OpenCores
URL https://opencores.org/ocsvn/openrisc/openrisc/trunk

Subversion Repositories openrisc

[/] [openrisc/] [trunk/] [gnu-old/] [gdb-7.1/] [sim/] [d10v/] [d10v_sim.h] - Blame information for rev 842

Details | Compare with Previous | View Log

Line No. Rev Author Line
1 227 jeremybenn
#include "config.h"
2
#include <stdio.h>
3
#include <ctype.h>
4
#include <limits.h>
5
#include "ansidecl.h"
6
#include "gdb/callback.h"
7
#include "opcode/d10v.h"
8
#include "bfd.h"
9
 
10
#define DEBUG_TRACE             0x00000001
11
#define DEBUG_VALUES            0x00000002
12
#define DEBUG_LINE_NUMBER       0x00000004
13
#define DEBUG_MEMSIZE           0x00000008
14
#define DEBUG_INSTRUCTION       0x00000010
15
#define DEBUG_TRAP              0x00000020
16
#define DEBUG_MEMORY            0x00000040
17
 
18
#ifndef DEBUG
19
#define DEBUG (DEBUG_TRACE | DEBUG_VALUES | DEBUG_LINE_NUMBER)
20
#endif
21
 
22
extern int d10v_debug;
23
 
24
#include "gdb/remote-sim.h"
25
#include "sim-config.h"
26
#include "sim-types.h"
27
 
28
typedef unsigned8 uint8;
29
typedef unsigned16 uint16;
30
typedef signed16 int16;
31
typedef unsigned32 uint32;
32
typedef signed32 int32;
33
typedef unsigned64 uint64;
34
typedef signed64 int64;
35
 
36
/* FIXME: D10V defines */
37
typedef uint16 reg_t;
38
 
39
struct simops
40
{
41
  long opcode;
42
  int  is_long;
43
  long mask;
44
  int format;
45
  int cycles;
46
  int unit;
47
  int exec_type;
48
  void (*func)();
49
  int numops;
50
  int operands[9];
51
};
52
 
53
enum _ins_type
54
{
55
  INS_UNKNOWN,                  /* unknown instruction */
56
  INS_COND_TRUE,                /* # times EXExxx executed other instruction */
57
  INS_COND_FALSE,               /* # times EXExxx did not execute other instruction */
58
  INS_COND_JUMP,                /* # times JUMP skipped other instruction */
59
  INS_CYCLES,                   /* # cycles */
60
  INS_LONG,                     /* long instruction (both containers, ie FM == 11) */
61
  INS_LEFTRIGHT,                /* # times instruction encoded as L -> R (ie, FM == 01) */
62
  INS_RIGHTLEFT,                /* # times instruction encoded as L <- R (ie, FM == 10) */
63
  INS_PARALLEL,                 /* # times instruction encoded as L || R (ie, RM == 00) */
64
 
65
  INS_LEFT,                     /* normal left instructions */
66
  INS_LEFT_PARALLEL,            /* left side of || */
67
  INS_LEFT_COND_TEST,           /* EXExx test on left side */
68
  INS_LEFT_COND_EXE,            /* execution after EXExxx test on right side succeeded */
69
  INS_LEFT_NOPS,                /* NOP on left side */
70
 
71
  INS_RIGHT,                    /* normal right instructions */
72
  INS_RIGHT_PARALLEL,           /* right side of || */
73
  INS_RIGHT_COND_TEST,          /* EXExx test on right side */
74
  INS_RIGHT_COND_EXE,           /* execution after EXExxx test on left side succeeded */
75
  INS_RIGHT_NOPS,               /* NOP on right side */
76
 
