OpenCores
URL https://opencores.org/ocsvn/openrisc/openrisc/trunk

Subversion Repositories openrisc

[/] [openrisc/] [trunk/] [gnu-old/] [gdb-7.1/] [gdb/] [rs6000-tdep.c] - Blame information for rev 834

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 227 jeremybenn
/* Target-dependent code for GDB, the GNU debugger.
2
 
3
   Copyright (C) 1986, 1987, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
4
   1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009,
5
   2010 Free Software Foundation, Inc.
6
 
7
   This file is part of GDB.
8
 
9
   This program is free software; you can redistribute it and/or modify
10
   it under the terms of the GNU General Public License as published by
11
   the Free Software Foundation; either version 3 of the License, or
12
   (at your option) any later version.
13
 
14
   This program is distributed in the hope that it will be useful,
15
   but WITHOUT ANY WARRANTY; without even the implied warranty of
16
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17
   GNU General Public License for more details.
18
 
19
   You should have received a copy of the GNU General Public License
20
   along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
21
 
22
#include "defs.h"
23
#include "frame.h"
24
#include "inferior.h"
25
#include "symtab.h"
26
#include "target.h"
27
#include "gdbcore.h"
28
#include "gdbcmd.h"
29
#include "objfiles.h"
30
#include "arch-utils.h"
31
#include "regcache.h"
32
#include "regset.h"
33
#include "doublest.h"
34
#include "value.h"
35
#include "parser-defs.h"
36
#include "osabi.h"
37
#include "infcall.h"
38
#include "sim-regno.h"
39
#include "gdb/sim-ppc.h"
40
#include "reggroups.h"
41
#include "dwarf2-frame.h"
42
#include "target-descriptions.h"
43
#include "user-regs.h"
44
 
45
#include "libbfd.h"             /* for bfd_default_set_arch_mach */
46
#include "coff/internal.h"      /* for libcoff.h */
47
#include "libcoff.h"            /* for xcoff_data */
48
#include "coff/xcoff.h"
49
#include "libxcoff.h"
50
 
51
#include "elf-bfd.h"
52
#include "elf/ppc.h"
53
 
54
#include "solib-svr4.h"
55
#include "ppc-tdep.h"
56
 
57
#include "gdb_assert.h"
58
#include "dis-asm.h"
59
 
60
#include "trad-frame.h"
61
#include "frame-unwind.h"
62
#include "frame-base.h"
63
 
64
#include "features/rs6000/powerpc-32.c"
65
#include "features/rs6000/powerpc-altivec32.c"
66
#include "features/rs6000/powerpc-vsx32.c"
67
#include "features/rs6000/powerpc-403.c"
68
#include "features/rs6000/powerpc-403gc.c"
69
#include "features/rs6000/powerpc-405.c"
70
#include "features/rs6000/powerpc-505.c"
71
#include "features/rs6000/powerpc-601.c"
72
#include "features/rs6000/powerpc-602.c"
73
#include "features/rs6000/powerpc-603.c"
74
#include "features/rs6000/powerpc-604.c"
75
#include "features/rs6000/powerpc-64.c"
76
#include "features/rs6000/powerpc-altivec64.c"
77
#include "features/rs6000/powerpc-vsx64.c"
78
#include "features/rs6000/powerpc-7400.c"
79
#include "features/rs6000/powerpc-750.c"
80
#include "features/rs6000/powerpc-860.c"
81
#include "features/rs6000/powerpc-e500.c"
82
#include "features/rs6000/rs6000.c"
83
 
84
/* Determine if regnum is an SPE pseudo-register.  */
85
#define IS_SPE_PSEUDOREG(tdep, regnum) ((tdep)->ppc_ev0_regnum >= 0 \
86
    && (regnum) >= (tdep)->ppc_ev0_regnum \
87
    && (regnum) < (tdep)->ppc_ev0_regnum + 32)
88
 
89
/* Determine if regnum is a decimal float pseudo-register.  */
90
#define IS_DFP_PSEUDOREG(tdep, regnum) ((tdep)->ppc_dl0_regnum >= 0 \
91
    && (regnum) >= (tdep)->ppc_dl0_regnum \
92
    && (regnum) < (tdep)->ppc_dl0_regnum + 16)
93
 
94
/* Determine if regnum is a POWER7 VSX register.  */
95
#define IS_VSX_PSEUDOREG(tdep, regnum) ((tdep)->ppc_vsr0_regnum >= 0 \
96
    && (regnum) >= (tdep)->ppc_vsr0_regnum \
97
    && (regnum) < (tdep)->ppc_vsr0_regnum + ppc_num_vsrs)
98
 
99
/* Determine if regnum is a POWER7 Extended FP register.  */
100
#define IS_EFP_PSEUDOREG(tdep, regnum) ((tdep)->ppc_efpr0_regnum >= 0 \
101
    && (regnum) >= (tdep)->ppc_efpr0_regnum \
102
    && (regnum) < (tdep)->ppc_efpr0_regnum + ppc_num_fprs)
103
 
104
/* The list of available "set powerpc ..." and "show powerpc ..."
105
   commands.  */
106
static struct cmd_list_element *setpowerpccmdlist = NULL;
107
static struct cmd_list_element *showpowerpccmdlist = NULL;
108
 
109
static enum auto_boolean powerpc_soft_float_global = AUTO_BOOLEAN_AUTO;
110
 
111
/* The vector ABI to use.  Keep this in sync with powerpc_vector_abi.  */
112
static const char *powerpc_vector_strings[] =
113
{
114
  "auto",
115
  "generic",
116
  "altivec",
117
  "spe",
118
  NULL
119
};
120
 
121
/* A variable that can be configured by the user.  */
122
static enum powerpc_vector_abi powerpc_vector_abi_global = POWERPC_VEC_AUTO;
123
static const char *powerpc_vector_abi_string = "auto";
124
 
125
/* To be used by skip_prologue. */
126
 
127
struct rs6000_framedata
128
  {
129
    int offset;                 /* total size of frame --- the distance
130
                                   by which we decrement sp to allocate
131
                                   the frame */
132
    int saved_gpr;              /* smallest # of saved gpr */
133
    unsigned int gpr_mask;      /* Each bit is an individual saved GPR.  */
134
    int saved_fpr;              /* smallest # of saved fpr */
135
    int saved_vr;               /* smallest # of saved vr */
136
    int saved_ev;               /* smallest # of saved ev */
137
    int alloca_reg;             /* alloca register number (frame ptr) */
138
    char frameless;             /* true if frameless functions. */
139
    char nosavedpc;             /* true if pc not saved. */
140
    char used_bl;               /* true if link register clobbered */
141
    int gpr_offset;             /* offset of saved gprs from prev sp */
142
    int fpr_offset;             /* offset of saved fprs from prev sp */
143
    int vr_offset;              /* offset of saved vrs from prev sp */
144
    int ev_offset;              /* offset of saved evs from prev sp */
145
    int lr_offset;              /* offset of saved lr */
146
    int lr_register;            /* register of saved lr, if trustworthy */
147
    int cr_offset;              /* offset of saved cr */
148
    int vrsave_offset;          /* offset of saved vrsave register */
149
  };
150
 
151
 
152
/* Is REGNO a VSX register? Return 1 if so, 0 otherwise.  */
153
int
154
vsx_register_p (struct gdbarch *gdbarch, int regno)
155
{
156
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
157
  if (tdep->ppc_vsr0_regnum < 0)
158
    return 0;
159
  else
160
    return (regno >= tdep->ppc_vsr0_upper_regnum && regno
161
            <= tdep->ppc_vsr0_upper_regnum + 31);
162
}
163
 
164
/* Is REGNO an AltiVec register?  Return 1 if so, 0 otherwise.  */
165
int
166
altivec_register_p (struct gdbarch *gdbarch, int regno)
167
{
168
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
169
  if (tdep->ppc_vr0_regnum < 0 || tdep->ppc_vrsave_regnum < 0)
170
    return 0;
171
  else
172
    return (regno >= tdep->ppc_vr0_regnum && regno <= tdep->ppc_vrsave_regnum);
173
}
174
 
175
 
176
/* Return true if REGNO is an SPE register, false otherwise.  */
177
int
178
spe_register_p (struct gdbarch *gdbarch, int regno)
179
{
180
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
181
 
182
  /* Is it a reference to EV0 -- EV31, and do we have those?  */
183
  if (IS_SPE_PSEUDOREG (tdep, regno))
184
    return 1;
185
 
186
  /* Is it a reference to one of the raw upper GPR halves?  */
187
  if (tdep->ppc_ev0_upper_regnum >= 0
188
      && tdep->ppc_ev0_upper_regnum <= regno
189
      && regno < tdep->ppc_ev0_upper_regnum + ppc_num_gprs)
190
    return 1;
191
 
192
  /* Is it a reference to the 64-bit accumulator, and do we have that?  */
193
  if (tdep->ppc_acc_regnum >= 0
194
      && tdep->ppc_acc_regnum == regno)
195
    return 1;
196
 
197
  /* Is it a reference to the SPE floating-point status and control register,
198
     and do we have that?  */
199
  if (tdep->ppc_spefscr_regnum >= 0
200
      && tdep->ppc_spefscr_regnum == regno)
201
    return 1;
202
 
203
  return 0;
204
}
205
 
206
 
207
/* Return non-zero if the architecture described by GDBARCH has
208
   floating-point registers (f0 --- f31 and fpscr).  */
209
int
210
ppc_floating_point_unit_p (struct gdbarch *gdbarch)
211
{
212
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
213
 
214
  return (tdep->ppc_fp0_regnum >= 0
215
          && tdep->ppc_fpscr_regnum >= 0);
216
}
217
 
218
/* Return non-zero if the architecture described by GDBARCH has
219
   VSX registers (vsr0 --- vsr63).  */
220
static int
221
ppc_vsx_support_p (struct gdbarch *gdbarch)
222
{
223
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
224
 
225
  return tdep->ppc_vsr0_regnum >= 0;
226
}
227
 
228
/* Return non-zero if the architecture described by GDBARCH has
229
   Altivec registers (vr0 --- vr31, vrsave and vscr).  */
230
int
231
ppc_altivec_support_p (struct gdbarch *gdbarch)
232
{
233
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
234
 
235
  return (tdep->ppc_vr0_regnum >= 0
236
          && tdep->ppc_vrsave_regnum >= 0);
237
}
238
 
239
/* Check that TABLE[GDB_REGNO] is not already initialized, and then
240
   set it to SIM_REGNO.
241
 
242
   This is a helper function for init_sim_regno_table, constructing
243
   the table mapping GDB register numbers to sim register numbers; we
244
   initialize every element in that table to -1 before we start
245
   filling it in.  */
246
static void
247
set_sim_regno (int *table, int gdb_regno, int sim_regno)
248
{
249
  /* Make sure we don't try to assign any given GDB register a sim
250
     register number more than once.  */
251
  gdb_assert (table[gdb_regno] == -1);
252
  table[gdb_regno] = sim_regno;
253
}
254
 
255
 
256
/* Initialize ARCH->tdep->sim_regno, the table mapping GDB register
257
   numbers to simulator register numbers, based on the values placed
258
   in the ARCH->tdep->ppc_foo_regnum members.  */
259
static void
260
init_sim_regno_table (struct gdbarch *arch)
261
{
262
  struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
263
  int total_regs = gdbarch_num_regs (arch);
264
  int *sim_regno = GDBARCH_OBSTACK_CALLOC (arch, total_regs, int);
265
  int i;
266
  static const char *const segment_regs[] = {
267
    "sr0", "sr1", "sr2", "sr3", "sr4", "sr5", "sr6", "sr7",
268
    "sr8", "sr9", "sr10", "sr11", "sr12", "sr13", "sr14", "sr15"
269
  };
270
 
271
  /* Presume that all registers not explicitly mentioned below are
272
     unavailable from the sim.  */
273
  for (i = 0; i < total_regs; i++)
274
    sim_regno[i] = -1;
275
 
276
  /* General-purpose registers.  */
277
  for (i = 0; i < ppc_num_gprs; i++)
278
    set_sim_regno (sim_regno, tdep->ppc_gp0_regnum + i, sim_ppc_r0_regnum + i);
279
 
280
  /* Floating-point registers.  */
281
  if (tdep->ppc_fp0_regnum >= 0)
282
    for (i = 0; i < ppc_num_fprs; i++)
283
      set_sim_regno (sim_regno,
284
                     tdep->ppc_fp0_regnum + i,
285
                     sim_ppc_f0_regnum + i);
286
  if (tdep->ppc_fpscr_regnum >= 0)
287
    set_sim_regno (sim_regno, tdep->ppc_fpscr_regnum, sim_ppc_fpscr_regnum);
288
 
289
  set_sim_regno (sim_regno, gdbarch_pc_regnum (arch), sim_ppc_pc_regnum);
290
  set_sim_regno (sim_regno, tdep->ppc_ps_regnum, sim_ppc_ps_regnum);
291
  set_sim_regno (sim_regno, tdep->ppc_cr_regnum, sim_ppc_cr_regnum);
292
 
293
  /* Segment registers.  */
294
  for (i = 0; i < ppc_num_srs; i++)
295
    {
296
      int gdb_regno;
297
 
298
      gdb_regno = user_reg_map_name_to_regnum (arch, segment_regs[i], -1);
299
      if (gdb_regno >= 0)
300
        set_sim_regno (sim_regno, gdb_regno, sim_ppc_sr0_regnum + i);
301
    }
302
 
303
  /* Altivec registers.  */
304
  if (tdep->ppc_vr0_regnum >= 0)
305
    {
306
      for (i = 0; i < ppc_num_vrs; i++)
307
        set_sim_regno (sim_regno,
308
                       tdep->ppc_vr0_regnum + i,
309
                       sim_ppc_vr0_regnum + i);
310
 
311
      /* FIXME: jimb/2004-07-15: when we have tdep->ppc_vscr_regnum,
312
         we can treat this more like the other cases.  */
313
      set_sim_regno (sim_regno,
314
                     tdep->ppc_vr0_regnum + ppc_num_vrs,
315
                     sim_ppc_vscr_regnum);
316
    }
317
  /* vsave is a special-purpose register, so the code below handles it.  */
318
 
319
  /* SPE APU (E500) registers.  */
320
  if (tdep->ppc_ev0_upper_regnum >= 0)
321
    for (i = 0; i < ppc_num_gprs; i++)
322
      set_sim_regno (sim_regno,
323
                     tdep->ppc_ev0_upper_regnum + i,
324
                     sim_ppc_rh0_regnum + i);
325
  if (tdep->ppc_acc_regnum >= 0)
326
    set_sim_regno (sim_regno, tdep->ppc_acc_regnum, sim_ppc_acc_regnum);
327
  /* spefscr is a special-purpose register, so the code below handles it.  */
328
 
329
#ifdef WITH_SIM
330
  /* Now handle all special-purpose registers.  Verify that they
331
     haven't mistakenly been assigned numbers by any of the above
332
     code.  */
333
  for (i = 0; i < sim_ppc_num_sprs; i++)
334
    {
335
      const char *spr_name = sim_spr_register_name (i);
336
      int gdb_regno = -1;
337
 
338
      if (spr_name != NULL)
339
        gdb_regno = user_reg_map_name_to_regnum (arch, spr_name, -1);
340
 
341
      if (gdb_regno != -1)
342
        set_sim_regno (sim_regno, gdb_regno, sim_ppc_spr0_regnum + i);
343
    }
344
#endif
345
 
346
  /* Drop the initialized array into place.  */
347
  tdep->sim_regno = sim_regno;
348
}
349
 
350
 
351
/* Given a GDB register number REG, return the corresponding SIM
352
   register number.  */
353
static int
354
rs6000_register_sim_regno (struct gdbarch *gdbarch, int reg)
355
{
356
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
357
  int sim_regno;
358
 
359
  if (tdep->sim_regno == NULL)
360
    init_sim_regno_table (gdbarch);
361
 
362
  gdb_assert (0 <= reg
363
              && reg <= gdbarch_num_regs (gdbarch)
364
                        + gdbarch_num_pseudo_regs (gdbarch));
365
  sim_regno = tdep->sim_regno[reg];
366
 
367
  if (sim_regno >= 0)
368
    return sim_regno;
369
  else
370
    return LEGACY_SIM_REGNO_IGNORE;
371
}
372
 
373
 
374
 
375
/* Register set support functions.  */
376
 
377
/* REGS + OFFSET contains register REGNUM in a field REGSIZE wide.
378
   Write the register to REGCACHE.  */
379
 
380
void
381
ppc_supply_reg (struct regcache *regcache, int regnum,
382
                const gdb_byte *regs, size_t offset, int regsize)
383
{
384
  if (regnum != -1 && offset != -1)
385
    {
386
      if (regsize > 4)
387
        {
388
          struct gdbarch *gdbarch = get_regcache_arch (regcache);
389
          int gdb_regsize = register_size (gdbarch, regnum);
390
          if (gdb_regsize < regsize
391
              && gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
392
            offset += regsize - gdb_regsize;
393
        }
394
      regcache_raw_supply (regcache, regnum, regs + offset);
395
    }
396
}
397
 
398
/* Read register REGNUM from REGCACHE and store to REGS + OFFSET
399
   in a field REGSIZE wide.  Zero pad as necessary.  */
400
 
401
void
402
ppc_collect_reg (const struct regcache *regcache, int regnum,
403
                 gdb_byte *regs, size_t offset, int regsize)
404
{
405
  if (regnum != -1 && offset != -1)
406
    {
407
      if (regsize > 4)
408
        {
409
          struct gdbarch *gdbarch = get_regcache_arch (regcache);
410
          int gdb_regsize = register_size (gdbarch, regnum);
411
          if (gdb_regsize < regsize)
412
            {
413
              if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
414
                {
415
                  memset (regs + offset, 0, regsize - gdb_regsize);
416
                  offset += regsize - gdb_regsize;
417
                }
418
              else
419
                memset (regs + offset + regsize - gdb_regsize, 0,
420
                        regsize - gdb_regsize);
421
            }
422
        }
423
      regcache_raw_collect (regcache, regnum, regs + offset);
424
    }
425
}
426
 
427
static int
428
ppc_greg_offset (struct gdbarch *gdbarch,
429
                 struct gdbarch_tdep *tdep,
430
                 const struct ppc_reg_offsets *offsets,
431
                 int regnum,
432
                 int *regsize)
433
{
434
  *regsize = offsets->gpr_size;
435
  if (regnum >= tdep->ppc_gp0_regnum
436
      && regnum < tdep->ppc_gp0_regnum + ppc_num_gprs)
437
    return (offsets->r0_offset
438
            + (regnum - tdep->ppc_gp0_regnum) * offsets->gpr_size);
439
 
440
  if (regnum == gdbarch_pc_regnum (gdbarch))
441
    return offsets->pc_offset;
442
 
443
  if (regnum == tdep->ppc_ps_regnum)
444
    return offsets->ps_offset;
445
 
446
  if (regnum == tdep->ppc_lr_regnum)
447
    return offsets->lr_offset;
448
 
449
  if (regnum == tdep->ppc_ctr_regnum)
450
    return offsets->ctr_offset;
451
 
452
  *regsize = offsets->xr_size;
453
  if (regnum == tdep->ppc_cr_regnum)
454
    return offsets->cr_offset;
455
 
456
  if (regnum == tdep->ppc_xer_regnum)
457
    return offsets->xer_offset;
458
 
459
  if (regnum == tdep->ppc_mq_regnum)
460
    return offsets->mq_offset;
461
 
462
  return -1;
463
}
464
 
465
static int
466
ppc_fpreg_offset (struct gdbarch_tdep *tdep,
467
                  const struct ppc_reg_offsets *offsets,
468
                  int regnum)
469
{
470
  if (regnum >= tdep->ppc_fp0_regnum
471
      && regnum < tdep->ppc_fp0_regnum + ppc_num_fprs)
472
    return offsets->f0_offset + (regnum - tdep->ppc_fp0_regnum) * 8;
473
 
474
  if (regnum == tdep->ppc_fpscr_regnum)
475
    return offsets->fpscr_offset;
476
 
477
  return -1;
478
}
479
 
480
static int
481
ppc_vrreg_offset (struct gdbarch_tdep *tdep,
482
                  const struct ppc_reg_offsets *offsets,
483
                  int regnum)
484
{
485
  if (regnum >= tdep->ppc_vr0_regnum
486
      && regnum < tdep->ppc_vr0_regnum + ppc_num_vrs)
487
    return offsets->vr0_offset + (regnum - tdep->ppc_vr0_regnum) * 16;
488
 
489
  if (regnum == tdep->ppc_vrsave_regnum - 1)
490
    return offsets->vscr_offset;
491
 
492
  if (regnum == tdep->ppc_vrsave_regnum)
493
    return offsets->vrsave_offset;
494
 
495
  return -1;
496
}
497
 
498
/* Supply register REGNUM in the general-purpose register set REGSET
499
   from the buffer specified by GREGS and LEN to register cache
500
   REGCACHE.  If REGNUM is -1, do this for all registers in REGSET.  */
501
 
502
void
503
ppc_supply_gregset (const struct regset *regset, struct regcache *regcache,
504
                    int regnum, const void *gregs, size_t len)
505
{
506
  struct gdbarch *gdbarch = get_regcache_arch (regcache);
507
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
508
  const struct ppc_reg_offsets *offsets = regset->descr;
509
  size_t offset;
510
  int regsize;
511
 
512
  if (regnum == -1)
513
    {
514
      int i;
515
      int gpr_size = offsets->gpr_size;
516
 
517
      for (i = tdep->ppc_gp0_regnum, offset = offsets->r0_offset;
518
           i < tdep->ppc_gp0_regnum + ppc_num_gprs;
519
           i++, offset += gpr_size)
520
        ppc_supply_reg (regcache, i, gregs, offset, gpr_size);
521
 
522
      ppc_supply_reg (regcache, gdbarch_pc_regnum (gdbarch),
523
                      gregs, offsets->pc_offset, gpr_size);
524
      ppc_supply_reg (regcache, tdep->ppc_ps_regnum,
525
                      gregs, offsets->ps_offset, gpr_size);
526
      ppc_supply_reg (regcache, tdep->ppc_lr_regnum,
527
                      gregs, offsets->lr_offset, gpr_size);
528
      ppc_supply_reg (regcache, tdep->ppc_ctr_regnum,
529
                      gregs, offsets->ctr_offset, gpr_size);
530
      ppc_supply_reg (regcache, tdep->ppc_cr_regnum,
531
                      gregs, offsets->cr_offset, offsets->xr_size);
532
      ppc_supply_reg (regcache, tdep->ppc_xer_regnum,
533
                      gregs, offsets->xer_offset, offsets->xr_size);
534
      ppc_supply_reg (regcache, tdep->ppc_mq_regnum,
535
                      gregs, offsets->mq_offset, offsets->xr_size);
536
      return;
537
    }
538
 
