OpenCores
URL https://opencores.org/ocsvn/openrisc/openrisc/trunk

Subversion Repositories openrisc

[/] [openrisc/] [trunk/] [gnu-old/] [gdb-7.1/] [sim/] [ppc/] [idecode_expression.h] - Blame information for rev 855

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 227 jeremybenn
/*  This file is part of the program psim.
2
 
3
    Copyright 1994, 1995, 1996, 1997, 2003 Andrew Cagney
4
 
5
    This program is free software; you can redistribute it and/or modify
6
    it under the terms of the GNU General Public License as published by
7
    the Free Software Foundation; either version 2 of the License, or
8
    (at your option) any later version.
9
 
10
    This program is distributed in the hope that it will be useful,
11
    but WITHOUT ANY WARRANTY; without even the implied warranty of
12
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13
    GNU General Public License for more details.
14
 
15
    You should have received a copy of the GNU General Public License
16
    along with this program; if not, write to the Free Software
17
    Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
18
 
19
    */
20
 
21
/* Additional, and optional expressions.  */
22
#ifdef WITH_ALTIVEC
23
#include "altivec_expression.h"
24
#endif
25
#ifdef WITH_E500
26
#include "e500_expression.h"
27
#endif
28
 
29
/* 32bit target expressions:
30
 
31
   Each calculation is performed three times using each of the
32
   signed64, unsigned64 and long integer types.  The macro ALU_END
33
   (in _ALU_RESULT_VAL) then selects which of the three alternative
34
   results will be used in the final assignment of the target
35
   register.  As this selection is determined at compile time by
36
   fields in the instruction (OE, EA, Rc) the compiler has sufficient
37
   information to firstly simplify the selection code into a single
38
   case and then back anotate the equations and hence eliminate any
39
   resulting dead code.  That dead code being the calculations that,
40
   as it turned out were not in the end needed.
41
 
42
   64bit arrithemetic is used firstly because it allows the use of
43
   gcc's efficient long long operators (typically efficiently output
44
   inline) and secondly because the resultant answer will contain in
45
   the low 32bits the answer while in the high 32bits is either carry
46
   or status information. */
47
 
48
/* 64bit target expressions:
49
 
50
   Unfortunatly 128bit arrithemetic isn't that common.  Consequently
51
   the 32/64 bit trick can not be used.  Instead all calculations are
52
   required to retain carry/overflow information in separate
53
   variables.  Even with this restriction it is still possible for the
54
   trick of letting the compiler discard the calculation of unneeded
55
   values */
56
 
57
 
58
/* Macro's to type cast 32bit constants to 64bits */
59
#define SIGNED64(val)   ((signed64)(signed32)(val))
60
#define UNSIGNED64(val) ((unsigned64)(unsigned32)(val))
61
 
62
 
63
/* Start a section of ALU code */
64
 
65
#define ALU_BEGIN(val) \
66
{ \
67
  natural_word alu_val; \
68
  unsigned64 alu_carry_val; \
69
  signed64 alu_overflow_val; \
70
  ALU_SET(val)
71
 
72
 
73
/* assign the result to the target register */
74
 
75
#define ALU_END(TARG,CA,OE,Rc) \
76
{ /* select the result to use */ \
77
  signed_word const alu_result = _ALU_RESULT_VAL(CA,OE,Rc); \
78
  /* determine the overflow bit if needed */ \
79
  if (OE) { \
80
    if ((((unsigned64)(alu_overflow_val & BIT64(0))) \
81
         >> 32) \
82
        == (alu_overflow_val & BIT64(32))) \
83
      XER &= (~xer_overflow); \
84
    else \
85
      XER |= (xer_summary_overflow | xer_overflow); \
86
  } \
87
  /* Update the carry bit if needed */ \
88
  if (CA) { \
89
    XER = ((XER & ~xer_carry) \
90
           | SHUFFLED32((alu_carry_val >> 32), 31, xer_carry_bit)); \
91
    /* if (alu_carry_val & BIT64(31)) \
92
         XER |= (xer_carry); \
93
       else \
94
         XER &= (~xer_carry); */ \
95
  } \
96
  TRACE(trace_alu, (" Result = %ld (0x%lx), XER = %ld\n", \
97
                    (long)alu_result, (long)alu_result, (long)XER)); \
98
  /* Update the Result Conditions if needed */ \
99
  CR0_COMPARE(alu_result, 0, Rc); \
100
  /* assign targ same */ \
101
  TARG = alu_result; \
102
}}
103
 
