1 |
227 |
jeremybenn |
/* Native support code for PPC AIX, for GDB the GNU debugger.
|
2 |
|
|
|
3 |
|
|
Copyright (C) 2006, 2007, 2008, 2009, 2010 Free Software Foundation, Inc.
|
4 |
|
|
|
5 |
|
|
Free Software Foundation, Inc.
|
6 |
|
|
|
7 |
|
|
This file is part of GDB.
|
8 |
|
|
|
9 |
|
|
This program is free software; you can redistribute it and/or modify
|
10 |
|
|
it under the terms of the GNU General Public License as published by
|
11 |
|
|
the Free Software Foundation; either version 3 of the License, or
|
12 |
|
|
(at your option) any later version.
|
13 |
|
|
|
14 |
|
|
This program is distributed in the hope that it will be useful,
|
15 |
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
16 |
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
17 |
|
|
GNU General Public License for more details.
|
18 |
|
|
|
19 |
|
|
You should have received a copy of the GNU General Public License
|
20 |
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>. */
|
21 |
|
|
|
22 |
|
|
#include "defs.h"
|
23 |
|
|
#include "gdb_string.h"
|
24 |
|
|
#include "gdb_assert.h"
|
25 |
|
|
#include "osabi.h"
|
26 |
|
|
#include "regcache.h"
|
27 |
|
|
#include "regset.h"
|
28 |
|
|
#include "gdbtypes.h"
|
29 |
|
|
#include "gdbcore.h"
|
30 |
|
|
#include "target.h"
|
31 |
|
|
#include "value.h"
|
32 |
|
|
#include "infcall.h"
|
33 |
|
|
#include "objfiles.h"
|
34 |
|
|
#include "breakpoint.h"
|
35 |
|
|
#include "rs6000-tdep.h"
|
36 |
|
|
#include "ppc-tdep.h"
|
37 |
|
|
|
38 |
|
|
/* Hook for determining the TOC address when calling functions in the
|
39 |
|
|
inferior under AIX. The initialization code in rs6000-nat.c sets
|
40 |
|
|
this hook to point to find_toc_address. */
|
41 |
|
|
|
42 |
|
|
CORE_ADDR (*rs6000_find_toc_address_hook) (CORE_ADDR) = NULL;
|
43 |
|
|
|
44 |
|
|
/* If the kernel has to deliver a signal, it pushes a sigcontext
|
45 |
|
|
structure on the stack and then calls the signal handler, passing
|
46 |
|
|
the address of the sigcontext in an argument register. Usually
|
47 |
|
|
the signal handler doesn't save this register, so we have to
|
48 |
|
|
access the sigcontext structure via an offset from the signal handler
|
49 |
|
|
frame.
|
50 |
|
|
The following constants were determined by experimentation on AIX 3.2. */
|
51 |
|
|
#define SIG_FRAME_PC_OFFSET 96
|
52 |
|
|
#define SIG_FRAME_LR_OFFSET 108
|
53 |
|
|
#define SIG_FRAME_FP_OFFSET 284
|
54 |
|
|
|
55 |
|
|
|
56 |
|
|
/* Core file support. */
|
57 |
|
|
|
58 |
|
|
static struct ppc_reg_offsets rs6000_aix32_reg_offsets =
|
59 |
|
|
{
|
60 |
|
|
/* General-purpose registers. */
|
61 |
|
|
208, /* r0_offset */
|
62 |
|
|
4, /* gpr_size */
|
63 |
|
|
4, /* xr_size */
|
64 |
|
|
24, /* pc_offset */
|
65 |
|
|
28, /* ps_offset */
|
66 |
|
|
32, /* cr_offset */
|
67 |
|
|
36, /* lr_offset */
|
68 |
|
|
40, /* ctr_offset */
|
69 |
|
|
44, /* xer_offset */
|
70 |
|
|
48, /* mq_offset */
|
71 |
|
|
|
72 |
|
|
/* Floating-point registers. */
|
73 |
|
|
336, /* f0_offset */
|
74 |
|
|
56, /* fpscr_offset */
|
75 |
|
|
4, /* fpscr_size */
|
76 |
|
|
|
77 |
|
|
/* AltiVec registers. */
|
78 |
|
|
-1, /* vr0_offset */
|
79 |
|
|
-1, /* vscr_offset */
|
80 |
|
|
-1 /* vrsave_offset */
|
81 |
|
|
};
|
82 |
|
|
|
83 |
|
|
static struct ppc_reg_offsets rs6000_aix64_reg_offsets =
|
84 |
|
|
{
|
85 |
|
|
/* General-purpose registers. */
|
86 |
|
|
0, /* r0_offset */
|
87 |
|
|
8, /* gpr_size */
|
88 |
|
|
4, /* xr_size */
|
89 |
|
|
264, /* pc_offset */
|
90 |
|
|
256, /* ps_offset */
|
91 |
|
|
288, /* cr_offset */
|
92 |
|
|
272, /* lr_offset */
|
93 |
|
|
280, /* ctr_offset */
|
94 |
|
|
292, /* xer_offset */
|
95 |
|
|
-1, /* mq_offset */
|
96 |
|
|
|
97 |
|
|
/* Floating-point registers. */
|
98 |
|
|
312, /* f0_offset */
|
99 |
|
|
296, /* fpscr_offset */
|
100 |
|
|
4, /* fpscr_size */
|
101 |
|
|
|
102 |
|
|
/* AltiVec registers. */
|
103 |
|
|
-1, /* vr0_offset */
|
104 |
|
|
-1, /* vscr_offset */
|
105 |
|
|
-1 /* vrsave_offset */
|
106 |
|
|
};
|
107 |
|
|
|
108 |
|
|
|
109 |
|
|
/* Supply register REGNUM in the general-purpose register set REGSET
|
110 |
|
|
from the buffer specified by GREGS and LEN to register cache
|
111 |
|
|
REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
|
112 |
|
|
|
113 |
|
|
static void
|
114 |
|
|
rs6000_aix_supply_regset (const struct regset *regset,