77
  INS_MAX
78
};
79
 
80
extern unsigned long ins_type_counters[ (int)INS_MAX ];
81
 
82
enum {
83
  SP_IDX = 15,
84
};
85
 
86
/* Write-back slots */
87
union slot_data {
88
  unsigned_1 _1;
89
  unsigned_2 _2;
90
  unsigned_4 _4;
91
  unsigned_8 _8;
92
};
93
struct slot {
94
  void *dest;
95
  int size;
96
  union slot_data data;
97
  union slot_data mask;
98
};
99
enum {
100
 NR_SLOTS = 16,
101
};
102
#define SLOT (State.slot)
103
#define SLOT_NR (State.slot_nr)
104
#define SLOT_PEND_MASK(DEST, MSK, VAL) \
105
  do \
106
    { \
107
      SLOT[SLOT_NR].dest = &(DEST); \
108
      SLOT[SLOT_NR].size = sizeof (DEST); \
109
      switch (sizeof (DEST)) \
110
        { \
111
        case 1: \
112
          SLOT[SLOT_NR].data._1 = (unsigned_1) (VAL); \
113
          SLOT[SLOT_NR].mask._1 = (unsigned_1) (MSK); \
114
          break; \
115
        case 2: \
116
          SLOT[SLOT_NR].data._2 = (unsigned_2) (VAL); \
117
          SLOT[SLOT_NR].mask._2 = (unsigned_2) (MSK); \
118
          break; \
119
        case 4: \
120
          SLOT[SLOT_NR].data._4 = (unsigned_4) (VAL); \
121
          SLOT[SLOT_NR].mask._4 = (unsigned_4) (MSK); \
122
          break; \
123
        case 8: \
124
          SLOT[SLOT_NR].data._8 = (unsigned_8) (VAL); \
125
          SLOT[SLOT_NR].mask._8 = (unsigned_8) (MSK); \
126
          break; \
127
        } \
128
      SLOT_NR = (SLOT_NR + 1); \
129
    } \
130
  while (0)
131
#define SLOT_PEND(DEST, VAL) SLOT_PEND_MASK(DEST, 0, VAL)
132
#define SLOT_DISCARD() (SLOT_NR = 0)
133
#define SLOT_FLUSH() \
134
  do \
135
    { \
136
      int i; \
137
      for (i = 0; i < SLOT_NR; i++) \
138
        { \
139
          switch (SLOT[i].size) \
140
            { \
141
            case 1: \
142
              *(unsigned_1*) SLOT[i].dest &= SLOT[i].mask._1; \
143
              *(unsigned_1*) SLOT[i].dest |= SLOT[i].data._1; \
144
              break; \
145
            case 2: \
146
              *(unsigned_2*) SLOT[i].dest &= SLOT[i].mask._2; \
147
              *(unsigned_2*) SLOT[i].dest |= SLOT[i].data._2; \
148
              break; \
149
            case 4: \
150
              *(unsigned_4*) SLOT[i].dest &= SLOT[i].mask._4; \
151
              *(unsigned_4*) SLOT[i].dest |= SLOT[i].data._4; \
152
              break; \
153
            case 8: \
154
              *(unsigned_8*) SLOT[i].dest &= SLOT[i].mask._8; \
155
              *(unsigned_8*) SLOT[i].dest |= SLOT[i].data._8; \
156
              break; \
157
            } \
158
        } \
159
      SLOT_NR = 0; \
160
    } \
161
  while (0)
162
#define SLOT_DUMP() \
163
  do \
164
    { \
165
      int i; \
166
      for (i = 0; i < SLOT_NR; i++) \
167
        { \
168
          switch (SLOT[i].size) \
169
            { \
170
            case 1: \
171
              printf ("SLOT %d *0x%08lx & 0x%02x | 0x%02x\n", i, \
172
                      (long) SLOT[i].dest, \
173
                      (unsigned) SLOT[i].mask._1, \
174
                      (unsigned) SLOT[i].data._1); \
175
              break; \
176
            case 2: \
177
              printf ("SLOT %d *0x%08lx & 0x%04x | 0x%04x\n", i, \
178
                      (long) SLOT[i].dest, \
179
                      (unsigned) SLOT[i].mask._2, \
180
                      (unsigned) SLOT[i].data._2); \
181
              break; \
182
            case 4: \
183
              printf ("SLOT %d *0x%08lx & 0x%08x | 0x%08x\n", i, \
184
                      (long) SLOT[i].dest, \
185
                      (unsigned) SLOT[i].mask._4, \
186
                      (unsigned) SLOT[i].data._4); \
187
              break; \
188
            case 8: \
189
              printf ("SLOT %d *0x%08lx & 0x%08x%08x | 0x%08x%08x\n", i, \
190
                      (long) SLOT[i].dest, \
191
                      (unsigned) (SLOT[i].mask._8 >> 32),  \
192
                      (unsigned) SLOT[i].mask._8, \
193
                      (unsigned) (SLOT[i].data._8 >> 32),  \
194
                      (unsigned) SLOT[i].data._8); \
195
              break; \
196
            } \
197
        } \
198
    } \
199
  while (0)
200
 
