1 |
148 |
jeremybenn |
/* -------------------------------------------------------------- */
|
2 |
|
|
/* (C)Copyright 2007,2008, */
|
3 |
|
|
/* International Business Machines Corporation */
|
4 |
|
|
/* All Rights Reserved. */
|
5 |
|
|
/* */
|
6 |
|
|
/* Redistribution and use in source and binary forms, with or */
|
7 |
|
|
/* without modification, are permitted provided that the */
|
8 |
|
|
/* following conditions are met: */
|
9 |
|
|
/* */
|
10 |
|
|
/* - Redistributions of source code must retain the above copyright*/
|
11 |
|
|
/* notice, this list of conditions and the following disclaimer. */
|
12 |
|
|
/* */
|
13 |
|
|
/* - Redistributions in binary form must reproduce the above */
|
14 |
|
|
/* copyright notice, this list of conditions and the following */
|
15 |
|
|
/* disclaimer in the documentation and/or other materials */
|
16 |
|
|
/* provided with the distribution. */
|
17 |
|
|
/* */
|
18 |
|
|
/* - Neither the name of IBM Corporation nor the names of its */
|
19 |
|
|
/* contributors may be used to endorse or promote products */
|
20 |
|
|
/* derived from this software without specific prior written */
|
21 |
|
|
/* permission. */
|
22 |
|
|
/* */
|
23 |
|
|
/* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND */
|
24 |
|
|
/* CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, */
|
25 |
|
|
/* INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF */
|
26 |
|
|
/* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE */
|
27 |
|
|
/* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR */
|
28 |
|
|
/* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, */
|
29 |
|
|
/* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT */
|
30 |
|
|
/* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; */
|
31 |
|
|
/* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) */
|
32 |
|
|
/* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN */
|
33 |
|
|
/* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR */
|
34 |
|
|
/* OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, */
|
35 |
|
|
/* EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */
|
36 |
|
|
/* -------------------------------------------------------------- */
|
37 |
|
|
/* PROLOG END TAG zYx */
|
38 |
|
|
#ifdef __SPU__
|
39 |
|
|
#ifndef _ACOSHD2_H_
|
40 |
|
|
#define _ACOSHD2_H_ 1
|
41 |
|
|
|
42 |
|
|
#include <spu_intrinsics.h>
|
43 |
|
|
#include "logd2.h"
|
44 |
|
|
#include "sqrtd2.h"
|
45 |
|
|
|
46 |
|
|
/*
|
47 |
|
|
* FUNCTION
|
48 |
|
|
* vector double _acoshd2(vector double x)
|
49 |
|
|
*
|
50 |
|
|
* DESCRIPTION
|
51 |
|
|
* The acoshd2 function returns a vector containing the hyperbolic
|
52 |
|
|
* arccosines of the corresponding elements of the input vector.
|
53 |
|
|
*
|
54 |
|
|
* We are using the formula:
|
55 |
|
|
* acosh = ln(x + sqrt(x^2 - 1))
|
56 |
|
|
*
|
57 |
|
|
* For x near one, we use the Taylor series:
|
58 |
|
|
*
|
59 |
|
|
* infinity
|
60 |
|
|
* ------
|
61 |
|
|
* - '
|
62 |
|
|
* - k
|
63 |
|
|
* acosh x = - C (x - 1)
|
64 |
|
|
* - k
|
65 |
|
|
* - ,
|
66 |
|
|
* ------
|
67 |
|
|
* k = 0
|
68 |
|
|
*
|
69 |
|
|
*
|
70 |
|
|
* Special Cases:
|
71 |
|
|
* - acosh(1) = +0
|
72 |
|
|
* - acosh(NaN) = NaN
|
73 |
|
|
* - acosh(Infinity) = Infinity
|
74 |
|
|
* - acosh(x < 1) = NaN
|
75 |
|
|
*
|
76 |
|
|
*/
|
77 |
|
|
|
78 |
|
|
/*
|
79 |
|
|
* Taylor Series Coefficients
|
80 |
|
|
* for x around 1.
