OpenCores
URL https://opencores.org/ocsvn/openrisc/openrisc/trunk

Subversion Repositories openrisc

[/] [openrisc/] [trunk/] [gnu-old/] [gdb-7.1/] [gdb/] [ppc-linux-tdep.c] - Blame information for rev 855

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 227 jeremybenn
/* Target-dependent code for GDB, the GNU debugger.
2
 
3
   Copyright (C) 1986, 1987, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
4
   2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
5
   Free Software Foundation, Inc.
6
 
7
   This file is part of GDB.
8
 
9
   This program is free software; you can redistribute it and/or modify
10
   it under the terms of the GNU General Public License as published by
11
   the Free Software Foundation; either version 3 of the License, or
12
   (at your option) any later version.
13
 
14
   This program is distributed in the hope that it will be useful,
15
   but WITHOUT ANY WARRANTY; without even the implied warranty of
16
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17
   GNU General Public License for more details.
18
 
19
   You should have received a copy of the GNU General Public License
20
   along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
21
 
22
#include "defs.h"
23
#include "frame.h"
24
#include "inferior.h"
25
#include "symtab.h"
26
#include "target.h"
27
#include "gdbcore.h"
28
#include "gdbcmd.h"
29
#include "symfile.h"
30
#include "objfiles.h"
31
#include "regcache.h"
32
#include "value.h"
33
#include "osabi.h"
34
#include "regset.h"
35
#include "solib-svr4.h"
36
#include "solib-spu.h"
37
#include "solib.h"
38
#include "solist.h"
39
#include "ppc-tdep.h"
40
#include "ppc-linux-tdep.h"
41
#include "trad-frame.h"
42
#include "frame-unwind.h"
43
#include "tramp-frame.h"
44
#include "observer.h"
45
#include "auxv.h"
46
#include "elf/common.h"
47
#include "exceptions.h"
48
#include "arch-utils.h"
49
#include "spu-tdep.h"
50
#include "xml-syscall.h"
51
 
52
#include "features/rs6000/powerpc-32l.c"
53
#include "features/rs6000/powerpc-altivec32l.c"
54
#include "features/rs6000/powerpc-cell32l.c"
55
#include "features/rs6000/powerpc-vsx32l.c"
56
#include "features/rs6000/powerpc-isa205-32l.c"
57
#include "features/rs6000/powerpc-isa205-altivec32l.c"
58
#include "features/rs6000/powerpc-isa205-vsx32l.c"
59
#include "features/rs6000/powerpc-64l.c"
60
#include "features/rs6000/powerpc-altivec64l.c"
61
#include "features/rs6000/powerpc-cell64l.c"
62
#include "features/rs6000/powerpc-vsx64l.c"
63
#include "features/rs6000/powerpc-isa205-64l.c"
64
#include "features/rs6000/powerpc-isa205-altivec64l.c"
65
#include "features/rs6000/powerpc-isa205-vsx64l.c"
66
#include "features/rs6000/powerpc-e500l.c"
67
 
68
/* The syscall's XML filename for PPC and PPC64.  */
69
#define XML_SYSCALL_FILENAME_PPC "syscalls/ppc-linux.xml"
70
#define XML_SYSCALL_FILENAME_PPC64 "syscalls/ppc64-linux.xml"
71
 
72
/* ppc_linux_memory_remove_breakpoints attempts to remove a breakpoint
73
   in much the same fashion as memory_remove_breakpoint in mem-break.c,
74
   but is careful not to write back the previous contents if the code
75
   in question has changed in between inserting the breakpoint and
76
   removing it.
77
 
78
   Here is the problem that we're trying to solve...
79
 
80
   Once upon a time, before introducing this function to remove
81
   breakpoints from the inferior, setting a breakpoint on a shared
82
   library function prior to running the program would not work
83
   properly.  In order to understand the problem, it is first
84
   necessary to understand a little bit about dynamic linking on
85
   this platform.
86
 
87
   A call to a shared library function is accomplished via a bl
88
   (branch-and-link) instruction whose branch target is an entry
89
   in the procedure linkage table (PLT).  The PLT in the object
90
   file is uninitialized.  To gdb, prior to running the program, the
91
   entries in the PLT are all zeros.
92
 
93
   Once the program starts running, the shared libraries are loaded
94
   and the procedure linkage table is initialized, but the entries in
95
   the table are not (necessarily) resolved.  Once a function is
96
   actually called, the code in the PLT is hit and the function is
97
   resolved.  In order to better illustrate this, an example is in
98
   order; the following example is from the gdb testsuite.
99
 
100
        We start the program shmain.
101
 
102
            [kev@arroyo testsuite]$ ../gdb gdb.base/shmain
103
            [...]
104
 
105
        We place two breakpoints, one on shr1 and the other on main.
106
 
107
            (gdb) b shr1
108
            Breakpoint 1 at 0x100409d4
109
            (gdb) b main
110
            Breakpoint 2 at 0x100006a0: file gdb.base/shmain.c, line 44.
111
 
112
        Examine the instruction (and the immediatly following instruction)
113
        upon which the breakpoint was placed.  Note that the PLT entry
114
        for shr1 contains zeros.
115
 
116
            (gdb) x/2i 0x100409d4
117
            0x100409d4 <shr1>:      .long 0x0
118
            0x100409d8 <shr1+4>:    .long 0x0
119
 
120
        Now run 'til main.
121
 
122
            (gdb) r
123
            Starting program: gdb.base/shmain
124
            Breakpoint 1 at 0xffaf790: file gdb.base/shr1.c, line 19.
125
 
126
            Breakpoint 2, main ()
127
                at gdb.base/shmain.c:44
128
            44        g = 1;
129
 
130
        Examine the PLT again.  Note that the loading of the shared
131
        library has initialized the PLT to code which loads a constant
132
        (which I think is an index into the GOT) into r11 and then
133
        branchs a short distance to the code which actually does the
134
        resolving.
135
 
136
            (gdb) x/2i 0x100409d4
137
            0x100409d4 <shr1>:      li      r11,4
138
            0x100409d8 <shr1+4>:    b       0x10040984 <sg+4>
139
            (gdb) c
140
            Continuing.
141
 
142
            Breakpoint 1, shr1 (x=1)
143
                at gdb.base/shr1.c:19
144
            19        l = 1;
145
 
146
        Now we've hit the breakpoint at shr1.  (The breakpoint was
147
        reset from the PLT entry to the actual shr1 function after the
148
        shared library was loaded.) Note that the PLT entry has been
149
        resolved to contain a branch that takes us directly to shr1.
150
        (The real one, not the PLT entry.)
151
 
152
            (gdb) x/2i 0x100409d4
153
            0x100409d4 <shr1>:      b       0xffaf76c <shr1>
154
            0x100409d8 <shr1+4>:    b       0x10040984 <sg+4>
155
 
156
   The thing to note here is that the PLT entry for shr1 has been
157
   changed twice.
158
 
159
   Now the problem should be obvious.  GDB places a breakpoint (a
160
   trap instruction) on the zero value of the PLT entry for shr1.
161
   Later on, after the shared library had been loaded and the PLT
162
   initialized, GDB gets a signal indicating this fact and attempts
163
   (as it always does when it stops) to remove all the breakpoints.
164
 
165
   The breakpoint removal was causing the former contents (a zero
166
   word) to be written back to the now initialized PLT entry thus
167
   destroying a portion of the initialization that had occurred only a
168
   short time ago.  When execution continued, the zero word would be
169
   executed as an instruction an an illegal instruction trap was
170
   generated instead.  (0 is not a legal instruction.)
171
 
172
   The fix for this problem was fairly straightforward.  The function
173
   memory_remove_breakpoint from mem-break.c was copied to this file,
174
   modified slightly, and renamed to ppc_linux_memory_remove_breakpoint.
175
   In tm-linux.h, MEMORY_REMOVE_BREAKPOINT is defined to call this new
176
   function.
177
 
178
   The differences between ppc_linux_memory_remove_breakpoint () and
179
   memory_remove_breakpoint () are minor.  All that the former does
180
   that the latter does not is check to make sure that the breakpoint
181
   location actually contains a breakpoint (trap instruction) prior
182
   to attempting to write back the old contents.  If it does contain
183
   a trap instruction, we allow the old contents to be written back.
184
   Otherwise, we silently do nothing.
185
 
186
   The big question is whether memory_remove_breakpoint () should be
187
   changed to have the same functionality.  The downside is that more
188
   traffic is generated for remote targets since we'll have an extra
189
   fetch of a memory word each time a breakpoint is removed.
190
 
191
   For the time being, we'll leave this self-modifying-code-friendly
192
   version in ppc-linux-tdep.c, but it ought to be migrated somewhere
193
   else in the event that some other platform has similar needs with
194
   regard to removing breakpoints in some potentially self modifying
195
   code.  */
196
static int
197
ppc_linux_memory_remove_breakpoint (struct gdbarch *gdbarch,
198
                                    struct bp_target_info *bp_tgt)
199
{
200
  CORE_ADDR addr = bp_tgt->placed_address;
201
  const unsigned char *bp;
202
  int val;
203
  int bplen;
204
  gdb_byte old_contents[BREAKPOINT_MAX];
205
  struct cleanup *cleanup;
206
 