539
  offset = ppc_greg_offset (gdbarch, tdep, offsets, regnum, &regsize);
540
  ppc_supply_reg (regcache, regnum, gregs, offset, regsize);
541
}
542
 
543
/* Supply register REGNUM in the floating-point register set REGSET
544
   from the buffer specified by FPREGS and LEN to register cache
545
   REGCACHE.  If REGNUM is -1, do this for all registers in REGSET.  */
546
 
547
void
548
ppc_supply_fpregset (const struct regset *regset, struct regcache *regcache,
549
                     int regnum, const void *fpregs, size_t len)
550
{
551
  struct gdbarch *gdbarch = get_regcache_arch (regcache);
552
  struct gdbarch_tdep *tdep;
553
  const struct ppc_reg_offsets *offsets;
554
  size_t offset;
555
 
556
  if (!ppc_floating_point_unit_p (gdbarch))
557
    return;
558
 
559
  tdep = gdbarch_tdep (gdbarch);
560
  offsets = regset->descr;
561
  if (regnum == -1)
562
    {
563
      int i;
564
 
565
      for (i = tdep->ppc_fp0_regnum, offset = offsets->f0_offset;
566
           i < tdep->ppc_fp0_regnum + ppc_num_fprs;
567
           i++, offset += 8)
568
        ppc_supply_reg (regcache, i, fpregs, offset, 8);
569
 
570
      ppc_supply_reg (regcache, tdep->ppc_fpscr_regnum,
571
                      fpregs, offsets->fpscr_offset, offsets->fpscr_size);
572
      return;
573
    }
574
 
575
  offset = ppc_fpreg_offset (tdep, offsets, regnum);
576
  ppc_supply_reg (regcache, regnum, fpregs, offset,
577
                  regnum == tdep->ppc_fpscr_regnum ? offsets->fpscr_size : 8);
578
}
579
 
580
/* Supply register REGNUM in the VSX register set REGSET
581
   from the buffer specified by VSXREGS and LEN to register cache
582
   REGCACHE.  If REGNUM is -1, do this for all registers in REGSET.  */
583
 
584
void
585
ppc_supply_vsxregset (const struct regset *regset, struct regcache *regcache,
586
                     int regnum, const void *vsxregs, size_t len)
587
{
588
  struct gdbarch *gdbarch = get_regcache_arch (regcache);
589
  struct gdbarch_tdep *tdep;
590
 
591
  if (!ppc_vsx_support_p (gdbarch))
592
    return;
593
 
594
  tdep = gdbarch_tdep (gdbarch);
595
 
596
  if (regnum == -1)
597
    {
598
      int i;
599
 
600
      for (i = tdep->ppc_vsr0_upper_regnum;
601
           i < tdep->ppc_vsr0_upper_regnum + 32;
602
           i++)
603
        ppc_supply_reg (regcache, i, vsxregs, 0, 8);
604
 
605
      return;
606
    }
607
  else
608
    ppc_supply_reg (regcache, regnum, vsxregs, 0, 8);
609
}
610
 
611
/* Supply register REGNUM in the Altivec register set REGSET
612
   from the buffer specified by VRREGS and LEN to register cache
613
   REGCACHE.  If REGNUM is -1, do this for all registers in REGSET.  */
614
 
615
void
616
ppc_supply_vrregset (const struct regset *regset, struct regcache *regcache,
617
                     int regnum, const void *vrregs, size_t len)
618
{
619
  struct gdbarch *gdbarch = get_regcache_arch (regcache);
620
  struct gdbarch_tdep *tdep;
621
  const struct ppc_reg_offsets *offsets;
622
  size_t offset;
623
 
624
  if (!ppc_altivec_support_p (gdbarch))
625
    return;
626
 
627
  tdep = gdbarch_tdep (gdbarch);
628
  offsets = regset->descr;
629
  if (regnum == -1)
630
    {
631
      int i;
632
 
633
      for (i = tdep->ppc_vr0_regnum, offset = offsets->vr0_offset;
634
           i < tdep->ppc_vr0_regnum + ppc_num_vrs;
635
           i++, offset += 16)
636
        ppc_supply_reg (regcache, i, vrregs, offset, 16);
637
 
638
      ppc_supply_reg (regcache, (tdep->ppc_vrsave_regnum - 1),
639
                      vrregs, offsets->vscr_offset, 4);
640
 
641
      ppc_supply_reg (regcache, tdep->ppc_vrsave_regnum,
642
                      vrregs, offsets->vrsave_offset, 4);
643
      return;
644
    }
645
 
646
  offset = ppc_vrreg_offset (tdep, offsets, regnum);
647
  if (regnum != tdep->ppc_vrsave_regnum
648
      && regnum != tdep->ppc_vrsave_regnum - 1)
649
    ppc_supply_reg (regcache, regnum, vrregs, offset, 16);
650
  else
651
    ppc_supply_reg (regcache, regnum,
652
                    vrregs, offset, 4);
653
}
654
 
655
/* Collect register REGNUM in the general-purpose register set
656
   REGSET from register cache REGCACHE into the buffer specified by
657
   GREGS and LEN.  If REGNUM is -1, do this for all registers in
658
   REGSET.  */
659
 
660
void
661
ppc_collect_gregset (const struct regset *regset,
662
                     const struct regcache *regcache,
663
                     int regnum, void *gregs, size_t len)
664
{
665
  struct gdbarch *gdbarch = get_regcache_arch (regcache);
666
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
667
  const struct ppc_reg_offsets *offsets = regset->descr;
668
  size_t offset;
669
  int regsize;
670
 
671
  if (regnum == -1)
672
    {
673
      int i;
674
      int gpr_size = offsets->gpr_size;
675
 
676
      for (i = tdep->ppc_gp0_regnum, offset = offsets->r0_offset;
677
           i < tdep->ppc_gp0_regnum + ppc_num_gprs;
678
           i++, offset += gpr_size)
679
        ppc_collect_reg (regcache, i, gregs, offset, gpr_size);
680
 
681
      ppc_collect_reg (regcache, gdbarch_pc_regnum (gdbarch),
682
                       gregs, offsets->pc_offset, gpr_size);
683
      ppc_collect_reg (regcache, tdep->ppc_ps_regnum,
684
                       gregs, offsets->ps_offset, gpr_size);
685
      ppc_collect_reg (regcache, tdep->ppc_lr_regnum,
686
                       gregs, offsets->lr_offset, gpr_size);
687
      ppc_collect_reg (regcache, tdep->ppc_ctr_regnum,
688
                       gregs, offsets->ctr_offset, gpr_size);
689
      ppc_collect_reg (regcache, tdep->ppc_cr_regnum,
690
                       gregs, offsets->cr_offset, offsets->xr_size);
691
      ppc_collect_reg (regcache, tdep->ppc_xer_regnum,
692
                       gregs, offsets->xer_offset, offsets->xr_size);
693
      ppc_collect_reg (regcache, tdep->ppc_mq_regnum,
694
                       gregs, offsets->mq_offset, offsets->xr_size);
695
      return;
696
    }
697
 
698
  offset = ppc_greg_offset (gdbarch, tdep, offsets, regnum, &regsize);
699
  ppc_collect_reg (regcache, regnum, gregs, offset, regsize);
700
}
701
 
702
/* Collect register REGNUM in the floating-point register set
703
   REGSET from register cache REGCACHE into the buffer specified by
704
   FPREGS and LEN.  If REGNUM is -1, do this for all registers in
705
   REGSET.  */
706
 
707
void
708
ppc_collect_fpregset (const struct regset *regset,
709
                      const struct regcache *regcache,
710
                      int regnum, void *fpregs, size_t len)
711
{
712
  struct gdbarch *gdbarch = get_regcache_arch (regcache);
713
  struct gdbarch_tdep *tdep;
714
  const struct ppc_reg_offsets *offsets;
715
  size_t offset;
716
 
717
  if (!ppc_floating_point_unit_p (gdbarch))
718
    return;
719
 
720
  tdep = gdbarch_tdep (gdbarch);
721
  offsets = regset->descr;
722
  if (regnum == -1)
723
    {
724
      int i;
725
 
726
      for (i = tdep->ppc_fp0_regnum, offset = offsets->f0_offset;
727
           i < tdep->ppc_fp0_regnum + ppc_num_fprs;
728
           i++, offset += 8)
729
        ppc_collect_reg (regcache, i, fpregs, offset, 8);
730
 
731
      ppc_collect_reg (regcache, tdep->ppc_fpscr_regnum,
732
                       fpregs, offsets->fpscr_offset, offsets->fpscr_size);
733
      return;
734
    }
735
 
736
  offset = ppc_fpreg_offset (tdep, offsets, regnum);
737
  ppc_collect_reg (regcache, regnum, fpregs, offset,
738
                   regnum == tdep->ppc_fpscr_regnum ? offsets->fpscr_size : 8);
739
}
740
 
741
/* Collect register REGNUM in the VSX register set
742
   REGSET from register cache REGCACHE into the buffer specified by
743
   VSXREGS and LEN.  If REGNUM is -1, do this for all registers in
744
   REGSET.  */
745
 
746
void
747
ppc_collect_vsxregset (const struct regset *regset,
748
                      const struct regcache *regcache,
749
                      int regnum, void *vsxregs, size_t len)
750
{
751
  struct gdbarch *gdbarch = get_regcache_arch (regcache);
752
  struct gdbarch_tdep *tdep;
753
 
754
  if (!ppc_vsx_support_p (gdbarch))
755
    return;
756
 
757
  tdep = gdbarch_tdep (gdbarch);
758
 
759
  if (regnum == -1)
760
    {
761
      int i;
762
 
763
      for (i = tdep->ppc_vsr0_upper_regnum;
764
           i < tdep->ppc_vsr0_upper_regnum + 32;
765
           i++)
766
        ppc_collect_reg (regcache, i, vsxregs, 0, 8);
767
 
768
      return;
769
    }
770
  else
771
    ppc_collect_reg (regcache, regnum, vsxregs, 0, 8);
772
}
773
 
774
 
775
/* Collect register REGNUM in the Altivec register set
776
   REGSET from register cache REGCACHE into the buffer specified by
777
   VRREGS and LEN.  If REGNUM is -1, do this for all registers in
778
   REGSET.  */
779
 
780
void
781
ppc_collect_vrregset (const struct regset *regset,
782
                      const struct regcache *regcache,
783
                      int regnum, void *vrregs, size_t len)
784
{
785
  struct gdbarch *gdbarch = get_regcache_arch (regcache);
786
  struct gdbarch_tdep *tdep;
787
  const struct ppc_reg_offsets *offsets;
788
  size_t offset;
789
 
790
  if (!ppc_altivec_support_p (gdbarch))
791
    return;
792
 
793
  tdep = gdbarch_tdep (gdbarch);
794
  offsets = regset->descr;
795
  if (regnum == -1)
796
    {
797
      int i;
798
 
799
      for (i = tdep->ppc_vr0_regnum, offset = offsets->vr0_offset;
800
           i < tdep->ppc_vr0_regnum + ppc_num_vrs;
801
           i++, offset += 16)
802
        ppc_collect_reg (regcache, i, vrregs, offset, 16);
803
 
804
      ppc_collect_reg (regcache, (tdep->ppc_vrsave_regnum - 1),
805
                       vrregs, offsets->vscr_offset, 4);
806
 
807
      ppc_collect_reg (regcache, tdep->ppc_vrsave_regnum,
808
                       vrregs, offsets->vrsave_offset, 4);
809
      return;
810
    }
811
 
812
  offset = ppc_vrreg_offset (tdep, offsets, regnum);
813
  if (regnum != tdep->ppc_vrsave_regnum
814
      && regnum != tdep->ppc_vrsave_regnum - 1)
815
    ppc_collect_reg (regcache, regnum, vrregs, offset, 16);
816
  else
817
    ppc_collect_reg (regcache, regnum,
818
                    vrregs, offset, 4);
819
}
820
 
821
 
822
static int
823
insn_changes_sp_or_jumps (unsigned long insn)
824
{
825
  int opcode = (insn >> 26) & 0x03f;
826
  int sd = (insn >> 21) & 0x01f;
827
  int a = (insn >> 16) & 0x01f;
828
  int subcode = (insn >> 1) & 0x3ff;
829
 
830
  /* Changes the stack pointer.  */
831
 
832
  /* NOTE: There are many ways to change the value of a given register.
833
           The ways below are those used when the register is R1, the SP,
834
           in a funtion's epilogue.  */
835
 
836
  if (opcode == 31 && subcode == 444 && a == 1)
837
    return 1;  /* mr R1,Rn */
838
  if (opcode == 14 && sd == 1)
839
    return 1;  /* addi R1,Rn,simm */
840
  if (opcode == 58 && sd == 1)
841
    return 1;  /* ld R1,ds(Rn) */
842
 
843
  /* Transfers control.  */
844
 
845
  if (opcode == 18)
846
    return 1;  /* b */
847
  if (opcode == 16)
848
    return 1;  /* bc */
849
  if (opcode == 19 && subcode == 16)
850
    return 1;  /* bclr */
851
  if (opcode == 19 && subcode == 528)
852
    return 1;  /* bcctr */
853
 
854
  return 0;
855
}
856
 
857
/* Return true if we are in the function's epilogue, i.e. after the
858
   instruction that destroyed the function's stack frame.
859
 
860
   1) scan forward from the point of execution:
861
       a) If you find an instruction that modifies the stack pointer
862
          or transfers control (except a return), execution is not in
863
          an epilogue, return.
864
       b) Stop scanning if you find a return instruction or reach the
865
          end of the function or reach the hard limit for the size of
866
          an epilogue.
867
   2) scan backward from the point of execution:
868
        a) If you find an instruction that modifies the stack pointer,
869
            execution *is* in an epilogue, return.
870
        b) Stop scanning if you reach an instruction that transfers
871
           control or the beginning of the function or reach the hard
872
           limit for the size of an epilogue.  */
873
 
874
static int
875
rs6000_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
876
{
877
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
878
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
879
  bfd_byte insn_buf[PPC_INSN_SIZE];
880
  CORE_ADDR scan_pc, func_start, func_end, epilogue_start, epilogue_end;
881
  unsigned long insn;
882
  struct frame_info *curfrm;
883
 
884
  /* Find the search limits based on function boundaries and hard limit.  */
885
 
886
  if (!find_pc_partial_function (pc, NULL, &func_start, &func_end))
887
    return 0;
888
 
889
  epilogue_start = pc - PPC_MAX_EPILOGUE_INSTRUCTIONS * PPC_INSN_SIZE;
890
  if (epilogue_start < func_start) epilogue_start = func_start;
891
 
892
  epilogue_end = pc + PPC_MAX_EPILOGUE_INSTRUCTIONS * PPC_INSN_SIZE;
893
  if (epilogue_end > func_end) epilogue_end = func_end;
894
 
895
  curfrm = get_current_frame ();
896
 
897
  /* Scan forward until next 'blr'.  */
898
 
899
  for (scan_pc = pc; scan_pc < epilogue_end; scan_pc += PPC_INSN_SIZE)
900
    {
901
      if (!safe_frame_unwind_memory (curfrm, scan_pc, insn_buf, PPC_INSN_SIZE))
902
        return 0;
903
      insn = extract_unsigned_integer (insn_buf, PPC_INSN_SIZE, byte_order);
904
      if (insn == 0x4e800020)
905
        break;
906
      /* Assume a bctr is a tail call unless it points strictly within
907
         this function.  */
908
      if (insn == 0x4e800420)
909
        {
910
          CORE_ADDR ctr = get_frame_register_unsigned (curfrm,
911
                                                       tdep->ppc_ctr_regnum);
912
          if (ctr > func_start && ctr < func_end)
913
            return 0;
914
          else
915
            break;
916
        }
917
      if (insn_changes_sp_or_jumps (insn))
918
        return 0;
919
    }
920
 
921
  /* Scan backward until adjustment to stack pointer (R1).  */
922
 
923
  for (scan_pc = pc - PPC_INSN_SIZE;
924
       scan_pc >= epilogue_start;
925
       scan_pc -= PPC_INSN_SIZE)
926
    {
927
      if (!safe_frame_unwind_memory (curfrm, scan_pc, insn_buf, PPC_INSN_SIZE))
928
        return 0;
929
      insn = extract_unsigned_integer (insn_buf, PPC_INSN_SIZE, byte_order);
930
      if (insn_changes_sp_or_jumps (insn))
931
        return 1;
932
    }
933
 
934
  return 0;
935
}
936
 
937
/* Get the ith function argument for the current function.  */
938
static CORE_ADDR
939
rs6000_fetch_pointer_argument (struct frame_info *frame, int argi,
940
                               struct type *type)
941
{
942
  return get_frame_register_unsigned (frame, 3 + argi);
943
}
944
 
945
/* Sequence of bytes for breakpoint instruction.  */
946
 
947
const static unsigned char *
948
rs6000_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *bp_addr,
949
                           int *bp_size)
950
{
951
  static unsigned char big_breakpoint[] = { 0x7d, 0x82, 0x10, 0x08 };
952
  static unsigned char little_breakpoint[] = { 0x08, 0x10, 0x82, 0x7d };
953
  *bp_size = 4;
954
  if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
955
    return big_breakpoint;
956
  else
957
    return little_breakpoint;
958
}
959
 
960
/* Instruction masks for displaced stepping.  */
961
#define BRANCH_MASK 0xfc000000
962
#define BP_MASK 0xFC0007FE
963
#define B_INSN 0x48000000
964
#define BC_INSN 0x40000000
965
#define BXL_INSN 0x4c000000
966
#define BP_INSN 0x7C000008
967
 
968
/* Fix up the state of registers and memory after having single-stepped
969
   a displaced instruction.  */
970
static void
971
ppc_displaced_step_fixup (struct gdbarch *gdbarch,
972
                          struct displaced_step_closure *closure,
973
                          CORE_ADDR from, CORE_ADDR to,
974
                          struct regcache *regs)
975
{
976
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
977
  /* Since we use simple_displaced_step_copy_insn, our closure is a
978
     copy of the instruction.  */
979
  ULONGEST insn  = extract_unsigned_integer ((gdb_byte *) closure,
980
                                              PPC_INSN_SIZE, byte_order);
981
  ULONGEST opcode = 0;
982
  /* Offset for non PC-relative instructions.  */
983
  LONGEST offset = PPC_INSN_SIZE;
984
 
985
  opcode = insn & BRANCH_MASK;
986
 
987
  if (debug_displaced)
988
    fprintf_unfiltered (gdb_stdlog,
989
                        "displaced: (ppc) fixup (%s, %s)\n",
990
                        paddress (gdbarch, from), paddress (gdbarch, to));
991
 
992
 
993
  /* Handle PC-relative branch instructions.  */
994
  if (opcode == B_INSN || opcode == BC_INSN || opcode == BXL_INSN)
995
    {
996
      ULONGEST current_pc;
997
 
998
      /* Read the current PC value after the instruction has been executed
999
         in a displaced location.  Calculate the offset to be applied to the
1000
         original PC value before the displaced stepping.  */
1001
      regcache_cooked_read_unsigned (regs, gdbarch_pc_regnum (gdbarch),
1002
                                      &current_pc);
1003
      offset = current_pc - to;
1004
 
1005
      if (opcode != BXL_INSN)
1006
        {
1007
          /* Check for AA bit indicating whether this is an absolute
1008
             addressing or PC-relative (1: absolute, 0: relative).  */
1009
          if (!(insn & 0x2))
1010
            {
1011
              /* PC-relative addressing is being used in the branch.  */
1012
              if (debug_displaced)
1013
                fprintf_unfiltered
1014
                  (gdb_stdlog,
1015
                   "displaced: (ppc) branch instruction: %s\n"
1016
                   "displaced: (ppc) adjusted PC from %s to %s\n",
1017
                   paddress (gdbarch, insn), paddress (gdbarch, current_pc),
1018
                   paddress (gdbarch, from + offset));
1019
 
1020
              regcache_cooked_write_unsigned (regs, gdbarch_pc_regnum (gdbarch),
1021
                                              from + offset);
1022
            }
1023
        }
1024
      else
1025
        {
1026
          /* If we're here, it means we have a branch to LR or CTR.  If the
1027
             branch was taken, the offset is probably greater than 4 (the next
1028
             instruction), so it's safe to assume that an offset of 4 means we
1029
             did not take the branch.  */
1030
          if (offset == PPC_INSN_SIZE)
1031
            regcache_cooked_write_unsigned (regs, gdbarch_pc_regnum (gdbarch),
1032
                                            from + PPC_INSN_SIZE);
1033
        }
1034
 
1035
      /* Check for LK bit indicating whether we should set the link
1036
         register to point to the next instruction
1037
         (1: Set, 0: Don't set).  */
1038
      if (insn & 0x1)
1039
        {
1040
          /* Link register needs to be set to the next instruction's PC.  */
1041
          regcache_cooked_write_unsigned (regs,
1042
                                          gdbarch_tdep (gdbarch)->ppc_lr_regnum,
1043
                                          from + PPC_INSN_SIZE);
1044
          if (debug_displaced)
1045
                fprintf_unfiltered (gdb_stdlog,
1046
                                    "displaced: (ppc) adjusted LR to %s\n",
1047
                                    paddress (gdbarch, from + PPC_INSN_SIZE));
1048
 
1049
        }
1050
    }
1051
  /* Check for breakpoints in the inferior.  If we've found one, place the PC
1052
     right at the breakpoint instruction.  */
1053
  else if ((insn & BP_MASK) == BP_INSN)
1054
    regcache_cooked_write_unsigned (regs, gdbarch_pc_regnum (gdbarch), from);
1055
  else
1056
  /* Handle any other instructions that do not fit in the categories above.  */
1057
    regcache_cooked_write_unsigned (regs, gdbarch_pc_regnum (gdbarch),
1058
                                    from + offset);
1059
}
1060
 
1061
/* Always use hardware single-stepping to execute the
1062
   displaced instruction.  */
1063
static int
1064
ppc_displaced_step_hw_singlestep (struct gdbarch *gdbarch,
1065
                                  struct displaced_step_closure *closure)
1066
{
1067
  return 1;
1068
}
1069
 
