OpenCores
URL https://opencores.org/ocsvn/openrisc/openrisc/trunk

Subversion Repositories openrisc

[/] [openrisc/] [trunk/] [gnu-old/] [gdb-7.1/] [sim/] [mips/] [sim-main.h] - Blame information for rev 868

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 227 jeremybenn
/* MIPS Simulator definition.
2
   Copyright (C) 1997, 1998, 2003, 2007, 2008, 2009, 2010
3
   Free Software Foundation, Inc.
4
   Contributed by Cygnus Support.
5
 
6
This file is part of GDB, the GNU debugger.
7
 
8
This program is free software; you can redistribute it and/or modify
9
it under the terms of the GNU General Public License as published by
10
the Free Software Foundation; either version 3 of the License, or
11
(at your option) any later version.
12
 
13
This program is distributed in the hope that it will be useful,
14
but WITHOUT ANY WARRANTY; without even the implied warranty of
15
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16
GNU General Public License for more details.
17
 
18
You should have received a copy of the GNU General Public License
19
along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
20
 
21
#ifndef SIM_MAIN_H
22
#define SIM_MAIN_H
23
 
24
/* This simulator doesn't cache the Current Instruction Address */
25
/* #define SIM_ENGINE_HALT_HOOK(SD, LAST_CPU, CIA) */
26
/* #define SIM_ENGINE_RESUME_HOOK(SD, LAST_CPU, CIA) */
27
 
28
#define SIM_HAVE_BIENDIAN
29
 
30
 
31
/* hobble some common features for moment */
32
#define WITH_WATCHPOINTS 1
33
#define WITH_MODULO_MEMORY 1
34
 
35
 
36
#define SIM_CORE_SIGNAL(SD,CPU,CIA,MAP,NR_BYTES,ADDR,TRANSFER,ERROR) \
37
mips_core_signal ((SD), (CPU), (CIA), (MAP), (NR_BYTES), (ADDR), (TRANSFER), (ERROR))
38
 
39
#include "sim-basics.h"
40
 
41
typedef address_word sim_cia;
42
 
43
#include "sim-base.h"
44
#include "bfd.h"
45
 
46
/* Deprecated macros and types for manipulating 64bit values.  Use
47
   ../common/sim-bits.h and ../common/sim-endian.h macros instead. */
48
 
49
typedef signed64 word64;
50
typedef unsigned64 uword64;
51
 
52
#define WORD64LO(t)     (unsigned int)((t)&0xFFFFFFFF)
53
#define WORD64HI(t)     (unsigned int)(((uword64)(t))>>32)
54
#define SET64LO(t)      (((uword64)(t))&0xFFFFFFFF)
55
#define SET64HI(t)      (((uword64)(t))<<32)
56
#define WORD64(h,l)     ((word64)((SET64HI(h)|SET64LO(l))))
57
#define UWORD64(h,l)     (SET64HI(h)|SET64LO(l))
58
 
59
/* Check if a value will fit within a halfword: */
60
#define NOTHALFWORDVALUE(v) ((((((uword64)(v)>>16) == 0) && !((v) & ((unsigned)1 << 15))) || (((((uword64)(v)>>32) == 0xFFFFFFFF) && ((((uword64)(v)>>16) & 0xFFFF) == 0xFFFF)) && ((v) & ((unsigned)1 << 15)))) ? (1 == 0) : (1 == 1))
61
 
62
 
63
 
64
/* Floating-point operations: */
65
 
66
#include "sim-fpu.h"
67
#include "cp1.h"
68
 
69
/* FPU registers must be one of the following types. All other values
70
   are reserved (and undefined). */
71
typedef enum {
72
 fmt_single  = 0,
73
 fmt_double  = 1,
74
 fmt_word    = 4,
75
 fmt_long    = 5,
76
 fmt_ps      = 6,
77
 /* The following are well outside the normal acceptable format
78
    range, and are used in the register status vector. */
79
 fmt_unknown       = 0x10000000,
80
 fmt_uninterpreted = 0x20000000,
81
 fmt_uninterpreted_32 = 0x40000000,
82
 fmt_uninterpreted_64 = 0x80000000U,
83
} FP_formats;
84
 
85
/* For paired word (pw) operations, the opcode representation is fmt_word,
86
   but register transfers (StoreFPR, ValueFPR, etc.) are done as fmt_long.  */
87
#define fmt_pw fmt_long
88
 
89
/* This should be the COC1 value at the start of the preceding
90
   instruction: */
91
#define PREVCOC1() ((STATE & simPCOC1) ? 1 : 0)
92
 
93
#ifdef TARGET_ENABLE_FR
94
/* FIXME: this should be enabled for all targets, but needs testing first. */
95
#define SizeFGR() (((WITH_TARGET_FLOATING_POINT_BITSIZE) == 64) \
96
   ? ((SR & status_FR) ? 64 : 32) \
97
   : (WITH_TARGET_FLOATING_POINT_BITSIZE))
98
#else
99
#define SizeFGR() (WITH_TARGET_FLOATING_POINT_BITSIZE)
100
#endif
101
 
102
 
103
 
104
 
105
 
106
/* HI/LO register accesses */
107
 
108
/* For some MIPS targets, the HI/LO registers have certain timing
109
   restrictions in that, for instance, a read of a HI register must be
110
   separated by at least three instructions from a preceeding read.
111
 
112
   The struct below is used to record the last access by each of A MT,
113
   MF or other OP instruction to a HI/LO register.  See mips.igen for
114
   more details. */
115
 
116
typedef struct _hilo_access {
117
  signed64 timestamp;
118
  address_word cia;
119
} hilo_access;
120
 
121
typedef struct _hilo_history {
122
  hilo_access mt;
123
  hilo_access mf;
124
  hilo_access op;
125
} hilo_history;
126
 
127
 
128
 
129
 
130
/* Integer ALU operations: */
131
 
132
#include "sim-alu.h"
133
 
134
#define ALU32_END(ANS) \
135
  if (ALU32_HAD_OVERFLOW) \
136
    SignalExceptionIntegerOverflow (); \
137
  (ANS) = (signed32) ALU32_OVERFLOW_RESULT
138
 
139
 
140
#define ALU64_END(ANS) \
141
  if (ALU64_HAD_OVERFLOW) \
142
    SignalExceptionIntegerOverflow (); \
143
  (ANS) = ALU64_OVERFLOW_RESULT;
144
 
145
 
146
 
147
 
148
 
149
/* The following is probably not used for MIPS IV onwards: */
150
/* Slots for delayed register updates. For the moment we just have a
151
   fixed number of slots (rather than a more generic, dynamic
152
   system). This keeps the simulator fast. However, we only allow
153
   for the register update to be delayed for a single instruction
154
   cycle. */
155
#define PSLOTS (8) /* Maximum number of instruction cycles */
156
 
157
typedef struct _pending_write_queue {
158
  int in;
159
  int out;
160
  int total;
161
  int slot_delay[PSLOTS];
162
  int slot_size[PSLOTS];
163
  int slot_bit[PSLOTS];
164
  void *slot_dest[PSLOTS];
165
  unsigned64 slot_value[PSLOTS];
166
} pending_write_queue;
167
 
168
#ifndef PENDING_TRACE
169
#define PENDING_TRACE 0
170
#endif
171
#define PENDING_IN ((CPU)->pending.in)
172
#define PENDING_OUT ((CPU)->pending.out)
173
#define PENDING_TOTAL ((CPU)->pending.total)
174
#define PENDING_SLOT_SIZE ((CPU)->pending.slot_size)
175
#define PENDING_SLOT_BIT ((CPU)->pending.slot_bit)
176
#define PENDING_SLOT_DELAY ((CPU)->pending.slot_delay)
177
#define PENDING_SLOT_DEST ((CPU)->pending.slot_dest)
178
#define PENDING_SLOT_VALUE ((CPU)->pending.slot_value)
179
 