207
  /* Determine appropriate breakpoint contents and size for this address.  */
208
  bp = gdbarch_breakpoint_from_pc (gdbarch, &addr, &bplen);
209
  if (bp == NULL)
210
    error (_("Software breakpoints not implemented for this target."));
211
 
212
  /* Make sure we see the memory breakpoints.  */
213
  cleanup = make_show_memory_breakpoints_cleanup (1);
214
  val = target_read_memory (addr, old_contents, bplen);
215
 
216
  /* If our breakpoint is no longer at the address, this means that the
217
     program modified the code on us, so it is wrong to put back the
218
     old value */
219
  if (val == 0 && memcmp (bp, old_contents, bplen) == 0)
220
    val = target_write_memory (addr, bp_tgt->shadow_contents, bplen);
221
 
222
  do_cleanups (cleanup);
223
  return val;
224
}
225
 
226
/* For historic reasons, PPC 32 GNU/Linux follows PowerOpen rather
227
   than the 32 bit SYSV R4 ABI structure return convention - all
228
   structures, no matter their size, are put in memory.  Vectors,
229
   which were added later, do get returned in a register though.  */
230
 
231
static enum return_value_convention
232
ppc_linux_return_value (struct gdbarch *gdbarch, struct type *func_type,
233
                        struct type *valtype, struct regcache *regcache,
234
                        gdb_byte *readbuf, const gdb_byte *writebuf)
235
{
236
  if ((TYPE_CODE (valtype) == TYPE_CODE_STRUCT
237
       || TYPE_CODE (valtype) == TYPE_CODE_UNION)
238
      && !((TYPE_LENGTH (valtype) == 16 || TYPE_LENGTH (valtype) == 8)
239
           && TYPE_VECTOR (valtype)))
240
    return RETURN_VALUE_STRUCT_CONVENTION;
241
  else
242
    return ppc_sysv_abi_return_value (gdbarch, func_type, valtype, regcache,
243
                                      readbuf, writebuf);
244
}
245
 
246
/* Macros for matching instructions.  Note that, since all the
247
   operands are masked off before they're or-ed into the instruction,
248
   you can use -1 to make masks.  */
249
 
250
#define insn_d(opcd, rts, ra, d)                \
251
  ((((opcd) & 0x3f) << 26)                      \
252
   | (((rts) & 0x1f) << 21)                     \
253
   | (((ra) & 0x1f) << 16)                      \
254
   | ((d) & 0xffff))
255
 
256
#define insn_ds(opcd, rts, ra, d, xo)           \
257
  ((((opcd) & 0x3f) << 26)                      \
258
   | (((rts) & 0x1f) << 21)                     \
259
   | (((ra) & 0x1f) << 16)                      \
260
   | ((d) & 0xfffc)                             \
261
   | ((xo) & 0x3))
262
 
263
#define insn_xfx(opcd, rts, spr, xo)            \
264
  ((((opcd) & 0x3f) << 26)                      \
265
   | (((rts) & 0x1f) << 21)                     \
266
   | (((spr) & 0x1f) << 16)                     \
267
   | (((spr) & 0x3e0) << 6)                     \
268
   | (((xo) & 0x3ff) << 1))
269
 
270
/* Read a PPC instruction from memory.  PPC instructions are always
271
   big-endian, no matter what endianness the program is running in, so
272
   we can't use read_memory_integer or one of its friends here.  */
273
static unsigned int
274
read_insn (CORE_ADDR pc)
275
{
276
  unsigned char buf[4];
277
 
278
  read_memory (pc, buf, 4);
279
  return (buf[0] << 24) | (buf[1] << 16) | (buf[2] << 8) | buf[3];
280
}
281
 
282
 
283
/* An instruction to match.  */
284
struct insn_pattern
285
{
286
  unsigned int mask;            /* mask the insn with this... */
287
  unsigned int data;            /* ...and see if it matches this. */
288
  int optional;                 /* If non-zero, this insn may be absent.  */
289
};
290
 
291
/* Return non-zero if the instructions at PC match the series
292
   described in PATTERN, or zero otherwise.  PATTERN is an array of
293
   'struct insn_pattern' objects, terminated by an entry whose mask is
294
   zero.
295
 
296
   When the match is successful, fill INSN[i] with what PATTERN[i]
297
   matched.  If PATTERN[i] is optional, and the instruction wasn't
298
   present, set INSN[i] to 0 (which is not a valid PPC instruction).
299
   INSN should have as many elements as PATTERN.  Note that, if
300
   PATTERN contains optional instructions which aren't present in
301
   memory, then INSN will have holes, so INSN[i] isn't necessarily the
302
   i'th instruction in memory.  */
303
static int
304
insns_match_pattern (CORE_ADDR pc,
305
                     struct insn_pattern *pattern,
306
                     unsigned int *insn)
307
{
308
  int i;
309
 
310
  for (i = 0; pattern[i].mask; i++)
311
    {
312
      insn[i] = read_insn (pc);
313
      if ((insn[i] & pattern[i].mask) == pattern[i].data)
314
        pc += 4;
315
      else if (pattern[i].optional)
316
        insn[i] = 0;
317
      else
318
        return 0;
319
    }
320
 
321
  return 1;
322
}
323
 
324
 
325
/* Return the 'd' field of the d-form instruction INSN, properly
326
   sign-extended.  */
327
static CORE_ADDR
328
insn_d_field (unsigned int insn)
329
{
330
  return ((((CORE_ADDR) insn & 0xffff) ^ 0x8000) - 0x8000);
331
}
332
 
333
 
334
/* Return the 'ds' field of the ds-form instruction INSN, with the two
335
   zero bits concatenated at the right, and properly
336
   sign-extended.  */
337
static CORE_ADDR
338
insn_ds_field (unsigned int insn)
339
{
340
  return ((((CORE_ADDR) insn & 0xfffc) ^ 0x8000) - 0x8000);
341
}
342
 
343
 
344
/* If DESC is the address of a 64-bit PowerPC GNU/Linux function
345
   descriptor, return the descriptor's entry point.  */
346
static CORE_ADDR
347
ppc64_desc_entry_point (struct gdbarch *gdbarch, CORE_ADDR desc)
348
{
349
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
350
  /* The first word of the descriptor is the entry point.  */
351
  return (CORE_ADDR) read_memory_unsigned_integer (desc, 8, byte_order);
352
}
353
 
354
 
355
/* Pattern for the standard linkage function.  These are built by
356
   build_plt_stub in elf64-ppc.c, whose GLINK argument is always
357
   zero.  */
358
static struct insn_pattern ppc64_standard_linkage1[] =
359
  {
360
    /* addis r12, r2, <any> */
361
    { insn_d (-1, -1, -1, 0), insn_d (15, 12, 2, 0), 0 },
362
 
363
    /* std r2, 40(r1) */
364
    { -1, insn_ds (62, 2, 1, 40, 0), 0 },
365
 
366
    /* ld r11, <any>(r12) */
367
    { insn_ds (-1, -1, -1, 0, -1), insn_ds (58, 11, 12, 0, 0), 0 },
368
 
369
    /* addis r12, r12, 1 <optional> */
370
    { insn_d (-1, -1, -1, -1), insn_d (15, 12, 12, 1), 1 },
371
 
372
    /* ld r2, <any>(r12) */
373
    { insn_ds (-1, -1, -1, 0, -1), insn_ds (58, 2, 12, 0, 0), 0 },
374
 
375
    /* addis r12, r12, 1 <optional> */
376
    { insn_d (-1, -1, -1, -1), insn_d (15, 12, 12, 1), 1 },
377
 
378
    /* mtctr r11 */
379
    { insn_xfx (-1, -1, -1, -1), insn_xfx (31, 11, 9, 467), 0 },
380
 
381
    /* ld r11, <any>(r12) */
382
    { insn_ds (-1, -1, -1, 0, -1), insn_ds (58, 11, 12, 0, 0), 0 },
383
 
384
    /* bctr */
385
    { -1, 0x4e800420, 0 },
386
 
387
    { 0, 0, 0 }
388
  };
389
#define PPC64_STANDARD_LINKAGE1_LEN \
390
  (sizeof (ppc64_standard_linkage1) / sizeof (ppc64_standard_linkage1[0]))
391
 
392
static struct insn_pattern ppc64_standard_linkage2[] =
393
  {
394
    /* addis r12, r2, <any> */
395
    { insn_d (-1, -1, -1, 0), insn_d (15, 12, 2, 0), 0 },
396
 
397
    /* std r2, 40(r1) */
398
    { -1, insn_ds (62, 2, 1, 40, 0), 0 },
399
 
400
    /* ld r11, <any>(r12) */
401
    { insn_ds (-1, -1, -1, 0, -1), insn_ds (58, 11, 12, 0, 0), 0 },
402
 
403
    /* addi r12, r12, <any> <optional> */
404
    { insn_d (-1, -1, -1, 0), insn_d (14, 12, 12, 0), 1 },
405
 
