1 |
227 |
jeremybenn |
/* Target-dependent code for GDB, the GNU debugger.
|
2 |
|
|
|
3 |
|
|
Copyright (C) 1986, 1987, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
|
4 |
|
|
2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
|
5 |
|
|
Free Software Foundation, Inc.
|
6 |
|
|
|
7 |
|
|
This file is part of GDB.
|
8 |
|
|
|
9 |
|
|
This program is free software; you can redistribute it and/or modify
|
10 |
|
|
it under the terms of the GNU General Public License as published by
|
11 |
|
|
the Free Software Foundation; either version 3 of the License, or
|
12 |
|
|
(at your option) any later version.
|
13 |
|
|
|
14 |
|
|
This program is distributed in the hope that it will be useful,
|
15 |
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
16 |
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
17 |
|
|
GNU General Public License for more details.
|
18 |
|
|
|
19 |
|
|
You should have received a copy of the GNU General Public License
|
20 |
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>. */
|
21 |
|
|
|
22 |
|
|
#include "defs.h"
|
23 |
|
|
#include "frame.h"
|
24 |
|
|
#include "inferior.h"
|
25 |
|
|
#include "symtab.h"
|
26 |
|
|
#include "target.h"
|
27 |
|
|
#include "gdbcore.h"
|
28 |
|
|
#include "gdbcmd.h"
|
29 |
|
|
#include "symfile.h"
|
30 |
|
|
#include "objfiles.h"
|
31 |
|
|
#include "regcache.h"
|
32 |
|
|
#include "value.h"
|
33 |
|
|
#include "osabi.h"
|
34 |
|
|
#include "regset.h"
|
35 |
|
|
#include "solib-svr4.h"
|
36 |
|
|
#include "solib-spu.h"
|
37 |
|
|
#include "solib.h"
|
38 |
|
|
#include "solist.h"
|
39 |
|
|
#include "ppc-tdep.h"
|
40 |
|
|
#include "ppc-linux-tdep.h"
|
41 |
|
|
#include "trad-frame.h"
|
42 |
|
|
#include "frame-unwind.h"
|
43 |
|
|
#include "tramp-frame.h"
|
44 |
|
|
#include "observer.h"
|
45 |
|
|
#include "auxv.h"
|
46 |
|
|
#include "elf/common.h"
|
47 |
|
|
#include "exceptions.h"
|
48 |
|
|
#include "arch-utils.h"
|
49 |
|
|
#include "spu-tdep.h"
|
50 |
|
|
#include "xml-syscall.h"
|
51 |
|
|
|
52 |
|
|
#include "features/rs6000/powerpc-32l.c"
|
53 |
|
|
#include "features/rs6000/powerpc-altivec32l.c"
|
54 |
|
|
#include "features/rs6000/powerpc-cell32l.c"
|
55 |
|
|
#include "features/rs6000/powerpc-vsx32l.c"
|
56 |
|
|
#include "features/rs6000/powerpc-isa205-32l.c"
|
57 |
|
|
#include "features/rs6000/powerpc-isa205-altivec32l.c"
|
58 |
|
|
#include "features/rs6000/powerpc-isa205-vsx32l.c"
|
59 |
|
|
#include "features/rs6000/powerpc-64l.c"
|
60 |
|
|
#include "features/rs6000/powerpc-altivec64l.c"
|
61 |
|
|
#include "features/rs6000/powerpc-cell64l.c"
|
62 |
|
|
#include "features/rs6000/powerpc-vsx64l.c"
|
63 |
|
|
#include "features/rs6000/powerpc-isa205-64l.c"
|
64 |
|
|
#include "features/rs6000/powerpc-isa205-altivec64l.c"
|
65 |
|
|
#include "features/rs6000/powerpc-isa205-vsx64l.c"
|
66 |
|
|
#include "features/rs6000/powerpc-e500l.c"
|
67 |
|
|
|
68 |
|
|
/* The syscall's XML filename for PPC and PPC64. */
|
69 |
|
|
#define XML_SYSCALL_FILENAME_PPC "syscalls/ppc-linux.xml"
|
70 |
|
|
#define XML_SYSCALL_FILENAME_PPC64 "syscalls/ppc64-linux.xml"
|
71 |
|
|
|
72 |
|
|
/* ppc_linux_memory_remove_breakpoints attempts to remove a breakpoint
|
73 |
|
|
in much the same fashion as memory_remove_breakpoint in mem-break.c,
|
74 |
|
|
but is careful not to write back the previous contents if the code
|
75 |
|
|
in question has changed in between inserting the breakpoint and
|
76 |
|
|
removing it.
|
77 |
|
|
|
78 |
|
|
Here is the problem that we're trying to solve...
|
79 |
|
|
|
80 |
|
|
Once upon a time, before introducing this function to remove
|
81 |
|
|
breakpoints from the inferior, setting a breakpoint on a shared
|
82 |
|
|
library function prior to running the program would not work
|
83 |
|
|
properly. In order to understand the problem, it is first
|
84 |
|
|
necessary to understand a little bit about dynamic linking on
|
85 |
|
|
this platform.
|
86 |
|
|
|
87 |
|
|
A call to a shared library function is accomplished via a bl
|
88 |
|
|
(branch-and-link) instruction whose branch target is an entry
|
89 |
|
|
in the procedure linkage table (PLT). The PLT in the object
|
90 |
|
|
file is uninitialized. To gdb, prior to running the program, the
|
91 |
|
|
entries in the PLT are all zeros.
|
92 |
|
|
|
93 |
|
|
Once the program starts running, the shared libraries are loaded
|
94 |
|
|
and the procedure linkage table is initialized, but the entries in
|
95 |
|
|
the table are not (necessarily) resolved. Once a function is
|
96 |
|
|
actually called, the code in the PLT is hit and the function is
|
97 |
|
|
resolved. In order to better illustrate this, an example is in
|
98 |
|
|
order; the following example is from the gdb testsuite.
|
99 |
|
|
|
100 |
|
|
We start the program shmain.
|
101 |
|
|
|
102 |
|
|
[kev@arroyo testsuite]$ ../gdb gdb.base/shmain
|
103 |
|
|
[...]
|
104 |
|
|
|
105 |
|
|
We place two breakpoints, one on shr1 and the other on main.
|
106 |
|
|
|
107 |
|
|
(gdb) b shr1
|
108 |
|
|
Breakpoint 1 at 0x100409d4
|
109 |
|
|
(gdb) b main
|
110 |
|
|
Breakpoint 2 at 0x100006a0: file gdb.base/shmain.c, line 44.
|
111 |
|
|
|
112 |
|
|
Examine the instruction (and the immediatly following instruction)
|
113 |
|
|
upon which the breakpoint was placed. Note that the PLT entry
|
114 |
|
|
for shr1 contains zeros.
|
115 |
|
|
|
116 |
|
|
(gdb) x/2i 0x100409d4
|
117 |
|
|
0x100409d4 <shr1>: .long 0x0
|
118 |
|
|
0x100409d8 <shr1+4>: .long 0x0
|
119 |
|
|
|
120 |
|
|
Now run 'til main.
|
121 |
|
|
|
122 |
|
|
(gdb) r
|
123 |
|
|
Starting program: gdb.base/shmain
|
124 |
|
|
Breakpoint 1 at 0xffaf790: file gdb.base/shr1.c, line 19.
|
125 |
|
|
|
126 |
|
|
Breakpoint 2, main ()
|
127 |
|
|
at gdb.base/shmain.c:44
|
128 |
|
|
44 g = 1;
|
129 |
|
|
|
130 |
|
|
Examine the PLT again. Note that the loading of the shared
|
131 |
|
|
library has initialized the PLT to code which loads a constant
|
132 |
|
|
(which I think is an index into the GOT) into r11 and then
|
133 |
|
|
branchs a short distance to the code which actually does the
|
134 |
|
|
resolving.
|
135 |
|
|
|
136 |
|
|
(gdb) x/2i 0x100409d4
|
137 |
|
|
0x100409d4 <shr1>: li r11,4
|
138 |
|
|
0x100409d8 <shr1+4>: b 0x10040984 <sg+4>
|
139 |
|
|
(gdb) c
|
140 |
|
|
Continuing.
|
141 |
|
|
|
142 |
|
|
Breakpoint 1, shr1 (x=1)
|
143 |
|
|
at gdb.base/shr1.c:19
|
144 |
|
|
19 l = 1;
|
145 |
|
|
|
146 |
|
|
Now we've hit the breakpoint at shr1. (The breakpoint was
|
147 |
|
|
reset from the PLT entry to the actual shr1 function after the
|
148 |
|
|
shared library was loaded.) Note that the PLT entry has been
|
149 |
|
|
resolved to contain a branch that takes us directly to shr1.
|
150 |
|
|
(The real one, not the PLT entry.)
|
151 |
|
|
|
152 |
|
|
(gdb) x/2i 0x100409d4
|
153 |
|
|
0x100409d4 <shr1>: b 0xffaf76c <shr1>
|
154 |
|
|
0x100409d8 <shr1+4>: b 0x10040984 <sg+4>
|
155 |
|
|
|
156 |
|
|
The thing to note here is that the PLT entry for shr1 has been
|
157 |
|
|
changed twice.
|
158 |
|
|
|
159 |
|
|
Now the problem should be obvious. GDB places a breakpoint (a
|
160 |
|
|
trap instruction) on the zero value of the PLT entry for shr1.
|
161 |
|
|
Later on, after the shared library had been loaded and the PLT
|
162 |
|
|
initialized, GDB gets a signal indicating this fact and attempts
|
163 |
|
|
(as it always does when it stops) to remove all the breakpoints.
|
164 |
|
|
|
165 |
|
|
The breakpoint removal was causing the former contents (a zero
|
166 |
|
|
word) to be written back to the now initialized PLT entry thus
|
167 |
|
|
destroying a portion of the initialization that had occurred only a
|
168 |
|
|
short time ago. When execution continued, the zero word would be
|
169 |
|
|
executed as an instruction an an illegal instruction trap was
|
170 |
|
|
generated instead. (0 is not a legal instruction.)
|
171 |
|
|
|
172 |
|
|
The fix for this problem was fairly straightforward. The function
|
173 |
|
|
memory_remove_breakpoint from mem-break.c was copied to this file,
|
174 |
|
|
modified slightly, and renamed to ppc_linux_memory_remove_breakpoint.
|
175 |
|
|
In tm-linux.h, MEMORY_REMOVE_BREAKPOINT is defined to call this new
|
176 |
|
|
function.
|
177 |
|
|
|
178 |
|
|
The differences between ppc_linux_memory_remove_breakpoint () and
|
179 |
|
|
memory_remove_breakpoint () are minor. All that the former does
|
180 |
|
|
that the latter does not is check to make sure that the breakpoint
|
181 |
|
|
location actually contains a breakpoint (trap instruction) prior
|
182 |
|
|
to attempting to write back the old contents. If it does contain
|
183 |
|
|
a trap instruction, we allow the old contents to be written back.
|
184 |
|
|
Otherwise, we silently do nothing.
|
185 |
|
|
|
186 |
|
|
The big question is whether memory_remove_breakpoint () should be
|
187 |
|
|
changed to have the same functionality. The downside is that more
|
188 |
|
|
traffic is generated for remote targets since we'll have an extra
|
189 |
|
|
fetch of a memory word each time a breakpoint is removed.
