1 |
148 |
jeremybenn |
/*
|
2 |
|
|
* cma101.c -- lo-level support for Cogent CMA101 development board.
|
3 |
|
|
*
|
4 |
|
|
* Copyright (c) 1996, 2001, 2002 Cygnus Support
|
5 |
|
|
*
|
6 |
|
|
* The authors hereby grant permission to use, copy, modify, distribute,
|
7 |
|
|
* and license this software and its documentation for any purpose, provided
|
8 |
|
|
* that existing copyright notices are retained in all copies and that this
|
9 |
|
|
* notice is included verbatim in any distributions. No written agreement,
|
10 |
|
|
* license, or royalty fee is required for any of the authorized uses.
|
11 |
|
|
* Modifications to this software may be copyrighted by their authors
|
12 |
|
|
* and need not follow the licensing terms described here, provided that
|
13 |
|
|
* the new terms are clearly indicated on the first page of each file where
|
14 |
|
|
* they apply.
|
15 |
|
|
*/
|
16 |
|
|
|
17 |
|
|
#ifdef __mips16
|
18 |
|
|
/* The assembler portions of this file need to be re-written to
|
19 |
|
|
support mips16, if and when that seems useful.
|
20 |
|
|
*/
|
21 |
|
|
#error cma101.c can not be compiled -mips16
|
22 |
|
|
#endif
|
23 |
|
|
|
24 |
|
|
|
25 |
|
|
#include <time.h> /* standard ANSI time routines */
|
26 |
|
|
|
27 |
|
|
/* Normally these would appear in a header file for external
|
28 |
|
|
use. However, we are only building a simple example world at the
|
29 |
|
|
moment: */
|
30 |
|
|
|
31 |
|
|
#include "regs.S"
|
32 |
|
|
|
33 |
|
|
#if defined(MIPSEB)
|
34 |
|
|
#define BYTEREG(b,o) ((volatile unsigned char *)(PHYS_TO_K1((b) + (o) + 7)))
|
35 |
|
|
#endif /* MIPSEB */
|
36 |
|
|
#if defined(MIPSEL)
|
37 |
|
|
#define BYTEREG(b,o) ((volatile unsigned char *)(PHYS_TO_K1((b) + (o))))
|
38 |
|
|
#endif /* MIPSEL */
|
39 |
|
|
|
40 |
|
|
/* I/O addresses: */
|
41 |
|
|
#define RTCLOCK_BASE (0x0E800000) /* Mk48T02 NVRAM/RTC */
|
42 |
|
|
#define UART_BASE (0x0E900000) /* NS16C552 DUART */
|
43 |
|
|
#define LCD_BASE (0x0EB00000) /* Alphanumeric display */
|
44 |
|
|
|
45 |
|
|
/* LCD panel manifests: */
|
46 |
|
|
#define LCD_DATA BYTEREG(LCD_BASE,0)
|
47 |
|
|
#define LCD_CMD BYTEREG(LCD_BASE,8)
|
48 |
|
|
|
49 |
|
|
#define LCD_STAT_BUSY (0x80)
|
50 |
|
|
#define LCD_SET_DDADDR (0x80)
|
51 |
|
|
|
52 |
|
|
/* RTC manifests */
|
53 |
|
|
/* The lo-offsets are the NVRAM locations (0x7F8 bytes) */
|
54 |
|
|
#define RTC_CONTROL BYTEREG(RTCLOCK_BASE,0x3FC0)
|
55 |
|
|
#define RTC_SECS BYTEREG(RTCLOCK_BASE,0x3FC8)
|
56 |
|
|
#define RTC_MINS BYTEREG(RTCLOCK_BASE,0x3FD0)
|
57 |
|
|
#define RTC_HOURS BYTEREG(RTCLOCK_BASE,0x3FD8)
|
58 |
|
|
#define RTC_DAY BYTEREG(RTCLOCK_BASE,0x3FE0)
|
59 |
|
|
#define RTC_DATE BYTEREG(RTCLOCK_BASE,0x3FE8)
|
60 |
|
|
#define RTC_MONTH BYTEREG(RTCLOCK_BASE,0x3FF0)
|
61 |
|
|
#define RTC_YEAR BYTEREG(RTCLOCK_BASE,0x3FF8)
|
62 |
