
| 1323 |
|
|
of this frame. This may be changed if we find the link register was saved
|
| 1324 |
|
|
on the stack. */
|
| 1325 |
|
|
trad_frame_set_reg_realreg (info, OR32_NPC_REGNUM, OR32_LR_REGNUM);
|
| 1326 |
|
|
|
| 1327 |
249 |
jeremybenn |
/* We should only examine code that is in the prologue. This is all code up
|
| 1328 |
|
|
to (but not including) end_addr. We should only populate the cache while
|
| 1329 |
|
|
the address is up to (but not including) the PC or end_addr, whichever is
|
| 1330 |
|
|
first. */
|
| 1331 |
227 |
jeremybenn |
gdbarch = get_frame_arch (this_frame);
|
| 1332 |
|
|
end_addr = or32_skip_prologue (gdbarch, start_addr);
|
| 1333 |
|
|
|
| 1334 |
|
|
/* All the following analysis only occurs if we are in the prologue and have
|
| 1335 |
|
|
executed the code. Check we have a sane prologue size, and if zero we
|
| 1336 |
|
|
are frameless and can give up here. */
|
| 1337 |
|
|
if (end_addr < start_addr)
|
| 1338 |
|
|
{
|
| 1339 |
|
|
fatal ("end addr 0x%08x is less than start addr 0x%08x\n",
|
| 1340 |
|
|
(unsigned int) end_addr, (unsigned int) start_addr);
|
| 1341 |
|
|
}
|
| 1342 |
|
|
|
| 1343 |
|
|
if (end_addr == start_addr)
|
| 1344 |
|
|
{
|
| 1345 |
|
|
frame_size = 0;
|
| 1346 |
|
|
}
|
| 1347 |
|
|
else
|
| 1348 |
|
|
{
|
| 1349 |
|
|
/* have a frame. Look for the various components */
|
| 1350 |
|
|
CORE_ADDR addr = start_addr; /* Where we have got to */
|
| 1351 |
|
|
uint32_t inst = or32_fetch_instruction (gdbarch, addr);
|
| 1352 |
|
|
|
| 1353 |
|
|
unsigned int ra, rb, rd; /* For instruction analysis */
|
| 1354 |
|
|
int simm;
|
| 1355 |
|
|
|
| 1356 |
|
|
/* Look for the new stack pointer being set up. */
|
| 1357 |
|
|
if (or32_analyse_l_addi (inst, &rd, &ra, &simm) &&
|
| 1358 |
|
|
(OR32_SP_REGNUM == rd) && (OR32_SP_REGNUM == ra) &&
|
| 1359 |
|
|
(simm < 0) && (0 == (simm % 4)))
|
| 1360 |
|
|
{
|
| 1361 |
|
|
frame_size = -simm;
|
| 1362 |
|
|
addr += OR32_INSTLEN;
|
| 1363 |
|
|
inst = or32_fetch_instruction (gdbarch, addr);
|
| 1364 |
|
|
|
| 1365 |
249 |
jeremybenn |
/* If the PC has not actually got to this point, then the frame base
|
| 1366 |
|
|
will be wrong, and we adjust it.
|
| 1367 |
|
|
|
| 1368 |
|
|
If we are past this point, then we need to populate the stack
|
| 1369 |
|
|
accoringly. */
|
| 1370 |
|
|
if (this_pc <= addr)
|
| 1371 |
|
|
{
|
| 1372 |
|
|
/* Only do if executing */
|
| 1373 |
|
|
if (0 != this_sp)
|
| 1374 |
|
|
{
|
| 1375 |
|
|
this_sp_for_id = this_sp + frame_size;
|
| 1376 |
|
|
trad_frame_set_this_base (info, this_sp_for_id);
|
| 1377 |
|
|
}
|
| 1378 |
|
|
}
|
| 1379 |
|
|
else
|
| 1380 |
|
|
{
|
| 1381 |
|
|
/* We are past this point, so the stack pointer of the PREV
|
| 1382 |
|
|
frame is frame_size greater than the stack pointer of THIS
|
| 1383 |
|
|
frame. */
|
| 1384 |
|
|
trad_frame_set_reg_value (info, OR32_SP_REGNUM,
|
| 1385 |
|
|
this_sp + frame_size);
|
| 1386 |
|
|
}
|
| 1387 |
227 |
jeremybenn |
}
|
| 1388 |
|
|
|
| 1389 |
249 |
jeremybenn |
/* From now on we are only populating the cache, so we stop once we get
|
| 1390 |
|
|
to either the end OR the current PC. */
|
| 1391 |
|
|
end_addr = (this_pc < end_addr) ? this_pc : end_addr;
|
| 1392 |
|
|
|
| 1393 |
227 |
jeremybenn |
/* Look for the frame pointer being manipulated. */
|
| 1394 |
|
|
if ((addr < end_addr) &&
|
| 1395 |
|
|
or32_analyse_l_sw (inst, &simm, &ra, &rb) &&
|
| 1396 |
|
|
(OR32_SP_REGNUM == ra) && (OR32_FP_REGNUM == rb) &&
|
| 1397 |
|
|
(simm >= 0) && (0 == (simm % 4)))
|
| 1398 |
|
|
{
|
| 1399 |
|
|
addr += OR32_INSTLEN;
|
| 1400 |
|
|
inst = or32_fetch_instruction (gdbarch, addr);
|
| 1401 |
|
|
|
| 1402 |
|
|
/* At this stage, we can find the frame pointer of the PREVIOUS
|
| 1403 |
|
|
frame on the stack of the current frame. */
|
| 1404 |
|
|
trad_frame_set_reg_addr (info, OR32_FP_REGNUM, this_sp + simm);
|
| 1405 |
|
|
|
| 1406 |
|
|
/* Look for the new frame pointer being set up */
|
| 1407 |
|
|
if (addr < end_addr)
|
| 1408 |
|
|
{
|
| 1409 |
|
|
gdb_assert (or32_analyse_l_addi (inst, &rd, &ra, &simm) &&
|
| 1410 |
|
|
(OR32_FP_REGNUM == rd) && (OR32_SP_REGNUM == ra) &&
|
| 1411 |
|
|
(simm == frame_size));
|
| 1412 |
|
|
|
| 1413 |
|
|
addr += OR32_INSTLEN;
|
| 1414 |
|
|
inst = or32_fetch_instruction (gdbarch, addr);
|
| 1415 |
|
|
|
| 1416 |
|
|
/* If we have got this far, the stack pointer of the PREVIOUS
|
| 1417 |
|
|
frame is the frame pointer of THIS frame. */
|
| 1418 |
|
|
trad_frame_set_reg_realreg (info, OR32_SP_REGNUM, OR32_FP_REGNUM);
|
| 1419 |
|
|
}
|
| 1420 |
|
|
}
|
| 1421 |
|
|
|
| 1422 |
|
|
/* Look for the link register being saved */
|
| 1423 |
|
|
if ((addr < end_addr) &&
|
| 1424 |
|
|
or32_analyse_l_sw (inst, &simm, &ra, &rb) &&
|
| 1425 |
|
|
(OR32_SP_REGNUM == ra) && (OR32_LR_REGNUM == rb) &&
|
| 1426 |
|
|
(simm >= 0) && (0 == (simm % 4)))
|
| 1427 |
|
|
{
|
| 1428 |
|
|
addr += OR32_INSTLEN;
|
| 1429 |
|
|
inst = or32_fetch_instruction (gdbarch, addr);
|
| 1430 |
|
|
|
| 1431 |
|
|
/* If the link register is saved in the THIS frame, it holds the
|
| 1432 |
|
|
value of the PC in the PREVIOUS frame. This overwrites the
|
| 1433 |
|
|
previous information about finding the PC in the link
|
| 1434 |
|
|
register. */
|
| 1435 |
|
|
trad_frame_set_reg_addr (info, OR32_NPC_REGNUM, this_sp + simm);
|
| 1436 |
|
|
}
|
| 1437 |
|
|
|
| 1438 |
244 |
jeremybenn |
/* Look for arguments or callee-saved register being saved. The register
|
| 1439 |
|
|
must be one of the arguments (r3-r8) or the 10 callee saved registers
|
| 1440 |
|
|
(r10, r12, r14, r16, r18, r20, r22, r24, r26, r28, r30). The base
|
| 1441 |
|
|
register must be the FP (for the args) or the SP (for the
|
| 1442 |
|
|
callee_saved registers). */
|
| 1443 |
227 |
jeremybenn |
while (addr < end_addr)
|
| 1444 |
|
|
{
|
| 1445 |
|
|
if (or32_analyse_l_sw (inst, &simm, &ra, &rb) &&
|
| 1446 |
244 |
jeremybenn |
(((OR32_FP_REGNUM == ra) && or32_is_arg_reg (rb)) ||
|
| 1447 |
|
|
((OR32_SP_REGNUM == ra) && or32_is_callee_saved_reg (rb))) &&
|
| 1448 |
|
|
(0 == (simm % 4)))
|
| 1449 |
227 |
jeremybenn |
{
|
| 1450 |
|
|
addr += OR32_INSTLEN;
|
| 1451 |
|
|
inst = or32_fetch_instruction (gdbarch, addr);
|
| 1452 |
|
|
|
| 1453 |
|
|
/* The register in the PREVIOUS frame can be found at this
|
| 1454 |
|
|
location in THIS frame */
|
| 1455 |
|
|
trad_frame_set_reg_addr (info, rb, this_sp + simm);
|
| 1456 |
|
|
}
|
| 1457 |
|
|
else
|
| 1458 |
|
|
{
|
| 1459 |
|
|
break; /* Not a register save instruction */
|
| 1460 |
|
|
}
|
| 1461 |
|
|
}
|
| 1462 |
|
|
}
|
| 1463 |
|
|
|
| 1464 |
|
|
/* Build the frame ID */
|
| 1465 |
249 |
jeremybenn |
trad_frame_set_id (info, frame_id_build (this_sp_for_id, start_addr));
|
| 1466 |
227 |
jeremybenn |
|
| 1467 |
|
|
return info;
|
| 1468 |
|
|
|
| 1469 |
|
|
} /* or32_frame_cache() */
|
| 1470 |
|
|
|
| 1471 |
|
|
|
| 1472 |
|
|
/* -------------------------------------------------------------------------- */
|
| 1473 |
|
|
/*!Find the frame ID of this frame
|
| 1474 |
|
|
|
| 1475 |
|
|
This function has changed since GDB 6.8 to use THIS frame, rather than the
|
| 1476 |
|
|
NEXT frame.
|
| 1477 |
|
|
|
| 1478 |
|
|
Given a GDB frame, return its frame_id.
|
| 1479 |
|
|
|
| 1480 |
|
|
@param[in] this_frame Our frame, for which the ID is wanted.
|
| 1481 |
|
|
@param[in] prologue_cache Any cached prologue for THIS function.
|
| 1482 |
|
|
@param[out] this_id Frame ID of our own frame.