|
190 |
|
|
|
191 |
|
|
For the time being, we'll leave this self-modifying-code-friendly
|
192 |
|
|
version in ppc-linux-tdep.c, but it ought to be migrated somewhere
|
193 |
|
|
else in the event that some other platform has similar needs with
|
194 |
|
|
regard to removing breakpoints in some potentially self modifying
|
195 |
|
|
code. */
|
196 |
|
|
static int
|
197 |
|
|
ppc_linux_memory_remove_breakpoint (struct gdbarch *gdbarch,
|
198 |
|
|
struct bp_target_info *bp_tgt)
|
199 |
|
|
{
|
200 |
|
|
CORE_ADDR addr = bp_tgt->placed_address;
|
201 |
|
|
const unsigned char *bp;
|
202 |
|
|
int val;
|
203 |
|
|
int bplen;
|
204 |
|
|
gdb_byte old_contents[BREAKPOINT_MAX];
|
205 |
|
|
struct cleanup *cleanup;
|
206 |
|
|
|
207 |
|
|
/* Determine appropriate breakpoint contents and size for this address. */
|
208 |
|
|
bp = gdbarch_breakpoint_from_pc (gdbarch, &addr, &bplen);
|
209 |
|
|
if (bp == NULL)
|
210 |
|
|
error (_("Software breakpoints not implemented for this target."));
|
211 |
|
|
|
212 |
|
|
/* Make sure we see the memory breakpoints. */
|
213 |
|
|
cleanup = make_show_memory_breakpoints_cleanup (1);
|
214 |
|
|
val = target_read_memory (addr, old_contents, bplen);
|
215 |
|
|
|
216 |
|
|
/* If our breakpoint is no longer at the address, this means that the
|
217 |
|
|
program modified the code on us, so it is wrong to put back the
|
218 |
|
|
old value */
|
219 |
|
|
if (val == 0 && memcmp (bp, old_contents, bplen) == 0)
|
220 |
|
|
val = target_write_memory (addr, bp_tgt->shadow_contents, bplen);
|
221 |
|
|
|
222 |
|
|
do_cleanups (cleanup);
|
223 |
|
|
return val;
|
224 |
|
|
}
|
225 |
|
|
|
226 |
|
|
/* For historic reasons, PPC 32 GNU/Linux follows PowerOpen rather
|
227 |
|
|
than the 32 bit SYSV R4 ABI structure return convention - all
|
228 |
|
|
structures, no matter their size, are put in memory. Vectors,
|
229 |
|
|
which were added later, do get returned in a register though. */
|
230 |
|
|
|
231 |
|
|
static enum return_value_convention
|
232 |
|
|
ppc_linux_return_value (struct gdbarch *gdbarch, struct type *func_type,
|
233 |
|
|
struct type *valtype, struct regcache *regcache,
|
234 |
|
|
gdb_byte *readbuf, const gdb_byte *writebuf)
|
235 |
|
|
{
|
236 |
|
|
if ((TYPE_CODE (valtype) == TYPE_CODE_STRUCT
|
237 |
|
|
|| TYPE_CODE (valtype) == TYPE_CODE_UNION)
|
238 |
|
|
&& !((TYPE_LENGTH (valtype) == 16 || TYPE_LENGTH (valtype) == 8)
|
239 |
|
|
&& TYPE_VECTOR (valtype)))
|
240 |
|
|
return RETURN_VALUE_STRUCT_CONVENTION;
|
241 |
|
|
else
|
242 |
|
|
return ppc_sysv_abi_return_value (gdbarch, func_type, valtype, regcache,
|
243 |
|
|
readbuf, writebuf);
|
244 |
|
|
}
|
245 |
|
|
|
246 |
|
|
/* Macros for matching instructions. Note that, since all the
|
247 |
|
|
operands are masked off before they're or-ed into the instruction,
|
248 |
|
|
you can use -1 to make masks. */
|
249 |
|
|
|
250 |
|
|
#define insn_d(opcd, rts, ra, d) \
|
251 |
|
|
((((opcd) & 0x3f) << 26) \
|
252 |
|
|
| (((rts) & 0x1f) << 21) \
|
253 |
|
|
| (((ra) & 0x1f) << 16) \
|
254 |
|
|
| ((d) & 0xffff))
|
255 |
|
|
|
256 |
|
|
#define insn_ds(opcd, rts, ra, d, xo) \
|
257 |
|
|
((((opcd) & 0x3f) << 26) \
|
258 |
|
|
| (((rts) & 0x1f) << 21) \
|
259 |
|
|
| (((ra) & 0x1f) << 16) \
|
260 |
|
|
| ((d) & 0xfffc) \
|
261 |
|
|
| ((xo) & 0x3))
|
262 |
|
|
|
263 |
|
|
#define insn_xfx(opcd, rts, spr, xo) \
|
264 |
|
|
((((opcd) & 0x3f) << 26) \
|
265 |
|
|
| (((rts) & 0x1f) << 21) \
|
266 |
|
|
| (((spr) & 0x1f) << 16) \
|
267 |
|
|
| (((spr) & 0x3e0) << 6) \
|
268 |
|
|
| (((xo) & 0x3ff) << 1))
|
269 |
|
|
|
270 |
|
|
/* Read a PPC instruction from memory. PPC instructions are always
|
271 |
|
|
big-endian, no matter what endianness the program is running in, so
|
272 |
|
|
we can't use read_memory_integer or one of its friends here. */
|
273 |
|
|
static unsigned int
|
274 |
|
|
read_insn (CORE_ADDR pc)
|
275 |
|
|
{
|
276 |
|
|
unsigned char buf[4];
|
277 |
|
|
|
278 |
|
|
read_memory (pc, buf, 4);
|
279 |
|
|
return (buf[0] << 24) | (buf[1] << 16) | (buf[2] << 8) | buf[3];
|
280 |
|
|
}
|
281 |
|
|
|
282 |
|
|
|
283 |
|
|
/* An instruction to match. */
|
284 |
|
|
struct insn_pattern
|
285 |
|
|
{
|
286 |
|
|
unsigned int mask; /* mask the insn with this... */
|
287 |
|
|
unsigned int data; /* ...and see if it matches this. */
|
288 |
|
|
int optional; /* If non-zero, this insn may be absent. */
|
289 |
|
|
};
|
290 |
|
|
|
291 |
|
|
/* Return non-zero if the instructions at PC match the series
|
292 |
|
|
described in PATTERN, or zero otherwise. PATTERN is an array of
|
293 |
|
|
'struct insn_pattern' objects, terminated by an entry whose mask is
|
294 |
|
|
zero.
|
295 |
|
|
|
296 |
|
|
When the match is successful, fill INSN[i] with what PATTERN[i]
|
297 |
|
|
matched. If PATTERN[i] is optional, and the instruction wasn't
|
298 |
|
|
present, set INSN[i] to 0 (which is not a valid PPC instruction).
|
299 |
|
|
INSN should have as many elements as PATTERN. Note that, if
|
300 |
|
|
PATTERN contains optional instructions which aren't present in
|
301 |
|
|
memory, then INSN will have holes, so INSN[i] isn't necessarily the
|
302 |
|
|
i'th instruction in memory. */
|
303 |
|
|
static int
|
304 |
|
|
insns_match_pattern (CORE_ADDR pc,
|
305 |
|
|
struct insn_pattern *pattern,
|
306 |
|
|
unsigned int *insn)
|
307 |
|
|
{
|
308 |
|
|
int i;
|
309 |
|
|
|
310 |
|
|
for (i = 0; pattern[i].mask; i++)
|
311 |
|
|
{
|
312 |
|
|
insn[i] = read_insn (pc);
|
313 |
|
|
if ((insn[i] & pattern[i].mask) == pattern[i].data)
|
314 |
|
|
pc += 4;
|
315 |
|
|
else if (pattern[i].optional)
|
316 |
|
|
insn[i] = 0;
|
317 |
|
|
else
|
318 |
|
|
return 0;
|
319 |
|
|
}
|
320 |
|
|
|
321 |
|
|
return 1;
|
322 |
|
|
}
|
323 |
|
|
|
324 |
|
|
|
325 |
|
|
/* Return the 'd' field of the d-form instruction INSN, properly
|
326 |
|
|
sign-extended. */
|
327 |
|
|
static CORE_ADDR
|
328 |
|
|
insn_d_field (unsigned int insn)
|
329 |
|
|
{
|
330 |
|
|
return ((((CORE_ADDR) insn & 0xffff) ^ 0x8000) - 0x8000);
|
331 |
|
|
}
|
332 |
|
|
|
333 |
|
|
|
334 |
|
|
/* Return the 'ds' field of the ds-form instruction INSN, with the two
|
335 |
|
|
zero bits concatenated at the right, and properly
|
336 |
|
|
sign-extended. */
|
337 |
|
|
static CORE_ADDR
|
338 |
|
|
insn_ds_field (unsigned int insn)
|
339 |
|
|
{
|
340 |
|
|
return ((((CORE_ADDR) insn & 0xfffc) ^ 0x8000) - 0x8000);
|
341 |
|
|
}
|
342 |
|
|
|
343 |
|
|
|
344 |
|
|
/* If DESC is the address of a 64-bit PowerPC GNU/Linux function
|
345 |
|
|
descriptor, return the descriptor's entry point. */
|
346 |
|
|
static CORE_ADDR
|
347 |
|
|
ppc64_desc_entry_point (struct gdbarch *gdbarch, CORE_ADDR desc)
|
348 |
|
|
{
|
349 |
|
|
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
350 |
|
|
/* The first word of the descriptor is the entry point. */
|
351 |
|
|
return (CORE_ADDR) read_memory_unsigned_integer (desc, 8, byte_order);
|
352 |
|
|
}
|
353 |
|
|
|
354 |
|
|
|
355 |
|
|
/* Pattern for the standard linkage function. These are built by
|
356 |
|
|
build_plt_stub in elf64-ppc.c, whose GLINK argument is always
|
357 |
|
|
zero. */
|
358 |
|
|
static struct insn_pattern ppc64_standard_linkage1[] =
|
359 |
|
|
{
|
360 |
|
|
/* addis r12, r2, <any> */
|
361 |
|
|
{ insn_d (-1, -1, -1, 0), insn_d (15, 12, 2, 0), 0 },
|
362 |
|
|
|
363 |
|
|
/* std r2, 40(r1) */
|
364 |
|
|
{ -1, insn_ds (62, 2, 1, 40, 0), 0 },
|
365 |
|
|
|
366 |
|
|
/* ld r11, <any>(r12) */
|
367 |
|
|
{ insn_ds (-1, -1, -1, 0, -1), insn_ds (58, 11, 12, 0, 0), 0 },
|
368 |
|
|
|
369 |
|
|
/* addis r12, r12, 1 <optional> */
|
370 |
|
|
{ insn_d (-1, -1, -1, -1), insn_d (15, 12, 12, 1), 1 },
|
371 |
|
|
|
372 |
|
|
/* ld r2, <any>(r12) */
|
373 |
|
|
{ insn_ds (-1, -1, -1, 0, -1), insn_ds (58, 2, 12, 0, 0), 0 },
|
374 |
|
|
|
375 |
|
|
/* addis r12, r12, 1 <optional> */
|
376 |
|
|
{ insn_d (-1, -1, -1, -1), insn_d (15, 12, 12, 1), 1 },
|
377 |
|
|
|
378 |
|
|
/* mtctr r11 */
|
379 |
|
|
{ insn_xfx (-1, -1, -1, -1), insn_xfx (31, 11, 9, 467), 0 },
|
380 |
|
|
|
381 |
|
|
/* ld r11, <any>(r12) */
|
382 |
|
|
{ insn_ds (-1, -1, -1, 0, -1), insn_ds (58, 11, 12, 0, 0), 0 },
|
383 |
|
|
|
384 |
|
|
/* bctr */
|
385 |
|
|
{ -1, 0x4e800420, 0 },
|
386 |
|
|
|
387 |
|
|
{ 0, 0, 0 }
|
388 |
|
|
};
|
389 |
|
|
#define PPC64_STANDARD_LINKAGE1_LEN \
|
390 |
|
|
(sizeof (ppc64_standard_linkage1) / sizeof (ppc64_standard_linkage1[0]))
|
391 |
|
|
|
392 |
|
|
static struct insn_pattern ppc64_standard_linkage2[] =
|
393 |
|
|
{
|
394 |
|
|
/* addis r12, r2, <any> */
|
395 |
|
|
{ insn_d (-1, -1, -1, 0), insn_d (15, 12, 2, 0), 0 },
|
396 |
|
|
|
397 |
|
|
/* std r2, 40(r1) */
|
398 |
|
|
{ -1, insn_ds (62, 2, 1, 40, 0), 0 },
|
399 |
|
|
|
400 |
|
|
/* ld r11, <any>(r12) */
|
401 |
|
|
{ insn_ds (-1, -1, -1, 0, -1), insn_ds (58, 11, 12, 0, 0), 0 },
|
402 |
|
|
|
403 |
|
|
/* addi r12, r12, <any> <optional> */
|
404 |
|
|
{ insn_d (-1, -1, -1, 0), insn_d (14, 12, 12, 0), 1 },