201
/* d10v memory: There are three separate d10v memory regions IMEM,
202
   UMEM and DMEM.  The IMEM and DMEM are further broken down into
203
   blocks (very like VM pages). */
204
 
205
enum
206
{
207
  IMAP_BLOCK_SIZE = 0x20000,
208
  DMAP_BLOCK_SIZE = 0x4000,
209
};
210
 
211
/* Implement the three memory regions using sparse arrays.  Allocate
212
   memory using ``segments''.  A segment must be at least as large as
213
   a BLOCK - ensures that an access that doesn't cross a block
214
   boundary can't cross a segment boundary */
215
 
216
enum
217
{
218
  SEGMENT_SIZE = 0x20000, /* 128KB - MAX(IMAP_BLOCK_SIZE,DMAP_BLOCK_SIZE) */
219
  IMEM_SEGMENTS = 8, /* 1MB */
220
  DMEM_SEGMENTS = 8, /* 1MB */
221
  UMEM_SEGMENTS = 128 /* 16MB */
222
};
223
 
224
struct d10v_memory
225
{
226
  uint8 *insn[IMEM_SEGMENTS];
227
  uint8 *data[DMEM_SEGMENTS];
228
  uint8 *unif[UMEM_SEGMENTS];
229
  uint8 fault[16];
230
};
231
 
232
struct _state
233
{
234
  reg_t regs[16];               /* general-purpose registers */
235
#define GPR(N) (State.regs[(N)] + 0)
236
#define SET_GPR(N,VAL) SLOT_PEND (State.regs[(N)], (VAL))
237
 
238
#define GPR32(N) ((((uint32) State.regs[(N) + 0]) << 16) \
239
                  | (uint16) State.regs[(N) + 1])
240
#define SET_GPR32(N,VAL) do { SET_GPR (OP[0] + 0, (VAL) >> 16); SET_GPR (OP[0] + 1, (VAL)); } while (0)
241
 
242
  reg_t cregs[16];              /* control registers */
243
#define CREG(N) (State.cregs[(N)] + 0)
244
#define SET_CREG(N,VAL) move_to_cr ((N), 0, (VAL), 0)
245
#define SET_HW_CREG(N,VAL) move_to_cr ((N), 0, (VAL), 1)
246
 
247
  reg_t sp[2];                  /* holding area for SPI(0)/SPU(1) */
248
#define HELD_SP(N) (State.sp[(N)] + 0)
249
#define SET_HELD_SP(N,VAL) SLOT_PEND (State.sp[(N)], (VAL))
250
 
251
  int64 a[2];                   /* accumulators */
252
#define ACC(N) (State.a[(N)] + 0)
253
#define SET_ACC(N,VAL) SLOT_PEND (State.a[(N)], (VAL) & MASK40)
254
 
255
  /* writeback info */
256
  struct slot slot[NR_SLOTS];
257
  int slot_nr;
258
 