406
    /* mtctr r11 */
407
    { insn_xfx (-1, -1, -1, -1), insn_xfx (31, 11, 9, 467), 0 },
408
 
409
    /* ld r2, <any>(r12) */
410
    { insn_ds (-1, -1, -1, 0, -1), insn_ds (58, 2, 12, 0, 0), 0 },
411
 
412
    /* ld r11, <any>(r12) */
413
    { insn_ds (-1, -1, -1, 0, -1), insn_ds (58, 11, 12, 0, 0), 0 },
414
 
415
    /* bctr */
416
    { -1, 0x4e800420, 0 },
417
 
418
    { 0, 0, 0 }
419
  };
420
#define PPC64_STANDARD_LINKAGE2_LEN \
421
  (sizeof (ppc64_standard_linkage2) / sizeof (ppc64_standard_linkage2[0]))
422
 
423
static struct insn_pattern ppc64_standard_linkage3[] =
424
  {
425
    /* std r2, 40(r1) */
426
    { -1, insn_ds (62, 2, 1, 40, 0), 0 },
427
 
428
    /* ld r11, <any>(r2) */
429
    { insn_ds (-1, -1, -1, 0, -1), insn_ds (58, 11, 2, 0, 0), 0 },
430
 
431
    /* addi r2, r2, <any> <optional> */
432
    { insn_d (-1, -1, -1, 0), insn_d (14, 2, 2, 0), 1 },
433
 
434
    /* mtctr r11 */
435
    { insn_xfx (-1, -1, -1, -1), insn_xfx (31, 11, 9, 467), 0 },
436
 
437
    /* ld r11, <any>(r2) */
438
    { insn_ds (-1, -1, -1, 0, -1), insn_ds (58, 11, 2, 0, 0), 0 },
439
 
440
    /* ld r2, <any>(r2) */
441
    { insn_ds (-1, -1, -1, 0, -1), insn_ds (58, 2, 2, 0, 0), 0 },
442
 
443
    /* bctr */
444
    { -1, 0x4e800420, 0 },
445
 
446
    { 0, 0, 0 }
447
  };
448
#define PPC64_STANDARD_LINKAGE3_LEN \
449
  (sizeof (ppc64_standard_linkage3) / sizeof (ppc64_standard_linkage3[0]))
450
 
451
 
452
/* When the dynamic linker is doing lazy symbol resolution, the first
453
   call to a function in another object will go like this:
454
 
455
   - The user's function calls the linkage function:
456
 
457
     100007c4:  4b ff fc d5     bl      10000498
458
     100007c8:  e8 41 00 28     ld      r2,40(r1)
459
 
460
   - The linkage function loads the entry point (and other stuff) from
461
     the function descriptor in the PLT, and jumps to it:
462
 
463
     10000498:  3d 82 00 00     addis   r12,r2,0
464
     1000049c:  f8 41 00 28     std     r2,40(r1)
465
     100004a0:  e9 6c 80 98     ld      r11,-32616(r12)
466
     100004a4:  e8 4c 80 a0     ld      r2,-32608(r12)
467
     100004a8:  7d 69 03 a6     mtctr   r11
468
     100004ac:  e9 6c 80 a8     ld      r11,-32600(r12)
469
     100004b0:  4e 80 04 20     bctr
470
 
471
   - But since this is the first time that PLT entry has been used, it
472
     sends control to its glink entry.  That loads the number of the
473
     PLT entry and jumps to the common glink0 code:
474
 
475
     10000c98:  38 00 00 00     li      r0,0
476
     10000c9c:  4b ff ff dc     b       10000c78
477
 
478
   - The common glink0 code then transfers control to the dynamic
479
     linker's fixup code:
480
 
481
     10000c78:  e8 41 00 28     ld      r2,40(r1)
482
     10000c7c:  3d 82 00 00     addis   r12,r2,0
483
     10000c80:  e9 6c 80 80     ld      r11,-32640(r12)
484
     10000c84:  e8 4c 80 88     ld      r2,-32632(r12)
485
     10000c88:  7d 69 03 a6     mtctr   r11
486
     10000c8c:  e9 6c 80 90     ld      r11,-32624(r12)
487
     10000c90:  4e 80 04 20     bctr
488
 
489
   Eventually, this code will figure out how to skip all of this,
490
   including the dynamic linker.  At the moment, we just get through
491
   the linkage function.  */
492
 
493
/* If the current thread is about to execute a series of instructions
494
   at PC matching the ppc64_standard_linkage pattern, and INSN is the result
495
   from that pattern match, return the code address to which the
496
   standard linkage function will send them.  (This doesn't deal with
497
   dynamic linker lazy symbol resolution stubs.)  */
498
static CORE_ADDR
499
ppc64_standard_linkage1_target (struct frame_info *frame,
500
                                CORE_ADDR pc, unsigned int *insn)
501
{
502
  struct gdbarch *gdbarch = get_frame_arch (frame);
503
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
504
 
505
  /* The address of the function descriptor this linkage function
506
     references.  */
507
  CORE_ADDR desc
508
    = ((CORE_ADDR) get_frame_register_unsigned (frame,
509
                                                tdep->ppc_gp0_regnum + 2)
510
       + (insn_d_field (insn[0]) << 16)
511
       + insn_ds_field (insn[2]));
512
 
513
  /* The first word of the descriptor is the entry point.  Return that.  */
514
  return ppc64_desc_entry_point (gdbarch, desc);
515
}
516
 
517
static struct core_regset_section ppc_linux_vsx_regset_sections[] =
518
{
519
  { ".reg", 268, "general-purpose" },
520
  { ".reg2", 264, "floating-point" },
521
  { ".reg-ppc-vmx", 544, "ppc Altivec" },
522
  { ".reg-ppc-vsx", 256, "POWER7 VSX" },
523
  { NULL, 0}
524
};
525
 
526
static struct core_regset_section ppc_linux_vmx_regset_sections[] =
527
{
528
  { ".reg", 268, "general-purpose" },
529
  { ".reg2", 264, "floating-point" },
530
  { ".reg-ppc-vmx", 544, "ppc Altivec" },
531
  { NULL, 0}
532
};
533
 
534
static struct core_regset_section ppc_linux_fp_regset_sections[] =
535
{
536
  { ".reg", 268, "general-purpose" },
537
  { ".reg2", 264, "floating-point" },
538
  { NULL, 0}
539
};
540
 
541
static CORE_ADDR
542
ppc64_standard_linkage2_target (struct frame_info *frame,
543
                                CORE_ADDR pc, unsigned int *insn)
544
{
545
  struct gdbarch *gdbarch = get_frame_arch (frame);
546
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
547
 
548
  /* The address of the function descriptor this linkage function
549
     references.  */
550
  CORE_ADDR desc
551
    = ((CORE_ADDR) get_frame_register_unsigned (frame,
552
                                                tdep->ppc_gp0_regnum + 2)
553
       + (insn_d_field (insn[0]) << 16)
554
       + insn_ds_field (insn[2]));
555
 
556
  /* The first word of the descriptor is the entry point.  Return that.  */
557
  return ppc64_desc_entry_point (gdbarch, desc);
558
}
559
 
560
static CORE_ADDR
561
ppc64_standard_linkage3_target (struct frame_info *frame,
562
                                CORE_ADDR pc, unsigned int *insn)
563
{
564
  struct gdbarch *gdbarch = get_frame_arch (frame);
565
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
566
 
567
  /* The address of the function descriptor this linkage function
568
     references.  */
569
  CORE_ADDR desc
570
    = ((CORE_ADDR) get_frame_register_unsigned (frame,
571
                                                tdep->ppc_gp0_regnum + 2)
572
       + insn_ds_field (insn[1]));
573
 
574
  /* The first word of the descriptor is the entry point.  Return that.  */
575
  return ppc64_desc_entry_point (gdbarch, desc);
576
}
577
 
578
 
579
/* Given that we've begun executing a call trampoline at PC, return
580
   the entry point of the function the trampoline will go to.  */
581
static CORE_ADDR
582
ppc64_skip_trampoline_code (struct frame_info *frame, CORE_ADDR pc)
583
{
584
  unsigned int ppc64_standard_linkage1_insn[PPC64_STANDARD_LINKAGE1_LEN];
585
  unsigned int ppc64_standard_linkage2_insn[PPC64_STANDARD_LINKAGE2_LEN];
586
  unsigned int ppc64_standard_linkage3_insn[PPC64_STANDARD_LINKAGE3_LEN];
587
  CORE_ADDR target;
588
 
589
  if (insns_match_pattern (pc, ppc64_standard_linkage1,
590
                           ppc64_standard_linkage1_insn))
591
    pc = ppc64_standard_linkage1_target (frame, pc,
592
                                         ppc64_standard_linkage1_insn);
593
  else if (insns_match_pattern (pc, ppc64_standard_linkage2,
594
                                ppc64_standard_linkage2_insn))
595
    pc = ppc64_standard_linkage2_target (frame, pc,
596
                                         ppc64_standard_linkage2_insn);
597
  else if (insns_match_pattern (pc, ppc64_standard_linkage3,
598
                                ppc64_standard_linkage3_insn))
599
    pc = ppc64_standard_linkage3_target (frame, pc,
600
                                         ppc64_standard_linkage3_insn);
601
  else
602
    return 0;
603
 