1070
/* Instruction masks used during single-stepping of atomic sequences.  */
1071
#define LWARX_MASK 0xfc0007fe
1072
#define LWARX_INSTRUCTION 0x7c000028
1073
#define LDARX_INSTRUCTION 0x7c0000A8
1074
#define STWCX_MASK 0xfc0007ff
1075
#define STWCX_INSTRUCTION 0x7c00012d
1076
#define STDCX_INSTRUCTION 0x7c0001ad
1077
 
1078
/* Checks for an atomic sequence of instructions beginning with a LWARX/LDARX
1079
   instruction and ending with a STWCX/STDCX instruction.  If such a sequence
1080
   is found, attempt to step through it.  A breakpoint is placed at the end of
1081
   the sequence.  */
1082
 
1083
int
1084
ppc_deal_with_atomic_sequence (struct frame_info *frame)
1085
{
1086
  struct gdbarch *gdbarch = get_frame_arch (frame);
1087
  struct address_space *aspace = get_frame_address_space (frame);
1088
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1089
  CORE_ADDR pc = get_frame_pc (frame);
1090
  CORE_ADDR breaks[2] = {-1, -1};
1091
  CORE_ADDR loc = pc;
1092
  CORE_ADDR closing_insn; /* Instruction that closes the atomic sequence.  */
1093
  int insn = read_memory_integer (loc, PPC_INSN_SIZE, byte_order);
1094
  int insn_count;
1095
  int index;
1096
  int last_breakpoint = 0; /* Defaults to 0 (no breakpoints placed).  */
1097
  const int atomic_sequence_length = 16; /* Instruction sequence length.  */
1098
  int opcode; /* Branch instruction's OPcode.  */
1099
  int bc_insn_count = 0; /* Conditional branch instruction count.  */
1100
 
1101
  /* Assume all atomic sequences start with a lwarx/ldarx instruction.  */
1102
  if ((insn & LWARX_MASK) != LWARX_INSTRUCTION
1103
      && (insn & LWARX_MASK) != LDARX_INSTRUCTION)
1104
    return 0;
1105
 
1106
  /* Assume that no atomic sequence is longer than "atomic_sequence_length"
1107
     instructions.  */
1108
  for (insn_count = 0; insn_count < atomic_sequence_length; ++insn_count)
1109
    {
1110
      loc += PPC_INSN_SIZE;
1111
      insn = read_memory_integer (loc, PPC_INSN_SIZE, byte_order);
1112
 
1113
      /* Assume that there is at most one conditional branch in the atomic
1114
         sequence.  If a conditional branch is found, put a breakpoint in
1115
         its destination address.  */
1116
      if ((insn & BRANCH_MASK) == BC_INSN)
1117
        {
1118
          int immediate = ((insn & ~3) << 16) >> 16;
1119
          int absolute = ((insn >> 1) & 1);
1120
 
1121
          if (bc_insn_count >= 1)
1122
            return 0; /* More than one conditional branch found, fallback
1123
                         to the standard single-step code.  */
1124
 
1125
          if (absolute)
1126
            breaks[1] = immediate;
1127
          else
1128
            breaks[1] = pc + immediate;
1129
 
1130
          bc_insn_count++;
1131
          last_breakpoint++;
1132
        }
1133
 
1134
      if ((insn & STWCX_MASK) == STWCX_INSTRUCTION
1135
          || (insn & STWCX_MASK) == STDCX_INSTRUCTION)
1136
        break;
1137
    }
1138
 
1139
  /* Assume that the atomic sequence ends with a stwcx/stdcx instruction.  */
1140
  if ((insn & STWCX_MASK) != STWCX_INSTRUCTION
1141
      && (insn & STWCX_MASK) != STDCX_INSTRUCTION)
1142
    return 0;
1143
 
1144
  closing_insn = loc;
1145
  loc += PPC_INSN_SIZE;
1146
  insn = read_memory_integer (loc, PPC_INSN_SIZE, byte_order);
1147
 
1148
  /* Insert a breakpoint right after the end of the atomic sequence.  */
1149
  breaks[0] = loc;
1150
 
1151
  /* Check for duplicated breakpoints.  Check also for a breakpoint
1152
     placed (branch instruction's destination) at the stwcx/stdcx
1153
     instruction, this resets the reservation and take us back to the
1154
     lwarx/ldarx instruction at the beginning of the atomic sequence.  */
1155
  if (last_breakpoint && ((breaks[1] == breaks[0])
1156
      || (breaks[1] == closing_insn)))
1157
    last_breakpoint = 0;
1158
 
1159
  /* Effectively inserts the breakpoints.  */
1160
  for (index = 0; index <= last_breakpoint; index++)
1161
    insert_single_step_breakpoint (gdbarch, aspace, breaks[index]);
1162
 
1163
  return 1;
1164
}
1165
 
1166
 
1167
#define SIGNED_SHORT(x)                                                 \
1168
  ((sizeof (short) == 2)                                                \
1169
   ? ((int)(short)(x))                                                  \
1170
   : ((int)((((x) & 0xffff) ^ 0x8000) - 0x8000)))
1171
 
1172
#define GET_SRC_REG(x) (((x) >> 21) & 0x1f)
1173
 
1174
/* Limit the number of skipped non-prologue instructions, as the examining
1175
   of the prologue is expensive.  */
1176
static int max_skip_non_prologue_insns = 10;
1177
 
1178
/* Return nonzero if the given instruction OP can be part of the prologue
1179
   of a function and saves a parameter on the stack.  FRAMEP should be
1180
   set if one of the previous instructions in the function has set the
1181
   Frame Pointer.  */
1182
 
1183
static int
1184
store_param_on_stack_p (unsigned long op, int framep, int *r0_contains_arg)
1185
{
1186
  /* Move parameters from argument registers to temporary register.  */
1187
  if ((op & 0xfc0007fe) == 0x7c000378)         /* mr(.)  Rx,Ry */
1188
    {
1189
      /* Rx must be scratch register r0.  */
1190
      const int rx_regno = (op >> 16) & 31;
1191
      /* Ry: Only r3 - r10 are used for parameter passing.  */
1192
      const int ry_regno = GET_SRC_REG (op);
1193
 
1194
      if (rx_regno == 0 && ry_regno >= 3 && ry_regno <= 10)
1195
        {
1196
          *r0_contains_arg = 1;
1197
          return 1;
1198
        }
1199
      else
1200
        return 0;
1201
    }
1202
 
1203
  /* Save a General Purpose Register on stack.  */
1204
 
1205
  if ((op & 0xfc1f0003) == 0xf8010000 ||       /* std  Rx,NUM(r1) */
1206
      (op & 0xfc1f0000) == 0xd8010000)         /* stfd Rx,NUM(r1) */
1207
    {
1208
      /* Rx: Only r3 - r10 are used for parameter passing.  */
1209
      const int rx_regno = GET_SRC_REG (op);
1210
 
1211
      return (rx_regno >= 3 && rx_regno <= 10);
1212
    }
1213
 
1214
  /* Save a General Purpose Register on stack via the Frame Pointer.  */
1215
 
1216
  if (framep &&
1217
      ((op & 0xfc1f0000) == 0x901f0000 ||     /* st rx,NUM(r31) */
1218
       (op & 0xfc1f0000) == 0x981f0000 ||     /* stb Rx,NUM(r31) */
1219
       (op & 0xfc1f0000) == 0xd81f0000))      /* stfd Rx,NUM(r31) */
1220
    {
1221
      /* Rx: Usually, only r3 - r10 are used for parameter passing.
1222
         However, the compiler sometimes uses r0 to hold an argument.  */
1223
      const int rx_regno = GET_SRC_REG (op);
1224
 
1225
      return ((rx_regno >= 3 && rx_regno <= 10)
1226
              || (rx_regno == 0 && *r0_contains_arg));
1227
    }
1228
 
1229
  if ((op & 0xfc1f0000) == 0xfc010000)         /* frsp, fp?,NUM(r1) */
1230
    {
1231
      /* Only f2 - f8 are used for parameter passing.  */
1232
      const int src_regno = GET_SRC_REG (op);
1233
 
1234
      return (src_regno >= 2 && src_regno <= 8);
1235
    }
1236
 
1237
  if (framep && ((op & 0xfc1f0000) == 0xfc1f0000))  /* frsp, fp?,NUM(r31) */
1238
    {
1239
      /* Only f2 - f8 are used for parameter passing.  */
1240
      const int src_regno = GET_SRC_REG (op);
1241
 
1242
      return (src_regno >= 2 && src_regno <= 8);
1243
    }
1244
 
1245
  /* Not an insn that saves a parameter on stack.  */
1246
  return 0;
1247
}
1248
 
1249
/* Assuming that INSN is a "bl" instruction located at PC, return
1250
   nonzero if the destination of the branch is a "blrl" instruction.
1251
 
1252
   This sequence is sometimes found in certain function prologues.
1253
   It allows the function to load the LR register with a value that
1254
   they can use to access PIC data using PC-relative offsets.  */
1255
 
1256
static int
1257
bl_to_blrl_insn_p (CORE_ADDR pc, int insn, enum bfd_endian byte_order)
1258
{
1259
  CORE_ADDR dest;
1260
  int immediate;
1261
  int absolute;
1262
  int dest_insn;
1263
 
1264
  absolute = (int) ((insn >> 1) & 1);
1265
  immediate = ((insn & ~3) << 6) >> 6;
1266
  if (absolute)
1267
    dest = immediate;
1268
  else
1269
    dest = pc + immediate;
1270
 
1271
  dest_insn = read_memory_integer (dest, 4, byte_order);
1272
  if ((dest_insn & 0xfc00ffff) == 0x4c000021) /* blrl */
1273
    return 1;
1274
 
1275
  return 0;
1276
}
1277
 
1278
/* Masks for decoding a branch-and-link (bl) instruction.
1279
 
1280
   BL_MASK and BL_INSTRUCTION are used in combination with each other.
1281
   The former is anded with the opcode in question; if the result of
1282
   this masking operation is equal to BL_INSTRUCTION, then the opcode in
1283
   question is a ``bl'' instruction.
1284
 
1285
   BL_DISPLACMENT_MASK is anded with the opcode in order to extract
1286
   the branch displacement.  */
1287
 
1288
#define BL_MASK 0xfc000001
1289
#define BL_INSTRUCTION 0x48000001
1290
#define BL_DISPLACEMENT_MASK 0x03fffffc
1291
 
1292
static unsigned long
1293
rs6000_fetch_instruction (struct gdbarch *gdbarch, const CORE_ADDR pc)
1294
{
1295
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1296
  gdb_byte buf[4];
1297
  unsigned long op;
1298
 
1299
  /* Fetch the instruction and convert it to an integer.  */
1300
  if (target_read_memory (pc, buf, 4))
1301
    return 0;
1302
  op = extract_unsigned_integer (buf, 4, byte_order);
1303
 
1304
  return op;
1305
}
1306
 
1307
/* GCC generates several well-known sequences of instructions at the begining
1308
   of each function prologue when compiling with -fstack-check.  If one of
1309
   such sequences starts at START_PC, then return the address of the
1310
   instruction immediately past this sequence.  Otherwise, return START_PC.  */
1311
 
1312
static CORE_ADDR
1313
rs6000_skip_stack_check (struct gdbarch *gdbarch, const CORE_ADDR start_pc)
1314
{
1315
  CORE_ADDR pc = start_pc;
1316
  unsigned long op = rs6000_fetch_instruction (gdbarch, pc);
1317
 
1318
  /* First possible sequence: A small number of probes.
1319
         stw 0, -<some immediate>(1)
1320
         [repeat this instruction any (small) number of times]
1321
  */
1322
 
1323
  if ((op & 0xffff0000) == 0x90010000)
1324
    {
1325
      while ((op & 0xffff0000) == 0x90010000)
1326
        {
1327
          pc = pc + 4;
1328
          op = rs6000_fetch_instruction (gdbarch, pc);
1329
        }
1330
      return pc;
1331
    }
1332
 
1333
  /* Second sequence: A probing loop.
1334
         addi 12,1,-<some immediate>
1335
         lis 0,-<some immediate>
1336
         [possibly ori 0,0,<some immediate>]
1337
         add 0,12,0
1338
         cmpw 0,12,0
1339
         beq 0,<disp>
1340
         addi 12,12,-<some immediate>
1341
         stw 0,0(12)
1342
         b <disp>
1343
         [possibly one last probe: stw 0,<some immediate>(12)]
1344
  */
1345
 
1346
  while (1)
1347
    {
1348
      /* addi 12,1,-<some immediate> */
1349
      if ((op & 0xffff0000) != 0x39810000)
1350
        break;
1351
 
1352
      /* lis 0,-<some immediate> */
1353
      pc = pc + 4;
1354
      op = rs6000_fetch_instruction (gdbarch, pc);
1355
      if ((op & 0xffff0000) != 0x3c000000)
1356
        break;
1357
 
1358
      pc = pc + 4;
1359
      op = rs6000_fetch_instruction (gdbarch, pc);
1360
      /* [possibly ori 0,0,<some immediate>] */
1361
      if ((op & 0xffff0000) == 0x60000000)
1362
        {
1363
          pc = pc + 4;
1364
          op = rs6000_fetch_instruction (gdbarch, pc);
1365
        }
1366
      /* add 0,12,0 */
1367
      if (op != 0x7c0c0214)
1368
        break;
1369
 
1370
      /* cmpw 0,12,0 */
1371
      pc = pc + 4;
1372
      op = rs6000_fetch_instruction (gdbarch, pc);
1373
      if (op != 0x7c0c0000)
1374
        break;
1375
 
1376
      /* beq 0,<disp> */
1377
      pc = pc + 4;
1378
      op = rs6000_fetch_instruction (gdbarch, pc);
1379
      if ((op & 0xff9f0001) != 0x41820000)
1380
        break;
1381
 
1382
      /* addi 12,12,-<some immediate> */
1383
      pc = pc + 4;
1384
      op = rs6000_fetch_instruction (gdbarch, pc);
1385
      if ((op & 0xffff0000) != 0x398c0000)
1386
        break;
1387
 
1388
      /* stw 0,0(12) */
1389
      pc = pc + 4;
1390
      op = rs6000_fetch_instruction (gdbarch, pc);
1391
      if (op != 0x900c0000)
1392
        break;
1393
 
1394
      /* b <disp> */
1395
      pc = pc + 4;
1396
      op = rs6000_fetch_instruction (gdbarch, pc);
1397
      if ((op & 0xfc000001) != 0x48000000)
1398
        break;
1399
 
1400
      /* [possibly one last probe: stw 0,<some immediate>(12)] */
1401
      pc = pc + 4;
1402
      op = rs6000_fetch_instruction (gdbarch, pc);
1403
      if ((op & 0xffff0000) == 0x900c0000)
1404
        {
1405
          pc = pc + 4;
1406
          op = rs6000_fetch_instruction (gdbarch, pc);
1407
        }
1408
 
1409
      /* We found a valid stack-check sequence, return the new PC.  */
1410
      return pc;
1411
    }
1412
 
1413
  /* Third sequence: No probe; instead, a comparizon between the stack size
1414
     limit (saved in a run-time global variable) and the current stack
1415
     pointer:
1416
 
1417
        addi 0,1,-<some immediate>
1418
        lis 12,__gnat_stack_limit@ha
1419
        lwz 12,__gnat_stack_limit@l(12)
1420
        twllt 0,12
1421
 
1422
     or, with a small variant in the case of a bigger stack frame:
1423
        addis 0,1,<some immediate>
1424
        addic 0,0,-<some immediate>
1425
        lis 12,__gnat_stack_limit@ha
1426
        lwz 12,__gnat_stack_limit@l(12)
1427
        twllt 0,12
1428
  */
1429
  while (1)
1430
    {
1431
      /* addi 0,1,-<some immediate> */
1432
      if ((op & 0xffff0000) != 0x38010000)
1433
        {
1434
          /* small stack frame variant not recognized; try the
1435
             big stack frame variant: */
1436
 
1437
          /* addis 0,1,<some immediate> */
1438
          if ((op & 0xffff0000) != 0x3c010000)
1439
            break;
1440
 
1441
          /* addic 0,0,-<some immediate> */
1442
          pc = pc + 4;
1443
          op = rs6000_fetch_instruction (gdbarch, pc);
1444
          if ((op & 0xffff0000) != 0x30000000)
1445
            break;
1446
        }
1447
 
1448
      /* lis 12,<some immediate> */
1449
      pc = pc + 4;
1450
      op = rs6000_fetch_instruction (gdbarch, pc);
1451
      if ((op & 0xffff0000) != 0x3d800000)
1452
        break;
1453
 
1454
      /* lwz 12,<some immediate>(12) */
1455
      pc = pc + 4;
1456
      op = rs6000_fetch_instruction (gdbarch, pc);
1457
      if ((op & 0xffff0000) != 0x818c0000)
1458
        break;
1459
 
1460
      /* twllt 0,12 */
1461
      pc = pc + 4;
1462
      op = rs6000_fetch_instruction (gdbarch, pc);
1463
      if ((op & 0xfffffffe) != 0x7c406008)
1464
        break;
1465
 
1466
      /* We found a valid stack-check sequence, return the new PC.  */
1467
      return pc;
1468
    }
1469
 
1470
  /* No stack check code in our prologue, return the start_pc.  */
1471
  return start_pc;
1472
}
1473
 
1474
/* return pc value after skipping a function prologue and also return
1475
   information about a function frame.
1476
 
1477
   in struct rs6000_framedata fdata:
1478
   - frameless is TRUE, if function does not have a frame.
1479
   - nosavedpc is TRUE, if function does not save %pc value in its frame.
1480
   - offset is the initial size of this stack frame --- the amount by
1481
   which we decrement the sp to allocate the frame.
1482
   - saved_gpr is the number of the first saved gpr.
1483
   - saved_fpr is the number of the first saved fpr.
1484
   - saved_vr is the number of the first saved vr.
1485
   - saved_ev is the number of the first saved ev.
1486
   - alloca_reg is the number of the register used for alloca() handling.
1487
   Otherwise -1.
1488
   - gpr_offset is the offset of the first saved gpr from the previous frame.
1489
   - fpr_offset is the offset of the first saved fpr from the previous frame.
1490
   - vr_offset is the offset of the first saved vr from the previous frame.
1491
   - ev_offset is the offset of the first saved ev from the previous frame.
1492
   - lr_offset is the offset of the saved lr
1493
   - cr_offset is the offset of the saved cr
1494
   - vrsave_offset is the offset of the saved vrsave register
1495
 */
1496
 
1497
static CORE_ADDR
1498
skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc, CORE_ADDR lim_pc,
1499
               struct rs6000_framedata *fdata)
1500
{
1501
  CORE_ADDR orig_pc = pc;
1502
  CORE_ADDR last_prologue_pc = pc;
1503
  CORE_ADDR li_found_pc = 0;
1504
  gdb_byte buf[4];
1505
  unsigned long op;
1506
  long offset = 0;
1507
  long vr_saved_offset = 0;
1508
  int lr_reg = -1;
1509
  int cr_reg = -1;
1510
  int vr_reg = -1;
1511
  int ev_reg = -1;
1512
  long ev_offset = 0;
1513
  int vrsave_reg = -1;
1514
  int reg;
1515
  int framep = 0;
1516
  int minimal_toc_loaded = 0;
1517
  int prev_insn_was_prologue_insn = 1;
1518
  int num_skip_non_prologue_insns = 0;
1519
  int r0_contains_arg = 0;
1520
  const struct bfd_arch_info *arch_info = gdbarch_bfd_arch_info (gdbarch);
1521
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1522
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1523
 
1524
  memset (fdata, 0, sizeof (struct rs6000_framedata));
1525
  fdata->saved_gpr = -1;
1526
  fdata->saved_fpr = -1;
1527
  fdata->saved_vr = -1;
1528
  fdata->saved_ev = -1;
1529
  fdata->alloca_reg = -1;
1530
  fdata->frameless = 1;
1531
  fdata->nosavedpc = 1;
1532
  fdata->lr_register = -1;
1533
 
1534
  pc = rs6000_skip_stack_check (gdbarch, pc);
1535
  if (pc >= lim_pc)
1536
    pc = lim_pc;
1537
 
1538
  for (;; pc += 4)
1539
    {
1540
      /* Sometimes it isn't clear if an instruction is a prologue
1541
         instruction or not.  When we encounter one of these ambiguous
1542
         cases, we'll set prev_insn_was_prologue_insn to 0 (false).
1543
         Otherwise, we'll assume that it really is a prologue instruction. */
1544
      if (prev_insn_was_prologue_insn)
1545
        last_prologue_pc = pc;
1546
 
1547
      /* Stop scanning if we've hit the limit.  */
1548
      if (pc >= lim_pc)
1549
        break;
1550
 
1551
      prev_insn_was_prologue_insn = 1;
1552
 
1553
      /* Fetch the instruction and convert it to an integer.  */
1554
      if (target_read_memory (pc, buf, 4))
1555
        break;
1556
      op = extract_unsigned_integer (buf, 4, byte_order);
1557
 
1558
      if ((op & 0xfc1fffff) == 0x7c0802a6)
1559
        {                       /* mflr Rx */
1560
          /* Since shared library / PIC code, which needs to get its
1561
             address at runtime, can appear to save more than one link
1562
             register vis:
1563
 
1564
             *INDENT-OFF*
1565
             stwu r1,-304(r1)
1566
             mflr r3
1567
             bl 0xff570d0 (blrl)
1568
             stw r30,296(r1)
1569
             mflr r30
1570
             stw r31,300(r1)
1571
             stw r3,308(r1);
1572
             ...
1573
             *INDENT-ON*
1574
 
1575
             remember just the first one, but skip over additional
1576
             ones.  */
1577
          if (lr_reg == -1)
1578
            lr_reg = (op & 0x03e00000) >> 21;
1579
          if (lr_reg == 0)
1580
            r0_contains_arg = 0;
1581
          continue;
1582
        }
1583
      else if ((op & 0xfc1fffff) == 0x7c000026)
1584
        {                       /* mfcr Rx */
1585
          cr_reg = (op & 0x03e00000);
1586
          if (cr_reg == 0)
1587
            r0_contains_arg = 0;
1588
          continue;
1589
 
1590
        }
1591
      else if ((op & 0xfc1f0000) == 0xd8010000)
1592
        {                       /* stfd Rx,NUM(r1) */
1593
          reg = GET_SRC_REG (op);
1594
          if (fdata->saved_fpr == -1 || fdata->saved_fpr > reg)
1595
            {
1596
              fdata->saved_fpr = reg;
1597
              fdata->fpr_offset = SIGNED_SHORT (op) + offset;
1598
            }
1599
          continue;
1600
 
