OpenCores
URL https://opencores.org/ocsvn/openrisc/openrisc/trunk

Subversion Repositories openrisc

[/] [openrisc/] [trunk/] [gnu-old/] [gdb-7.1/] [gdb/] [prologue-value.c] - Blame information for rev 842

Details | Compare with Previous | View Log

Line No. Rev Author Line
1 227 jeremybenn
/* Prologue value handling for GDB.
2
   Copyright 2003, 2004, 2005, 2007, 2008, 2009, 2010
3
   Free Software Foundation, Inc.
4
 
5
   This file is part of GDB.
6
 
7
   This program is free software; you can redistribute it and/or modify
8
   it under the terms of the GNU General Public License as published by
9
   the Free Software Foundation; either version 3 of the License, or
10
   (at your option) any later version.
11
 
12
   This program is distributed in the hope that it will be useful,
13
   but WITHOUT ANY WARRANTY; without even the implied warranty of
14
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15
   GNU General Public License for more details.
16
 
17
   You should have received a copy of the GNU General Public License
18
   along with this program.  If not, see <http://www.gnu.org/licenses/>. */
19
 
20
#include "defs.h"
21
#include "gdb_string.h"
22
#include "gdb_assert.h"
23
#include "prologue-value.h"
24
#include "regcache.h"
25
 
26
 
27
/* Constructors.  */
28
 
29
pv_t
30
pv_unknown (void)
31
{
32
  pv_t v = { pvk_unknown, 0, 0 };
33
 
34
  return v;
35
}
36
 
37
 
38
pv_t
39
pv_constant (CORE_ADDR k)
40
{
41
  pv_t v;
42
 
43
  v.kind = pvk_constant;
44
  v.reg = -1;                   /* for debugging */
45
  v.k = k;
46
 
47
  return v;
48
}
49
 
50
 
51
pv_t
52
pv_register (int reg, CORE_ADDR k)
53
{
54
  pv_t v;
55
 
56
  v.kind = pvk_register;
57
  v.reg = reg;
58
  v.k = k;
59
 
60
  return v;
61
}
62
 
63
 
64
 
65
/* Arithmetic operations.  */
66
 
67
/* If one of *A and *B is a constant, and the other isn't, swap the
68
   values as necessary to ensure that *B is the constant.  This can
69
   reduce the number of cases we need to analyze in the functions
70
   below.  */
71
static void
72
constant_last (pv_t *a, pv_t *b)
73
{
74
  if (a->kind == pvk_constant
75
      && b->kind != pvk_constant)
76
    {
77
      pv_t temp = *a;
78
      *a = *b;
79
      *b = temp;
80
    }
81
}
82
 
83
 
84
pv_t
85
pv_add (pv_t a, pv_t b)
86
{
87
  constant_last (&a, &b);
88
 
89
  /* We can add a constant to a register.  */
90
  if (a.kind == pvk_register
91
      && b.kind == pvk_constant)
92
    return pv_register (a.reg, a.k + b.k);
93
 
94
  /* We can add a constant to another constant.  */
95
  else if (a.kind == pvk_constant
96
           && b.kind == pvk_constant)
97
    return pv_constant (a.k + b.k);
98
 
99
  /* Anything else we don't know how to add.  We don't have a
100
     representation for, say, the sum of two registers, or a multiple
101
     of a register's value (adding a register to itself).  */
102
  else
103
    return pv_unknown ();
104
}
105
 
106
 
107
pv_t
108
pv_add_constant (pv_t v, CORE_ADDR k)
109
{
110
  /* Rather than thinking of all the cases we can and can't handle,
111
     we'll just let pv_add take care of that for us.  */
112
  return pv_add (v, pv_constant (k));
113
}
114
 
115
 
116
pv_t
117
pv_subtract (pv_t a, pv_t b)
118
{
119
  /* This isn't quite the same as negating B and adding it to A, since
120
     we don't have a representation for the negation of anything but a
121
     constant.  For example, we can't negate { pvk_register, R1, 10 },
122
     but we do know that { pvk_register, R1, 10 } minus { pvk_register,
123
     R1, 5 } is { pvk_constant, <ignored>, 5 }.
124
 
125
     This means, for example, that we could subtract two stack
126
     addresses; they're both relative to the original SP.  Since the
127
     frame pointer is set based on the SP, its value will be the
128
     original SP plus some constant (probably zero), so we can use its
129
     value just fine, too.  */
130
 
131
  constant_last (&a, &b);
132
 
133
  /* We can subtract two constants.  */
134
  if (a.kind == pvk_constant
135
      && b.kind == pvk_constant)
136
    return pv_constant (a.k - b.k);
137
 