|
| 1483 |
|
|
|
| 1484 |
|
|
@return Frame ID for THIS frame */
|
| 1485 |
|
|
/* ------------------------------------------------------------------------- */
|
| 1486 |
|
|
static void
|
| 1487 |
|
|
or32_frame_this_id (struct frame_info *this_frame,
|
| 1488 |
|
|
void **prologue_cache,
|
| 1489 |
|
|
struct frame_id *this_id)
|
| 1490 |
|
|
{
|
| 1491 |
|
|
struct trad_frame_cache *info =
|
| 1492 |
|
|
or32_frame_cache (this_frame, prologue_cache);
|
| 1493 |
|
|
|
| 1494 |
|
|
trad_frame_get_id (info, this_id);
|
| 1495 |
|
|
|
| 1496 |
|
|
} /* or32_frame_this_id() */
|
| 1497 |
|
|
|
| 1498 |
|
|
|
| 1499 |
|
|
/*----------------------------------------------------------------------------*/
|
| 1500 |
|
|
/*!Get a register from the PREVIOUS frame
|
| 1501 |
|
|
|
| 1502 |
|
|
This function has changed from GDB 6.8. It now takes a reference to THIS
|
| 1503 |
|
|
frame, not the NEXT frame. It returns it results via a structure, not its
|
| 1504 |
|
|
argument list.
|
| 1505 |
|
|
|
| 1506 |
|
|
Given a pointer to the THIS frame, return the details of a register in the
|
| 1507 |
|
|
PREVIOUS frame.
|
| 1508 |
|
|
|
| 1509 |
|
|
@param[in] this_frame The stack frame under consideration
|
| 1510 |
|
|
@param[in] prologue_cache Any cached prologue associated with THIS frame,
|
| 1511 |
|
|
which may therefore tell us about registers in
|
| 1512 |
|
|
the PREVIOUS frame.
|
| 1513 |
|
|
@param[in] regnum The register of interest in the PREVIOUS frame
|
| 1514 |
|
|
|
| 1515 |
|
|
@return A value structure representing the register. */
|
| 1516 |
|
|
/* -------------------------------------------------------------------------- */
|
| 1517 |
|
|
static struct value *
|
| 1518 |
|
|
or32_frame_prev_register (struct frame_info *this_frame,
|
| 1519 |
|
|
void **prologue_cache,
|
| 1520 |
|
|
int regnum)
|
| 1521 |
|
|
{
|
| 1522 |
|
|
struct trad_frame_cache *info = or32_frame_cache (this_frame,
|
| 1523 |
|
|
prologue_cache);
|
| 1524 |
|
|
|
| 1525 |
|
|
return trad_frame_get_register (info, this_frame, regnum);
|
| 1526 |
|
|
|
| 1527 |
|
|
} /* or32_frame_prev_register() */
|
| 1528 |
|
|
|
| 1529 |
|
|
|
| 1530 |
|
|
/* -------------------------------------------------------------------------- */
|
| 1531 |
|
|
/*!Structure defining the OR32 frame unwind functions
|
| 1532 |
|
|
|
| 1533 |
|
|
Must be global (to this file), since referred to by multiple functions.
|
| 1534 |
|
|
|
| 1535 |
|
|
Since we are the fallback unwinder, we use the default frame sniffer, which
|
| 1536 |
|
|
always accepts the frame
|
| 1537 |
|
|
|
| 1538 |
|
|
This applies to NORMAL frames only. We provide the following functions.
|
| 1539 |
|
|
- to give the ID of THIS frame
|
| 1540 |
|
|
- to give the details of a register in PREVIOUS frame
|
| 1541 |
|
|
- a frame sniffer. */
|
| 1542 |
|
|
/* -------------------------------------------------------------------------- */
|
| 1543 |
|
|
static const struct frame_unwind or32_frame_unwind = {
|
| 1544 |
|
|
.type = NORMAL_FRAME,
|
| 1545 |
|
|
.this_id = or32_frame_this_id,
|
| 1546 |
|
|
.prev_register = or32_frame_prev_register,
|
| 1547 |
|
|
.unwind_data = NULL,
|
| 1548 |
|
|
.sniffer = default_frame_sniffer,
|
| 1549 |
|
|
.dealloc_cache = NULL,
|
| 1550 |
|
|
.prev_arch = NULL
|
| 1551 |
|
|
};
|
| 1552 |
|
|
|
| 1553 |
|
|
|
| 1554 |
|
|
/*----------------------------------------------------------------------------*/
|
| 1555 |
|
|
/*!Return the base address of the frame
|
| 1556 |
|
|
|
| 1557 |
|
|
The implementations has changed since GDB 6.8, since we are now provided
|
| 1558 |
|
|
with the address of THIS frame, rather than the NEXT frame.
|
| 1559 |
|
|
|
| 1560 |
244 |
jeremybenn |
For the OR32, the base address is the frame pointer
|
| 1561 |
227 |
jeremybenn |
|
| 1562 |
|
|
@param[in] this_frame The current stack frame.
|
| 1563 |
|
|
@param[in] prologue_cache Any cached prologue for THIS function.
|
| 1564 |
|
|
|
| 1565 |
|
|
@return The frame base address */
|
| 1566 |
|
|
/*---------------------------------------------------------------------------*/
|
| 1567 |
|
|
|
| 1568 |
|
|
static CORE_ADDR
|
| 1569 |
|
|
or32_frame_base_address (struct frame_info *this_frame,
|
| 1570 |
|
|
void **prologue_cache)
|
| 1571 |
|
|
{
|
| 1572 |
244 |
jeremybenn |
return (CORE_ADDR) get_frame_register_unsigned (this_frame, OR32_FP_REGNUM);
|
| 1573 |
227 |
jeremybenn |
|
| 1574 |
|
|
} /* or32_frame_base_address() */
|
| 1575 |
|
|
|
| 1576 |
|
|
|
| 1577 |
|
|
/* -------------------------------------------------------------------------- */
|
| 1578 |
|
|
/*!Identify our frame base sniffer functions
|
| 1579 |
|
|
|
| 1580 |
|
|
This function just identifies our family of frame sniffing functions.
|
| 1581 |
|
|
|
| 1582 |
|
|
@param[in] this_frame The frame of THIS function. Not used here.
|
| 1583 |
|
|
|
| 1584 |
|
|
@return A pointer to a struct identifying the frame base sniffing
|
| 1585 |
|
|
functions. */
|
| 1586 |
|
|
/* -------------------------------------------------------------------------- */
|
| 1587 |
|
|
static const struct frame_base *
|
| 1588 |
|
|
or32_frame_base_sniffer (struct frame_info *this_frame)
|
| 1589 |
|
|
{
|
| 1590 |
|
|
/* Structure defining how the frame base is to be identified. */
|
| 1591 |
|
|
static const struct frame_base or32_frame_base =
|
| 1592 |
|
|
{
|
| 1593 |
|
|
.unwind = &or32_frame_unwind,
|
| 1594 |
|
|
.this_base = or32_frame_base_address,
|
| 1595 |
|
|
.this_locals = or32_frame_base_address,
|
| 1596 |
|
|
.this_args = or32_frame_base_address
|
| 1597 |
|
|
};
|
| 1598 |
|
|
|
| 1599 |
|
|
return &or32_frame_base;
|
| 1600 |
|
|
|
| 1601 |
|
|
} /* or32_frame_base_sniffer () */
|
| 1602 |
|
|
|
| 1603 |
|
|
|
| 1604 |
|
|
/* -------------------------------------------------------------------------- */
|
| 1605 |
|
|
/*!Architecture initialization for OpenRISC 1000
|
| 1606 |
|
|
|
| 1607 |
|
|
Looks for a candidate architecture in the list of architectures supplied
|
| 1608 |
|
|
using the info supplied. If none match, create a new architecture.
|
| 1609 |
|
|
|
| 1610 |
|
|
@param[in] info Information about the target architecture
|
| 1611 |
|
|
@param[in] arches The list of currently know architectures
|
| 1612 |
|
|
|
| 1613 |
|
|
@return A structure describing the target architecture */
|
| 1614 |
|
|
/* -------------------------------------------------------------------------- */
|
| 1615 |
|
|
static struct gdbarch *
|
| 1616 |
|
|
or32_gdbarch_init (struct gdbarch_info info,
|
| 1617 |
|
|
struct gdbarch_list *arches)
|
| 1618 |
|
|
{
|
| 1619 |
|
|
static struct frame_base or32_frame_base;
|
| 1620 |
|
|
struct gdbarch *gdbarch;
|
| 1621 |
|
|
struct gdbarch_tdep *tdep;
|
| 1622 |
|
|
const struct bfd_arch_info *binfo;
|
| 1623 |
|
|
|
| 1624 |
|
|
/* Find a candidate among the list of pre-declared architectures. */
|
| 1625 |
|
|
arches = gdbarch_list_lookup_by_info (arches, &info);
|
| 1626 |
|
|
if (NULL != arches)
|
| 1627 |
|
|
{
|
| 1628 |
|
|
return arches->gdbarch;
|
| 1629 |
|
|
}
|
| 1630 |
|
|
|
| 1631 |
|
|
/* None found, create a new architecture from the information
|
| 1632 |
|
|
provided. Can't initialize all the target dependencies until we actually
|
| 1633 |
|
|
know which target we are talking to, but put in some defaults for now. */
|
| 1634 |
|
|
|
| 1635 |
|
|
binfo = info.bfd_arch_info;
|
| 1636 |
|
|
tdep = xmalloc (sizeof *tdep);
|
| 1637 |
|
|
tdep->num_matchpoints = OR32_MAX_MATCHPOINTS;
|
| 1638 |
|
|
tdep->num_gpr_regs = OR32_MAX_GPR_REGS;