|
405 |
|
|
|
406 |
|
|
/* mtctr r11 */
|
407 |
|
|
{ insn_xfx (-1, -1, -1, -1), insn_xfx (31, 11, 9, 467), 0 },
|
408 |
|
|
|
409 |
|
|
/* ld r2, <any>(r12) */
|
410 |
|
|
{ insn_ds (-1, -1, -1, 0, -1), insn_ds (58, 2, 12, 0, 0), 0 },
|
411 |
|
|
|
412 |
|
|
/* ld r11, <any>(r12) */
|
413 |
|
|
{ insn_ds (-1, -1, -1, 0, -1), insn_ds (58, 11, 12, 0, 0), 0 },
|
414 |
|
|
|
415 |
|
|
/* bctr */
|
416 |
|
|
{ -1, 0x4e800420, 0 },
|
417 |
|
|
|
418 |
|
|
{ 0, 0, 0 }
|
419 |
|
|
};
|
420 |
|
|
#define PPC64_STANDARD_LINKAGE2_LEN \
|
421 |
|
|
(sizeof (ppc64_standard_linkage2) / sizeof (ppc64_standard_linkage2[0]))
|
422 |
|
|
|
423 |
|
|
static struct insn_pattern ppc64_standard_linkage3[] =
|
424 |
|
|
{
|
425 |
|
|
/* std r2, 40(r1) */
|
426 |
|
|
{ -1, insn_ds (62, 2, 1, 40, 0), 0 },
|
427 |
|
|
|
428 |
|
|
/* ld r11, <any>(r2) */
|
429 |
|
|
{ insn_ds (-1, -1, -1, 0, -1), insn_ds (58, 11, 2, 0, 0), 0 },
|
430 |
|
|
|
431 |
|
|
/* addi r2, r2, <any> <optional> */
|
432 |
|
|
{ insn_d (-1, -1, -1, 0), insn_d (14, 2, 2, 0), 1 },
|
433 |
|
|
|
434 |
|
|
/* mtctr r11 */
|
435 |
|
|
{ insn_xfx (-1, -1, -1, -1), insn_xfx (31, 11, 9, 467), 0 },
|
436 |
|
|
|
437 |
|
|
/* ld r11, <any>(r2) */
|
438 |
|
|
{ insn_ds (-1, -1, -1, 0, -1), insn_ds (58, 11, 2, 0, 0), 0 },
|
439 |
|
|
|
440 |
|
|
/* ld r2, <any>(r2) */
|
441 |
|
|
{ insn_ds (-1, -1, -1, 0, -1), insn_ds (58, 2, 2, 0, 0), 0 },
|
442 |
|
|
|
443 |
|
|
/* bctr */
|
444 |
|
|
{ -1, 0x4e800420, 0 },
|
445 |
|
|
|
446 |
|
|
{ 0, 0, 0 }
|
447 |
|
|
};
|
448 |
|
|
#define PPC64_STANDARD_LINKAGE3_LEN \
|
449 |
|
|
(sizeof (ppc64_standard_linkage3) / sizeof (ppc64_standard_linkage3[0]))
|
450 |
|
|
|
451 |
|
|
|
452 |
|
|
/* When the dynamic linker is doing lazy symbol resolution, the first
|
453 |
|
|
call to a function in another object will go like this:
|
454 |
|
|
|
455 |
|
|
- The user's function calls the linkage function:
|
456 |
|
|
|
457 |
|
|
100007c4: 4b ff fc d5 bl 10000498
|
458 |
|
|
100007c8: e8 41 00 28 ld r2,40(r1)
|
459 |
|
|
|
460 |
|
|
- The linkage function loads the entry point (and other stuff) from
|
461 |
|
|
the function descriptor in the PLT, and jumps to it:
|
462 |
|
|
|
463 |
|
|
10000498: 3d 82 00 00 addis r12,r2,0
|
464 |
|
|
1000049c: f8 41 00 28 std r2,40(r1)
|
465 |
|
|
100004a0: e9 6c 80 98 ld r11,-32616(r12)
|
466 |
|
|
100004a4: e8 4c 80 a0 ld r2,-32608(r12)
|
467 |
|
|
100004a8: 7d 69 03 a6 mtctr r11
|
468 |
|
|
100004ac: e9 6c 80 a8 ld r11,-32600(r12)
|
469 |
|
|
100004b0: 4e 80 04 20 bctr
|
470 |
|
|
|
471 |
|
|
- But since this is the first time that PLT entry has been used, it
|
472 |
|
|
sends control to its glink entry. That loads the number of the
|
473 |
|
|
PLT entry and jumps to the common glink0 code:
|
474 |
|
|
|
475 |
|
|
10000c98: 38 00 00 00 li r0,0
|
476 |
|
|
10000c9c: 4b ff ff dc b 10000c78
|
477 |
|
|
|
478 |
|
|
- The common glink0 code then transfers control to the dynamic
|
479 |
|
|
linker's fixup code:
|
480 |
|
|
|
481 |
|
|
10000c78: e8 41 00 28 ld r2,40(r1)
|
482 |
|
|
10000c7c: 3d 82 00 00 addis r12,r2,0
|
483 |
|
|
10000c80: e9 6c 80 80 ld r11,-32640(r12)
|
484 |
|
|
10000c84: e8 4c 80 88 ld r2,-32632(r12)
|
485 |
|
|
10000c88: 7d 69 03 a6 mtctr r11
|
486 |
|
|
10000c8c: e9 6c 80 90 ld r11,-32624(r12)
|
487 |
|
|
10000c90: 4e 80 04 20 bctr
|
488 |
|
|
|
489 |
|
|
Eventually, this code will figure out how to skip all of this,
|
490 |
|
|
including the dynamic linker. At the moment, we just get through
|
491 |
|
|
the linkage function. */
|
492 |
|
|
|
493 |
|
|
/* If the current thread is about to execute a series of instructions
|
494 |
|
|
at PC matching the ppc64_standard_linkage pattern, and INSN is the result
|
495 |
|
|
from that pattern match, return the code address to which the
|
496 |
|
|
standard linkage function will send them. (This doesn't deal with
|
497 |
|
|
dynamic linker lazy symbol resolution stubs.) */
|
498 |
|
|
static CORE_ADDR
|
499 |
|
|
ppc64_standard_linkage1_target (struct frame_info *frame,
|
500 |
|
|
CORE_ADDR pc, unsigned int *insn)
|
501 |
|
|
{
|
502 |
|
|
struct gdbarch *gdbarch = get_frame_arch (frame);
|
503 |
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
504 |
|
|
|
505 |
|
|
/* The address of the function descriptor this linkage function
|
506 |
|
|
references. */
|
507 |
|
|
CORE_ADDR desc
|
508 |
|
|
= ((CORE_ADDR) get_frame_register_unsigned (frame,
|
509 |
|
|
tdep->ppc_gp0_regnum + 2)
|
510 |
|
|
+ (insn_d_field (insn[0]) << 16)
|
511 |
|
|
+ insn_ds_field (insn[2]));
|
512 |
|
|
|
513 |
|
|
/* The first word of the descriptor is the entry point. Return that. */
|
514 |
|
|
return ppc64_desc_entry_point (gdbarch, desc);
|
515 |
|
|
}
|
516 |
|
|
|
517 |
|
|
static struct core_regset_section ppc_linux_vsx_regset_sections[] =
|
518 |
|
|
{
|
519 |
|
|
{ ".reg", 268, "general-purpose" },
|
520 |
|
|
{ ".reg2", 264, "floating-point" },
|
521 |
|
|
{ ".reg-ppc-vmx", 544, "ppc Altivec" },
|
522 |
|
|
{ ".reg-ppc-vsx", 256, "POWER7 VSX" },
|
523 |
|
|
{ NULL, 0}
|
524 |
|
|
};
|
525 |
|
|
|
526 |
|
|
static struct core_regset_section ppc_linux_vmx_regset_sections[] =
|
527 |
|
|
{
|
528 |
|
|
{ ".reg", 268, "general-purpose" },
|
529 |
|
|
{ ".reg2", 264, "floating-point" },
|
530 |
|
|
{ ".reg-ppc-vmx", 544, "ppc Altivec" },
|
531 |
|
|
{ NULL, 0}
|
532 |
|
|
};
|
533 |
|
|
|
534 |
|
|
static struct core_regset_section ppc_linux_fp_regset_sections[] =
|
535 |
|
|
{
|
536 |
|
|
{ ".reg", 268, "general-purpose" },
|
537 |
|
|
{ ".reg2", 264, "floating-point" },
|
538 |
|
|
{ NULL, 0}
|
539 |
|
|
};
|
540 |
|
|
|
541 |
|
|
static CORE_ADDR
|
542 |
|
|
ppc64_standard_linkage2_target (struct frame_info *frame,
|
543 |
|
|
CORE_ADDR pc, unsigned int *insn)
|
544 |
|
|
{
|
545 |
|
|
struct gdbarch *gdbarch = get_frame_arch (frame);
|
546 |
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
547 |
|
|
|
548 |
|
|
/* The address of the function descriptor this linkage function
|
549 |
|
|
references. */
|
550 |
|
|
CORE_ADDR desc
|
551 |
|
|
= ((CORE_ADDR) get_frame_register_unsigned (frame,
|
552 |
|
|
tdep->ppc_gp0_regnum + 2)
|
553 |
|
|
+ (insn_d_field (insn[0]) << 16)
|
554 |
|
|
+ insn_ds_field (insn[2]));
|
555 |
|
|
|
556 |
|
|
/* The first word of the descriptor is the entry point. Return that. */
|
557 |
|
|
return ppc64_desc_entry_point (gdbarch, desc);
|
558 |
|
|
}
|
559 |
|
|
|
560 |
|
|
static CORE_ADDR
|
561 |
|
|
ppc64_standard_linkage3_target (struct frame_info *frame,
|
562 |
|
|
CORE_ADDR pc, unsigned int *insn)
|
563 |
|
|
{
|
564 |
|
|
struct gdbarch *gdbarch = get_frame_arch (frame);
|
565 |
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
566 |
|
|
|
567 |
|
|
/* The address of the function descriptor this linkage function
|
568 |
|
|
references. */
|
569 |
|
|
CORE_ADDR desc
|
570 |
|
|
= ((CORE_ADDR) get_frame_register_unsigned (frame,
|
571 |
|
|
tdep->ppc_gp0_regnum + 2)
|
572 |
|
|
+ insn_ds_field (insn[1]));
|
573 |
|
|
|
574 |
|
|
/* The first word of the descriptor is the entry point. Return that. */
|
575 |
|
|
return ppc64_desc_entry_point (gdbarch, desc);
|
576 |
|
|
}
|
577 |
|
|
|
578 |
|
|
|
579 |
|
|
/* Given that we've begun executing a call trampoline at PC, return
|
580 |
|
|
the entry point of the function the trampoline will go to. */
|
581 |
|
|
static CORE_ADDR
|
582 |
|
|
ppc64_skip_trampoline_code (struct frame_info *frame, CORE_ADDR pc)
|
583 |
|
|
{
|
584 |
|
|
unsigned int ppc64_standard_linkage1_insn[PPC64_STANDARD_LINKAGE1_LEN];
|
585 |
|
|
unsigned int ppc64_standard_linkage2_insn[PPC64_STANDARD_LINKAGE2_LEN];
|
586 |
|
|
unsigned int ppc64_standard_linkage3_insn[PPC64_STANDARD_LINKAGE3_LEN];
|
587 |
|
|
CORE_ADDR target;
|
588 |
|
|
|
589 |
|
|
if (insns_match_pattern (pc, ppc64_standard_linkage1,
|
590 |
|
|
ppc64_standard_linkage1_insn))
|
591 |
|
|
pc = ppc64_standard_linkage1_target (frame, pc,
|
592 |
|
|
ppc64_standard_linkage1_insn);
|
593 |
|
|
else if (insns_match_pattern (pc, ppc64_standard_linkage2,
|
594 |
|
|
ppc64_standard_linkage2_insn))
|
595 |
|
|
pc = ppc64_standard_linkage2_target (frame, pc,
|
596 |
|
|
ppc64_standard_linkage2_insn);
|
597 |
|
|
else if (insns_match_pattern (pc, ppc64_standard_linkage3,
|
598 |
|
|
ppc64_standard_linkage3_insn))
|
599 |
|
|
pc = ppc64_standard_linkage3_target (frame, pc,
|
600 |
|
|
ppc64_standard_linkage3_insn);
|
601 |
|
|
else
|
602 |
|
|
return 0;
|
603 |
|
|
|
604 |
|
|
/* The PLT descriptor will either point to the already resolved target
|
605 |
|
|
address, or else to a glink stub. As the latter carry synthetic @plt
|
606 |
|
|
symbols, find_solib_trampoline_target should be able to resolve them. */
|
607 |
|
|
target = find_solib_trampoline_target (frame, pc);
|
608 |
|
|
return target? target : pc;
|
609 |
|
|
}
|
610 |
|
|
|
611 |
|
|
|
612 |
|
|
/* Support for convert_from_func_ptr_addr (ARCH, ADDR, TARG) on PPC64
|
613 |
|
|
GNU/Linux.