138
  /* We can subtract a constant from a register.  */
139
  else if (a.kind == pvk_register
140
           && b.kind == pvk_constant)
141
    return pv_register (a.reg, a.k - b.k);
142
 
143
  /* We can subtract a register from itself, yielding a constant.  */
144
  else if (a.kind == pvk_register
145
           && b.kind == pvk_register
146
           && a.reg == b.reg)
147
    return pv_constant (a.k - b.k);
148
 
149
  /* We don't know how to subtract anything else.  */
150
  else
151
    return pv_unknown ();
152
}
153
 
154
 
155
pv_t
156
pv_logical_and (pv_t a, pv_t b)
157
{
158
  constant_last (&a, &b);
159
 
160
  /* We can 'and' two constants.  */
161
  if (a.kind == pvk_constant
162
      && b.kind == pvk_constant)
163
    return pv_constant (a.k & b.k);
164
 
165
  /* We can 'and' anything with the constant zero.  */
166
  else if (b.kind == pvk_constant
167
           && b.k == 0)
168
    return pv_constant (0);
169
 
170
  /* We can 'and' anything with ~0.  */
171
  else if (b.kind == pvk_constant
172
           && b.k == ~ (CORE_ADDR) 0)
173
    return a;
174
 
175
  /* We can 'and' a register with itself.  */
176
  else if (a.kind == pvk_register
177
           && b.kind == pvk_register
178
           && a.reg == b.reg
179
           && a.k == b.k)
180
    return a;
181
 
182
  /* Otherwise, we don't know.  */
183
  else
184
    return pv_unknown ();
185
}
186
 
187
 
188
 
189
/* Examining prologue values.  */
190
 
191
int
192
pv_is_identical (pv_t a, pv_t b)
193
{
194
  if (a.kind != b.kind)
195
    return 0;
196
 
197
  switch (a.kind)
198
    {
199
    case pvk_unknown:
200
      return 1;
201
    case pvk_constant:
202
      return (a.k == b.k);
203
    case pvk_register:
204
      return (a.reg == b.reg && a.k == b.k);
205
    default:
206
      gdb_assert (0);
207
    }
208
}
209
 
210
 
211
int
212
pv_is_constant (pv_t a)
213
{
214
  return (a.kind == pvk_constant);
215
}
216
 
217
 
218
int
219
pv_is_register (pv_t a, int r)
220
{
221
  return (a.kind == pvk_register
222
          && a.reg == r);
223
}
224
 
225
 
226
int
227
pv_is_register_k (pv_t a, int r, CORE_ADDR k)
228
{
229
  return (a.kind == pvk_register
230
          && a.reg == r
231
          && a.k == k);
232
}
233
 
234
 
235
enum pv_boolean
236
pv_is_array_ref (pv_t addr, CORE_ADDR size,
237
                 pv_t array_addr, CORE_ADDR array_len,
238
                 CORE_ADDR elt_size,
239
                 int *i)
240
{
241
  /* Note that, since .k is a CORE_ADDR, and CORE_ADDR is unsigned, if
242
     addr is *before* the start of the array, then this isn't going to
243
     be negative...  */
244
  pv_t offset = pv_subtract (addr, array_addr);
245
 
246
  if (offset.kind == pvk_constant)
247
    {
248
      /* This is a rather odd test.  We want to know if the SIZE bytes
249
         at ADDR don't overlap the array at all, so you'd expect it to
250
         be an || expression: "if we're completely before || we're
251
         completely after".  But with unsigned arithmetic, things are
252
         different: since it's a number circle, not a number line, the
253
         right values for offset.k are actually one contiguous range.  */
254
      if (offset.k <= -size
255
          && offset.k >= array_len * elt_size)
256
        return pv_definite_no;
257
      else if (offset.k % elt_size != 0
258
               || size != elt_size)
259
        return pv_maybe;
260
      else
261
        {
262
          *i = offset.k / elt_size;
263
          return pv_definite_yes;
264
        }
265
    }
266
  else
267
    return pv_maybe;
268
}
269
 
270
 
271
 
272
/* Areas.  */
273
 
274
 
275
/* A particular value known to be stored in an area.
276
 
277
   Entries form a ring, sorted by unsigned offset from the area's base
278
   register's value.  Since entries can straddle the wrap-around point,
279
   unsigned offsets form a circle, not a number line, so the list
280
   itself is structured the same way --- there is no inherent head.
281
   The entry with the lowest offset simply follows the entry with the
282
   highest offset.  Entries may abut, but never overlap.  The area's
283
   'entry' pointer points to an arbitrary node in the ring.  */
284
struct area_entry
285
{
286
  /* Links in the doubly-linked ring.  */
287
  struct area_entry *prev, *next;
288
 