|
| 1639 |
|
|
tdep->bytes_per_word = binfo->bits_per_word / binfo->bits_per_byte;
|
| 1640 |
|
|
tdep->bytes_per_address = binfo->bits_per_address / binfo->bits_per_byte;
|
| 1641 |
|
|
gdbarch = gdbarch_alloc (&info, tdep);
|
| 1642 |
|
|
|
| 1643 |
|
|
/* Target data types. */
|
| 1644 |
|
|
set_gdbarch_short_bit (gdbarch, 16);
|
| 1645 |
|
|
set_gdbarch_int_bit (gdbarch, 32);
|
| 1646 |
|
|
set_gdbarch_long_bit (gdbarch, 32);
|
| 1647 |
|
|
set_gdbarch_long_long_bit (gdbarch, 64);
|
| 1648 |
|
|
set_gdbarch_float_bit (gdbarch, 32);
|
| 1649 |
|
|
set_gdbarch_float_format (gdbarch, floatformats_ieee_single);
|
| 1650 |
|
|
set_gdbarch_double_bit (gdbarch, 64);
|
| 1651 |
|
|
set_gdbarch_double_format (gdbarch, floatformats_ieee_double);
|
| 1652 |
|
|
set_gdbarch_long_double_bit (gdbarch, 64);
|
| 1653 |
|
|
set_gdbarch_long_double_format (gdbarch, floatformats_ieee_double);
|
| 1654 |
|
|
set_gdbarch_ptr_bit (gdbarch, binfo->bits_per_address);
|
| 1655 |
|
|
set_gdbarch_addr_bit (gdbarch, binfo->bits_per_address);
|
| 1656 |
|
|
set_gdbarch_char_signed (gdbarch, 1);
|
| 1657 |
|
|
|
| 1658 |
|
|
/* Information about the target architecture */
|
| 1659 |
|
|
set_gdbarch_return_value (gdbarch, or32_return_value);
|
| 1660 |
|
|
set_gdbarch_breakpoint_from_pc (gdbarch, or32_breakpoint_from_pc);
|
| 1661 |
|
|
set_gdbarch_single_step_through_delay
|
| 1662 |
|
|
(gdbarch, or32_single_step_through_delay);
|
| 1663 |
|
|
set_gdbarch_have_nonsteppable_watchpoint
|
| 1664 |
|
|
(gdbarch, 1);
|
| 1665 |
|
|
switch (gdbarch_byte_order (gdbarch))
|
| 1666 |
|
|
{
|
| 1667 |
|
|
case BFD_ENDIAN_BIG:
|
| 1668 |
|
|
set_gdbarch_print_insn (gdbarch, print_insn_big_or32);
|
| 1669 |
|
|
break;
|
| 1670 |
|
|
|
| 1671 |
|
|
case BFD_ENDIAN_LITTLE:
|
| 1672 |
|
|
set_gdbarch_print_insn (gdbarch, print_insn_little_or32);
|
| 1673 |
|
|
break;
|
| 1674 |
|
|
|
| 1675 |
|
|
case BFD_ENDIAN_UNKNOWN:
|
| 1676 |
|
|
error ("or32_gdbarch_init: Unknown endianness");
|
| 1677 |
|
|
break;
|
| 1678 |
|
|
}
|
| 1679 |
|
|
|
| 1680 |
|
|
/* Register architecture */
|
| 1681 |
|
|
set_gdbarch_pseudo_register_read (gdbarch, or32_pseudo_register_read);
|
| 1682 |
|
|
set_gdbarch_pseudo_register_write (gdbarch, or32_pseudo_register_write);
|
| 1683 |
|
|
set_gdbarch_num_regs (gdbarch, OR32_NUM_REGS);
|
| 1684 |
|
|
set_gdbarch_num_pseudo_regs (gdbarch, OR32_NUM_PSEUDO_REGS);
|
| 1685 |
|
|
set_gdbarch_sp_regnum (gdbarch, OR32_SP_REGNUM);
|
| 1686 |
|
|
set_gdbarch_pc_regnum (gdbarch, OR32_NPC_REGNUM);
|
| 1687 |
|
|
set_gdbarch_ps_regnum (gdbarch, OR32_SR_REGNUM);
|
| 1688 |
|
|
set_gdbarch_deprecated_fp_regnum (gdbarch, OR32_FP_REGNUM);
|
| 1689 |
|
|
|
| 1690 |
|
|
/* Functions to supply register information */
|
| 1691 |
|
|
set_gdbarch_register_name (gdbarch, or32_register_name);
|
| 1692 |
|
|
set_gdbarch_register_type (gdbarch, or32_register_type);
|
| 1693 |
|
|
set_gdbarch_print_registers_info (gdbarch, or32_registers_info);
|
| 1694 |
|
|
set_gdbarch_register_reggroup_p (gdbarch, or32_register_reggroup_p);
|
| 1695 |
|
|
|
| 1696 |
|
|
/* Functions to analyse frames */
|
| 1697 |
|
|
set_gdbarch_skip_prologue (gdbarch, or32_skip_prologue);
|
| 1698 |
|
|
set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
|
| 1699 |
|
|
set_gdbarch_frame_align (gdbarch, or32_frame_align);
|
| 1700 |
|
|
set_gdbarch_frame_red_zone_size (gdbarch, OR32_FRAME_RED_ZONE_SIZE);
|
| 1701 |
|
|
|
| 1702 |
|
|
/* Functions to access frame data */
|
| 1703 |
|
|
set_gdbarch_unwind_pc (gdbarch, or32_unwind_pc);
|
| 1704 |
|
|
set_gdbarch_unwind_sp (gdbarch, or32_unwind_sp);
|
| 1705 |
|
|
|
| 1706 |
|
|
/* Functions handling dummy frames */
|
| 1707 |
|
|
set_gdbarch_push_dummy_call (gdbarch, or32_push_dummy_call);
|
| 1708 |
|
|
set_gdbarch_dummy_id (gdbarch, or32_dummy_id);
|
| 1709 |
|
|
|
| 1710 |
|
|
/* Set up sniffers for the frame base. Use DWARF debug info if available,
|
| 1711 |
|
|
otherwise use our own sniffer. */
|
| 1712 |
|
|
frame_base_append_sniffer (gdbarch, dwarf2_frame_base_sniffer);
|
| 1713 |
|
|
frame_base_append_sniffer (gdbarch, or32_frame_base_sniffer);
|
| 1714 |
|
|
|
| 1715 |
|
|
/* Frame unwinders. Use DWARF debug info if available, otherwise use our
|
| 1716 |
|
|
own unwinder. */
|
| 1717 |
|
|
dwarf2_append_unwinders (gdbarch);
|
| 1718 |
|
|
frame_unwind_append_unwinder (gdbarch, &or32_frame_unwind);
|
| 1719 |
|
|
|
| 1720 |
|
|
return gdbarch;
|
| 1721 |
|
|
|
| 1722 |
|
|
} /* or32_gdbarch_init() */
|
| 1723 |
|
|
|
| 1724 |
|
|
|
| 1725 |
|
|
/*----------------------------------------------------------------------------*/
|
| 1726 |
|
|
/*!Dump the target specific data for this architecture
|
| 1727 |
|
|
|
| 1728 |
|
|
@param[in] gdbarch The architecture of interest
|
| 1729 |
|
|
@param[in] file Where to dump the data */
|
| 1730 |
|
|
/*---------------------------------------------------------------------------*/
|
| 1731 |
|
|
|
| 1732 |
|
|
static void
|
| 1733 |
|
|
or32_dump_tdep (struct gdbarch *gdbarch,
|
| 1734 |
|
|
struct ui_file *file)
|
| 1735 |
|
|
{
|
| 1736 |
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
| 1737 |
|
|
|
| 1738 |
|
|
if (NULL == tdep)
|
| 1739 |
|
|
{
|
| 1740 |
|
|
return; /* Nothing to report */
|
| 1741 |
|
|
}
|
| 1742 |
|
|
|
| 1743 |
|
|
fprintf_unfiltered (file, "or32_dump_tdep: %d matchpoints available\n",
|
| 1744 |
|
|
tdep->num_matchpoints);
|
| 1745 |
|
|
fprintf_unfiltered (file, "or32_dump_tdep: %d general purpose registers\n",
|
| 1746 |
|
|
tdep->num_gpr_regs);
|
| 1747 |
|
|
fprintf_unfiltered (file, "or32_dump_tdep: %d bytes per word\n",
|
| 1748 |
|
|
tdep->bytes_per_word);
|
| 1749 |
|
|
fprintf_unfiltered (file, "or32_dump_tdep: %d bytes per address\n",
|
| 1750 |
|
|
tdep->bytes_per_address);
|
| 1751 |
|
|
|
| 1752 |
|
|
} /* or32_dump_tdep() */
|
| 1753 |
|
|
|
| 1754 |
|
|
|
| 1755 |
|
|
|
| 1756 |
|
|
/* Functions to add extra commands to GDB */
|
| 1757 |
|
|
|
| 1758 |
|
|
|
| 1759 |
|
|
/*----------------------------------------------------------------------------*/
|
| 1760 |
|
|
/*!Returns a special purpose register group name
|
| 1761 |
|
|
|
| 1762 |
|
|
@param[in] group The SPR group number
|
| 1763 |
|
|
|
| 1764 |
|
|
@return The SPR name (pointer to the name argument) */
|
| 1765 |
|
|
/*---------------------------------------------------------------------------*/
|
| 1766 |
|
|
|
| 1767 |
|
|
static const char *
|
| 1768 |
|
|
or32_spr_group_name (int group)
|
| 1769 |
|
|
{
|
| 1770 |
|
|
static const char *or32_group_names[OR32_NUM_SPGS] =
|
| 1771 |
|
|
{
|
| 1772 |
|
|
"SYS",
|
| 1773 |
|
|
"DMMU",
|
| 1774 |
|
|
"IMMU",
|
| 1775 |
|
|
"DCACHE",
|
| 1776 |
|
|
"ICACHE",
|
| 1777 |
|
|
"MAC",
|
| 1778 |
|
|
"DEBUG",
|
| 1779 |
|
|
"PERF",
|
| 1780 |
|
|
"POWER",
|
| 1781 |
|
|
"PIC",
|
| 1782 |
|
|
"TIMER",
|
| 1783 |
|
|
"FPU"
|
| 1784 |
|
|
};
|
| 1785 |
|
|
|
| 1786 |
|
|
if ((0 <= group) && (group < OR32_NUM_SPGS))
|
| 1787 |
|
|
{
|
| 1788 |
|
|
return or32_group_names[group];
|
| 1789 |
|
|
}
|
| 1790 |
|
|
else
|
| 1791 |
|
|
{
|
| 1792 |
|
|
return "";
|
| 1793 |
|
|
}
|
| 1794 |
|
|
} /* or32_spr_group_name() */
|
| 1795 |
|
|
|
| 1796 |
|
|
|
| 1797 |
|
|
/*----------------------------------------------------------------------------*/
|
| 1798 |
|
|
/*!Returns a special purpose register name
|
| 1799 |
|
|
|
| 1800 |
|
|
@param[in] group The SPR group
|
| 1801 |
|
|
@param[in] index The index within the SPR group
|
| 1802 |
|
|
@param[out] name Array to put the name in
|
| 1803 |
|
|
|
| 1804 |