|
614 |
|
|
|
615 |
|
|
Usually a function pointer's representation is simply the address
|
616 |
|
|
of the function. On GNU/Linux on the PowerPC however, a function
|
617 |
|
|
pointer may be a pointer to a function descriptor.
|
618 |
|
|
|
619 |
|
|
For PPC64, a function descriptor is a TOC entry, in a data section,
|
620 |
|
|
which contains three words: the first word is the address of the
|
621 |
|
|
function, the second word is the TOC pointer (r2), and the third word
|
622 |
|
|
is the static chain value.
|
623 |
|
|
|
624 |
|
|
Throughout GDB it is currently assumed that a function pointer contains
|
625 |
|
|
the address of the function, which is not easy to fix. In addition, the
|
626 |
|
|
conversion of a function address to a function pointer would
|
627 |
|
|
require allocation of a TOC entry in the inferior's memory space,
|
628 |
|
|
with all its drawbacks. To be able to call C++ virtual methods in
|
629 |
|
|
the inferior (which are called via function pointers),
|
630 |
|
|
find_function_addr uses this function to get the function address
|
631 |
|
|
from a function pointer.
|
632 |
|
|
|
633 |
|
|
If ADDR points at what is clearly a function descriptor, transform
|
634 |
|
|
it into the address of the corresponding function, if needed. Be
|
635 |
|
|
conservative, otherwise GDB will do the transformation on any
|
636 |
|
|
random addresses such as occur when there is no symbol table. */
|
637 |
|
|
|
638 |
|
|
static CORE_ADDR
|
639 |
|
|
ppc64_linux_convert_from_func_ptr_addr (struct gdbarch *gdbarch,
|
640 |
|
|
CORE_ADDR addr,
|
641 |
|
|
struct target_ops *targ)
|
642 |
|
|
{
|
643 |
|
|
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
644 |
|
|
struct target_section *s = target_section_by_addr (targ, addr);
|
645 |
|
|
|
646 |
|
|
/* Check if ADDR points to a function descriptor. */
|
647 |
|
|
if (s && strcmp (s->the_bfd_section->name, ".opd") == 0)
|
648 |
|
|
{
|
649 |
|
|
/* There may be relocations that need to be applied to the .opd
|
650 |
|
|
section. Unfortunately, this function may be called at a time
|
651 |
|
|
where these relocations have not yet been performed -- this can
|
652 |
|
|
happen for example shortly after a library has been loaded with
|
653 |
|
|
dlopen, but ld.so has not yet applied the relocations.
|
654 |
|
|
|
655 |
|
|
To cope with both the case where the relocation has been applied,
|
656 |
|
|
and the case where it has not yet been applied, we do *not* read
|
657 |
|
|
the (maybe) relocated value from target memory, but we instead
|
658 |
|
|
read the non-relocated value from the BFD, and apply the relocation
|
659 |
|
|
offset manually.
|
660 |
|
|
|
661 |
|
|
This makes the assumption that all .opd entries are always relocated
|
662 |
|
|
by the same offset the section itself was relocated. This should
|
663 |
|
|
always be the case for GNU/Linux executables and shared libraries.
|
664 |
|
|
Note that other kind of object files (e.g. those added via
|
665 |
|
|
add-symbol-files) will currently never end up here anyway, as this
|
666 |
|
|
function accesses *target* sections only; only the main exec and
|
667 |
|
|
shared libraries are ever added to the target. */
|
668 |
|
|
|
669 |
|
|
gdb_byte buf[8];
|
670 |
|
|
int res;
|
671 |
|
|
|
672 |
|
|
res = bfd_get_section_contents (s->bfd, s->the_bfd_section,
|
673 |
|
|
&buf, addr - s->addr, 8);
|
674 |
|
|
if (res != 0)
|
675 |
|
|
return extract_unsigned_integer (buf, 8, byte_order)
|
676 |
|
|
- bfd_section_vma (s->bfd, s->the_bfd_section) + s->addr;
|
677 |
|
|
}
|
678 |
|
|
|
679 |
|
|
return addr;
|
680 |
|
|
}
|
681 |
|
|
|
682 |
|
|
/* Wrappers to handle Linux-only registers. */
|
683 |
|
|
|
684 |
|
|
static void
|
685 |
|
|
ppc_linux_supply_gregset (const struct regset *regset,
|
686 |
|
|
struct regcache *regcache,
|
687 |
|
|
int regnum, const void *gregs, size_t len)
|
688 |
|
|
{
|
689 |
|
|
const struct ppc_reg_offsets *offsets = regset->descr;
|
690 |
|
|
|
691 |
|
|
ppc_supply_gregset (regset, regcache, regnum, gregs, len);
|
692 |
|
|
|
693 |
|
|
if (ppc_linux_trap_reg_p (get_regcache_arch (regcache)))
|
694 |
|
|
{
|
695 |
|
|
/* "orig_r3" is stored 2 slots after "pc". */
|
696 |
|
|
if (regnum == -1 || regnum == PPC_ORIG_R3_REGNUM)
|
697 |
|
|
ppc_supply_reg (regcache, PPC_ORIG_R3_REGNUM, gregs,
|
698 |
|
|
offsets->pc_offset + 2 * offsets->gpr_size,
|
699 |
|
|
offsets->gpr_size);
|
700 |
|
|
|
701 |
|
|
/* "trap" is stored 8 slots after "pc". */
|
702 |
|
|
if (regnum == -1 || regnum == PPC_TRAP_REGNUM)
|
703 |
|
|
ppc_supply_reg (regcache, PPC_TRAP_REGNUM, gregs,
|
704 |
|
|
offsets->pc_offset + 8 * offsets->gpr_size,
|
705 |
|
|
offsets->gpr_size);
|
706 |
|
|
}
|
707 |
|
|
}
|
708 |
|
|
|
709 |
|
|
static void
|
710 |
|
|
ppc_linux_collect_gregset (const struct regset *regset,
|
711 |
|
|
const struct regcache *regcache,
|
712 |
|
|
int regnum, void *gregs, size_t len)
|
713 |
|
|
{
|
714 |
|
|
const struct ppc_reg_offsets *offsets = regset->descr;
|
715 |
|
|
|
716 |
|
|
/* Clear areas in the linux gregset not written elsewhere. */
|
717 |
|
|
if (regnum == -1)
|
718 |
|
|
memset (gregs, 0, len);
|
719 |
|
|
|
720 |
|
|
ppc_collect_gregset (regset, regcache, regnum, gregs, len);
|
721 |
|
|
|
722 |
|
|
if (ppc_linux_trap_reg_p (get_regcache_arch (regcache)))
|
723 |
|
|
{
|
724 |
|
|
/* "orig_r3" is stored 2 slots after "pc". */
|
725 |
|
|
if (regnum == -1 || regnum == PPC_ORIG_R3_REGNUM)
|
726 |
|
|
ppc_collect_reg (regcache, PPC_ORIG_R3_REGNUM, gregs,
|
727 |
|
|
offsets->pc_offset + 2 * offsets->gpr_size,
|
728 |
|
|
offsets->gpr_size);
|
729 |
|
|
|
730 |
|
|
/* "trap" is stored 8 slots after "pc". */
|
731 |
|
|
if (regnum == -1 || regnum == PPC_TRAP_REGNUM)
|
732 |
|
|
ppc_collect_reg (regcache, PPC_TRAP_REGNUM, gregs,
|
733 |
|
|
offsets->pc_offset + 8 * offsets->gpr_size,
|
734 |
|
|
offsets->gpr_size);
|
735 |
|
|
}
|
736 |
|
|
}
|
737 |
|
|
|
738 |
|
|
/* Regset descriptions. */
|
739 |
|
|
static const struct ppc_reg_offsets ppc32_linux_reg_offsets =
|
740 |
|
|
{
|
741 |
|
|
/* General-purpose registers. */
|
742 |
|
|
/* .r0_offset = */ 0,
|
743 |
|
|
/* .gpr_size = */ 4,
|
744 |
|
|
/* .xr_size = */ 4,
|
745 |
|
|
/* .pc_offset = */ 128,
|
746 |
|
|
/* .ps_offset = */ 132,
|
747 |
|
|
/* .cr_offset = */ 152,
|
748 |
|
|
/* .lr_offset = */ 144,
|
749 |
|
|
/* .ctr_offset = */ 140,
|
750 |
|
|
/* .xer_offset = */ 148,
|
751 |
|
|
/* .mq_offset = */ 156,
|
752 |
|
|
|
753 |
|
|
/* Floating-point registers. */
|
754 |
|
|
/* .f0_offset = */ 0,
|
755 |
|
|
/* .fpscr_offset = */ 256,
|
756 |
|
|
/* .fpscr_size = */ 8,
|
757 |
|
|
|
758 |
|
|
/* AltiVec registers. */
|
759 |
|
|
/* .vr0_offset = */ 0,
|
760 |
|
|
/* .vscr_offset = */ 512 + 12,
|
761 |
|
|
/* .vrsave_offset = */ 528
|
762 |
|
|
};
|
763 |
|
|
|
764 |
|
|
static const struct ppc_reg_offsets ppc64_linux_reg_offsets =
|
765 |
|
|
{
|
766 |
|
|
/* General-purpose registers. */
|
767 |
|
|
/* .r0_offset = */ 0,
|
768 |
|
|
/* .gpr_size = */ 8,
|
769 |
|
|
/* .xr_size = */ 8,
|
770 |
|
|
/* .pc_offset = */ 256,
|
771 |
|
|
/* .ps_offset = */ 264,
|
772 |
|
|
/* .cr_offset = */ 304,
|
773 |
|
|
/* .lr_offset = */ 288,
|
774 |
|
|
/* .ctr_offset = */ 280,
|
775 |
|
|
/* .xer_offset = */ 296,
|
776 |
|
|
/* .mq_offset = */ 312,
|
777 |
|
|
|
778 |
|
|
/* Floating-point registers. */
|
779 |
|
|
/* .f0_offset = */ 0,
|
780 |
|
|
/* .fpscr_offset = */ 256,
|
781 |
|
|
/* .fpscr_size = */ 8,
|
782 |
|
|
|
783 |
|
|
/* AltiVec registers. */
|
784 |
|
|
/* .vr0_offset = */ 0,
|
785 |
|
|
/* .vscr_offset = */ 512 + 12,
|
786 |
|
|
/* .vrsave_offset = */ 528
|
787 |
|
|
};
|
788 |
|
|
|
789 |
|
|
static const struct regset ppc32_linux_gregset = {
|
790 |
|
|
&ppc32_linux_reg_offsets,
|
791 |
|
|
ppc_linux_supply_gregset,
|
792 |
|
|
ppc_linux_collect_gregset,
|
793 |
|
|
NULL
|
794 |
|
|
};
|
795 |
|
|
|
796 |
|
|
static const struct regset ppc64_linux_gregset = {
|
797 |
|
|
&ppc64_linux_reg_offsets,
|
798 |
|
|
ppc_linux_supply_gregset,
|
799 |
|
|
ppc_linux_collect_gregset,
|
800 |
|
|
NULL
|
801 |
|
|
};
|
802 |
|
|
|
803 |
|
|
static const struct regset ppc32_linux_fpregset = {
|
804 |
|
|
&ppc32_linux_reg_offsets,
|
805 |
|
|
ppc_supply_fpregset,
|
806 |
|
|
ppc_collect_fpregset,
|
807 |
|
|
NULL
|
808 |
|
|
};
|
809 |
|
|
|
810 |
|
|
static const struct regset ppc32_linux_vrregset = {
|
811 |
|
|
&ppc32_linux_reg_offsets,
|
812 |
|
|
ppc_supply_vrregset,
|
813 |
|
|
ppc_collect_vrregset,
|
814 |
|
|
NULL
|
815 |
|
|
};
|
816 |
|
|
|
817 |
|
|
static const struct regset ppc32_linux_vsxregset = {
|
818 |
|
|
&ppc32_linux_reg_offsets,
|
819 |
|
|
ppc_supply_vsxregset,
|
820 |
|
|
ppc_collect_vsxregset,
|
821 |
|
|
NULL
|
822 |
|
|
};
|
823 |
|
|
|
824 |
|
|
const struct regset *