180
/* Invalidate the pending write queue, all pending writes are
181
   discarded. */
182
 
183
#define PENDING_INVALIDATE() \
184
memset (&(CPU)->pending, 0, sizeof ((CPU)->pending))
185
 
186
/* Schedule a write to DEST for N cycles time.  For 64 bit
187
   destinations, schedule two writes.  For floating point registers,
188
   the caller should schedule a write to both the dest register and
189
   the FPR_STATE register.  When BIT is non-negative, only BIT of DEST
190
   is updated. */
191
 
192
#define PENDING_SCHED(DEST,VAL,DELAY,BIT)                               \
193
  do {                                                                  \
194
    if (PENDING_SLOT_DEST[PENDING_IN] != NULL)                          \
195
      sim_engine_abort (SD, CPU, cia,                                   \
196
                        "PENDING_SCHED - buffer overflow\n");           \
197
    if (PENDING_TRACE)                                                  \
198
      sim_io_eprintf (SD, "PENDING_SCHED - 0x%lx - dest 0x%lx, val 0x%lx, bit %d, size %d, pending_in %d, pending_out %d, pending_total %d\n",                  \
199
                      (unsigned long) cia, (unsigned long) &(DEST),     \
200
                      (unsigned long) (VAL), (BIT), (int) sizeof (DEST),\
201
                      PENDING_IN, PENDING_OUT, PENDING_TOTAL);          \
202
    PENDING_SLOT_DELAY[PENDING_IN] = (DELAY) + 1;                       \
203
    PENDING_SLOT_DEST[PENDING_IN] = &(DEST);                            \
204
    PENDING_SLOT_VALUE[PENDING_IN] = (VAL);                             \
205
    PENDING_SLOT_SIZE[PENDING_IN] = sizeof (DEST);                      \
206
    PENDING_SLOT_BIT[PENDING_IN] = (BIT);                               \
207
    PENDING_IN = (PENDING_IN + 1) % PSLOTS;                             \
208
    PENDING_TOTAL += 1;                                                 \
209
  } while (0)
210
 
211
#define PENDING_WRITE(DEST,VAL,DELAY) PENDING_SCHED(DEST,VAL,DELAY,-1)
212
#define PENDING_BIT(DEST,VAL,DELAY,BIT) PENDING_SCHED(DEST,VAL,DELAY,BIT)
213
 
214
#define PENDING_TICK() pending_tick (SD, CPU, cia)
215
 
216
#define PENDING_FLUSH() abort () /* think about this one */
217
#define PENDING_FP() abort () /* think about this one */
218
 
219
/* For backward compatibility */
220
#define PENDING_FILL(R,VAL)                                             \
221
do {                                                                    \
222
  if ((R) >= FGR_BASE && (R) < FGR_BASE + NR_FGR)                       \
223
    {                                                                   \
224
      PENDING_SCHED(FGR[(R) - FGR_BASE], VAL, 1, -1);                   \
225
      PENDING_SCHED(FPR_STATE[(R) - FGR_BASE], fmt_uninterpreted, 1, -1); \
226
    }                                                                   \
227
  else                                                                  \
228
    PENDING_SCHED(GPR[(R)], VAL, 1, -1);                                \
229
} while (0)
230
 
231
 
232
enum float_operation
233
  {
234
    FLOP_ADD,    FLOP_SUB,    FLOP_MUL,    FLOP_MADD,
235
    FLOP_MSUB,   FLOP_MAX=10, FLOP_MIN,    FLOP_ABS,
236
    FLOP_ITOF0=14, FLOP_FTOI0=18, FLOP_NEG=23
237
  };
238
 
239
 
240
/* The internal representation of an MDMX accumulator.
241
   Note that 24 and 48 bit accumulator elements are represented in
242
   32 or 64 bits.  Since the accumulators are 2's complement with
243
   overflow suppressed, high-order bits can be ignored in most contexts.  */
244
 
245
typedef signed32 signed24;
246
typedef signed64 signed48;
247
 
248
typedef union {
249
  signed24  ob[8];
250
  signed48  qh[4];
251
} MDMX_accumulator;
252
 
253
 
254
/* Conventional system arguments.  */
255
#define SIM_STATE  sim_cpu *cpu, address_word cia
256
#define SIM_ARGS   CPU, cia
257
 
258
struct _sim_cpu {
259
 
260
 
261
  /* The following are internal simulator state variables: */
262
#define CIA_GET(CPU) ((CPU)->registers[PCIDX] + 0)
263
#define CIA_SET(CPU,CIA) ((CPU)->registers[PCIDX] = (CIA))
264
  address_word dspc;  /* delay-slot PC */
265
#define DSPC ((CPU)->dspc)
266
 
267
#define DELAY_SLOT(TARGET) NIA = delayslot32 (SD_, (TARGET))
268
#define NULLIFY_NEXT_INSTRUCTION() NIA = nullify_next_insn32 (SD_)
269
 
270
 
271
  /* State of the simulator */
272
  unsigned int state;
273
  unsigned int dsstate;
274
#define STATE ((CPU)->state)
275
#define DSSTATE ((CPU)->dsstate)
276
 
277
/* Flags in the "state" variable: */
278
#define simHALTEX       (1 << 2)  /* 0 = run; 1 = halt on exception */
279
#define simHALTIN       (1 << 3)  /* 0 = run; 1 = halt on interrupt */
280
#define simTRACE        (1 << 8)  /* 0 = do nothing; 1 = trace address activity */
281
#define simPCOC0        (1 << 17) /* COC[1] from current */
282
#define simPCOC1        (1 << 18) /* COC[1] from previous */
283
#define simDELAYSLOT    (1 << 24) /* 0 = do nothing; 1 = delay slot entry exists */
284
#define simSKIPNEXT     (1 << 25) /* 0 = do nothing; 1 = skip instruction */
285
#define simSIGINT       (1 << 28)  /* 0 = do nothing; 1 = SIGINT has occured */
286
#define simJALDELAYSLOT (1 << 29) /* 1 = in jal delay slot */
287
 
288
#ifndef ENGINE_ISSUE_PREFIX_HOOK
289
#define ENGINE_ISSUE_PREFIX_HOOK() \
290
  { \
291
    /* Perform any pending writes */ \
292
    PENDING_TICK(); \
293
    /* Set previous flag, depending on current: */ \
294
    if (STATE & simPCOC0) \
295
     STATE |= simPCOC1; \
296
    else \
297
     STATE &= ~simPCOC1; \
298
    /* and update the current value: */ \
299
    if (GETFCC(0)) \
300
     STATE |= simPCOC0; \
301
    else \
302
     STATE &= ~simPCOC0; \
303
  }
304
#endif /* ENGINE_ISSUE_PREFIX_HOOK */
305
 
306
 
307
/* This is nasty, since we have to rely on matching the register
308
   numbers used by GDB. Unfortunately, depending on the MIPS target
309
   GDB uses different register numbers. We cannot just include the
310
   relevant "gdb/tm.h" link, since GDB may not be configured before
311
   the sim world, and also the GDB header file requires too much other
312
   state. */
313
 
314
#ifndef TM_MIPS_H
315
#define LAST_EMBED_REGNUM (96)
316
#define NUM_REGS (LAST_EMBED_REGNUM + 1)
317
 