|
|
@return The SPR name (pointer to the name argument) */
|
| 1805 |
|
|
/*---------------------------------------------------------------------------*/
|
| 1806 |
|
|
|
| 1807 |
|
|
static char *
|
| 1808 |
|
|
or32_spr_register_name (int group,
|
| 1809 |
|
|
int index,
|
| 1810 |
|
|
char *name)
|
| 1811 |
|
|
{
|
| 1812 |
|
|
char di;
|
| 1813 |
|
|
|
| 1814 |
|
|
switch (group)
|
| 1815 |
|
|
{
|
| 1816 |
|
|
|
| 1817 |
|
|
case OR32_SPG_SYS:
|
| 1818 |
|
|
/* 1:1 names */
|
| 1819 |
|
|
switch (index)
|
| 1820 |
|
|
{
|
| 1821 |
|
|
case OR32_SPG_SYS_VR: sprintf (name, "VR" ); return name;
|
| 1822 |
|
|
case OR32_SPG_SYS_UPR: sprintf (name, "UPR" ); return name;
|
| 1823 |
|
|
case OR32_SPG_SYS_CPUCFGR: sprintf (name, "CPUCFGR" ); return name;
|
| 1824 |
|
|
case OR32_SPG_SYS_DMMUCFGR: sprintf (name, "DMMUCFGR"); return name;
|
| 1825 |
|
|
case OR32_SPG_SYS_IMMUCFGR: sprintf (name, "IMMUCFGR"); return name;
|
| 1826 |
|
|
case OR32_SPG_SYS_DCCFGR: sprintf (name, "DCCFGR" ); return name;
|
| 1827 |
|
|
case OR32_SPG_SYS_ICCFGR: sprintf (name, "ICCFGR" ); return name;
|
| 1828 |
|
|
case OR32_SPG_SYS_DCFGR: sprintf (name, "DCFGR" ); return name;
|
| 1829 |
|
|
case OR32_SPG_SYS_PCCFGR: sprintf (name, "PCCFGR" ); return name;
|
| 1830 |
|
|
case OR32_SPG_SYS_NPC: sprintf (name, "NPC" ); return name;
|
| 1831 |
|
|
case OR32_SPG_SYS_SR: sprintf (name, "SR" ); return name;
|
| 1832 |
|
|
case OR32_SPG_SYS_PPC: sprintf (name, "PPC" ); return name;
|
| 1833 |
|
|
case OR32_SPG_SYS_FPCSR: sprintf (name, "FPCSR" ); return name;
|
| 1834 |
|
|
}
|
| 1835 |
|
|
|
| 1836 |
|
|
/* Exception PC regs */
|
| 1837 |
|
|
if((OR32_SPG_SYS_EPCR <= index) &&
|
| 1838 |
|
|
(index <= OR32_SPG_SYS_EPCR_END))
|
| 1839 |
|
|
{
|
| 1840 |
|
|
sprintf (name, "EPCR%d", index - OR32_SPG_SYS_EPCR);
|
| 1841 |
|
|
return name;
|
| 1842 |
|
|
}
|
| 1843 |
|
|
|
| 1844 |
|
|
/* Exception EA regs */
|
| 1845 |
|
|
if((OR32_SPG_SYS_EEAR <= index) &&
|
| 1846 |
|
|
(index <= OR32_SPG_SYS_EEAR_END))
|
| 1847 |
|
|
{
|
| 1848 |
|
|
sprintf (name, "EEAR%d", index - OR32_SPG_SYS_EEAR);
|
| 1849 |
|
|
return name;
|
| 1850 |
|
|
}
|
| 1851 |
|
|
|
| 1852 |
|
|
/* Exception SR regs */
|
| 1853 |
|
|
if((OR32_SPG_SYS_ESR <= index) &&
|
| 1854 |
|
|
(index <= OR32_SPG_SYS_ESR_END))
|
| 1855 |
|
|
{
|
| 1856 |
|
|
sprintf (name, "ESR%d", index - OR32_SPG_SYS_ESR);
|
| 1857 |
|
|
return name;
|
| 1858 |
|
|
}
|
| 1859 |
|
|
|
| 1860 |
|
|
/* GPRs */
|
| 1861 |
|
|
if((OR32_SPG_SYS_GPR <= index) &&
|
| 1862 |
|
|
(index <= OR32_SPG_SYS_GPR_END))
|
| 1863 |
|
|
{
|
| 1864 |
|
|
sprintf (name, "GPR%d", index - OR32_SPG_SYS_GPR);
|
| 1865 |
|
|
return name;
|
| 1866 |
|
|
}
|
| 1867 |
|
|
|
| 1868 |
|
|
break;
|
| 1869 |
|
|
|
| 1870 |
|
|
case OR32_SPG_DMMU:
|
| 1871 |
|
|
case OR32_SPG_IMMU:
|
| 1872 |
|
|
/* MMU registers. Use DMMU constants throughout, but these are identical
|
| 1873 |
|
|
to the corresponding IMMU constants */
|
| 1874 |
|
|
di = OR32_SPG_DMMU == group ? 'D' : 'I';
|
| 1875 |
|
|
|
| 1876 |
|
|
/* 1:1 names */
|
| 1877 |
|
|
switch (index)
|
| 1878 |
|
|
{
|
| 1879 |
|
|
case OR32_SPG_DMMU_DMMUCR:
|
| 1880 |
|
|
sprintf (name, "%cMMUCR", di); return name;
|
| 1881 |
|
|
case OR32_SPG_DMMU_DMMUPR:
|
| 1882 |
|
|
sprintf (name, "%cMMUPR", di); return name;
|
| 1883 |
|
|
case OR32_SPG_DMMU_DTLBEIR:
|
| 1884 |
|
|
sprintf (name, "%cTLBEIR", di); return name;
|
| 1885 |
|
|
}
|
| 1886 |
|
|
|
| 1887 |
|
|
/* ATB Match registers */
|
| 1888 |
|
|
if((OR32_SPG_DMMU_DATBMR <= index) &&
|
| 1889 |
|
|
(index <= OR32_SPG_DMMU_DATBMR_END))
|
| 1890 |
|
|
{
|
| 1891 |
|
|
sprintf (name, "%cATBMR%d", di, index - OR32_SPG_DMMU_DATBMR);
|
| 1892 |
|
|
return name;
|
| 1893 |
|
|
}
|
| 1894 |
|
|
|
| 1895 |
|
|
/* ATB Translate registers */
|
| 1896 |
|
|
if((OR32_SPG_DMMU_DATBTR <= index) &&
|
| 1897 |
|
|
(index <= OR32_SPG_DMMU_DATBTR_END))
|
| 1898 |
|
|
{
|
| 1899 |
|
|
sprintf (name, "%cATBTR%d", di, index - OR32_SPG_DMMU_DATBTR);
|
| 1900 |
|
|
return name;
|
| 1901 |
|
|
}
|
| 1902 |
|
|
|
| 1903 |
|
|
/* TLB Way 1 Match registers */
|
| 1904 |
|
|
if((OR32_SPG_DMMU_DTLBW1MR <= index) &&
|
| 1905 |
|
|
(index <= OR32_SPG_DMMU_DTLBW1MR_END))
|
| 1906 |
|
|
{
|
| 1907 |
|
|
sprintf (name, "%cTLBW1MR%d", di, index - OR32_SPG_DMMU_DTLBW1MR);
|
| 1908 |
|
|
return name;
|
| 1909 |
|
|
}
|
| 1910 |
|
|
|
| 1911 |
|
|
/* TLB Way 1 Translate registers */
|
| 1912 |
|
|
if((OR32_SPG_DMMU_DTLBW1TR <= index) &&
|
| 1913 |
|
|
(index <= OR32_SPG_DMMU_DTLBW1TR_END))
|
| 1914 |
|
|
{
|
| 1915 |
|
|
sprintf (name, "%cTLBW1TR%d", di, index - OR32_SPG_DMMU_DTLBW1TR);
|
| 1916 |
|
|
return name;
|
| 1917 |
|
|
}
|
| 1918 |
|
|
|
| 1919 |
|
|
/* TLB Way 2 Match registers */
|
| 1920 |
|
|
if((OR32_SPG_DMMU_DTLBW2MR <= index) &&
|
| 1921 |
|
|
(index <= OR32_SPG_DMMU_DTLBW2MR_END))
|
| 1922 |
|
|
{
|
| 1923 |
|
|
sprintf (name, "%cTLBW2MR%d", di, index - OR32_SPG_DMMU_DTLBW2MR);
|
| 1924 |
|
|
return name;
|
| 1925 |
|
|
}
|
| 1926 |
|
|
|
| 1927 |
|
|
/* TLB Way 2 Translate registers */
|
| 1928 |
|
|
if((OR32_SPG_DMMU_DTLBW2TR <= index) &&
|
| 1929 |
|
|
(index <= OR32_SPG_DMMU_DTLBW2TR_END))
|
| 1930 |
|
|
{
|
| 1931 |
|
|
sprintf (name, "%cTLBW2TR%d", di, index - OR32_SPG_DMMU_DTLBW2TR);
|
| 1932 |
|
|
return name;
|
| 1933 |
|
|
}
|
| 1934 |
|
|
|
| 1935 |
|
|
/* TLB Way 3 Match registers */
|
| 1936 |
|
|
if((OR32_SPG_DMMU_DTLBW3MR <= index) &&
|
| 1937 |
|
|
(index <= OR32_SPG_DMMU_DTLBW3MR_END))
|
| 1938 |
|
|
{
|
| 1939 |
|
|
sprintf (name, "%cTLBW3MR%d", di, index - OR32_SPG_DMMU_DTLBW3MR);
|
| 1940 |
|
|
return name;
|
| 1941 |
|
|
}
|
| 1942 |
|
|
|
| 1943 |
|
|
/* TLB Way 3 Translate registers */
|
| 1944 |
|
|
if((OR32_SPG_DMMU_DTLBW3TR <= index) &&
|
| 1945 |
|
|
(index <= OR32_SPG_DMMU_DTLBW3TR_END))
|
| 1946 |
|
|
{
|
| 1947 |
|
|
sprintf (name, "%cTLBW3TR%d", di, index - OR32_SPG_DMMU_DTLBW3TR);
|
| 1948 |
|
|
return name;
|
| 1949 |
|
|
}
|
| 1950 |
|
|
|
| 1951 |
|
|
break;
|
| 1952 |
|
|
|
| 1953 |
|
|
case OR32_SPG_DC:
|
| 1954 |
|
|
/* Data cache registers. These do not have an exact correspondence with
|
| 1955 |
|
|
their instruction cache counterparts, so must be done separately. */
|
| 1956 |
|
|
|
| 1957 |
|
|
/* 1:1 names */
|
| 1958 |
|
|
switch (index)
|
| 1959 |
|
|
{
|
| 1960 |
|
|
case OR32_SPG_DC_DCCR: sprintf (name, "DCCR" ); return name;
|
| 1961 |
|
|
case OR32_SPG_DC_DCBPR: sprintf (name, "DCBPR"); return name;
|
| 1962 |
|
|
case OR32_SPG_DC_DCBFR: sprintf (name, "DCBFR"); return name;
|
| 1963 |
|
|
case OR32_SPG_DC_DCBIR: sprintf (name, "DCBIR"); return name;
|
| 1964 |
|
|
case OR32_SPG_DC_DCBWR: sprintf (name, "DCBWR"); return name;
|
| 1965 |
|
|
case OR32_SPG_DC_DCBLR: sprintf (name, "DCBLR"); return name;
|
| 1966 |
|
|
}
|
| 1967 |
|
|
|
| 1968 |
|
|
break;
|
| 1969 |
|
|
|
| 1970 |
|
|
case OR32_SPG_IC:
|
| 1971 |
|
|
/* Instruction cache registers */
|
| 1972 |
|
|
|
| 1973 |
|
|
/* 1:1 names */
|
| 1974 |
|
|
switch (index)
|
| 1975 |
|
|
{
|
| 1976 |
|
|
case OR32_SPG_IC_ICCR: sprintf (name, "ICCR" ); return name;
|
| 1977 |
|
|
case OR32_SPG_IC_ICBPR: sprintf (name, "ICBPR"); return name;
|
| 1978 |
|
|
case OR32_SPG_IC_ICBIR: sprintf (name, "ICBIR"); return name;
|
| 1979 |
|
|
case OR32_SPG_IC_ICBLR: sprintf (name, "ICBLR"); return name;
|
| 1980 |
|
|
}
|
| 1981 |
|
|
|
| 1982 |
|
|
break;
|
| 1983 |
|
|
|
| 1984 |
|
|
case OR32_SPG_MAC:
|
| 1985 |
|
|
/* MAC registers */
|
| 1986 |
|
|
|
| 1987 |
|
|
/* 1:1 names */
|
| 1988 |
|
|
switch (index)
|
| 1989 |
