OpenCores
URL https://opencores.org/ocsvn/openrisc/openrisc/trunk

Subversion Repositories openrisc

[/] [openrisc/] [trunk/] [gnu-old/] [newlib-1.17.0/] [newlib/] [libm/] [common/] [s_expm1.c] - Blame information for rev 855

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 148 jeremybenn
 
2
/* @(#)s_expm1.c 5.1 93/09/24 */
3
/*
4
 * ====================================================
5
 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
6
 *
7
 * Developed at SunPro, a Sun Microsystems, Inc. business.
8
 * Permission to use, copy, modify, and distribute this
9
 * software is freely granted, provided that this notice
10
 * is preserved.
11
 * ====================================================
12
 */
13
 
14
/*
15
FUNCTION
16
        <<expm1>>, <<expm1f>>---exponential minus 1
17
INDEX
18
        expm1
19
INDEX
20
        expm1f
21
 
22
ANSI_SYNOPSIS
23
        #include <math.h>
24
        double expm1(double <[x]>);
25
        float expm1f(float <[x]>);
26
 
27
TRAD_SYNOPSIS
28
        #include <math.h>
29
        double expm1(<[x]>);
30
        double <[x]>;
31
 
32
        float expm1f(<[x]>);
33
        float <[x]>;
34
 
35
DESCRIPTION
36
        <<expm1>> and <<expm1f>> calculate the exponential of <[x]>
37
        and subtract 1, that is,
38
        @ifnottex
39
        e raised to the power <[x]> minus 1 (where e
40
        @end ifnottex
41
        @tex
42
        $e^x - 1$ (where $e$
43
        @end tex
44
        is the base of the natural system of logarithms, approximately
45
        2.71828).  The result is accurate even for small values of
46
        <[x]>, where using <<exp(<[x]>)-1>> would lose many
47
        significant digits.
48
 
49
RETURNS
50
        e raised to the power <[x]>, minus 1.
51
 
52
PORTABILITY
53
        Neither <<expm1>> nor <<expm1f>> is required by ANSI C or by
54
        the System V Interface Definition (Issue 2).
55
*/
56
 