318
#define FP0_REGNUM 38           /* Floating point register 0 (single float) */
319
#define FCRCS_REGNUM 70         /* FP control/status */
320
#define FCRIR_REGNUM 71         /* FP implementation/revision */
321
#endif
322
 
323
 
324
/* To keep this default simulator simple, and fast, we use a direct
325
   vector of registers. The internal simulator engine then uses
326
   manifests to access the correct slot. */
327
 
328
  unsigned_word registers[LAST_EMBED_REGNUM + 1];
329
 
330
  int register_widths[NUM_REGS];
331
#define REGISTERS       ((CPU)->registers)
332
 
333
#define GPR     (&REGISTERS[0])
334
#define GPR_SET(N,VAL) (REGISTERS[(N)] = (VAL))
335
 
336
#define LO      (REGISTERS[33])
337
#define HI      (REGISTERS[34])
338
#define PCIDX   37
339
#define PC      (REGISTERS[PCIDX])
340
#define CAUSE   (REGISTERS[36])
341
#define SRIDX   (32)
342
#define SR      (REGISTERS[SRIDX])      /* CPU status register */
343
#define FCR0IDX  (71)
344
#define FCR0    (REGISTERS[FCR0IDX])    /* really a 32bit register */
345
#define FCR31IDX (70)
346
#define FCR31   (REGISTERS[FCR31IDX])   /* really a 32bit register */
347
#define FCSR    (FCR31)
348
#define Debug   (REGISTERS[86])
349
#define DEPC    (REGISTERS[87])
350
#define EPC     (REGISTERS[88])
351
#define ACX     (REGISTERS[89])
352
 
353
#define AC0LOIDX        (33)    /* Must be the same register as LO */
354
#define AC0HIIDX        (34)    /* Must be the same register as HI */
355
#define AC1LOIDX        (90)
356
#define AC1HIIDX        (91)
357
#define AC2LOIDX        (92)
358
#define AC2HIIDX        (93)
359
#define AC3LOIDX        (94)
360
#define AC3HIIDX        (95)
361
 
362
#define DSPLO(N)        (REGISTERS[DSPLO_REGNUM[N]])
363
#define DSPHI(N)        (REGISTERS[DSPHI_REGNUM[N]])
364
 
365
#define DSPCRIDX        (96)    /* DSP control register */
366
#define DSPCR           (REGISTERS[DSPCRIDX])
367
 
368
#define DSPCR_POS_SHIFT         (0)
369
#define DSPCR_POS_MASK          (0x3f)
370
#define DSPCR_POS_SMASK         (DSPCR_POS_MASK << DSPCR_POS_SHIFT)
371
 
372
#define DSPCR_SCOUNT_SHIFT      (7)
373
#define DSPCR_SCOUNT_MASK       (0x3f)
374
#define DSPCR_SCOUNT_SMASK      (DSPCR_SCOUNT_MASK << DSPCR_SCOUNT_SHIFT)
375
 
376
#define DSPCR_CARRY_SHIFT       (13)
377
#define DSPCR_CARRY_MASK        (1)
378
#define DSPCR_CARRY_SMASK       (DSPCR_CARRY_MASK << DSPCR_CARRY_SHIFT)
379
#define DSPCR_CARRY             (1 << DSPCR_CARRY_SHIFT)
380
 
381
#define DSPCR_EFI_SHIFT         (14)
382
#define DSPCR_EFI_MASK          (1)
383
#define DSPCR_EFI_SMASK         (DSPCR_EFI_MASK << DSPCR_EFI_SHIFT)
384
#define DSPCR_EFI               (1 << DSPCR_EFI_MASK)
385
 
386
#define DSPCR_OUFLAG_SHIFT      (16)
387
#define DSPCR_OUFLAG_MASK       (0xff)
388
#define DSPCR_OUFLAG_SMASK      (DSPCR_OUFLAG_MASK << DSPCR_OUFLAG_SHIFT)
389
#define DSPCR_OUFLAG4           (1 << (DSPCR_OUFLAG_SHIFT + 4))
390
#define DSPCR_OUFLAG5           (1 << (DSPCR_OUFLAG_SHIFT + 5))
391
#define DSPCR_OUFLAG6           (1 << (DSPCR_OUFLAG_SHIFT + 6))
392
#define DSPCR_OUFLAG7           (1 << (DSPCR_OUFLAG_SHIFT + 7))
393
 
394
#define DSPCR_CCOND_SHIFT       (24)
395
#define DSPCR_CCOND_MASK        (0xf)
396
#define DSPCR_CCOND_SMASK       (DSPCR_CCOND_MASK << DSPCR_CCOND_SHIFT)
397
 
398
  /* All internal state modified by signal_exception() that may need to be
399
     rolled back for passing moment-of-exception image back to gdb. */
400
  unsigned_word exc_trigger_registers[LAST_EMBED_REGNUM + 1];
401
  unsigned_word exc_suspend_registers[LAST_EMBED_REGNUM + 1];
402
  int exc_suspended;
403
 
404
#define SIM_CPU_EXCEPTION_TRIGGER(SD,CPU,CIA) mips_cpu_exception_trigger(SD,CPU,CIA)
405
#define SIM_CPU_EXCEPTION_SUSPEND(SD,CPU,EXC) mips_cpu_exception_suspend(SD,CPU,EXC)
406
#define SIM_CPU_EXCEPTION_RESUME(SD,CPU,EXC) mips_cpu_exception_resume(SD,CPU,EXC)
407
 
408
  unsigned_word c0_config_reg;
409
#define C0_CONFIG ((CPU)->c0_config_reg)
410
 
411
/* The following are pseudonyms for standard registers */
412
#define ZERO    (REGISTERS[0])
413
#define V0      (REGISTERS[2])
414
#define A0      (REGISTERS[4])
415
#define A1      (REGISTERS[5])
416
#define A2      (REGISTERS[6])
417
#define A3      (REGISTERS[7])
418
#define T8IDX   24
419
#define T8      (REGISTERS[T8IDX])
420
#define SPIDX   29
421
#define SP      (REGISTERS[SPIDX])
422
#define RAIDX   31
423
#define RA      (REGISTERS[RAIDX])
424
 
425
  /* While space is allocated in the main registers arrray for some of
426
     the COP0 registers, that space isn't sufficient.  Unknown COP0
427
     registers overflow into the array below */
428
 
429
#define NR_COP0_GPR     32
430
  unsigned_word cop0_gpr[NR_COP0_GPR];
431
#define COP0_GPR        ((CPU)->cop0_gpr)
432
#define COP0_BADVADDR   (COP0_GPR[8])
433
 
434
  /* While space is allocated for the floating point registers in the
435
     main registers array, they are stored separatly.  This is because
436
     their size may not necessarily match the size of either the
437
     general-purpose or system specific registers.  */
438
#define NR_FGR    (32)
439
#define FGR_BASE  FP0_REGNUM
440
  fp_word fgr[NR_FGR];
441
#define FGR       ((CPU)->fgr)
442
 
443
  /* Keep the current format state for each register: */
444
  FP_formats fpr_state[32];
445
#define FPR_STATE ((CPU)->fpr_state)
446
 
447
  pending_write_queue pending;
448
 
449
  /* The MDMX accumulator (used only for MDMX ASE).  */
450
  MDMX_accumulator acc;
451
#define ACC             ((CPU)->acc)
452
 
453
  /* LLBIT = Load-Linked bit. A bit of "virtual" state used by atomic
454
     read-write instructions. It is set when a linked load occurs. It
455
     is tested and cleared by the conditional store. It is cleared
456
     (during other CPU operations) when a store to the location would
457
     no longer be atomic. In particular, it is cleared by exception
458
     return instructions. */
459
  int llbit;
460
#define LLBIT ((CPU)->llbit)
461
 