|
|
{
|
| 1990 |
|
|
case OR32_SPG_MAC_MACLO: sprintf (name, "MACLO"); return name;
|
| 1991 |
|
|
case OR32_SPG_MAC_MACHI: sprintf (name, "MACHI"); return name;
|
| 1992 |
|
|
}
|
| 1993 |
|
|
|
| 1994 |
|
|
break;
|
| 1995 |
|
|
|
| 1996 |
|
|
case OR32_SPG_DEBUG:
|
| 1997 |
|
|
/* Debug registers */
|
| 1998 |
|
|
|
| 1999 |
|
|
/* Debug Value registers */
|
| 2000 |
|
|
if((OR32_SPG_DEBUG_DVR <= index) &&
|
| 2001 |
|
|
(index <= OR32_SPG_DEBUG_DVR_END))
|
| 2002 |
|
|
{
|
| 2003 |
|
|
sprintf (name, "DVR%d", index - OR32_SPG_DEBUG_DVR);
|
| 2004 |
|
|
return name;
|
| 2005 |
|
|
}
|
| 2006 |
|
|
|
| 2007 |
|
|
/* Debug Control registers */
|
| 2008 |
|
|
if((OR32_SPG_DEBUG_DCR <= index) &&
|
| 2009 |
|
|
(index <= OR32_SPG_DEBUG_DCR_END))
|
| 2010 |
|
|
{
|
| 2011 |
|
|
sprintf (name, "DCR%d", index - OR32_SPG_DEBUG_DCR);
|
| 2012 |
|
|
return name;
|
| 2013 |
|
|
}
|
| 2014 |
|
|
|
| 2015 |
|
|
/* 1:1 names */
|
| 2016 |
|
|
switch (index)
|
| 2017 |
|
|
{
|
| 2018 |
|
|
case OR32_SPG_DEBUG_DMR1: sprintf (name, "DMR1" ); return name;
|
| 2019 |
|
|
case OR32_SPG_DEBUG_DMR2: sprintf (name, "DMR2" ); return name;
|
| 2020 |
|
|
case OR32_SPG_DEBUG_DCWR0: sprintf (name, "DCWR0"); return name;
|
| 2021 |
|
|
case OR32_SPG_DEBUG_DCWR1: sprintf (name, "DCWR1"); return name;
|
| 2022 |
|
|
case OR32_SPG_DEBUG_DSR: sprintf (name, "DSR" ); return name;
|
| 2023 |
|
|
case OR32_SPG_DEBUG_DRR: sprintf (name, "DRR" ); return name;
|
| 2024 |
|
|
}
|
| 2025 |
|
|
|
| 2026 |
|
|
break;
|
| 2027 |
|
|
|
| 2028 |
|
|
case OR32_SPG_PC:
|
| 2029 |
|
|
/* Performance Counter registers */
|
| 2030 |
|
|
|
| 2031 |
|
|
/* Performance Counters Count registers */
|
| 2032 |
|
|
if((OR32_SPG_PC_PCCR <= index) &&
|
| 2033 |
|
|
(index <= OR32_SPG_PC_PCCR_END))
|
| 2034 |
|
|
{
|
| 2035 |
|
|
sprintf (name, "PCCR%d", index - OR32_SPG_PC_PCCR);
|
| 2036 |
|
|
return name;
|
| 2037 |
|
|
}
|
| 2038 |
|
|
|
| 2039 |
|
|
/* Performance Counters Mode registers */
|
| 2040 |
|
|
if((OR32_SPG_PC_PCMR <= index) &&
|
| 2041 |
|
|
(index <= OR32_SPG_PC_PCMR_END))
|
| 2042 |
|
|
{
|
| 2043 |
|
|
sprintf (name, "PCMR%d", index - OR32_SPG_PC_PCMR);
|
| 2044 |
|
|
return name;
|
| 2045 |
|
|
}
|
| 2046 |
|
|
|
| 2047 |
|
|
break;
|
| 2048 |
|
|
|
| 2049 |
|
|
case OR32_SPG_PM:
|
| 2050 |
|
|
/* Power Management registers */
|
| 2051 |
|
|
|
| 2052 |
|
|
/* 1:1 names */
|
| 2053 |
|
|
switch (index)
|
| 2054 |
|
|
{
|
| 2055 |
|
|
case OR32_SPG_PM_PMR: sprintf (name, "PMR"); return name;
|
| 2056 |
|
|
}
|
| 2057 |
|
|
|
| 2058 |
|
|
break;
|
| 2059 |
|
|
|
| 2060 |
|
|
case OR32_SPG_PIC:
|
| 2061 |
|
|
/* Programmable Interrupt Controller registers */
|
| 2062 |
|
|
|
| 2063 |
|
|
/* 1:1 names */
|
| 2064 |
|
|
switch (index)
|
| 2065 |
|
|
{
|
| 2066 |
|
|
case OR32_SPG_PIC_PICMR: sprintf (name, "PICMR"); return name;
|
| 2067 |
|
|
case OR32_SPG_PIC_PICSR: sprintf (name, "PICSR"); return name;
|
| 2068 |
|
|
}
|
| 2069 |
|
|
|
| 2070 |
|
|
break;
|
| 2071 |
|
|
|
| 2072 |
|
|
case OR32_SPG_TT:
|
| 2073 |
|
|
/* Tick Timer registers */
|
| 2074 |
|
|
|
| 2075 |
|
|
/* 1:1 names */
|
| 2076 |
|
|
switch (index)
|
| 2077 |
|
|
{
|
| 2078 |
|
|
case OR32_SPG_TT_TTMR: sprintf (name, "TTMR"); return name;
|
| 2079 |
|
|
case OR32_SPG_TT_TTCR: sprintf (name, "TTCR"); return name;
|
| 2080 |
|
|
}
|
| 2081 |
|
|
|
| 2082 |
|
|
break;
|
| 2083 |
|
|
|
| 2084 |
|
|
case OR32_SPG_FPU:
|
| 2085 |
|
|
|
| 2086 |
|
|
break;
|
| 2087 |
|
|
}
|
| 2088 |
|
|
|
| 2089 |
|
|
/* Not a recognized register */
|
| 2090 |
|
|
strcpy (name, "");
|
| 2091 |
|
|
return name;
|
| 2092 |
|
|
|
| 2093 |
|
|
} /* or32_spr_register_name() */
|
| 2094 |
|
|
|
| 2095 |
|
|
|
| 2096 |
|
|
/*----------------------------------------------------------------------------*/
|
| 2097 |
|
|
/*!Get SPR group number from a name
|
| 2098 |
|
|
|
| 2099 |
|
|
@param[in] group_name SPR register group
|
| 2100 |
|
|
|
| 2101 |
|
|
@return The index, or negative if no match. */
|
| 2102 |
|
|
/*----------------------------------------------------------------------------*/
|
| 2103 |
|
|
|
| 2104 |
|
|
static int
|
| 2105 |
|
|
or32_groupnum_from_name (char *group_name)
|
| 2106 |
|
|
{
|
| 2107 |
|
|
int group;
|
| 2108 |
|
|
|
| 2109 |
|
|
for (group = 0; group < OR32_NUM_SPGS; group++)
|
| 2110 |
|
|
{
|
| 2111 |
|
|
if (0 == strcasecmp (group_name, or32_spr_group_name (group)))
|
| 2112 |
|
|
{
|
| 2113 |
|
|
return group;
|
| 2114 |
|
|
}
|
| 2115 |
|
|
}
|
| 2116 |
|
|
|
| 2117 |
|
|
return -1;
|
| 2118 |
|
|
|
| 2119 |
|
|
} /* or32_groupnum_from_name() */
|
| 2120 |
|
|
|
| 2121 |
|
|
|
| 2122 |
|
|
/*----------------------------------------------------------------------------*/
|
| 2123 |
|
|
/*!Get register index in special purpose register group from name
|
| 2124 |
|
|
|
| 2125 |
|
|
The name may either be SPR<group_num>_<index> or a known unique name. In
|
| 2126 |
|
|
either case the group number must match the supplied group number.
|
| 2127 |
|
|
|
| 2128 |
|
|
@param[in] group SPR register group
|
| 2129 |
|
|
@param[in] name Register name
|
| 2130 |
|
|
|
| 2131 |
|
|
@return The index, or negative if no match. */
|
| 2132 |
|
|
/*----------------------------------------------------------------------------*/
|
| 2133 |
|
|
|
| 2134 |
|
|
static int
|
| 2135 |
|
|
or32_regnum_from_name (int group,
|
| 2136 |
|
|
char *name)
|
| 2137 |
|
|
{
|
| 2138 |
|
|
/* Last valid register in each group. */
|
| 2139 |
|
|
static const int or32_spr_group_last[OR32_NUM_SPGS] =
|
| 2140 |
|
|
{
|
| 2141 |
|
|
OR32_SPG_SYS_LAST,
|
| 2142 |
|
|
OR32_SPG_DMMU_LAST,
|
| 2143 |
|
|
OR32_SPG_IMMU_LAST,
|
| 2144 |
|
|
OR32_SPG_DC_LAST,
|
| 2145 |
|
|
OR32_SPG_IC_LAST,
|
| 2146 |
|
|
OR32_SPG_MAC_LAST,
|
| 2147 |
|
|
OR32_SPG_DEBUG_LAST,
|
| 2148 |
|
|
OR32_SPG_PC_LAST,
|
| 2149 |
|
|
OR32_SPG_PM_LAST,
|
| 2150 |
|
|
OR32_SPG_PIC_LAST,
|
| 2151 |
|
|
OR32_SPG_TT_LAST,
|
| 2152 |
|
|
OR32_SPG_FPU_LAST
|
| 2153 |
|
|
};
|
| 2154 |
|
|
|
| 2155 |
|
|
int i;
|
| 2156 |
|
|
char spr_name[32];
|
| 2157 |
|
|
|
| 2158 |
|
|
if (0 == strcasecmp (name, "SPR"))
|
| 2159 |
|
|
{
|
| 2160 |
|
|
char *ptr_c;
|
| 2161 |
|
|
|
| 2162 |
|
|
/* Skip SPR */
|
| 2163 |
|
|
name += 3;
|
| 2164 |
|
|
|
| 2165 |
|
|
/* Get group number */
|
| 2166 |
|
|
i = (int) strtoul (name, &ptr_c, 10);
|
| 2167 |
|
|
if (*ptr_c != '_' || i != group)
|
| 2168 |
|
|
{
|
| 2169 |
|
|
return -1;
|
| 2170 |
|
|
}
|
| 2171 |
|
|
|
| 2172 |
|
|
/* Get index */
|
| 2173 |
|
|
ptr_c++;
|
| 2174 |
|
|
i = (int) strtoul (name, &ptr_c, 10);
|
| 2175 |
|
|
if (*ptr_c)
|
| 2176 |
|
|
{
|
| 2177 |
|
|
return -1;
|
| 2178 |
|
|
}
|
| 2179 |
|
|
else
|
| 2180 |
|
|
{
|
| 2181 |
|
|
return i;
|
| 2182 |
|
|
}
|
| 2183 |
|
|
}
|
| 2184 |
|
|
|
| 2185 |
|
|
/* Look for a "known" name in this group */
|
| 2186 |
|
|
for (i = 0; i <= or32_spr_group_last[group]; i++)
|
| 2187 |
|
|
{
|
| 2188 |
|
|
char *s = or32_spr_register_name (group, i, spr_name);
|
| 2189 |
|
|
|
| 2190 |
|
|
if (0 == strcasecmp (name, s))
|
| 2191 |
|
|
{
|
| 2192 |
|
|
return i;
|
| 2193 |
|
|
}
|
| 2194 |
|
|
}
|
| 2195 |
|
|
|
| 2196 |
|
|
/* Failure */
|
| 2197 |
|
|
return -1;
|
| 2198 |
|
|
|
| 2199 |
|
|
} /* or32_regnum_from_name() */
|
| 2200 |
|
|
|
| 2201 |
|
|
|
| 2202 |
|
|
/*----------------------------------------------------------------------------*/
|
| 2203 |
|
|
/*!Get the next token from a string
|
| 2204 |
|
|
|
| 2205 |
|
|
I can't believe there isn't a library argument for this, but strtok is
|
| 2206 |
|
|
deprecated.