289
  /* Offset of this entry's address from the value of the base
290
     register.  */
291
  CORE_ADDR offset;
292
 
293
  /* The size of this entry.  Note that an entry may wrap around from
294
     the end of the address space to the beginning.  */
295
  CORE_ADDR size;
296
 
297
  /* The value stored here.  */
298
  pv_t value;
299
};
300
 
301
 
302
struct pv_area
303
{
304
  /* This area's base register.  */
305
  int base_reg;
306
 
307
  /* The mask to apply to addresses, to make the wrap-around happen at
308
     the right place.  */
309
  CORE_ADDR addr_mask;
310
 
311
  /* An element of the doubly-linked ring of entries, or zero if we
312
     have none.  */
313
  struct area_entry *entry;
314
};
315
 
316
 
317
struct pv_area *
318
make_pv_area (int base_reg, int addr_bit)
319
{
320
  struct pv_area *a = (struct pv_area *) xmalloc (sizeof (*a));
321
 
322
  memset (a, 0, sizeof (*a));
323
 
324
  a->base_reg = base_reg;
325
  a->entry = 0;
326
 
327
  /* Remember that shift amounts equal to the type's width are
328
     undefined.  */
329
  a->addr_mask = ((((CORE_ADDR) 1 << (addr_bit - 1)) - 1) << 1) | 1;
330
 
331
  return a;
332
}
333
 
334
 
335
/* Delete all entries from AREA.  */
336
static void
337
clear_entries (struct pv_area *area)
338
{
339
  struct area_entry *e = area->entry;
340
 
341
  if (e)
342
    {
343
      /* This needs to be a do-while loop, in order to actually
344
         process the node being checked for in the terminating
345
         condition.  */
346
      do
347
        {
348
          struct area_entry *next = e->next;
349
          xfree (e);
350
          e = next;
351
        }
352
      while (e != area->entry);
353
 
354
      area->entry = 0;
355
    }
356
}
357
 
358
 
359
void
360
free_pv_area (struct pv_area *area)
361
{
362
  clear_entries (area);
363
  xfree (area);
364
}
365
 
366
 
367
static void
368
do_free_pv_area_cleanup (void *arg)
369
{
370
  free_pv_area ((struct pv_area *) arg);
371
}
372
 
373
 
374
struct cleanup *
375
make_cleanup_free_pv_area (struct pv_area *area)
376
{
377
  return make_cleanup (do_free_pv_area_cleanup, (void *) area);
378
}
379
 
380
 
381
int
382
pv_area_store_would_trash (struct pv_area *area, pv_t addr)
383
{
384
  /* It may seem odd that pvk_constant appears here --- after all,
385
     that's the case where we know the most about the address!  But
386
     pv_areas are always relative to a register, and we don't know the
387
     value of the register, so we can't compare entry addresses to
388
     constants.  */
389
  return (addr.kind == pvk_unknown
390
          || addr.kind == pvk_constant
391
          || (addr.kind == pvk_register && addr.reg != area->base_reg));
392
}
393
 
394
 
395
/* Return a pointer to the first entry we hit in AREA starting at
396
   OFFSET and going forward.
397
 
398
   This may return zero, if AREA has no entries.
399
 
400
   And since the entries are a ring, this may return an entry that
401
   entirely preceeds OFFSET.  This is the correct behavior: depending
402
   on the sizes involved, we could still overlap such an area, with
403
   wrap-around.  */
404
static struct area_entry *
405
find_entry (struct pv_area *area, CORE_ADDR offset)
406
{
407
  struct area_entry *e = area->entry;
408
 
409
  if (! e)
410
    return 0;
411
 
412
  /* If the next entry would be better than the current one, then scan
413
     forward.  Since we use '<' in this loop, it always terminates.
414
 
415
     Note that, even setting aside the addr_mask stuff, we must not
416
     simplify this, in high school algebra fashion, to
417
     (e->next->offset < e->offset), because of the way < interacts
418
     with wrap-around.  We have to subtract offset from both sides to
419
     make sure both things we're comparing are on the same side of the
420
     discontinuity.  */
421
  while (((e->next->offset - offset) & area->addr_mask)
422
         < ((e->offset - offset) & area->addr_mask))
423
    e = e->next;
424
 
425
  /* If the previous entry would be better than the current one, then
426
     scan backwards.  */
427
  while (((e->prev->offset - offset) & area->addr_mask)
428
         < ((e->offset - offset) & area->addr_mask))
429
    e = e->prev;
430
 
431
  /* In case there's some locality to the searches, set the area's
432
     pointer to the entry we've found.  */
433
  area->entry = e;
434
 