|
|
|
63 |
|
|
#define RTC_CTL_LOCK_READ (0x40) /* lock RTC whilst reading */
|
64 |
|
|
#define RTC_CTL_LOCK_WRITE (0x80) /* lock RTC whilst writing */
|
65 |
|
|
|
66 |
|
|
/* Macro to force out-standing memory transfers to complete before
|
67 |
|
|
next sequence. For the moment we assume that the processor in the
|
68 |
|
|
CMA101 board supports at least ISA II. */
|
69 |
|
|
#define DOSYNC() asm(" .set mips2 ; sync ; .set mips0")
|
70 |
|
|
|
71 |
|
|
/* We disable interrupts by writing zero to all of the masks, and the
|
72 |
|
|
global interrupt enable bit: */
|
73 |
|
|
#define INTDISABLE(sr,tmp) asm("\
|
74 |
|
|
.set mips2 ; \
|
75 |
|
|
mfc0 %0,$12 ; \
|
76 |
|
|
lui %1,0xffff ; \
|
77 |
|
|
ori %1,%1,0xfffe ; \
|
78 |
|
|
and %1, %0, %1 ; \
|
79 |
|
|
mtc0 %1,$12 ; \
|
80 |
|
|
.set mips0" : "=d" (sr), "=d" (tmp))
|
81 |
|
|
#define INTRESTORE(sr) asm("\
|
82 |
|
|
.set mips2 ; \
|
83 |
|
|
mtc0 %0,$12 ; \
|
84 |
|
|
.set mips0" : : "d" (sr))
|
85 |
|
|
|
86 |
|
|
/* TODO:FIXME: The CPU card support should be in separate source file
|
87 |
|
|
from the standard CMA101 support provided in this file. */
|
88 |
|
|
|
89 |
|
|
/* The CMA101 board being used contains a CMA257 Vr4300 CPU:
|
90 |
|
|
MasterClock is at 33MHz. PClock is derived from MasterClock by
|
91 |
|
|
multiplying by the ratio defined by the DivMode pins:
|
92 |
|
|
DivMode(1:0) MasterClock PClock Ratio
|
93 |
|
|
00 100MHz 100MHz 1:1
|
94 |
|
|
01 100MHz 150MHz 1.5:1
|
95 |
|
|
10 100MHz 200MHz 2:1
|
96 |
|
|
11 100Mhz 300MHz 3:1
|
97 |
|
|
|
98 |
|
|
Are these pins reflected in the EC bits in the CONFIG register? or
|
99 |
|
|
is that talking about a different clock multiplier?
|
100 |
|
|
110 = 1
|
101 |
|
|
111 = 1.5
|
102 |
|
|
000 = 2
|
103 |
|
|
001 = 3
|
104 |
|
|
(all other values are undefined)
|
105 |
|
|
*/
|
106 |
|
|
|
107 |
|
|
#define MASTERCLOCK (33) /* ticks per uS */
|
108 |
|
|
unsigned int pclock; /* number of PClock ticks per uS */
|
109 |
|
|
void
|
110 |
|
|
set_pclock (void)
|
111 |
|
|
{
|
112 |
|
|
unsigned int config;
|
113 |
|
|
asm volatile ("mfc0 %0,$16 ; nop ; nop" : "=r" (config)); /* nasty CP0 register constant */
|
114 |
|
|
switch ((config >> 28) & 0x7) {
|
115 |
|
|
case 0x7 : /* 1.5:1 */
|
116 |
|
|
pclock = (MASTERCLOCK + (MASTERCLOCK / 2));
|
117 |
|
|
break;
|
118 |
|
|
|
119 |
|
|
case 0x0 : /* 2:1 */
|
120 |
|
|
pclock = (2 * MASTERCLOCK);
|
121 |
|
|
break;
|
122 |
|
|
|
123 |
|
|
case 0x1 : /* 3:1 */
|
124 |
|
|
pclock = (3 * MASTERCLOCK);
|
125 |
|
|
break;
|
126 |
|
|
|
127 |
|
|
case 0x6 : /* 1:1 */
|
128 |
|
|
default : /* invalid configuration, so assume the lowest */
|
129 |
|
|
pclock = MASTERCLOCK;
|
130 |
|
|
break;
|
131 |
|
|
}
|
132 |
|
|
|
133 |
|
|
return;
|
134 |
|
|
}
|
135 |
|
|
|
136 |
|
|
#define PCLOCK_WAIT(x) __cpu_timer_poll((x) * pclock)