104
/* select the result from the different options */
105
 
106
#define _ALU_RESULT_VAL(CA,OE,Rc) (WITH_TARGET_WORD_BITSIZE == 64 \
107
                                   ? alu_val \
108
                                   : (OE \
109
                                      ? alu_overflow_val \
110
                                      : (CA \
111
                                         ? alu_carry_val \
112
                                         : alu_val)))
113
 
114
 
115
/* More basic alu operations */
116
#if (WITH_TARGET_WORD_BITSIZE == 64)
117
#define ALU_SET(val) \
118
do { \
119
  alu_val = val; \
120
  alu_carry_val = ((unsigned64)alu_val) >> 32; \
121
  alu_overflow_val = ((signed64)alu_val) >> 32; \
122
} while (0)
123
#endif
124
#if (WITH_TARGET_WORD_BITSIZE == 32)
125
#define ALU_SET(val) \
126
do { \
127
  alu_val = val; \
128
  alu_carry_val = (unsigned32)(alu_val); \
129
  alu_overflow_val = (signed32)(alu_val); \
130
} while (0)
131
#endif
132
 
133
#if (WITH_TARGET_WORD_BITSIZE == 64)
134
#define ALU_ADD(val) \
135
do { \
136
  unsigned64 alu_lo = (UNSIGNED64(alu_val) \
137
                       + UNSIGNED64(val)); \
138
  signed alu_carry = ((alu_lo & BIT(31)) != 0); \
139
  alu_carry_val = (alu_carry_val \
140
                   + UNSIGNED64(EXTRACTED(val, 0, 31)) \
141
                   + alu_carry); \
142
  alu_overflow_val = (alu_overflow_val \
143
                      + SIGNED64(EXTRACTED(val, 0, 31)) \
144
                      + alu_carry); \
145
  alu_val = alu_val + val; \
146
} while (0)
147
#endif
148
#if (WITH_TARGET_WORD_BITSIZE == 32)
149
#define ALU_ADD(val) \
150
do { \
151
  alu_val += val; \
152
  alu_carry_val += (unsigned32)(val); \
153
  alu_overflow_val += (signed32)(val); \
154
} while (0)
155
#endif
156
 
157
 
158
#if (WITH_TARGET_WORD_BITSIZE == 64)
159
#define ALU_ADD_CA \
160
do { \
161
  signed carry = MASKED32(XER, xer_carry_bit, xer_carry_bit) != 0; \
162
  ALU_ADD(carry); \
163
} while (0)
164
#endif
165
#if (WITH_TARGET_WORD_BITSIZE == 32)
166
#define ALU_ADD_CA \
167
do { \
168
  signed carry = MASKED32(XER, xer_carry_bit, xer_carry_bit) != 0; \
169
  ALU_ADD(carry); \
170
} while (0)
171
#endif
172
 
173
 
174
#if 0
175
#if (WITH_TARGET_WORD_BITSIZE == 64)
176
#endif
177
#if (WITH_TARGET_WORD_BITSIZE == 32)
178
#define ALU_SUB(val) \
179
do { \
180
  alu_val -= val; \
181
  alu_carry_val -= (unsigned32)(val); \
182
  alu_overflow_val -= (signed32)(val); \
183
} while (0)
184
#endif
185
#endif
186
 
187
#if (WITH_TARGET_WORD_BITSIZE == 64)
188
#endif
189
#if (WITH_TARGET_WORD_BITSIZE == 32)
190
#define ALU_OR(val) \
191
do { \
192
  alu_val |= val; \
193
  alu_carry_val = (unsigned32)(alu_val); \
194
  alu_overflow_val = (signed32)(alu_val); \
195
} while (0)
196
#endif
197
 
198
 
199
#if (WITH_TARGET_WORD_BITSIZE == 64)
200
#endif
201
#if (WITH_TARGET_WORD_BITSIZE == 32)
202
#define ALU_XOR(val) \
203
do { \
204
  alu_val ^= val; \
205
  alu_carry_val = (unsigned32)(alu_val); \
206
  alu_overflow_val = (signed32)(alu_val); \
207
} while (0)
208
#endif
209
 