|
115 |
|
|
struct regcache *regcache, int regnum,
|
116 |
|
|
const void *gregs, size_t len)
|
117 |
|
|
{
|
118 |
|
|
ppc_supply_gregset (regset, regcache, regnum, gregs, len);
|
119 |
|
|
ppc_supply_fpregset (regset, regcache, regnum, gregs, len);
|
120 |
|
|
}
|
121 |
|
|
|
122 |
|
|
/* Collect register REGNUM in the general-purpose register set
|
123 |
|
|
REGSET. from register cache REGCACHE into the buffer specified by
|
124 |
|
|
GREGS and LEN. If REGNUM is -1, do this for all registers in
|
125 |
|
|
REGSET. */
|
126 |
|
|
|
127 |
|
|
static void
|
128 |
|
|
rs6000_aix_collect_regset (const struct regset *regset,
|
129 |
|
|
const struct regcache *regcache, int regnum,
|
130 |
|
|
void *gregs, size_t len)
|
131 |
|
|
{
|
132 |
|
|
ppc_collect_gregset (regset, regcache, regnum, gregs, len);
|
133 |
|
|
ppc_collect_fpregset (regset, regcache, regnum, gregs, len);
|
134 |
|
|
}
|
135 |
|
|
|
136 |
|
|
/* AIX register set. */
|
137 |
|
|
|
138 |
|
|
static struct regset rs6000_aix32_regset =
|
139 |
|
|
{
|
140 |
|
|
&rs6000_aix32_reg_offsets,
|
141 |
|
|
rs6000_aix_supply_regset,
|
142 |
|
|
rs6000_aix_collect_regset,
|
143 |
|
|
};
|
144 |
|
|
|
145 |
|
|
static struct regset rs6000_aix64_regset =
|
146 |
|
|
{
|
147 |
|
|
&rs6000_aix64_reg_offsets,
|
148 |
|
|
rs6000_aix_supply_regset,
|
149 |
|
|
rs6000_aix_collect_regset,
|
150 |
|
|
};
|
151 |
|
|
|
152 |
|
|
/* Return the appropriate register set for the core section identified
|
153 |
|
|
by SECT_NAME and SECT_SIZE. */
|
154 |
|
|
|
155 |
|
|
static const struct regset *
|
156 |
|
|
rs6000_aix_regset_from_core_section (struct gdbarch *gdbarch,
|
157 |
|
|
const char *sect_name, size_t sect_size)
|
158 |
|
|
{
|
159 |
|
|
if (gdbarch_tdep (gdbarch)->wordsize == 4)
|
160 |
|
|
{
|
161 |
|
|
if (strcmp (sect_name, ".reg") == 0 && sect_size >= 592)
|
162 |
|
|
return &rs6000_aix32_regset;
|
163 |
|
|
}
|
164 |
|
|
else
|
165 |
|
|
{
|
166 |
|
|
if (strcmp (sect_name, ".reg") == 0 && sect_size >= 576)
|
167 |
|
|
return &rs6000_aix64_regset;
|
168 |
|
|
}
|
169 |
|
|
|
170 |
|
|
return NULL;
|
171 |
|
|
}
|
172 |
|
|
|
173 |
|
|
|
174 |
|
|
/* Pass the arguments in either registers, or in the stack. In RS/6000,
|
175 |
|
|
the first eight words of the argument list (that might be less than
|
176 |
|
|
eight parameters if some parameters occupy more than one word) are
|
177 |
|
|
passed in r3..r10 registers. float and double parameters are
|
178 |
|
|
passed in fpr's, in addition to that. Rest of the parameters if any
|
179 |
|
|
are passed in user stack. There might be cases in which half of the
|
180 |
|
|
parameter is copied into registers, the other half is pushed into
|
181 |
|
|
stack.
|
182 |
|
|
|
183 |
|
|
Stack must be aligned on 64-bit boundaries when synthesizing
|
184 |
|
|
function calls.
|
185 |
|
|
|
186 |
|
|
If the function is returning a structure, then the return address is passed
|
187 |
|
|
in r3, then the first 7 words of the parameters can be passed in registers,
|
188 |
|
|
starting from r4. */
|
189 |
|
|
|
190 |
|
|
static CORE_ADDR
|
191 |
|
|
rs6000_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
|
192 |
|
|
struct regcache *regcache, CORE_ADDR bp_addr,
|
193 |
|
|
int nargs, struct value **args, CORE_ADDR sp,
|
194 |
|
|
int struct_return, CORE_ADDR struct_addr)
|
195 |
|
|
{
|
196 |
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
197 |
|
|
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
198 |
|
|
int ii;
|
199 |
|
|
int len = 0;
|
200 |
|
|
int argno; /* current argument number */
|
201 |
|
|
int argbytes; /* current argument byte */
|
202 |
|
|
gdb_byte tmp_buffer[50];
|
203 |
|
|
int f_argno = 0; /* current floating point argno */
|
204 |
|
|
int wordsize = gdbarch_tdep (gdbarch)->wordsize;
|
205 |
|
|
CORE_ADDR func_addr = find_function_addr (function, NULL);
|
206 |
|
|
|
207 |
|
|
struct value *arg = 0;
|
208 |
|
|
struct type *type;
|
209 |
|
|
|
210 |
|
|
ULONGEST saved_sp;
|
211 |
|
|
|
212 |
|
|
/* The calling convention this function implements assumes the
|
213 |
|
|
processor has floating-point registers. We shouldn't be using it
|
214 |
|
|
on PPC variants that lack them. */
|
215 |
|
|
gdb_assert (ppc_floating_point_unit_p (gdbarch));
|
216 |
|
|
|
217 |
|
|
/* The first eight words of ther arguments are passed in registers.