259
  /* trace data */
260
  struct {
261
    uint16 psw;
262
  } trace;
263
 
264
  uint8 exe;
265
  int   exception;
266
  int   pc_changed;
267
 
268
  /* NOTE: everything below this line is not reset by
269
     sim_create_inferior() */
270
 
271
  struct d10v_memory mem;
272
 
273
  enum _ins_type ins_type;
274
 
275
} State;
276
 
277
 
278
extern host_callback *d10v_callback;
279
extern uint16 OP[4];
280
extern struct simops Simops[];
281
extern asection *text;
282
extern bfd_vma text_start;
283
extern bfd_vma text_end;
284
extern bfd *prog_bfd;
285
 
286
enum
287
{
288
  PSW_CR = 0,
289
  BPSW_CR = 1,
290
  PC_CR = 2,
291
  BPC_CR = 3,
292
  DPSW_CR = 4,
293
  DPC_CR = 5,
294
  RPT_C_CR = 7,
295
  RPT_S_CR = 8,
296
  RPT_E_CR = 9,
297
  MOD_S_CR = 10,
298
  MOD_E_CR = 11,
299
  IBA_CR = 14,
300
};
301
 
302
enum
303
{
304
  PSW_SM_BIT = 0x8000,
305
  PSW_EA_BIT = 0x2000,
306
  PSW_DB_BIT = 0x1000,
307
  PSW_DM_BIT = 0x0800,
308
  PSW_IE_BIT = 0x0400,
309
  PSW_RP_BIT = 0x0200,
310
  PSW_MD_BIT = 0x0100,
311
  PSW_FX_BIT = 0x0080,
312
  PSW_ST_BIT = 0x0040,
313
  PSW_F0_BIT = 0x0008,
314
  PSW_F1_BIT = 0x0004,
315
  PSW_C_BIT =  0x0001,
316
};
317
 
318
#define PSW CREG (PSW_CR)
319
#define SET_PSW(VAL) SET_CREG (PSW_CR, (VAL))
320
#define SET_HW_PSW(VAL) SET_HW_CREG (PSW_CR, (VAL))
321
#define SET_PSW_BIT(MASK,VAL) move_to_cr (PSW_CR, ~((reg_t) MASK), (VAL) ? (MASK) : 0, 1)
322
 
323
#define PSW_SM ((PSW & PSW_SM_BIT) != 0)
324
#define SET_PSW_SM(VAL) SET_PSW_BIT (PSW_SM_BIT, (VAL))
325
 
326
#define PSW_EA ((PSW & PSW_EA_BIT) != 0)
327
#define SET_PSW_EA(VAL) SET_PSW_BIT (PSW_EA_BIT, (VAL))
328
 
329
#define PSW_DB ((PSW & PSW_DB_BIT) != 0)
330
#define SET_PSW_DB(VAL) SET_PSW_BIT (PSW_DB_BIT, (VAL))
331
 
332
#define PSW_DM ((PSW & PSW_DM_BIT) != 0)
333
#define SET_PSW_DM(VAL) SET_PSW_BIT (PSW_DM_BIT, (VAL))
334
 
335
#define PSW_IE ((PSW & PSW_IE_BIT) != 0)
336
#define SET_PSW_IE(VAL) SET_PSW_BIT (PSW_IE_BIT, (VAL))
337
 
338
#define PSW_RP ((PSW & PSW_RP_BIT) != 0)
339
#define SET_PSW_RP(VAL) SET_PSW_BIT (PSW_RP_BIT, (VAL))
340
 
341
#define PSW_MD ((PSW & PSW_MD_BIT) != 0)
342
#define SET_PSW_MD(VAL) SET_PSW_BIT (PSW_MD_BIT, (VAL))
343
 
344
#define PSW_FX ((PSW & PSW_FX_BIT) != 0)
345
#define SET_PSW_FX(VAL) SET_PSW_BIT (PSW_FX_BIT, (VAL))
346
 