604
  /* The PLT descriptor will either point to the already resolved target
605
     address, or else to a glink stub.  As the latter carry synthetic @plt
606
     symbols, find_solib_trampoline_target should be able to resolve them.  */
607
  target = find_solib_trampoline_target (frame, pc);
608
  return target? target : pc;
609
}
610
 
611
 
612
/* Support for convert_from_func_ptr_addr (ARCH, ADDR, TARG) on PPC64
613
   GNU/Linux.
614
 
615
   Usually a function pointer's representation is simply the address
616
   of the function.  On GNU/Linux on the PowerPC however, a function
617
   pointer may be a pointer to a function descriptor.
618
 
619
   For PPC64, a function descriptor is a TOC entry, in a data section,
620
   which contains three words: the first word is the address of the
621
   function, the second word is the TOC pointer (r2), and the third word
622
   is the static chain value.
623
 
624
   Throughout GDB it is currently assumed that a function pointer contains
625
   the address of the function, which is not easy to fix.  In addition, the
626
   conversion of a function address to a function pointer would
627
   require allocation of a TOC entry in the inferior's memory space,
628
   with all its drawbacks.  To be able to call C++ virtual methods in
629
   the inferior (which are called via function pointers),
630
   find_function_addr uses this function to get the function address
631
   from a function pointer.
632
 
633
   If ADDR points at what is clearly a function descriptor, transform
634
   it into the address of the corresponding function, if needed.  Be
635
   conservative, otherwise GDB will do the transformation on any
636
   random addresses such as occur when there is no symbol table.  */
637
 
638
static CORE_ADDR
639
ppc64_linux_convert_from_func_ptr_addr (struct gdbarch *gdbarch,
640
                                        CORE_ADDR addr,
641
                                        struct target_ops *targ)
642
{
643
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
644
  struct target_section *s = target_section_by_addr (targ, addr);
645
 
646
  /* Check if ADDR points to a function descriptor.  */
647
  if (s && strcmp (s->the_bfd_section->name, ".opd") == 0)
648
    {
649
      /* There may be relocations that need to be applied to the .opd
650
         section.  Unfortunately, this function may be called at a time
651
         where these relocations have not yet been performed -- this can
652
         happen for example shortly after a library has been loaded with
653
         dlopen, but ld.so has not yet applied the relocations.
654
 
655
         To cope with both the case where the relocation has been applied,
656
         and the case where it has not yet been applied, we do *not* read
657
         the (maybe) relocated value from target memory, but we instead
658
         read the non-relocated value from the BFD, and apply the relocation
659
         offset manually.
660
 
661
         This makes the assumption that all .opd entries are always relocated
662
         by the same offset the section itself was relocated.  This should
663
         always be the case for GNU/Linux executables and shared libraries.
664
         Note that other kind of object files (e.g. those added via
665
         add-symbol-files) will currently never end up here anyway, as this
666
         function accesses *target* sections only; only the main exec and
667
         shared libraries are ever added to the target.  */
668
 
669
      gdb_byte buf[8];
670
      int res;
671
 
672
      res = bfd_get_section_contents (s->bfd, s->the_bfd_section,
673
                                      &buf, addr - s->addr, 8);
674
      if (res != 0)
675
        return extract_unsigned_integer (buf, 8, byte_order)
676
                - bfd_section_vma (s->bfd, s->the_bfd_section) + s->addr;
677
   }
678
 
679
  return addr;
680
}
681
 
682
/* Wrappers to handle Linux-only registers.  */
683
 
684
static void
685
ppc_linux_supply_gregset (const struct regset *regset,
686
                          struct regcache *regcache,
687
                          int regnum, const void *gregs, size_t len)
688
{
689
  const struct ppc_reg_offsets *offsets = regset->descr;
690
 
691
  ppc_supply_gregset (regset, regcache, regnum, gregs, len);
692
 
693
  if (ppc_linux_trap_reg_p (get_regcache_arch (regcache)))
694
    {
695
      /* "orig_r3" is stored 2 slots after "pc".  */
696
      if (regnum == -1 || regnum == PPC_ORIG_R3_REGNUM)
697
        ppc_supply_reg (regcache, PPC_ORIG_R3_REGNUM, gregs,
698
                        offsets->pc_offset + 2 * offsets->gpr_size,
699
                        offsets->gpr_size);
700
 
701
      /* "trap" is stored 8 slots after "pc".  */
702
      if (regnum == -1 || regnum == PPC_TRAP_REGNUM)
703
        ppc_supply_reg (regcache, PPC_TRAP_REGNUM, gregs,
704
                        offsets->pc_offset + 8 * offsets->gpr_size,
705
                        offsets->gpr_size);
706
    }
707
}
708
 
709
static void
710
ppc_linux_collect_gregset (const struct regset *regset,
711
                           const struct regcache *regcache,
712
                           int regnum, void *gregs, size_t len)
713
{
714
  const struct ppc_reg_offsets *offsets = regset->descr;
715
 
716
  /* Clear areas in the linux gregset not written elsewhere.  */
717
  if (regnum == -1)
718
    memset (gregs, 0, len);
719
 
720
  ppc_collect_gregset (regset, regcache, regnum, gregs, len);
721
 
722
  if (ppc_linux_trap_reg_p (get_regcache_arch (regcache)))
723
    {
724
      /* "orig_r3" is stored 2 slots after "pc".  */
725
      if (regnum == -1 || regnum == PPC_ORIG_R3_REGNUM)
726
        ppc_collect_reg (regcache, PPC_ORIG_R3_REGNUM, gregs,
727
                         offsets->pc_offset + 2 * offsets->gpr_size,
728
                         offsets->gpr_size);
729
 
730
      /* "trap" is stored 8 slots after "pc".  */
731
      if (regnum == -1 || regnum == PPC_TRAP_REGNUM)
732
        ppc_collect_reg (regcache, PPC_TRAP_REGNUM, gregs,
733
                         offsets->pc_offset + 8 * offsets->gpr_size,
734
                         offsets->gpr_size);
735
    }
736
}
737
 
738
/* Regset descriptions.  */
739
static const struct ppc_reg_offsets ppc32_linux_reg_offsets =
740
  {
741
    /* General-purpose registers.  */
742
    /* .r0_offset = */ 0,
743
    /* .gpr_size = */ 4,
744
    /* .xr_size = */ 4,
745
    /* .pc_offset = */ 128,
746
    /* .ps_offset = */ 132,
747
    /* .cr_offset = */ 152,
748
    /* .lr_offset = */ 144,
749
    /* .ctr_offset = */ 140,
750
    /* .xer_offset = */ 148,
751
    /* .mq_offset = */ 156,
752
 
753
    /* Floating-point registers.  */
754
    /* .f0_offset = */ 0,
755
    /* .fpscr_offset = */ 256,
756
    /* .fpscr_size = */ 8,
757
 
758
    /* AltiVec registers.  */
759
    /* .vr0_offset = */ 0,
760
    /* .vscr_offset = */ 512 + 12,
761
    /* .vrsave_offset = */ 528
762
  };
763
 
764
static const struct ppc_reg_offsets ppc64_linux_reg_offsets =
765
  {
766
    /* General-purpose registers.  */
767
    /* .r0_offset = */ 0,
768
    /* .gpr_size = */ 8,
769
    /* .xr_size = */ 8,
770
    /* .pc_offset = */ 256,
771
    /* .ps_offset = */ 264,
772
    /* .cr_offset = */ 304,
773
    /* .lr_offset = */ 288,
774
    /* .ctr_offset = */ 280,
775
    /* .xer_offset = */ 296,
776
    /* .mq_offset = */ 312,
777
 
778
    /* Floating-point registers.  */
779
    /* .f0_offset = */ 0,
780
    /* .fpscr_offset = */ 256,
781
    /* .fpscr_size = */ 8,
782
 
783
    /* AltiVec registers.  */
784
    /* .vr0_offset = */ 0,
785
    /* .vscr_offset = */ 512 + 12,
786
    /* .vrsave_offset = */ 528
787
  };
788
 
789
static const struct regset ppc32_linux_gregset = {
790
  &ppc32_linux_reg_offsets,
791
  ppc_linux_supply_gregset,
792
  ppc_linux_collect_gregset,
793
  NULL
794
};
795
 
796
static const struct regset ppc64_linux_gregset = {
797
  &ppc64_linux_reg_offsets,
798
  ppc_linux_supply_gregset,
799
  ppc_linux_collect_gregset,
800
  NULL
801
};
802
 
803
static const struct regset ppc32_linux_fpregset = {
804
  &ppc32_linux_reg_offsets,
805
  ppc_supply_fpregset,
806
  ppc_collect_fpregset,
807
  NULL
808
};
809
 
810
static const struct regset ppc32_linux_vrregset = {
811
  &ppc32_linux_reg_offsets,
812
  ppc_supply_vrregset,
813
  ppc_collect_vrregset,
814
  NULL
815
};
816
 