|
825 |
|
|
ppc_linux_gregset (int wordsize)
|
826 |
|
|
{
|
827 |
|
|
return wordsize == 8 ? &ppc64_linux_gregset : &ppc32_linux_gregset;
|
828 |
|
|
}
|
829 |
|
|
|
830 |
|
|
const struct regset *
|
831 |
|
|
ppc_linux_fpregset (void)
|
832 |
|
|
{
|
833 |
|
|
return &ppc32_linux_fpregset;
|
834 |
|
|
}
|
835 |
|
|
|
836 |
|
|
static const struct regset *
|
837 |
|
|
ppc_linux_regset_from_core_section (struct gdbarch *core_arch,
|
838 |
|
|
const char *sect_name, size_t sect_size)
|
839 |
|
|
{
|
840 |
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (core_arch);
|
841 |
|
|
if (strcmp (sect_name, ".reg") == 0)
|
842 |
|
|
{
|
843 |
|
|
if (tdep->wordsize == 4)
|
844 |
|
|
return &ppc32_linux_gregset;
|
845 |
|
|
else
|
846 |
|
|
return &ppc64_linux_gregset;
|
847 |
|
|
}
|
848 |
|
|
if (strcmp (sect_name, ".reg2") == 0)
|
849 |
|
|
return &ppc32_linux_fpregset;
|
850 |
|
|
if (strcmp (sect_name, ".reg-ppc-vmx") == 0)
|
851 |
|
|
return &ppc32_linux_vrregset;
|
852 |
|
|
if (strcmp (sect_name, ".reg-ppc-vsx") == 0)
|
853 |
|
|
return &ppc32_linux_vsxregset;
|
854 |
|
|
return NULL;
|
855 |
|
|
}
|
856 |
|
|
|
857 |
|
|
static void
|
858 |
|
|
ppc_linux_sigtramp_cache (struct frame_info *this_frame,
|
859 |
|
|
struct trad_frame_cache *this_cache,
|
860 |
|
|
CORE_ADDR func, LONGEST offset,
|
861 |
|
|
int bias)
|
862 |
|
|
{
|
863 |
|
|
CORE_ADDR base;
|
864 |
|
|
CORE_ADDR regs;
|
865 |
|
|
CORE_ADDR gpregs;
|
866 |
|
|
CORE_ADDR fpregs;
|
867 |
|
|
int i;
|
868 |
|
|
struct gdbarch *gdbarch = get_frame_arch (this_frame);
|
869 |
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
870 |
|
|
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
871 |
|
|
|
872 |
|
|
base = get_frame_register_unsigned (this_frame,
|
873 |
|
|
gdbarch_sp_regnum (gdbarch));
|
874 |
|
|
if (bias > 0 && get_frame_pc (this_frame) != func)
|
875 |
|
|
/* See below, some signal trampolines increment the stack as their
|
876 |
|
|
first instruction, need to compensate for that. */
|
877 |
|
|
base -= bias;
|
878 |
|
|
|
879 |
|
|
/* Find the address of the register buffer pointer. */
|
880 |
|
|
regs = base + offset;
|
881 |
|
|
/* Use that to find the address of the corresponding register
|
882 |
|
|
buffers. */
|
883 |
|
|
gpregs = read_memory_unsigned_integer (regs, tdep->wordsize, byte_order);
|
884 |
|
|
fpregs = gpregs + 48 * tdep->wordsize;
|
885 |
|
|
|
886 |
|
|
/* General purpose. */
|
887 |
|
|
for (i = 0; i < 32; i++)
|
888 |
|
|
{
|
889 |
|
|
int regnum = i + tdep->ppc_gp0_regnum;
|
890 |
|
|
trad_frame_set_reg_addr (this_cache, regnum, gpregs + i * tdep->wordsize);
|
891 |
|
|
}
|
892 |
|
|
trad_frame_set_reg_addr (this_cache,
|
893 |
|
|
gdbarch_pc_regnum (gdbarch),
|
894 |
|
|
gpregs + 32 * tdep->wordsize);
|
895 |
|
|
trad_frame_set_reg_addr (this_cache, tdep->ppc_ctr_regnum,
|
896 |
|
|
gpregs + 35 * tdep->wordsize);
|
897 |
|
|
trad_frame_set_reg_addr (this_cache, tdep->ppc_lr_regnum,
|
898 |
|
|
gpregs + 36 * tdep->wordsize);
|
899 |
|
|
trad_frame_set_reg_addr (this_cache, tdep->ppc_xer_regnum,
|
900 |
|
|
gpregs + 37 * tdep->wordsize);
|
901 |
|
|
trad_frame_set_reg_addr (this_cache, tdep->ppc_cr_regnum,
|
902 |
|
|
gpregs + 38 * tdep->wordsize);
|
903 |
|
|
|
904 |
|
|
if (ppc_linux_trap_reg_p (gdbarch))
|
905 |
|
|
{
|
906 |
|
|
trad_frame_set_reg_addr (this_cache, PPC_ORIG_R3_REGNUM,
|
907 |
|
|
gpregs + 34 * tdep->wordsize);
|
908 |
|
|
trad_frame_set_reg_addr (this_cache, PPC_TRAP_REGNUM,
|
909 |
|
|
gpregs + 40 * tdep->wordsize);
|
910 |
|
|
}
|
911 |
|
|
|
912 |
|
|
if (ppc_floating_point_unit_p (gdbarch))
|
913 |
|
|
{
|
914 |
|
|
/* Floating point registers. */
|
915 |
|
|
for (i = 0; i < 32; i++)
|
916 |
|
|
{
|
917 |
|
|
int regnum = i + gdbarch_fp0_regnum (gdbarch);
|
918 |
|
|
trad_frame_set_reg_addr (this_cache, regnum,
|
919 |
|
|
fpregs + i * tdep->wordsize);
|
920 |
|
|
}
|
921 |
|
|
trad_frame_set_reg_addr (this_cache, tdep->ppc_fpscr_regnum,
|
922 |
|
|
fpregs + 32 * tdep->wordsize);
|
923 |
|
|
}
|
924 |
|
|
trad_frame_set_id (this_cache, frame_id_build (base, func));
|
925 |
|
|
}
|
926 |
|
|
|
927 |
|
|
static void
|
928 |
|
|
ppc32_linux_sigaction_cache_init (const struct tramp_frame *self,
|
929 |
|
|
struct frame_info *this_frame,
|
930 |
|
|
struct trad_frame_cache *this_cache,
|
931 |
|
|
CORE_ADDR func)
|
932 |
|
|
{
|
933 |
|
|
ppc_linux_sigtramp_cache (this_frame, this_cache, func,
|
934 |
|
|
0xd0 /* Offset to ucontext_t. */
|
935 |
|
|
+ 0x30 /* Offset to .reg. */,
|
936 |
|
|
0);
|
937 |
|
|
}
|
938 |
|
|
|
939 |
|
|
static void
|
940 |
|
|
ppc64_linux_sigaction_cache_init (const struct tramp_frame *self,
|
941 |
|
|
struct frame_info *this_frame,
|
942 |
|
|
struct trad_frame_cache *this_cache,
|
943 |
|
|
CORE_ADDR func)
|
944 |
|
|
{
|
945 |
|
|
ppc_linux_sigtramp_cache (this_frame, this_cache, func,
|
946 |
|
|
0x80 /* Offset to ucontext_t. */
|
947 |
|
|
+ 0xe0 /* Offset to .reg. */,
|
948 |
|
|
128);
|
949 |
|
|
}
|
950 |
|
|
|
951 |
|
|
static void
|
952 |
|
|
ppc32_linux_sighandler_cache_init (const struct tramp_frame *self,
|
953 |
|
|
struct frame_info *this_frame,
|
954 |
|
|
struct trad_frame_cache *this_cache,
|
955 |
|
|
CORE_ADDR func)
|
956 |
|
|
{
|
957 |
|
|
ppc_linux_sigtramp_cache (this_frame, this_cache, func,
|
958 |
|
|
0x40 /* Offset to ucontext_t. */
|
959 |
|
|
+ 0x1c /* Offset to .reg. */,
|
960 |
|
|
0);
|
961 |
|
|
}
|
962 |
|
|
|
963 |
|
|
static void
|
964 |
|
|
ppc64_linux_sighandler_cache_init (const struct tramp_frame *self,
|
965 |
|
|
struct frame_info *this_frame,
|
966 |
|
|
struct trad_frame_cache *this_cache,
|
967 |
|
|
CORE_ADDR func)
|
968 |
|
|
{
|
969 |
|
|
ppc_linux_sigtramp_cache (this_frame, this_cache, func,
|
970 |
|
|
0x80 /* Offset to struct sigcontext. */
|
971 |
|
|
+ 0x38 /* Offset to .reg. */,
|
972 |
|
|
128);
|
973 |
|
|
}
|
974 |
|
|
|
975 |
|
|
static struct tramp_frame ppc32_linux_sigaction_tramp_frame = {
|
976 |
|
|
SIGTRAMP_FRAME,
|
977 |
|
|
4,
|
978 |
|
|
{
|
979 |
|
|
{ 0x380000ac, -1 }, /* li r0, 172 */
|
980 |
|
|
{ 0x44000002, -1 }, /* sc */
|
981 |
|
|
{ TRAMP_SENTINEL_INSN },
|
982 |
|
|
},
|
983 |
|
|
ppc32_linux_sigaction_cache_init
|
984 |
|
|
};
|
985 |
|
|
static struct tramp_frame ppc64_linux_sigaction_tramp_frame = {
|
986 |
|
|
SIGTRAMP_FRAME,
|
987 |
|
|
4,
|
988 |
|
|
{
|
989 |
|
|
{ 0x38210080, -1 }, /* addi r1,r1,128 */
|
990 |
|
|
{ 0x380000ac, -1 }, /* li r0, 172 */
|
991 |
|
|
{ 0x44000002, -1 }, /* sc */
|
992 |
|
|
{ TRAMP_SENTINEL_INSN },
|
993 |
|
|
},
|
994 |
|
|
ppc64_linux_sigaction_cache_init
|
995 |
|
|
};
|
996 |
|
|
static struct tramp_frame ppc32_linux_sighandler_tramp_frame = {
|
997 |
|
|
SIGTRAMP_FRAME,
|
998 |
|
|
4,
|
999 |
|
|
{
|
1000 |
|
|
{ 0x38000077, -1 }, /* li r0,119 */
|
1001 |
|
|
{ 0x44000002, -1 }, /* sc */
|
1002 |
|
|
{ TRAMP_SENTINEL_INSN },
|
1003 |
|
|
},
|
1004 |
|
|
ppc32_linux_sighandler_cache_init
|
1005 |
|
|
};
|
1006 |
|
|
static struct tramp_frame ppc64_linux_sighandler_tramp_frame = {
|
1007 |
|
|
SIGTRAMP_FRAME,
|
1008 |
|
|
4,
|
1009 |
|
|
{
|
1010 |
|
|
{ 0x38210080, -1 }, /* addi r1,r1,128 */
|
1011 |
|
|
{ 0x38000077, -1 }, /* li r0,119 */
|
1012 |
|
|
{ 0x44000002, -1 }, /* sc */
|
1013 |
|
|
{ TRAMP_SENTINEL_INSN },
|
1014 |
|
|
},
|
1015 |
|
|
ppc64_linux_sighandler_cache_init
|
1016 |
|
|
};
|
1017 |
|
|
|
1018 |
|
|
|
1019 |
|
|
/* Address to use for displaced stepping. When debugging a stand-alone
|
1020 |
|
|
SPU executable, entry_point_address () will point to an SPU local-store
|
1021 |
|
|
address and is thus not usable as displaced stepping location. We use
|
1022 |
|
|
the auxiliary vector to determine the PowerPC-side entry point address
|
1023 |
|
|
instead. */
|
1024 |
|
|
|
1025 |
|
|
static CORE_ADDR ppc_linux_entry_point_addr = 0;
|
1026 |
|
|
|
1027 |
|
|
static void
|
1028 |
|
|
ppc_linux_inferior_created (struct target_ops *target, int from_tty)
|
1029 |
|
|
{
|
1030 |
|
|
ppc_linux_entry_point_addr = 0;
|
1031 |
|
|
}
|
1032 |
|
|
|
1033 |
|
|
static CORE_ADDR
|
1034 |
|
|
ppc_linux_displaced_step_location (struct gdbarch *gdbarch)
|
1035 |
|
|
{
|
1036 |
|
|
if (ppc_linux_entry_point_addr == 0)
|
1037 |
|
|
{
|
1038 |
|
|
CORE_ADDR addr;
|
1039 |
|
|
|
1040 |
|
|
/* Determine entry point from target auxiliary vector. */
|
1041 |
|
|
if (target_auxv_search (¤t_target, AT_ENTRY, &addr) <= 0)
|
1042 |
|
|
error (_("Cannot find AT_ENTRY auxiliary vector entry."));
|
1043 |
|
|
|
1044 |
|
|
/* Make certain that the address points at real code, and not a
|
1045 |
|
|
function descriptor. */
|
1046 |
|
|
addr = gdbarch_convert_from_func_ptr_addr (gdbarch, addr,
|
1047 |
|
|
¤t_target);
|
1048 |
|
|
|
1049 |
|
|
/* Inferior calls also use the entry point as a breakpoint location.