347
#define PSW_ST ((PSW & PSW_ST_BIT) != 0)
348
#define SET_PSW_ST(VAL) SET_PSW_BIT (PSW_ST_BIT, (VAL))
349
 
350
#define PSW_F0 ((PSW & PSW_F0_BIT) != 0)
351
#define SET_PSW_F0(VAL) SET_PSW_BIT (PSW_F0_BIT, (VAL))
352
 
353
#define PSW_F1 ((PSW & PSW_F1_BIT) != 0)
354
#define SET_PSW_F1(VAL) SET_PSW_BIT (PSW_F1_BIT, (VAL))
355
 
356
#define PSW_C ((PSW & PSW_C_BIT) != 0)
357
#define SET_PSW_C(VAL) SET_PSW_BIT (PSW_C_BIT, (VAL))
358
 
359
/* See simopsc.:move_to_cr() for registers that can not be read-from
360
   or assigned-to directly */
361
 
362
#define PC      CREG (PC_CR)
363
#define SET_PC(VAL) SET_CREG (PC_CR, (VAL))
364
 
365
#define BPSW    CREG (BPSW_CR)
366
#define SET_BPSW(VAL) SET_CREG (BPSW_CR, (VAL))
367
 
368
#define BPC     CREG (BPC_CR)
369
#define SET_BPC(VAL) SET_CREG (BPC_CR, (VAL))
370
 
371
#define DPSW    CREG (DPSW_CR)
372
#define SET_DPSW(VAL) SET_CREG (DPSW_CR, (VAL))
373
 
374
#define DPC     CREG (DPC_CR)
375
#define SET_DPC(VAL) SET_CREG (DPC_CR, (VAL))
376
 
377
#define RPT_C   CREG (RPT_C_CR)
378
#define SET_RPT_C(VAL) SET_CREG (RPT_C_CR, (VAL))
379
 
380
#define RPT_S   CREG (RPT_S_CR)
381
#define SET_RPT_S(VAL) SET_CREG (RPT_S_CR, (VAL))
382
 
383
#define RPT_E   CREG (RPT_E_CR)
384
#define SET_RPT_E(VAL) SET_CREG (RPT_E_CR, (VAL))
385
 
386
#define MOD_S   CREG (MOD_S_CR)
387
#define SET_MOD_S(VAL) SET_CREG (MOD_S_CR, (VAL))
388
 
389
#define MOD_E   CREG (MOD_E_CR)
390
#define SET_MOD_E(VAL) SET_CREG (MOD_E_CR, (VAL))
391
 
392
#define IBA     CREG (IBA_CR)
393
#define SET_IBA(VAL) SET_CREG (IBA_CR, (VAL))
394
 
395
 
396
#define SIG_D10V_STOP   -1
397
#define SIG_D10V_EXIT   -2
398
#define SIG_D10V_BUS    -3
399
 
400
#define SEXT3(x)        ((((x)&0x7)^(~3))+4)    
401
 
402
/* sign-extend a 4-bit number */
403
#define SEXT4(x)        ((((x)&0xf)^(~7))+8)    
404
 
405
/* sign-extend an 8-bit number */
406
#define SEXT8(x)        ((((x)&0xff)^(~0x7f))+0x80)
407
 
408
/* sign-extend a 16-bit number */
409
#define SEXT16(x)       ((((x)&0xffff)^(~0x7fff))+0x8000)
410
 
411
/* sign-extend a 32-bit number */
412
#define SEXT32(x)       ((((x)&SIGNED64(0xffffffff))^(~SIGNED64(0x7fffffff)))+SIGNED64(0x80000000))
413
 
414
/* sign extend a 40 bit number */
415
#define SEXT40(x)       ((((x)&SIGNED64(0xffffffffff))^(~SIGNED64(0x7fffffffff)))+SIGNED64(0x8000000000))
416
 