462
 
463
/* The HIHISTORY and LOHISTORY timestamps are used to ensure that
464
   corruptions caused by using the HI or LO register too close to a
465
   following operation is spotted. See mips.igen for more details. */
466
 
467
  hilo_history hi_history;
468
#define HIHISTORY (&(CPU)->hi_history)
469
  hilo_history lo_history;
470
#define LOHISTORY (&(CPU)->lo_history)
471
 
472
 
473
  sim_cpu_base base;
474
};
475
 
476
 
477
/* MIPS specific simulator watch config */
478
 
479
void watch_options_install PARAMS ((SIM_DESC sd));
480
 
481
struct swatch {
482
  sim_event *pc;
483
  sim_event *clock;
484
  sim_event *cycles;
485
};
486
 
487
 
488
/* FIXME: At present much of the simulator is still static */
489
struct sim_state {
490
 
491
  struct swatch watch;
492
 
493
  sim_cpu cpu[MAX_NR_PROCESSORS];
494
#if (WITH_SMP)
495
#define STATE_CPU(sd,n) (&(sd)->cpu[n])
496
#else
497
#define STATE_CPU(sd,n) (&(sd)->cpu[0])
498
#endif
499
 
500
 
501
  sim_state_base base;
502
};
503
 
504
 
505
 
506
/* Status information: */
507
 
508
/* TODO : these should be the bitmasks for these bits within the
509
   status register. At the moment the following are VR4300
510
   bit-positions: */
511
#define status_KSU_mask  (0x18)         /* mask for KSU bits */
512
#define status_KSU_shift (3)            /* shift for field */
513
#define ksu_kernel       (0x0)
514
#define ksu_supervisor   (0x1)
515
#define ksu_user         (0x2)
516
#define ksu_unknown      (0x3)
517
 
518
#define SR_KSU           ((SR & status_KSU_mask) >> status_KSU_shift)
519
 
520
#define status_IE        (1 <<  0)      /* Interrupt enable */
521
#define status_EIE       (1 << 16)      /* Enable Interrupt Enable */
522
#define status_EXL       (1 <<  1)      /* Exception level */
523
#define status_RE        (1 << 25)      /* Reverse Endian in user mode */
524
#define status_FR        (1 << 26)      /* enables MIPS III additional FP registers */
525
#define status_SR        (1 << 20)      /* soft reset or NMI */
526
#define status_BEV       (1 << 22)      /* Location of general exception vectors */
527
#define status_TS        (1 << 21)      /* TLB shutdown has occurred */
528
#define status_ERL       (1 <<  2)      /* Error level */
529
#define status_IM7       (1 << 15)      /* Timer Interrupt Mask */
530
#define status_RP        (1 << 27)      /* Reduced Power mode */
531
 
532
/* Specializations for TX39 family */
533
#define status_IEc       (1 << 0)       /* Interrupt enable (current) */
534
#define status_KUc       (1 << 1)       /* Kernel/User mode */
535
#define status_IEp       (1 << 2)       /* Interrupt enable (previous) */
536
#define status_KUp       (1 << 3)       /* Kernel/User mode */
537
#define status_IEo       (1 << 4)       /* Interrupt enable (old) */
538
#define status_KUo       (1 << 5)       /* Kernel/User mode */
539
#define status_IM_mask   (0xff)         /* Interrupt mask */
540
#define status_IM_shift  (8)
541
#define status_NMI       (1 << 20)      /* NMI */
542
#define status_NMI       (1 << 20)      /* NMI */
543
 
544
/* Status bits used by MIPS32/MIPS64.  */
545
#define status_UX        (1 <<  5)      /* 64-bit user addrs */
546
#define status_SX        (1 <<  6)      /* 64-bit supervisor addrs */
547
#define status_KX        (1 <<  7)      /* 64-bit kernel addrs */
548
#define status_TS        (1 << 21)      /* TLB shutdown has occurred */
549
#define status_PX        (1 << 23)      /* Enable 64 bit operations */
550
#define status_MX        (1 << 24)      /* Enable MDMX resources */
551
#define status_CU0       (1 << 28)      /* Coprocessor 0 usable */
552
#define status_CU1       (1 << 29)      /* Coprocessor 1 usable */
553
#define status_CU2       (1 << 30)      /* Coprocessor 2 usable */
554
#define status_CU3       (1 << 31)      /* Coprocessor 3 usable */
555
/* Bits reserved for implementations:  */
556
#define status_SBX       (1 << 16)      /* Enable SiByte SB-1 extensions.  */
557
 
558
#define cause_BD ((unsigned)1 << 31)    /* L1 Exception in branch delay slot */
559
#define cause_BD2         (1 << 30)     /* L2 Exception in branch delay slot */
560
#define cause_CE_mask     0x30000000    /* Coprocessor exception */
561
#define cause_CE_shift    28
562
#define cause_EXC2_mask   0x00070000
563
#define cause_EXC2_shift  16
564
#define cause_IP7         (1 << 15)     /* Interrupt pending */
565
#define cause_SIOP        (1 << 12)     /* SIO pending */
566
#define cause_IP3         (1 << 11)     /* Int 0 pending */
567
#define cause_IP2         (1 << 10)     /* Int 1 pending */
568
 
569
#define cause_EXC_mask  (0x1c)          /* Exception code */
570
#define cause_EXC_shift (2)
571
 
572
#define cause_SW0       (1 << 8)        /* Software interrupt 0 */
573
#define cause_SW1       (1 << 9)        /* Software interrupt 1 */
574
#define cause_IP_mask   (0x3f)          /* Interrupt pending field */
575
#define cause_IP_shift  (10)
576
 
577
#define cause_set_EXC(x)  CAUSE = (CAUSE & ~cause_EXC_mask)  | ((x << cause_EXC_shift)  & cause_EXC_mask)
578
#define cause_set_EXC2(x) CAUSE = (CAUSE & ~cause_EXC2_mask) | ((x << cause_EXC2_shift) & cause_EXC2_mask)
579
 
580
 
581
/* NOTE: We keep the following status flags as bit values (1 for true,
582
 
583
   operations without worrying about what exactly the non-zero true
584
   value is. */
585
 
586
/* UserMode */
587
#ifdef SUBTARGET_R3900
588
#define UserMode        ((SR & status_KUc) ? 1 : 0)
589
#else
590
#define UserMode        ((((SR & status_KSU_mask) >> status_KSU_shift) == ksu_user) ? 1 : 0)
591
#endif /* SUBTARGET_R3900 */
592
 
593
/* BigEndianMem */
594
/* Hardware configuration. Affects endianness of LoadMemory and
595
   StoreMemory and the endianness of Kernel and Supervisor mode
596
   execution. The value is 0 for little-endian; 1 for big-endian. */
597
#define BigEndianMem    (CURRENT_TARGET_BYTE_ORDER == BIG_ENDIAN)
598
/*(state & simBE) ? 1 : 0)*/
599
 
600
/* ReverseEndian */
601
/* This mode is selected if in User mode with the RE bit being set in
602
   SR (Status Register). It reverses the endianness of load and store
603
   instructions. */
604
#define ReverseEndian   (((SR & status_RE) && UserMode) ? 1 : 0)
605
 
606
/* BigEndianCPU */
607
/* The endianness for load and store instructions (0=little;1=big). In
608
   User mode this endianness may be switched by setting the state_RE
609
   bit in the SR register. Thus, BigEndianCPU may be computed as
610
   (BigEndianMem EOR ReverseEndian). */
611
#define BigEndianCPU    (BigEndianMem ^ ReverseEndian) /* Already bits */
612
 