817
static const struct regset ppc32_linux_vsxregset = {
818
  &ppc32_linux_reg_offsets,
819
  ppc_supply_vsxregset,
820
  ppc_collect_vsxregset,
821
  NULL
822
};
823
 
824
const struct regset *
825
ppc_linux_gregset (int wordsize)
826
{
827
  return wordsize == 8 ? &ppc64_linux_gregset : &ppc32_linux_gregset;
828
}
829
 
830
const struct regset *
831
ppc_linux_fpregset (void)
832
{
833
  return &ppc32_linux_fpregset;
834
}
835
 
836
static const struct regset *
837
ppc_linux_regset_from_core_section (struct gdbarch *core_arch,
838
                                    const char *sect_name, size_t sect_size)
839
{
840
  struct gdbarch_tdep *tdep = gdbarch_tdep (core_arch);
841
  if (strcmp (sect_name, ".reg") == 0)
842
    {
843
      if (tdep->wordsize == 4)
844
        return &ppc32_linux_gregset;
845
      else
846
        return &ppc64_linux_gregset;
847
    }
848
  if (strcmp (sect_name, ".reg2") == 0)
849
    return &ppc32_linux_fpregset;
850
  if (strcmp (sect_name, ".reg-ppc-vmx") == 0)
851
    return &ppc32_linux_vrregset;
852
  if (strcmp (sect_name, ".reg-ppc-vsx") == 0)
853
    return &ppc32_linux_vsxregset;
854
  return NULL;
855
}
856
 
857
static void
858
ppc_linux_sigtramp_cache (struct frame_info *this_frame,
859
                          struct trad_frame_cache *this_cache,
860
                          CORE_ADDR func, LONGEST offset,
861
                          int bias)
862
{
863
  CORE_ADDR base;
864
  CORE_ADDR regs;
865
  CORE_ADDR gpregs;
866
  CORE_ADDR fpregs;
867
  int i;
868
  struct gdbarch *gdbarch = get_frame_arch (this_frame);
869
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
870
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
871
 
872
  base = get_frame_register_unsigned (this_frame,
873
                                      gdbarch_sp_regnum (gdbarch));
874
  if (bias > 0 && get_frame_pc (this_frame) != func)
875
    /* See below, some signal trampolines increment the stack as their
876
       first instruction, need to compensate for that.  */
877
    base -= bias;
878
 
879
  /* Find the address of the register buffer pointer.  */
880
  regs = base + offset;
881
  /* Use that to find the address of the corresponding register
882
     buffers.  */
883
  gpregs = read_memory_unsigned_integer (regs, tdep->wordsize, byte_order);
884
  fpregs = gpregs + 48 * tdep->wordsize;
885
 
886
  /* General purpose.  */
887
  for (i = 0; i < 32; i++)
888
    {
889
      int regnum = i + tdep->ppc_gp0_regnum;
890
      trad_frame_set_reg_addr (this_cache, regnum, gpregs + i * tdep->wordsize);
891
    }
892
  trad_frame_set_reg_addr (this_cache,
893
                           gdbarch_pc_regnum (gdbarch),
894
                           gpregs + 32 * tdep->wordsize);
895
  trad_frame_set_reg_addr (this_cache, tdep->ppc_ctr_regnum,
896
                           gpregs + 35 * tdep->wordsize);
897
  trad_frame_set_reg_addr (this_cache, tdep->ppc_lr_regnum,
898
                           gpregs + 36 * tdep->wordsize);
899
  trad_frame_set_reg_addr (this_cache, tdep->ppc_xer_regnum,
900
                           gpregs + 37 * tdep->wordsize);
901
  trad_frame_set_reg_addr (this_cache, tdep->ppc_cr_regnum,
902
                           gpregs + 38 * tdep->wordsize);
903
 
904
  if (ppc_linux_trap_reg_p (gdbarch))
905
    {
906
      trad_frame_set_reg_addr (this_cache, PPC_ORIG_R3_REGNUM,
907
                               gpregs + 34 * tdep->wordsize);
908
      trad_frame_set_reg_addr (this_cache, PPC_TRAP_REGNUM,
909
                               gpregs + 40 * tdep->wordsize);
910
    }
911
 
912
  if (ppc_floating_point_unit_p (gdbarch))
913
    {
914
      /* Floating point registers.  */
915
      for (i = 0; i < 32; i++)
916
        {
917
          int regnum = i + gdbarch_fp0_regnum (gdbarch);
918
          trad_frame_set_reg_addr (this_cache, regnum,
919
                                   fpregs + i * tdep->wordsize);
920
        }
921
      trad_frame_set_reg_addr (this_cache, tdep->ppc_fpscr_regnum,
922
                         fpregs + 32 * tdep->wordsize);
923
    }
924
  trad_frame_set_id (this_cache, frame_id_build (base, func));
925
}
926
 
927
static void
928
ppc32_linux_sigaction_cache_init (const struct tramp_frame *self,
929
                                  struct frame_info *this_frame,
930
                                  struct trad_frame_cache *this_cache,
931
                                  CORE_ADDR func)
932
{
933
  ppc_linux_sigtramp_cache (this_frame, this_cache, func,
934
                            0xd0 /* Offset to ucontext_t.  */
935
                            + 0x30 /* Offset to .reg.  */,
936
                            0);
937
}
938
 
939
static void
940
ppc64_linux_sigaction_cache_init (const struct tramp_frame *self,
941
                                  struct frame_info *this_frame,
942
                                  struct trad_frame_cache *this_cache,
943
                                  CORE_ADDR func)
944
{
945
  ppc_linux_sigtramp_cache (this_frame, this_cache, func,
946
                            0x80 /* Offset to ucontext_t.  */
947
                            + 0xe0 /* Offset to .reg.  */,
948
                            128);
949
}
950
 
951
static void
952
ppc32_linux_sighandler_cache_init (const struct tramp_frame *self,
953
                                   struct frame_info *this_frame,
954
                                   struct trad_frame_cache *this_cache,
955
                                   CORE_ADDR func)
956
{
957
  ppc_linux_sigtramp_cache (this_frame, this_cache, func,
958
                            0x40 /* Offset to ucontext_t.  */
959
                            + 0x1c /* Offset to .reg.  */,
960
                            0);
961
}
962
 
963
static void
964
ppc64_linux_sighandler_cache_init (const struct tramp_frame *self,
965
                                   struct frame_info *this_frame,
966
                                   struct trad_frame_cache *this_cache,
967
                                   CORE_ADDR func)
968
{
969
  ppc_linux_sigtramp_cache (this_frame, this_cache, func,
970
                            0x80 /* Offset to struct sigcontext.  */
971
                            + 0x38 /* Offset to .reg.  */,
972
                            128);
973
}
974
 
975
static struct tramp_frame ppc32_linux_sigaction_tramp_frame = {
976
  SIGTRAMP_FRAME,
977
  4,
978
  {
979
    { 0x380000ac, -1 }, /* li r0, 172 */
980
    { 0x44000002, -1 }, /* sc */
981
    { TRAMP_SENTINEL_INSN },
982
  },
983
  ppc32_linux_sigaction_cache_init
984
};
985
static struct tramp_frame ppc64_linux_sigaction_tramp_frame = {
986
  SIGTRAMP_FRAME,
987
  4,
988
  {
989
    { 0x38210080, -1 }, /* addi r1,r1,128 */
990
    { 0x380000ac, -1 }, /* li r0, 172 */
991
    { 0x44000002, -1 }, /* sc */
992
    { TRAMP_SENTINEL_INSN },
993
  },
994
  ppc64_linux_sigaction_cache_init
995
};
996
static struct tramp_frame ppc32_linux_sighandler_tramp_frame = {
997
  SIGTRAMP_FRAME,
998
  4,
999
  {
1000
    { 0x38000077, -1 }, /* li r0,119 */
1001
    { 0x44000002, -1 }, /* sc */
1002
    { TRAMP_SENTINEL_INSN },
1003
  },
1004
  ppc32_linux_sighandler_cache_init
1005
};
1006
static struct tramp_frame ppc64_linux_sighandler_tramp_frame = {
1007
  SIGTRAMP_FRAME,
1008
  4,
1009
  {
1010
    { 0x38210080, -1 }, /* addi r1,r1,128 */
1011
    { 0x38000077, -1 }, /* li r0,119 */
1012
    { 0x44000002, -1 }, /* sc */
1013
    { TRAMP_SENTINEL_INSN },
1014
  },
1015
  ppc64_linux_sighandler_cache_init
1016
};
1017
 
1018
 
1019
/* Address to use for displaced stepping.  When debugging a stand-alone
1020
   SPU executable, entry_point_address () will point to an SPU local-store
1021
   address and is thus not usable as displaced stepping location.  We use
1022
   the auxiliary vector to determine the PowerPC-side entry point address
1023
   instead.  */
1024
 
1025
static CORE_ADDR ppc_linux_entry_point_addr = 0;
1026
 
1027
static void
1028
ppc_linux_inferior_created (struct target_ops *target, int from_tty)
1029
{
1030
  ppc_linux_entry_point_addr = 0;
1031
}
1032
 