|
218 |
|
|
Copy them appropriately. */
|
219 |
|
|
ii = 0;
|
220 |
|
|
|
221 |
|
|
/* If the function is returning a `struct', then the first word
|
222 |
|
|
(which will be passed in r3) is used for struct return address.
|
223 |
|
|
In that case we should advance one word and start from r4
|
224 |
|
|
register to copy parameters. */
|
225 |
|
|
if (struct_return)
|
226 |
|
|
{
|
227 |
|
|
regcache_raw_write_unsigned (regcache, tdep->ppc_gp0_regnum + 3,
|
228 |
|
|
struct_addr);
|
229 |
|
|
ii++;
|
230 |
|
|
}
|
231 |
|
|
|
232 |
|
|
/*
|
233 |
|
|
effectively indirect call... gcc does...
|
234 |
|
|
|
235 |
|
|
return_val example( float, int);
|
236 |
|
|
|
237 |
|
|
eabi:
|
238 |
|
|
float in fp0, int in r3
|
239 |
|
|
offset of stack on overflow 8/16
|
240 |
|
|
for varargs, must go by type.
|
241 |
|
|
power open:
|
242 |
|
|
float in r3&r4, int in r5
|
243 |
|
|
offset of stack on overflow different
|
244 |
|
|
both:
|
245 |
|
|
return in r3 or f0. If no float, must study how gcc emulates floats;
|
246 |
|
|
pay attention to arg promotion.
|
247 |
|
|
User may have to cast\args to handle promotion correctly
|
248 |
|
|
since gdb won't know if prototype supplied or not.
|
249 |
|
|
*/
|
250 |
|
|
|
251 |
|
|
for (argno = 0, argbytes = 0; argno < nargs && ii < 8; ++ii)
|
252 |
|
|
{
|
253 |
|
|
int reg_size = register_size (gdbarch, ii + 3);
|
254 |
|
|
|
255 |
|
|
arg = args[argno];
|
256 |
|
|
type = check_typedef (value_type (arg));
|
257 |
|
|
len = TYPE_LENGTH (type);
|
258 |
|
|
|
259 |
|
|
if (TYPE_CODE (type) == TYPE_CODE_FLT)
|
260 |
|
|
{
|
261 |
|
|
|
262 |
|
|
/* Floating point arguments are passed in fpr's, as well as gpr's.
|
263 |
|
|
There are 13 fpr's reserved for passing parameters. At this point
|
264 |
|
|
there is no way we would run out of them. */
|
265 |
|
|
|
266 |
|
|
gdb_assert (len <= 8);
|
267 |
|
|
|
268 |
|
|
regcache_cooked_write (regcache,
|
269 |
|
|
tdep->ppc_fp0_regnum + 1 + f_argno,
|
270 |
|
|
value_contents (arg));
|
271 |
|
|
++f_argno;
|
272 |
|
|
}
|
273 |
|
|
|
274 |
|
|
if (len > reg_size)
|
275 |
|
|
{
|
276 |
|
|
|
277 |
|
|
/* Argument takes more than one register. */
|
278 |
|
|
while (argbytes < len)
|
279 |
|
|
{
|
280 |
|
|
gdb_byte word[MAX_REGISTER_SIZE];
|
281 |
|
|
memset (word, 0, reg_size);
|
282 |
|
|
memcpy (word,
|
283 |
|
|
((char *) value_contents (arg)) + argbytes,
|
284 |
|
|
(len - argbytes) > reg_size
|
285 |
|
|
? reg_size : len - argbytes);
|
286 |
|
|
regcache_cooked_write (regcache,
|
287 |
|
|
tdep->ppc_gp0_regnum + 3 + ii,
|
288 |
|
|
word);
|
289 |
|
|
++ii, argbytes += reg_size;
|
290 |
|
|
|
291 |
|
|
if (ii >= 8)
|
292 |
|
|
goto ran_out_of_registers_for_arguments;
|
293 |
|
|
}
|
294 |
|
|
argbytes = 0;
|
295 |
|
|
--ii;
|
296 |
|
|
}
|
297 |
|
|
else
|
298 |
|
|
{
|
299 |
|
|
/* Argument can fit in one register. No problem. */
|
300 |
|
|
int adj = gdbarch_byte_order (gdbarch)
|
301 |
|
|
== BFD_ENDIAN_BIG ? reg_size - len : 0;
|
302 |
|
|
gdb_byte word[MAX_REGISTER_SIZE];
|
303 |
|
|
|
304 |
|
|
memset (word, 0, reg_size);
|
305 |
|
|
memcpy (word, value_contents (arg), len);
|
306 |
|
|
regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 3 +ii, word);
|
307 |
|
|
}
|
308 |
|
|
++argno;