|
1050 |
|
|
We don't want displaced stepping to interfere with those
|
1051 |
|
|
breakpoints, so leave space. */
|
1052 |
|
|
ppc_linux_entry_point_addr = addr + 2 * PPC_INSN_SIZE;
|
1053 |
|
|
}
|
1054 |
|
|
|
1055 |
|
|
return ppc_linux_entry_point_addr;
|
1056 |
|
|
}
|
1057 |
|
|
|
1058 |
|
|
|
1059 |
|
|
/* Return 1 if PPC_ORIG_R3_REGNUM and PPC_TRAP_REGNUM are usable. */
|
1060 |
|
|
int
|
1061 |
|
|
ppc_linux_trap_reg_p (struct gdbarch *gdbarch)
|
1062 |
|
|
{
|
1063 |
|
|
/* If we do not have a target description with registers, then
|
1064 |
|
|
the special registers will not be included in the register set. */
|
1065 |
|
|
if (!tdesc_has_registers (gdbarch_target_desc (gdbarch)))
|
1066 |
|
|
return 0;
|
1067 |
|
|
|
1068 |
|
|
/* If we do, then it is safe to check the size. */
|
1069 |
|
|
return register_size (gdbarch, PPC_ORIG_R3_REGNUM) > 0
|
1070 |
|
|
&& register_size (gdbarch, PPC_TRAP_REGNUM) > 0;
|
1071 |
|
|
}
|
1072 |
|
|
|
1073 |
|
|
/* Return the current system call's number present in the
|
1074 |
|
|
r0 register. When the function fails, it returns -1. */
|
1075 |
|
|
static LONGEST
|
1076 |
|
|
ppc_linux_get_syscall_number (struct gdbarch *gdbarch,
|
1077 |
|
|
ptid_t ptid)
|
1078 |
|
|
{
|
1079 |
|
|
struct regcache *regcache = get_thread_regcache (ptid);
|
1080 |
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
1081 |
|
|
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
1082 |
|
|
struct cleanup *cleanbuf;
|
1083 |
|
|
/* The content of a register */
|
1084 |
|
|
gdb_byte *buf;
|
1085 |
|
|
/* The result */
|
1086 |
|
|
LONGEST ret;
|
1087 |
|
|
|
1088 |
|
|
/* Make sure we're in a 32- or 64-bit machine */
|
1089 |
|
|
gdb_assert (tdep->wordsize == 4 || tdep->wordsize == 8);
|
1090 |
|
|
|
1091 |
|
|
buf = (gdb_byte *) xmalloc (tdep->wordsize * sizeof (gdb_byte));
|
1092 |
|
|
|
1093 |
|
|
cleanbuf = make_cleanup (xfree, buf);
|
1094 |
|
|
|
1095 |
|
|
/* Getting the system call number from the register.
|
1096 |
|
|
When dealing with PowerPC architecture, this information
|
1097 |
|
|
is stored at 0th register. */
|
1098 |
|
|
regcache_cooked_read (regcache, tdep->ppc_gp0_regnum, buf);
|
1099 |
|
|
|
1100 |
|
|
ret = extract_signed_integer (buf, tdep->wordsize, byte_order);
|
1101 |
|
|
do_cleanups (cleanbuf);
|
1102 |
|
|
|
1103 |
|
|
return ret;
|
1104 |
|
|
}
|
1105 |
|
|
|
1106 |
|
|
static void
|
1107 |
|
|
ppc_linux_write_pc (struct regcache *regcache, CORE_ADDR pc)
|
1108 |
|
|
{
|
1109 |
|
|
struct gdbarch *gdbarch = get_regcache_arch (regcache);
|
1110 |
|
|
|
1111 |
|
|
regcache_cooked_write_unsigned (regcache, gdbarch_pc_regnum (gdbarch), pc);
|
1112 |
|
|
|
1113 |
|
|
/* Set special TRAP register to -1 to prevent the kernel from
|
1114 |
|
|
messing with the PC we just installed, if we happen to be
|
1115 |
|
|
within an interrupted system call that the kernel wants to
|
1116 |
|
|
restart.
|
1117 |
|
|
|
1118 |
|
|
Note that after we return from the dummy call, the TRAP and
|
1119 |
|
|
ORIG_R3 registers will be automatically restored, and the
|
1120 |
|
|
kernel continues to restart the system call at this point. */
|
1121 |
|
|
if (ppc_linux_trap_reg_p (gdbarch))
|
1122 |
|
|
regcache_cooked_write_unsigned (regcache, PPC_TRAP_REGNUM, -1);
|
1123 |
|
|
}
|
1124 |
|
|
|
1125 |
|
|
static int
|
1126 |
|
|
ppc_linux_spu_section (bfd *abfd, asection *asect, void *user_data)
|
1127 |
|
|
{
|
1128 |
|
|
return strncmp (bfd_section_name (abfd, asect), "SPU/", 4) == 0;
|
1129 |
|
|
}
|
1130 |
|
|
|
1131 |
|
|
static const struct target_desc *
|
1132 |
|
|
ppc_linux_core_read_description (struct gdbarch *gdbarch,
|
1133 |
|
|
struct target_ops *target,
|
1134 |
|
|
bfd *abfd)
|
1135 |
|
|
{
|
1136 |
|
|
asection *cell = bfd_sections_find_if (abfd, ppc_linux_spu_section, NULL);
|
1137 |
|
|
asection *altivec = bfd_get_section_by_name (abfd, ".reg-ppc-vmx");
|
1138 |
|
|
asection *vsx = bfd_get_section_by_name (abfd, ".reg-ppc-vsx");
|
1139 |
|
|
asection *section = bfd_get_section_by_name (abfd, ".reg");
|
1140 |
|
|
if (! section)
|
1141 |
|
|
return NULL;
|
1142 |
|
|
|
1143 |
|
|
switch (bfd_section_size (abfd, section))
|
1144 |
|
|
{
|
1145 |
|
|
case 48 * 4:
|
1146 |
|
|
if (cell)
|
1147 |
|
|
return tdesc_powerpc_cell32l;
|
1148 |
|
|
else if (vsx)
|
1149 |
|
|
return tdesc_powerpc_vsx32l;
|
1150 |
|
|
else if (altivec)
|
1151 |
|
|
return tdesc_powerpc_altivec32l;
|
1152 |
|
|
else
|
1153 |
|
|
return tdesc_powerpc_32l;
|
1154 |
|
|
|
1155 |
|
|
case 48 * 8:
|
1156 |
|
|
if (cell)
|
1157 |
|
|
return tdesc_powerpc_cell64l;
|
1158 |
|
|
else if (vsx)
|
1159 |
|
|
return tdesc_powerpc_vsx64l;
|
1160 |
|
|
else if (altivec)
|
1161 |
|
|
return tdesc_powerpc_altivec64l;
|
1162 |
|
|
else
|
1163 |
|
|
return tdesc_powerpc_64l;
|
1164 |
|
|
|
1165 |
|
|
default:
|
1166 |
|
|
return NULL;
|
1167 |
|
|
}
|
1168 |
|
|
}
|
1169 |
|
|
|
1170 |
|
|
|
1171 |
|
|
/* Cell/B.E. active SPE context tracking support. */
|
1172 |
|
|
|
1173 |
|
|
static struct objfile *spe_context_objfile = NULL;
|
1174 |
|
|
static CORE_ADDR spe_context_lm_addr = 0;
|
1175 |
|
|
static CORE_ADDR spe_context_offset = 0;
|
1176 |
|
|
|
1177 |
|
|
static ptid_t spe_context_cache_ptid;
|
1178 |
|
|
static CORE_ADDR spe_context_cache_address;
|
1179 |
|
|
|
1180 |
|
|
/* Hook into inferior_created, solib_loaded, and solib_unloaded observers
|
1181 |
|
|
to track whether we've loaded a version of libspe2 (as static or dynamic
|
1182 |
|
|
library) that provides the __spe_current_active_context variable. */
|
1183 |
|
|
static void
|
1184 |
|
|
ppc_linux_spe_context_lookup (struct objfile *objfile)
|
1185 |
|
|
{
|
1186 |
|
|
struct minimal_symbol *sym;
|
1187 |
|
|
|
1188 |
|
|
if (!objfile)
|
1189 |
|
|
{
|
1190 |
|
|
spe_context_objfile = NULL;
|
1191 |
|
|
spe_context_lm_addr = 0;
|
1192 |
|
|
spe_context_offset = 0;
|
1193 |
|
|
spe_context_cache_ptid = minus_one_ptid;
|
1194 |
|
|
spe_context_cache_address = 0;
|
1195 |
|
|
return;
|
1196 |
|
|
}
|
1197 |
|
|
|
1198 |
|
|
sym = lookup_minimal_symbol ("__spe_current_active_context", NULL, objfile);
|
1199 |
|
|
if (sym)
|
1200 |
|
|
{
|
1201 |
|
|
spe_context_objfile = objfile;
|
1202 |
|
|
spe_context_lm_addr = svr4_fetch_objfile_link_map (objfile);
|
1203 |
|
|
spe_context_offset = SYMBOL_VALUE_ADDRESS (sym);
|
1204 |
|
|
spe_context_cache_ptid = minus_one_ptid;
|
1205 |
|
|
spe_context_cache_address = 0;
|
1206 |
|
|
return;
|
1207 |
|
|
}
|
1208 |
|
|
}
|
1209 |
|
|
|
1210 |
|
|
static void
|
1211 |
|
|
ppc_linux_spe_context_inferior_created (struct target_ops *t, int from_tty)
|
1212 |
|
|
{
|
1213 |
|
|
struct objfile *objfile;
|
1214 |
|
|
|
1215 |
|
|
ppc_linux_spe_context_lookup (NULL);
|
1216 |
|
|
ALL_OBJFILES (objfile)
|
1217 |
|
|
ppc_linux_spe_context_lookup (objfile);
|
1218 |
|
|
}
|
1219 |
|
|
|
1220 |
|
|
static void
|
1221 |
|
|
ppc_linux_spe_context_solib_loaded (struct so_list *so)
|
1222 |
|
|
{
|
1223 |
|
|
if (strstr (so->so_original_name, "/libspe") != NULL)
|
1224 |
|
|
{
|
1225 |
|
|
solib_read_symbols (so, so->from_tty ? SYMFILE_VERBOSE : 0);
|
1226 |
|
|
ppc_linux_spe_context_lookup (so->objfile);
|
1227 |
|
|
}
|
1228 |
|
|
}
|
1229 |
|
|
|
1230 |
|
|
static void
|
1231 |
|
|
ppc_linux_spe_context_solib_unloaded (struct so_list *so)
|
1232 |
|
|
{
|
1233 |
|
|
if (so->objfile == spe_context_objfile)
|
1234 |
|
|
ppc_linux_spe_context_lookup (NULL);
|
1235 |
|
|
}
|
1236 |
|
|
|
1237 |
|
|
/* Retrieve contents of the N'th element in the current thread's
|
1238 |
|
|
linked SPE context list into ID and NPC. Return the address of
|
1239 |
|
|
said context element, or 0 if not found. */
|
1240 |
|
|
static CORE_ADDR
|
1241 |
|
|
ppc_linux_spe_context (int wordsize, enum bfd_endian byte_order,
|
1242 |
|
|
int n, int *id, unsigned int *npc)
|
1243 |
|
|
{
|
1244 |
|
|
CORE_ADDR spe_context = 0;
|
1245 |
|
|
gdb_byte buf[16];
|
1246 |
|
|
int i;
|
1247 |
|
|
|
1248 |
|
|
/* Quick exit if we have not found __spe_current_active_context. */
|
1249 |
|
|
if (!spe_context_objfile)
|
1250 |
|
|
return 0;
|
1251 |
|
|
|
1252 |
|
|
/* Look up cached address of thread-local variable. */
|
1253 |
|
|
if (!ptid_equal (spe_context_cache_ptid, inferior_ptid))
|
1254 |
|
|
{
|
1255 |
|
|
struct target_ops *target = ¤t_target;
|
1256 |
|
|
volatile struct gdb_exception ex;
|
1257 |
|
|
|
1258 |
|
|
while (target && !target->to_get_thread_local_address)
|
1259 |
|
|
target = find_target_beneath (target);
|
1260 |
|
|
if (!target)
|
1261 |
|
|
return 0;
|
1262 |
|
|
|
1263 |
|
|
TRY_CATCH (ex, RETURN_MASK_ERROR)
|
1264 |
|
|
{
|
1265 |
|
|
/* We do not call target_translate_tls_address here, because
|
1266 |
|
|
svr4_fetch_objfile_link_map may invalidate the frame chain,
|
1267 |
|
|
which must not do while inside a frame sniffer.