613
 
614
 
615
/* Exceptions: */
616
 
617
/* NOTE: These numbers depend on the processor architecture being
618
   simulated: */
619
enum ExceptionCause {
620
  Interrupt               = 0,
621
  TLBModification         = 1,
622
  TLBLoad                 = 2,
623
  TLBStore                = 3,
624
  AddressLoad             = 4,
625
  AddressStore            = 5,
626
  InstructionFetch        = 6,
627
  DataReference           = 7,
628
  SystemCall              = 8,
629
  BreakPoint              = 9,
630
  ReservedInstruction     = 10,
631
  CoProcessorUnusable     = 11,
632
  IntegerOverflow         = 12,    /* Arithmetic overflow (IDT monitor raises SIGFPE) */
633
  Trap                    = 13,
634
  FPE                     = 15,
635
  DebugBreakPoint         = 16,    /* Impl. dep. in MIPS32/MIPS64.  */
636
  MDMX                    = 22,
637
  Watch                   = 23,
638
  MCheck                  = 24,
639
  CacheErr                = 30,
640
  NMIReset                = 31,    /* Reserved in MIPS32/MIPS64.  */
641
 
642
 
643
/* The following exception code is actually private to the simulator
644
   world. It is *NOT* a processor feature, and is used to signal
645
   run-time errors in the simulator. */
646
  SimulatorFault          = 0xFFFFFFFF
647
};
648
 
649
#define TLB_REFILL  (0)
650
#define TLB_INVALID (1)
651
 
652
 
653
/* The following break instructions are reserved for use by the
654
   simulator.  The first is used to halt the simulation.  The second
655
   is used by gdb for break-points.  NOTE: Care must be taken, since
656
   this value may be used in later revisions of the MIPS ISA. */
657
#define HALT_INSTRUCTION_MASK   (0x03FFFFC0)
658
 
659
#define HALT_INSTRUCTION        (0x03ff000d)
660
#define HALT_INSTRUCTION2       (0x0000ffcd)
661
 
662
 
663
#define BREAKPOINT_INSTRUCTION  (0x0005000d)
664
#define BREAKPOINT_INSTRUCTION2 (0x0000014d)
665
 
666
 
667
 
668
void interrupt_event (SIM_DESC sd, void *data);
669
 
670
void signal_exception (SIM_DESC sd, sim_cpu *cpu, address_word cia, int exception, ...);
671
#define SignalException(exc,instruction)     signal_exception (SD, CPU, cia, (exc), (instruction))
672
#define SignalExceptionInterrupt(level)      signal_exception (SD, CPU, cia, Interrupt, level)
673
#define SignalExceptionInstructionFetch()    signal_exception (SD, CPU, cia, InstructionFetch)
674
#define SignalExceptionAddressStore()        signal_exception (SD, CPU, cia, AddressStore)
675
#define SignalExceptionAddressLoad()         signal_exception (SD, CPU, cia, AddressLoad)
676
#define SignalExceptionDataReference()       signal_exception (SD, CPU, cia, DataReference)
677
#define SignalExceptionSimulatorFault(buf)   signal_exception (SD, CPU, cia, SimulatorFault, buf)
678
#define SignalExceptionFPE()                 signal_exception (SD, CPU, cia, FPE)
679
#define SignalExceptionIntegerOverflow()     signal_exception (SD, CPU, cia, IntegerOverflow)
680
#define SignalExceptionCoProcessorUnusable(cop) signal_exception (SD, CPU, cia, CoProcessorUnusable)
681
#define SignalExceptionNMIReset()            signal_exception (SD, CPU, cia, NMIReset)
682
#define SignalExceptionTLBRefillStore()      signal_exception (SD, CPU, cia, TLBStore, TLB_REFILL)
683
#define SignalExceptionTLBRefillLoad()       signal_exception (SD, CPU, cia, TLBLoad, TLB_REFILL)
684
#define SignalExceptionTLBInvalidStore()     signal_exception (SD, CPU, cia, TLBStore, TLB_INVALID)
685
#define SignalExceptionTLBInvalidLoad()      signal_exception (SD, CPU, cia, TLBLoad, TLB_INVALID)
686
#define SignalExceptionTLBModification()     signal_exception (SD, CPU, cia, TLBModification)
687
#define SignalExceptionMDMX()                signal_exception (SD, CPU, cia, MDMX)
688
#define SignalExceptionWatch()               signal_exception (SD, CPU, cia, Watch)
689
#define SignalExceptionMCheck()              signal_exception (SD, CPU, cia, MCheck)
690
#define SignalExceptionCacheErr()            signal_exception (SD, CPU, cia, CacheErr)
691
 
692
/* Co-processor accesses */
693
 
694
/* XXX FIXME: For now, assume that FPU (cp1) is always usable.  */
695
#define COP_Usable(coproc_num)          (coproc_num == 1)
696
 
697
void cop_lw  PARAMS ((SIM_DESC sd, sim_cpu *cpu, address_word cia, int coproc_num, int coproc_reg, unsigned int memword));
698
void cop_ld  PARAMS ((SIM_DESC sd, sim_cpu *cpu, address_word cia, int coproc_num, int coproc_reg, uword64 memword));
699
unsigned int cop_sw PARAMS ((SIM_DESC sd, sim_cpu *cpu, address_word cia, int coproc_num, int coproc_reg));
700
uword64 cop_sd PARAMS ((SIM_DESC sd, sim_cpu *cpu, address_word cia, int coproc_num, int coproc_reg));
701
 
702
#define COP_LW(coproc_num,coproc_reg,memword) \
703
cop_lw (SD, CPU, cia, coproc_num, coproc_reg, memword)
704
#define COP_LD(coproc_num,coproc_reg,memword) \
705
cop_ld (SD, CPU, cia, coproc_num, coproc_reg, memword)
706
#define COP_SW(coproc_num,coproc_reg) \
707
cop_sw (SD, CPU, cia, coproc_num, coproc_reg)
708
#define COP_SD(coproc_num,coproc_reg) \
709
cop_sd (SD, CPU, cia, coproc_num, coproc_reg)
710
 
711
 
712
void decode_coproc PARAMS ((SIM_DESC sd, sim_cpu *cpu, address_word cia, unsigned int instruction));
713
#define DecodeCoproc(instruction) \
714
decode_coproc (SD, CPU, cia, (instruction))
715
 
716
int sim_monitor (SIM_DESC sd, sim_cpu *cpu, address_word cia, unsigned int arg);
717
 
718
 
719
/* FPR access.  */
720
unsigned64 value_fpr (SIM_STATE, int fpr, FP_formats);
721
#define ValueFPR(FPR,FMT) value_fpr (SIM_ARGS, (FPR), (FMT))
722
void store_fpr (SIM_STATE, int fpr, FP_formats fmt, unsigned64 value);
723
#define StoreFPR(FPR,FMT,VALUE) store_fpr (SIM_ARGS, (FPR), (FMT), (VALUE))
724
unsigned64 ps_lower (SIM_STATE, unsigned64 op);
725
#define PSLower(op) ps_lower (SIM_ARGS, op)
726
unsigned64 ps_upper (SIM_STATE, unsigned64 op);
727
#define PSUpper(op) ps_upper (SIM_ARGS, op)
728
unsigned64 pack_ps (SIM_STATE, unsigned64 op1, unsigned64 op2, FP_formats from);
729
#define PackPS(op1,op2) pack_ps (SIM_ARGS, op1, op2, fmt_single)
730
 