210
 
211
#if 0
212
#if (WITH_TARGET_WORD_BITSIZE == 64)
213
#endif
214
#if (WITH_TARGET_WORD_BITSIZE == 32)
215
#define ALU_NEGATE \
216
do { \
217
  alu_val = -alu_val; \
218
  alu_carry_val = -alu_carry_val; \
219
  alu_overflow_val = -alu_overflow_val; \
220
} while(0)
221
#endif
222
#endif
223
 
224
 
225
#if (WITH_TARGET_WORD_BITSIZE == 64)
226
#endif
227
#if (WITH_TARGET_WORD_BITSIZE == 32)
228
#define ALU_AND(val) \
229
do { \
230
  alu_val &= val; \
231
  alu_carry_val = (unsigned32)(alu_val); \
232
  alu_overflow_val = (signed32)(alu_val); \
233
} while (0)
234
#endif
235
 
236
 
237
#if (WITH_TARGET_WORD_BITSIZE == 64)
238
#define ALU_NOT \
239
do { \
240
  signed64 new_alu_val = ~alu_val; \
241
  ALU_SET(new_alu_val); \
242
} while (0)
243
#endif
244
#if (WITH_TARGET_WORD_BITSIZE == 32)
245
#define ALU_NOT \
246
do { \
247
  signed new_alu_val = ~alu_val; \
248
  ALU_SET(new_alu_val); \
249
} while(0)
250
#endif
251
 
252
 
253
/* Macros for updating the condition register */
254
 
255
#define CR1_UPDATE(Rc) \
256
do { \
257
  if (Rc) { \
258
    CR_SET(1, EXTRACTED32(FPSCR, fpscr_fx_bit, fpscr_ox_bit)); \
259
  } \
260
} while (0)
261
 
262
 
263
#define _DO_CR_COMPARE(LHS, RHS) \
264
(((LHS) < (RHS)) \
265
 ? cr_i_negative \
266
 : (((LHS) > (RHS)) \
267
    ? cr_i_positive \
268
    : cr_i_zero))
269
 
270
#define CR_SET(REG, VAL) MBLIT32(CR, REG*4, REG*4+3, VAL)
271
#define CR_FIELD(REG) EXTRACTED32(CR, REG*4, REG*4+3)
272
#define CR_SET_XER_SO(REG, VAL) \
273
do { \
274
  creg new_bits = ((XER & xer_summary_overflow) \
275
                   ? (cr_i_summary_overflow | VAL) \
276
                   : VAL); \
277
  CR_SET(REG, new_bits); \
278
} while(0)
279
 
280
#define CR_COMPARE(REG, LHS, RHS) \
281
do { \
282
  creg new_bits = ((XER & xer_summary_overflow) \
283
                   ? (cr_i_summary_overflow | _DO_CR_COMPARE(LHS,RHS)) \
284
                   : _DO_CR_COMPARE(LHS,RHS)); \
285
  CR_SET(REG, new_bits); \
286
} while (0)
287
 
288
#define CR0_COMPARE(LHS, RHS, Rc) \
289
do { \
290
  if (Rc) { \
291
    CR_COMPARE(0, LHS, RHS); \
292
    TRACE(trace_alu, \
293
          ("CR=0x%08lx, LHS=%ld, RHS=%ld\n", \
294
           (unsigned long)CR, (long)LHS, (long)RHS)); \
295
  } \
296
} while (0)
297
 
298
 
299
 
300
/* Bring data in from the cold */
301
 
302
#define MEM(SIGN, EA, NR_BYTES) \
303
((SIGN##_##NR_BYTES) vm_data_map_read_##NR_BYTES(cpu_data_map(processor), EA, \
304
                                                 processor, cia)) \
305
 
306
#define STORE(EA, NR_BYTES, VAL) \
307
do { \
308
  vm_data_map_write_##NR_BYTES(cpu_data_map(processor), EA, VAL, \
309
                               processor, cia); \
310
} while (0)
311
 