|
1268 |
|
|
|
1269 |
|
|
Instead, we have cached the lm_addr value, and use that to
|
1270 |
|
|
directly call the target's to_get_thread_local_address. */
|
1271 |
|
|
spe_context_cache_address
|
1272 |
|
|
= target->to_get_thread_local_address (target, inferior_ptid,
|
1273 |
|
|
spe_context_lm_addr,
|
1274 |
|
|
spe_context_offset);
|
1275 |
|
|
spe_context_cache_ptid = inferior_ptid;
|
1276 |
|
|
}
|
1277 |
|
|
|
1278 |
|
|
if (ex.reason < 0)
|
1279 |
|
|
return 0;
|
1280 |
|
|
}
|
1281 |
|
|
|
1282 |
|
|
/* Read variable value. */
|
1283 |
|
|
if (target_read_memory (spe_context_cache_address, buf, wordsize) == 0)
|
1284 |
|
|
spe_context = extract_unsigned_integer (buf, wordsize, byte_order);
|
1285 |
|
|
|
1286 |
|
|
/* Cyle through to N'th linked list element. */
|
1287 |
|
|
for (i = 0; i < n && spe_context; i++)
|
1288 |
|
|
if (target_read_memory (spe_context + align_up (12, wordsize),
|
1289 |
|
|
buf, wordsize) == 0)
|
1290 |
|
|
spe_context = extract_unsigned_integer (buf, wordsize, byte_order);
|
1291 |
|
|
else
|
1292 |
|
|
spe_context = 0;
|
1293 |
|
|
|
1294 |
|
|
/* Read current context. */
|
1295 |
|
|
if (spe_context
|
1296 |
|
|
&& target_read_memory (spe_context, buf, 12) != 0)
|
1297 |
|
|
spe_context = 0;
|
1298 |
|
|
|
1299 |
|
|
/* Extract data elements. */
|
1300 |
|
|
if (spe_context)
|
1301 |
|
|
{
|
1302 |
|
|
if (id)
|
1303 |
|
|
*id = extract_signed_integer (buf, 4, byte_order);
|
1304 |
|
|
if (npc)
|
1305 |
|
|
*npc = extract_unsigned_integer (buf + 4, 4, byte_order);
|
1306 |
|
|
}
|
1307 |
|
|
|
1308 |
|
|
return spe_context;
|
1309 |
|
|
}
|
1310 |
|
|
|
1311 |
|
|
|
1312 |
|
|
/* Cell/B.E. cross-architecture unwinder support. */
|
1313 |
|
|
|
1314 |
|
|
struct ppu2spu_cache
|
1315 |
|
|
{
|
1316 |
|
|
struct frame_id frame_id;
|
1317 |
|
|
struct regcache *regcache;
|
1318 |
|
|
};
|
1319 |
|
|
|
1320 |
|
|
static struct gdbarch *
|
1321 |
|
|
ppu2spu_prev_arch (struct frame_info *this_frame, void **this_cache)
|
1322 |
|
|
{
|
1323 |
|
|
struct ppu2spu_cache *cache = *this_cache;
|
1324 |
|
|
return get_regcache_arch (cache->regcache);
|
1325 |
|
|
}
|
1326 |
|
|
|
1327 |
|
|
static void
|
1328 |
|
|
ppu2spu_this_id (struct frame_info *this_frame,
|
1329 |
|
|
void **this_cache, struct frame_id *this_id)
|
1330 |
|
|
{
|
1331 |
|
|
struct ppu2spu_cache *cache = *this_cache;
|
1332 |
|
|
*this_id = cache->frame_id;
|
1333 |
|
|
}
|
1334 |
|
|
|
1335 |
|
|
static struct value *
|
1336 |
|
|
ppu2spu_prev_register (struct frame_info *this_frame,
|
1337 |
|
|
void **this_cache, int regnum)
|
1338 |
|
|
{
|
1339 |
|
|
struct ppu2spu_cache *cache = *this_cache;
|
1340 |
|
|
struct gdbarch *gdbarch = get_regcache_arch (cache->regcache);
|
1341 |
|
|
gdb_byte *buf;
|
1342 |
|
|
|
1343 |
|
|
buf = alloca (register_size (gdbarch, regnum));
|
1344 |
|
|
regcache_cooked_read (cache->regcache, regnum, buf);
|
1345 |
|
|
return frame_unwind_got_bytes (this_frame, regnum, buf);
|
1346 |
|
|
}
|
1347 |
|
|
|
1348 |
|
|
struct ppu2spu_data
|
1349 |
|
|
{
|
1350 |
|
|
struct gdbarch *gdbarch;
|
1351 |
|
|
int id;
|
1352 |
|
|
unsigned int npc;
|
1353 |
|
|
gdb_byte gprs[128*16];
|
1354 |
|
|
};
|
1355 |
|
|
|
1356 |
|
|
static int
|
1357 |
|
|
ppu2spu_unwind_register (void *src, int regnum, gdb_byte *buf)
|
1358 |
|
|
{
|
1359 |
|
|
struct ppu2spu_data *data = src;
|
1360 |
|
|
enum bfd_endian byte_order = gdbarch_byte_order (data->gdbarch);
|
1361 |
|
|
|
1362 |
|
|
if (regnum >= 0 && regnum < SPU_NUM_GPRS)
|
1363 |
|
|
memcpy (buf, data->gprs + 16*regnum, 16);
|
1364 |
|
|
else if (regnum == SPU_ID_REGNUM)
|
1365 |
|
|
store_unsigned_integer (buf, 4, byte_order, data->id);
|
1366 |
|
|
else if (regnum == SPU_PC_REGNUM)
|
1367 |
|
|
store_unsigned_integer (buf, 4, byte_order, data->npc);
|
1368 |
|
|
else
|
1369 |
|
|
return 0;
|
1370 |
|
|
|
1371 |
|
|
return 1;
|
1372 |
|
|
}
|
1373 |
|
|
|
1374 |
|
|
static int
|
1375 |
|
|
ppu2spu_sniffer (const struct frame_unwind *self,
|
1376 |
|
|
struct frame_info *this_frame, void **this_prologue_cache)
|
1377 |
|
|
{
|
1378 |
|
|
struct gdbarch *gdbarch = get_frame_arch (this_frame);
|
1379 |
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
1380 |
|
|
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
1381 |
|
|
struct ppu2spu_data data;
|
1382 |
|
|
struct frame_info *fi;
|
1383 |
|
|
CORE_ADDR base, func, backchain, spe_context;
|
1384 |
|
|
gdb_byte buf[8];
|
1385 |
|
|
int n = 0;
|
1386 |
|
|
|
1387 |
|
|
/* Count the number of SPU contexts already in the frame chain. */
|
1388 |
|
|
for (fi = get_next_frame (this_frame); fi; fi = get_next_frame (fi))
|
1389 |
|
|
if (get_frame_type (fi) == ARCH_FRAME
|
1390 |
|
|
&& gdbarch_bfd_arch_info (get_frame_arch (fi))->arch == bfd_arch_spu)
|
1391 |
|
|
n++;
|
1392 |
|
|
|
1393 |
|
|
base = get_frame_sp (this_frame);
|
1394 |
|
|
func = get_frame_pc (this_frame);
|
1395 |
|
|
if (target_read_memory (base, buf, tdep->wordsize))
|
1396 |
|
|
return 0;
|
1397 |
|
|
backchain = extract_unsigned_integer (buf, tdep->wordsize, byte_order);
|
1398 |
|
|
|
1399 |
|
|
spe_context = ppc_linux_spe_context (tdep->wordsize, byte_order,
|
1400 |
|
|
n, &data.id, &data.npc);
|
1401 |
|
|
if (spe_context && base <= spe_context && spe_context < backchain)
|
1402 |
|
|
{
|
1403 |
|
|
char annex[32];
|
1404 |
|
|
|
1405 |
|
|
/* Find gdbarch for SPU. */
|
1406 |
|
|
struct gdbarch_info info;
|
1407 |
|
|
gdbarch_info_init (&info);
|
1408 |
|
|
info.bfd_arch_info = bfd_lookup_arch (bfd_arch_spu, bfd_mach_spu);
|
1409 |
|
|
info.byte_order = BFD_ENDIAN_BIG;
|
1410 |
|
|
info.osabi = GDB_OSABI_LINUX;
|
1411 |
|
|
info.tdep_info = (void *) &data.id;
|
1412 |
|
|
data.gdbarch = gdbarch_find_by_info (info);
|
1413 |
|
|
if (!data.gdbarch)
|
1414 |
|
|
return 0;
|
1415 |
|
|
|
1416 |
|
|
xsnprintf (annex, sizeof annex, "%d/regs", data.id);
|
1417 |
|
|
if (target_read (¤t_target, TARGET_OBJECT_SPU, annex,
|
1418 |
|
|
data.gprs, 0, sizeof data.gprs)
|
1419 |
|
|
== sizeof data.gprs)
|
1420 |
|
|
{
|
1421 |
|
|
struct ppu2spu_cache *cache
|
1422 |
|
|
= FRAME_OBSTACK_CALLOC (1, struct ppu2spu_cache);
|
1423 |
|
|
|
1424 |
|
|
struct address_space *aspace = get_frame_address_space (this_frame);
|
1425 |
|
|
struct regcache *regcache = regcache_xmalloc (data.gdbarch, aspace);
|
1426 |
|
|
struct cleanup *cleanups = make_cleanup_regcache_xfree (regcache);
|
1427 |
|
|
regcache_save (regcache, ppu2spu_unwind_register, &data);
|
1428 |
|
|
discard_cleanups (cleanups);
|
1429 |
|
|
|
1430 |
|
|
cache->frame_id = frame_id_build (base, func);
|
1431 |
|
|
cache->regcache = regcache;
|
1432 |
|
|
*this_prologue_cache = cache;
|
1433 |
|
|
return 1;
|
1434 |
|
|
}
|
1435 |
|
|
}
|
1436 |
|
|
|
1437 |
|
|
return 0;
|
1438 |
|
|
}
|
1439 |
|
|
|
1440 |
|
|
static void
|
1441 |
|
|
ppu2spu_dealloc_cache (struct frame_info *self, void *this_cache)
|
1442 |
|
|
{
|
1443 |
|
|
struct ppu2spu_cache *cache = this_cache;
|
1444 |
|
|
regcache_xfree (cache->regcache);
|
1445 |
|
|
}
|
1446 |
|
|
|
1447 |
|
|
static const struct frame_unwind ppu2spu_unwind = {
|
1448 |
|
|
ARCH_FRAME,
|
1449 |
|
|
ppu2spu_this_id,
|
1450 |
|
|
ppu2spu_prev_register,
|
1451 |
|
|
NULL,
|
1452 |
|
|
ppu2spu_sniffer,
|
1453 |
|
|
ppu2spu_dealloc_cache,
|
1454 |
|
|
ppu2spu_prev_arch,
|
1455 |
|
|
};
|
1456 |
|
|
|
1457 |
|
|
|
1458 |
|
|
static void
|
1459 |
|
|
ppc_linux_init_abi (struct gdbarch_info info,
|
1460 |
|
|
struct gdbarch *gdbarch)
|
1461 |
|
|
{
|
1462 |
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
1463 |
|
|
struct tdesc_arch_data *tdesc_data = (void *) info.tdep_info;
|
1464 |
|
|
|
1465 |
|
|
/* PPC GNU/Linux uses either 64-bit or 128-bit long doubles; where
|
1466 |
|
|
128-bit, they are IBM long double, not IEEE quad long double as
|
1467 |
|
|
in the System V ABI PowerPC Processor Supplement. We can safely
|
1468 |
|
|
let them default to 128-bit, since the debug info will give the
|
1469 |
|
|
size of type actually used in each case. */
|
1470 |
|
|