|
| 2207 |
|
|
|
| 2208 |
|
|
Take a string and find the start of the next token and its length. A token
|
| 2209 |
|
|
is anything containing non-blank characters.
|
| 2210 |
|
|
|
| 2211 |
|
|
@param[in] str The string to look at (may be NULL).
|
| 2212 |
|
|
@param[out] tok Pointer to the start of the token within str. May be NULL
|
| 2213 |
|
|
if this result is not wanted (e.g. just the length is
|
| 2214 |
|
|
wanted. If no token is found will be the NULL char at the
|
| 2215 |
|
|
end of the string, if the original str was NULL, this will
|
| 2216 |
|
|
be NULL.
|
| 2217 |
|
|
|
| 2218 |
|
|
@return The length of the token found */
|
| 2219 |
|
|
/*----------------------------------------------------------------------------*/
|
| 2220 |
|
|
|
| 2221 |
|
|
static int
|
| 2222 |
|
|
or32_tokenize (char *str,
|
| 2223 |
|
|
char **tok)
|
| 2224 |
|
|
{
|
| 2225 |
|
|
char *ptr;
|
| 2226 |
|
|
int len;
|
| 2227 |
|
|
|
| 2228 |
|
|
/* Deal with NULL argument */
|
| 2229 |
|
|
if (NULL == str)
|
| 2230 |
|
|
{
|
| 2231 |
|
|
if (NULL != tok)
|
| 2232 |
|
|
{
|
| 2233 |
|
|
*tok = NULL;
|
| 2234 |
|
|
}
|
| 2235 |
|
|
return 0;
|
| 2236 |
|
|
}
|
| 2237 |
|
|
|
| 2238 |
|
|
/* Find the start */
|
| 2239 |
|
|
for (ptr = str; ISBLANK (*ptr) ; ptr++)
|
| 2240 |
|
|
{
|
| 2241 |
|
|
continue;
|
| 2242 |
|
|
}
|
| 2243 |
|
|
|
| 2244 |
|
|
/* Return the start pointer if requested */
|
| 2245 |
|
|
if (NULL != tok)
|
| 2246 |
|
|
{
|
| 2247 |
|
|
*tok = ptr;
|
| 2248 |
|
|
}
|
| 2249 |
|
|
|
| 2250 |
|
|
/* Find the end and put in EOS */
|
| 2251 |
|
|
for (len = 0; ('\0' != ptr[len]) && (!ISBLANK (ptr[len])); len++)
|
| 2252 |
|
|
{
|
| 2253 |
|
|
continue;
|
| 2254 |
|
|
}
|
| 2255 |
|
|
|
| 2256 |
|
|
return len;
|
| 2257 |
|
|
|
| 2258 |
|
|
} /* or32_tokenize() */
|
| 2259 |
|
|
|
| 2260 |
|
|
|
| 2261 |
|
|
/*----------------------------------------------------------------------------*/
|
| 2262 |
|
|
/*!Parses args for spr commands
|
| 2263 |
|
|
|
| 2264 |
|
|
Determines the special purpose register (SPR) name and puts result into
|
| 2265 |
|
|
group and index
|
| 2266 |
|
|
|
| 2267 |
|
|
Syntax is:
|
| 2268 |
|
|
|
| 2269 |
|
|
@verbatim
|
| 2270 |
|
|
<spr_args> -> <group_ref> | <reg_name>
|
| 2271 |
|
|
<group_ref> -> <group_id> <index>
|
| 2272 |
|
|
<group_id> -> <group_num> | <group_name>
|
| 2273 |
|
|
@endverbatim
|
| 2274 |
|
|
|
| 2275 |
|
|
Where the indices/names have to be valid.
|
| 2276 |
|
|
|
| 2277 |
|
|
So to parse, we look for 1 or 2 args. If 1 it must be a unique register
|
| 2278 |
|
|
name. If 2, the first must be a group number or name and the second an
|
| 2279 |
|
|
index within that group.
|
| 2280 |
|
|
|
| 2281 |
|
|
Also responsible for providing diagnostics if the arguments do not match.
|
| 2282 |
|
|
|
| 2283 |
|
|
Rewritten for GDB 6.8 to use the new UI calls and remove assorted
|
| 2284 |
|
|
bugs. Syntax also slightly restricted to be more comprehensible.
|
| 2285 |
|
|
|
| 2286 |
|
|
@param[in] arg_str The argument string
|
| 2287 |
|
|
@param[out] group The group this SPR belongs in, or -1 to indicate
|
| 2288 |
|
|
failure
|
| 2289 |
|
|
@param[out] index Index of the register within the group, or -1 to
|
| 2290 |
|
|
indicate the whole group
|
| 2291 |
|
|
@param[in] is_set 1 (true) if we are called from the "spr" command (so
|
| 2292 |
|
|
there is an extra arg) rather than the "info spr"
|
| 2293 |
|
|
command. Needed to distinguish between the case where
|
| 2294 |
|
|
info is sought from a register specified as group and
|
| 2295 |
|
|
index and setting a uniquely identified register to a
|
| 2296 |
|
|
value.
|
| 2297 |
|
|
|
| 2298 |
|
|
@return A pointer to any remaining args */
|
| 2299 |
|
|
/*---------------------------------------------------------------------------*/
|
| 2300 |
|
|
|
| 2301 |
|
|
static char *
|
| 2302 |
|
|
or32_parse_spr_params (char *arg_str,
|
| 2303 |
|
|
int *group,
|
| 2304 |
|
|
int *index,
|
| 2305 |
|
|
int is_set)
|
| 2306 |
|
|
{
|
| 2307 |
|
|
struct {
|
| 2308 |
|
|
char *str;
|
| 2309 |
|
|
int len;
|
| 2310 |
|
|
unsigned long int val;
|
| 2311 |
|
|
int is_num;
|
| 2312 |
|
|
} arg[3] = {
|
| 2313 |
|
|
{
|
| 2314 |
|
|
.str = NULL,
|
| 2315 |
|
|
.len = 0,
|
| 2316 |
|
|
.val = 0,
|
| 2317 |
|
|
.is_num = 0,
|
| 2318 |
|
|
},
|
| 2319 |
|
|
{
|
| 2320 |
|
|
.str = NULL,
|
| 2321 |
|
|
.len = 0,
|
| 2322 |
|
|
.val = 0,
|
| 2323 |
|
|
.is_num = 0,
|
| 2324 |
|
|
},
|
| 2325 |
|
|
{
|
| 2326 |
|
|
.str = NULL,
|
| 2327 |
|
|
.len = 0,
|
| 2328 |
|
|
.val = 0,
|
| 2329 |
|
|
.is_num = 0,
|
| 2330 |
|
|
}
|
| 2331 |
|
|
};
|
| 2332 |
|
|
|
| 2333 |
|
|
int num_args;
|
| 2334 |
|
|
char *trailer = arg_str;
|
| 2335 |
|
|
char *tmp_str;
|
| 2336 |
|
|
int i;
|
| 2337 |
|
|
|
| 2338 |
|
|
char spr_name[32];
|
| 2339 |
|
|
|
| 2340 |
|
|
/* Break out the arguments. Note that the strings are NOT null terminated
|
| 2341 |
|
|
(we don't want to change arg_str), so we must rely on len. The stroul
|
| 2342 |
|
|
call will still work, since there is always a non-digit char (possibly EOS)
|
| 2343 |
|
|
after the last digit. */
|
| 2344 |
|
|
if (NULL == arg_str)
|
| 2345 |
|
|
{
|
| 2346 |
|
|
num_args = 0;
|
| 2347 |
|
|
}
|
| 2348 |
|
|
else
|
| 2349 |
|
|
{
|
| 2350 |
|
|
for (num_args = 0; num_args < 3; num_args++)
|
| 2351 |
|
|
{
|
| 2352 |
|
|
arg[num_args].len = or32_tokenize (trailer, &(arg[num_args].str));
|
| 2353 |
|
|
trailer = arg[num_args].str + arg[num_args].len;
|
| 2354 |
|
|
|
| 2355 |
|
|
if (0 == arg[num_args].len)
|
| 2356 |
|
|
{
|
| 2357 |
|
|
break;
|
| 2358 |
|
|
}
|
| 2359 |
|
|
}
|
| 2360 |
|
|
}
|
| 2361 |
|
|
|
| 2362 |
|
|
/* Patch nulls into the arg strings and see about values. Couldn't do this
|
| 2363 |
|
|
earlier, since we needed the next char clean to check later args. This
|
| 2364 |
|
|
means advancing trailer, UNLESS it was already at EOS */
|
| 2365 |
|
|
|
| 2366 |
|
|
if((NULL != arg_str) && ('\0' != *trailer))
|
| 2367 |
|
|
{
|
| 2368 |
|
|
trailer++;
|
| 2369 |
|
|
}
|
| 2370 |
|
|
|
| 2371 |
|
|
for (i = 0; i < num_args; i++)
|
| 2372 |
|
|
{
|
| 2373 |
|
|
(arg[i].str)[arg[i].len] = '\0';
|
| 2374 |
|
|
errno = 0;
|
| 2375 |
|
|
arg[i].val = strtoul (arg[i].str, &tmp_str, 0);
|
| 2376 |
|
|
arg[i].is_num = (0 == errno) && ('\0' == *tmp_str);
|
| 2377 |
|
|
}
|
| 2378 |
|
|
|
| 2379 |
|
|
/* Deal with the case where we are setting a register, so the final argument
|
| 2380 |
|
|
should be disregarded (it is the trailer). Do this anyway if we get a
|
| 2381 |
|
|
third argument */
|
| 2382 |
|
|
if ((is_set & (num_args > 0)) || (num_args > 2))
|
| 2383 |
|
|
{
|
| 2384 |
|
|
trailer = arg[num_args - 1].str;
|
| 2385 |
|
|
num_args--;
|
| 2386 |
|
|
}
|
| 2387 |
|
|
|
| 2388 |
|
|
/* Deal with different numbers of args */
|
| 2389 |
|
|
|
| 2390 |
|
|
switch (num_args)
|
| 2391 |
|
|
{
|
| 2392 |
|
|
|
| 2393 |
|
|
case 0:
|
| 2394 |
|
|
ui_out_message (uiout, 0,
|
| 2395 |
|
|
"Usage: <command> <register> |\n"
|
| 2396 |
|
|
" <command> <group> |\n"
|
| 2397 |
|
|
" <command> <group> <index>\n"
|
| 2398 |
|
|
"Valid groups are:\n");
|
| 2399 |
|
|
for (i = 0; i < OR32_NUM_SPGS; i++)
|
| 2400 |
|
|
{
|
| 2401 |
|
|