|
309 |
|
|
}
|
310 |
|
|
|
311 |
|
|
ran_out_of_registers_for_arguments:
|
312 |
|
|
|
313 |
|
|
regcache_cooked_read_unsigned (regcache,
|
314 |
|
|
gdbarch_sp_regnum (gdbarch),
|
315 |
|
|
&saved_sp);
|
316 |
|
|
|
317 |
|
|
/* Location for 8 parameters are always reserved. */
|
318 |
|
|
sp -= wordsize * 8;
|
319 |
|
|
|
320 |
|
|
/* Another six words for back chain, TOC register, link register, etc. */
|
321 |
|
|
sp -= wordsize * 6;
|
322 |
|
|
|
323 |
|
|
/* Stack pointer must be quadword aligned. */
|
324 |
|
|
sp &= -16;
|
325 |
|
|
|
326 |
|
|
/* If there are more arguments, allocate space for them in
|
327 |
|
|
the stack, then push them starting from the ninth one. */
|
328 |
|
|
|
329 |
|
|
if ((argno < nargs) || argbytes)
|
330 |
|
|
{
|
331 |
|
|
int space = 0, jj;
|
332 |
|
|
|
333 |
|
|
if (argbytes)
|
334 |
|
|
{
|
335 |
|
|
space += ((len - argbytes + 3) & -4);
|
336 |
|
|
jj = argno + 1;
|
337 |
|
|
}
|
338 |
|
|
else
|
339 |
|
|
jj = argno;
|
340 |
|
|
|
341 |
|
|
for (; jj < nargs; ++jj)
|
342 |
|
|
{
|
343 |
|
|
struct value *val = args[jj];
|
344 |
|
|
space += ((TYPE_LENGTH (value_type (val))) + 3) & -4;
|
345 |
|
|
}
|
346 |
|
|
|
347 |
|
|
/* Add location required for the rest of the parameters. */
|
348 |
|
|
space = (space + 15) & -16;
|
349 |
|
|
sp -= space;
|
350 |
|
|
|
351 |
|
|
/* This is another instance we need to be concerned about
|
352 |
|
|
securing our stack space. If we write anything underneath %sp
|
353 |
|
|
(r1), we might conflict with the kernel who thinks he is free
|
354 |
|
|
to use this area. So, update %sp first before doing anything
|
355 |
|
|
else. */
|
356 |
|
|
|
357 |
|
|
regcache_raw_write_signed (regcache,
|
358 |
|
|
gdbarch_sp_regnum (gdbarch), sp);
|
359 |
|
|
|
360 |
|
|
/* If the last argument copied into the registers didn't fit there
|
361 |
|
|
completely, push the rest of it into stack. */
|
362 |
|
|
|
363 |
|
|
if (argbytes)
|
364 |
|
|
{
|
365 |
|
|
write_memory (sp + 24 + (ii * 4),
|
366 |
|
|
value_contents (arg) + argbytes,
|
367 |
|
|
len - argbytes);
|
368 |
|
|
++argno;
|
369 |
|
|
ii += ((len - argbytes + 3) & -4) / 4;
|
370 |
|
|
}
|
371 |
|
|
|
372 |
|
|
/* Push the rest of the arguments into stack. */
|
373 |
|
|
for (; argno < nargs; ++argno)
|
374 |
|
|
{
|
375 |
|
|
|
376 |
|
|
arg = args[argno];
|
377 |
|
|
type = check_typedef (value_type (arg));
|
378 |
|
|
len = TYPE_LENGTH (type);
|
379 |
|
|
|
380 |
|
|
|
381 |
|
|
/* Float types should be passed in fpr's, as well as in the
|
382 |
|
|
stack. */
|
383 |
|
|
if (TYPE_CODE (type) == TYPE_CODE_FLT && f_argno < 13)
|
384 |
|
|
{
|
385 |
|
|
|
386 |
|
|
gdb_assert (len <= 8);
|
387 |
|
|
|
388 |
|
|
regcache_cooked_write (regcache,
|
389 |
|
|
tdep->ppc_fp0_regnum + 1 + f_argno,
|
390 |
|
|
value_contents (arg));
|
391 |
|
|
++f_argno;
|
392 |
|
|
}
|
393 |
|
|
|
394 |
|
|
write_memory (sp + 24 + (ii * 4), value_contents (arg), len);
|
395 |
|
|
ii += ((len + 3) & -4) / 4;
|
396 |
|
|
}
|
397 |
|
|
}
|
398 |
|
|
|
399 |
|
|
/* Set the stack pointer. According to the ABI, the SP is meant to
|
400 |
|
|
be set _before_ the corresponding stack space is used. On AIX,
|
401 |
|
|
this even applies when the target has been completely stopped!