1601
        }
1602
      else if (((op & 0xfc1f0000) == 0xbc010000) ||     /* stm Rx, NUM(r1) */
1603
               (((op & 0xfc1f0000) == 0x90010000 ||     /* st rx,NUM(r1) */
1604
                 (op & 0xfc1f0003) == 0xf8010000) &&    /* std rx,NUM(r1) */
1605
                (op & 0x03e00000) >= 0x01a00000))       /* rx >= r13 */
1606
        {
1607
 
1608
          reg = GET_SRC_REG (op);
1609
          if ((op & 0xfc1f0000) == 0xbc010000)
1610
            fdata->gpr_mask |= ~((1U << reg) - 1);
1611
          else
1612
            fdata->gpr_mask |= 1U << reg;
1613
          if (fdata->saved_gpr == -1 || fdata->saved_gpr > reg)
1614
            {
1615
              fdata->saved_gpr = reg;
1616
              if ((op & 0xfc1f0003) == 0xf8010000)
1617
                op &= ~3UL;
1618
              fdata->gpr_offset = SIGNED_SHORT (op) + offset;
1619
            }
1620
          continue;
1621
 
1622
        }
1623
      else if ((op & 0xffff0000) == 0x60000000)
1624
        {
1625
          /* nop */
1626
          /* Allow nops in the prologue, but do not consider them to
1627
             be part of the prologue unless followed by other prologue
1628
             instructions. */
1629
          prev_insn_was_prologue_insn = 0;
1630
          continue;
1631
 
1632
        }
1633
      else if ((op & 0xffff0000) == 0x3c000000)
1634
        {                       /* addis 0,0,NUM, used
1635
                                   for >= 32k frames */
1636
          fdata->offset = (op & 0x0000ffff) << 16;
1637
          fdata->frameless = 0;
1638
          r0_contains_arg = 0;
1639
          continue;
1640
 
1641
        }
1642
      else if ((op & 0xffff0000) == 0x60000000)
1643
        {                       /* ori 0,0,NUM, 2nd ha
1644
                                   lf of >= 32k frames */
1645
          fdata->offset |= (op & 0x0000ffff);
1646
          fdata->frameless = 0;
1647
          r0_contains_arg = 0;
1648
          continue;
1649
 
1650
        }
1651
      else if (lr_reg >= 0 &&
1652
               /* std Rx, NUM(r1) || stdu Rx, NUM(r1) */
1653
               (((op & 0xffff0000) == (lr_reg | 0xf8010000)) ||
1654
                /* stw Rx, NUM(r1) */
1655
                ((op & 0xffff0000) == (lr_reg | 0x90010000)) ||
1656
                /* stwu Rx, NUM(r1) */
1657
                ((op & 0xffff0000) == (lr_reg | 0x94010000))))
1658
        {       /* where Rx == lr */
1659
          fdata->lr_offset = offset;
1660
          fdata->nosavedpc = 0;
1661
          /* Invalidate lr_reg, but don't set it to -1.
1662
             That would mean that it had never been set.  */
1663
          lr_reg = -2;
1664
          if ((op & 0xfc000003) == 0xf8000000 ||        /* std */
1665
              (op & 0xfc000000) == 0x90000000)          /* stw */
1666
            {
1667
              /* Does not update r1, so add displacement to lr_offset.  */
1668
              fdata->lr_offset += SIGNED_SHORT (op);
1669
            }
1670
          continue;
1671
 
1672
        }
1673
      else if (cr_reg >= 0 &&
1674
               /* std Rx, NUM(r1) || stdu Rx, NUM(r1) */
1675
               (((op & 0xffff0000) == (cr_reg | 0xf8010000)) ||
1676
                /* stw Rx, NUM(r1) */
1677
                ((op & 0xffff0000) == (cr_reg | 0x90010000)) ||
1678
                /* stwu Rx, NUM(r1) */
1679
                ((op & 0xffff0000) == (cr_reg | 0x94010000))))
1680
        {       /* where Rx == cr */
1681
          fdata->cr_offset = offset;
1682
          /* Invalidate cr_reg, but don't set it to -1.
1683
             That would mean that it had never been set.  */
1684
          cr_reg = -2;
1685
          if ((op & 0xfc000003) == 0xf8000000 ||
1686
              (op & 0xfc000000) == 0x90000000)
1687
            {
1688
              /* Does not update r1, so add displacement to cr_offset.  */
1689
              fdata->cr_offset += SIGNED_SHORT (op);
1690
            }
1691
          continue;
1692
 
1693
        }
1694
      else if ((op & 0xfe80ffff) == 0x42800005 && lr_reg != -1)
1695
        {
1696
          /* bcl 20,xx,.+4 is used to get the current PC, with or without
1697
             prediction bits.  If the LR has already been saved, we can
1698
             skip it.  */
1699
          continue;
1700
        }
1701
      else if (op == 0x48000005)
1702
        {                       /* bl .+4 used in
1703
                                   -mrelocatable */
1704
          fdata->used_bl = 1;
1705
          continue;
1706
 
1707
        }
1708
      else if (op == 0x48000004)
1709
        {                       /* b .+4 (xlc) */
1710
          break;
1711
 
1712
        }
1713
      else if ((op & 0xffff0000) == 0x3fc00000 ||  /* addis 30,0,foo@ha, used
1714
                                                      in V.4 -mminimal-toc */
1715
               (op & 0xffff0000) == 0x3bde0000)
1716
        {                       /* addi 30,30,foo@l */
1717
          continue;
1718
 
1719
        }
1720
      else if ((op & 0xfc000001) == 0x48000001)
1721
        {                       /* bl foo,
1722
                                   to save fprs??? */
1723
 
1724
          fdata->frameless = 0;
1725
 
1726
          /* If the return address has already been saved, we can skip
1727
             calls to blrl (for PIC).  */
1728
          if (lr_reg != -1 && bl_to_blrl_insn_p (pc, op, byte_order))
1729
            {
1730
              fdata->used_bl = 1;
1731
              continue;
1732
            }
1733
 
1734
          /* Don't skip over the subroutine call if it is not within
1735
             the first three instructions of the prologue and either
1736
             we have no line table information or the line info tells
1737
             us that the subroutine call is not part of the line
1738
             associated with the prologue.  */
1739
          if ((pc - orig_pc) > 8)
1740
            {
1741
              struct symtab_and_line prologue_sal = find_pc_line (orig_pc, 0);
1742
              struct symtab_and_line this_sal = find_pc_line (pc, 0);
1743
 
1744
              if ((prologue_sal.line == 0) || (prologue_sal.line != this_sal.line))
1745
                break;
1746
            }
1747
 
1748
          op = read_memory_integer (pc + 4, 4, byte_order);
1749
 
1750
          /* At this point, make sure this is not a trampoline
1751
             function (a function that simply calls another functions,
1752
             and nothing else).  If the next is not a nop, this branch
1753
             was part of the function prologue. */
1754
 
1755
          if (op == 0x4def7b82 || op == 0)       /* crorc 15, 15, 15 */
1756
            break;              /* don't skip over
1757
                                   this branch */
1758
 
1759
          fdata->used_bl = 1;
1760
          continue;
1761
        }
1762
      /* update stack pointer */
1763
      else if ((op & 0xfc1f0000) == 0x94010000)
1764
        {               /* stu rX,NUM(r1) ||  stwu rX,NUM(r1) */
1765
          fdata->frameless = 0;
1766
          fdata->offset = SIGNED_SHORT (op);
1767
          offset = fdata->offset;
1768
          continue;
1769
        }
1770
      else if ((op & 0xfc1f016a) == 0x7c01016e)
1771
        {                       /* stwux rX,r1,rY */
1772
          /* no way to figure out what r1 is going to be */
1773
          fdata->frameless = 0;
1774
          offset = fdata->offset;
1775
          continue;
1776
        }
1777
      else if ((op & 0xfc1f0003) == 0xf8010001)
1778
        {                       /* stdu rX,NUM(r1) */
1779
          fdata->frameless = 0;
1780
          fdata->offset = SIGNED_SHORT (op & ~3UL);
1781
          offset = fdata->offset;
1782
          continue;
1783
        }
1784
      else if ((op & 0xfc1f016a) == 0x7c01016a)
1785
        {                       /* stdux rX,r1,rY */
1786
          /* no way to figure out what r1 is going to be */
1787
          fdata->frameless = 0;
1788
          offset = fdata->offset;
1789
          continue;
1790
        }
1791
      else if ((op & 0xffff0000) == 0x38210000)
1792
        {                       /* addi r1,r1,SIMM */
1793
          fdata->frameless = 0;
1794
          fdata->offset += SIGNED_SHORT (op);
1795
          offset = fdata->offset;
1796
          continue;
1797
        }
1798
      /* Load up minimal toc pointer.  Do not treat an epilogue restore
1799
         of r31 as a minimal TOC load.  */
1800
      else if (((op >> 22) == 0x20f     ||      /* l r31,... or l r30,... */
1801
               (op >> 22) == 0x3af)             /* ld r31,... or ld r30,... */
1802
               && !framep
1803
               && !minimal_toc_loaded)
1804
        {
1805
          minimal_toc_loaded = 1;
1806
          continue;
1807
 
1808
          /* move parameters from argument registers to local variable
1809
             registers */
1810
        }
1811
      else if ((op & 0xfc0007fe) == 0x7c000378 &&       /* mr(.)  Rx,Ry */
1812
               (((op >> 21) & 31) >= 3) &&              /* R3 >= Ry >= R10 */
1813
               (((op >> 21) & 31) <= 10) &&
1814
               ((long) ((op >> 16) & 31) >= fdata->saved_gpr)) /* Rx: local var reg */
1815
        {
1816
          continue;
1817
 
1818
          /* store parameters in stack */
1819
        }
1820
      /* Move parameters from argument registers to temporary register.  */
1821
      else if (store_param_on_stack_p (op, framep, &r0_contains_arg))
1822
        {
1823
          continue;
1824
 
1825
          /* Set up frame pointer */
1826
        }
1827
      else if (op == 0x603f0000 /* oril r31, r1, 0x0 */
1828
               || op == 0x7c3f0b78)
1829
        {                       /* mr r31, r1 */
1830
          fdata->frameless = 0;
1831
          framep = 1;
1832
          fdata->alloca_reg = (tdep->ppc_gp0_regnum + 31);
1833
          continue;
1834
 
1835
          /* Another way to set up the frame pointer.  */
1836
        }
1837
      else if ((op & 0xfc1fffff) == 0x38010000)
1838
        {                       /* addi rX, r1, 0x0 */
1839
          fdata->frameless = 0;
1840
          framep = 1;
1841
          fdata->alloca_reg = (tdep->ppc_gp0_regnum
1842
                               + ((op & ~0x38010000) >> 21));
1843
          continue;
1844
        }
1845
      /* AltiVec related instructions.  */
1846
      /* Store the vrsave register (spr 256) in another register for
1847
         later manipulation, or load a register into the vrsave
1848
         register.  2 instructions are used: mfvrsave and
1849
         mtvrsave.  They are shorthand notation for mfspr Rn, SPR256
1850
         and mtspr SPR256, Rn.  */
1851
      /* mfspr Rn SPR256 == 011111 nnnnn 0000001000 01010100110
1852
         mtspr SPR256 Rn == 011111 nnnnn 0000001000 01110100110  */
1853
      else if ((op & 0xfc1fffff) == 0x7c0042a6)    /* mfvrsave Rn */
1854
        {
1855
          vrsave_reg = GET_SRC_REG (op);
1856
          continue;
1857
        }
1858
      else if ((op & 0xfc1fffff) == 0x7c0043a6)     /* mtvrsave Rn */
1859
        {
1860
          continue;
1861
        }
1862
      /* Store the register where vrsave was saved to onto the stack:
1863
         rS is the register where vrsave was stored in a previous
1864
         instruction.  */
1865
      /* 100100 sssss 00001 dddddddd dddddddd */
1866
      else if ((op & 0xfc1f0000) == 0x90010000)     /* stw rS, d(r1) */
1867
        {
1868
          if (vrsave_reg == GET_SRC_REG (op))
1869
            {
1870
              fdata->vrsave_offset = SIGNED_SHORT (op) + offset;
1871
              vrsave_reg = -1;
1872
            }
1873
          continue;
1874
        }
1875
      /* Compute the new value of vrsave, by modifying the register
1876
         where vrsave was saved to.  */
1877
      else if (((op & 0xfc000000) == 0x64000000)    /* oris Ra, Rs, UIMM */
1878
               || ((op & 0xfc000000) == 0x60000000))/* ori Ra, Rs, UIMM */
1879
        {
1880
          continue;
1881
        }
1882
      /* li r0, SIMM (short for addi r0, 0, SIMM).  This is the first
1883
         in a pair of insns to save the vector registers on the
1884
         stack.  */
1885
      /* 001110 00000 00000 iiii iiii iiii iiii  */
1886
      /* 001110 01110 00000 iiii iiii iiii iiii  */
1887
      else if ((op & 0xffff0000) == 0x38000000         /* li r0, SIMM */
1888
               || (op & 0xffff0000) == 0x39c00000)     /* li r14, SIMM */
1889
        {
1890
          if ((op & 0xffff0000) == 0x38000000)
1891
            r0_contains_arg = 0;
1892
          li_found_pc = pc;
1893
          vr_saved_offset = SIGNED_SHORT (op);
1894
 
1895
          /* This insn by itself is not part of the prologue, unless
1896
             if part of the pair of insns mentioned above. So do not
1897
             record this insn as part of the prologue yet.  */
1898
          prev_insn_was_prologue_insn = 0;
1899
        }
1900
      /* Store vector register S at (r31+r0) aligned to 16 bytes.  */
1901
      /* 011111 sssss 11111 00000 00111001110 */
1902
      else if ((op & 0xfc1fffff) == 0x7c1f01ce)   /* stvx Vs, R31, R0 */
1903
        {
1904
          if (pc == (li_found_pc + 4))
1905
            {
1906
              vr_reg = GET_SRC_REG (op);
1907
              /* If this is the first vector reg to be saved, or if
1908
                 it has a lower number than others previously seen,
1909
                 reupdate the frame info.  */
1910
              if (fdata->saved_vr == -1 || fdata->saved_vr > vr_reg)
1911
                {
1912
                  fdata->saved_vr = vr_reg;
1913
                  fdata->vr_offset = vr_saved_offset + offset;
1914
                }
1915
              vr_saved_offset = -1;
1916
              vr_reg = -1;
1917
              li_found_pc = 0;
1918
            }
1919
        }
1920
      /* End AltiVec related instructions.  */
1921
 
1922
      /* Start BookE related instructions.  */
1923
      /* Store gen register S at (r31+uimm).
1924
         Any register less than r13 is volatile, so we don't care.  */
1925
      /* 000100 sssss 11111 iiiii 01100100001 */
1926
      else if (arch_info->mach == bfd_mach_ppc_e500
1927
               && (op & 0xfc1f07ff) == 0x101f0321)    /* evstdd Rs,uimm(R31) */
1928
        {
1929
          if ((op & 0x03e00000) >= 0x01a00000)  /* Rs >= r13 */
1930
            {
1931
              unsigned int imm;
1932
              ev_reg = GET_SRC_REG (op);
1933
              imm = (op >> 11) & 0x1f;
1934
              ev_offset = imm * 8;
1935
              /* If this is the first vector reg to be saved, or if
1936
                 it has a lower number than others previously seen,
1937
                 reupdate the frame info.  */
1938
              if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
1939
                {
1940
                  fdata->saved_ev = ev_reg;
1941
                  fdata->ev_offset = ev_offset + offset;
1942
                }
1943
            }
1944
          continue;
1945
        }
1946
      /* Store gen register rS at (r1+rB).  */
1947
      /* 000100 sssss 00001 bbbbb 01100100000 */
1948
      else if (arch_info->mach == bfd_mach_ppc_e500
1949
               && (op & 0xffe007ff) == 0x13e00320)     /* evstddx RS,R1,Rb */
1950
        {
1951
          if (pc == (li_found_pc + 4))
1952
            {
1953
              ev_reg = GET_SRC_REG (op);
1954
              /* If this is the first vector reg to be saved, or if
1955
                 it has a lower number than others previously seen,
1956
                 reupdate the frame info.  */
1957
              /* We know the contents of rB from the previous instruction.  */
1958
              if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
1959
                {
1960
                  fdata->saved_ev = ev_reg;
1961
                  fdata->ev_offset = vr_saved_offset + offset;
1962
                }
1963
              vr_saved_offset = -1;
1964
              ev_reg = -1;
1965
              li_found_pc = 0;
1966
            }
1967
          continue;
1968
        }
1969
      /* Store gen register r31 at (rA+uimm).  */
1970
      /* 000100 11111 aaaaa iiiii 01100100001 */
1971
      else if (arch_info->mach == bfd_mach_ppc_e500
1972
               && (op & 0xffe007ff) == 0x13e00321)   /* evstdd R31,Ra,UIMM */
1973
        {
1974
          /* Wwe know that the source register is 31 already, but
1975
             it can't hurt to compute it.  */
1976
          ev_reg = GET_SRC_REG (op);
1977
          ev_offset = ((op >> 11) & 0x1f) * 8;
1978
          /* If this is the first vector reg to be saved, or if
1979
             it has a lower number than others previously seen,
1980
             reupdate the frame info.  */
1981
          if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
1982
            {
1983
              fdata->saved_ev = ev_reg;
1984
              fdata->ev_offset = ev_offset + offset;
1985
            }
1986
 
1987
          continue;
1988
        }
1989
      /* Store gen register S at (r31+r0).
1990
         Store param on stack when offset from SP bigger than 4 bytes.  */
1991
      /* 000100 sssss 11111 00000 01100100000 */
1992
      else if (arch_info->mach == bfd_mach_ppc_e500
1993
               && (op & 0xfc1fffff) == 0x101f0320)     /* evstddx Rs,R31,R0 */
1994
        {
1995
          if (pc == (li_found_pc + 4))
1996
            {
1997
              if ((op & 0x03e00000) >= 0x01a00000)
1998
                {
1999
                  ev_reg = GET_SRC_REG (op);
2000
                  /* If this is the first vector reg to be saved, or if
2001
                     it has a lower number than others previously seen,
2002
                     reupdate the frame info.  */
2003
                  /* We know the contents of r0 from the previous
2004
                     instruction.  */
2005
                  if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
2006
                    {
2007
                      fdata->saved_ev = ev_reg;
2008
                      fdata->ev_offset = vr_saved_offset + offset;
2009
                    }
2010
                  ev_reg = -1;
2011
                }
2012
              vr_saved_offset = -1;
2013
              li_found_pc = 0;
2014
              continue;
2015
            }
2016
        }
2017
      /* End BookE related instructions.  */
2018
 
2019
      else
2020
        {
2021
          unsigned int all_mask = ~((1U << fdata->saved_gpr) - 1);
2022
 
2023
          /* Not a recognized prologue instruction.
2024
             Handle optimizer code motions into the prologue by continuing
2025
             the search if we have no valid frame yet or if the return
2026
             address is not yet saved in the frame.  Also skip instructions
2027
             if some of the GPRs expected to be saved are not yet saved.  */
2028
          if (fdata->frameless == 0 && fdata->nosavedpc == 0
2029
              && (fdata->gpr_mask & all_mask) == all_mask)
2030
            break;
2031
 
2032
          if (op == 0x4e800020          /* blr */
2033
              || op == 0x4e800420)      /* bctr */
2034
            /* Do not scan past epilogue in frameless functions or
2035
               trampolines.  */
2036
            break;
2037
          if ((op & 0xf4000000) == 0x40000000) /* bxx */
2038
            /* Never skip branches.  */
2039
            break;
2040
 
2041
          if (num_skip_non_prologue_insns++ > max_skip_non_prologue_insns)
2042
            /* Do not scan too many insns, scanning insns is expensive with
2043
               remote targets.  */
2044
            break;
2045
 
2046
          /* Continue scanning.  */
2047
          prev_insn_was_prologue_insn = 0;
2048
          continue;
2049
        }
2050
    }
2051
 
2052
#if 0
2053
/* I have problems with skipping over __main() that I need to address
2054
 * sometime. Previously, I used to use misc_function_vector which
2055
 * didn't work as well as I wanted to be.  -MGO */
2056
 
2057
  /* If the first thing after skipping a prolog is a branch to a function,
2058
     this might be a call to an initializer in main(), introduced by gcc2.
2059
     We'd like to skip over it as well.  Fortunately, xlc does some extra
2060
     work before calling a function right after a prologue, thus we can
2061
     single out such gcc2 behaviour.  */
2062
 
2063
 
2064
  if ((op & 0xfc000001) == 0x48000001)
2065
    {                           /* bl foo, an initializer function? */
2066
      op = read_memory_integer (pc + 4, 4, byte_order);
2067
 
2068
      if (op == 0x4def7b82)
2069
        {                       /* cror 0xf, 0xf, 0xf (nop) */
2070
 
2071
          /* Check and see if we are in main.  If so, skip over this
2072
             initializer function as well.  */
2073
 
2074
          tmp = find_pc_misc_function (pc);
2075
          if (tmp >= 0
2076
              && strcmp (misc_function_vector[tmp].name, main_name ()) == 0)
2077
            return pc + 8;
2078
        }
2079
    }
2080
#endif /* 0 */
2081
 
2082
  if (pc == lim_pc && lr_reg >= 0)
2083
    fdata->lr_register = lr_reg;
2084
 
2085
  fdata->offset = -fdata->offset;
2086
  return last_prologue_pc;
2087
}
2088
 
2089
static CORE_ADDR
2090
rs6000_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
2091
{
2092
  struct rs6000_framedata frame;
2093
  CORE_ADDR limit_pc, func_addr;
2094
 
2095
  /* See if we can determine the end of the prologue via the symbol table.
2096
     If so, then return either PC, or the PC after the prologue, whichever
2097
     is greater.  */
2098
  if (find_pc_partial_function (pc, NULL, &func_addr, NULL))
2099
    {
2100
      CORE_ADDR post_prologue_pc
2101
        = skip_prologue_using_sal (gdbarch, func_addr);
2102
      if (post_prologue_pc != 0)
2103
        return max (pc, post_prologue_pc);
2104
    }
2105
 
2106
  /* Can't determine prologue from the symbol table, need to examine
2107
     instructions.  */
2108
 
2109
  /* Find an upper limit on the function prologue using the debug
2110
     information.  If the debug information could not be used to provide
2111
     that bound, then use an arbitrary large number as the upper bound.  */
2112
  limit_pc = skip_prologue_using_sal (gdbarch, pc);
2113
  if (limit_pc == 0)
2114
    limit_pc = pc + 100;          /* Magic.  */
2115
 