ui_out_field_string (uiout, NULL, or32_spr_group_name (i));
|
| 2402 |
|
|
ui_out_spaces (uiout, 1);
|
| 2403 |
|
|
ui_out_wrap_hint (uiout, NULL);
|
| 2404 |
|
|
}
|
| 2405 |
|
|
ui_out_field_string (uiout, NULL, "\n");
|
| 2406 |
|
|
|
| 2407 |
|
|
*index = -1;
|
| 2408 |
|
|
return trailer;
|
| 2409 |
|
|
|
| 2410 |
|
|
case 1:
|
| 2411 |
|
|
/* See if it is a numeric group */
|
| 2412 |
|
|
if (arg[0].is_num)
|
| 2413 |
|
|
{
|
| 2414 |
|
|
if (arg[0].val < OR32_NUM_SPGS)
|
| 2415 |
|
|
{
|
| 2416 |
|
|
*group = arg[0].val;
|
| 2417 |
|
|
*index = -1;
|
| 2418 |
|
|
return trailer;
|
| 2419 |
|
|
}
|
| 2420 |
|
|
else
|
| 2421 |
|
|
{
|
| 2422 |
|
|
ui_out_message (uiout, 0,
|
| 2423 |
|
|
"Group index should be in the range 0 - %d\n",
|
| 2424 |
|
|
OR32_NUM_SPGS);
|
| 2425 |
|
|
*group = -1;
|
| 2426 |
|
|
*index = -1;
|
| 2427 |
|
|
return trailer;
|
| 2428 |
|
|
}
|
| 2429 |
|
|
}
|
| 2430 |
|
|
|
| 2431 |
|
|
/* Is is it a group name? */
|
| 2432 |
|
|
*group = or32_groupnum_from_name (arg[0].str);
|
| 2433 |
|
|
if (*group >= 0)
|
| 2434 |
|
|
{
|
| 2435 |
|
|
*index = -1;
|
| 2436 |
|
|
return trailer;
|
| 2437 |
|
|
}
|
| 2438 |
|
|
|
| 2439 |
|
|
/* See if it is a valid register name in any group */
|
| 2440 |
|
|
for (*group = 0; *group < OR32_NUM_SPGS; (*group)++)
|
| 2441 |
|
|
{
|
| 2442 |
|
|
*index = or32_regnum_from_name (*group, arg[0].str);
|
| 2443 |
|
|
|
| 2444 |
|
|
if (*index >= 0)
|
| 2445 |
|
|
{
|
| 2446 |
|
|
return trailer;
|
| 2447 |
|
|
}
|
| 2448 |
|
|
}
|
| 2449 |
|
|
|
| 2450 |
|
|
/* Couldn't find it - print out a rude message */
|
| 2451 |
|
|
ui_out_message (uiout, 0,
|
| 2452 |
|
|
"Group or register name not recognized.\n"
|
| 2453 |
|
|
"Valid groups are:\n");
|
| 2454 |
|
|
for (i = 0; i < OR32_NUM_SPGS; i++)
|
| 2455 |
|
|
{
|
| 2456 |
|
|
ui_out_field_string (uiout, NULL, or32_spr_group_name (i));
|
| 2457 |
|
|
ui_out_spaces (uiout, 1);
|
| 2458 |
|
|
ui_out_wrap_hint (uiout, NULL);
|
| 2459 |
|
|
}
|
| 2460 |
|
|
ui_out_field_string (uiout, NULL, "\n");
|
| 2461 |
|
|
|
| 2462 |
|
|
*group = -1;
|
| 2463 |
|
|
*index = -1;
|
| 2464 |
|
|
return trailer;
|
| 2465 |
|
|
|
| 2466 |
|
|
case 2:
|
| 2467 |
|
|
/* See if first arg is a numeric group */
|
| 2468 |
|
|
if (arg[0].is_num)
|
| 2469 |
|
|
{
|
| 2470 |
|
|
if (arg[0].val < OR32_NUM_SPGS)
|
| 2471 |
|
|
{
|
| 2472 |
|
|
*group = arg[0].val;
|
| 2473 |
|
|
*index = -1;
|
| 2474 |
|
|
}
|
| 2475 |
|
|
else
|
| 2476 |
|
|
{
|
| 2477 |
|
|
ui_out_message (uiout, 0,
|
| 2478 |
|
|
"Group index should be in the range 0 - %d\n",
|
| 2479 |
|
|
OR32_NUM_SPGS - 1);
|
| 2480 |
|
|
*group = -1;
|
| 2481 |
|
|
*index = -1;
|
| 2482 |
|
|
return trailer;
|
| 2483 |
|
|
}
|
| 2484 |
|
|
}
|
| 2485 |
|
|
else
|
| 2486 |
|
|
{
|
| 2487 |
|
|
/* Is is it a group name? */
|
| 2488 |
|
|
*group = or32_groupnum_from_name (arg[0].str);
|
| 2489 |
|
|
if (*group >= 0)
|
| 2490 |
|
|
{
|
| 2491 |
|
|
*index = -1;
|
| 2492 |
|
|
}
|
| 2493 |
|
|
else
|
| 2494 |
|
|
{
|
| 2495 |
|
|
ui_out_message (uiout, 0,
|
| 2496 |
|
|
"Group name not recognized.\n"
|
| 2497 |
|
|
"Valid groups are:\n");
|
| 2498 |
|
|
for (i = 0; i < OR32_NUM_SPGS; i++)
|
| 2499 |
|
|
{
|
| 2500 |
|
|
ui_out_field_string (uiout, NULL, or32_spr_group_name (i));
|
| 2501 |
|
|
ui_out_spaces (uiout, 1);
|
| 2502 |
|
|
ui_out_wrap_hint (uiout, NULL);
|
| 2503 |
|
|
}
|
| 2504 |
|
|
ui_out_field_string (uiout, NULL, "\n");
|
| 2505 |
|
|
|
| 2506 |
|
|
*group = -1;
|
| 2507 |
|
|
*index = -1;
|
| 2508 |
|
|
return trailer;
|
| 2509 |
|
|
}
|
| 2510 |
|
|
}
|
| 2511 |
|
|
|
| 2512 |
|
|
/* Is second arg an index or name? */
|
| 2513 |
|
|
if (arg[1].is_num)
|
| 2514 |
|
|
{
|
| 2515 |
|
|
if (arg[1].val < OR32_SPG_SIZE)
|
| 2516 |
|
|
{
|
| 2517 |
|
|
/* Check this really is a register */
|
| 2518 |
|
|
if (0 != strlen (or32_spr_register_name (*group, arg[1].val,
|
| 2519 |
|
|
spr_name)))
|
| 2520 |
|
|
{
|
| 2521 |
|
|
*index = arg[1].val;
|
| 2522 |
|
|
return trailer;
|
| 2523 |
|
|
}
|
| 2524 |
|
|
else
|
| 2525 |
|
|
{
|
| 2526 |
|
|
ui_out_message (uiout, 0,
|
| 2527 |
|
|
"No valid register at that index in group\n");
|
| 2528 |
|
|
*group = -1;
|
| 2529 |
|
|
*index = -1;
|
| 2530 |
|
|
return trailer;
|
| 2531 |
|
|
}
|
| 2532 |
|
|
}
|
| 2533 |
|
|
else
|
| 2534 |
|
|
{
|
| 2535 |
|
|
ui_out_message (uiout, 0,
|
| 2536 |
|
|
"Register index should be in the range 0 - %d\n",
|
| 2537 |
|
|
OR32_SPG_SIZE - 1);
|
| 2538 |
|
|
*group = -1;
|
| 2539 |
|
|
*index = -1;
|
| 2540 |
|
|
return trailer;
|
| 2541 |
|
|
}
|
| 2542 |
|
|
}
|
| 2543 |
|
|
|
| 2544 |
|
|
/* Must be a name */
|
| 2545 |
|
|
*index = or32_regnum_from_name (*group, arg[1].str);
|
| 2546 |
|
|
|
| 2547 |
|
|
if (*index >= 0)
|
| 2548 |
|
|
{
|
| 2549 |
|
|
return trailer;
|
| 2550 |
|
|
}
|
| 2551 |
|
|
|
| 2552 |
|
|
/* Couldn't find it - print out a rude message */
|
| 2553 |
|
|
ui_out_message (uiout, 0, "Register name not recognized in group.\n");
|
| 2554 |
|
|
*group = -1;
|
| 2555 |
|
|
*index = -1;
|
| 2556 |
|
|
return trailer;
|
| 2557 |
|
|
|
| 2558 |
|
|
default:
|
| 2559 |
|
|
/* Anything else is an error */
|
| 2560 |
|
|
ui_out_message (uiout, 0, "Unable to parse arguments\n");
|
| 2561 |
|
|
*group = -1;
|
| 2562 |
|
|
*index = -1;
|
| 2563 |
|
|
return trailer;
|
| 2564 |
|
|
}
|
| 2565 |
|
|
} /* or32_parse_spr_params() */
|
| 2566 |
|
|
|
| 2567 |
|
|
|
| 2568 |
|
|
/*---------------------------------------------------------------------------*/
|
| 2569 |
|
|
/*!Read a special purpose register from the target
|
| 2570 |
|
|
|
| 2571 |
|
|
This has to be done using the target remote command "readspr"
|
| 2572 |
|
|
|
| 2573 |
|
|
@param[in] regnum The register to read
|
| 2574 |
|
|
|
| 2575 |
|
|
@return The value read */
|
| 2576 |
|
|
/*---------------------------------------------------------------------------*/
|
| 2577 |
|
|
|
| 2578 |
|
|
static ULONGEST
|
| 2579 |
|
|
or32_read_spr (unsigned int regnum)
|
| 2580 |
|
|
{
|
| 2581 |
|
|
struct ui_file *uibuf = mem_fileopen ();
|
| 2582 |
|
|
char cmd[sizeof ("readspr ffff")];
|
| 2583 |
|
|
unsigned long int data;
|
| 2584 |
|
|
char *res;
|
| 2585 |
|
|
long int len;
|
| 2586 |
|
|
|
| 2587 |
|
|
/* Create the command string and pass it to target remote command function */
|
| 2588 |
|
|
sprintf (cmd, "readspr %4x", regnum);
|
| 2589 |
|
|
target_rcmd (cmd, uibuf);
|
| 2590 |
|
|
|
| 2591 |
|
|
/* Get the output for the UI file as a string */
|
| 2592 |
|
|
res = ui_file_xstrdup (uibuf, &len);
|
| 2593 |
|
|
sscanf (res, "%lx", &data);
|
| 2594 |
|
|
|
| 2595 |
|
|
/* Tidy up */
|
| 2596 |
|
|
xfree (res);
|
| 2597 |
|
|
ui_file_delete (uibuf);
|
| 2598 |
|
|
|
| 2599 |
|
|
return (ULONGEST)data;
|
| 2600 |
|
|
|
| 2601 |
|
|
} /* or32_read_spr() */
|
| 2602 |
|
|
|
| 2603 |
|
|
|
| 2604 |
|
|
/*---------------------------------------------------------------------------*/
|
| 2605 |
|
|
/*!Write a special purpose register on the target
|
| 2606 |
|
|
|
| 2607 |
|
|
This has to be done using the target remote command "writespr"
|
| 2608 |
|
|
|
| 2609 |
|
|
Since the SPRs may map to GPR's or the other GDB register (PPC, NPC, SR),
|
| 2610 |
|
|
any register cache is flushed.