57
/* expm1(x)
58
 * Returns exp(x)-1, the exponential of x minus 1.
59
 *
60
 * Method
61
 *   1. Argument reduction:
62
 *      Given x, find r and integer k such that
63
 *
64
 *               x = k*ln2 + r,  |r| <= 0.5*ln2 ~ 0.34658
65
 *
66
 *      Here a correction term c will be computed to compensate
67
 *      the error in r when rounded to a floating-point number.
68
 *
69
 *   2. Approximating expm1(r) by a special rational function on
70
 *      the interval [0,0.34658]:
71
 *      Since
72
 *          r*(exp(r)+1)/(exp(r)-1) = 2+ r^2/6 - r^4/360 + ...
73
 *      we define R1(r*r) by
74
 *          r*(exp(r)+1)/(exp(r)-1) = 2+ r^2/6 * R1(r*r)
75
 *      That is,
76
 *          R1(r**2) = 6/r *((exp(r)+1)/(exp(r)-1) - 2/r)
77
 *                   = 6/r * ( 1 + 2.0*(1/(exp(r)-1) - 1/r))
78
 *                   = 1 - r^2/60 + r^4/2520 - r^6/100800 + ...
79
 *      We use a special Reme algorithm on [0,0.347] to generate
80
 *      a polynomial of degree 5 in r*r to approximate R1. The
81
 *      maximum error of this polynomial approximation is bounded
82
 *      by 2**-61. In other words,
83
 *          R1(z) ~ 1.0 + Q1*z + Q2*z**2 + Q3*z**3 + Q4*z**4 + Q5*z**5
84
 *      where   Q1  =  -1.6666666666666567384E-2,
85
 *              Q2  =   3.9682539681370365873E-4,
86
 *              Q3  =  -9.9206344733435987357E-6,
87
 *              Q4  =   2.5051361420808517002E-7,
88
 *              Q5  =  -6.2843505682382617102E-9;
89
 *      (where z=r*r, and the values of Q1 to Q5 are listed below)
90
 *      with error bounded by
91
 *          |                  5           |     -61
92
 *          | 1.0+Q1*z+...+Q5*z   -  R1(z) | <= 2
93
 *          |                              |
94
 *
95
 *      expm1(r) = exp(r)-1 is then computed by the following
96
 *      specific way which minimize the accumulation rounding error:
97
 *                             2     3
98
 *                            r     r    [ 3 - (R1 + R1*r/2)  ]
99
 *            expm1(r) = r + --- + --- * [--------------------]
100
 *                            2     2    [ 6 - r*(3 - R1*r/2) ]
101
 *
102
 *      To compensate the error in the argument reduction, we use
103
 *              expm1(r+c) = expm1(r) + c + expm1(r)*c
104
 *                         ~ expm1(r) + c + r*c
105
 *      Thus c+r*c will be added in as the correction terms for
106
 *      expm1(r+c). Now rearrange the term to avoid optimization
107
 *      screw up:
108
 *                      (      2                                    2 )
109
 *                      ({  ( r    [ R1 -  (3 - R1*r/2) ]  )  }    r  )
110
 *       expm1(r+c)~r - ({r*(--- * [--------------------]-c)-c} - --- )
111
 *                      ({  ( 2    [ 6 - r*(3 - R1*r/2) ]  )  }    2  )
112
 *                      (                                             )
113
 *
114
 *                 = r - E
115
 *   3. Scale back to obtain expm1(x):
116
 *      From step 1, we have
117
 *         expm1(x) = either 2^k*[expm1(r)+1] - 1
118
 *                  = or     2^k*[expm1(r) + (1-2^-k)]
119
 *   4. Implementation notes:
120
 *      (A). To save one multiplication, we scale the coefficient Qi
121
 *           to Qi*2^i, and replace z by (x^2)/2.
122
 *      (B). To achieve maximum accuracy, we compute expm1(x) by
123
 *        (i)   if x < -56*ln2, return -1.0, (raise inexact if x!=inf)
124
 *        (ii)  if k=0, return r-E
125
 *        (iii) if k=-1, return 0.5*(r-E)-0.5
126
 *        (iv)  if k=1 if r < -0.25, return 2*((r+0.5)- E)
127
 *                     else          return  1.0+2.0*(r-E);
128
 *        (v)   if (k<-2||k>56) return 2^k(1-(E-r)) - 1 (or exp(x)-1)
129
 *        (vi)  if k <= 20, return 2^k((1-2^-k)-(E-r)), else
130
 *        (vii) return 2^k(1-((E+2^-k)-r))
131
 *
132
 * Special cases:
133
 *      expm1(INF) is INF, expm1(NaN) is NaN;
134
 *      expm1(-INF) is -1, and
135
 *      for finite argument, only expm1(0)=0 is exact.
136
 *
137
 * Accuracy:
138
 *      according to an error analysis, the error is always less than
139
 *      1 ulp (unit in the last place).
140
 *
141
 * Misc. info.
142
 *      For IEEE double
143
 *          if x >  7.09782712893383973096e+02 then expm1(x) overflow
144
 *
145
 * Constants:
146
 * The hexadecimal values are the intended ones for the following
147
 * constants. The decimal values may be used, provided that the
148
 * compiler will convert from decimal to binary accurately enough
149
 * to produce the hexadecimal values shown.
150
 */
151
 
152
#include "fdlibm.h"
153
 
154
#ifndef _DOUBLE_IS_32BITS
155
 
156
#ifdef __STDC__
157
static const double
158
#else
159
static double
160
#endif
161
one             = 1.0,
162
huge            = 1.0e+300,
163
tiny            = 1.0e-300,
164
o_threshold     = 7.09782712893383973096e+02,/* 0x40862E42, 0xFEFA39EF */
165
ln2_hi          = 6.93147180369123816490e-01,/* 0x3fe62e42, 0xfee00000 */
166
ln2_lo          = 1.90821492927058770002e-10,/* 0x3dea39ef, 0x35793c76 */
167
invln2          = 1.44269504088896338700e+00,/* 0x3ff71547, 0x652b82fe */
168
        /* scaled coefficients related to expm1 */
169
Q1  =  -3.33333333333331316428e-02, /* BFA11111 111110F4 */
170
Q2  =   1.58730158725481460165e-03, /* 3F5A01A0 19FE5585 */
171
Q3  =  -7.93650757867487942473e-05, /* BF14CE19 9EAADBB7 */
172
Q4  =   4.00821782732936239552e-06, /* 3ED0CFCA 86E65239 */
173
Q5  =  -2.01099218183624371326e-07; /* BE8AFDB7 6E09C32D */
174
 