2116
  pc = skip_prologue (gdbarch, pc, limit_pc, &frame);
2117
  return pc;
2118
}
2119
 
2120
/* When compiling for EABI, some versions of GCC emit a call to __eabi
2121
   in the prologue of main().
2122
 
2123
   The function below examines the code pointed at by PC and checks to
2124
   see if it corresponds to a call to __eabi.  If so, it returns the
2125
   address of the instruction following that call.  Otherwise, it simply
2126
   returns PC.  */
2127
 
2128
static CORE_ADDR
2129
rs6000_skip_main_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
2130
{
2131
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2132
  gdb_byte buf[4];
2133
  unsigned long op;
2134
 
2135
  if (target_read_memory (pc, buf, 4))
2136
    return pc;
2137
  op = extract_unsigned_integer (buf, 4, byte_order);
2138
 
2139
  if ((op & BL_MASK) == BL_INSTRUCTION)
2140
    {
2141
      CORE_ADDR displ = op & BL_DISPLACEMENT_MASK;
2142
      CORE_ADDR call_dest = pc + 4 + displ;
2143
      struct minimal_symbol *s = lookup_minimal_symbol_by_pc (call_dest);
2144
 
2145
      /* We check for ___eabi (three leading underscores) in addition
2146
         to __eabi in case the GCC option "-fleading-underscore" was
2147
         used to compile the program.  */
2148
      if (s != NULL
2149
          && SYMBOL_LINKAGE_NAME (s) != NULL
2150
          && (strcmp (SYMBOL_LINKAGE_NAME (s), "__eabi") == 0
2151
              || strcmp (SYMBOL_LINKAGE_NAME (s), "___eabi") == 0))
2152
        pc += 4;
2153
    }
2154
  return pc;
2155
}
2156
 
2157
/* All the ABI's require 16 byte alignment.  */
2158
static CORE_ADDR
2159
rs6000_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
2160
{
2161
  return (addr & -16);
2162
}
2163
 
2164
/* Return whether handle_inferior_event() should proceed through code
2165
   starting at PC in function NAME when stepping.
2166
 
2167
   The AIX -bbigtoc linker option generates functions @FIX0, @FIX1, etc. to
2168
   handle memory references that are too distant to fit in instructions
2169
   generated by the compiler.  For example, if 'foo' in the following
2170
   instruction:
2171
 
2172
     lwz r9,foo(r2)
2173
 
2174
   is greater than 32767, the linker might replace the lwz with a branch to
2175
   somewhere in @FIX1 that does the load in 2 instructions and then branches
2176
   back to where execution should continue.
2177
 
2178
   GDB should silently step over @FIX code, just like AIX dbx does.
2179
   Unfortunately, the linker uses the "b" instruction for the
2180
   branches, meaning that the link register doesn't get set.
2181
   Therefore, GDB's usual step_over_function () mechanism won't work.
2182
 
2183
   Instead, use the gdbarch_skip_trampoline_code and
2184
   gdbarch_skip_trampoline_code hooks in handle_inferior_event() to skip past
2185
   @FIX code.  */
2186
 
2187
static int
2188
rs6000_in_solib_return_trampoline (struct gdbarch *gdbarch,
2189
                                   CORE_ADDR pc, char *name)
2190
{
2191
  return name && !strncmp (name, "@FIX", 4);
2192
}
2193
 
2194
/* Skip code that the user doesn't want to see when stepping:
2195
 
2196
   1. Indirect function calls use a piece of trampoline code to do context
2197
   switching, i.e. to set the new TOC table.  Skip such code if we are on
2198
   its first instruction (as when we have single-stepped to here).
2199
 
2200
   2. Skip shared library trampoline code (which is different from
2201
   indirect function call trampolines).
2202
 
2203
   3. Skip bigtoc fixup code.
2204
 
2205
   Result is desired PC to step until, or NULL if we are not in
2206
   code that should be skipped.  */
2207
 
2208
static CORE_ADDR
2209
rs6000_skip_trampoline_code (struct frame_info *frame, CORE_ADDR pc)
2210
{
2211
  struct gdbarch *gdbarch = get_frame_arch (frame);
2212
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2213
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2214
  unsigned int ii, op;
2215
  int rel;
2216
  CORE_ADDR solib_target_pc;
2217
  struct minimal_symbol *msymbol;
2218
 
2219
  static unsigned trampoline_code[] =
2220
  {
2221
    0x800b0000,                 /*     l   r0,0x0(r11)  */
2222
    0x90410014,                 /*    st   r2,0x14(r1)  */
2223
    0x7c0903a6,                 /* mtctr   r0           */
2224
    0x804b0004,                 /*     l   r2,0x4(r11)  */
2225
    0x816b0008,                 /*     l  r11,0x8(r11)  */
2226
    0x4e800420,                 /*  bctr                */
2227
    0x4e800020,                 /*    br                */
2228
 
2229
  };
2230
 
2231
  /* Check for bigtoc fixup code.  */
2232
  msymbol = lookup_minimal_symbol_by_pc (pc);
2233
  if (msymbol
2234
      && rs6000_in_solib_return_trampoline (gdbarch, pc,
2235
                                            SYMBOL_LINKAGE_NAME (msymbol)))
2236
    {
2237
      /* Double-check that the third instruction from PC is relative "b".  */
2238
      op = read_memory_integer (pc + 8, 4, byte_order);
2239
      if ((op & 0xfc000003) == 0x48000000)
2240
        {
2241
          /* Extract bits 6-29 as a signed 24-bit relative word address and
2242
             add it to the containing PC.  */
2243
          rel = ((int)(op << 6) >> 6);
2244
          return pc + 8 + rel;
2245
        }
2246
    }
2247
 
2248
  /* If pc is in a shared library trampoline, return its target.  */
2249
  solib_target_pc = find_solib_trampoline_target (frame, pc);
2250
  if (solib_target_pc)
2251
    return solib_target_pc;
2252
 
2253
  for (ii = 0; trampoline_code[ii]; ++ii)
2254
    {
2255
      op = read_memory_integer (pc + (ii * 4), 4, byte_order);
2256
      if (op != trampoline_code[ii])
2257
        return 0;
2258
    }
2259
  ii = get_frame_register_unsigned (frame, 11); /* r11 holds destination addr   */
2260
  pc = read_memory_unsigned_integer (ii, tdep->wordsize, byte_order);
2261
  return pc;
2262
}
2263
 
2264
/* ISA-specific vector types.  */
2265
 
2266
static struct type *
2267
rs6000_builtin_type_vec64 (struct gdbarch *gdbarch)
2268
{
2269
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2270
 
2271
  if (!tdep->ppc_builtin_type_vec64)
2272
    {
2273
      const struct builtin_type *bt = builtin_type (gdbarch);
2274
 
2275
      /* The type we're building is this: */
2276
#if 0
2277
      union __gdb_builtin_type_vec64
2278
        {
2279
          int64_t uint64;
2280
          float v2_float[2];
2281
          int32_t v2_int32[2];
2282
          int16_t v4_int16[4];
2283
          int8_t v8_int8[8];
2284
        };
2285
#endif
2286
 
2287
      struct type *t;
2288
 
2289
      t = arch_composite_type (gdbarch,
2290
                               "__ppc_builtin_type_vec64", TYPE_CODE_UNION);
2291
      append_composite_type_field (t, "uint64", bt->builtin_int64);
2292
      append_composite_type_field (t, "v2_float",
2293
                                   init_vector_type (bt->builtin_float, 2));
2294
      append_composite_type_field (t, "v2_int32",
2295
                                   init_vector_type (bt->builtin_int32, 2));
2296
      append_composite_type_field (t, "v4_int16",
2297
                                   init_vector_type (bt->builtin_int16, 4));
2298
      append_composite_type_field (t, "v8_int8",
2299
                                   init_vector_type (bt->builtin_int8, 8));
2300
 
2301
      TYPE_VECTOR (t) = 1;
2302
      TYPE_NAME (t) = "ppc_builtin_type_vec64";
2303
      tdep->ppc_builtin_type_vec64 = t;
2304
    }
2305
 
2306
  return tdep->ppc_builtin_type_vec64;
2307
}
2308
 
2309
/* Vector 128 type.  */
2310
 
2311
static struct type *
2312
rs6000_builtin_type_vec128 (struct gdbarch *gdbarch)
2313
{
2314
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2315
 
2316
  if (!tdep->ppc_builtin_type_vec128)
2317
    {
2318
      const struct builtin_type *bt = builtin_type (gdbarch);
2319
 
2320
      /* The type we're building is this
2321
 
2322
         type = union __ppc_builtin_type_vec128 {
2323
             uint128_t uint128;
2324
             double v2_double[2];
2325
             float v4_float[4];
2326
             int32_t v4_int32[4];
2327
             int16_t v8_int16[8];
2328
             int8_t v16_int8[16];
2329
         }
2330
      */
2331
 
2332
      struct type *t;
2333
 
2334
      t = arch_composite_type (gdbarch,
2335
                               "__ppc_builtin_type_vec128", TYPE_CODE_UNION);
2336
      append_composite_type_field (t, "uint128", bt->builtin_uint128);
2337
      append_composite_type_field (t, "v2_double",
2338
                                   init_vector_type (bt->builtin_double, 2));
2339
      append_composite_type_field (t, "v4_float",
2340
                                   init_vector_type (bt->builtin_float, 4));
2341
      append_composite_type_field (t, "v4_int32",
2342
                                   init_vector_type (bt->builtin_int32, 4));
2343
      append_composite_type_field (t, "v8_int16",
2344
                                   init_vector_type (bt->builtin_int16, 8));
2345
      append_composite_type_field (t, "v16_int8",
2346
                                   init_vector_type (bt->builtin_int8, 16));
2347
 
2348
      TYPE_VECTOR (t) = 1;
2349
      TYPE_NAME (t) = "ppc_builtin_type_vec128";
2350
      tdep->ppc_builtin_type_vec128 = t;
2351
    }
2352
 
2353
  return tdep->ppc_builtin_type_vec128;
2354
}
2355
 
2356
/* Return the name of register number REGNO, or the empty string if it
2357
   is an anonymous register.  */
2358
 
2359
static const char *
2360
rs6000_register_name (struct gdbarch *gdbarch, int regno)
2361
{
2362
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2363
 
2364
  /* The upper half "registers" have names in the XML description,
2365
     but we present only the low GPRs and the full 64-bit registers
2366
     to the user.  */
2367
  if (tdep->ppc_ev0_upper_regnum >= 0
2368
      && tdep->ppc_ev0_upper_regnum <= regno
2369
      && regno < tdep->ppc_ev0_upper_regnum + ppc_num_gprs)
2370
    return "";
2371
 
2372
  /* Hide the upper halves of the vs0~vs31 registers.  */
2373
  if (tdep->ppc_vsr0_regnum >= 0
2374
      && tdep->ppc_vsr0_upper_regnum <= regno
2375
      && regno < tdep->ppc_vsr0_upper_regnum + ppc_num_gprs)
2376
    return "";
2377
 
2378
  /* Check if the SPE pseudo registers are available.  */
2379
  if (IS_SPE_PSEUDOREG (tdep, regno))
2380
    {
2381
      static const char *const spe_regnames[] = {
2382
        "ev0", "ev1", "ev2", "ev3", "ev4", "ev5", "ev6", "ev7",
2383
        "ev8", "ev9", "ev10", "ev11", "ev12", "ev13", "ev14", "ev15",
2384
        "ev16", "ev17", "ev18", "ev19", "ev20", "ev21", "ev22", "ev23",
2385
        "ev24", "ev25", "ev26", "ev27", "ev28", "ev29", "ev30", "ev31",
2386
      };
2387
      return spe_regnames[regno - tdep->ppc_ev0_regnum];
2388
    }
2389
 
2390
  /* Check if the decimal128 pseudo-registers are available.  */
2391
  if (IS_DFP_PSEUDOREG (tdep, regno))
2392
    {
2393
      static const char *const dfp128_regnames[] = {
2394
        "dl0", "dl1", "dl2", "dl3",
2395
        "dl4", "dl5", "dl6", "dl7",
2396
        "dl8", "dl9", "dl10", "dl11",
2397
        "dl12", "dl13", "dl14", "dl15"
2398
      };
2399
      return dfp128_regnames[regno - tdep->ppc_dl0_regnum];
2400
    }
2401
 
2402
  /* Check if this is a VSX pseudo-register.  */
2403
  if (IS_VSX_PSEUDOREG (tdep, regno))
2404
    {
2405
      static const char *const vsx_regnames[] = {
2406
        "vs0", "vs1", "vs2", "vs3", "vs4", "vs5", "vs6", "vs7",
2407
        "vs8", "vs9", "vs10", "vs11", "vs12", "vs13", "vs14",
2408
        "vs15", "vs16", "vs17", "vs18", "vs19", "vs20", "vs21",
2409
        "vs22", "vs23", "vs24", "vs25", "vs26", "vs27", "vs28",
2410
        "vs29", "vs30", "vs31", "vs32", "vs33", "vs34", "vs35",
2411
        "vs36", "vs37", "vs38", "vs39", "vs40", "vs41", "vs42",
2412
        "vs43", "vs44", "vs45", "vs46", "vs47", "vs48", "vs49",
2413
        "vs50", "vs51", "vs52", "vs53", "vs54", "vs55", "vs56",
2414
        "vs57", "vs58", "vs59", "vs60", "vs61", "vs62", "vs63"
2415
      };
2416
      return vsx_regnames[regno - tdep->ppc_vsr0_regnum];
2417
    }
2418
 
2419
  /* Check if the this is a Extended FP pseudo-register.  */
2420
  if (IS_EFP_PSEUDOREG (tdep, regno))
2421
    {
2422
      static const char *const efpr_regnames[] = {
2423
        "f32", "f33", "f34", "f35", "f36", "f37", "f38",
2424
        "f39", "f40", "f41", "f42", "f43", "f44", "f45",
2425
        "f46", "f47", "f48", "f49", "f50", "f51",
2426
        "f52", "f53", "f54", "f55", "f56", "f57",
2427
        "f58", "f59", "f60", "f61", "f62", "f63"
2428
      };
2429
      return efpr_regnames[regno - tdep->ppc_efpr0_regnum];
2430
    }
2431
 
2432
  return tdesc_register_name (gdbarch, regno);
2433
}
2434
 
2435
/* Return the GDB type object for the "standard" data type of data in
2436
   register N.  */
2437
 
2438
static struct type *
2439
rs6000_pseudo_register_type (struct gdbarch *gdbarch, int regnum)
2440
{
2441
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2442
 
2443
  /* These are the only pseudo-registers we support.  */
2444
  gdb_assert (IS_SPE_PSEUDOREG (tdep, regnum)
2445
              || IS_DFP_PSEUDOREG (tdep, regnum)
2446
              || IS_VSX_PSEUDOREG (tdep, regnum)
2447
              || IS_EFP_PSEUDOREG (tdep, regnum));
2448
 
2449
  /* These are the e500 pseudo-registers.  */
2450
  if (IS_SPE_PSEUDOREG (tdep, regnum))
2451
    return rs6000_builtin_type_vec64 (gdbarch);
2452
  else if (IS_DFP_PSEUDOREG (tdep, regnum))
2453
    /* PPC decimal128 pseudo-registers.  */
2454
    return builtin_type (gdbarch)->builtin_declong;
2455
  else if (IS_VSX_PSEUDOREG (tdep, regnum))
2456
    /* POWER7 VSX pseudo-registers.  */
2457
    return rs6000_builtin_type_vec128 (gdbarch);
2458
  else
2459
    /* POWER7 Extended FP pseudo-registers.  */
2460
    return builtin_type (gdbarch)->builtin_double;
2461
}
2462
 
2463
/* Is REGNUM a member of REGGROUP?  */
2464
static int
2465
rs6000_pseudo_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
2466
                                   struct reggroup *group)
2467
{
2468
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2469
 
2470
  /* These are the only pseudo-registers we support.  */
2471
  gdb_assert (IS_SPE_PSEUDOREG (tdep, regnum)
2472
              || IS_DFP_PSEUDOREG (tdep, regnum)
2473
              || IS_VSX_PSEUDOREG (tdep, regnum)
2474
              || IS_EFP_PSEUDOREG (tdep, regnum));
2475
 
2476
  /* These are the e500 pseudo-registers or the POWER7 VSX registers.  */
2477
  if (IS_SPE_PSEUDOREG (tdep, regnum) || IS_VSX_PSEUDOREG (tdep, regnum))
2478
    return group == all_reggroup || group == vector_reggroup;
2479
  else
2480
    /* PPC decimal128 or Extended FP pseudo-registers.  */
2481
    return group == all_reggroup || group == float_reggroup;
2482
}
2483
 
2484
/* The register format for RS/6000 floating point registers is always
2485
   double, we need a conversion if the memory format is float.  */
2486
 
2487
static int
2488
rs6000_convert_register_p (struct gdbarch *gdbarch, int regnum,
2489
                           struct type *type)
2490
{
2491
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2492
 
2493
  return (tdep->ppc_fp0_regnum >= 0
2494
          && regnum >= tdep->ppc_fp0_regnum
2495
          && regnum < tdep->ppc_fp0_regnum + ppc_num_fprs
2496
          && TYPE_CODE (type) == TYPE_CODE_FLT
2497
          && TYPE_LENGTH (type)
2498
             != TYPE_LENGTH (builtin_type (gdbarch)->builtin_double));
2499
}
2500
 
2501
static void
2502
rs6000_register_to_value (struct frame_info *frame,
2503
                          int regnum,
2504
                          struct type *type,
2505
                          gdb_byte *to)
2506
{
2507
  struct gdbarch *gdbarch = get_frame_arch (frame);
2508
  gdb_byte from[MAX_REGISTER_SIZE];
2509
 
2510
  gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLT);
2511
 
2512
  get_frame_register (frame, regnum, from);
2513
  convert_typed_floating (from, builtin_type (gdbarch)->builtin_double,
2514
                          to, type);
2515
}
2516
 
2517
static void
2518
rs6000_value_to_register (struct frame_info *frame,
2519
                          int regnum,
2520
                          struct type *type,
2521
                          const gdb_byte *from)
2522
{
2523
  struct gdbarch *gdbarch = get_frame_arch (frame);
2524
  gdb_byte to[MAX_REGISTER_SIZE];
2525
 
2526
  gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLT);
2527
 
2528
  convert_typed_floating (from, type,
2529
                          to, builtin_type (gdbarch)->builtin_double);
2530
  put_frame_register (frame, regnum, to);
2531
}
2532
 
2533
/* Move SPE vector register values between a 64-bit buffer and the two
2534
   32-bit raw register halves in a regcache.  This function handles
2535
   both splitting a 64-bit value into two 32-bit halves, and joining
2536
   two halves into a whole 64-bit value, depending on the function
2537
   passed as the MOVE argument.
2538
 
2539
   EV_REG must be the number of an SPE evN vector register --- a
2540
   pseudoregister.  REGCACHE must be a regcache, and BUFFER must be a
2541
   64-bit buffer.
2542
 
2543
   Call MOVE once for each 32-bit half of that register, passing
2544
   REGCACHE, the number of the raw register corresponding to that
2545
   half, and the address of the appropriate half of BUFFER.
2546
 
2547
   For example, passing 'regcache_raw_read' as the MOVE function will
2548
   fill BUFFER with the full 64-bit contents of EV_REG.  Or, passing
2549
   'regcache_raw_supply' will supply the contents of BUFFER to the
2550
   appropriate pair of raw registers in REGCACHE.
2551
 
2552
   You may need to cast away some 'const' qualifiers when passing
2553
   MOVE, since this function can't tell at compile-time which of
2554
   REGCACHE or BUFFER is acting as the source of the data.  If C had
2555
   co-variant type qualifiers, ...  */
2556
static void
2557
e500_move_ev_register (void (*move) (struct regcache *regcache,
2558
                                     int regnum, gdb_byte *buf),
2559
                       struct regcache *regcache, int ev_reg,
2560
                       gdb_byte *buffer)
2561
{
2562
  struct gdbarch *arch = get_regcache_arch (regcache);
2563
  struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
2564
  int reg_index;
2565
  gdb_byte *byte_buffer = buffer;
2566
 
2567
  gdb_assert (IS_SPE_PSEUDOREG (tdep, ev_reg));
2568
 
2569
  reg_index = ev_reg - tdep->ppc_ev0_regnum;
2570
 
2571
  if (gdbarch_byte_order (arch) == BFD_ENDIAN_BIG)
2572
    {
2573
      move (regcache, tdep->ppc_ev0_upper_regnum + reg_index, byte_buffer);
2574
      move (regcache, tdep->ppc_gp0_regnum + reg_index, byte_buffer + 4);
2575
    }
2576
  else
2577
    {
2578
      move (regcache, tdep->ppc_gp0_regnum + reg_index, byte_buffer);
2579
      move (regcache, tdep->ppc_ev0_upper_regnum + reg_index, byte_buffer + 4);
2580
    }
2581
}
2582
 
2583
static void
2584
e500_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
2585
                           int reg_nr, gdb_byte *buffer)
2586
{
2587
  e500_move_ev_register (regcache_raw_read, regcache, reg_nr, buffer);
2588
}
2589
 
2590
static void
2591
e500_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
2592
                            int reg_nr, const gdb_byte *buffer)
2593
{
2594
  e500_move_ev_register ((void (*) (struct regcache *, int, gdb_byte *))
2595
                         regcache_raw_write,
2596
                         regcache, reg_nr, (gdb_byte *) buffer);
2597
}
2598
 
2599
/* Read method for DFP pseudo-registers.  */
2600
static void
2601
dfp_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
2602
                           int reg_nr, gdb_byte *buffer)
2603
{
2604
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2605
  int reg_index = reg_nr - tdep->ppc_dl0_regnum;
2606
 
2607
  if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
2608
    {
2609
      /* Read two FP registers to form a whole dl register.  */
2610
      regcache_raw_read (regcache, tdep->ppc_fp0_regnum +
2611
                         2 * reg_index, buffer);
2612
      regcache_raw_read (regcache, tdep->ppc_fp0_regnum +
2613
                         2 * reg_index + 1, buffer + 8);
2614
    }
2615
  else
2616
    {
2617
      regcache_raw_read (regcache, tdep->ppc_fp0_regnum +
2618
                         2 * reg_index + 1, buffer + 8);
2619
      regcache_raw_read (regcache, tdep->ppc_fp0_regnum +
2620
                         2 * reg_index, buffer);
2621
    }
2622
}
2623
 