|
402 |
|
|
Not doing this can lead to conflicts with the kernel which thinks
|
403 |
|
|
that it still has control over this not-yet-allocated stack
|
404 |
|
|
region. */
|
405 |
|
|
regcache_raw_write_signed (regcache, gdbarch_sp_regnum (gdbarch), sp);
|
406 |
|
|
|
407 |
|
|
/* Set back chain properly. */
|
408 |
|
|
store_unsigned_integer (tmp_buffer, wordsize, byte_order, saved_sp);
|
409 |
|
|
write_memory (sp, tmp_buffer, wordsize);
|
410 |
|
|
|
411 |
|
|
/* Point the inferior function call's return address at the dummy's
|
412 |
|
|
breakpoint. */
|
413 |
|
|
regcache_raw_write_signed (regcache, tdep->ppc_lr_regnum, bp_addr);
|
414 |
|
|
|
415 |
|
|
/* Set the TOC register, get the value from the objfile reader
|
416 |
|
|
which, in turn, gets it from the VMAP table. */
|
417 |
|
|
if (rs6000_find_toc_address_hook != NULL)
|
418 |
|
|
{
|
419 |
|
|
CORE_ADDR tocvalue = (*rs6000_find_toc_address_hook) (func_addr);
|
420 |
|
|
regcache_raw_write_signed (regcache, tdep->ppc_toc_regnum, tocvalue);
|
421 |
|
|
}
|
422 |
|
|
|
423 |
|
|
target_store_registers (regcache, -1);
|
424 |
|
|
return sp;
|
425 |
|
|
}
|
426 |
|
|
|
427 |
|
|
static enum return_value_convention
|
428 |
|
|
rs6000_return_value (struct gdbarch *gdbarch, struct type *func_type,
|
429 |
|
|
struct type *valtype, struct regcache *regcache,
|
430 |
|
|
gdb_byte *readbuf, const gdb_byte *writebuf)
|
431 |
|
|
{
|
432 |
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
433 |
|
|
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
434 |
|
|
gdb_byte buf[8];
|
435 |
|
|
|
436 |
|
|
/* The calling convention this function implements assumes the
|
437 |
|
|
processor has floating-point registers. We shouldn't be using it
|
438 |
|
|
on PowerPC variants that lack them. */
|
439 |
|
|
gdb_assert (ppc_floating_point_unit_p (gdbarch));
|
440 |
|
|
|
441 |
|
|
/* AltiVec extension: Functions that declare a vector data type as a
|
442 |
|
|
return value place that return value in VR2. */
|
443 |
|
|
if (TYPE_CODE (valtype) == TYPE_CODE_ARRAY && TYPE_VECTOR (valtype)
|
444 |
|
|
&& TYPE_LENGTH (valtype) == 16)
|
445 |
|
|
{
|
446 |
|
|
if (readbuf)
|
447 |
|
|
regcache_cooked_read (regcache, tdep->ppc_vr0_regnum + 2, readbuf);
|
448 |
|
|
if (writebuf)
|
449 |
|
|
regcache_cooked_write (regcache, tdep->ppc_vr0_regnum + 2, writebuf);
|
450 |
|
|
|
451 |
|
|
return RETURN_VALUE_REGISTER_CONVENTION;
|
452 |
|
|
}
|
453 |
|
|
|
454 |
|
|
/* If the called subprogram returns an aggregate, there exists an
|
455 |
|
|
implicit first argument, whose value is the address of a caller-
|
456 |
|
|
allocated buffer into which the callee is assumed to store its
|
457 |
|
|
return value. All explicit parameters are appropriately
|
458 |
|
|
relabeled. */
|
459 |
|
|
if (TYPE_CODE (valtype) == TYPE_CODE_STRUCT
|
460 |
|
|
|| TYPE_CODE (valtype) == TYPE_CODE_UNION
|
461 |
|
|
|| TYPE_CODE (valtype) == TYPE_CODE_ARRAY)
|
462 |
|
|
return RETURN_VALUE_STRUCT_CONVENTION;
|
463 |
|
|
|
464 |
|
|
/* Scalar floating-point values are returned in FPR1 for float or
|
465 |
|
|
double, and in FPR1:FPR2 for quadword precision. Fortran
|
466 |
|
|
complex*8 and complex*16 are returned in FPR1:FPR2, and
|
467 |
|
|
complex*32 is returned in FPR1:FPR4. */
|
468 |
|
|
if (TYPE_CODE (valtype) == TYPE_CODE_FLT
|
469 |
|
|
&& (TYPE_LENGTH (valtype) == 4 || TYPE_LENGTH (valtype) == 8))
|
470 |
|
|
{
|
471 |
|
|
struct type *regtype = register_type (gdbarch, tdep->ppc_fp0_regnum);
|
472 |
|
|
gdb_byte regval[8];
|
473 |
|
|
|
474 |
|
|
/* FIXME: kettenis/2007-01-01: Add support for quadword
|
475 |
|
|
precision and complex. */
|
476 |
|
|
|
477 |
|
|
if (readbuf)
|
478 |
|
|
{
|
479 |
|
|
regcache_cooked_read (regcache, tdep->ppc_fp0_regnum + 1, regval);
|
480 |
|
|
convert_typed_floating (regval, regtype, readbuf, valtype);
|
481 |
|
|
}
|
482 |
|
|
if (writebuf)
|
483 |
|
|
{
|
484 |
|
|
convert_typed_floating (writebuf, valtype, regval, regtype);
|
485 |
|
|
regcache_cooked_write (regcache, tdep->ppc_fp0_regnum + 1, regval);