1033
static CORE_ADDR
1034
ppc_linux_displaced_step_location (struct gdbarch *gdbarch)
1035
{
1036
  if (ppc_linux_entry_point_addr == 0)
1037
    {
1038
      CORE_ADDR addr;
1039
 
1040
      /* Determine entry point from target auxiliary vector.  */
1041
      if (target_auxv_search (&current_target, AT_ENTRY, &addr) <= 0)
1042
        error (_("Cannot find AT_ENTRY auxiliary vector entry."));
1043
 
1044
      /* Make certain that the address points at real code, and not a
1045
         function descriptor.  */
1046
      addr = gdbarch_convert_from_func_ptr_addr (gdbarch, addr,
1047
                                                 &current_target);
1048
 
1049
      /* Inferior calls also use the entry point as a breakpoint location.
1050
         We don't want displaced stepping to interfere with those
1051
         breakpoints, so leave space.  */
1052
      ppc_linux_entry_point_addr = addr + 2 * PPC_INSN_SIZE;
1053
    }
1054
 
1055
  return ppc_linux_entry_point_addr;
1056
}
1057
 
1058
 
1059
/* Return 1 if PPC_ORIG_R3_REGNUM and PPC_TRAP_REGNUM are usable.  */
1060
int
1061
ppc_linux_trap_reg_p (struct gdbarch *gdbarch)
1062
{
1063
  /* If we do not have a target description with registers, then
1064
     the special registers will not be included in the register set.  */
1065
  if (!tdesc_has_registers (gdbarch_target_desc (gdbarch)))
1066
    return 0;
1067
 
1068
  /* If we do, then it is safe to check the size.  */
1069
  return register_size (gdbarch, PPC_ORIG_R3_REGNUM) > 0
1070
         && register_size (gdbarch, PPC_TRAP_REGNUM) > 0;
1071
}
1072
 
1073
/* Return the current system call's number present in the
1074
   r0 register.  When the function fails, it returns -1.  */
1075
static LONGEST
1076
ppc_linux_get_syscall_number (struct gdbarch *gdbarch,
1077
                              ptid_t ptid)
1078
{
1079
  struct regcache *regcache = get_thread_regcache (ptid);
1080
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1081
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1082
  struct cleanup *cleanbuf;
1083
  /* The content of a register */
1084
  gdb_byte *buf;
1085
  /* The result */
1086
  LONGEST ret;
1087
 
1088
  /* Make sure we're in a 32- or 64-bit machine */
1089
  gdb_assert (tdep->wordsize == 4 || tdep->wordsize == 8);
1090
 
1091
  buf = (gdb_byte *) xmalloc (tdep->wordsize * sizeof (gdb_byte));
1092
 
1093
  cleanbuf = make_cleanup (xfree, buf);
1094
 
1095
  /* Getting the system call number from the register.
1096
     When dealing with PowerPC architecture, this information
1097
     is stored at 0th register.  */
1098
  regcache_cooked_read (regcache, tdep->ppc_gp0_regnum, buf);
1099
 
1100
  ret = extract_signed_integer (buf, tdep->wordsize, byte_order);
1101
  do_cleanups (cleanbuf);
1102
 
1103
  return ret;
1104
}
1105
 
1106
static void
1107
ppc_linux_write_pc (struct regcache *regcache, CORE_ADDR pc)
1108
{
1109
  struct gdbarch *gdbarch = get_regcache_arch (regcache);
1110
 
1111
  regcache_cooked_write_unsigned (regcache, gdbarch_pc_regnum (gdbarch), pc);
1112
 
1113
  /* Set special TRAP register to -1 to prevent the kernel from
1114
     messing with the PC we just installed, if we happen to be
1115
     within an interrupted system call that the kernel wants to
1116
     restart.
1117
 
1118
     Note that after we return from the dummy call, the TRAP and
1119
     ORIG_R3 registers will be automatically restored, and the
1120
     kernel continues to restart the system call at this point.  */
1121
  if (ppc_linux_trap_reg_p (gdbarch))
1122
    regcache_cooked_write_unsigned (regcache, PPC_TRAP_REGNUM, -1);
1123
}
1124
 
1125
static int
1126
ppc_linux_spu_section (bfd *abfd, asection *asect, void *user_data)
1127
{
1128
  return strncmp (bfd_section_name (abfd, asect), "SPU/", 4) == 0;
1129
}
1130
 
1131
static const struct target_desc *
1132
ppc_linux_core_read_description (struct gdbarch *gdbarch,
1133
                                 struct target_ops *target,
1134
                                 bfd *abfd)
1135
{
1136
  asection *cell = bfd_sections_find_if (abfd, ppc_linux_spu_section, NULL);
1137
  asection *altivec = bfd_get_section_by_name (abfd, ".reg-ppc-vmx");
1138
  asection *vsx = bfd_get_section_by_name (abfd, ".reg-ppc-vsx");
1139
  asection *section = bfd_get_section_by_name (abfd, ".reg");
1140
  if (! section)
1141
    return NULL;
1142
 
1143
  switch (bfd_section_size (abfd, section))
1144
    {
1145
    case 48 * 4:
1146
      if (cell)
1147
        return tdesc_powerpc_cell32l;
1148
      else if (vsx)
1149
        return tdesc_powerpc_vsx32l;
1150
      else if (altivec)
1151
        return tdesc_powerpc_altivec32l;
1152
      else
1153
        return tdesc_powerpc_32l;
1154
 
1155
    case 48 * 8:
1156
      if (cell)
1157
        return tdesc_powerpc_cell64l;
1158
      else if (vsx)
1159
        return tdesc_powerpc_vsx64l;
1160
      else if (altivec)
1161
        return tdesc_powerpc_altivec64l;
1162
      else
1163
        return tdesc_powerpc_64l;
1164
 
1165
    default:
1166
      return NULL;
1167
    }
1168
}
1169
 
1170
 
1171
/* Cell/B.E. active SPE context tracking support.  */
1172
 
1173
static struct objfile *spe_context_objfile = NULL;
1174
static CORE_ADDR spe_context_lm_addr = 0;
1175
static CORE_ADDR spe_context_offset = 0;
1176
 
1177
static ptid_t spe_context_cache_ptid;
1178
static CORE_ADDR spe_context_cache_address;
1179
 
1180
/* Hook into inferior_created, solib_loaded, and solib_unloaded observers
1181
   to track whether we've loaded a version of libspe2 (as static or dynamic
1182
   library) that provides the __spe_current_active_context variable.  */
1183
static void
1184
ppc_linux_spe_context_lookup (struct objfile *objfile)
1185
{
1186
  struct minimal_symbol *sym;
1187
 
1188
  if (!objfile)
1189
    {
1190
      spe_context_objfile = NULL;
1191
      spe_context_lm_addr = 0;
1192
      spe_context_offset = 0;
1193
      spe_context_cache_ptid = minus_one_ptid;
1194
      spe_context_cache_address = 0;
1195
      return;
1196
    }
1197
 
1198
  sym = lookup_minimal_symbol ("__spe_current_active_context", NULL, objfile);
1199
  if (sym)
1200
    {
1201
      spe_context_objfile = objfile;
1202
      spe_context_lm_addr = svr4_fetch_objfile_link_map (objfile);
1203
      spe_context_offset = SYMBOL_VALUE_ADDRESS (sym);
1204
      spe_context_cache_ptid = minus_one_ptid;
1205
      spe_context_cache_address = 0;
1206
      return;
1207
    }
1208
}
1209
 
1210
static void
1211
ppc_linux_spe_context_inferior_created (struct target_ops *t, int from_tty)
1212
{
1213
  struct objfile *objfile;
1214
 
1215
  ppc_linux_spe_context_lookup (NULL);
1216
  ALL_OBJFILES (objfile)
1217
    ppc_linux_spe_context_lookup (objfile);
1218
}
1219
 
1220
static void
1221
ppc_linux_spe_context_solib_loaded (struct so_list *so)
1222
{
1223
  if (strstr (so->so_original_name, "/libspe") != NULL)
1224
    {
1225
      solib_read_symbols (so, so->from_tty ? SYMFILE_VERBOSE : 0);
1226
      ppc_linux_spe_context_lookup (so->objfile);
1227
    }
1228
}
1229
 
1230
static void
1231
ppc_linux_spe_context_solib_unloaded (struct so_list *so)
1232
{
1233
  if (so->objfile == spe_context_objfile)
1234
    ppc_linux_spe_context_lookup (NULL);
1235
}
1236
 
1237
/* Retrieve contents of the N'th element in the current thread's
1238
   linked SPE context list into ID and NPC.  Return the address of
1239
   said context element, or 0 if not found.  */
1240
static CORE_ADDR
1241
ppc_linux_spe_context (int wordsize, enum bfd_endian byte_order,
1242
                       int n, int *id, unsigned int *npc)
1243
{
1244
  CORE_ADDR spe_context = 0;
1245
  gdb_byte buf[16];
1246
  int i;
1247
 
1248
  /* Quick exit if we have not found __spe_current_active_context.  */
1249
  if (!spe_context_objfile)
1250
    return 0;
1251
 