312
 
313
 
314
/* some FPSCR update macros. */
315
 
316
#define FPSCR_BEGIN \
317
{ \
318
  fpscreg old_fpscr UNUSED = FPSCR
319
 
320
#define FPSCR_END(Rc) { \
321
  /* always update VX */ \
322
  if ((FPSCR & fpscr_vx_bits)) \
323
    FPSCR |= fpscr_vx; \
324
  else \
325
    FPSCR &= ~fpscr_vx; \
326
  /* always update FEX */ \
327
  if (((FPSCR & fpscr_vx) && (FPSCR & fpscr_ve)) \
328
      || ((FPSCR & fpscr_ox) && (FPSCR & fpscr_oe)) \
329
      || ((FPSCR & fpscr_ux) && (FPSCR & fpscr_ue)) \
330
      || ((FPSCR & fpscr_zx) && (FPSCR & fpscr_ze)) \
331
      || ((FPSCR & fpscr_xx) && (FPSCR & fpscr_xe))) \
332
    FPSCR |= fpscr_fex; \
333
  else \
334
    FPSCR &= ~fpscr_fex; \
335
  CR1_UPDATE(Rc); \
336
  /* interrupt enabled? */ \
337
  if ((MSR & (msr_floating_point_exception_mode_0 \
338
              | msr_floating_point_exception_mode_1)) \
339
      && (FPSCR & fpscr_fex)) \
340
    program_interrupt(processor, cia, \
341
                      floating_point_enabled_program_interrupt); \
342
}}
343
 
344
#define FPSCR_SET(REG, VAL) MBLIT32(FPSCR, REG*4, REG*4+3, VAL)
345
#define FPSCR_FIELD(REG) EXTRACTED32(FPSCR, REG*4, REG*4+3)
346
 
347
#define FPSCR_SET_FPCC(VAL) MBLIT32(FPSCR, fpscr_fpcc_bit, fpscr_fpcc_bit+3, VAL)
348
 
349
/* Handle various exceptions */
350
 
351
#define FPSCR_OR_VX(VAL) \
352
do { \
353
  /* NOTE: VAL != 0 */ \
354
  FPSCR |= (VAL); \
355
  FPSCR |= fpscr_fx; \
356
} while (0)
357
 
358
#define FPSCR_SET_OX(COND) \
359
do { \
360
  if (COND) { \
361
    FPSCR |= fpscr_ox; \
362
    FPSCR |= fpscr_fx; \
363
  } \
364
  else \
365
    FPSCR &= ~fpscr_ox; \
366
} while (0)
367
 
368
#define FPSCR_SET_UX(COND) \
369
do { \
370
  if (COND) { \
371
    FPSCR |= fpscr_ux; \
372
    FPSCR |= fpscr_fx; \
373
  } \
374
  else \
375
    FPSCR &= ~fpscr_ux; \
376
} while (0)
377
 
378
#define FPSCR_SET_ZX(COND) \
379
do { \
380
  if (COND) { \
381
    FPSCR |= fpscr_zx; \
382
    FPSCR |= fpscr_fx; \
383
  } \
384
  else \
385
    FPSCR &= ~fpscr_zx; \
386
} while (0)
387
 
388
#define FPSCR_SET_XX(COND) \
389
do { \
390
  if (COND) { \
391
    FPSCR |= fpscr_xx; \
392
    FPSCR |= fpscr_fx; \
393
  } \
394
} while (0)
395
 
396
/* Note: code using SET_FI must also explicitly call SET_XX */
397
 
398
#define FPSCR_SET_FR(COND) do { \
399
  if (COND) \
400
    FPSCR |= fpscr_fr; \
401
  else \
402
    FPSCR &= ~fpscr_fr; \
403
} while (0)
404
 
405
#define FPSCR_SET_FI(COND) \
406
do { \
407
  if (COND) { \
408
    FPSCR |= fpscr_fi; \
409
  } \
410
  else \
411
    FPSCR &= ~fpscr_fi; \
412
} while (0)
413
 
414
#define FPSCR_SET_FPRF(VAL) \
415
do { \
416
  FPSCR = (FPSCR & ~fpscr_fprf) | (VAL); \
417
} while (0)

powered by: WebSVN 2.1.0

© copyright 1999-2025 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.