|
486 |
|
|
}
|
487 |
|
|
|
488 |
|
|
return RETURN_VALUE_REGISTER_CONVENTION;
|
489 |
|
|
}
|
490 |
|
|
|
491 |
|
|
/* Values of the types int, long, short, pointer, and char (length
|
492 |
|
|
is less than or equal to four bytes), as well as bit values of
|
493 |
|
|
lengths less than or equal to 32 bits, must be returned right
|
494 |
|
|
justified in GPR3 with signed values sign extended and unsigned
|
495 |
|
|
values zero extended, as necessary. */
|
496 |
|
|
if (TYPE_LENGTH (valtype) <= tdep->wordsize)
|
497 |
|
|
{
|
498 |
|
|
if (readbuf)
|
499 |
|
|
{
|
500 |
|
|
ULONGEST regval;
|
501 |
|
|
|
502 |
|
|
/* For reading we don't have to worry about sign extension. */
|
503 |
|
|
regcache_cooked_read_unsigned (regcache, tdep->ppc_gp0_regnum + 3,
|
504 |
|
|
®val);
|
505 |
|
|
store_unsigned_integer (readbuf, TYPE_LENGTH (valtype), byte_order,
|
506 |
|
|
regval);
|
507 |
|
|
}
|
508 |
|
|
if (writebuf)
|
509 |
|
|
{
|
510 |
|
|
/* For writing, use unpack_long since that should handle any
|
511 |
|
|
required sign extension. */
|
512 |
|
|
regcache_cooked_write_unsigned (regcache, tdep->ppc_gp0_regnum + 3,
|
513 |
|
|
unpack_long (valtype, writebuf));
|
514 |
|
|
}
|
515 |
|
|
|
516 |
|
|
return RETURN_VALUE_REGISTER_CONVENTION;
|
517 |
|
|
}
|
518 |
|
|
|
519 |
|
|
/* Eight-byte non-floating-point scalar values must be returned in
|
520 |
|
|
GPR3:GPR4. */
|
521 |
|
|
|
522 |
|
|
if (TYPE_LENGTH (valtype) == 8)
|
523 |
|
|
{
|
524 |
|
|
gdb_assert (TYPE_CODE (valtype) != TYPE_CODE_FLT);
|
525 |
|
|
gdb_assert (tdep->wordsize == 4);
|
526 |
|
|
|
527 |
|
|
if (readbuf)
|
528 |
|
|
{
|
529 |
|
|
gdb_byte regval[8];
|
530 |
|
|
|
531 |
|
|
regcache_cooked_read (regcache, tdep->ppc_gp0_regnum + 3, regval);
|
532 |
|
|
regcache_cooked_read (regcache, tdep->ppc_gp0_regnum + 4,
|
533 |
|
|
regval + 4);
|
534 |
|
|
memcpy (readbuf, regval, 8);
|
535 |
|
|
}
|
536 |
|
|
if (writebuf)
|
537 |
|
|
{
|
538 |
|
|
regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 3, writebuf);
|
539 |
|
|
regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 4,
|
540 |
|
|
writebuf + 4);
|
541 |
|
|
}
|
542 |
|
|
|
543 |
|
|
return RETURN_VALUE_REGISTER_CONVENTION;
|
544 |
|
|
}
|
545 |
|
|
|
546 |
|
|
return RETURN_VALUE_STRUCT_CONVENTION;
|
547 |
|
|
}
|
548 |
|
|
|
549 |
|
|
/* Support for CONVERT_FROM_FUNC_PTR_ADDR (ARCH, ADDR, TARG).
|
550 |
|
|
|
551 |
|
|
Usually a function pointer's representation is simply the address
|
552 |
|
|
of the function. On the RS/6000 however, a function pointer is
|
553 |
|
|
represented by a pointer to an OPD entry. This OPD entry contains
|
554 |
|
|
three words, the first word is the address of the function, the
|
555 |
|
|
second word is the TOC pointer (r2), and the third word is the
|
556 |
|
|
static chain value. Throughout GDB it is currently assumed that a
|
557 |
|
|
function pointer contains the address of the function, which is not
|
558 |
|
|
easy to fix. In addition, the conversion of a function address to
|
559 |
|
|
a function pointer would require allocation of an OPD entry in the
|
560 |
|
|
inferior's memory space, with all its drawbacks. To be able to
|
561 |
|
|
call C++ virtual methods in the inferior (which are called via
|
562 |
|
|
function pointers), find_function_addr uses this function to get the
|
563 |
|
|
function address from a function pointer. */
|
564 |
|
|
|
565 |
|
|
/* Return real function address if ADDR (a function pointer) is in the data
|
566 |
|
|
space and is therefore a special function pointer. */
|
567 |
|
|
|
568 |
|
|
static CORE_ADDR
|
569 |
|
|
rs6000_convert_from_func_ptr_addr (struct gdbarch *gdbarch,
|
570 |
|
|
CORE_ADDR addr,
|
571 |
|
|
struct target_ops *targ)
|
572 |
|
|
{
|
573 |
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
574 |
|
|
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
575 |
|
|
struct obj_section *s;
|
576 |
|
|
|
577 |
|
|
s = find_pc_section (addr);
|
578 |
|
|
|
579 |
|
|
/* Normally, functions live inside a section that is executable.