417
/* sign extend a 44 bit number */
418
#define SEXT44(x)       ((((x)&SIGNED64(0xfffffffffff))^(~SIGNED64(0x7ffffffffff)))+SIGNED64(0x80000000000))
419
 
420
/* sign extend a 56 bit number */
421
#define SEXT56(x)       ((((x)&SIGNED64(0xffffffffffffff))^(~SIGNED64(0x7fffffffffffff)))+SIGNED64(0x80000000000000))
422
 
423
/* sign extend a 60 bit number */
424
#define SEXT60(x)       ((((x)&SIGNED64(0xfffffffffffffff))^(~SIGNED64(0x7ffffffffffffff)))+SIGNED64(0x800000000000000))
425
 
426
#define MAX32   SIGNED64(0x7fffffff)
427
#define MIN32   SIGNED64(0xff80000000)
428
#define MASK32  SIGNED64(0xffffffff)
429
#define MASK40  SIGNED64(0xffffffffff)
430
 
431
/* The alignment of MOD_E in the following macro depends upon "i"
432
   always being a power of 2. */
433
#define INC_ADDR(x,i) \
434
do \
435
  { \
436
    int test_i = i < 0 ? i : ~((i) - 1); \
437
    if (PSW_MD && GPR (x) == (MOD_E & test_i)) \
438
      SET_GPR (x, MOD_S & test_i); \
439
    else \
440
      SET_GPR (x, GPR (x) + (i)); \
441
  } \
442
while (0)
443
 
444
extern uint8 *dmem_addr (uint16 offset);
445
extern uint8 *imem_addr PARAMS ((uint32));
446
extern bfd_vma decode_pc PARAMS ((void));
447
 
448
#define RB(x)   (*(dmem_addr(x)))
449
#define SB(addr,data)   ( RB(addr) = (data & 0xff))
450
 
451
#if defined(__GNUC__) && defined(__OPTIMIZE__) && !defined(NO_ENDIAN_INLINE)
452
#define ENDIAN_INLINE static __inline__
453
#include "endian.c"
454
#undef ENDIAN_INLINE
455
 
456
#else
457
extern uint32 get_longword PARAMS ((uint8 *));
458
extern uint16 get_word PARAMS ((uint8 *));
459
extern int64 get_longlong PARAMS ((uint8 *));
460
extern void write_word PARAMS ((uint8 *addr, uint16 data));
461
extern void write_longword PARAMS ((uint8 *addr, uint32 data));
462
extern void write_longlong PARAMS ((uint8 *addr, int64 data));
463
#endif
464
 
465
#define SW(addr,data)           write_word(dmem_addr(addr),data)
466
#define RW(x)                   get_word(dmem_addr(x))
467
#define SLW(addr,data)          write_longword(dmem_addr(addr),data)
468
#define RLW(x)                  get_longword(dmem_addr(x))
469
#define READ_16(x)              get_word(x)
470
#define WRITE_16(addr,data)     write_word(addr,data)
471
#define READ_64(x)              get_longlong(x)
472
#define WRITE_64(addr,data)     write_longlong(addr,data)
473
 
474
#define JMP(x)                  do { SET_PC (x); State.pc_changed = 1; } while (0)
475
 
476
#define RIE_VECTOR_START 0xffc2
477
#define AE_VECTOR_START 0xffc3
478
#define TRAP_VECTOR_START 0xffc4        /* vector for trap 0 */
479
#define DBT_VECTOR_START 0xffd4
480
#define SDBT_VECTOR_START 0xffd5
481
 
482
/* Scedule a store of VAL into cr[CR].  MASK indicates the bits in
483
   cr[CR] that should not be modified (i.e. cr[CR] = (cr[CR] & MASK) |
484
   (VAL & ~MASK)).  In addition, unless PSW_HW_P, a VAL intended for
485
   PSW is masked for zero bits. */
486
 
487
extern reg_t move_to_cr (int cr, reg_t mask, reg_t val, int psw_hw_p);

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.