2624
/* Write method for DFP pseudo-registers.  */
2625
static void
2626
dfp_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
2627
                            int reg_nr, const gdb_byte *buffer)
2628
{
2629
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2630
  int reg_index = reg_nr - tdep->ppc_dl0_regnum;
2631
 
2632
  if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
2633
    {
2634
      /* Write each half of the dl register into a separate
2635
      FP register.  */
2636
      regcache_raw_write (regcache, tdep->ppc_fp0_regnum +
2637
                          2 * reg_index, buffer);
2638
      regcache_raw_write (regcache, tdep->ppc_fp0_regnum +
2639
                          2 * reg_index + 1, buffer + 8);
2640
    }
2641
  else
2642
    {
2643
      regcache_raw_write (regcache, tdep->ppc_fp0_regnum +
2644
                          2 * reg_index + 1, buffer + 8);
2645
      regcache_raw_write (regcache, tdep->ppc_fp0_regnum +
2646
                          2 * reg_index, buffer);
2647
    }
2648
}
2649
 
2650
/* Read method for POWER7 VSX pseudo-registers.  */
2651
static void
2652
vsx_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
2653
                           int reg_nr, gdb_byte *buffer)
2654
{
2655
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2656
  int reg_index = reg_nr - tdep->ppc_vsr0_regnum;
2657
 
2658
  /* Read the portion that overlaps the VMX registers.  */
2659
  if (reg_index > 31)
2660
    regcache_raw_read (regcache, tdep->ppc_vr0_regnum +
2661
                        reg_index - 32, buffer);
2662
  else
2663
    /* Read the portion that overlaps the FPR registers.  */
2664
    if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
2665
      {
2666
        regcache_raw_read (regcache, tdep->ppc_fp0_regnum +
2667
                        reg_index, buffer);
2668
        regcache_raw_read (regcache, tdep->ppc_vsr0_upper_regnum +
2669
                        reg_index, buffer + 8);
2670
      }
2671
    else
2672
      {
2673
        regcache_raw_read (regcache, tdep->ppc_fp0_regnum +
2674
                        reg_index, buffer + 8);
2675
        regcache_raw_read (regcache, tdep->ppc_vsr0_upper_regnum +
2676
                        reg_index, buffer);
2677
      }
2678
}
2679
 
2680
/* Write method for POWER7 VSX pseudo-registers.  */
2681
static void
2682
vsx_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
2683
                            int reg_nr, const gdb_byte *buffer)
2684
{
2685
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2686
  int reg_index = reg_nr - tdep->ppc_vsr0_regnum;
2687
 
2688
  /* Write the portion that overlaps the VMX registers.  */
2689
  if (reg_index > 31)
2690
    regcache_raw_write (regcache, tdep->ppc_vr0_regnum +
2691
                        reg_index - 32, buffer);
2692
  else
2693
    /* Write the portion that overlaps the FPR registers.  */
2694
    if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
2695
      {
2696
        regcache_raw_write (regcache, tdep->ppc_fp0_regnum +
2697
                        reg_index, buffer);
2698
        regcache_raw_write (regcache, tdep->ppc_vsr0_upper_regnum +
2699
                        reg_index, buffer + 8);
2700
      }
2701
    else
2702
      {
2703
        regcache_raw_write (regcache, tdep->ppc_fp0_regnum +
2704
                        reg_index, buffer + 8);
2705
        regcache_raw_write (regcache, tdep->ppc_vsr0_upper_regnum +
2706
                        reg_index, buffer);
2707
      }
2708
}
2709
 
2710
/* Read method for POWER7 Extended FP pseudo-registers.  */
2711
static void
2712
efpr_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
2713
                           int reg_nr, gdb_byte *buffer)
2714
{
2715
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2716
  int reg_index = reg_nr - tdep->ppc_efpr0_regnum;
2717
 
2718
  /* Read the portion that overlaps the VMX registers.  */
2719
  regcache_raw_read (regcache, tdep->ppc_vr0_regnum +
2720
                     reg_index, buffer);
2721
}
2722
 
2723
/* Write method for POWER7 Extended FP pseudo-registers.  */
2724
static void
2725
efpr_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
2726
                            int reg_nr, const gdb_byte *buffer)
2727
{
2728
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2729
  int reg_index = reg_nr - tdep->ppc_efpr0_regnum;
2730
 
2731
  /* Write the portion that overlaps the VMX registers.  */
2732
  regcache_raw_write (regcache, tdep->ppc_vr0_regnum +
2733
                      reg_index, buffer);
2734
}
2735
 
2736
static void
2737
rs6000_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
2738
                             int reg_nr, gdb_byte *buffer)
2739
{
2740
  struct gdbarch *regcache_arch = get_regcache_arch (regcache);
2741
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2742
 
2743
  gdb_assert (regcache_arch == gdbarch);
2744
 
2745
  if (IS_SPE_PSEUDOREG (tdep, reg_nr))
2746
    e500_pseudo_register_read (gdbarch, regcache, reg_nr, buffer);
2747
  else if (IS_DFP_PSEUDOREG (tdep, reg_nr))
2748
    dfp_pseudo_register_read (gdbarch, regcache, reg_nr, buffer);
2749
  else if (IS_VSX_PSEUDOREG (tdep, reg_nr))
2750
    vsx_pseudo_register_read (gdbarch, regcache, reg_nr, buffer);
2751
  else if (IS_EFP_PSEUDOREG (tdep, reg_nr))
2752
    efpr_pseudo_register_read (gdbarch, regcache, reg_nr, buffer);
2753
  else
2754
    internal_error (__FILE__, __LINE__,
2755
                    _("rs6000_pseudo_register_read: "
2756
                    "called on unexpected register '%s' (%d)"),
2757
                    gdbarch_register_name (gdbarch, reg_nr), reg_nr);
2758
}
2759
 
2760
static void
2761
rs6000_pseudo_register_write (struct gdbarch *gdbarch,
2762
                              struct regcache *regcache,
2763
                              int reg_nr, const gdb_byte *buffer)
2764
{
2765
  struct gdbarch *regcache_arch = get_regcache_arch (regcache);
2766
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2767
 
2768
  gdb_assert (regcache_arch == gdbarch);
2769
 
2770
  if (IS_SPE_PSEUDOREG (tdep, reg_nr))
2771
    e500_pseudo_register_write (gdbarch, regcache, reg_nr, buffer);
2772
  else if (IS_DFP_PSEUDOREG (tdep, reg_nr))
2773
    dfp_pseudo_register_write (gdbarch, regcache, reg_nr, buffer);
2774
  else if (IS_VSX_PSEUDOREG (tdep, reg_nr))
2775
    vsx_pseudo_register_write (gdbarch, regcache, reg_nr, buffer);
2776
  else if (IS_EFP_PSEUDOREG (tdep, reg_nr))
2777
    efpr_pseudo_register_write (gdbarch, regcache, reg_nr, buffer);
2778
  else
2779
    internal_error (__FILE__, __LINE__,
2780
                    _("rs6000_pseudo_register_write: "
2781
                    "called on unexpected register '%s' (%d)"),
2782
                    gdbarch_register_name (gdbarch, reg_nr), reg_nr);
2783
}
2784
 
2785
/* Convert a DBX STABS register number to a GDB register number.  */
2786
static int
2787
rs6000_stab_reg_to_regnum (struct gdbarch *gdbarch, int num)
2788
{
2789
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2790
 
2791
  if (0 <= num && num <= 31)
2792
    return tdep->ppc_gp0_regnum + num;
2793
  else if (32 <= num && num <= 63)
2794
    /* FIXME: jimb/2004-05-05: What should we do when the debug info
2795
       specifies registers the architecture doesn't have?  Our
2796
       callers don't check the value we return.  */
2797
    return tdep->ppc_fp0_regnum + (num - 32);
2798
  else if (77 <= num && num <= 108)
2799
    return tdep->ppc_vr0_regnum + (num - 77);
2800
  else if (1200 <= num && num < 1200 + 32)
2801
    return tdep->ppc_ev0_regnum + (num - 1200);
2802
  else
2803
    switch (num)
2804
      {
2805
      case 64:
2806
        return tdep->ppc_mq_regnum;
2807
      case 65:
2808
        return tdep->ppc_lr_regnum;
2809
      case 66:
2810
        return tdep->ppc_ctr_regnum;
2811
      case 76:
2812
        return tdep->ppc_xer_regnum;
2813
      case 109:
2814
        return tdep->ppc_vrsave_regnum;
2815
      case 110:
2816
        return tdep->ppc_vrsave_regnum - 1; /* vscr */
2817
      case 111:
2818
        return tdep->ppc_acc_regnum;
2819
      case 112:
2820
        return tdep->ppc_spefscr_regnum;
2821
      default:
2822
        return num;
2823
      }
2824
}
2825
 
2826
 
2827
/* Convert a Dwarf 2 register number to a GDB register number.  */
2828
static int
2829
rs6000_dwarf2_reg_to_regnum (struct gdbarch *gdbarch, int num)
2830
{
2831
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2832
 
2833
  if (0 <= num && num <= 31)
2834
    return tdep->ppc_gp0_regnum + num;
2835
  else if (32 <= num && num <= 63)
2836
    /* FIXME: jimb/2004-05-05: What should we do when the debug info
2837
       specifies registers the architecture doesn't have?  Our
2838
       callers don't check the value we return.  */
2839
    return tdep->ppc_fp0_regnum + (num - 32);
2840
  else if (1124 <= num && num < 1124 + 32)
2841
    return tdep->ppc_vr0_regnum + (num - 1124);
2842
  else if (1200 <= num && num < 1200 + 32)
2843
    return tdep->ppc_ev0_regnum + (num - 1200);
2844
  else
2845
    switch (num)
2846
      {
2847
      case 64:
2848
        return tdep->ppc_cr_regnum;
2849
      case 67:
2850
        return tdep->ppc_vrsave_regnum - 1; /* vscr */
2851
      case 99:
2852
        return tdep->ppc_acc_regnum;
2853
      case 100:
2854
        return tdep->ppc_mq_regnum;
2855
      case 101:
2856
        return tdep->ppc_xer_regnum;
2857
      case 108:
2858
        return tdep->ppc_lr_regnum;
2859
      case 109:
2860
        return tdep->ppc_ctr_regnum;
2861
      case 356:
2862
        return tdep->ppc_vrsave_regnum;
2863
      case 612:
2864
        return tdep->ppc_spefscr_regnum;
2865
      default:
2866
        return num;
2867
      }
2868
}
2869
 
2870
/* Translate a .eh_frame register to DWARF register, or adjust a
2871
   .debug_frame register.  */
2872
 
2873
static int
2874
rs6000_adjust_frame_regnum (struct gdbarch *gdbarch, int num, int eh_frame_p)
2875
{
2876
  /* GCC releases before 3.4 use GCC internal register numbering in
2877
     .debug_frame (and .debug_info, et cetera).  The numbering is
2878
     different from the standard SysV numbering for everything except
2879
     for GPRs and FPRs.  We can not detect this problem in most cases
2880
     - to get accurate debug info for variables living in lr, ctr, v0,
2881
     et cetera, use a newer version of GCC.  But we must detect
2882
     one important case - lr is in column 65 in .debug_frame output,
2883
     instead of 108.
2884
 
2885
     GCC 3.4, and the "hammer" branch, have a related problem.  They
2886
     record lr register saves in .debug_frame as 108, but still record
2887
     the return column as 65.  We fix that up too.
2888
 
2889
     We can do this because 65 is assigned to fpsr, and GCC never
2890
     generates debug info referring to it.  To add support for
2891
     handwritten debug info that restores fpsr, we would need to add a
2892
     producer version check to this.  */
2893
  if (!eh_frame_p)
2894
    {
2895
      if (num == 65)
2896
        return 108;
2897
      else
2898
        return num;
2899
    }
2900
 
2901
  /* .eh_frame is GCC specific.  For binary compatibility, it uses GCC
2902
     internal register numbering; translate that to the standard DWARF2
2903
     register numbering.  */
2904
  if (0 <= num && num <= 63)     /* r0-r31,fp0-fp31 */
2905
    return num;
2906
  else if (68 <= num && num <= 75) /* cr0-cr8 */
2907
    return num - 68 + 86;
2908
  else if (77 <= num && num <= 108) /* vr0-vr31 */
2909
    return num - 77 + 1124;
2910
  else
2911
    switch (num)
2912
      {
2913
      case 64: /* mq */
2914
        return 100;
2915
      case 65: /* lr */
2916
        return 108;
2917
      case 66: /* ctr */
2918
        return 109;
2919
      case 76: /* xer */
2920
        return 101;
2921
      case 109: /* vrsave */
2922
        return 356;
2923
      case 110: /* vscr */
2924
        return 67;
2925
      case 111: /* spe_acc */
2926
        return 99;
2927
      case 112: /* spefscr */
2928
        return 612;
2929
      default:
2930
        return num;
2931
      }
2932
}
2933
 
2934
 
2935
/* Handling the various POWER/PowerPC variants.  */
2936
 
2937
/* Information about a particular processor variant.  */
2938
 
2939
struct variant
2940
  {
2941
    /* Name of this variant.  */
2942
    char *name;
2943
 
2944
    /* English description of the variant.  */
2945
    char *description;
2946
 
2947
    /* bfd_arch_info.arch corresponding to variant.  */
2948
    enum bfd_architecture arch;
2949
 
2950
    /* bfd_arch_info.mach corresponding to variant.  */
2951
    unsigned long mach;
2952
 
2953
    /* Target description for this variant.  */
2954
    struct target_desc **tdesc;
2955
  };
2956
 
2957
static struct variant variants[] =
2958
{
2959
  {"powerpc", "PowerPC user-level", bfd_arch_powerpc,
2960
   bfd_mach_ppc, &tdesc_powerpc_altivec32},
2961
  {"power", "POWER user-level", bfd_arch_rs6000,
2962
   bfd_mach_rs6k, &tdesc_rs6000},
2963
  {"403", "IBM PowerPC 403", bfd_arch_powerpc,
2964
   bfd_mach_ppc_403, &tdesc_powerpc_403},
2965
  {"405", "IBM PowerPC 405", bfd_arch_powerpc,
2966
   bfd_mach_ppc_405, &tdesc_powerpc_405},
2967
  {"601", "Motorola PowerPC 601", bfd_arch_powerpc,
2968
   bfd_mach_ppc_601, &tdesc_powerpc_601},
2969
  {"602", "Motorola PowerPC 602", bfd_arch_powerpc,
2970
   bfd_mach_ppc_602, &tdesc_powerpc_602},
2971
  {"603", "Motorola/IBM PowerPC 603 or 603e", bfd_arch_powerpc,
2972
   bfd_mach_ppc_603, &tdesc_powerpc_603},
2973
  {"604", "Motorola PowerPC 604 or 604e", bfd_arch_powerpc,
2974
   604, &tdesc_powerpc_604},
2975
  {"403GC", "IBM PowerPC 403GC", bfd_arch_powerpc,
2976
   bfd_mach_ppc_403gc, &tdesc_powerpc_403gc},
2977
  {"505", "Motorola PowerPC 505", bfd_arch_powerpc,
2978
   bfd_mach_ppc_505, &tdesc_powerpc_505},
2979
  {"860", "Motorola PowerPC 860 or 850", bfd_arch_powerpc,
2980
   bfd_mach_ppc_860, &tdesc_powerpc_860},
2981
  {"750", "Motorola/IBM PowerPC 750 or 740", bfd_arch_powerpc,
2982
   bfd_mach_ppc_750, &tdesc_powerpc_750},
2983
  {"7400", "Motorola/IBM PowerPC 7400 (G4)", bfd_arch_powerpc,
2984
   bfd_mach_ppc_7400, &tdesc_powerpc_7400},
2985
  {"e500", "Motorola PowerPC e500", bfd_arch_powerpc,
2986
   bfd_mach_ppc_e500, &tdesc_powerpc_e500},
2987
 
2988
  /* 64-bit */
2989
  {"powerpc64", "PowerPC 64-bit user-level", bfd_arch_powerpc,
2990
   bfd_mach_ppc64, &tdesc_powerpc_altivec64},
2991
  {"620", "Motorola PowerPC 620", bfd_arch_powerpc,
2992
   bfd_mach_ppc_620, &tdesc_powerpc_64},
2993
  {"630", "Motorola PowerPC 630", bfd_arch_powerpc,
2994
   bfd_mach_ppc_630, &tdesc_powerpc_64},
2995
  {"a35", "PowerPC A35", bfd_arch_powerpc,
2996
   bfd_mach_ppc_a35, &tdesc_powerpc_64},
2997
  {"rs64ii", "PowerPC rs64ii", bfd_arch_powerpc,
2998
   bfd_mach_ppc_rs64ii, &tdesc_powerpc_64},
2999
  {"rs64iii", "PowerPC rs64iii", bfd_arch_powerpc,
3000
   bfd_mach_ppc_rs64iii, &tdesc_powerpc_64},
3001
 
3002
  /* FIXME: I haven't checked the register sets of the following.  */
3003
  {"rs1", "IBM POWER RS1", bfd_arch_rs6000,
3004
   bfd_mach_rs6k_rs1, &tdesc_rs6000},
3005
  {"rsc", "IBM POWER RSC", bfd_arch_rs6000,
3006
   bfd_mach_rs6k_rsc, &tdesc_rs6000},
3007
  {"rs2", "IBM POWER RS2", bfd_arch_rs6000,
3008
   bfd_mach_rs6k_rs2, &tdesc_rs6000},
3009
 
3010
  {0, 0, 0, 0, 0}
3011
};
3012
 
3013
/* Return the variant corresponding to architecture ARCH and machine number
3014
   MACH.  If no such variant exists, return null.  */
3015
 
3016
static const struct variant *
3017
find_variant_by_arch (enum bfd_architecture arch, unsigned long mach)
3018
{
3019
  const struct variant *v;
3020
 
3021
  for (v = variants; v->name; v++)
3022
    if (arch == v->arch && mach == v->mach)
3023
      return v;
3024
 
3025
  return NULL;
3026
}
3027
 
3028
static int
3029
gdb_print_insn_powerpc (bfd_vma memaddr, disassemble_info *info)
3030
{
3031
  if (!info->disassembler_options)
3032
    info->disassembler_options = "any";
3033
 
3034
  if (info->endian == BFD_ENDIAN_BIG)
3035
    return print_insn_big_powerpc (memaddr, info);
3036
  else
3037
    return print_insn_little_powerpc (memaddr, info);
3038
}
3039
 
3040
static CORE_ADDR
3041
rs6000_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
3042
{
3043
  return frame_unwind_register_unsigned (next_frame,
3044
                                         gdbarch_pc_regnum (gdbarch));
3045
}
3046
 
3047
static struct frame_id
3048
rs6000_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
3049
{
3050
  return frame_id_build (get_frame_register_unsigned
3051
                          (this_frame, gdbarch_sp_regnum (gdbarch)),
3052
                         get_frame_pc (this_frame));
3053
}
3054
 
3055
struct rs6000_frame_cache
3056
{
3057
  CORE_ADDR base;
3058
  CORE_ADDR initial_sp;
3059
  struct trad_frame_saved_reg *saved_regs;
3060
};
3061
 
3062
static struct rs6000_frame_cache *
3063
rs6000_frame_cache (struct frame_info *this_frame, void **this_cache)
3064
{
3065
  struct rs6000_frame_cache *cache;
3066
  struct gdbarch *gdbarch = get_frame_arch (this_frame);
3067
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3068
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3069
  struct rs6000_framedata fdata;
3070
  int wordsize = tdep->wordsize;
3071
  CORE_ADDR func, pc;
3072
 
3073
  if ((*this_cache) != NULL)
3074
    return (*this_cache);
3075
  cache = FRAME_OBSTACK_ZALLOC (struct rs6000_frame_cache);
3076
  (*this_cache) = cache;
3077
  cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
3078
 
3079
  func = get_frame_func (this_frame);
3080
  pc = get_frame_pc (this_frame);
3081
  skip_prologue (gdbarch, func, pc, &fdata);
3082
 
3083
  /* Figure out the parent's stack pointer.  */
3084
 
3085
  /* NOTE: cagney/2002-04-14: The ->frame points to the inner-most
3086
     address of the current frame.  Things might be easier if the
3087
     ->frame pointed to the outer-most address of the frame.  In
3088
     the mean time, the address of the prev frame is used as the
3089
     base address of this frame.  */
3090
  cache->base = get_frame_register_unsigned
3091
                (this_frame, gdbarch_sp_regnum (gdbarch));
3092
 
3093
  /* If the function appears to be frameless, check a couple of likely
3094
     indicators that we have simply failed to find the frame setup.
3095
     Two common cases of this are missing symbols (i.e.
3096
     get_frame_func returns the wrong address or 0), and assembly
3097
     stubs which have a fast exit path but set up a frame on the slow
3098
     path.
3099
 
3100
     If the LR appears to return to this function, then presume that
3101
     we have an ABI compliant frame that we failed to find.  */
3102
  if (fdata.frameless && fdata.lr_offset == 0)
3103
    {
3104
      CORE_ADDR saved_lr;
3105
      int make_frame = 0;
3106
 
3107
      saved_lr = get_frame_register_unsigned (this_frame, tdep->ppc_lr_regnum);
3108
      if (func == 0 && saved_lr == pc)
3109
        make_frame = 1;
3110
      else if (func != 0)
3111
        {
3112
          CORE_ADDR saved_func = get_pc_function_start (saved_lr);
3113
          if (func == saved_func)
3114
            make_frame = 1;
3115
        }
3116
 
3117
      if (make_frame)
3118
        {
3119
          fdata.frameless = 0;
3120
          fdata.lr_offset = tdep->lr_frame_offset;
3121
        }
3122
    }
3123
 
3124
  if (!fdata.frameless)
3125
    /* Frameless really means stackless.  */
3126
    cache->base
3127
      = read_memory_unsigned_integer (cache->base, wordsize, byte_order);
3128
 
3129
  trad_frame_set_value (cache->saved_regs,
3130
                        gdbarch_sp_regnum (gdbarch), cache->base);
3131
 
3132
  /* if != -1, fdata.saved_fpr is the smallest number of saved_fpr.
3133
     All fpr's from saved_fpr to fp31 are saved.  */
3134
 
3135
  if (fdata.saved_fpr >= 0)
3136
    {
3137
      int i;
3138
      CORE_ADDR fpr_addr = cache->base + fdata.fpr_offset;
3139
 