|
580 |
|
|
So, if ADDR points to a non-executable section, then treat it
|
581 |
|
|
as a function descriptor and return the target address iff
|
582 |
|
|
the target address itself points to a section that is executable. */
|
583 |
|
|
if (s && (s->the_bfd_section->flags & SEC_CODE) == 0)
|
584 |
|
|
{
|
585 |
|
|
CORE_ADDR pc =
|
586 |
|
|
read_memory_unsigned_integer (addr, tdep->wordsize, byte_order);
|
587 |
|
|
struct obj_section *pc_section = find_pc_section (pc);
|
588 |
|
|
|
589 |
|
|
if (pc_section && (pc_section->the_bfd_section->flags & SEC_CODE))
|
590 |
|
|
return pc;
|
591 |
|
|
}
|
592 |
|
|
|
593 |
|
|
return addr;
|
594 |
|
|
}
|
595 |
|
|
|
596 |
|
|
|
597 |
|
|
/* Calculate the destination of a branch/jump. Return -1 if not a branch. */
|
598 |
|
|
|
599 |
|
|
static CORE_ADDR
|
600 |
|
|
branch_dest (struct frame_info *frame, int opcode, int instr,
|
601 |
|
|
CORE_ADDR pc, CORE_ADDR safety)
|
602 |
|
|
{
|
603 |
|
|
struct gdbarch *gdbarch = get_frame_arch (frame);
|
604 |
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
605 |
|
|
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
606 |
|
|
CORE_ADDR dest;
|
607 |
|
|
int immediate;
|
608 |
|
|
int absolute;
|
609 |
|
|
int ext_op;
|
610 |
|
|
|
611 |
|
|
absolute = (int) ((instr >> 1) & 1);
|
612 |
|
|
|
613 |
|
|
switch (opcode)
|
614 |
|
|
{
|
615 |
|
|
case 18:
|
616 |
|
|
immediate = ((instr & ~3) << 6) >> 6; /* br unconditional */
|
617 |
|
|
if (absolute)
|
618 |
|
|
dest = immediate;
|
619 |
|
|
else
|
620 |
|
|
dest = pc + immediate;
|
621 |
|
|
break;
|
622 |
|
|
|
623 |
|
|
case 16:
|
624 |
|
|
immediate = ((instr & ~3) << 16) >> 16; /* br conditional */
|
625 |
|
|
if (absolute)
|
626 |
|
|
dest = immediate;
|
627 |
|
|
else
|
628 |
|
|
dest = pc + immediate;
|
629 |
|
|
break;
|
630 |
|
|
|
631 |
|
|
case 19:
|
632 |
|
|
ext_op = (instr >> 1) & 0x3ff;
|
633 |
|
|
|
634 |
|
|
if (ext_op == 16) /* br conditional register */
|
635 |
|
|
{
|
636 |
|
|
dest = get_frame_register_unsigned (frame, tdep->ppc_lr_regnum) & ~3;
|
637 |
|
|
|
638 |
|
|
/* If we are about to return from a signal handler, dest is
|
639 |
|
|
something like 0x3c90. The current frame is a signal handler
|
640 |
|
|
caller frame, upon completion of the sigreturn system call
|
641 |
|
|
execution will return to the saved PC in the frame. */
|
642 |
|
|
if (dest < AIX_TEXT_SEGMENT_BASE)
|
643 |
|
|
dest = read_memory_unsigned_integer
|
644 |
|
|
(get_frame_base (frame) + SIG_FRAME_PC_OFFSET,
|
645 |
|
|
tdep->wordsize, byte_order);
|
646 |
|
|
}
|
647 |
|
|
|
648 |
|
|
else if (ext_op == 528) /* br cond to count reg */
|
649 |
|
|
{
|
650 |
|
|
dest = get_frame_register_unsigned (frame, tdep->ppc_ctr_regnum) & ~3;
|
651 |
|
|
|
652 |
|
|
/* If we are about to execute a system call, dest is something
|
653 |
|
|
like 0x22fc or 0x3b00. Upon completion the system call
|
654 |
|
|
will return to the address in the link register. */
|
655 |
|
|
if (dest < AIX_TEXT_SEGMENT_BASE)
|
656 |
|
|
dest = get_frame_register_unsigned (frame, tdep->ppc_lr_regnum) & ~3;
|
657 |
|
|
}
|
658 |
|
|
else
|
659 |
|
|
return -1;
|
660 |
|
|
break;
|
661 |
|
|
|
662 |
|
|
default:
|
663 |
|
|
return -1;
|
664 |
|
|
}
|
665 |
|
|
return (dest < AIX_TEXT_SEGMENT_BASE) ? safety : dest;
|
666 |
|
|
}
|
667 |
|
|
|
668 |
|
|
/* AIX does not support PT_STEP. Simulate it. */
|
669 |
|
|
|
670 |
|
|
static int
|
671 |
|
|
rs6000_software_single_step (struct frame_info *frame)
|
672 |
|
|
{
|
673 |
|
|
struct gdbarch *gdbarch = get_frame_arch (frame);
|
674 |
|
|
struct address_space *aspace = get_frame_address_space (frame);
|
675 |
|
|
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
676 |
|
|
int ii, insn;
|
677 |
|
|
CORE_ADDR loc;
|
678 |
|
|
CORE_ADDR breaks[2];
|
679 |
|
|
int opcode;
|
680 |
|
|
|
681 |
|
|
loc = get_frame_pc (frame);
|
682 |
|
|
|
683 |
|
|