175
#ifdef __STDC__
176
        double expm1(double x)
177
#else
178
        double expm1(x)
179
        double x;
180
#endif
181
{
182
        double y,hi,lo,c,t,e,hxs,hfx,r1;
183
        __int32_t k,xsb;
184
        __uint32_t hx;
185
 
186
        GET_HIGH_WORD(hx,x);
187
        xsb = hx&0x80000000;            /* sign bit of x */
188
        if(xsb==0) y=x; else y= -x;      /* y = |x| */
189
        hx &= 0x7fffffff;               /* high word of |x| */
190
 
191
    /* filter out huge and non-finite argument */
192
        if(hx >= 0x4043687A) {                  /* if |x|>=56*ln2 */
193
            if(hx >= 0x40862E42) {              /* if |x|>=709.78... */
194
                if(hx>=0x7ff00000) {
195
                    __uint32_t low;
196
                    GET_LOW_WORD(low,x);
197
                    if(((hx&0xfffff)|low)!=0)
198
                         return x+x;     /* NaN */
199
                    else return (xsb==0)? x:-1.0;/* exp(+-inf)={inf,-1} */
200
                }
201
                if(x > o_threshold) return huge*huge; /* overflow */
202
            }
203
            if(xsb!=0) { /* x < -56*ln2, return -1.0 with inexact */
204
                if(x+tiny<0.0)          /* raise inexact */
205
                return tiny-one;        /* return -1 */
206
            }
207
        }
208
 
209
    /* argument reduction */
210
        if(hx > 0x3fd62e42) {           /* if  |x| > 0.5 ln2 */
211
            if(hx < 0x3FF0A2B2) {       /* and |x| < 1.5 ln2 */
212
                if(xsb==0)
213
                    {hi = x - ln2_hi; lo =  ln2_lo;  k =  1;}
214
                else
215
                    {hi = x + ln2_hi; lo = -ln2_lo;  k = -1;}
216
            } else {
217
                k  = invln2*x+((xsb==0)?0.5:-0.5);
218
                t  = k;
219
                hi = x - t*ln2_hi;      /* t*ln2_hi is exact here */
220
                lo = t*ln2_lo;
221
            }
222
            x  = hi - lo;
223
            c  = (hi-x)-lo;
224
        }
225
        else if(hx < 0x3c900000) {      /* when |x|<2**-54, return x */
226
            t = huge+x; /* return x with inexact flags when x!=0 */
227
            return x - (t-(huge+x));
228
        }
229
        else k = 0;
230
 
231
    /* x is now in primary range */
232
        hfx = 0.5*x;
233
        hxs = x*hfx;
234
        r1 = one+hxs*(Q1+hxs*(Q2+hxs*(Q3+hxs*(Q4+hxs*Q5))));
235
        t  = 3.0-r1*hfx;
236
        e  = hxs*((r1-t)/(6.0 - x*t));
237
        if(k==0) return x - (x*e-hxs);           /* c is 0 */
238
        else {
239
            e  = (x*(e-c)-c);
240
            e -= hxs;
241
            if(k== -1) return 0.5*(x-e)-0.5;
242
          if(k==1) {
243
                if(x < -0.25) return -2.0*(e-(x+0.5));
244
                else          return  one+2.0*(x-e);
245
          }
246
            if (k <= -2 || k>56) {   /* suffice to return exp(x)-1 */
247
                __uint32_t high;
248
                y = one-(e-x);
249
                GET_HIGH_WORD(high,y);
250
                SET_HIGH_WORD(y,high+(k<<20));  /* add k to y's exponent */
251
                return y-one;
252
            }
253
            t = one;
254
            if(k<20) {
255
                __uint32_t high;
256
                SET_HIGH_WORD(t,0x3ff00000 - (0x200000>>k));  /* t=1-2^-k */
257
                y = t-(e-x);
258
                GET_HIGH_WORD(high,y);
259
                SET_HIGH_WORD(y,high+(k<<20));  /* add k to y's exponent */
260
           } else {
261
                __uint32_t high;
262
                SET_HIGH_WORD(t,((0x3ff-k)<<20));       /* 2^-k */
263
                y = x-(e+t);
264
                y += one;
265
                GET_HIGH_WORD(high,y);
266
                SET_HIGH_WORD(y,high+(k<<20));  /* add k to y's exponent */
267
            }
268
        }
269
        return y;
270
}
271
 
272
#endif /* _DOUBLE_IS_32BITS */

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.