|
| 2611 |
|
|
|
| 2612 |
|
|
@param[in] regnum The register to write
|
| 2613 |
|
|
@param[in] data The value to write */
|
| 2614 |
|
|
/*---------------------------------------------------------------------------*/
|
| 2615 |
|
|
|
| 2616 |
|
|
static void
|
| 2617 |
|
|
or32_write_spr (unsigned int regnum,
|
| 2618 |
|
|
ULONGEST data)
|
| 2619 |
|
|
{
|
| 2620 |
|
|
struct ui_file *uibuf = mem_fileopen ();
|
| 2621 |
|
|
char cmd[sizeof ("writespr ffff ffffffff")];
|
| 2622 |
|
|
char *res;
|
| 2623 |
|
|
long int len;
|
| 2624 |
|
|
|
| 2625 |
|
|
/* Create the command string and pass it to target remote command function */
|
| 2626 |
|
|
sprintf (cmd, "writespr %4x %8llx", regnum, (long long unsigned int)data);
|
| 2627 |
|
|
target_rcmd (cmd, uibuf);
|
| 2628 |
|
|
|
| 2629 |
|
|
/* Flush the register cache */
|
| 2630 |
|
|
registers_changed ();
|
| 2631 |
|
|
|
| 2632 |
|
|
/* We ignore the result - Rcmd can put out its own error messages. Just
|
| 2633 |
|
|
tidy up */
|
| 2634 |
|
|
ui_file_delete (uibuf);
|
| 2635 |
|
|
|
| 2636 |
|
|
} /* or32_write_spr() */
|
| 2637 |
|
|
|
| 2638 |
|
|
|
| 2639 |
|
|
/*----------------------------------------------------------------------------*/
|
| 2640 |
|
|
/*!Show the value of a special purpose register or group
|
| 2641 |
|
|
|
| 2642 |
|
|
This is a custom extension to the GDB info command.
|
| 2643 |
|
|
|
| 2644 |
|
|
@param[in] args
|
| 2645 |
|
|
@param[in] from_tty True (1) if GDB is running from a TTY, false (0)
|
| 2646 |
|
|
otherwise. */
|
| 2647 |
|
|
/*---------------------------------------------------------------------------*/
|
| 2648 |
|
|
|
| 2649 |
|
|
static void
|
| 2650 |
|
|
or32_info_spr_command (char *args,
|
| 2651 |
|
|
int from_tty)
|
| 2652 |
|
|
{
|
| 2653 |
|
|
int group;
|
| 2654 |
|
|
int index;
|
| 2655 |
|
|
|
| 2656 |
|
|
char spr_name[32];
|
| 2657 |
|
|
|
| 2658 |
|
|
or32_parse_spr_params (args, &group, &index, 0);
|
| 2659 |
|
|
|
| 2660 |
|
|
if (group < 0)
|
| 2661 |
|
|
{
|
| 2662 |
|
|
return; /* Couldn't parse the args */
|
| 2663 |
|
|
}
|
| 2664 |
|
|
|
| 2665 |
|
|
if (index >= 0)
|
| 2666 |
|
|
{
|
| 2667 |
|
|
ULONGEST value = or32_read_spr (OR32_SPR (group, index));
|
| 2668 |
|
|
|
| 2669 |
|
|
ui_out_field_fmt (uiout, NULL, "%s.%s = SPR%i_%i = %llu (0x%llx)\n",
|
| 2670 |
|
|
or32_spr_group_name (group),
|
| 2671 |
|
|
or32_spr_register_name (group, index, spr_name), group,
|
| 2672 |
|
|
index, (long long unsigned int)value, (long long unsigned int)value);
|
| 2673 |
|
|
}
|
| 2674 |
|
|
else
|
| 2675 |
|
|
{
|
| 2676 |
|
|
/* Print all valid registers in the group */
|
| 2677 |
|
|
for (index = 0; index < OR32_SPG_SIZE; index++)
|
| 2678 |
|
|
{
|
| 2679 |
|
|
if (0 != strlen (or32_spr_register_name (group, index, spr_name)))
|
| 2680 |
|
|
{
|
| 2681 |
|
|
ULONGEST value = or32_read_spr (OR32_SPR (group, index));
|
| 2682 |
|
|
|
| 2683 |
|
|
ui_out_field_fmt (uiout, NULL,
|
| 2684 |
|
|
"%s.%s = SPR%i_%i = %llu (0x%llx)\n",
|
| 2685 |
|
|
or32_spr_group_name (group),
|
| 2686 |
|
|
or32_spr_register_name (group, index, spr_name),
|
| 2687 |
|
|
group, index, (long long unsigned int)value, (long long unsigned int)value);
|
| 2688 |
|
|
}
|
| 2689 |
|
|
}
|
| 2690 |
|
|
}
|
| 2691 |
|
|
} /* or32_info_spr_command() */
|
| 2692 |
|
|
|
| 2693 |
|
|
|
| 2694 |
|
|
/*----------------------------------------------------------------------------*/
|
| 2695 |
|
|
/*!Set a special purpose register
|
| 2696 |
|
|
|
| 2697 |
|
|
This is a custom command added to GDB.
|
| 2698 |
|
|
|
| 2699 |
|
|
@param[in] args
|
| 2700 |
|
|
@param[in] from_tty True (1) if GDB is running from a TTY, false (0)
|
| 2701 |
|
|
otherwise. */
|
| 2702 |
|
|
/*---------------------------------------------------------------------------*/
|
| 2703 |
|
|
|
| 2704 |
|
|
static void
|
| 2705 |
|
|
or32_spr_command (char *args,
|
| 2706 |
|
|
int from_tty)
|
| 2707 |
|
|
{
|
| 2708 |
|
|
int group;
|
| 2709 |
|
|
int index;
|
| 2710 |
|
|
char *tmp_str;
|
| 2711 |
|
|
char *nargs = or32_parse_spr_params (args, &group, &index, 1);
|
| 2712 |
|
|
|
| 2713 |
|
|
ULONGEST old_val;
|
| 2714 |
|
|
ULONGEST new_val;
|
| 2715 |
|
|
|
| 2716 |
|
|
char spr_name[32];
|
| 2717 |
|
|
|
| 2718 |
|
|
/* Do we have a valid register spec? */
|
| 2719 |
|
|
if (index < 0)
|
| 2720 |
|
|
{
|
| 2721 |
|
|
return; /* Parser will have printed the error message */
|
| 2722 |
|
|
}
|
| 2723 |
|
|
|
| 2724 |
|
|
/* Do we have a value to set? */
|
| 2725 |
|
|
|
| 2726 |
|
|
errno = 0;
|
| 2727 |
|
|
new_val = (ULONGEST)strtoul (nargs, &tmp_str, 0);
|
| 2728 |
|
|
|
| 2729 |
|
|
if((0 != errno) || ('\0' != *tmp_str))
|
| 2730 |
|
|
{
|
| 2731 |
|
|
ui_out_message (uiout, 0, "Invalid value - register not changed\n");
|
| 2732 |
|
|
return;
|
| 2733 |
|
|
}
|
| 2734 |
|
|
|
| 2735 |
|
|
old_val = or32_read_spr (OR32_SPR (group, index));
|
| 2736 |
|
|
|
| 2737 |
|
|
or32_write_spr (OR32_SPR (group, index) , new_val);
|
| 2738 |
|
|
|
| 2739 |
|
|
ui_out_field_fmt (uiout, NULL,
|
| 2740 |
|
|
"%s.%s (SPR%i_%i) set to %llu (0x%llx), "
|
| 2741 |
|
|
"was: %llu (0x%llx)\n",
|
| 2742 |
|
|
or32_spr_group_name (group),
|
| 2743 |
|
|
or32_spr_register_name (group, index, spr_name) , group,
|
| 2744 |
|
|
index, (long long unsigned int)new_val, (long long unsigned int)new_val, (long long unsigned int)old_val, (long long unsigned int)old_val);
|
| 2745 |
|
|
|
| 2746 |
|
|
} /* or32_spr_command() */
|
| 2747 |
|
|
|
| 2748 |
|
|
|
| 2749 |
|
|
/*----------------------------------------------------------------------------*/
|
| 2750 |
|
|
/*!Main entry point for target architecture initialization
|
| 2751 |
|
|
|
| 2752 |
|
|
In this version initializes the architecture via
|
| 2753 |
|
|
registers_gdbarch_init(). Add a command to set and show special purpose
|
| 2754 |
|
|
registers. */
|
| 2755 |
|
|
/*---------------------------------------------------------------------------*/
|
| 2756 |
|
|
|
| 2757 |
|
|
void
|
| 2758 |
|
|
_initialize_or32_tdep (void)
|
| 2759 |
|
|
{
|
| 2760 |
|
|
/* Register this architecture. We should do this for or16 and or64 when
|
| 2761 |
|
|
they have their BFD defined. */
|
| 2762 |
|
|
gdbarch_register (bfd_arch_or32, or32_gdbarch_init, or32_dump_tdep);
|
| 2763 |
|
|
|
| 2764 |
|
|
/* Initialize the automata for the assembler */
|
| 2765 |
|
|
build_automata();
|
| 2766 |
|
|
|
| 2767 |
|
|
/* Commands to show and set special purpose registers */
|
| 2768 |
|
|
add_info ("spr", or32_info_spr_command,
|
| 2769 |
|
|
"Show the value of a special purpose register");
|
| 2770 |
|
|
add_com ("spr", class_support, or32_spr_command,
|
| 2771 |
|
|
"Set a special purpose register");
|
| 2772 |
|
|
|
| 2773 |
|
|
} /* _initialize_or32_tdep() */
|