3140
      /* If skip_prologue says floating-point registers were saved,
3141
         but the current architecture has no floating-point registers,
3142
         then that's strange.  But we have no indices to even record
3143
         the addresses under, so we just ignore it.  */
3144
      if (ppc_floating_point_unit_p (gdbarch))
3145
        for (i = fdata.saved_fpr; i < ppc_num_fprs; i++)
3146
          {
3147
            cache->saved_regs[tdep->ppc_fp0_regnum + i].addr = fpr_addr;
3148
            fpr_addr += 8;
3149
          }
3150
    }
3151
 
3152
  /* if != -1, fdata.saved_gpr is the smallest number of saved_gpr.
3153
     All gpr's from saved_gpr to gpr31 are saved (except during the
3154
     prologue).  */
3155
 
3156
  if (fdata.saved_gpr >= 0)
3157
    {
3158
      int i;
3159
      CORE_ADDR gpr_addr = cache->base + fdata.gpr_offset;
3160
      for (i = fdata.saved_gpr; i < ppc_num_gprs; i++)
3161
        {
3162
          if (fdata.gpr_mask & (1U << i))
3163
            cache->saved_regs[tdep->ppc_gp0_regnum + i].addr = gpr_addr;
3164
          gpr_addr += wordsize;
3165
        }
3166
    }
3167
 
3168
  /* if != -1, fdata.saved_vr is the smallest number of saved_vr.
3169
     All vr's from saved_vr to vr31 are saved.  */
3170
  if (tdep->ppc_vr0_regnum != -1 && tdep->ppc_vrsave_regnum != -1)
3171
    {
3172
      if (fdata.saved_vr >= 0)
3173
        {
3174
          int i;
3175
          CORE_ADDR vr_addr = cache->base + fdata.vr_offset;
3176
          for (i = fdata.saved_vr; i < 32; i++)
3177
            {
3178
              cache->saved_regs[tdep->ppc_vr0_regnum + i].addr = vr_addr;
3179
              vr_addr += register_size (gdbarch, tdep->ppc_vr0_regnum);
3180
            }
3181
        }
3182
    }
3183
 
3184
  /* if != -1, fdata.saved_ev is the smallest number of saved_ev.
3185
     All vr's from saved_ev to ev31 are saved. ????? */
3186
  if (tdep->ppc_ev0_regnum != -1)
3187
    {
3188
      if (fdata.saved_ev >= 0)
3189
        {
3190
          int i;
3191
          CORE_ADDR ev_addr = cache->base + fdata.ev_offset;
3192
          for (i = fdata.saved_ev; i < ppc_num_gprs; i++)
3193
            {
3194
              cache->saved_regs[tdep->ppc_ev0_regnum + i].addr = ev_addr;
3195
              cache->saved_regs[tdep->ppc_gp0_regnum + i].addr = ev_addr + 4;
3196
              ev_addr += register_size (gdbarch, tdep->ppc_ev0_regnum);
3197
            }
3198
        }
3199
    }
3200
 
3201
  /* If != 0, fdata.cr_offset is the offset from the frame that
3202
     holds the CR.  */
3203
  if (fdata.cr_offset != 0)
3204
    cache->saved_regs[tdep->ppc_cr_regnum].addr = cache->base + fdata.cr_offset;
3205
 
3206
  /* If != 0, fdata.lr_offset is the offset from the frame that
3207
     holds the LR.  */
3208
  if (fdata.lr_offset != 0)
3209
    cache->saved_regs[tdep->ppc_lr_regnum].addr = cache->base + fdata.lr_offset;
3210
  else if (fdata.lr_register != -1)
3211
    cache->saved_regs[tdep->ppc_lr_regnum].realreg = fdata.lr_register;
3212
  /* The PC is found in the link register.  */
3213
  cache->saved_regs[gdbarch_pc_regnum (gdbarch)] =
3214
    cache->saved_regs[tdep->ppc_lr_regnum];
3215
 
3216
  /* If != 0, fdata.vrsave_offset is the offset from the frame that
3217
     holds the VRSAVE.  */
3218
  if (fdata.vrsave_offset != 0)
3219
    cache->saved_regs[tdep->ppc_vrsave_regnum].addr = cache->base + fdata.vrsave_offset;
3220
 
3221
  if (fdata.alloca_reg < 0)
3222
    /* If no alloca register used, then fi->frame is the value of the
3223
       %sp for this frame, and it is good enough.  */
3224
    cache->initial_sp
3225
      = get_frame_register_unsigned (this_frame, gdbarch_sp_regnum (gdbarch));
3226
  else
3227
    cache->initial_sp
3228
      = get_frame_register_unsigned (this_frame, fdata.alloca_reg);
3229
 
3230
  return cache;
3231
}
3232
 
3233
static void
3234
rs6000_frame_this_id (struct frame_info *this_frame, void **this_cache,
3235
                      struct frame_id *this_id)
3236
{
3237
  struct rs6000_frame_cache *info = rs6000_frame_cache (this_frame,
3238
                                                        this_cache);
3239
  /* This marks the outermost frame.  */
3240
  if (info->base == 0)
3241
    return;
3242
 
3243
  (*this_id) = frame_id_build (info->base, get_frame_func (this_frame));
3244
}
3245
 
3246
static struct value *
3247
rs6000_frame_prev_register (struct frame_info *this_frame,
3248
                            void **this_cache, int regnum)
3249
{
3250
  struct rs6000_frame_cache *info = rs6000_frame_cache (this_frame,
3251
                                                        this_cache);
3252
  return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
3253
}
3254
 
3255
static const struct frame_unwind rs6000_frame_unwind =
3256
{
3257
  NORMAL_FRAME,
3258
  rs6000_frame_this_id,
3259
  rs6000_frame_prev_register,
3260
  NULL,
3261
  default_frame_sniffer
3262
};
3263
 
3264
 
3265
static CORE_ADDR
3266
rs6000_frame_base_address (struct frame_info *this_frame, void **this_cache)
3267
{
3268
  struct rs6000_frame_cache *info = rs6000_frame_cache (this_frame,
3269
                                                        this_cache);
3270
  return info->initial_sp;
3271
}
3272
 
3273
static const struct frame_base rs6000_frame_base = {
3274
  &rs6000_frame_unwind,
3275
  rs6000_frame_base_address,
3276
  rs6000_frame_base_address,
3277
  rs6000_frame_base_address
3278
};
3279
 
3280
static const struct frame_base *
3281
rs6000_frame_base_sniffer (struct frame_info *this_frame)
3282
{
3283
  return &rs6000_frame_base;
3284
}
3285
 
3286
/* DWARF-2 frame support.  Used to handle the detection of
3287
  clobbered registers during function calls.  */
3288
 
3289
static void
3290
ppc_dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
3291
                            struct dwarf2_frame_state_reg *reg,
3292
                            struct frame_info *this_frame)
3293
{
3294
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3295
 
3296
  /* PPC32 and PPC64 ABI's are the same regarding volatile and
3297
     non-volatile registers.  We will use the same code for both.  */
3298
 
3299
  /* Call-saved GP registers.  */
3300
  if ((regnum >= tdep->ppc_gp0_regnum + 14
3301
      && regnum <= tdep->ppc_gp0_regnum + 31)
3302
      || (regnum == tdep->ppc_gp0_regnum + 1))
3303
    reg->how = DWARF2_FRAME_REG_SAME_VALUE;
3304
 
3305
  /* Call-clobbered GP registers.  */
3306
  if ((regnum >= tdep->ppc_gp0_regnum + 3
3307
      && regnum <= tdep->ppc_gp0_regnum + 12)
3308
      || (regnum == tdep->ppc_gp0_regnum))
3309
    reg->how = DWARF2_FRAME_REG_UNDEFINED;
3310
 
3311
  /* Deal with FP registers, if supported.  */
3312
  if (tdep->ppc_fp0_regnum >= 0)
3313
    {
3314
      /* Call-saved FP registers.  */
3315
      if ((regnum >= tdep->ppc_fp0_regnum + 14
3316
          && regnum <= tdep->ppc_fp0_regnum + 31))
3317
        reg->how = DWARF2_FRAME_REG_SAME_VALUE;
3318
 
3319
      /* Call-clobbered FP registers.  */
3320
      if ((regnum >= tdep->ppc_fp0_regnum
3321
          && regnum <= tdep->ppc_fp0_regnum + 13))
3322
        reg->how = DWARF2_FRAME_REG_UNDEFINED;
3323
    }
3324
 
3325
  /* Deal with ALTIVEC registers, if supported.  */
3326
  if (tdep->ppc_vr0_regnum > 0 && tdep->ppc_vrsave_regnum > 0)
3327
    {
3328
      /* Call-saved Altivec registers.  */
3329
      if ((regnum >= tdep->ppc_vr0_regnum + 20
3330
          && regnum <= tdep->ppc_vr0_regnum + 31)
3331
          || regnum == tdep->ppc_vrsave_regnum)
3332
        reg->how = DWARF2_FRAME_REG_SAME_VALUE;
3333
 
3334
      /* Call-clobbered Altivec registers.  */
3335
      if ((regnum >= tdep->ppc_vr0_regnum
3336
          && regnum <= tdep->ppc_vr0_regnum + 19))
3337
        reg->how = DWARF2_FRAME_REG_UNDEFINED;
3338
    }
3339
 
3340
  /* Handle PC register and Stack Pointer correctly.  */
3341
  if (regnum == gdbarch_pc_regnum (gdbarch))
3342
    reg->how = DWARF2_FRAME_REG_RA;
3343
  else if (regnum == gdbarch_sp_regnum (gdbarch))
3344
    reg->how = DWARF2_FRAME_REG_CFA;
3345
}
3346
 
3347
 
3348
/* Initialize the current architecture based on INFO.  If possible, re-use an
3349
   architecture from ARCHES, which is a list of architectures already created
3350
   during this debugging session.
3351
 
3352
   Called e.g. at program startup, when reading a core file, and when reading
3353
   a binary file.  */
3354
 
3355
static struct gdbarch *
3356
rs6000_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
3357
{
3358
  struct gdbarch *gdbarch;
3359
  struct gdbarch_tdep *tdep;
3360
  int wordsize, from_xcoff_exec, from_elf_exec;
3361
  enum bfd_architecture arch;
3362
  unsigned long mach;
3363
  bfd abfd;
3364
  asection *sect;
3365
  enum auto_boolean soft_float_flag = powerpc_soft_float_global;
3366
  int soft_float;
3367
  enum powerpc_vector_abi vector_abi = powerpc_vector_abi_global;
3368
  int have_fpu = 1, have_spe = 0, have_mq = 0, have_altivec = 0, have_dfp = 0,
3369
      have_vsx = 0;
3370
  int tdesc_wordsize = -1;
3371
  const struct target_desc *tdesc = info.target_desc;
3372
  struct tdesc_arch_data *tdesc_data = NULL;
3373
  int num_pseudoregs = 0;
3374
  int cur_reg;
3375
 
3376
  /* INFO may refer to a binary that is not of the PowerPC architecture,
3377
     e.g. when debugging a stand-alone SPE executable on a Cell/B.E. system.
3378
     In this case, we must not attempt to infer properties of the (PowerPC
3379
     side) of the target system from properties of that executable.  Trust
3380
     the target description instead.  */
3381
  if (info.abfd
3382
      && bfd_get_arch (info.abfd) != bfd_arch_powerpc
3383
      && bfd_get_arch (info.abfd) != bfd_arch_rs6000)
3384
    info.abfd = NULL;
3385
 
3386
  from_xcoff_exec = info.abfd && info.abfd->format == bfd_object &&
3387
    bfd_get_flavour (info.abfd) == bfd_target_xcoff_flavour;
3388
 
3389
  from_elf_exec = info.abfd && info.abfd->format == bfd_object &&
3390
    bfd_get_flavour (info.abfd) == bfd_target_elf_flavour;
3391
 
3392
  /* Check word size.  If INFO is from a binary file, infer it from
3393
     that, else choose a likely default.  */
3394
  if (from_xcoff_exec)
3395
    {
3396
      if (bfd_xcoff_is_xcoff64 (info.abfd))
3397
        wordsize = 8;
3398
      else
3399
        wordsize = 4;
3400
    }
3401
  else if (from_elf_exec)
3402
    {
3403
      if (elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
3404
        wordsize = 8;
3405
      else
3406
        wordsize = 4;
3407
    }
3408
  else if (tdesc_has_registers (tdesc))
3409
    wordsize = -1;
3410
  else
3411
    {
3412
      if (info.bfd_arch_info != NULL && info.bfd_arch_info->bits_per_word != 0)
3413
        wordsize = info.bfd_arch_info->bits_per_word /
3414
          info.bfd_arch_info->bits_per_byte;
3415
      else
3416
        wordsize = 4;
3417
    }
3418
 
3419
  /* Get the architecture and machine from the BFD.  */
3420
  arch = info.bfd_arch_info->arch;
3421
  mach = info.bfd_arch_info->mach;
3422
 
3423
  /* For e500 executables, the apuinfo section is of help here.  Such
3424
     section contains the identifier and revision number of each
3425
     Application-specific Processing Unit that is present on the
3426
     chip.  The content of the section is determined by the assembler
3427
     which looks at each instruction and determines which unit (and
3428
     which version of it) can execute it. In our case we just look for
3429
     the existance of the section.  */
3430
 
3431
  if (info.abfd)
3432
    {
3433
      sect = bfd_get_section_by_name (info.abfd, ".PPC.EMB.apuinfo");
3434
      if (sect)
3435
        {
3436
          arch = info.bfd_arch_info->arch;
3437
          mach = bfd_mach_ppc_e500;
3438
          bfd_default_set_arch_mach (&abfd, arch, mach);
3439
          info.bfd_arch_info = bfd_get_arch_info (&abfd);
3440
        }
3441
    }
3442
 
3443
  /* Find a default target description which describes our register
3444
     layout, if we do not already have one.  */
3445
  if (! tdesc_has_registers (tdesc))
3446
    {
3447
      const struct variant *v;
3448
 
3449
      /* Choose variant.  */
3450
      v = find_variant_by_arch (arch, mach);
3451
      if (!v)
3452
        return NULL;
3453
 
3454
      tdesc = *v->tdesc;
3455
    }
3456
 
3457
  gdb_assert (tdesc_has_registers (tdesc));
3458
 
3459
  /* Check any target description for validity.  */
3460
  if (tdesc_has_registers (tdesc))
3461
    {
3462
      static const char *const gprs[] = {
3463
        "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
3464
        "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
3465
        "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
3466
        "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31"
3467
      };
3468
      static const char *const segment_regs[] = {
3469
        "sr0", "sr1", "sr2", "sr3", "sr4", "sr5", "sr6", "sr7",
3470
        "sr8", "sr9", "sr10", "sr11", "sr12", "sr13", "sr14", "sr15"
3471
      };
3472
      const struct tdesc_feature *feature;
3473
      int i, valid_p;
3474
      static const char *const msr_names[] = { "msr", "ps" };
3475
      static const char *const cr_names[] = { "cr", "cnd" };
3476
      static const char *const ctr_names[] = { "ctr", "cnt" };
3477
 
3478
      feature = tdesc_find_feature (tdesc,
3479
                                    "org.gnu.gdb.power.core");
3480
      if (feature == NULL)
3481
        return NULL;
3482
 
3483
      tdesc_data = tdesc_data_alloc ();
3484
 
3485
      valid_p = 1;
3486
      for (i = 0; i < ppc_num_gprs; i++)
3487
        valid_p &= tdesc_numbered_register (feature, tdesc_data, i, gprs[i]);
3488
      valid_p &= tdesc_numbered_register (feature, tdesc_data, PPC_PC_REGNUM,
3489
                                          "pc");
3490
      valid_p &= tdesc_numbered_register (feature, tdesc_data, PPC_LR_REGNUM,
3491
                                          "lr");
3492
      valid_p &= tdesc_numbered_register (feature, tdesc_data, PPC_XER_REGNUM,
3493
                                          "xer");
3494
 
3495
      /* Allow alternate names for these registers, to accomodate GDB's
3496
         historic naming.  */
3497
      valid_p &= tdesc_numbered_register_choices (feature, tdesc_data,
3498
                                                  PPC_MSR_REGNUM, msr_names);
3499
      valid_p &= tdesc_numbered_register_choices (feature, tdesc_data,
3500
                                                  PPC_CR_REGNUM, cr_names);
3501
      valid_p &= tdesc_numbered_register_choices (feature, tdesc_data,
3502
                                                  PPC_CTR_REGNUM, ctr_names);
3503
 
3504
      if (!valid_p)
3505
        {
3506
          tdesc_data_cleanup (tdesc_data);
3507
          return NULL;
3508
        }
3509
 
3510
      have_mq = tdesc_numbered_register (feature, tdesc_data, PPC_MQ_REGNUM,
3511
                                         "mq");
3512
 
3513
      tdesc_wordsize = tdesc_register_size (feature, "pc") / 8;
3514
      if (wordsize == -1)
3515
        wordsize = tdesc_wordsize;
3516
 
3517
      feature = tdesc_find_feature (tdesc,
3518
                                    "org.gnu.gdb.power.fpu");
3519
      if (feature != NULL)
3520
        {
3521
          static const char *const fprs[] = {
3522
            "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
3523
            "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
3524
            "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
3525
            "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31"
3526
          };
3527
          valid_p = 1;
3528
          for (i = 0; i < ppc_num_fprs; i++)
3529
            valid_p &= tdesc_numbered_register (feature, tdesc_data,
3530
                                                PPC_F0_REGNUM + i, fprs[i]);
3531
          valid_p &= tdesc_numbered_register (feature, tdesc_data,
3532
                                              PPC_FPSCR_REGNUM, "fpscr");
3533
 
3534
          if (!valid_p)
3535
            {
3536
              tdesc_data_cleanup (tdesc_data);
3537
              return NULL;
3538
            }
3539
          have_fpu = 1;
3540
        }
3541
      else
3542
        have_fpu = 0;
3543
 
3544
      /* The DFP pseudo-registers will be available when there are floating
3545
         point registers.  */
3546
      have_dfp = have_fpu;
3547
 
3548
      feature = tdesc_find_feature (tdesc,
3549
                                    "org.gnu.gdb.power.altivec");
3550
      if (feature != NULL)
3551
        {
3552
          static const char *const vector_regs[] = {
3553
            "vr0", "vr1", "vr2", "vr3", "vr4", "vr5", "vr6", "vr7",
3554
            "vr8", "vr9", "vr10", "vr11", "vr12", "vr13", "vr14", "vr15",
3555
            "vr16", "vr17", "vr18", "vr19", "vr20", "vr21", "vr22", "vr23",
3556
            "vr24", "vr25", "vr26", "vr27", "vr28", "vr29", "vr30", "vr31"
3557
          };
3558
 
3559
          valid_p = 1;
3560
          for (i = 0; i < ppc_num_gprs; i++)
3561
            valid_p &= tdesc_numbered_register (feature, tdesc_data,
3562
                                                PPC_VR0_REGNUM + i,
3563
                                                vector_regs[i]);
3564
          valid_p &= tdesc_numbered_register (feature, tdesc_data,
3565
                                              PPC_VSCR_REGNUM, "vscr");
3566
          valid_p &= tdesc_numbered_register (feature, tdesc_data,
3567
                                              PPC_VRSAVE_REGNUM, "vrsave");
3568
 
3569
          if (have_spe || !valid_p)
3570
            {
3571
              tdesc_data_cleanup (tdesc_data);
3572
              return NULL;
3573
            }
3574
          have_altivec = 1;
3575
        }
3576
      else
3577
        have_altivec = 0;
3578
 
3579
      /* Check for POWER7 VSX registers support.  */
3580
      feature = tdesc_find_feature (tdesc,
3581
                                    "org.gnu.gdb.power.vsx");
3582
 
3583
      if (feature != NULL)
3584
        {
3585
          static const char *const vsx_regs[] = {
3586
            "vs0h", "vs1h", "vs2h", "vs3h", "vs4h", "vs5h",
3587
            "vs6h", "vs7h", "vs8h", "vs9h", "vs10h", "vs11h",
3588
            "vs12h", "vs13h", "vs14h", "vs15h", "vs16h", "vs17h",
3589
            "vs18h", "vs19h", "vs20h", "vs21h", "vs22h", "vs23h",
3590
            "vs24h", "vs25h", "vs26h", "vs27h", "vs28h", "vs29h",
3591
            "vs30h", "vs31h"
3592
          };
3593
 
3594
          valid_p = 1;
3595
 
3596
          for (i = 0; i < ppc_num_vshrs; i++)
3597
            valid_p &= tdesc_numbered_register (feature, tdesc_data,
3598
                                                PPC_VSR0_UPPER_REGNUM + i,
3599
                                                vsx_regs[i]);
3600
          if (!valid_p)
3601
            {
3602
              tdesc_data_cleanup (tdesc_data);
3603
              return NULL;
3604
            }
3605
 
3606
          have_vsx = 1;
3607
        }
3608
      else
3609
        have_vsx = 0;
3610
 
3611
      /* On machines supporting the SPE APU, the general-purpose registers
3612
         are 64 bits long.  There are SIMD vector instructions to treat them
3613
         as pairs of floats, but the rest of the instruction set treats them
3614
         as 32-bit registers, and only operates on their lower halves.
3615
 
3616
         In the GDB regcache, we treat their high and low halves as separate
3617
         registers.  The low halves we present as the general-purpose
3618
         registers, and then we have pseudo-registers that stitch together
3619
         the upper and lower halves and present them as pseudo-registers.
3620
 
3621
         Thus, the target description is expected to supply the upper
3622
         halves separately.  */
3623
 
3624
      feature = tdesc_find_feature (tdesc,
3625
                                    "org.gnu.gdb.power.spe");
3626
      if (feature != NULL)
3627
        {
3628
          static const char *const upper_spe[] = {
3629
            "ev0h", "ev1h", "ev2h", "ev3h",
3630
            "ev4h", "ev5h", "ev6h", "ev7h",
3631
            "ev8h", "ev9h", "ev10h", "ev11h",
3632
            "ev12h", "ev13h", "ev14h", "ev15h",
3633
            "ev16h", "ev17h", "ev18h", "ev19h",
3634
            "ev20h", "ev21h", "ev22h", "ev23h",
3635
            "ev24h", "ev25h", "ev26h", "ev27h",
3636
            "ev28h", "ev29h", "ev30h", "ev31h"
3637
          };
3638
 
3639
          valid_p = 1;
3640
          for (i = 0; i < ppc_num_gprs; i++)
3641
            valid_p &= tdesc_numbered_register (feature, tdesc_data,
3642
                                                PPC_SPE_UPPER_GP0_REGNUM + i,
3643
                                                upper_spe[i]);
3644
          valid_p &= tdesc_numbered_register (feature, tdesc_data,
3645
                                              PPC_SPE_ACC_REGNUM, "acc");
3646
          valid_p &= tdesc_numbered_register (feature, tdesc_data,
3647
                                              PPC_SPE_FSCR_REGNUM, "spefscr");
3648
 