|
137 |
|
|
|
138 |
|
|
/* NOTE: On the Cogent CMA101 board the LCD controller will sometimes
|
139 |
|
|
return not-busy, even though it is. The work-around is to perform a
|
140 |
|
|
~50uS delay before checking the busy signal. */
|
141 |
|
|
|
142 |
|
|
static int
|
143 |
|
|
lcd_busy (void)
|
144 |
|
|
{
|
145 |
|
|
PCLOCK_WAIT(50); /* 50uS delay */
|
146 |
|
|
return(*LCD_CMD & LCD_STAT_BUSY);
|
147 |
|
|
}
|
148 |
|
|
|
149 |
|
|
/* Note: This code *ASSUMES* that the LCD has already been initialised
|
150 |
|
|
by the monitor. It only provides code to write to the LCD, and is
|
151 |
|
|
not a complete device driver. */
|
152 |
|
|
|
153 |
|
|
void
|
154 |
|
|
lcd_display (int line, const char *msg)
|
155 |
|
|
{
|
156 |
|
|
int n;
|
157 |
|
|
|
158 |
|
|
if (lcd_busy ())
|
159 |
|
|
return;
|
160 |
|
|
|
161 |
|
|
*LCD_CMD = (LCD_SET_DDADDR | (line == 1 ? 0x40 : 0x00));
|
162 |
|
|
|
163 |
|
|
for (n = 0; n < 16; n++) {
|
164 |
|
|
if (lcd_busy ())
|
165 |
|
|
return;
|
166 |
|
|
if (*msg)
|
167 |
|
|
*LCD_DATA = *msg++;
|
168 |
|
|
else
|
169 |
|
|
*LCD_DATA = ' ';
|
170 |
|
|
}
|
171 |
|
|
|
172 |
|
|
return;
|
173 |
|
|
}
|
174 |
|
|
|
175 |
|
|
#define SM_PATTERN (0x55AA55AA)
|
176 |
|
|
#define SM_INCR ((256 << 10) / sizeof(unsigned int)) /* 64K words */
|
177 |
|
|
|
178 |
|
|
extern unsigned int __buserr_count(void);
|
179 |
|
|
extern void __default_buserr_handler(void);
|
180 |
|
|
extern void __restore_buserr_handler(void);
|
181 |
|
|
|
182 |
|
|
/* Allow the user to provide his/her own defaults. */
|
183 |
|
|
unsigned int __sizemem_default;
|
184 |
|
|
|
185 |
|
|
unsigned int
|
186 |
|
|
__sizemem ()
|
187 |
|
|
{
|
188 |
|
|
volatile unsigned int *base;
|
189 |
|
|
volatile unsigned int *probe;
|
190 |
|
|
unsigned int baseorig;
|
191 |
|
|
unsigned int sr;
|
192 |
|
|
extern char end[];
|
193 |
|
|
char *endptr = (char *)&end;
|
194 |
|
|
int extra;
|
195 |
|
|
|
196 |
|
|
/* If the linker script provided a value for the memory size (or the user
|
197 |
|
|
overrode it in a debugger), use that. */
|
198 |
|
|
if (__sizemem_default)
|
199 |
|
|
return __sizemem_default;
|
200 |
|
|
|
201 |
|
|
/* If we are running in kernel segment 0 (possibly cached), try sizing memory
|
202 |
|
|
in kernel segment 1 (uncached) to avoid some problems with monitors. */
|
203 |
|
|
if (endptr >= K0BASE_ADDR && endptr < K1BASE_ADDR)
|
204 |
|
|
endptr = (endptr - K0BASE_ADDR) + K1BASE_ADDR;
|
205 |
|
|
|
206 |
|
|
INTDISABLE(sr,baseorig); /* disable all interrupt masks */
|
207 |
|
|
|
208 |
|
|
__default_buserr_handler();
|
209 |
|
|
__cpu_flush();
|
210 |
|
|
|
211 |
|
|
DOSYNC();
|
212 |
|
|
|
213 |
|
|
/* _end is the end of the user program. _end may not be properly aligned
|
214 |
|
|
for an int pointer, so we adjust the address to make sure it is safe.