731
 
732
/* FCR access.  */
733
unsigned_word value_fcr (SIM_STATE, int fcr);
734
#define ValueFCR(FCR) value_fcr (SIM_ARGS, (FCR))
735
void store_fcr (SIM_STATE, int fcr, unsigned_word value);
736
#define StoreFCR(FCR,VALUE) store_fcr (SIM_ARGS, (FCR), (VALUE))
737
void test_fcsr (SIM_STATE);
738
#define TestFCSR() test_fcsr (SIM_ARGS)
739
 
740
 
741
/* FPU operations.  */
742
void fp_cmp (SIM_STATE, unsigned64 op1, unsigned64 op2, FP_formats fmt, int abs, int cond, int cc);
743
#define Compare(op1,op2,fmt,cond,cc) fp_cmp(SIM_ARGS, op1, op2, fmt, 0, cond, cc)
744
unsigned64 fp_abs (SIM_STATE, unsigned64 op, FP_formats fmt);
745
#define AbsoluteValue(op,fmt) fp_abs(SIM_ARGS, op, fmt)
746
unsigned64 fp_neg (SIM_STATE, unsigned64 op, FP_formats fmt);
747
#define Negate(op,fmt) fp_neg(SIM_ARGS, op, fmt)
748
unsigned64 fp_add (SIM_STATE, unsigned64 op1, unsigned64 op2, FP_formats fmt);
749
#define Add(op1,op2,fmt) fp_add(SIM_ARGS, op1, op2, fmt)
750
unsigned64 fp_sub (SIM_STATE, unsigned64 op1, unsigned64 op2, FP_formats fmt);
751
#define Sub(op1,op2,fmt) fp_sub(SIM_ARGS, op1, op2, fmt)
752
unsigned64 fp_mul (SIM_STATE, unsigned64 op1, unsigned64 op2, FP_formats fmt);
753
#define Multiply(op1,op2,fmt) fp_mul(SIM_ARGS, op1, op2, fmt)
754
unsigned64 fp_div (SIM_STATE, unsigned64 op1, unsigned64 op2, FP_formats fmt);
755
#define Divide(op1,op2,fmt) fp_div(SIM_ARGS, op1, op2, fmt)
756
unsigned64 fp_recip (SIM_STATE, unsigned64 op, FP_formats fmt);
757
#define Recip(op,fmt) fp_recip(SIM_ARGS, op, fmt)
758
unsigned64 fp_sqrt (SIM_STATE, unsigned64 op, FP_formats fmt);
759
#define SquareRoot(op,fmt) fp_sqrt(SIM_ARGS, op, fmt)
760
unsigned64 fp_rsqrt (SIM_STATE, unsigned64 op, FP_formats fmt);
761
#define RSquareRoot(op,fmt) fp_rsqrt(SIM_ARGS, op, fmt)
762
unsigned64 fp_madd (SIM_STATE, unsigned64 op1, unsigned64 op2,
763
                    unsigned64 op3, FP_formats fmt);
764
#define MultiplyAdd(op1,op2,op3,fmt) fp_madd(SIM_ARGS, op1, op2, op3, fmt)
765
unsigned64 fp_msub (SIM_STATE, unsigned64 op1, unsigned64 op2,
766
                    unsigned64 op3, FP_formats fmt);
767
#define MultiplySub(op1,op2,op3,fmt) fp_msub(SIM_ARGS, op1, op2, op3, fmt)
768
unsigned64 fp_nmadd (SIM_STATE, unsigned64 op1, unsigned64 op2,
769
                     unsigned64 op3, FP_formats fmt);
770
#define NegMultiplyAdd(op1,op2,op3,fmt) fp_nmadd(SIM_ARGS, op1, op2, op3, fmt)
771
unsigned64 fp_nmsub (SIM_STATE, unsigned64 op1, unsigned64 op2,
772
                     unsigned64 op3, FP_formats fmt);
773
#define NegMultiplySub(op1,op2,op3,fmt) fp_nmsub(SIM_ARGS, op1, op2, op3, fmt)
774
unsigned64 convert (SIM_STATE, int rm, unsigned64 op, FP_formats from, FP_formats to);
775
#define Convert(rm,op,from,to) convert (SIM_ARGS, rm, op, from, to)
776
unsigned64 convert_ps (SIM_STATE, int rm, unsigned64 op, FP_formats from,
777
                       FP_formats to);
778
#define ConvertPS(rm,op,from,to) convert_ps (SIM_ARGS, rm, op, from, to)
779
 
780
 
781
/* MIPS-3D ASE operations.  */
782
#define CompareAbs(op1,op2,fmt,cond,cc) \
783
fp_cmp(SIM_ARGS, op1, op2, fmt, 1, cond, cc)
784
unsigned64 fp_add_r (SIM_STATE, unsigned64 op1, unsigned64 op2, FP_formats fmt);
785
#define AddR(op1,op2,fmt) fp_add_r(SIM_ARGS, op1, op2, fmt)
786
unsigned64 fp_mul_r (SIM_STATE, unsigned64 op1, unsigned64 op2, FP_formats fmt);
787
#define MultiplyR(op1,op2,fmt) fp_mul_r(SIM_ARGS, op1, op2, fmt)
788
unsigned64 fp_recip1 (SIM_STATE, unsigned64 op, FP_formats fmt);
789
#define Recip1(op,fmt) fp_recip1(SIM_ARGS, op, fmt)
790
unsigned64 fp_recip2 (SIM_STATE, unsigned64 op1, unsigned64 op2, FP_formats fmt);
791
#define Recip2(op1,op2,fmt) fp_recip2(SIM_ARGS, op1, op2, fmt)
792
unsigned64 fp_rsqrt1 (SIM_STATE, unsigned64 op, FP_formats fmt);
793
#define RSquareRoot1(op,fmt) fp_rsqrt1(SIM_ARGS, op, fmt)
794
unsigned64 fp_rsqrt2 (SIM_STATE, unsigned64 op1, unsigned64 op2, FP_formats fmt);
795
#define RSquareRoot2(op1,op2,fmt) fp_rsqrt2(SIM_ARGS, op1, op2, fmt)
796
 
797
 
798
/* MDMX access.  */
799
 
800
typedef unsigned int MX_fmtsel;   /* MDMX format select field (5 bits).  */
801
#define ob_fmtsel(sel) (((sel)<<1)|0x0)
802
#define qh_fmtsel(sel) (((sel)<<2)|0x1)
803
 
804
#define fmt_mdmx fmt_uninterpreted
805
 
806
#define MX_VECT_AND  (0)
807
#define MX_VECT_NOR  (1)
808
#define MX_VECT_OR   (2)
809
#define MX_VECT_XOR  (3)
810
#define MX_VECT_SLL  (4)
811
#define MX_VECT_SRL  (5)
812
#define MX_VECT_ADD  (6)
813
#define MX_VECT_SUB  (7)
814
#define MX_VECT_MIN  (8)
815
#define MX_VECT_MAX  (9)
816
#define MX_VECT_MUL  (10)
817
#define MX_VECT_MSGN (11)
818
#define MX_VECT_SRA  (12)
819
#define MX_VECT_ABSD (13)               /* SB-1 only.  */
820
#define MX_VECT_AVG  (14)               /* SB-1 only.  */
821
 