3649
          if (have_mq || have_fpu || !valid_p)
3650
            {
3651
              tdesc_data_cleanup (tdesc_data);
3652
              return NULL;
3653
            }
3654
          have_spe = 1;
3655
        }
3656
      else
3657
        have_spe = 0;
3658
    }
3659
 
3660
  /* If we have a 64-bit binary on a 32-bit target, complain.  Also
3661
     complain for a 32-bit binary on a 64-bit target; we do not yet
3662
     support that.  For instance, the 32-bit ABI routines expect
3663
     32-bit GPRs.
3664
 
3665
     As long as there isn't an explicit target description, we'll
3666
     choose one based on the BFD architecture and get a word size
3667
     matching the binary (probably powerpc:common or
3668
     powerpc:common64).  So there is only trouble if a 64-bit target
3669
     supplies a 64-bit description while debugging a 32-bit
3670
     binary.  */
3671
  if (tdesc_wordsize != -1 && tdesc_wordsize != wordsize)
3672
    {
3673
      tdesc_data_cleanup (tdesc_data);
3674
      return NULL;
3675
    }
3676
 
3677
#ifdef HAVE_ELF
3678
  if (soft_float_flag == AUTO_BOOLEAN_AUTO && from_elf_exec)
3679
    {
3680
      switch (bfd_elf_get_obj_attr_int (info.abfd, OBJ_ATTR_GNU,
3681
                                        Tag_GNU_Power_ABI_FP))
3682
        {
3683
        case 1:
3684
          soft_float_flag = AUTO_BOOLEAN_FALSE;
3685
          break;
3686
        case 2:
3687
          soft_float_flag = AUTO_BOOLEAN_TRUE;
3688
          break;
3689
        default:
3690
          break;
3691
        }
3692
    }
3693
 
3694
  if (vector_abi == POWERPC_VEC_AUTO && from_elf_exec)
3695
    {
3696
      switch (bfd_elf_get_obj_attr_int (info.abfd, OBJ_ATTR_GNU,
3697
                                        Tag_GNU_Power_ABI_Vector))
3698
        {
3699
        case 1:
3700
          vector_abi = POWERPC_VEC_GENERIC;
3701
          break;
3702
        case 2:
3703
          vector_abi = POWERPC_VEC_ALTIVEC;
3704
          break;
3705
        case 3:
3706
          vector_abi = POWERPC_VEC_SPE;
3707
          break;
3708
        default:
3709
          break;
3710
        }
3711
    }
3712
#endif
3713
 
3714
  if (soft_float_flag == AUTO_BOOLEAN_TRUE)
3715
    soft_float = 1;
3716
  else if (soft_float_flag == AUTO_BOOLEAN_FALSE)
3717
    soft_float = 0;
3718
  else
3719
    soft_float = !have_fpu;
3720
 
3721
  /* If we have a hard float binary or setting but no floating point
3722
     registers, downgrade to soft float anyway.  We're still somewhat
3723
     useful in this scenario.  */
3724
  if (!soft_float && !have_fpu)
3725
    soft_float = 1;
3726
 
3727
  /* Similarly for vector registers.  */
3728
  if (vector_abi == POWERPC_VEC_ALTIVEC && !have_altivec)
3729
    vector_abi = POWERPC_VEC_GENERIC;
3730
 
3731
  if (vector_abi == POWERPC_VEC_SPE && !have_spe)
3732
    vector_abi = POWERPC_VEC_GENERIC;
3733
 
3734
  if (vector_abi == POWERPC_VEC_AUTO)
3735
    {
3736
      if (have_altivec)
3737
        vector_abi = POWERPC_VEC_ALTIVEC;
3738
      else if (have_spe)
3739
        vector_abi = POWERPC_VEC_SPE;
3740
      else
3741
        vector_abi = POWERPC_VEC_GENERIC;
3742
    }
3743
 
3744
  /* Do not limit the vector ABI based on available hardware, since we
3745
     do not yet know what hardware we'll decide we have.  Yuck!  FIXME!  */
3746
 
3747
  /* Find a candidate among extant architectures.  */
3748
  for (arches = gdbarch_list_lookup_by_info (arches, &info);
3749
       arches != NULL;
3750
       arches = gdbarch_list_lookup_by_info (arches->next, &info))
3751
    {
3752
      /* Word size in the various PowerPC bfd_arch_info structs isn't
3753
         meaningful, because 64-bit CPUs can run in 32-bit mode.  So, perform
3754
         separate word size check.  */
3755
      tdep = gdbarch_tdep (arches->gdbarch);
3756
      if (tdep && tdep->soft_float != soft_float)
3757
        continue;
3758
      if (tdep && tdep->vector_abi != vector_abi)
3759
        continue;
3760
      if (tdep && tdep->wordsize == wordsize)
3761
        {
3762
          if (tdesc_data != NULL)
3763
            tdesc_data_cleanup (tdesc_data);
3764
          return arches->gdbarch;
3765
        }
3766
    }
3767
 
3768
  /* None found, create a new architecture from INFO, whose bfd_arch_info
3769
     validity depends on the source:
3770
       - executable             useless
3771
       - rs6000_host_arch()     good
3772
       - core file              good
3773
       - "set arch"             trust blindly
3774
       - GDB startup            useless but harmless */
3775
 
3776
  tdep = XCALLOC (1, struct gdbarch_tdep);
3777
  tdep->wordsize = wordsize;
3778
  tdep->soft_float = soft_float;
3779
  tdep->vector_abi = vector_abi;
3780
 
3781
  gdbarch = gdbarch_alloc (&info, tdep);
3782
 
3783
  tdep->ppc_gp0_regnum = PPC_R0_REGNUM;
3784
  tdep->ppc_toc_regnum = PPC_R0_REGNUM + 2;
3785
  tdep->ppc_ps_regnum = PPC_MSR_REGNUM;
3786
  tdep->ppc_cr_regnum = PPC_CR_REGNUM;
3787
  tdep->ppc_lr_regnum = PPC_LR_REGNUM;
3788
  tdep->ppc_ctr_regnum = PPC_CTR_REGNUM;
3789
  tdep->ppc_xer_regnum = PPC_XER_REGNUM;
3790
  tdep->ppc_mq_regnum = have_mq ? PPC_MQ_REGNUM : -1;
3791
 
3792
  tdep->ppc_fp0_regnum = have_fpu ? PPC_F0_REGNUM : -1;
3793
  tdep->ppc_fpscr_regnum = have_fpu ? PPC_FPSCR_REGNUM : -1;
3794
  tdep->ppc_vsr0_upper_regnum = have_vsx ? PPC_VSR0_UPPER_REGNUM : -1;
3795
  tdep->ppc_vr0_regnum = have_altivec ? PPC_VR0_REGNUM : -1;
3796
  tdep->ppc_vrsave_regnum = have_altivec ? PPC_VRSAVE_REGNUM : -1;
3797
  tdep->ppc_ev0_upper_regnum = have_spe ? PPC_SPE_UPPER_GP0_REGNUM : -1;
3798
  tdep->ppc_acc_regnum = have_spe ? PPC_SPE_ACC_REGNUM : -1;
3799
  tdep->ppc_spefscr_regnum = have_spe ? PPC_SPE_FSCR_REGNUM : -1;
3800
 
3801
  set_gdbarch_pc_regnum (gdbarch, PPC_PC_REGNUM);
3802
  set_gdbarch_sp_regnum (gdbarch, PPC_R0_REGNUM + 1);
3803
  set_gdbarch_deprecated_fp_regnum (gdbarch, PPC_R0_REGNUM + 1);
3804
  set_gdbarch_fp0_regnum (gdbarch, tdep->ppc_fp0_regnum);
3805
  set_gdbarch_register_sim_regno (gdbarch, rs6000_register_sim_regno);
3806
 
3807
  /* The XML specification for PowerPC sensibly calls the MSR "msr".
3808
     GDB traditionally called it "ps", though, so let GDB add an
3809
     alias.  */
3810
  set_gdbarch_ps_regnum (gdbarch, tdep->ppc_ps_regnum);
3811
 
3812
  if (wordsize == 8)
3813
    set_gdbarch_return_value (gdbarch, ppc64_sysv_abi_return_value);
3814
  else
3815
    set_gdbarch_return_value (gdbarch, ppc_sysv_abi_return_value);
3816
 
3817
  /* Set lr_frame_offset.  */
3818
  if (wordsize == 8)
3819
    tdep->lr_frame_offset = 16;
3820
  else
3821
    tdep->lr_frame_offset = 4;
3822
 
3823
  if (have_spe || have_dfp || have_vsx)
3824
    {
3825
      set_gdbarch_pseudo_register_read (gdbarch, rs6000_pseudo_register_read);
3826
      set_gdbarch_pseudo_register_write (gdbarch, rs6000_pseudo_register_write);
3827
    }
3828
 
3829
  set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
3830
 
3831
  /* Select instruction printer.  */
3832
  if (arch == bfd_arch_rs6000)
3833
    set_gdbarch_print_insn (gdbarch, print_insn_rs6000);
3834
  else
3835
    set_gdbarch_print_insn (gdbarch, gdb_print_insn_powerpc);
3836
 
3837
  set_gdbarch_num_regs (gdbarch, PPC_NUM_REGS);
3838
 
3839
  if (have_spe)
3840
    num_pseudoregs += 32;
3841
  if (have_dfp)
3842
    num_pseudoregs += 16;
3843
  if (have_vsx)
3844
    /* Include both VSX and Extended FP registers.  */
3845
    num_pseudoregs += 96;
3846
 
3847
  set_gdbarch_num_pseudo_regs (gdbarch, num_pseudoregs);
3848
 
3849
  set_gdbarch_ptr_bit (gdbarch, wordsize * TARGET_CHAR_BIT);
3850
  set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
3851
  set_gdbarch_int_bit (gdbarch, 4 * TARGET_CHAR_BIT);
3852
  set_gdbarch_long_bit (gdbarch, wordsize * TARGET_CHAR_BIT);
3853
  set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
3854
  set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
3855
  set_gdbarch_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
3856
  set_gdbarch_long_double_bit (gdbarch, 16 * TARGET_CHAR_BIT);
3857
  set_gdbarch_char_signed (gdbarch, 0);
3858
 
3859
  set_gdbarch_frame_align (gdbarch, rs6000_frame_align);
3860
  if (wordsize == 8)
3861
    /* PPC64 SYSV.  */
3862
    set_gdbarch_frame_red_zone_size (gdbarch, 288);
3863
 
3864
  set_gdbarch_convert_register_p (gdbarch, rs6000_convert_register_p);
3865
  set_gdbarch_register_to_value (gdbarch, rs6000_register_to_value);
3866
  set_gdbarch_value_to_register (gdbarch, rs6000_value_to_register);
3867
 
3868
  set_gdbarch_stab_reg_to_regnum (gdbarch, rs6000_stab_reg_to_regnum);
3869
  set_gdbarch_dwarf2_reg_to_regnum (gdbarch, rs6000_dwarf2_reg_to_regnum);
3870
 
3871
  if (wordsize == 4)
3872
    set_gdbarch_push_dummy_call (gdbarch, ppc_sysv_abi_push_dummy_call);
3873
  else if (wordsize == 8)
3874
    set_gdbarch_push_dummy_call (gdbarch, ppc64_sysv_abi_push_dummy_call);
3875
 
3876
  set_gdbarch_skip_prologue (gdbarch, rs6000_skip_prologue);
3877
  set_gdbarch_in_function_epilogue_p (gdbarch, rs6000_in_function_epilogue_p);
3878
  set_gdbarch_skip_main_prologue (gdbarch, rs6000_skip_main_prologue);
3879
 
3880
  set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
3881
  set_gdbarch_breakpoint_from_pc (gdbarch, rs6000_breakpoint_from_pc);
3882
 
3883
  /* The value of symbols of type N_SO and N_FUN maybe null when
3884
     it shouldn't be. */
3885
  set_gdbarch_sofun_address_maybe_missing (gdbarch, 1);
3886
 
3887
  /* Handles single stepping of atomic sequences.  */
3888
  set_gdbarch_software_single_step (gdbarch, ppc_deal_with_atomic_sequence);
3889
 
3890
  /* Not sure on this. FIXMEmgo */
3891
  set_gdbarch_frame_args_skip (gdbarch, 8);
3892
 
3893
  /* Helpers for function argument information.  */
3894
  set_gdbarch_fetch_pointer_argument (gdbarch, rs6000_fetch_pointer_argument);
3895
 
3896
  /* Trampoline.  */
3897
  set_gdbarch_in_solib_return_trampoline
3898
    (gdbarch, rs6000_in_solib_return_trampoline);
3899
  set_gdbarch_skip_trampoline_code (gdbarch, rs6000_skip_trampoline_code);
3900
 
3901
  /* Hook in the DWARF CFI frame unwinder.  */
3902
  dwarf2_append_unwinders (gdbarch);
3903
  dwarf2_frame_set_adjust_regnum (gdbarch, rs6000_adjust_frame_regnum);
3904
 
3905
  /* Frame handling.  */
3906
  dwarf2_frame_set_init_reg (gdbarch, ppc_dwarf2_frame_init_reg);
3907
 
3908
  /* Setup displaced stepping.  */
3909
  set_gdbarch_displaced_step_copy_insn (gdbarch,
3910
                                        simple_displaced_step_copy_insn);
3911
  set_gdbarch_displaced_step_hw_singlestep (gdbarch,
3912
                                            ppc_displaced_step_hw_singlestep);
3913
  set_gdbarch_displaced_step_fixup (gdbarch, ppc_displaced_step_fixup);
3914
  set_gdbarch_displaced_step_free_closure (gdbarch,
3915
                                           simple_displaced_step_free_closure);
3916
  set_gdbarch_displaced_step_location (gdbarch,
3917
                                       displaced_step_at_entry_point);
3918
 
3919
  set_gdbarch_max_insn_length (gdbarch, PPC_INSN_SIZE);
3920
 
3921
  /* Hook in ABI-specific overrides, if they have been registered.  */
3922
  info.target_desc = tdesc;
3923
  info.tdep_info = (void *) tdesc_data;
3924
  gdbarch_init_osabi (info, gdbarch);
3925
 
3926
  switch (info.osabi)
3927
    {
3928
    case GDB_OSABI_LINUX:
3929
    case GDB_OSABI_NETBSD_AOUT:
3930
    case GDB_OSABI_NETBSD_ELF:
3931
    case GDB_OSABI_UNKNOWN:
3932
      set_gdbarch_unwind_pc (gdbarch, rs6000_unwind_pc);
3933
      frame_unwind_append_unwinder (gdbarch, &rs6000_frame_unwind);
3934
      set_gdbarch_dummy_id (gdbarch, rs6000_dummy_id);
3935
      frame_base_append_sniffer (gdbarch, rs6000_frame_base_sniffer);
3936
      break;
3937
    default:
3938
      set_gdbarch_believe_pcc_promotion (gdbarch, 1);
3939
 
3940
      set_gdbarch_unwind_pc (gdbarch, rs6000_unwind_pc);
3941
      frame_unwind_append_unwinder (gdbarch, &rs6000_frame_unwind);
3942
      set_gdbarch_dummy_id (gdbarch, rs6000_dummy_id);
3943
      frame_base_append_sniffer (gdbarch, rs6000_frame_base_sniffer);
3944
    }
3945
 
3946
  set_tdesc_pseudo_register_type (gdbarch, rs6000_pseudo_register_type);
3947
  set_tdesc_pseudo_register_reggroup_p (gdbarch,
3948
                                        rs6000_pseudo_register_reggroup_p);
3949
  tdesc_use_registers (gdbarch, tdesc, tdesc_data);
3950
 
3951
  /* Override the normal target description method to make the SPE upper
3952
     halves anonymous.  */
3953
  set_gdbarch_register_name (gdbarch, rs6000_register_name);
3954
 
3955
  /* Choose register numbers for all supported pseudo-registers.  */
3956
  tdep->ppc_ev0_regnum = -1;
3957
  tdep->ppc_dl0_regnum = -1;
3958
  tdep->ppc_vsr0_regnum = -1;
3959
  tdep->ppc_efpr0_regnum = -1;
3960
 
3961
  cur_reg = gdbarch_num_regs (gdbarch);
3962
 
3963
  if (have_spe)
3964
    {
3965
      tdep->ppc_ev0_regnum = cur_reg;
3966
      cur_reg += 32;
3967
    }
3968
  if (have_dfp)
3969
    {
3970
      tdep->ppc_dl0_regnum = cur_reg;
3971
      cur_reg += 16;
3972
    }
3973
  if (have_vsx)
3974
    {
3975
      tdep->ppc_vsr0_regnum = cur_reg;
3976
      cur_reg += 64;
3977
      tdep->ppc_efpr0_regnum = cur_reg;
3978
      cur_reg += 32;
3979
    }
3980
 
3981
  gdb_assert (gdbarch_num_regs (gdbarch)
3982
              + gdbarch_num_pseudo_regs (gdbarch) == cur_reg);
3983
 
3984
  return gdbarch;
3985
}
3986
 
3987
static void
3988
rs6000_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file)
3989
{
3990
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3991
 
3992
  if (tdep == NULL)
3993
    return;
3994
 
3995
  /* FIXME: Dump gdbarch_tdep.  */
3996
}
3997
 
3998
/* PowerPC-specific commands.  */
3999
 
4000
static void
4001
set_powerpc_command (char *args, int from_tty)
4002
{
4003
  printf_unfiltered (_("\
4004
\"set powerpc\" must be followed by an appropriate subcommand.\n"));
4005
  help_list (setpowerpccmdlist, "set powerpc ", all_commands, gdb_stdout);
4006
}
4007
 
4008
static void
4009
show_powerpc_command (char *args, int from_tty)
4010
{
4011
  cmd_show_list (showpowerpccmdlist, from_tty, "");
4012
}
4013
 
4014
static void
4015
powerpc_set_soft_float (char *args, int from_tty,
4016
                        struct cmd_list_element *c)
4017
{
4018
  struct gdbarch_info info;
4019
 
4020
  /* Update the architecture.  */
4021
  gdbarch_info_init (&info);
4022
  if (!gdbarch_update_p (info))
4023
    internal_error (__FILE__, __LINE__, "could not update architecture");
4024
}
4025
 
4026
static void
4027
powerpc_set_vector_abi (char *args, int from_tty,
4028
                        struct cmd_list_element *c)
4029
{
4030
  struct gdbarch_info info;
4031
  enum powerpc_vector_abi vector_abi;
4032
 
4033
  for (vector_abi = POWERPC_VEC_AUTO;
4034
       vector_abi != POWERPC_VEC_LAST;
4035
       vector_abi++)
4036
    if (strcmp (powerpc_vector_abi_string,
4037
                powerpc_vector_strings[vector_abi]) == 0)
4038
      {
4039
        powerpc_vector_abi_global = vector_abi;
4040
        break;
4041
      }
4042
 
4043
  if (vector_abi == POWERPC_VEC_LAST)
4044
    internal_error (__FILE__, __LINE__, _("Invalid vector ABI accepted: %s."),
4045
                    powerpc_vector_abi_string);
4046
 
4047
  /* Update the architecture.  */
4048
  gdbarch_info_init (&info);
4049
  if (!gdbarch_update_p (info))
4050
    internal_error (__FILE__, __LINE__, "could not update architecture");
4051
}
4052
 
4053
/* Initialization code.  */
4054
 
4055
extern initialize_file_ftype _initialize_rs6000_tdep; /* -Wmissing-prototypes */
4056
 
4057
void
4058
_initialize_rs6000_tdep (void)
4059
{
4060
  gdbarch_register (bfd_arch_rs6000, rs6000_gdbarch_init, rs6000_dump_tdep);
4061
  gdbarch_register (bfd_arch_powerpc, rs6000_gdbarch_init, rs6000_dump_tdep);
4062
 
4063
  /* Initialize the standard target descriptions.  */
4064
  initialize_tdesc_powerpc_32 ();
4065
  initialize_tdesc_powerpc_altivec32 ();
4066
  initialize_tdesc_powerpc_vsx32 ();
4067
  initialize_tdesc_powerpc_403 ();
4068
  initialize_tdesc_powerpc_403gc ();
4069
  initialize_tdesc_powerpc_405 ();
4070
  initialize_tdesc_powerpc_505 ();
4071
  initialize_tdesc_powerpc_601 ();
4072
  initialize_tdesc_powerpc_602 ();
4073
  initialize_tdesc_powerpc_603 ();
4074
  initialize_tdesc_powerpc_604 ();
4075
  initialize_tdesc_powerpc_64 ();
4076
  initialize_tdesc_powerpc_altivec64 ();
4077
  initialize_tdesc_powerpc_vsx64 ();
4078
  initialize_tdesc_powerpc_7400 ();
4079
  initialize_tdesc_powerpc_750 ();
4080
  initialize_tdesc_powerpc_860 ();
4081
  initialize_tdesc_powerpc_e500 ();
4082
  initialize_tdesc_rs6000 ();
4083
 
4084
  /* Add root prefix command for all "set powerpc"/"show powerpc"
4085
     commands.  */
4086
  add_prefix_cmd ("powerpc", no_class, set_powerpc_command,
4087
                  _("Various PowerPC-specific commands."),
4088
                  &setpowerpccmdlist, "set powerpc ", 0, &setlist);
4089
 
4090
  add_prefix_cmd ("powerpc", no_class, show_powerpc_command,
4091
                  _("Various PowerPC-specific commands."),
4092
                  &showpowerpccmdlist, "show powerpc ", 0, &showlist);
4093
 
4094
  /* Add a command to allow the user to force the ABI.  */
4095
  add_setshow_auto_boolean_cmd ("soft-float", class_support,
4096
                                &powerpc_soft_float_global,
4097
                                _("Set whether to use a soft-float ABI."),
4098
                                _("Show whether to use a soft-float ABI."),
4099
                                NULL,
4100
                                powerpc_set_soft_float, NULL,
4101
                                &setpowerpccmdlist, &showpowerpccmdlist);
4102
 
4103
  add_setshow_enum_cmd ("vector-abi", class_support, powerpc_vector_strings,
4104
                        &powerpc_vector_abi_string,
4105
                        _("Set the vector ABI."),
4106
                        _("Show the vector ABI."),
4107
                        NULL, powerpc_set_vector_abi, NULL,
4108
                        &setpowerpccmdlist, &showpowerpccmdlist);
4109
}

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.