|
215 |
|
|
We use void * arithmetic to avoid accidentally truncating the pointer. */
|
216 |
|
|
|
217 |
|
|
extra = ((int) endptr & (sizeof (int) - 1));
|
218 |
|
|
base = ((void *) endptr + sizeof (int) - extra);
|
219 |
|
|
baseorig = *base;
|
220 |
|
|
|
221 |
|
|
*base = SM_PATTERN;
|
222 |
|
|
/* This assumes that the instructions fetched between the store, and
|
223 |
|
|
the following read will have changed the data bus contents: */
|
224 |
|
|
if (*base == SM_PATTERN) {
|
225 |
|
|
probe = base;
|
226 |
|
|
for (;;) {
|
227 |
|
|
unsigned int probeorig;
|
228 |
|
|
probe += SM_INCR;
|
229 |
|
|
probeorig = *probe;
|
230 |
|
|
/* Check if a bus error occurred: */
|
231 |
|
|
if (!__buserr_count()) {
|
232 |
|
|
*probe = SM_PATTERN;
|
233 |
|
|
DOSYNC();
|
234 |
|
|
if (*probe == SM_PATTERN) {
|
235 |
|
|
*probe = ~SM_PATTERN;
|
236 |
|
|
DOSYNC();
|
237 |
|
|
if (*probe == ~SM_PATTERN) {
|
238 |
|
|
if (*base == SM_PATTERN) {
|
239 |
|
|
*probe = probeorig;
|
240 |
|
|
continue;
|
241 |
|
|
}
|
242 |
|
|
}
|
243 |
|
|
}
|
244 |
|
|
*probe = probeorig;
|
245 |
|
|
}
|
246 |
|
|
break;
|
247 |
|
|
}
|
248 |
|
|
}
|
249 |
|
|
|
250 |
|
|
*base = baseorig;
|
251 |
|
|
__restore_buserr_handler();
|
252 |
|
|
__cpu_flush();
|
253 |
|
|
|
254 |
|
|
DOSYNC();
|
255 |
|
|
|
256 |
|
|
INTRESTORE(sr); /* restore interrupt mask to entry state */
|
257 |
|
|
|
258 |
|
|
return((probe - base) * sizeof(unsigned int));
|
259 |
|
|
}
|
260 |
|
|
|
261 |
|
|
/* Provided as a function, so as to avoid reading the I/O location
|
262 |
|
|
multiple times: */
|
263 |
|
|
static int
|
264 |
|
|
convertbcd(byte)
|
265 |
|
|
unsigned char byte;
|
266 |
|
|
{
|
267 |
|
|
return ((((byte >> 4) & 0xF) * 10) + (byte & 0xF));
|
268 |
|
|
}
|
269 |
|
|
|
270 |
|
|
time_t
|
271 |
|
|
time (_timer)
|
272 |
|
|
time_t *_timer;
|
273 |
|
|
{
|
274 |
|
|
time_t result = 0;
|
275 |
|
|
struct tm tm;
|
276 |
|
|
*RTC_CONTROL |= RTC_CTL_LOCK_READ;
|
277 |
|
|
DOSYNC();
|
278 |
|
|
|
279 |
|
|
tm.tm_sec = convertbcd(*RTC_SECS);
|
280 |
|
|
tm.tm_min = convertbcd(*RTC_MINS);
|
281 |
|
|
tm.tm_hour = convertbcd(*RTC_HOURS);
|
282 |
|
|
tm.tm_mday = convertbcd(*RTC_DATE);
|
283 |
|
|
tm.tm_mon = convertbcd(*RTC_MONTH);
|
284 |
|
|
tm.tm_year = convertbcd(*RTC_YEAR);
|
285 |
|
|
|
286 |
|
|
DOSYNC();
|
287 |
|
|
*RTC_CONTROL &= ~(RTC_CTL_LOCK_READ | RTC_CTL_LOCK_WRITE);
|
288 |
|
|
|
289 |
|
|
tm.tm_isdst = 0;
|
290 |
|
|
|
291 |
|
|
/* Check for invalid time information */
|
292 |
|
|
if ((tm.tm_sec < 60) && (tm.tm_min < 60) && (tm.tm_hour < 24)
|
293 |
|
|
&& (tm.tm_mday < 32) && (tm.tm_mon < 13)) {
|
294 |
|
|
|
295 |
|
|
/* Get the correct year number, but keep it in YEAR-1900 form: */
|
296 |
|
|
if (tm.tm_year < 70)
|
297 |
|
|
tm.tm_year += 100;
|
298 |
|
|
|
299 |
|
|
#if 0 /* NOTE: mon_printf() can only accept 4 arguments (format string + 3 fields) */
|
300 |
|
|
mon_printf("[DBG: s=%d m=%d h=%d]", tm.tm_sec, tm.tm_min, tm.tm_hour);
|
301 |
|
|
mon_printf("[DBG: d=%d m=%d y=%d]", tm.tm_mday, tm.tm_mon, tm.tm_year);
|
302 |
|
|
#endif
|
303 |
|
|
|
304 |
|
|
/* Convert the time-structure into a second count */
|
305 |
|
|
result = mktime (&tm);
|
306 |
|
|
}
|
307 |
|
|
|
308 |
|
|
if (_timer != NULL)
|
309 |
|
|
*_timer = result;
|
310 |
|
|
|
311 |
|
|
return (result);
|
312 |
|
|
}
|
313 |
|
|
|
314 |
|
|
/*> EOF cma101.c <*/
|