822
unsigned64 mdmx_cpr_op (SIM_STATE, int op, unsigned64 op1, int vt, MX_fmtsel fmtsel);
823
#define MX_Add(op1,vt,fmtsel) mdmx_cpr_op(SIM_ARGS, MX_VECT_ADD, op1, vt, fmtsel)
824
#define MX_And(op1,vt,fmtsel) mdmx_cpr_op(SIM_ARGS, MX_VECT_AND, op1, vt, fmtsel)
825
#define MX_Max(op1,vt,fmtsel) mdmx_cpr_op(SIM_ARGS, MX_VECT_MAX, op1, vt, fmtsel)
826
#define MX_Min(op1,vt,fmtsel) mdmx_cpr_op(SIM_ARGS, MX_VECT_MIN, op1, vt, fmtsel)
827
#define MX_Msgn(op1,vt,fmtsel) mdmx_cpr_op(SIM_ARGS, MX_VECT_MSGN, op1, vt, fmtsel)
828
#define MX_Mul(op1,vt,fmtsel) mdmx_cpr_op(SIM_ARGS, MX_VECT_MUL, op1, vt, fmtsel)
829
#define MX_Nor(op1,vt,fmtsel) mdmx_cpr_op(SIM_ARGS, MX_VECT_NOR, op1, vt, fmtsel)
830
#define MX_Or(op1,vt,fmtsel)  mdmx_cpr_op(SIM_ARGS, MX_VECT_OR,  op1, vt, fmtsel)
831
#define MX_ShiftLeftLogical(op1,vt,fmtsel) mdmx_cpr_op(SIM_ARGS, MX_VECT_SLL, op1, vt, fmtsel)
832
#define MX_ShiftRightArith(op1,vt,fmtsel) mdmx_cpr_op(SIM_ARGS, MX_VECT_SRA, op1, vt, fmtsel)
833
#define MX_ShiftRightLogical(op1,vt,fmtsel) mdmx_cpr_op(SIM_ARGS, MX_VECT_SRL, op1, vt, fmtsel)
834
#define MX_Sub(op1,vt,fmtsel) mdmx_cpr_op(SIM_ARGS, MX_VECT_SUB, op1, vt, fmtsel)
835
#define MX_Xor(op1,vt,fmtsel) mdmx_cpr_op(SIM_ARGS, MX_VECT_XOR, op1, vt, fmtsel)
836
#define MX_AbsDiff(op1,vt,fmtsel) mdmx_cpr_op(SIM_ARGS, MX_VECT_ABSD, op1, vt, fmtsel)
837
#define MX_Avg(op1,vt,fmtsel) mdmx_cpr_op(SIM_ARGS, MX_VECT_AVG, op1, vt, fmtsel)
838
 
839
#define MX_C_EQ  0x1
840
#define MX_C_LT  0x4
841
 
842
void mdmx_cc_op (SIM_STATE, int cond, unsigned64 op1, int vt, MX_fmtsel fmtsel);
843
#define MX_Comp(op1,cond,vt,fmtsel) mdmx_cc_op(SIM_ARGS, cond, op1, vt, fmtsel)
844
 
845
unsigned64 mdmx_pick_op (SIM_STATE, int tf, unsigned64 op1, int vt, MX_fmtsel fmtsel);
846
#define MX_Pick(tf,op1,vt,fmtsel) mdmx_pick_op(SIM_ARGS, tf, op1, vt, fmtsel)
847
 
848
#define MX_VECT_ADDA  (0)
849
#define MX_VECT_ADDL  (1)
850
#define MX_VECT_MULA  (2)
851
#define MX_VECT_MULL  (3)
852
#define MX_VECT_MULS  (4)
853
#define MX_VECT_MULSL (5)
854
#define MX_VECT_SUBA  (6)
855
#define MX_VECT_SUBL  (7)
856
#define MX_VECT_ABSDA (8)               /* SB-1 only.  */
857
 
858
void mdmx_acc_op (SIM_STATE, int op, unsigned64 op1, int vt, MX_fmtsel fmtsel);
859
#define MX_AddA(op1,vt,fmtsel) mdmx_acc_op(SIM_ARGS, MX_VECT_ADDA, op1, vt, fmtsel)
860
#define MX_AddL(op1,vt,fmtsel) mdmx_acc_op(SIM_ARGS, MX_VECT_ADDL, op1, vt, fmtsel)
861
#define MX_MulA(op1,vt,fmtsel) mdmx_acc_op(SIM_ARGS, MX_VECT_MULA, op1, vt, fmtsel)
862
#define MX_MulL(op1,vt,fmtsel) mdmx_acc_op(SIM_ARGS, MX_VECT_MULL, op1, vt, fmtsel)
863
#define MX_MulS(op1,vt,fmtsel) mdmx_acc_op(SIM_ARGS, MX_VECT_MULS, op1, vt, fmtsel)
864
#define MX_MulSL(op1,vt,fmtsel) mdmx_acc_op(SIM_ARGS, MX_VECT_MULSL, op1, vt, fmtsel)
865
#define MX_SubA(op1,vt,fmtsel) mdmx_acc_op(SIM_ARGS, MX_VECT_SUBA, op1, vt, fmtsel)
866
#define MX_SubL(op1,vt,fmtsel) mdmx_acc_op(SIM_ARGS, MX_VECT_SUBL, op1, vt, fmtsel)
867
#define MX_AbsDiffC(op1,vt,fmtsel) mdmx_acc_op(SIM_ARGS, MX_VECT_ABSDA, op1, vt, fmtsel)
868
 
869
#define MX_FMT_OB   (0)
870
#define MX_FMT_QH   (1)
871
 
872
/* The following codes chosen to indicate the units of shift.  */
873
#define MX_RAC_L    (0)
874
#define MX_RAC_M    (1)
875
#define MX_RAC_H    (2)
876
 
877
unsigned64 mdmx_rac_op (SIM_STATE, int, int);
878
#define MX_RAC(op,fmt) mdmx_rac_op(SIM_ARGS, op, fmt)
879
 
880
void mdmx_wacl (SIM_STATE, int, unsigned64, unsigned64);
881
#define MX_WACL(fmt,vs,vt) mdmx_wacl(SIM_ARGS, fmt, vs, vt)
882
void mdmx_wach (SIM_STATE, int, unsigned64);
883
#define MX_WACH(fmt,vs) mdmx_wach(SIM_ARGS, fmt, vs)
884
 
885
#define MX_RND_AS   (0)
886
#define MX_RND_AU   (1)
887
#define MX_RND_ES   (2)
888
#define MX_RND_EU   (3)
889
#define MX_RND_ZS   (4)
890
#define MX_RND_ZU   (5)
891
 
892
unsigned64 mdmx_round_op (SIM_STATE, int, int, MX_fmtsel);
893
#define MX_RNAS(vt,fmt) mdmx_round_op(SIM_ARGS, MX_RND_AS, vt, fmt)
894
#define MX_RNAU(vt,fmt) mdmx_round_op(SIM_ARGS, MX_RND_AU, vt, fmt)
895
#define MX_RNES(vt,fmt) mdmx_round_op(SIM_ARGS, MX_RND_ES, vt, fmt)
896
#define MX_RNEU(vt,fmt) mdmx_round_op(SIM_ARGS, MX_RND_EU, vt, fmt)
897
#define MX_RZS(vt,fmt)  mdmx_round_op(SIM_ARGS, MX_RND_ZS, vt, fmt)
898
#define MX_RZU(vt,fmt)  mdmx_round_op(SIM_ARGS, MX_RND_ZU, vt, fmt)
899
 
900
unsigned64 mdmx_shuffle (SIM_STATE, int, unsigned64, unsigned64);
901
#define MX_SHFL(shop,op1,op2) mdmx_shuffle(SIM_ARGS, shop, op1, op2)
902
 
903
 
904
 
905
/* Memory accesses */
906
 
907
/* The following are generic to all versions of the MIPS architecture
908
   to date: */
909
 