1252
  /* Look up cached address of thread-local variable.  */
1253
  if (!ptid_equal (spe_context_cache_ptid, inferior_ptid))
1254
    {
1255
      struct target_ops *target = &current_target;
1256
      volatile struct gdb_exception ex;
1257
 
1258
      while (target && !target->to_get_thread_local_address)
1259
        target = find_target_beneath (target);
1260
      if (!target)
1261
        return 0;
1262
 
1263
      TRY_CATCH (ex, RETURN_MASK_ERROR)
1264
        {
1265
          /* We do not call target_translate_tls_address here, because
1266
             svr4_fetch_objfile_link_map may invalidate the frame chain,
1267
             which must not do while inside a frame sniffer.
1268
 
1269
             Instead, we have cached the lm_addr value, and use that to
1270
             directly call the target's to_get_thread_local_address.  */
1271
          spe_context_cache_address
1272
            = target->to_get_thread_local_address (target, inferior_ptid,
1273
                                                   spe_context_lm_addr,
1274
                                                   spe_context_offset);
1275
          spe_context_cache_ptid = inferior_ptid;
1276
        }
1277
 
1278
      if (ex.reason < 0)
1279
        return 0;
1280
    }
1281
 
1282
  /* Read variable value.  */
1283
  if (target_read_memory (spe_context_cache_address, buf, wordsize) == 0)
1284
    spe_context = extract_unsigned_integer (buf, wordsize, byte_order);
1285
 
1286
  /* Cyle through to N'th linked list element.  */
1287
  for (i = 0; i < n && spe_context; i++)
1288
    if (target_read_memory (spe_context + align_up (12, wordsize),
1289
                            buf, wordsize) == 0)
1290
      spe_context = extract_unsigned_integer (buf, wordsize, byte_order);
1291
    else
1292
      spe_context = 0;
1293
 
1294
  /* Read current context.  */
1295
  if (spe_context
1296
      && target_read_memory (spe_context, buf, 12) != 0)
1297
    spe_context = 0;
1298
 
1299
  /* Extract data elements.  */
1300
  if (spe_context)
1301
    {
1302
      if (id)
1303
        *id = extract_signed_integer (buf, 4, byte_order);
1304
      if (npc)
1305
        *npc = extract_unsigned_integer (buf + 4, 4, byte_order);
1306
    }
1307
 
1308
  return spe_context;
1309
}
1310
 
1311
 
1312
/* Cell/B.E. cross-architecture unwinder support.  */
1313
 
1314
struct ppu2spu_cache
1315
{
1316
  struct frame_id frame_id;
1317
  struct regcache *regcache;
1318
};
1319
 
1320
static struct gdbarch *
1321
ppu2spu_prev_arch (struct frame_info *this_frame, void **this_cache)
1322
{
1323
  struct ppu2spu_cache *cache = *this_cache;
1324
  return get_regcache_arch (cache->regcache);
1325
}
1326
 
1327
static void
1328
ppu2spu_this_id (struct frame_info *this_frame,
1329
                 void **this_cache, struct frame_id *this_id)
1330
{
1331
  struct ppu2spu_cache *cache = *this_cache;
1332
  *this_id = cache->frame_id;
1333
}
1334
 
1335
static struct value *
1336
ppu2spu_prev_register (struct frame_info *this_frame,
1337
                       void **this_cache, int regnum)
1338
{
1339
  struct ppu2spu_cache *cache = *this_cache;
1340
  struct gdbarch *gdbarch = get_regcache_arch (cache->regcache);
1341
  gdb_byte *buf;
1342
 
1343
  buf = alloca (register_size (gdbarch, regnum));
1344
  regcache_cooked_read (cache->regcache, regnum, buf);
1345
  return frame_unwind_got_bytes (this_frame, regnum, buf);
1346
}
1347
 
1348
struct ppu2spu_data
1349
{
1350
  struct gdbarch *gdbarch;
1351
  int id;
1352
  unsigned int npc;
1353
  gdb_byte gprs[128*16];
1354
};
1355
 
1356
static int
1357
ppu2spu_unwind_register (void *src, int regnum, gdb_byte *buf)
1358
{
1359
  struct ppu2spu_data *data = src;
1360
  enum bfd_endian byte_order = gdbarch_byte_order (data->gdbarch);
1361
 
1362
  if (regnum >= 0 && regnum < SPU_NUM_GPRS)
1363
    memcpy (buf, data->gprs + 16*regnum, 16);
1364
  else if (regnum == SPU_ID_REGNUM)
1365
    store_unsigned_integer (buf, 4, byte_order, data->id);
1366
  else if (regnum == SPU_PC_REGNUM)
1367
    store_unsigned_integer (buf, 4, byte_order, data->npc);
1368
  else
1369
    return 0;
1370
 
1371
  return 1;
1372
}
1373
 
1374
static int
1375
ppu2spu_sniffer (const struct frame_unwind *self,
1376
                 struct frame_info *this_frame, void **this_prologue_cache)
1377
{
1378
  struct gdbarch *gdbarch = get_frame_arch (this_frame);
1379
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1380
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1381
  struct ppu2spu_data data;
1382
  struct frame_info *fi;
1383
  CORE_ADDR base, func, backchain, spe_context;
1384
  gdb_byte buf[8];
1385
  int n = 0;
1386
 
1387
  /* Count the number of SPU contexts already in the frame chain.  */
1388
  for (fi = get_next_frame (this_frame); fi; fi = get_next_frame (fi))
1389
    if (get_frame_type (fi) == ARCH_FRAME
1390
        && gdbarch_bfd_arch_info (get_frame_arch (fi))->arch == bfd_arch_spu)
1391
      n++;
1392
 
1393
  base = get_frame_sp (this_frame);
1394
  func = get_frame_pc (this_frame);
1395
  if (target_read_memory (base, buf, tdep->wordsize))
1396
    return 0;
1397
  backchain = extract_unsigned_integer (buf, tdep->wordsize, byte_order);
1398
 
1399
  spe_context = ppc_linux_spe_context (tdep->wordsize, byte_order,
1400
                                       n, &data.id, &data.npc);
1401
  if (spe_context && base <= spe_context && spe_context < backchain)
1402
    {
1403
      char annex[32];
1404
 
1405
      /* Find gdbarch for SPU.  */
1406
      struct gdbarch_info info;
1407
      gdbarch_info_init (&info);
1408
      info.bfd_arch_info = bfd_lookup_arch (bfd_arch_spu, bfd_mach_spu);
1409
      info.byte_order = BFD_ENDIAN_BIG;
1410
      info.osabi = GDB_OSABI_LINUX;
1411
      info.tdep_info = (void *) &data.id;
1412
      data.gdbarch = gdbarch_find_by_info (info);
1413
      if (!data.gdbarch)
1414
        return 0;
1415
 
1416
      xsnprintf (annex, sizeof annex, "%d/regs", data.id);
1417
      if (target_read (&current_target, TARGET_OBJECT_SPU, annex,
1418
                       data.gprs, 0, sizeof data.gprs)
1419
          == sizeof data.gprs)
1420
        {
1421
          struct ppu2spu_cache *cache
1422
            = FRAME_OBSTACK_CALLOC (1, struct ppu2spu_cache);
1423
 
1424
          struct address_space *aspace = get_frame_address_space (this_frame);
1425
          struct regcache *regcache = regcache_xmalloc (data.gdbarch, aspace);
1426
          struct cleanup *cleanups = make_cleanup_regcache_xfree (regcache);
1427
          regcache_save (regcache, ppu2spu_unwind_register, &data);
1428
          discard_cleanups (cleanups);
1429
 
1430
          cache->frame_id = frame_id_build (base, func);
1431
          cache->regcache = regcache;
1432
          *this_prologue_cache = cache;
1433
          return 1;
1434
        }
1435
    }
1436
 
1437
  return 0;
1438
}
1439
 
1440
static void
1441
ppu2spu_dealloc_cache (struct frame_info *self, void *this_cache)
1442
{
1443
  struct ppu2spu_cache *cache = this_cache;
1444
  regcache_xfree (cache->regcache);
1445
}
1446
 
1447
static const struct frame_unwind ppu2spu_unwind = {
1448
  ARCH_FRAME,
1449
  ppu2spu_this_id,
1450
  ppu2spu_prev_register,
1451
  NULL,
1452
  ppu2spu_sniffer,
1453
  ppu2spu_dealloc_cache,
1454
  ppu2spu_prev_arch,
1455
};
1456
 
1457
 
1458
static void
1459
ppc_linux_init_abi (struct gdbarch_info info,
1460
                    struct gdbarch *gdbarch)
1461
{
1462
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1463
  struct tdesc_arch_data *tdesc_data = (void *) info.tdep_info;
1464
 
1465
  /* PPC GNU/Linux uses either 64-bit or 128-bit long doubles; where
1466
     128-bit, they are IBM long double, not IEEE quad long double as
1467
     in the System V ABI PowerPC Processor Supplement.  We can safely
1468
     let them default to 128-bit, since the debug info will give the
1469
     size of type actually used in each case.  */
1470
  set_gdbarch_long_double_bit (gdbarch, 16 * TARGET_CHAR_BIT);
1471
  set_gdbarch_long_double_format (gdbarch, floatformats_ibm_long_double);
1472
 