435
  return e;
436
}
437
 
438
 
439
/* Return non-zero if the SIZE bytes at OFFSET would overlap ENTRY;
440
   return zero otherwise.  AREA is the area to which ENTRY belongs.  */
441
static int
442
overlaps (struct pv_area *area,
443
          struct area_entry *entry,
444
          CORE_ADDR offset,
445
          CORE_ADDR size)
446
{
447
  /* Think carefully about wrap-around before simplifying this.  */
448
  return (((entry->offset - offset) & area->addr_mask) < size
449
          || ((offset - entry->offset) & area->addr_mask) < entry->size);
450
}
451
 
452
 
453
void
454
pv_area_store (struct pv_area *area,
455
               pv_t addr,
456
               CORE_ADDR size,
457
               pv_t value)
458
{
459
  /* Remove any (potentially) overlapping entries.  */
460
  if (pv_area_store_would_trash (area, addr))
461
    clear_entries (area);
462
  else
463
    {
464
      CORE_ADDR offset = addr.k;
465
      struct area_entry *e = find_entry (area, offset);
466
 
467
      /* Delete all entries that we would overlap.  */
468
      while (e && overlaps (area, e, offset, size))
469
        {
470
          struct area_entry *next = (e->next == e) ? 0 : e->next;
471
          e->prev->next = e->next;
472
          e->next->prev = e->prev;
473
 
474
          xfree (e);
475
          e = next;
476
        }
477
 
478
      /* Move the area's pointer to the next remaining entry.  This
479
         will also zero the pointer if we've deleted all the entries.  */
480
      area->entry = e;
481
    }
482
 
483
  /* Now, there are no entries overlapping us, and area->entry is
484
     either zero or pointing at the closest entry after us.  We can
485
     just insert ourselves before that.
486
 
487
     But if we're storing an unknown value, don't bother --- that's
488
     the default.  */
489
  if (value.kind == pvk_unknown)
490
    return;
491
  else
492
    {
493
      CORE_ADDR offset = addr.k;
494
      struct area_entry *e = (struct area_entry *) xmalloc (sizeof (*e));
495
      e->offset = offset;
496
      e->size = size;
497
      e->value = value;
498
 
499
      if (area->entry)
500
        {
501
          e->prev = area->entry->prev;
502
          e->next = area->entry;
503
          e->prev->next = e->next->prev = e;
504
        }
505
      else
506
        {
507
          e->prev = e->next = e;
508
          area->entry = e;
509
        }
510
    }
511
}
512
 
513
 
514
pv_t
515
pv_area_fetch (struct pv_area *area, pv_t addr, CORE_ADDR size)
516
{
517
  /* If we have no entries, or we can't decide how ADDR relates to the
518
     entries we do have, then the value is unknown.  */
519
  if (! area->entry
520
      || pv_area_store_would_trash (area, addr))
521
    return pv_unknown ();
522
  else
523
    {
524
      CORE_ADDR offset = addr.k;
525
      struct area_entry *e = find_entry (area, offset);
526
 
527
      /* If this entry exactly matches what we're looking for, then
528
         we're set.  Otherwise, say it's unknown.  */
529
      if (e->offset == offset && e->size == size)
530
        return e->value;
531
      else
532
        return pv_unknown ();
533
    }
534
}
535
 
536
 
537
int
538
pv_area_find_reg (struct pv_area *area,
539
                  struct gdbarch *gdbarch,
540
                  int reg,
541
                  CORE_ADDR *offset_p)
542
{
543
  struct area_entry *e = area->entry;
544
 
545
  if (e)
546
    do
547
      {
548
        if (e->value.kind == pvk_register
549
            && e->value.reg == reg
550
            && e->value.k == 0
551
            && e->size == register_size (gdbarch, reg))
552
          {
553
            if (offset_p)
554
              *offset_p = e->offset;
555
            return 1;
556
          }
557
 
558
        e = e->next;
559
      }
560
    while (e != area->entry);
561
 
562
  return 0;
563
}
564
 
565
 
566
void
567
pv_area_scan (struct pv_area *area,
568
              void (*func) (void *closure,
569
                            pv_t addr,
570
                            CORE_ADDR size,
571
                            pv_t value),
572
              void *closure)
573
{
574
  struct area_entry *e = area->entry;
575
  pv_t addr;
576
 
577
  addr.kind = pvk_register;
578
  addr.reg = area->base_reg;
579
 
580
  if (e)
581
    do
582
      {
583
        addr.k = e->offset;
584
        func (closure, addr, e->size, e->value);
585
        e = e->next;
586
      }
587
    while (e != area->entry);
588
}

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.