910
/* Memory Access Types (for CCA): */
911
#define Uncached                (0)
912
#define CachedNoncoherent       (1)
913
#define CachedCoherent          (2)
914
#define Cached                  (3)
915
 
916
#define isINSTRUCTION   (1 == 0) /* FALSE */
917
#define isDATA          (1 == 1) /* TRUE */
918
#define isLOAD          (1 == 0) /* FALSE */
919
#define isSTORE         (1 == 1) /* TRUE */
920
#define isREAL          (1 == 0) /* FALSE */
921
#define isRAW           (1 == 1) /* TRUE */
922
/* The parameter HOST (isTARGET / isHOST) is ignored */
923
#define isTARGET        (1 == 0) /* FALSE */
924
/* #define isHOST          (1 == 1) TRUE */
925
 
926
/* The "AccessLength" specifications for Loads and Stores. NOTE: This
927
   is the number of bytes minus 1. */
928
#define AccessLength_BYTE       (0)
929
#define AccessLength_HALFWORD   (1)
930
#define AccessLength_TRIPLEBYTE (2)
931
#define AccessLength_WORD       (3)
932
#define AccessLength_QUINTIBYTE (4)
933
#define AccessLength_SEXTIBYTE  (5)
934
#define AccessLength_SEPTIBYTE  (6)
935
#define AccessLength_DOUBLEWORD (7)
936
#define AccessLength_QUADWORD   (15)
937
 
938
#define LOADDRMASK (WITH_TARGET_WORD_BITSIZE == 64 \
939
                    ? AccessLength_DOUBLEWORD /*7*/ \
940
                    : AccessLength_WORD /*3*/)
941
#define PSIZE (WITH_TARGET_ADDRESS_BITSIZE)
942
 
943
 
944
INLINE_SIM_MAIN (int) address_translation PARAMS ((SIM_DESC sd, sim_cpu *, address_word cia, address_word vAddr, int IorD, int LorS, address_word *pAddr, int *CCA, int raw));
945
#define AddressTranslation(vAddr,IorD,LorS,pAddr,CCA,host,raw) \
946
address_translation (SD, CPU, cia, vAddr, IorD, LorS, pAddr, CCA, raw)
947
 
948
INLINE_SIM_MAIN (void) load_memory PARAMS ((SIM_DESC sd, sim_cpu *cpu, address_word cia, uword64* memvalp, uword64* memval1p, int CCA, unsigned int AccessLength, address_word pAddr, address_word vAddr, int IorD));
949
#define LoadMemory(memvalp,memval1p,CCA,AccessLength,pAddr,vAddr,IorD,raw) \
950
load_memory (SD, CPU, cia, memvalp, memval1p, CCA, AccessLength, pAddr, vAddr, IorD)
951
 
952
INLINE_SIM_MAIN (void) store_memory PARAMS ((SIM_DESC sd, sim_cpu *cpu, address_word cia, int CCA, unsigned int AccessLength, uword64 MemElem, uword64 MemElem1, address_word pAddr, address_word vAddr));
953
#define StoreMemory(CCA,AccessLength,MemElem,MemElem1,pAddr,vAddr,raw) \
954
store_memory (SD, CPU, cia, CCA, AccessLength, MemElem, MemElem1, pAddr, vAddr)
955
 
956
INLINE_SIM_MAIN (void) cache_op PARAMS ((SIM_DESC sd, sim_cpu *cpu, address_word cia, int op, address_word pAddr, address_word vAddr, unsigned int instruction));
957
#define CacheOp(op,pAddr,vAddr,instruction) \
958
cache_op (SD, CPU, cia, op, pAddr, vAddr, instruction)
959
 
960
INLINE_SIM_MAIN (void) sync_operation PARAMS ((SIM_DESC sd, sim_cpu *cpu, address_word cia, int stype));
961
#define SyncOperation(stype) \
962
sync_operation (SD, CPU, cia, (stype))
963
 
964
INLINE_SIM_MAIN (void) prefetch PARAMS ((SIM_DESC sd, sim_cpu *cpu, address_word cia, int CCA, address_word pAddr, address_word vAddr, int DATA, int hint));
965
#define Prefetch(CCA,pAddr,vAddr,DATA,hint) \
966
prefetch (SD, CPU, cia, CCA, pAddr, vAddr, DATA, hint)
967
 
968
void unpredictable_action (sim_cpu *cpu, address_word cia);
969
#define NotWordValue(val)       not_word_value (SD_, (val))
970
#define Unpredictable()         unpredictable (SD_)
971
#define UnpredictableResult()   /* For now, do nothing.  */
972
 
973
INLINE_SIM_MAIN (unsigned32) ifetch32 PARAMS ((SIM_DESC sd, sim_cpu *cpu, address_word cia, address_word vaddr));
974
#define IMEM32(CIA) ifetch32 (SD, CPU, (CIA), (CIA))
975
INLINE_SIM_MAIN (unsigned16) ifetch16 PARAMS ((SIM_DESC sd, sim_cpu *cpu, address_word cia, address_word vaddr));
976
#define IMEM16(CIA) ifetch16 (SD, CPU, (CIA), ((CIA) & ~1))
977
#define IMEM16_IMMED(CIA,NR) ifetch16 (SD, CPU, (CIA), ((CIA) & ~1) + 2 * (NR))
978
 
979
void dotrace PARAMS ((SIM_DESC sd, sim_cpu *cpu, FILE *tracefh, int type, SIM_ADDR address, int width, char *comment, ...));
980
extern FILE *tracefh;
981
 
982
extern int DSPLO_REGNUM[4];
983
extern int DSPHI_REGNUM[4];
984
 
985
INLINE_SIM_MAIN (void) pending_tick PARAMS ((SIM_DESC sd, sim_cpu *cpu, address_word cia));
986
extern SIM_CORE_SIGNAL_FN mips_core_signal;
987
 
988
char* pr_addr PARAMS ((SIM_ADDR addr));
989
char* pr_uword64 PARAMS ((uword64 addr));
990
 
991
 
992
#define GPR_CLEAR(N) do { GPR_SET((N),0); } while (0)
993
 
994
void mips_cpu_exception_trigger(SIM_DESC sd, sim_cpu* cpu, address_word pc);
995
void mips_cpu_exception_suspend(SIM_DESC sd, sim_cpu* cpu, int exception);
996
void mips_cpu_exception_resume(SIM_DESC sd, sim_cpu* cpu, int exception);
997
 
998
#ifdef MIPS_MACH_MULTI
999
extern int mips_mach_multi(SIM_DESC sd);
1000
#define MIPS_MACH(SD)   mips_mach_multi(SD)
1001
#else
1002
#define MIPS_MACH(SD)   MIPS_MACH_DEFAULT
1003
#endif
1004
 
1005
/* Macros for determining whether a MIPS IV or MIPS V part is subject
1006
   to the hi/lo restrictions described in mips.igen.  */
1007
 
1008
#define MIPS_MACH_HAS_MT_HILO_HAZARD(SD) \
1009
  (MIPS_MACH (SD) != bfd_mach_mips5500)
1010
 
1011
#define MIPS_MACH_HAS_MULT_HILO_HAZARD(SD) \
1012
  (MIPS_MACH (SD) != bfd_mach_mips5500)
1013
 
1014
#define MIPS_MACH_HAS_DIV_HILO_HAZARD(SD) \
1015
  (MIPS_MACH (SD) != bfd_mach_mips5500)
1016
 
1017
#if H_REVEALS_MODULE_P (SIM_MAIN_INLINE)
1018
#include "sim-main.c"
1019
#endif
1020
 
1021
#endif

powered by: WebSVN 2.1.0

© copyright 1999-2025 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.