1473
  /* Handle inferior calls during interrupted system calls.  */
1474
  set_gdbarch_write_pc (gdbarch, ppc_linux_write_pc);
1475
 
1476
  /* Get the syscall number from the arch's register.  */
1477
  set_gdbarch_get_syscall_number (gdbarch, ppc_linux_get_syscall_number);
1478
 
1479
  if (tdep->wordsize == 4)
1480
    {
1481
      /* Until November 2001, gcc did not comply with the 32 bit SysV
1482
         R4 ABI requirement that structures less than or equal to 8
1483
         bytes should be returned in registers.  Instead GCC was using
1484
         the the AIX/PowerOpen ABI - everything returned in memory
1485
         (well ignoring vectors that is).  When this was corrected, it
1486
         wasn't fixed for GNU/Linux native platform.  Use the
1487
         PowerOpen struct convention.  */
1488
      set_gdbarch_return_value (gdbarch, ppc_linux_return_value);
1489
 
1490
      set_gdbarch_memory_remove_breakpoint (gdbarch,
1491
                                            ppc_linux_memory_remove_breakpoint);
1492
 
1493
      /* Shared library handling.  */
1494
      set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
1495
      set_solib_svr4_fetch_link_map_offsets
1496
        (gdbarch, svr4_ilp32_fetch_link_map_offsets);
1497
 
1498
      /* Setting the correct XML syscall filename.  */
1499
      set_xml_syscall_file_name (XML_SYSCALL_FILENAME_PPC);
1500
 
1501
      /* Trampolines.  */
1502
      tramp_frame_prepend_unwinder (gdbarch, &ppc32_linux_sigaction_tramp_frame);
1503
      tramp_frame_prepend_unwinder (gdbarch, &ppc32_linux_sighandler_tramp_frame);
1504
 
1505
      /* BFD target for core files.  */
1506
      if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE)
1507
        set_gdbarch_gcore_bfd_target (gdbarch, "elf32-powerpcle");
1508
      else
1509
        set_gdbarch_gcore_bfd_target (gdbarch, "elf32-powerpc");
1510
    }
1511
 
1512
  if (tdep->wordsize == 8)
1513
    {
1514
      /* Handle PPC GNU/Linux 64-bit function pointers (which are really
1515
         function descriptors).  */
1516
      set_gdbarch_convert_from_func_ptr_addr
1517
        (gdbarch, ppc64_linux_convert_from_func_ptr_addr);
1518
 
1519
      /* Shared library handling.  */
1520
      set_gdbarch_skip_trampoline_code (gdbarch, ppc64_skip_trampoline_code);
1521
      set_solib_svr4_fetch_link_map_offsets
1522
        (gdbarch, svr4_lp64_fetch_link_map_offsets);
1523
 
1524
      /* Setting the correct XML syscall filename.  */
1525
      set_xml_syscall_file_name (XML_SYSCALL_FILENAME_PPC64);
1526
 
1527
      /* Trampolines.  */
1528
      tramp_frame_prepend_unwinder (gdbarch, &ppc64_linux_sigaction_tramp_frame);
1529
      tramp_frame_prepend_unwinder (gdbarch, &ppc64_linux_sighandler_tramp_frame);
1530
 
1531
      /* BFD target for core files.  */
1532
      if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE)
1533
        set_gdbarch_gcore_bfd_target (gdbarch, "elf64-powerpcle");
1534
      else
1535
        set_gdbarch_gcore_bfd_target (gdbarch, "elf64-powerpc");
1536
    }
1537
  set_gdbarch_regset_from_core_section (gdbarch, ppc_linux_regset_from_core_section);
1538
  set_gdbarch_core_read_description (gdbarch, ppc_linux_core_read_description);
1539
 
1540
  /* Supported register sections.  */
1541
  if (tdesc_find_feature (info.target_desc,
1542
                          "org.gnu.gdb.power.vsx"))
1543
    set_gdbarch_core_regset_sections (gdbarch, ppc_linux_vsx_regset_sections);
1544
  else if (tdesc_find_feature (info.target_desc,
1545
                               "org.gnu.gdb.power.altivec"))
1546
    set_gdbarch_core_regset_sections (gdbarch, ppc_linux_vmx_regset_sections);
1547
  else
1548
    set_gdbarch_core_regset_sections (gdbarch, ppc_linux_fp_regset_sections);
1549
 
1550
  /* Enable TLS support.  */
1551
  set_gdbarch_fetch_tls_load_module_address (gdbarch,
1552
                                             svr4_fetch_objfile_link_map);
1553
 
1554
  if (tdesc_data)
1555
    {
1556
      const struct tdesc_feature *feature;
1557
 
1558
      /* If we have target-described registers, then we can safely
1559
         reserve a number for PPC_ORIG_R3_REGNUM and PPC_TRAP_REGNUM
1560
         (whether they are described or not).  */
1561
      gdb_assert (gdbarch_num_regs (gdbarch) <= PPC_ORIG_R3_REGNUM);
1562
      set_gdbarch_num_regs (gdbarch, PPC_TRAP_REGNUM + 1);
1563
 
1564
      /* If they are present, then assign them to the reserved number.  */
1565
      feature = tdesc_find_feature (info.target_desc,
1566
                                    "org.gnu.gdb.power.linux");
1567
      if (feature != NULL)
1568
        {
1569
          tdesc_numbered_register (feature, tdesc_data,
1570
                                   PPC_ORIG_R3_REGNUM, "orig_r3");
1571
          tdesc_numbered_register (feature, tdesc_data,
1572
                                   PPC_TRAP_REGNUM, "trap");
1573
        }
1574
    }
1575
 
1576
  /* Enable Cell/B.E. if supported by the target.  */
1577
  if (tdesc_compatible_p (info.target_desc,
1578
                          bfd_lookup_arch (bfd_arch_spu, bfd_mach_spu)))
1579
    {
1580
      /* Cell/B.E. multi-architecture support.  */
1581
      set_spu_solib_ops (gdbarch);
1582
 
1583
      /* Cell/B.E. cross-architecture unwinder support.  */
1584
      frame_unwind_prepend_unwinder (gdbarch, &ppu2spu_unwind);
1585
 
1586
      /* The default displaced_step_at_entry_point doesn't work for
1587
         SPU stand-alone executables.  */
1588
      set_gdbarch_displaced_step_location (gdbarch,
1589
                                           ppc_linux_displaced_step_location);
1590
    }
1591
}
1592
 
1593
/* Provide a prototype to silence -Wmissing-prototypes.  */
1594
extern initialize_file_ftype _initialize_ppc_linux_tdep;
1595
 
1596
void
1597
_initialize_ppc_linux_tdep (void)
1598
{
1599
  /* Register for all sub-familes of the POWER/PowerPC: 32-bit and
1600
     64-bit PowerPC, and the older rs6k.  */
1601
  gdbarch_register_osabi (bfd_arch_powerpc, bfd_mach_ppc, GDB_OSABI_LINUX,
1602
                         ppc_linux_init_abi);
1603
  gdbarch_register_osabi (bfd_arch_powerpc, bfd_mach_ppc64, GDB_OSABI_LINUX,
1604
                         ppc_linux_init_abi);
1605
  gdbarch_register_osabi (bfd_arch_rs6000, bfd_mach_rs6k, GDB_OSABI_LINUX,
1606
                         ppc_linux_init_abi);
1607
 
1608
  /* Attach to inferior_created observer.  */
1609
  observer_attach_inferior_created (ppc_linux_inferior_created);
1610
 
1611
  /* Attach to observers to track __spe_current_active_context.  */
1612
  observer_attach_inferior_created (ppc_linux_spe_context_inferior_created);
1613
  observer_attach_solib_loaded (ppc_linux_spe_context_solib_loaded);
1614
  observer_attach_solib_unloaded (ppc_linux_spe_context_solib_unloaded);
1615
 
1616
  /* Initialize the Linux target descriptions.  */
1617
  initialize_tdesc_powerpc_32l ();
1618
  initialize_tdesc_powerpc_altivec32l ();
1619
  initialize_tdesc_powerpc_cell32l ();
1620
  initialize_tdesc_powerpc_vsx32l ();
1621
  initialize_tdesc_powerpc_isa205_32l ();
1622
  initialize_tdesc_powerpc_isa205_altivec32l ();
1623
  initialize_tdesc_powerpc_isa205_vsx32l ();
1624
  initialize_tdesc_powerpc_64l ();
1625
  initialize_tdesc_powerpc_altivec64l ();
1626
  initialize_tdesc_powerpc_cell64l ();
1627
  initialize_tdesc_powerpc_vsx64l ();
1628
  initialize_tdesc_powerpc_isa205_64l ();
1629
  initialize_tdesc_powerpc_isa205_altivec64l ();
1630
  initialize_tdesc_powerpc_isa205_vsx64l ();
1631
  initialize_tdesc_powerpc_e500l ();
1632
}

powered by: WebSVN 2.1.0

© copyright 1999-2025 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.