insn = read_memory_integer (loc, 4, byte_order);
|
684 |
|
|
|
685 |
|
|
if (ppc_deal_with_atomic_sequence (frame))
|
686 |
|
|
return 1;
|
687 |
|
|
|
688 |
|
|
breaks[0] = loc + PPC_INSN_SIZE;
|
689 |
|
|
opcode = insn >> 26;
|
690 |
|
|
breaks[1] = branch_dest (frame, opcode, insn, loc, breaks[0]);
|
691 |
|
|
|
692 |
|
|
/* Don't put two breakpoints on the same address. */
|
693 |
|
|
if (breaks[1] == breaks[0])
|
694 |
|
|
breaks[1] = -1;
|
695 |
|
|
|
696 |
|
|
for (ii = 0; ii < 2; ++ii)
|
697 |
|
|
{
|
698 |
|
|
/* ignore invalid breakpoint. */
|
699 |
|
|
if (breaks[ii] == -1)
|
700 |
|
|
continue;
|
701 |
|
|
insert_single_step_breakpoint (gdbarch, aspace, breaks[ii]);
|
702 |
|
|
}
|
703 |
|
|
|
704 |
|
|
errno = 0; /* FIXME, don't ignore errors! */
|
705 |
|
|
/* What errors? {read,write}_memory call error(). */
|
706 |
|
|
return 1;
|
707 |
|
|
}
|
708 |
|
|
|
709 |
|
|
static enum gdb_osabi
|
710 |
|
|
rs6000_aix_osabi_sniffer (bfd *abfd)
|
711 |
|
|
{
|
712 |
|
|
|
713 |
|
|
if (bfd_get_flavour (abfd) == bfd_target_xcoff_flavour);
|
714 |
|
|
return GDB_OSABI_AIX;
|
715 |
|
|
|
716 |
|
|
return GDB_OSABI_UNKNOWN;
|
717 |
|
|
}
|
718 |
|
|
|
719 |
|
|
static void
|
720 |
|
|
rs6000_aix_init_osabi (struct gdbarch_info info, struct gdbarch *gdbarch)
|
721 |
|
|
{
|
722 |
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
723 |
|
|
|
724 |
|
|
/* RS6000/AIX does not support PT_STEP. Has to be simulated. */
|
725 |
|
|
set_gdbarch_software_single_step (gdbarch, rs6000_software_single_step);
|
726 |
|
|
|
727 |
|
|
/* Displaced stepping is currently not supported in combination with
|
728 |
|
|
software single-stepping. */
|
729 |
|
|
set_gdbarch_displaced_step_copy_insn (gdbarch, NULL);
|
730 |
|
|
set_gdbarch_displaced_step_fixup (gdbarch, NULL);
|
731 |
|
|
set_gdbarch_displaced_step_free_closure (gdbarch, NULL);
|
732 |
|
|
set_gdbarch_displaced_step_location (gdbarch, NULL);
|
733 |
|
|
|
734 |
|
|
set_gdbarch_push_dummy_call (gdbarch, rs6000_push_dummy_call);
|
735 |
|
|
set_gdbarch_return_value (gdbarch, rs6000_return_value);
|
736 |
|
|
set_gdbarch_long_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
|
737 |
|
|
|
738 |
|
|
/* Handle RS/6000 function pointers (which are really function
|
739 |
|
|
descriptors). */
|
740 |
|
|
set_gdbarch_convert_from_func_ptr_addr
|
741 |
|
|
(gdbarch, rs6000_convert_from_func_ptr_addr);
|
742 |
|
|
|
743 |
|
|
/* Core file support. */
|
744 |
|
|
set_gdbarch_regset_from_core_section
|
745 |
|
|
(gdbarch, rs6000_aix_regset_from_core_section);
|
746 |
|
|
|
747 |
|
|
if (tdep->wordsize == 8)
|
748 |
|
|
tdep->lr_frame_offset = 16;
|
749 |
|
|
else
|
750 |
|
|
tdep->lr_frame_offset = 8;
|
751 |
|
|
|
752 |
|
|
if (tdep->wordsize == 4)
|
753 |
|
|
/* PowerOpen / AIX 32 bit. The saved area or red zone consists of
|
754 |
|
|
19 4 byte GPRS + 18 8 byte FPRs giving a total of 220 bytes.
|
755 |
|
|
Problem is, 220 isn't frame (16 byte) aligned. Round it up to
|
756 |
|
|
224. */
|
757 |
|
|
set_gdbarch_frame_red_zone_size (gdbarch, 224);
|
758 |
|
|
else
|
759 |
|
|
set_gdbarch_frame_red_zone_size (gdbarch, 0);
|
760 |
|
|
}
|
761 |
|
|
|
762 |
|
|
/* Provide a prototype to silence -Wmissing-prototypes. */
|
763 |
|
|
extern initialize_file_ftype _initialize_rs6000_aix_tdep;
|
764 |
|
|
|
765 |
|
|
void
|
766 |
|
|
_initialize_rs6000_aix_tdep (void)
|
767 |
|
|
{
|
768 |
|
|
gdbarch_register_osabi_sniffer (bfd_arch_rs6000,
|
769 |
|
|
bfd_target_xcoff_flavour,
|
770 |
|
|
rs6000_aix_osabi_sniffer);
|
771 |
|
|
gdbarch_register_osabi_sniffer (bfd_arch_powerpc,
|
772 |
|
|
bfd_target_xcoff_flavour,
|
773 |
|
|
rs6000_aix_osabi_sniffer);
|
774 |
|
|
|
775 |
|
|
gdbarch_register_osabi (bfd_arch_rs6000, 0, GDB_OSABI_AIX,
|
776 |
|
|
rs6000_aix_init_osabi);
|
777 |
|
|
gdbarch_register_osabi (bfd_arch_powerpc, 0, GDB_OSABI_AIX,
|
778 |
|
|
rs6000_aix_init_osabi);
|
779 |
|
|
}
|
780 |
|
|
|