|
81 |
|
|
*/
|
82 |
|
|
#define SDM_ACOSHD2_TAY01 1.000000000000000000000000000000000E0 /* 1 / 1 */
|
83 |
|
|
#define SDM_ACOSHD2_TAY02 -8.333333333333333333333333333333333E-2 /* 1 / 12 */
|
84 |
|
|
#define SDM_ACOSHD2_TAY03 1.875000000000000000000000000000000E-2 /* 3 / 160 */
|
85 |
|
|
#define SDM_ACOSHD2_TAY04 -5.580357142857142857142857142857142E-3 /* 5 / 896 */
|
86 |
|
|
#define SDM_ACOSHD2_TAY05 1.898871527777777777777777777777777E-3 /* 35 / 18432 */
|
87 |
|
|
#define SDM_ACOSHD2_TAY06 -6.991299715909090909090909090909090E-4 /* 63 / 90112 */
|
88 |
|
|
#define SDM_ACOSHD2_TAY07 2.711369441105769230769230769230769E-4 /* 231 / 851968 */
|
89 |
|
|
#define SDM_ACOSHD2_TAY08 -1.091003417968750000000000000000000E-4 /* 143 / 1310720 */
|
90 |
|
|
#define SDM_ACOSHD2_TAY09 4.512422225054572610294117647058823E-5 /* 6435 / 142606336 */
|
91 |
|
|
#define SDM_ACOSHD2_TAY10 -1.906564361170718544407894736842105E-5 /* 12155 / 637534208 */
|
92 |
|
|
#define SDM_ACOSHD2_TAY11 8.193687314078921363467261904761904E-6 /* 46189 / 5637144576 */
|
93 |
|
|
#define SDM_ACOSHD2_TAY12 -3.570569274218186088230298913043478E-6 /* 88179 / 24696061952 */
|
94 |
|
|
#define SDM_ACOSHD2_TAY13 1.574025955051183700561523437500000E-6 /* 676039 / 429496729600 */
|
95 |
|
|
#define SDM_ACOSHD2_TAY14 -7.006881922414457356488263165509259E-7 /* 1300075 / 1855425871872 */
|
96 |
|
|
#define SDM_ACOSHD2_TAY15 3.145330616650332150788142763335129E-7 /* 5014575 / 15942918602752 */
|
97 |
|
|
|
98 |
|
|
static __inline vector double _acoshd2(vector double x)
|
99 |
|
|
{
|
100 |
|
|
vec_uchar16 dup_even = ((vec_uchar16) { 0,1,2,3, 0,1,2,3, 8,9,10,11, 8,9,10,11 });
|
101 |
|
|
vec_double2 minus_oned = spu_splats(-1.0);
|
102 |
|
|
vec_double2 twod = spu_splats(2.0);
|
103 |
|
|
/* Where we switch from taylor to formula */
|
104 |
|
|
vec_float4 switch_approx = spu_splats(1.15f);
|
105 |
|
|
vec_double2 result, fresult, mresult;;
|
106 |
|
|
|
107 |
|
|
|
108 |
|
|
vec_double2 xminus1 = spu_add(x, minus_oned);
|
109 |
|
|
vec_float4 xf = spu_roundtf(x);
|
110 |
|
|
xf = spu_shuffle(xf, xf, dup_even);
|
111 |
|
|
|
112 |
|
|
vec_ullong2 use_form = (vec_ullong2)spu_cmpgt(xf, switch_approx);
|
113 |
|
|
|
114 |
|
|
vec_double2 sqrtargformula = spu_madd(x, x, minus_oned);
|
115 |
|
|
vec_double2 sqrtargtaylor = spu_mul(xminus1, twod);
|
116 |
|
|
vec_double2 sqrtarg = spu_sel(sqrtargtaylor, sqrtargformula, use_form);
|
117 |
|
|
|
118 |
|
|
vec_double2 sqrtresult = _sqrtd2(sqrtarg);
|
119 |
|
|
|
120 |
|
|
/*
|
121 |
|
|
* Formula:
|
122 |
|
|
* acosh = ln(x + sqrt(x^2 - 1))
|
123 |
|
|
*/
|
124 |
|
|
fresult = spu_add(x, sqrtresult);
|
125 |
|
|
fresult = _logd2(fresult);
|
126 |
|
|
|
127 |
|
|
/*
|
128 |
|
|
* Taylor Series
|
129 |
|
|
*/
|
130 |
|
|
mresult = spu_splats(SDM_ACOSHD2_TAY15);
|
131 |
|
|
mresult = spu_madd(xminus1, mresult, spu_splats(SDM_ACOSHD2_TAY14));
|
132 |
|
|
mresult = spu_madd(xminus1, mresult, spu_splats(SDM_ACOSHD2_TAY13));
|
133 |
|
|
mresult = spu_madd(xminus1, mresult, spu_splats(SDM_ACOSHD2_TAY12));
|
134 |
|
|
mresult = spu_madd(xminus1, mresult, spu_splats(SDM_ACOSHD2_TAY11));
|
135 |
|
|
mresult = spu_madd(xminus1, mresult, spu_splats(SDM_ACOSHD2_TAY10));
|
136 |
|
|
mresult = spu_madd(xminus1, mresult, spu_splats(SDM_ACOSHD2_TAY09));
|
137 |
|
|
mresult = spu_madd(xminus1, mresult, spu_splats(SDM_ACOSHD2_TAY08));
|
138 |
|
|
mresult = spu_madd(xminus1, mresult, spu_splats(SDM_ACOSHD2_TAY07));
|
139 |
|
|
mresult = spu_madd(xminus1, mresult, spu_splats(SDM_ACOSHD2_TAY06));
|
140 |
|
|
mresult = spu_madd(xminus1, mresult, spu_splats(SDM_ACOSHD2_TAY05));
|
141 |
|
|
mresult = spu_madd(xminus1, mresult, spu_splats(SDM_ACOSHD2_TAY04));
|
142 |
|
|
mresult = spu_madd(xminus1, mresult, spu_splats(SDM_ACOSHD2_TAY03));
|
143 |
|
|
mresult = spu_madd(xminus1, mresult, spu_splats(SDM_ACOSHD2_TAY02));
|
144 |
|
|
mresult = spu_madd(xminus1, mresult, spu_splats(SDM_ACOSHD2_TAY01));
|
145 |
|
|
|
146 |
|
|
|
147 |
|
|
mresult = spu_mul(mresult, sqrtresult);
|
148 |
|
|
|
149 |
|
|
|
150 |
|
|
/*
|
151 |
|
|
* Select series or formula
|
152 |
|
|
*/
|
153 |
|
|
result = spu_sel(mresult, fresult, use_form);
|
154 |
|
|
|
155 |
|
|
return result;
|
156 |
|
|
}
|
157 |
|
|
|
158 |
|
|
#endif /* _ACOSHD2_H_ */
|
159 |
|
|
#endif /* __SPU__ */
|