set_gdbarch_long_double_bit (gdbarch, 16 * TARGET_CHAR_BIT);
|
1471 |
|
|
set_gdbarch_long_double_format (gdbarch, floatformats_ibm_long_double);
|
1472 |
|
|
|
1473 |
|
|
/* Handle inferior calls during interrupted system calls. */
|
1474 |
|
|
set_gdbarch_write_pc (gdbarch, ppc_linux_write_pc);
|
1475 |
|
|
|
1476 |
|
|
/* Get the syscall number from the arch's register. */
|
1477 |
|
|
set_gdbarch_get_syscall_number (gdbarch, ppc_linux_get_syscall_number);
|
1478 |
|
|
|
1479 |
|
|
if (tdep->wordsize == 4)
|
1480 |
|
|
{
|
1481 |
|
|
/* Until November 2001, gcc did not comply with the 32 bit SysV
|
1482 |
|
|
R4 ABI requirement that structures less than or equal to 8
|
1483 |
|
|
bytes should be returned in registers. Instead GCC was using
|
1484 |
|
|
the the AIX/PowerOpen ABI - everything returned in memory
|
1485 |
|
|
(well ignoring vectors that is). When this was corrected, it
|
1486 |
|
|
wasn't fixed for GNU/Linux native platform. Use the
|
1487 |
|
|
PowerOpen struct convention. */
|
1488 |
|
|
set_gdbarch_return_value (gdbarch, ppc_linux_return_value);
|
1489 |
|
|
|
1490 |
|
|
set_gdbarch_memory_remove_breakpoint (gdbarch,
|
1491 |
|
|
ppc_linux_memory_remove_breakpoint);
|
1492 |
|
|
|
1493 |
|
|
/* Shared library handling. */
|
1494 |
|
|
set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
|
1495 |
|
|
set_solib_svr4_fetch_link_map_offsets
|
1496 |
|
|
(gdbarch, svr4_ilp32_fetch_link_map_offsets);
|
1497 |
|
|
|
1498 |
|
|
/* Setting the correct XML syscall filename. */
|
1499 |
|
|
set_xml_syscall_file_name (XML_SYSCALL_FILENAME_PPC);
|
1500 |
|
|
|
1501 |
|
|
/* Trampolines. */
|
1502 |
|
|
tramp_frame_prepend_unwinder (gdbarch, &ppc32_linux_sigaction_tramp_frame);
|
1503 |
|
|
tramp_frame_prepend_unwinder (gdbarch, &ppc32_linux_sighandler_tramp_frame);
|
1504 |
|
|
|
1505 |
|
|
/* BFD target for core files. */
|
1506 |
|
|
if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE)
|
1507 |
|
|
set_gdbarch_gcore_bfd_target (gdbarch, "elf32-powerpcle");
|
1508 |
|
|
else
|
1509 |
|
|
set_gdbarch_gcore_bfd_target (gdbarch, "elf32-powerpc");
|
1510 |
|
|
}
|
1511 |
|
|
|
1512 |
|
|
if (tdep->wordsize == 8)
|
1513 |
|
|
{
|
1514 |
|
|
/* Handle PPC GNU/Linux 64-bit function pointers (which are really
|
1515 |
|
|
function descriptors). */
|
1516 |
|
|
set_gdbarch_convert_from_func_ptr_addr
|
1517 |
|
|
(gdbarch, ppc64_linux_convert_from_func_ptr_addr);
|
1518 |
|
|
|
1519 |
|
|
/* Shared library handling. */
|
1520 |
|
|
set_gdbarch_skip_trampoline_code (gdbarch, ppc64_skip_trampoline_code);
|
1521 |
|
|
set_solib_svr4_fetch_link_map_offsets
|
1522 |
|
|
(gdbarch, svr4_lp64_fetch_link_map_offsets);
|
1523 |
|
|
|
1524 |
|
|
/* Setting the correct XML syscall filename. */
|
1525 |
|
|
set_xml_syscall_file_name (XML_SYSCALL_FILENAME_PPC64);
|
1526 |
|
|
|
1527 |
|
|
/* Trampolines. */
|
1528 |
|
|
tramp_frame_prepend_unwinder (gdbarch, &ppc64_linux_sigaction_tramp_frame);
|
1529 |
|
|
tramp_frame_prepend_unwinder (gdbarch, &ppc64_linux_sighandler_tramp_frame);
|
1530 |
|
|
|
1531 |
|
|
/* BFD target for core files. */
|
1532 |
|
|
if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE)
|
1533 |
|
|
set_gdbarch_gcore_bfd_target (gdbarch, "elf64-powerpcle");
|
1534 |
|
|
else
|
1535 |
|
|
set_gdbarch_gcore_bfd_target (gdbarch, "elf64-powerpc");
|
1536 |
|
|
}
|
1537 |
|
|
set_gdbarch_regset_from_core_section (gdbarch, ppc_linux_regset_from_core_section);
|
1538 |
|
|
set_gdbarch_core_read_description (gdbarch, ppc_linux_core_read_description);
|
1539 |
|
|
|
1540 |
|
|
/* Supported register sections. */
|
1541 |
|
|
if (tdesc_find_feature (info.target_desc,
|
1542 |
|
|
"org.gnu.gdb.power.vsx"))
|
1543 |
|
|
set_gdbarch_core_regset_sections (gdbarch, ppc_linux_vsx_regset_sections);
|
1544 |
|
|
else if (tdesc_find_feature (info.target_desc,
|
1545 |
|
|
"org.gnu.gdb.power.altivec"))
|
1546 |
|
|
set_gdbarch_core_regset_sections (gdbarch, ppc_linux_vmx_regset_sections);
|
1547 |
|
|
else
|
1548 |
|
|
set_gdbarch_core_regset_sections (gdbarch, ppc_linux_fp_regset_sections);
|
1549 |
|
|
|
1550 |
|
|
/* Enable TLS support. */
|
1551 |
|
|
set_gdbarch_fetch_tls_load_module_address (gdbarch,
|
1552 |
|
|
svr4_fetch_objfile_link_map);
|
1553 |
|
|
|
1554 |
|
|
if (tdesc_data)
|
1555 |
|
|
{
|
1556 |
|
|
const struct tdesc_feature *feature;
|
1557 |
|
|
|
1558 |
|
|
/* If we have target-described registers, then we can safely
|
1559 |
|
|
reserve a number for PPC_ORIG_R3_REGNUM and PPC_TRAP_REGNUM
|
1560 |
|
|
(whether they are described or not). */
|
1561 |
|
|
gdb_assert (gdbarch_num_regs (gdbarch) <= PPC_ORIG_R3_REGNUM);
|
1562 |
|
|
set_gdbarch_num_regs (gdbarch, PPC_TRAP_REGNUM + 1);
|
1563 |
|
|
|
1564 |
|
|
/* If they are present, then assign them to the reserved number. */
|
1565 |
|
|
feature = tdesc_find_feature (info.target_desc,
|
1566 |
|
|
"org.gnu.gdb.power.linux");
|
1567 |
|
|
if (feature != NULL)
|
1568 |
|
|
{
|
1569 |
|
|
tdesc_numbered_register (feature, tdesc_data,
|
1570 |
|
|
PPC_ORIG_R3_REGNUM, "orig_r3");
|
1571 |
|
|
tdesc_numbered_register (feature, tdesc_data,
|
1572 |
|
|
PPC_TRAP_REGNUM, "trap");
|
1573 |
|
|
}
|
1574 |
|
|
}
|
1575 |
|
|
|
1576 |
|
|
/* Enable Cell/B.E. if supported by the target. */
|
1577 |
|
|
if (tdesc_compatible_p (info.target_desc,
|
1578 |
|
|
bfd_lookup_arch (bfd_arch_spu, bfd_mach_spu)))
|
1579 |
|
|
{
|
1580 |
|
|
/* Cell/B.E. multi-architecture support. */
|
1581 |
|
|
set_spu_solib_ops (gdbarch);
|
1582 |
|
|
|
1583 |
|
|
/* Cell/B.E. cross-architecture unwinder support. */
|
1584 |
|
|
frame_unwind_prepend_unwinder (gdbarch, &ppu2spu_unwind);
|
1585 |
|
|
|
1586 |
|
|
/* The default displaced_step_at_entry_point doesn't work for
|
1587 |
|
|
SPU stand-alone executables. */
|
1588 |
|
|
set_gdbarch_displaced_step_location (gdbarch,
|
1589 |
|
|
ppc_linux_displaced_step_location);
|
1590 |
|
|
}
|
1591 |
|
|
}
|
1592 |
|
|
|
1593 |
|
|
/* Provide a prototype to silence -Wmissing-prototypes. */
|
1594 |
|
|
extern initialize_file_ftype _initialize_ppc_linux_tdep;
|
1595 |
|
|
|
1596 |
|
|
void
|
1597 |
|
|
_initialize_ppc_linux_tdep (void)
|
1598 |
|
|
{
|
1599 |
|
|
/* Register for all sub-familes of the POWER/PowerPC: 32-bit and
|
1600 |
|
|
64-bit PowerPC, and the older rs6k. */
|
1601 |
|
|
gdbarch_register_osabi (bfd_arch_powerpc, bfd_mach_ppc, GDB_OSABI_LINUX,
|
1602 |
|
|
ppc_linux_init_abi);
|
1603 |
|
|
gdbarch_register_osabi (bfd_arch_powerpc, bfd_mach_ppc64, GDB_OSABI_LINUX,
|
1604 |
|
|
ppc_linux_init_abi);
|
1605 |
|
|
gdbarch_register_osabi (bfd_arch_rs6000, bfd_mach_rs6k, GDB_OSABI_LINUX,
|
1606 |
|
|
ppc_linux_init_abi);
|
1607 |
|
|
|
1608 |
|
|
/* Attach to inferior_created observer. */
|
1609 |
|
|
observer_attach_inferior_created (ppc_linux_inferior_created);
|
1610 |
|
|
|
1611 |
|
|
/* Attach to observers to track __spe_current_active_context. */
|
1612 |
|
|
observer_attach_inferior_created (ppc_linux_spe_context_inferior_created);
|
1613 |
|
|
observer_attach_solib_loaded (ppc_linux_spe_context_solib_loaded);
|
1614 |
|
|
observer_attach_solib_unloaded (ppc_linux_spe_context_solib_unloaded);
|
1615 |
|
|
|
1616 |
|
|
/* Initialize the Linux target descriptions. */
|
1617 |
|
|
initialize_tdesc_powerpc_32l ();
|
1618 |
|
|
initialize_tdesc_powerpc_altivec32l ();
|
1619 |
|
|
initialize_tdesc_powerpc_cell32l ();
|
1620 |
|
|
initialize_tdesc_powerpc_vsx32l ();
|
1621 |
|
|
initialize_tdesc_powerpc_isa205_32l ();
|
1622 |
|
|
initialize_tdesc_powerpc_isa205_altivec32l ();
|
1623 |
|
|
initialize_tdesc_powerpc_isa205_vsx32l ();
|
1624 |
|
|
initialize_tdesc_powerpc_64l ();
|
1625 |
|
|
initialize_tdesc_powerpc_altivec64l ();
|
1626 |
|
|
initialize_tdesc_powerpc_cell64l ();
|
1627 |
|
|
initialize_tdesc_powerpc_vsx64l ();
|
1628 |
|
|
initialize_tdesc_powerpc_isa205_64l ();
|
1629 |
|
|
initialize_tdesc_powerpc_isa205_altivec64l ();
|
1630 |
|
|
initialize_tdesc_powerpc_isa205_vsx64l ();
|
1631 |
|
|
initialize_tdesc_powerpc_e500l ();
|
1632 |
|
|
}
|